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A B S T R A C T   

Changes in atmospheric carbon dioxide (CO2) concentration directly influence the ratio of stomatal water loss to 
carbon uptake. This ratio (e) is a fundamental quantity for terrestrial ecosystems, as it defines the water 
requirement for plant growth. Statistical and analogue-based methods used to reconstruct past hydroclimate 
variables from fossil pollen assemblages do not take account of the effect of CO2 variations on e. Here we present 
a general, globally applicable method to correct for this effect. The method involves solving an equation that 
relates e to a climatic moisture index (MI, the ratio of mean annual precipitation to mean annual potential 
evapotranspiration), mean growing-season temperature, and ambient CO2. The equation is based on the least- 
cost optimality hypothesis, which predicts how the ratio (χ) of leaf-internal to ambient CO2 varies with 
vapour pressure deficit (vpd), growing-season temperature and atmospheric pressure, combined with experi
mental evidence on the response of χ to the CO2 level at which plants have been grown. An empirical relationship 
based on global climate data is used to relate vpd to MI and growing-season temperature. The solution to the 
equation allows past MI to be estimated from pollen-reconstructed MI, given past CO2 and temperature. This MI 
value can be used to estimate mean annual precipitation, accounting for the effects of orbital variations, tem
perature and cloud cover (inferred from MI) on potential evapotranspiration. A pollen record from semi-arid 
Spain that spans the last glacial interval is used to illustrate the method. Low CO2 leads to estimated MI being 
larger than reconstructed MI during glacial times. The CO2 effect on inferred precipitation was partly offset by 
increased cloud cover; nonetheless, inferred precipitation was greater than present almost throughout the glacial 
period. This method allows a more robust reconstruction of past hydroclimatic variations than currently avail
able tools.   

1. Introduction 

CO2 uptake through stomata during photosynthesis means that car
bon assimilation by plants is unavoidably accompanied by water loss. 
When ambient CO2 is high, water-use efficiency (the amount of water 
lost per unit carbon assimilated) is high or, conversely, the water loss 
required to achieve a unit of CO2 assimilation (here denoted e) is low. e is 
a fundamental quantity for land ecosystems, as it defines the amount of 
water required for the growth of plants. All else equal, low e implies 
higher vegetation productivity and cover for a given supply of water. 
High e implies lower vegetation productivity and cover for the same 
supply of water. Increases in water-use efficiency due to the recent CO2 
rise are well documented by comparisons of measured CO2 and latent 
heat fluxes, and by trends in stable carbon isotope discrimination 

(Keenan et al., 2013; Dekker et al., 2016). This effect also provides part 
of the explanation for recent global greening (Piao et al., 2006; Zhu 
et al., 2016; Haverd et al., 2020) and widespread increases in woody 
plant cover (Eamus and Palmer, 2007; Archer et al., 2017). The converse 
situation prevailed during intervals of low CO2, including the last glacial 
interval (115 to 11.7 kyr). Thus, glacial-age palaeodata indicating open, 
treeless vegetation characteristic of dry climates today do not neces
sarily imply low water availability in the past because, in principle, low 
CO2 alone could have been responsible for the apparent dryness. Indeed, 
vegetation-model experiments have indicated that the impacts of low 
CO2 on vegetation structure and composition during glacial times were 
at least as great as the impacts of the glacial climate (Jolly and Hax
eltine, 1997; Harrison and Prentice, 2003; Bragg et al., 2013; Martin 
Calvo and Prentice, 2015), resulting inter alia in a global reduction of 

* Corresponding author. 
E-mail address: c.prentice@imperial.ac.uk (I.C. Prentice).  

Contents lists available at ScienceDirect 

Global and Planetary Change 

journal homepage: www.elsevier.com/locate/gloplacha 

https://doi.org/10.1016/j.gloplacha.2022.103790 
Received 4 August 2021; Received in revised form 6 March 2022; Accepted 16 March 2022   

mailto:c.prentice@imperial.ac.uk
www.sciencedirect.com/science/journal/09218181
https://www.elsevier.com/locate/gloplacha
https://doi.org/10.1016/j.gloplacha.2022.103790
https://doi.org/10.1016/j.gloplacha.2022.103790
https://doi.org/10.1016/j.gloplacha.2022.103790
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloplacha.2022.103790&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Global and Planetary Change 211 (2022) 103790

2

primary production and forest cover (Harrison and Prentice, 2003; 
Prentice et al., 2011). 

Methods are therefore needed to quantify the expected effect of CO2 
changes, to avoid potentially biased estimation of past hydroclimates at 
CO2 levels different from those prevalent during the calibration period. 
Although the impacts of low CO2 on plant function have been known for 
decades (Solomon, 1984; Idso, 1989; Polley et al., 1993; Farquhar, 1997; 
Cowling and Sykes, 1999), there have been few attempts to incorporate 
this concept into the quantitative climatic interpretation of past vege
tation changes. Statistical and modern-analogue methods to reconstruct 
past hydroclimates from pollen data depend on relationships between 
pollen abundances and climate variables that are determined under 
recent atmospheric conditions (Chevalier et al., 2020). They cannot, by 
their nature, take the effect of varying CO2 into account. Process-based 
vegetation models that incorporate CO2 impacts on plant growth can be 
inverted to make climate reconstructions that do take account of vari
able CO2 (e.g. Guiot et al., 2000; Wu et al., 2007; Izumi and Bartlein, 
2016). Published model inversions for palaeo-climate variables have 
used variants of the same equilibrium vegetation model (BIOME3: 
Haxeltine and Prentice, 1996; BIOME4: Kaplan et al., 2003; BIO
ME5beta: Izumi and Bartlein, 2016) and also a dynamic global vegeta
tion model, LPJ-GUESS (Garreta et al., 2010; 2012). However, inversion 
results depend on the particularities of the vegetation model (Chevalier 
et al., 2020). Comparisons of model predictions of vegetation responses 
to future CO2 changes have shown that this sensitivity is not well con
strained, and differs between models (Friedlingstein et al., 2019; Arora 
et al., 2020) – motivating the development of simpler and more robust 
methods. 

We previously described a prototype method to correct statistical 
reconstructions of a standard moisture index (Prentice et al., 2017). This 
method has been applied to reconstruct CO2-corrected changes in 
moisture availability at the Last Glacial Maximum globally (Cleator 
et al., 2020) and through the last glacial cycle at El Cañizar de Villar
quemado, a site in semi-arid Spain (Wei et al., 2021). Here we introduce 
a major update of the method. The updated method is simpler, and re
quires fewer assumptions, than the originally published method. When 
empirical relationships among climate variables are required, they are 
based on new analyses of global climate data. The method is based on a 
combination of eco-evolutionary optimality theory and published 
experimental findings on how the ratio (χ) of leaf-internal to ambient 
CO2 responds to variations in ambient CO2. We show how this method 
can be applied to statistical or analogue-based reconstructions of past 
values of the moisture index (MI), defined as the ratio of mean annual 
precipitation (MAP) to mean annual potential evapotranspiration (PET). 
We also show how past precipitation can be estimated from CO2-cor
rected MI, taking into account orbital variations (affecting the seasonal 
and latitudinal distribution of insolation), temperature and cloud cover 
(estimated from an empirical relationship to MI). The method is illus
trated using the pollen data from El Cañizar de Villarquemado. 

2. Methods 

2.1. Description of the model 

The model relies on the interdependencies of several climatic vari
ables, and on the control of stomatal behaviour by climate, atmospheric 
pressure (primarily determined by elevation) and atmospheric CO2, as 
illustrated in Fig. 1. The following text explains each of these relation
ships and indicates how they are used. 

Fick's law describes both the diffusion of CO2 into leaves and the 
diffusion of water out of leaves through stomata: 

A = gs ca (1–χ)/P (1)  

E = 1.6 gs D/P (2) 

where A is carbon assimilation, E is water loss, gs is stomatal 

conductance to CO2, ca is the ambient partial pressure of CO2, χ is the 
ratio of leaf-internal to ambient CO2, P is atmospheric pressure and D is 
vapour pressure deficit (vpd). The factor 1.6 arises because of the 
different molecular diffusivities of CO2 and water. A, E and gs here all 
have units of mol m− 2 s− 1 while ca, D and P have units of Pa; hence both 
are normalized by atmospheric pressure, converting them to mole 
fractions in eqs. (1) and (2). Dividing (2) by (1) leads to a notably simple 
expression for e, the ratio (E/A) of water loss to CO2 uptake: 

e = 1.6 D/{ca (1–χ) } (3) 

Here e is the reciprocal of water use efficiency, a fundamental 
quantity describing the balance betwen CO2 uptake and water loss at the 
leaf level. The key hypothesis underlying our CO2 correction is that 
vegetation structure and composition respond to changes in this balance 
(Prentice et al., 2017; Gonsamo et al., 2021) rather than to any variable 
derived solely from meteorological data, including MI, that does not 
take plant physiological effects of ca into account. 

The following equation, introduced by Prentice et al. (2017) with 
slightly different notation, summarizes how the CO2 correction is 
implemented: 

e (T1,MI1, ca1) = e (T0,MI0, ca0) (4) 

where T1 is the past growing-season mean temperature (recon
structed), MI1 is the “true” past value of MI (to be estimated), ca1 is the 
past atmospheric CO2 (known), T0 is the recent growing-season mean 
temperature, MI0 is the reconstructed past value of MI, and ca0 is the 
recent atmospheric CO2. This equation states that the “true” past MI is 
the value that would produce the same e (under past atmospheric con
ditions) that the reconstructed past MI produces under recent atmo
spheric conditions, i.e. those pertaining to the modern pollen calibration 
data set. The indices (0,1) link variables that belong together, i.e. on 
either the left-hand (1) or the right-hand (0) side of eq. (4). 

It is assumed that a reconstruction of past growing-season mean 
temperature is available. Defining the growing season conventionally as 
the period of the year with climatological temperatures >0 ◦C, and 
approximating the seasonal cycle of temperatures by a sine curve, it is 
possible to obtain such a reconstruction from alternative reconstructed 
variables such as growing degree days and coldest-month temperatures, 
or December–January-February (DJF) and June–July-August (JJA) 
temperatures. See section 2.2 below for an example. 

Equation (4) also assumes that the reconstructed temperature, unlike 
MI, is not biased by CO2. This point is taken up again in the Discussion. 
However, the potential influence of cha. 

We now introduce the main innovation in this paper, which is the use 
of vpd as a key intermediate variable in the CO2 correction model 
(Fig. 1). We rely on a new empirical equation based on global climate 
data (Appendix 1) that allows vpd to be estimated from MI. Eq. (4) then 
reduces to the following simple form: 

D1/{ca1 (1–χ1) } = D0/{ca0 (1–χ0) } (5) 

where D1 and χ1 are past values, and D0 and χ0 are present values. 

Fig. 1. Environmental influences on water loss per unit carbon gain (e). MI, 
moisture index; D, vapour pressure deficit; T, temperature; ca, ambient mole 
fraction of CO2; χ, ratio of leaf-internal to ambient CO2; z, elevation. Blue ar
rows indicate a negative influence, red arrows a positive influence. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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Prentice et al. (2014) showed that the least-cost hypothesis, an eco- 
evolutionary optimality hypothesis based on the idea that plants mini
mize the combined costs (per unit carbon assimilation) of maintaining 
the biochemical and water-transport capacities required for photosyn
thesis, explicitly predicts variations in χ as a function of climate, with 
vpd, temperature and atmospheric pressure as the major controls. This 
hypothesis has now been extensively validated using global compila
tions of stable carbon isotope data on leaves (Wang et al., 2017) and 
wood (Lavergne et al., 2020a). Variations in optimal χ with temperature, 
vpd and atmospheric pressure conform to the following relationship: 

1–χ = (1–Γ*/ca)√D/(ξ+√D) (6)  

where Γ* is the photorespiratory compensation point (dependent on 
temperature and atmospheric pressure), and. 

ξ = √{β (K +Γ*)/(1.6 η*) } (7) 

where β is a dimensionless constant estimated as 146 based on 
modern stable carbon isotope data (Stocker et al., 2020), K is the 
effective Michaelis-Menten coefficient of Rubisco (in Pa; dependent on 
temperature and atmospheric pressure), and η* is the viscosity of water 
relative to its value at 25 ◦C (dimensionless; dependent on temperature). 
Experiments in which plants were grown under otherwise constant 
environmental conditions at a wide range of CO2 levels (Schubert and 
Jahren, 2012) have shown that χ also varies predictably as a function of 
ca. This finding has received further support from analyses of changes in 
leaf-level stable carbon isotope discrimination since the last glacial 
period (Schubert and Jahren, 2015; Voelker et al., 2016). The CO2 
response presented by Schubert and Jahren (2012) can be expressed in a 
simplified way as: 

χ = ca/(ca +ω) (8) 

where ω = 9.7 Pa (see Appendix 2 for derivation). Combining eqs. (7) 
and (8) gives: 

ca (1–χ) = {ω (ca–Γ*)/(ca +ω) }√D/(ξ+√D) (9) 

Equation (5) can now be represented as a quadratic in √D1: 

ξ1√D1 +D1 = {(ca1–Γ*1)/(ca0–Γ*0) } {(ca0 +ω)/(ca1 +ω) } (ξ0√D0 +D0)

(10) 

where ξ1 and ξ0 are values of ξ calculated respectively at past 
(reconstructed) and present temperatures, and Γ*1 and Γ*0 are defined 
similarly. Eq. (10) has an analytical solution: 

√D1 = − (ξ1/2)+√
{

Q+(ξ1/2)2
}

(11) 

where Q is the right-hand side of eq. (10), and √ denotes the positive 
square root. (Note that the code used here retains the more general 
iterative solution method used in Prentice et al., 2017; we have shown 
that the result is identical.) The estimated value of √D1 is squared to 
yield D1, then D1 is converted back to MI by inversion of the relationship 
from Appendix 1: 

MI1 = [(bT1)–ln (D1/a) ]/c (12) 

where the constants a, b and c are as given in eq. (A.1.2). 
If required, this revised estimate of MI can be further converted – 

albeit with some additional approximations – into an inferred value of 
MAP. From the definition of MI, MAP is obtained simply by multiplying 
MI with PET. PET does not depend on CO2, so no further CO2 effect 
needs to be considered. However, PET does vary with insolation, cloud 
cover, and temperature. Our strategy to estimate past PET makes use of 
the program SPLASH (Davis et al., 2017), which computes PET on a 
daily timestep and sums the values over the year. Daily PET is calculated 
by SPLASH using the Priestley-Taylor equation: 

λ PET = α0 Rn s/(s+ γ) (13) 

where λ is the latent heat of vaporization of water, α0 is a constant set 
at its canonical value of 1.26, Rn is an estimate of daily net radiation at 
the canopy surface (a function of insolation, cloud cover, elevation and 
temperature), s is the slope of the relationship between saturated vapour 
pressure and temperature (itself a function of temperature), and γ is the 
psychrometer “constant” (a function of atmospheric pressure). To esti
mate PET under past conditions we therefore need to provide SPLASH 
with information on insolation, cloud cover and temperature. The time- 
course of insolation for any given year can be calculated from the known 
variations in the Earth's orbital parameters. Cloud cover is estimated 
from (corrected) MI using the global empirical relationship described in 
Appendix 3. The time-course of temperature is estimated based on 
recent data for the site, modified by the differences between past 
(reconstructed) and recent temperatures in the coldest and warmest 
months. These differences are interpolated sinusoidally to the seasonal 
cycle. 

The model has been implemented in R. The correction procedure for 
MI is described in detail in Supplementary Data 1. The re-calculation of 
PET in order to estimate past MAP is detailed in Supplementary Data 2. 
Fig. 2 summarizes the complete method for obtaining palaeo-estimates 
of both MI and MAP. 

2.2. Fossil reconstructions 

We applied the new approach to existing reconstructions of MI from 
the pollen record of El Cañizar de Villarquemado, Spain (Wei et al., 
2021). The record covers the last part of Marine Isotope Stage (MIS) 6 to 
the Late Holocene (Valero-Garcés et al., 2019; González-Sampériz et al., 
2020). The MI reconstructions were made using tolerance-weighted- 
averaging partial least squares regression (TWA-PLS: Liu et al., 2020). 
The modern pollen dataset was derived from the SPECIAL Modern 
Pollen Data Set (SMPDS: Harrison, 2019). The SMPDS consists of rela
tive abundance records of pollen taxa from 6459 terrestrial sites in 
Europe, the Middle East and northern Eurasia. The pollen records were 
taxonomically standardized, and filtered to remove obligate aquatics, 
insectivorous species, introduced species, and taxa that only occur in 
cultivation. Taxa (mainly herbaceous) with only sporadic occurrences 
were amalgamated to higher taxonomic levels (genus, sub-family or 
family) after ensuring consistency with their distribution in climate 
space. The data set as analysed comprises data on 247 taxa. 

CO2 levels varied between 180 and 280 ppm during the interval 
covered by the record, and were below 240 ppm during the full glacial 
interval represented by MIS 4, MIS3 and MIS2. Wei et al. (2021) used the 
method of Prentice et al. (2017) to correct MI to account for changing 
CO2 levels. Here we use the uncorrected statistical reconstructions as the 
starting point and apply the updated method as described above. The 
calculations are laid out step-by-step in Supplementary Data 3. 

3. Results 

The estimated MI during the glacial period at El Cañizar de Villar
quemado (Fig. 3) is consistently greater than implied by the statistical 
reconstructions. The difference between the two estimates is, as ex
pected, largest during intervals when CO2 was lowest. The statistical 
method underestimates the corrected MI by ca 30% on average for the 
samples from the glacial period and by up to 80% for some individual 
samples. The qualitative features of our estimation of hydroclimatic 
changes at the site are similar to those previously published (Wei et al., 
2021), although the magnitudes of the correction to MI are between 5 
and 25% smaller (Fig. 3). 

MAP in this region today is ca 380-400 mm, while the glacial-age 
estimates range from 490 to 760 mm (Fig. 4). Fig. 4 shows the time- 
course of estimated MAP after correction of PET by one factor at a 
time (temperature, insolation and cloud cover), and by all three factors 
together. The temporal patterns of estimated MAP after consideration of 
changes in only temperature or insolation (Fig. 4) resemble that of the 
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corrected MI (Fig. 3), but the values seem implausibly high. Changes in 
cloud cover have a much larger (offsetting) effect, and the re
constructions of precipitation considering all three factors do not differ 
greatly from those considering cloud cover alone (Fig. 4). Estimated 
precipitation is still higher than present almost throughout the glacial 
period. However, the values obtained after considering cloud cover are 
more moderate. The key mechanism at work here is that the high 
reconstructed (corrected) MI values for the glacial period, which imply 
increased cloud cover relative to today, also imply reduced PET. 

4. Discussion 

Reconstruction of MI is preferred to reconstruction of mean annual 
precipitation from pollen data by statistical or modern-analogue tech
niques, because MI is closer to the environment experienced by plants: 
the effectiveness of precipitation in supplying water depends on PET, 
and therefore varies with solar radiation and growing-season tempera
ture. However, MI does not fully describe plant-available moisture, 
because atmospheric CO2 modulates its effects. This is an important 
issue not only for palaeoclimate reconstruction but also for projections 

Fig. 2. Flow chart showing the procedure used to correct the moisture index (MI) and estimate mean annual precipitation (MAP) under varying atmo
spheric conditions. 

Fig. 3. Reconstructed and corrected moisture index (MI) at El Cañizar de Villarquemado from the last part of MIS 6 to the Late Holocene (131,200 to 1660 yr BP). 
The previously published corrected values from Wei et al. (2021) are shown for comparison. The present-day MI for the region is shown with a red dot. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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of future climate and its impacts on vegetation. Inferences of globally 
increasing drylands as a consequence of future climate change, based on 
projected decreases in MI (e.g. Huang et al., 2016), substantially over
state present and future drought effects on vegetation (Roderick et al., 
2015; Gonsamo et al., 2021). In doing so, they also deviate from the 
actual projections of future vegetation made by coupled Earth System 
models that incorporate the positive effect of elevated CO2 on plant 
water use efficiency (Greve et al., 2019). 

In this paper we have tackled the inverse problem posed by statistical 
reconstructions of past MI from observed changes in pollen spectra, 
which neglect the negative effect of low CO2 on plant water use effi
ciency and therefore overestimate the dryness of glacial intervals 
(Chevalier et al., 2020). The method presented here represents a con
ceptual and practical improvement on the prototype method introduced 
by Prentice et al. (2017) and applied by Wei et al. (2021). The under
lying principle is the same (it relies on the hypothesis that vegetation 
structure and composition respond to changes in e, the ratio of water loss 
to CO2 uptake) but it differs from the prototype in the following ways. 
(1) It is conceptually simpler (contrast Fig. 1 with the equivalent 
Figure in Prentice et al., 2017), due to its use of vpd as a key interme
diate variable (the previous method used the difference between actual 
and potential evapotranspiration as a proxy); this makes the new 
method both computationally more straightforward, and easier to un
derstand. (2) The only empirical relationship used (between MI and vpd) 
is based on an analysis of global data. We also provide a method to infer 
past mean annual precipitation from the corrected MI, using the well- 
established set of algorithms implemented in the SPLASH program 
(Davis et al., 2017) and a further empirical relationship (between MI and 
cloud cover), also based on a global data analysis. 

In common with the method of Prentice et al. (2017), the new 
method assumes that the palaeotemperature reconstruction is accurate, 
and not influenced by the CO2 level. This may be a simplification, as leaf- 
level temperature responses of photosynthesis are modified by CO2. 
However, temperature responses are subject to strong acclimation, and 

there is no clear experimental evidence for an interaction of CO2 and 
temperature effects at the whole-canopy scale (Baig et al., 2015). We 
conclude that there is currently no basis for assuming any systematic 
effect of CO2 on palaeotemperatures reconstructed from pollen data. 
Any such effect would in any case have only a minor influence on the 
CO2-correction of MI, as noted previously. 

MI is a useful metric to describe geographic variations in plant- 
available moisture, but the correct interpretation of absolute values of 
MI in terms of vegetation structure and function is dependent on the CO2 
level. We have provided a generic method for correcting pollen-based 
reconstructions that takes this effect into account. It has also been 
shown that CO2 has a major effect on future projections of species dis
tribution, which conventional species distribution models (SDMs) 
ignore (Keenan et al., 2011). The method proposed here would be 
equally applicable as a method to correct SDM projections in which MI is 
used as a metric of plant-available moisture (e.g. Porfirio et al., 2014). 

The qualitative features of our estimation of hydroclimatic changes 
at our test site are similar to those previously published (Wei et al., 
2021), although the magnitudes of the correction to MI are somewhat 
smaller. The glacial period, particularly intervals of lowest CO2, are 
estimated to have been substantially wetter (in terms of both MI and 
mean annual precipitation) than the pollen data suggest. At a global 
scale, consideration of the effects of low CO2 on vegetation during 
glacial intervals resolves discrepancies in regions where pollen data 
appear to show aridity alongside independent evidence of an active 
hydrological cycle, such as geomorphic evidence for high lake levels and 
river flows in southern Europe (Moreno et al., 2012) and southeastern 
Australia (Prentice et al., 2017). 

The method described here has been derived partly from first prin
ciples and partly from empirical analysis. Ideally it should be subjected 
to independent, quantitative tests, but devising such tests is a challenge. 
Palaeohydrological data are rarely sufficiently quantitative for this 
purpose. One possible (indirect) approach would be via simulations of 
glacial intervals with Earth System models that include CO2 effects on 

Fig. 4. Estimated mean annual precipitation (MAP) at El Cañizar de Villarquemado from the last part of MIS 6 to the Late Holocene (131,200 to 1660 yr BP), based 
on the corrected MI reconstructions as shown in Fig. 3, after considering the effects of changes in temperature (temperature), cloud cover (cloud), orbitally-induced 
changes in solar radiation (orbital) and all three factors combined (all) on potential evapotranspiration. The present-day MAP for the region is shown with a red dot. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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plants through their dynamic vegetation component; however, current 
models disagree in their simulations of glacial vegetation patterns, 
potentially adding large uncertainty to any such comparison. This is a 
topic for further research. There are further uncertain aspects of the 
model. For example, the assumption of constant β in eq. (7) does not take 
account of recent evidence for additional effects of aridity (mediated by 
soil moisture) in modifying β (Lavergne et al., 2020b). The adoption of 
the method presented here should nonetheless help to mitigate the bias 
in reconstructed hydroclimates that is inevitably present when the 
physiological effects of CO2 on plants are neglected. 

Data and code availability 

All data used in these analyses are publicly available. For the pollen 
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Appendix 1: An empirical function relating mean growing-season vapour pressure deficit (D) to moisture index (MI) and mean growing- 
season temperature (T) 

Modern monthly time series climate data at 0.5◦ resolution from CRU TS 4.04 (Harris et al., 2020) were used to create a climatology for 
1961–1990. This was then used to derive daily values of mean growing-season vapour pressure deficit (D), moisture index (MI) and mean growing- 
season temperature (T) using mean-preserving autoregressive interpolation (Rymes and Myers, 2001). The growing season was conventionally 
defined as days when the air temperature was >0 ◦C; although the threshold for growth of most plants is somewhat above 0 ◦C (often around 5 ◦C), this 
definition allows for the fact that leaf temperatures in plants of cold climates, especially herbaceous plants, are commonly higher than air temperatures 
during daytime. The empirical relationship between D, MI and T was fitted only for temperatures >5 ◦C, however, because locations with mean 
growing-season temperature below 5 ◦C are often unvegetated, and showed erratic variation in D. The relationship was fitted by non-linear regression 
using an exponential function as follows: 

D = a exp.[(b T) − (c MI) ] (A1.1) 

The final fitted function is given by: 

D = 4.612324*exp.(0.060925*T–0.872589*MI) [hPa] (A1.2) 

Plot showing the relationship between vapour pressure deficit (D) and moisture index (MI) at different temperatures. The black dotted lines are the 
predictions for the mid-point of each temperature class.
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Appendix 2: The response of the ratio of leaf-internal to ambient CO2 (χ) to changes in ambient CO2 partial pressure (ca), based on 
experiments by Schubert and Jahren (2012) 

Equation (4) in Schubert and Jahren (2012) describes the hyperbolic response of stable carbon isotope discrimination (Δ) of above-ground plant 
tissues to variation in ca, expressed in parts per million (ppm, equivalent to μmol mol− 1): 

Δ = b m (ca + c0)/{b+m (ca + c0) } (A2.1) 

based on the common response shown in experiments on two C3 plant species, with all environmental variables apart from ca held constant. The 
estimated values of the constants are b = 28.26‰, m = 0.35‰ ppm− 1 and c0 = 15 ppm. Δ is related to χ by the standard equation relating 
discrimination and χ: 

χ = (Δ–a)/(b–a) (A2.2) 

where a = 4.4‰. Substituting (A2.2) into (A2.1) yields: 

χ = (ca + q)/{ca +(b/m+ c0) } (A2.3) 

where q is a composite term that is constrained to equal zero. Hence, 

χ = ca/(ca + 95.7) (A2.4) 

where the constant in the denominator has units of ppm, and is equivalent to 9.7 Pa at sea level. 

Appendix 3: An empirical function relating fractional cloud cover (cld) to moisture index (MI). 

Modern monthly time series climate data at 0.5◦ resolution from CRU TS 4.04 (Harris et al., 2020) were used to create a climatology for 
1961–1990. This was then used to derive daily values of fractional cloud cover (cld) and moisture index (MI) using mean-preserving autoregressive 
interpolation (Rymes and Myers, 2001). The growing season was defined as days when the air temperature was >0 ◦C. The empirical relationship 
between cld and MI and was fitted for temperatures >0 ◦C by non-linear regression using an exponential function as follows: 

cld = a+ b [1–exp.( − c MI) ] (A3.1) 

The final fitted function is given by: 

cld = 28.00680+ 45.17031*(1 − exp.( − 1.83127*MI) ) (A3.2) 

Plot showing the relationship between cloud cover and MI.
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloplacha.2022.103790. 
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