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A Machine Learning Framework to Evaluate Vegetation
Modeling in Earth System Models
Ranjini Swaminathan1,2 , Tristan Quaife1,2 , and Richard Allan1,2

1University of Reading, Reading, UK, 2National Centre for Earth Observation, Reading, UK

Abstract Vegetation gross primary productivity (GPP) is the single largest carbon flux of the terrestrial
biosphere which, in turn, is responsible for sequestering 25%–30% of anthropogenic carbon dioxide emissions.
The ability to model GPP is therefore critical for calculating carbon budgets as well as understanding climate
feedbacks. Earth system models (ESMs) have the capability to simulate GPP but vary greatly in their individual
estimates, resulting in large uncertainties. We describe a machine learning (ML) approach to investigate two key
factors responsible for differences in simulated GPP quantities from ESMs: the relative importance of different
atmospheric drivers and differences in the representation of land surface processes. We describe the different
steps in the development of our interpretable ML framework including the choice of algorithms, parameter
tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers
responsible for GPP as seen in the literature, for instance drought variables in the Mediterranean region or
radiation and temperature in the Arctic region. However differences do exist since models don't necessarily
agree on which individual variable is most relevant for GPP. We also explore a distance measure to attribute
GPP differences to climate influences versus process differences and provide examples for where our methods
work (South Asia, Mediterranean) and where they are inconclusive (Eastern North America).

Plain Language Summary Gross primary productivity (GPP) is the rate at which plants remove
carbon dioxide from the atmosphere during photosynthesis. Carbon dioxide is a greenhouse gas and excess in
the atmosphere causes global warming and climate change. Changes in the amounts of atmospheric carbon
dioxide will impact the entire Earth System. We therefore need the ability to accurately calculate GPP,
especially for different possible carbon usage pathways in the future. Earth system models or ESMs allow us to
simulate various processes happening in the earth's atmosphere and biosphere including photosynthesis and can
help us estimate GPP changes for such different pathways. However, ESMs can vary significantly in their
simulated GPP estimates making it difficult to have confidence in using these estimates. We describe a ML
framework to better understand where ESMs differ in calculating GPP so that we can address knowledge gaps in
models. This approach allows us to understand the processes involved without having to run computationally
expensive simulations. With improved models, we can also improve our ability to predict climate change
outcomes for the future.

1. Introduction
Terrestrial gross primary production (GPP) is the flux of carbon into the land surface driven by photosynthesis. It
is estimated that terrestrial GPP is in the order of ∼132 PgC and is the single largest annual flux of the global
carbon cycle. It plays a key role in determining atmospheric carbon dioxide, since approximately a quarter to a
third of anthropogenic emissions are sequestered by the land surface (Canadell et al., 2021; Schimel et al., 2001;
Schwalm et al., 2020). GPP is influenced by natural climate variability as well as anthropogenic factors associated
with global warming (Santini et al., 2014; Zampieri et al., 2021). Our ability to estimate GPP, its spatio‐temporal
patterns and the factors influencing GPP is therefore essential to understanding and forecasting global carbon
budgets with greater reliability. GPP is not a directly measurable quantity at spatial scales of interest for carbon
budget calculations (global or regional), so we rely on indirect measurements with inevitable assumptions, for
example, about the partitioning of fluxes at eddy covariance sites (Jung et al., 2019) or from satellite observations
of quantities such as Solar Induced Fluorescense (SIF) (Sun et al., 2017; Y. Zhang et al., 2018), which are not
direct measures of the carbon flux.

Earth system models (ESMs) provide the capability to simulate GPP by modeling the various interactions be-
tween the atmosphere and biosphere including under different climate change scenarios in the future (Fisher
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et al., 2018; Levis, 2010). However, there is not only a large spread in GPP estimates from different ESMs but
there are also large uncertainties in observational products that could be used to evaluate these estimates (Anav
et al., 2015; Z. Wu et al., 2017). Therefore, there is a real need for evaluation methods that will help us understand
better the possible reasons for such a large spread in GPP simulations, both in terms of the influence of atmo-
spheric variables driving GPP as well as in the representation of the processes involved in simulating GPP.
Identifying these differences can further help us address key gaps in modeling the terrestrial carbon cycle and will
make for more reliable simulations from ESMs.

Machine learning (ML) approaches have recently been used extensively in the study as well as generation of more
accurate GPP data sets. Examples are seen in work done for simulating GPP using observations of meteorological
data or satellite data (Sarkar et al., 2022; Z. Zhang et al., 2021), upscaling GPP estimates from eddy covariance
sites (Yu et al., 2021), to constrain uncertainty in GPP projections from models (Schlund et al., 2020) and for
evaluating GPP representation in models (Dunkl et al., 2023; Z. Zhang et al., 2021). Our goal in this study is to use
interpretable ML approaches (Doshi‐Velez & Kim, 2017; Molnar, 2020) to better understand the sources of
differences in GPP estimates between ESMs. Such an ML based evaluation framework can serve as a basis for
process based improvements to ESMs, complementary to existing strategies, and can help reduce process un-
certainty in modeled GPP estimates leading to more reliable simulations.

In previous studies, differences in GPP estimates from ESMs have been attributed to differences in the simu-
lations of climate projections, modeling of complex terrestrial processes such as dynamic vegetation modeling, as
well as atmospheric CO2 concentrations for given emission scenarios (Fisher & Koven, 2020; Kim et al., 2018;
Koch et al., 2021; Nishina et al., 2015; Schwalm et al., 2020). In this work, we focus on two key attributes
responsible for variability in GPP across ESMs—(a) the differences in climate simulations or input atmospheric
forcing influencing GPP in individual models and (b) differences arising from vegetation process representation
in these models. While we acknowledge that GPP is dependent on several land and atmospheric variables (Gui
et al., 2021; Williams et al., 1997), in keeping with other similar studies such as Anav et al. (2015); Churkina and
Running (1998); Schwalm et al. (2020), we evaluate the influence of three atmospheric variables as primary
determinants of photosynthesis—precipitation, air temperature and downwelling shortwave radiation.

Our framework uses simulations from the CMIP pre‐industrial Control (pi‐Control) experiments that simulate
climate before industrialization and the addition of anthropogenic CO2 to the atmosphere. These simulations do
not have the effects of elevated CO2 that could lead to vegetation feedbacks or of any warming signal due to
climate change. This allows us to better isolate the direct influence of the input climate variables on GPP without
these factors. ESM simulations from pi‐Control runs are also run for longer time periods, typically a few hundred
years as opposed to a few decades from the historical experiment simulations and so this gives us a larger data set
to learn from.

The methods used in this framework are based on Information Theory and ML, and compare the differences in
input atmospheric forcings and vegetation process modeling associated with simulating GPP across different
ESMs from the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016). These
methods are directed toward formulating informed hypotheses for investigating the underlying factors influencing
GPP estimates from ESMs. Specifically, the methods described target the following questions:

1. How do CMIP6 models differ in the input atmospheric forcings they consider most relevant for GPP? This will
help us understand potential differences in how climate variables may influence GPP across models.

2. Can we compare differences in input forcings across ESMs with their process based differences? This will
guide us toward attributing differences in GPP to the appropriate underlying factors.

We address the above questions by building ML based emulators of CMIP6 models that estimate GPP with input
climate data. We query these emulators using robust Feature Selection methods to determine the relevance of
individual atmospheric variables with respect to GPP. We also compare the differences in input forcing versus
GPP by using a distance metric called the Jensen‐Shannon distance (JSD) measure. This is a novel approach that
allows a comparison of two different attributory factors responsible for GPP and to the best of our knowledge is
not previously seen in the literature.

We find that while the CMIP6 models considered largely agree on the variables considered relevant for GPP,
there are regions of uncertainty such as the tropics. We are also able to show that models with similar input
forcings do not always show similar estimates in GPP, indicating differences in process representation possibly
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due to parameterization. The remainder of the paper is organized as follows—Section 2 describes the ML
framework including the parameter tuning process and algorithmic description of the learning and Feature Se-
lection approaches. In Section 3, we discuss results where the ML framework identifies differences in climate
variables influencing GPP across ESMs. In Section 4, we discuss the interpretability of the ML framework
described, how this framework can be used for evaluation and some of the challenges involved. Finally we present
our conclusions and planned future work using for this framework in Section 5.

2. Data and Methods
2.1. Data and Pre‐Processing

Our experimental input data consists of five ESMs (UKESM1‐0‐LL, IPSL‐CM6A‐LR, CanESM5, CNRM‐ESM2‐
1 and GISS‐E2‐1‐G) from the CMIP6 project, all with different vegetation and land surface models as shown in
Table 1. The criteria applied for selection was to pick a small set of models with diversity in their vegetation
modeling schemes, permitting exploration of various aspects of GPP simulation through our ML framework.

Seasonal means were calculated from monthly means of the data for two seasons, the boreal summer season of
June–July–August (JJA) and austral summer season of December–January–February (DJF). All data considered
is from the pre‐industrial control (pi‐Control) experiments which do not have an anthropogenic warming signal
and for which a few hundred years of data are available from every model. Analysis is done for regions defined in
the Intergovernmental Panel on Climate Change's Sixth Assessment Report (IPCC AR6), (Gutiérrez et al., 2021).
Data was downloaded and pre‐processed from the Earth System Grid Federation servers (Cinquini et al., 2014)
using the open source evaluation tool, ESMValTool (Righi et al., 2020). We removed all non‐land grid cells of a
model in a selected region to focus on terrestrial GPP and then sampled data uniformly across time and space.
Every grid cell and every time instance constitutes a sample data point and for each data point, we have one value
each for the three atmospheric variables as well as for GPP. We retained the native model grids for our exper-
iments and the number of years of pi‐Control simulations available also varied. Thus the number of total samples
available for each region varied across models. We then use this pre‐processed data for further analysis. A
pictorial description of our ML framework is shown in Figure 1.

2.2. ML Emulators With Ensemble Learning

Our requirement for an ML based emulator was one that would effectively model the relationship between input
atmospheric forcing variables (and any other similar GPP influencing variables to be included as needed) and
GPP; and one that would allow us to interpret or make inferences on the modeled relationships to answer
questions on the relative importance or sensitivity to the climate variables. An additional goal was to develop a
flexible framework that could be applied to observed data to better facilitate model evaluation. For this reason, we
designed the core of the emulator to be a multivariate regression model and one that can be interpreted or queried
on the decisions made for regression. In this, the climate forcing variables are the input features or predictors and
GPP is the predictand. The ML emulator is trained for every region, season and ESM in our experimental setup.
We use a regression model with Boosting called Adaptive Boosting or AdaBoost (Mendes‐Moreira et al., 2012;
Schapire, 2013) for our framework. Boosting is a well established ML approach that works toward developing a
highly accurate prediction rule by repeatedly combining several weaker predictors or learners (Drucker, 1997)
which in this case would be regressors. In Boosting, the first weak predictor is trained with a subset of samples

Table 1
The CMIP6 Models Evaluated With Our Framework and Their Corresponding Vegetation Models

Earth system model Land surface model Reference Dynamic vegetation

UKESM1‐0‐LL Joint UK Land Environment Simulator (JULES) (Clark et al., 2011; Sellar et al., 2019) Yes

IPSL‐CM6A‐LR Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) (Boucher et al., 2020; Krinner et al., 2005) No

CanESM5 The Canadian Land Surface Scheme (CLASS) (Swart et al., 2019; Verseghy, 2012) No

CNRM‐ESM2‐1 Interaction Soil‐Biosphere‐Atmosphere (ISBA) (Delire et al., 2020; Séférian et al., 2019) No

GISS‐E2‐1‐G ENT Terrestrial Biosphere Model (Kelley et al., 2020; Kiang, 2012) No

Note. Data on dynamicity of vegetation obtained from the Earth System Documentation Project (Greenslade et al., 2014; Zarakas et al., 2020).
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uniformly sampled from the training data set with replacement permitted, meaning a training sample can be used
again to build a different predictor. Once a predictor is built, all the training samples are passed through the
predictor and the samples with the largest prediction errors are identified. The sampling probabilities of the
samples with the most error are adjusted so that they are more likely to get picked as training samples for the next
weak learner to be built. As this process repeats, harder to learn patterns get picked more often to build subsequent
predictors. This means that some predictors will do better than others in a given subspace of the input feature
space. The predictors are further assigned weights of the form, β̄ = L̄

1− L̄ where L̄ is a calculated loss function.
Cumulative predictions are calculated as a weighted median of all the predictors. The algorithm terminates when
the average loss across all weak learners is below a certain threshold. The weak learners or regressors in this
boosting algorithm can be any one of a wide array of regression methods. We calculated the Root Mean Square
Error scores on held out test data sets and determined that the Decision Tree algorithm described in Brei-
man (1996); Breiman et al. (1984); Quinlan (1986) was best suited for our task after experimenting with different
ML regression algorithms such as Linear Regression (James et al., 2021) and Support Vector Machines (Smola &
Schölkopf, 2004). We therefore use an Ensemble Tree Learner with Boosting for our ML emulators.

As shown in Figure 1, CMIP6 data in the form of gridded data sets was used to train the ML emulators by treating
each grid cell at every time step as an individual sample for learning. However, ESMs differ in grid resolution and
in the length or number of years of the pi‐Control experiment runs. So, for a given region, the number of training
samples can be different across ESMs. In order to avoid biases resulting from differences in the number of
samples, we randomly sampled a minimal sample set from every model such that the number of samples to train
an emulator is the same across all ESMs. This sample set is then used to tune the parameters and build the
Decision Trees in the ML emulator.

2.3. Parameter Tuning

In applied ML, parameter tuning is considered an important step in developing ML models that best capture
patterns in the training data without overfitting (Yang & Shami, 2020). Overfitting occurs when we train the ML

Figure 1. A description of the Machine Learning framework for evaluating GPP in CMIP6 models: Data from atmospheric variables and GPP for a given region, season
and ESM is used to train an ensemble learner which serves as the ML emulator. The ML emulator is then queried using two different Feature Ranking algorithms (RFE
or recursive feature elimination and PI or Permutation Importance) to find the most relevant features or atmospheric variables for GPP in that region. Data from pairs of
ESMs is also used to calculate the Jensen‐Shannon Distance (JSD) metric to compare distances measured in the input variable space with distances measured in the GPP
distributions across regions.
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model to fit the training data too well which could result in a loss of generality. In other words, the ML model
performs exceedingly well on the data it is trained with but fails to perform well on a new test set of samples even
if from the same or similar distribution. We employ the Adaboost algorithm with an ensemble of Decision Tree
regressors from the open source Python Scikit‐learn package (Pedregosa et al., 2011) to build our ML emulators.
A built in mechanism for pruning the ensemble learner exists for removing learners in a way that diversity is
maximized. This essentially means that learners are selected such that a wide range of associations or rules are
learned and duplication of rules learned is minimized by pruning. This helps to avoid overfitting by balancing the
need to add more rules in the predictor with the ability to generalize well. In our experiments we tune for the depth
parameter in the Decision Tree for optimal performance of the emulator, determined as the best fit to the data as
evaluated by the Root Mean Squared Error (RMSE) in the predictions. The depth of the Decision Tree is the
number of levels at which decision nodes are split in the tree. For example, a decision could be tas > 20 which
would split training samples into those where the surface temperature is greater than 20°C (condition is true) and
those where the temperature is less than 20°C (condition is false) and so on. For every region‐season‐ESM
combination, we split the samples available into a training set and a held out test set. The ML emulator (Ada-
Boost with Decision Tree regressor) is learned using the training samples and tested on the held out samples.
RMSE scores are calculated for both training and held out test sets. For a given value of the depth parameter, this
process is repeated by splitting the data n times and the average training and test RMSE scores over the n splits is
calculated. This is how n—fold cross‐validation (where n = 6 in this case) is performed. The depth parameter that
has the lowest RMSE score on the held out test data, with cross‐validation is then chosen as the most optimal
parameter for the task and a final ML emulator is built using that depth parameter and all the samples available for
that region. This builds robustness against overfitting, and sampling multiple times during cross validation further
makes the model more reliable ensuring that the final emulator has seen a good representation of the available
data. ML emulator estimates of GPP for a selection of regions are shown as an illustration of the results from this
process in Figure S1 in Supporting Information S1. Further, Figure S5 in Supporting Information S1 shows the
distribution of the relative mean error in GPP estimated from the ML emulators. The peaks around the value zero
indicate robustness in the emulator performance across climate models and regions. We do see differences across
models and the main reason for that is in some models far more data samples were available than were used to
construct the ML emulator. The UKESM1‐0‐LL model particularly had a much longer simulation run for the pi‐
Control experiment. Since we sampled uniformly over time and space, it is possible that the sampling was sparse
spatially or temporally. In our experiments, we retained the native grid resolutions from models as we felt that
regridding would smooth the data such that physical relationships would be further removed from from the
physical processes represented in individual models. However, regridding models to the same resolution and
choosing the same number of years for the simulations will help to bring down differences in ML emulator
performance for different climate models. It is also possible that for some regions and models, the ML emulators
are unable to capture the relationship between GPP and the atmospheric variables and this could be attributed to
reasons such as complexity of process representation or noise or inadequate data for specific seasons and regions.
For instance, when there are low values of GPP in DJF for Arctic regions.

2.4. Feature Selection Methods

After the ML emulators were constructed to specification and sufficiently satisfied requirements, meaning the
final emulator had the lowest possible RMSE scores for held out test data in cross validation experiments as
described, we focused on querying or interpreting these emulators to better understand the relationship between
the different input climate variables and GPP. Feature Selection or Feature Importance Ranking is the process of
selecting or ranking features (input variables or predictors) that are most relevant to the predictand as evaluated by
some chosen measurement or metric (Guyon & Elisseeff, 2003; Kumar & Minz, 2014). It is a process that is often
used to prune the number of input features required for accurate predictions but in our case, with just three
features, we use feature ranks to find the input atmospheric forcing variable(s) that the ML emulators find most
important for GPP. Two different feature selection methods were applied to the ML emulators—(a) recursive
feature elimination (RFE) and (b) Permutation Importance or Invariance (PI). The two methods use slightly
different criteria to evaluate feature importances as described below but both provide useful information
regarding the relative importance of a climate variable for GPP and are complementary. In the RFE algorithm, the
input features are recursively removed one at a time to find the feature that has the most influence on the pre-
dictand (Guyon et al., 2002). For our experiments, we used the RMSE values to quantify the influence of an input
climate variable on GPP. So, if the RFE method determines precipitation to be the most important feature for GPP,
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this effectively means that removing precipitation from the set of input features would have the most impact on
the emulator's ability to predict GPP well, that is increase the RMSE by the most compared to other variables. In
the PI method, the decrease in model score when an individual feature is randomly shuffled or permutated is the
measure of how important that feature is to the emulator (Breiman, 2001). The model score here is the Regression
coefficient of determination (R2) and is a measure of how well the ML emulator fits the data. Thus, the PI method
works well once a reliable ML emulator is developed and is a measure of sensitivity of GPP to an input variable
given such an emulator. As in the case of developing the ML emulator, we performed 6‐fold cross‐validation for
the feature selection process as well. We did this by devising a simple voting scheme with small differences based
on the Feature Selection approach. In the case of the RFE method, we assigned a single vote to the feature(s) that
was ranked highest in terms of influencing the prediction with the RMSE score. We then averaged the votes across
all the input features to determine the actual ranks of these features. In the PI method, we calculated the
contribution of each feature to the R2 score (permutation importances) and granted a vote to an input feature if it
contributed to more than half of the score, which is the fit of the model. As in the RFE method, the votes were once
again averaged across the cross‐validation subsets. This scheme allowed us to account for collinearity or multiple
variables equally influencing GPP especially as these are physical climate variables which are very closely related
to each other.

2.5. Distance Measure for Climate and GPP Distribution Comparisons

We propose the use of a distance measure to evaluate whether models with similar input atmospheric forcing are
also similar in their GPP simulations. This gives us some understanding of whether differences in GPP from
models are more due to differences in atmospheric forcing or in processes simulating GPP. If we consider that
every data sample is represented as an instance in a 3‐Dimensional input climate parameter space, where each
dimension corresponds to a climate feature, then for a given region‐season‐ESM, we have a distribution of these
3‐Dimensional data points. A distance metric is applied to quantify how close climate distributions from two
different ESMs are for a given region and season. The same distance metric is now used to measure similarity
between the GPP distributions of models in the 1‐Dimensional space of GPP values. The distance metric we use is
the JSD, which is calculated as the square root of the Jensen‐Shannon divergence between two distributions
(Lin, 1991). This is a symmetric and smoothed version of the more commonly used Kullback‐Divergence
measure. This measure has been widely used in applications such as evaluating generative adversarial net-
works by measuring differences in distributions (Goodfellow et al., 2020), text classification with high dimen-
sional feature sets (Dhillon et al., 2003) and in bioinformatics for mutation detection (Gültas et al., 2014). The
Jensen Shannon Divergence itself is defined as:

JSD(P‖Q) =
1
2
D(P‖M) +

1
2
D(Q‖M),M =

1
2
(P + Q), (1)

where D(P‖Q) is the Kullback‐Divergence (Csiszár, 1975) between two distributions P and Q. When a base‐2
logarithm is used, the Jensen‐Shannon divergence has an upper bound of one that is, 0 ≤ JSD(P‖Q) ≤ 1. The
existence of upper and lower bounds and the fact that distances are symmetric, are important properties we take
advantage of when comparing ESMs. We refer to JSD as the Jensen‐Shannon distance instead of divergence as
they both hold the same meaning for our analysis. Using the JSD, we compare how much ESMs differ in their
input forcing versus in the simulated GPP for a region and season. A JSD of 0 implies the distributions are
identical and as the JSD increases going toward 1, it implies that distributions get more dissimilar. While it is not
possible to directly compare distance values between pairs of ESMs across two different distribution spaces (as in
the 3‐D climate space and the 1‐D GPP space), we can compare how ESM‐pair distances are ordered in both
distribution spaces. That is, we can see how distances between pairs of models compare in the two different
spaces. We further apply a simple scaling by a factor of the shortest distance among all pairs of models in the input
space so we can effectively make inferences about whether relative orderings in input climate variable space are
reflected in the GPP space as well.

We illustrate analysis based on the JSD in Figure 2 with four different possible use cases and how inferences can
be made from them. Each sub figure shows the actual JSD in input (on the x‐axis) and GPP (y‐axis) space between
three hypothetical models—A, B, and C. The distances are then scaled by dividing all the distances in input space
by the smallest such distance among all pairs of models. The distance in GPP space between that same pair of
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models is then used to scale all model pair distances in GPP space. This scaling allows us to effectively compare
distances in input space versus GPP space. In subplot (a), we see that the relative ordering of distances between
pairs of models is the same on both axes, the model pair A–B has the smallest distance in input space as well as
GPP space while the model pair C–A has the largest distance in both these spaces. This provides some evidence
that similarities or differences between pairs of models in the atmospheric forcing is also reflected in their GPP
simulations. In (b), the distances in the atmospheric forcing are the same for all pairs of models but that's not the
case in their GPP simulations where the distance between C and A is larger than the other pairs indicating possible
differences in process representation across the models. In (c), the model pairs show larger differences in their
input forcing but not in the simulated GPP space, indicating that despite having different climate, the models end
up simulating very similar GPP values potentially differing in the processes involved in calculating GPP from
these climate variables. Finally, in (d) we see another example for where proximity in input forcing does not
translate to similar GPP simulations. In model pair A–B, differences lie more in simulated GPP than in the at-
mospheric forcing while the opposite is the case for model pairs C–A and B–C. We can thus use this analysis to
attribute reasons for differences in GPP simulations between pairs of models.

The JSD measure was also used to determine how well the ML emulators estimate GPP by comparing the
emulator estimated values with ESM simulations and we found that these distances tended to zero (results not
shown). This further gives us confidence in our deployment of these ML emulators.

The ML emulators with Feature Selection, JSD metric comparisons and more traditional analysis involving
univariate statistics are all combined in our analysis of differences across ESMs in how they simulate GPP.
Results from the analysis and a discussion on where the ML methods work well and where they don't is discussed
in the next sections.

3. Results
In this section, we look at two key sets of results coming from the ML framework proposed in Section 2.4. We
first look at regional feature importances, that is, what the ML emulators determine to be the most relevant climate

Figure 2. An illustration of how the Jensen Shannon distance metric is used to understand differences in input space (atmospheric forcings) and GPP space. In subplot
(a) of the figure, we can make the inference that similarities in input forcing are consistent with similarities in GPP. Where that does not hold, we can start to explore the
possibility that there might be larger differences in process representation or parameterization between pairs of ESMs which results in this difference in GPP as seen in
subplots (b) and (c) and in the case of model pair A–B in (d). Thus the JSD scaled in this manner gives us a way to actually compare the differences in input forcings of
ESMs relative to their simulated GPP.
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variable for GPP in a given region. We discuss results for regions in the JJA
and DJF seasons as seen in Figures 3 and 4 but also provide results from the
annual mean analysis for a more general overview in Figure S2 in Supporting
Information S1. We study the differences and similarities in GPP represen-
tation across pi‐Control simulations in ESMs but due to the lack of obser-
vational data sets for this period, we use the literature on historical
observations to guide our evaluation.

Our second set of results is from the comparison of relative distances between
ESMs in the input climate space versus the GPP distribution space as
described in sub Section 2.5 and shown in Figure 5. In our current analysis,
we provide examples for how the JSD based comparisons can be useful as a
tool to identify potential sources of differences in ESMs but leave more
detailed region by region analysis for future work.

3.1. Model Differences in Relevant Climate Variables for GPP

Figures 3 and 4 show the most relevant climate variables for predicting GPP
from two feature selection methods—RFE and PI in the first and second
columns respectively. The RFE method's selection of best feature is
considered the most relevant variable for GPP by the ML emulator and
means that this variable is primarily responsible for estimating GPP. The PI
method's selection on the other hand is more a measure of GPP's sensitivity
to climate variables given the ML emulator. The most important climate
variable could also be the variable that GPP is most sensitive to, as in, both
methods could agree on the choice of climate variable(s) but differences
are possible since the metrics involved are slightly different (low error vs.
best fit). The metrics were chosen to better understand the different ways in
which atmospheric variables influence GPP. In this case, the feature
selected with the RFE method is considered to be the primary driving
variable and is key to estimating GPP in the appropriate range of values.
Variability of GPP itself in that range can be further influenced by a
different variable as shown in the PI method. An example would be where
temperature is the key driver for GPP in a region but once a certain value
or range of temperature is reached, actual GPP can vary more with
precipitation. In such a case, the metrics used for the RFE and PI methods
proposed here would identify temperature and precipitation as the most
important features respectively. ESM differences in the top features from
the methods are considered an appropriate potential starting point for

investigating divergence in GPP estimates from ESMs. We refer to the regions by their acronyms as defined
in Iturbide et al. (2022) and are shown in Figure S3 in Supporting Information S1 for reference.

Overall, all ESMs considered agree that temperature followed by precipitation are key variables for GPP for most
of Europe, N.America and Asia. Over Africa and S.America, there is less of a consensus across ESMs and
methods in accordance with previous analysis (Churkina & Running, 1998). Temperature is considered the most
important variable for GPP in the Russian‐Arctic (RAR) and Northern Europe (NEU) regions in JJA for most
ESMs. Conditions of almost constant sunlight and water availability make temperature the key driver for GPP
here. The northern N.American regions are a combination of arctic tundra and boreal forests and similarly show
temperature as the main driving factor except for Northwestern North America (NWN) in CNRM‐ESM2‐1 where
precipitation is determined as the key driver.

Boreal forest regions such as Eastern Europe (EEU), Western and Eastern Siberia (WSB, ESB) and the Russian
Far East (RFE) show more divergence across ESMs with GPP being more dependent in both RFE and PI methods
on temperature or radiation or both but in some instances (ESB for GISS‐E2‐1‐G) on precipitation. In the central
and eastern continental United States (CNA, ENA), UKESM1‐0‐LL and CNRM‐ESM2‐1 models consider
precipitation to be most relevant for GPP while all other models find temperature more relevant. The variability in

Figure 3. JJA feature importance from two methods—recursive feature
elimination and Permutation Invariance for the IPCC regions defined in
Iturbide et al. (2022).
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GPP is also dominated by a combination of these two variables as seen in the
PI method. In the western North American region (WNA), radiation is seen as
driving GPP except in CanESM5 (temperature) and CNRM‐ESM2‐1 (pre-
cipitation). In fact, precipitation seems to be most relevant for GPP in almost
all N.American regions in the CNRM‐ESM2‐1 model and this can be
considered as an indication that either the availability or the parameterization
of this variable is important for GPP in this model more so than in others.

All ESMs in our study agree precipitation and temperature play a more
important role than radiation in the Mediterranean region (MED), where ra-
diation is largely available and a lack of rainfall or very high temperature is
likely to influence vegetation more (Gea‐Izquierdo et al., 2015). The
CNRM1‐ESM2‐1 and IPSL‐CM6A‐LR are the two models that rank pre-
cipitation higher than temperature as an important feature. For the region
covering the Indian subcontinent (SAS), precipitation is considered most
important in the UKESM1‐0‐LL and CanESM5 models, consistent with
previous studies (Varghese & Behera, 2019; Verma et al., 2022) while all
three other models favor temperature as the key factor. In East Asia (EAS)
temperature is considered the most important driver for GPP followed by
precipitation and radiation in some regions (Bo et al., 2022; Yao et al., 2018)
and all models except UKESM1‐0‐LL (precipitation) are in agreement.

In the DJF season, all models except CanESM5 consider precipitation most
relevant for GPP in South East South America (SES) and all models agree that
temperature is most relevant for Eastern Australia (EAU). We find the largest
source of disagreement with regards to GPP drivers (looking at both DJF and
JJA seasons) in regions where there is a significant presence of tropical forests
such as Northern South America (NSA), Central‐Africa (CAF), South‐East
Asia (SEA) and Northern Australia (NAU). We note radiation plays a role
in some regions, possibly due to the lack of sufficient radiative energy
available due to cloud cover which makes it hard to distinguish the relative
importance between features. However almost all ESMs over a majority of
these regions reference temperature and precipitation as key variables and
from observational records we know that the two variables are strongly
correlated in these regions (Kanniah et al., 2011; Nzabarinda et al., 2021; F.
Zhang et al., 2022). Although precipitation appears most frequently as as the
most important variable in determining GPP, especially using the RFE
method of feature selection, in more than one instance all three features are
considered relevant. This is consistent with results from previous studies

using observations and non‐ML approaches applied to finding GPP drivers (Churkina & Running, 1998; Kanniah
et al., 2013; D. Wu et al., 2014). Another area where models lack consensus over the drivers is Southern Africa
(ESAF and WSAF) for the DJF season. In reality, these areas are dominated by savannah, and are likely water
limited but this is seen only in the UKESM1‐0‐LL model. Water limitation effects on GPP in ESMs is typically
modeled quite crudely, with uncertain parameterization (Harper et al., 2020), and this is likely a significant source
of disparity between the models.

3.2. Comparing Differences in Climate Forcing Versus GPP in Model Pairs

We compare ESM differences in the input feature space with their GPP distributions with the approach described
in Section 2.5. In Figure 5 we show the comparative distances as a scatter plot to illustrate how we can potentially
develop our hypotheses for quantifying and thus attributing differences in GPP to differences in climate forcing or
process representation.

From the scatter plots in Figure 5, we see differences across regions in how the pairwise model distances relate. If
distances in input climate space between pairs of models translated to similar distances in GPP distributions, we
would see the data points scattered along the diagonal unit slope line as seen in the NSA region. However this is

Figure 4. DJF feature importance from two methods—recursive feature
elimination and Permutation Invariance for IPCC regions defined in Iturbide
et al. (2022).
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not always the case, and we see more of a spread along the input space or x‐axis (MED, RAR and somewhat also
in SAS) where the plot indicates a spread in climate not quite seen in the simulated GPP and where relative
differences in GPP are smaller than in input forcing. In other regions (SEA) however almost all pairs are above the
unit slope line, which means that distances are larger in the GPP space.

We can use information from where there is a spread to investigate the likely causes underlying GPP divergence
across models. In at least two regions (RAR and SAS), we notice that relative model distances with UKESM1‐0‐
LL are greater in the y‐axis even though such distances in the input space lie more or less in the middle range. This
is an indication that the GPP simulated by UKESM1‐0‐LL is most different compared to other models even

Figure 5. A comparison of relative distances in climate forcing and in GPP from different climate models is shown. Every model is referenced by both a color and an
alphabet, the color and alphabet pairing tells us which pair of models are represented. Since the JSD is symmetric, there is only one colored symbol to show the distance
between every pair of models. For this reason, there is no letter seen for the first model in the list, UKESM1‐0‐LL but its color (black) and letters for other models show
the distance between UKESM1‐0‐LL and other models. For each region, the actual JSD values are scaled by a factor that is the smallest distance in the input space across
all pairs of models as seen in the x‐axis and by the distance measure for that same pair in the GPP space as seen in the y‐axis. This scaling follows from the description in
Section 2 and Figure 2.
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though not largely different in climate. In the SAS region for instance, the
IPSL‐CM6A‐LR and UKESM1‐0‐LL models are closest in input space
relative to other model pairs (seen as black colored letter I), and the CanESM5
model is identically distanced from both these models in the input space (seen
as black and blue letters Ca). However, we see that in GPP space the
UKESM1‐0‐LL distance with CanESM5 is more than the distance between
CanESM5 and IPSL‐CM6A‐LR. Therefore one hypothesis worth investi-
gating for this region is whether GPP process representation in IPSL‐CM6A‐
LR and CanESM5 is similar in parameterization and different from
UKESM1‐0‐LL. We would also include information from our feature
importance results in Section 3.1 where we see that the two models differ in
the variable considered most relevant for GPP (this is precipitation for
UKESM1‐0‐LL, CanESM5 and temperature for IPSL‐CM6A‐LR). We argue
that this type of analysis would be difficult to apply if we only consider
univariate statistics as we show with examples in Figure S4 in Supporting
Information S1.

As a counter example, the ENA and to some extent the WSAF regions are
examples of where it is not so clear how much of the difference in GPP to
attribute to the influence of atmospheric forcing versus process representation
from the scatter plot in Figure 5 due to close clustering in the relative
distances.

4. Discussion
4.1. Choice of ML Approach for Evaluation

GPP is the largest individual carbon flux in the Earth System and changes to it
have implications for the atmospheric carbon dioxide concentration, net
carbon balance of the land surface and climate feedbacks (Friedlingstein
et al., 2014). Interannual variability in GPP is influenced by changes in
climate especially in hotspot regions such as tropical forests (Jung et al., 2011;
O’Sullivan et al., 2020). Earth system models provide the capability to
simulate the Earth System's biogeochemical interactions and carbon cycle but
global GPP estimates from ESMs vary greatly. For instance, in the five
CMIP6 ESMs in our study, we found the global mean annual GPP to be in the
range of 82–115 PgC year− 1 for the pre‐industrial period. The need to eval-
uate the carbon cycle in ESMs is thus critical for both better process repre-
sentation and for modeling interactions with other components of the Earth
System such as the atmosphere (Reichler & Kim, 2008; Spafford & Mac-
Dougall, 2021). Advances in ML and AI provides the algorithms that can help

to facilitate evaluation of these complex interactions and uncover process based differences across ESMs
(Huntingford et al., 2019). Our approach has been to start with the simplest ML models suited for our purpose. For
this study, we build ML emulators with three input climate features to estimate GPP and for that emulator to be
interpretable, which we demonstrate with our Feature Selection algorithms. Therefore, our ML emulators are not
black boxes but can be interpreted in the context of physical and biogeochemical Earth system processes. We
evaluated a choice of regression schemes before determining that Decision Trees best suited our task and further
added better generalization capabilities with Boosting in the form of an Ensemble Learner with Adaboost. Such
an emulator was capable of readily providing explanations on the modeled interactions between the atmospheric
variables and GPP. At the same time, our framework is flexible enough for this emulator to be replaced with more
complex ML algorithms such as Deep Architectures (LeCun et al., 2015) as we expand our suite of interacting
variables for more nuanced evaluation of the carbon cycle. We further built robustness into our methods through
rigorous cross validation and through the approaches outlined in Section 2.3 and demonstrate a reliable and
adaptable framework that is also interpretable. With this framework, we were able to show regional similarities
and differences in ESMs in the influence of key climate variables for GPP. Our emulator has the capability to
capture non‐linear relationships between the climate variables and GPP which can help to address limitations or

Figure 6. Correlations between individual atmospheric variables and GPP for
the JJA season across IPCC AR 6 regions. The first, second and third
columns show correlations between gpp and precipitation, temperature and
radiation respectively.
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complement more traditional approaches using correlations or calculated
indices seen in the literature (O’Sullivan et al., 2020; Seddon et al., 2016).
While a detailed comparison with traditional methods is not the focus of this
work, we illustrate the differences in methods by comparing the feature
ranking results with correlations for the JJA and DJF seasons in Figures 6 and
7. In the JJA season, the Arctic regions in general show higher correlations
with temperature and precipitation than radiation, but it is hard to determine
which variable would be more important for GPP in the region from just the
correlations. In the continental United States, we see again that a clear pattern
of direct correlation with precipitation and inverse relationship with tem-
perature exists but combining the two and determining the role of radiation in
the joint space of atmospheric forcing is not easy to do. We see similar ex-
amples in the DJF season. In the NSA and SAM (South‐American Monsoon)
regions, we again see that it is hard to determine one variable of importance,
particularly if the relationship is non‐linear. While the correlations can
certainly tell us something about how each atmospheric variable is related to
GPP, it is hard to determine how they might rank in their relative importance
for GPP or if non‐linear relationships play a role. It is also harder to compare
results across models using just correlations for the same reasons. The second
component of our framework is a way to compare differences in climate
variables influencing GPP with differences in other factors including pro-
cesses estimating GPP in ESMs and we choose an algorithm based on the JSD
that is robust against small variations in distributions, allows a comparison of
the joint input space with three variables and has bounds (0, 1) to enable
relative placement of distances. This is not possible to do from individual
variable correlation patterns. Also where a statistic such as a mean could be
close for two different distributions, such as unimodal versus bimodal, the
JSD will capture a difference in parameterization resulting in quite different
distributions with similar means. Finally, our method enables a more flexible
and less expensive way to perform this comparison where previously
modeling experiments had to be conducted for similar analysis (Hardouin
et al., 2022)

4.2. Application of ML Framework for GPP Evaluation

The ML framework described in this paper can be used to identify areas of
differences in GPP modeling in ESMs. For instance, from Figures 3 and 4, we
see that while models have overall agreement on what variables are important
for certain regions (temperature and precipitation for the Mediterranean,
South Asia, Eastern and Central North America; temperature and radiation in

the tundra and boreal forest regions) differences exist in the which individual climate variable matters for a given
ESM. Further the comparison using JSD gives us a starting point for whether these differences are more in the
state of the climate influencing GPP or in the processing of these variables such as through parameterizations.
This ML framework can serve as a guide to investigate probable reasons why differences in GPP modeling exist
in ESMs in a computationally less expensive manner to actually running model simulations.

4.3. Limitations and Challenges

In our current study, we sample data uniformly from the spatio‐temporal domain which does not capture sub‐
regional and sub‐seasonal variability and trends. This limitation is mainly driven by the lack of availability of
GPP data from CMIP6 ESMs at higher temporal resolutions for the pi‐Control experiment. However, this is more
a feature of the data used and our framework will allow us to experiment with different resolutions in data when
available. The JSD approach provides a relatively inexpensive method, without actually having to run model
simulations, to compare differences across models in GPP versus climate variables but in some regions such as
Eastern North America (ENA) seen in Figure 5, it is harder to infer where the differences lie. Along with future

Figure 7. Correlations between individual atmospheric variables and GPP for
the JJA season across IPCC AR 6 regions. The first, second and third
columns show correlations between gpp and precipitation, temperature and
radiation respectively.
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work to develop this analysis, we also suggest that individual components of the ML framework as well as more
traditionally considered descriptive statistics such as means and variability should all be used in a complementary
fashion in the evaluation process so we can take insights from different modes of analysis. Finally, the three
predictor variables were chosen because of their importance in determining the supply of water (precipitation), its
loss through evapotranspiration (temperature) and the available energy for photosynthesis (shortwave radiation).
We recognize the need to include a broader suite of variables for a more holistic evaluation of the carbon cycle
which is possible to do with our framework.

5. Conclusions
This study demonstrates the potential of using interpretable ML approaches to investigate differences in GPP
modeling across a selection of CMIP6 models and over land regions defined in the IPCC's Sixth Assessment
Report and two seasons. In conclusion

1. The relative importance of key climate drivers for GPP was identified across different regions and ESMs using
Feature Selection Methods with interpretable ML emulators. We illustrate this with examples such as the
Mediterranean region where all models agree that drought variables such as temperature or precipitation in-
fluence GPP more than radiation but models differ in which of the two variables is most relevant.

2. With a comparative distance metric based on the JSD, we are able to show that proximity or distance in climate
between any two models does not necessarily translate to a similar proximity or distance in their estimated
GPP distributions with the Russian Arctic (RAR) and Mediterranean regions (MED) as two such examples.
We take this as evidence that process based differences exist across models and are at least partly responsible
for differences in GPP estimates from ESMs.

3. Where the JSD method suggests divergence in GPP potentially due to process modeling, for instance in
South Asia (SAS) between the UKESM1‐0‐LL, IPSL‐CM6A‐LR and CanESM5 models, the Feature Selec-
tion process can offer an explanation. In this case the UKESM1‐0‐LL and IPSL‐CM6A‐LR models differ in
the key climate variable for GPP but the UKESM1‐0‐LL and CanESM5 models don't and a possible reason for
this can be differences in parameterization or characteristics of this variable not considered in the input
features.

4. There are some regions where models do not show a clear consensus on what climate variables matter the most
or identify all three variables as equally important such as the tropics. Similarly our distance metric based
comparison also presents cases where a direct inference on attributing GPP differences cannot be made, such
as the Eastern North American (ENA) region. We identify these as regions of uncertainty to address in future
work.

Data from the pre‐industrial Control experiments served as a baseline for the development of this evaluation
framework. In future work, additional climate drivers and characteristics such as sub‐monthly variability will
also be incorporated as possible causes for variations in GPP estimates from ESMs and analysis will be
conducted with data from historical experiments and observations toward the goal of improving vegetation
modeling in ESMs.

Data Availability Statement
Data from CMIP6 climate models is available with the Earth System Grid Federation Infrastructure (Cinquini
et al., 2014) and was downloaded and preprocessed using the open source software ESMValTool (Andela
et al., 2023b) and ESMValCore (Andela et al., 2023a). Code used to produce the results in this paper is available
under the CC‐BY license with the Zenodo repository (Swaminathan, 2024).
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