University of
< Reading

Improvement of decadal predictions of
monthly extreme Mei-yu rainfall via a
causality guided approach

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Ng, K. S., Leckebusch, G. C. and Hodges, K. |. ORCID:
https://orcid.org/0000-0003-0894-229X (2024) Improvement of
decadal predictions of monthly extreme Mei-yu rainfall via a
causality guided approach. Environmental Research: Climate,
3. 041001. ISSN 2752-5295 doi: 10.1088/2752-5295/ad6631
Available at https://centaur.reading.ac.uk/117418/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1088/2752-5295/ad6631

Publisher: IOP Science

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur



http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online



ENVIRONMENTAL RESEARCH 5 FORPOSELED St s
CLIMATE

LETTER « OPEN ACCESS You may also like
Improvement of decadal predictions of monthly ‘—EZZESS’%?;'SEZ.”?L%ﬁ:{f‘én;‘féfé‘éxi:si": __

. . . . . utta anupong, Yongsheng Xu, Lejilang
extreme Mei-yu rainfall via a causality guided Yustal
approach " Satabiity: reviewing the ote of ogeanic

teleconnections
J Karanja, B M Svoma, J Walter et al.
To cite this article: Kelvin S Ng et al 2024 Environ. Res.: Climate 3 041001
- The 11 year solar cycle UV irradiance
effect and its dependency on the Pacific
Decadal Oscillation
Sigmund Guttu, Yvan Orsolini, Frode
Stordal et al.

View the article online for updates and enhancements.

The Electrochemical Society

aneing solid state & electrochemical science & technology

TASS SN
LSRN

{ | |‘“““‘:‘\\\\\\\
s

IR

Spotlight
Your Science

R et S Submission.deadline:
eeting e >,

May 24-28, 2026 Dec?'?j'bef 5, 2025

Seattle, WA, US = \

Washington State : SUBMIT YOUR ABSTRACT )
Convention Center

This content was downloaded from IP address 134.225.110.27 on 24/09/2025 at 17:45



https://doi.org/10.1088/2752-5295/ad6631
/article/10.1088/1748-9326/ad8be2
/article/10.1088/1748-9326/ad8be2
/article/10.1088/1748-9326/accd84
/article/10.1088/1748-9326/accd84
/article/10.1088/1748-9326/accd84
/article/10.1088/1748-9326/abfe8b
/article/10.1088/1748-9326/abfe8b
/article/10.1088/1748-9326/abfe8b
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuEtuyLktXssKs9s37GF6SYoM1K-39iUpUUKxMZebTcr27XVOrKz29B5DOV9O55GAvX1r2Ted-ZT-acqIvqLvgFfUWjXjZDLo9pHQwC9yH-VDIzJ8dHJ7_GNfcZbykUkYtKNn3x7QqDC8leJYxTNG9nitBKMLWkxiOxm3Xajiq9QWge6vJ86yrU6bN6BnL-VzLmr3f-3ng-9_Qse-GhJRcxwKZINQgOtW5GvPOPQvYMFzGaMvPM3MEL7psfmuocbAD6ivxLhm1m8LVfARr5bSp9H7cSAzdoZ82TIkhb8BJty_gKidFURG2XlKzSLU6Odkx_LWgB9TanjXDkaIMCaG83k-ey5hPOinpXmpfxDtKMYvIUj7jA&sig=Cg0ArKJSzGbqV1ktx708&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.electrochem.org/249%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3DIOP_249_abstract_submission%26utm_id%3DIOP%2B249%2BAbstract%2BSubmission

I0P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
2 July 2024

ACCEPTED FOR PUBLICATION
22 July 2024

PUBLISHED
14 August 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Environ. Res.: Climate 3 (2024) 041001 https://doi.org/10.1088/2752-5295/ad6631

ENVIRONMENTAL RESEARCH
CLIMATE

LETTER

Improvement of decadal predictions of monthly extreme Mei-yu
rainfall via a causality guided approach

Kelvin S Ng"* @, Gregor C Leckebusch' @ and Kevin I Hodges’

! School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
2 Department of Meteorology, National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
*

Author to whom any correspondence should be addressed.

E-mail: k.s.ng@bham.ac.uk

Keywords: extreme rainfall, Mei-yu front, causality-guided approach, decadal prediction system

Supplementary material for this article is available online

Abstract

While the improved performance of climate prediction systems has allowed better predictions of
the East Asian Summer Monsoon rainfall to be made, the ability to predict extreme Mei-yu rainfall
(MYR) remains a challenge. Given that large scale climate modes (LSCMs) tend to be better
predicted by climate prediction systems than local extremes, one useful approach is to employ
causality-guided statistical models (CGSMs), which link known LSCMs to improve MYR
prediction. However, previous work suggests that CGSMs trained with data from 1979-2018 might
struggle to model MYR in the pre-1978 period. One hypothesis is that this is due to potential
changes in causal processes, which modulate MYR in different phases of the multidecadal
variability, such as the Pacific decadal oscillation (PDO). In this study, we explore this hypothesis
by constructing CGSMs for different PDO phases, which reflect the different phases of specific
causal process, and examine the difference in quality as well as with respect to difference drivers
and thus causal links between CGSMs of different PDO phases as well as the non-PDO phase
specific CGSMs. Our results show that the set of predictors of CGSMs is PDO phase specific.
Furthermore, the performance of PDO phase specific CGSMs are better than the non-PDO phase
specific CGSMs. To demonstrate the added value of CGSMs, the PDO phase specific versions are
applied to the latest UK Met Office decadal prediction system, DePreSys4, and it is shown that the
root-mean squared errors of MYR prediction based on PDO phase specific CGSMs is consistently
smaller than the MYR predicted based on the direct DePreSys4 extreme rainfall simulations. We
conclude that the use of a causality approach improves the prediction of extreme precipitation
based solely on known LSCMs because of the change in the main drivers of extreme rainfall during
different PDO-phases.

1. Introduction

Increasing the capability of predicting and representing extreme rainfall over East Asia, the home of more
than 1.6 billion people (United Nations 2022), is of importance as extreme rainfall poses a significant threat
to societies via the subsequent regional flood hazards. Some unprecedented extreme rainfall events have
occurred over China during the East Asian Summer Monsoon (EASM) season in the past few years (e.g. Ding
et al 2021, Zhou et al 2022, Wu et al 2023). These extreme rainfall events have induced significant
socioeconomic impacts on China (e.g. Zhou et al 2022). Recent advances in near-term (seasonal and
decadal) climate prediction systems have been shown to provide useful predictions of rainfall over China
during EASM on seasonal and monthly timescales from direct model outputs (Li ef al 2016, Martin et al
2020) as well as via an EASM index (e.g. Wang and Fan 1999) to infer rainfall (Bett et al 2020, 2021, 2023,
Martin et al 2020). The Mei-yu rainfall, which is rainfall triggered by the Mei-yu front (MYF), is responsible
for 45% of total summer rainfall in the middle/lower Yangtze River Valley (Ding and Chan 2005). Thus, to

© 2024 The Author(s). Published by IOP Publishing Ltd
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further improve the ability of near-term climate predictions of extreme precipitation over China during
EASM, it is necessary to enhance our ability to capture the major contributors to EASM rainfall over
China—the Mei-yu rainfall (e.g. Bett et al 2021).

Extreme Mei-yu rainfall (hereinafter MYR) is known to be influenced by various large-scale climate
modes (LSCMs), such as the South Asian High (Liu and Ding 2008, Ning et al 2017), the Western North
Pacific Subtropical High (Zhou and Wang 2006, Ninomiya and Shibagaki 2007, Liu and Ding 2008, Sampe
and Xie 2010, Ding et al 2021), and the El Nino—-Southern Oscillation (Wu et al 2003, Wang et al 2009, Ye and
Lu 2011). Since climate models can produce LSCMs better than extreme rainfall (Flato et al 2013), a way to
improve MYR simulations is to make use of these relevant LSCMs as (physical) transmitters of information
to construct statistical models (Ng et al 2022). A similar approach, but based on traditional correlation
estimates, has been applied in seasonal forecast of monthly mean and seasonal mean Mei-yu rainfall (Bett
etal 2020, 2021, Martin et al 2020) as well as in extended seasonal forecast (Bett et al 2023).

However, traditional correlation approaches to identify useful predictors to construct statistical models
suffer from the inability to identify robust and comprehensive relationships between MYR and LSCMs due to
the complexity of the EASM system. To overcome this issue, Ng et al (2022) introduced statistical models
constructed using a causality algorithm (Tigramite v4.2; Runge et al 2019, Runge 2020). Many studies have
demonstrated the usefulness of the causality approach in statistical model construction to model different
types of atmospheric phenomena, such as extreme stratospheric polar vortex states (Kretschmer et al 2017),
regional Indian summer monsoon rainfall (Di Capua et al 2019) and MYR (Ng et al 2022). The main
advantage of using the causality approach, as opposed to correlation approaches, is that causality-based
models do not suffer from overfitting due to non-causal relationships between predictors and predictand
(Kretschmer et al 2017). This also implies that the causality-based models are transferable, i.e. can be applied
to other data, as causality-based models can capture the underlying physical (causal) relations between
predictors and predictands rather than the simple association between predictors and predictands.

Using the principle of causality, Ng et al (2022) constructed causality-guided statistical models (CGSMs)
to model the MYR using known LSCMs in the period of 1979-2018. They demonstrated that CGSM can
capture important observed characteristics of the MYR, such as the sub-monthly variability, as well as
physical significance based on the spatial coherency of the choice of predictors. However, Ng et al (2022)
noticed that CGSMs struggled to model the MYR in the period of 1961-1978. They hypothesized that the
lack of representation of low frequency oceanic variability could be the reason. Indeed, several studies have
documented decadal and interdecadal variability of the EASM precipitation pattern, which are linked to the
Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) (e.g. Ding et al 2008,
2018, 2020). This raises the scientific question: Is the MYR driven by different sets of causal predictors in
different phases of the multi-decadal oscillation, i.e. is the stationarity condition satisfied? If the stationarity
condition is not satisfied, statistical models should be constructed based on the respective phase of
multi-decadal oscillations. This has significant consequences when CGSM would be applied to climate
prediction data where decadal oscillations could play a major role in modulating MYR.

The objective of this study are:

(i) To explore the stationarity of the causal predictors in different phases of a decadal/multidecadal
variability mode.

(ii) To demonstrate a general workflow for the application of causality approach that would be useful in
improving MYR representation in climate predictions.

In this study, we first introduce an improved approach, CGSM2 (see section 3.1), to construct CGSMs by
utilizing spatial coherency of predictors. Then, we use CGSM2 with the PDO phase specific set of causal
predictors to show the validity of the concept of different causality models for different PDO phases in
comparison to stationary causality models. Due to data availability, we can only investigate the relationship
between one decadal and interdecadal variability and MYR. PDO is chosen due to its highly non-linear
relationship with the EASM precipitation pattern (Ding et al 2018), which is of the particular interest from
the application perspective. Furthermore, this study aims to test the validity of the concept. To demonstrate
the added value of the proposed approach, the performance of the PDO phase specific CGSM2 in modelling
MYR is compared with the direct model outputs of the latest UK Met Office Decadal Prediction System
version 4, DePreSys4 (Scaife et al 2022). The paper is organised as follows: sections 2 and 3 describe the data
and methodologies used in this study. Main results are displayed in section 4. Discussion and conclusions are
presented in section 5.
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Table 1. List of the LSCM:s considered in the construction of CGSM. All with lead time from 1 month up to 11 months.

LSCM

Definition/References

Dipole mode index (DMI)

Indian monsoon index by wang and fan
(IMI-WF)

Indian monsoon index by webster and
yang (IMI-WY)

ENSO (Nino 3.4)

Pacific Japan pattern (P])

South Asian High Area Index (SAHI-Area)
South Asian High Northwest
Displacement Index (SAHI-NW)

Silk Road pattern principal component 1
(SRP-PC1)

Silk Road pattern principal component 2
(SRP-PC2)

Sea surface temperature anomaly of
Arabian Sea (SSTA-AS)

Sea surface temperature anomaly of Bay of
Bengal (SSTA-BoB)

Sea surface temperature anomaly of East
China Sea (SSTA-ECS)

Sea surface temperature anomaly of South
China Sea (SSTA-SCS)

Western North Pacific monsoon index
(WNPMI)

Western North Pacific Subtropical High
North Index (WNPSH-North)

Western North Pacific Subtropical High

As in Saji et al (1999), Black et al
(2003)
As in Wang and Fan (1999)

As in Webster and Yang (1992)

As in Trenberth (1997)

As in Nitta (1987), Wakabayashi and
Kawamura (2004 ), Choi et al (2010),
Kim et al (2012), Liet al (2013)

As in Ning et al (2017)

As in Ning et al (2017)

Asin Li et al (2020)
Asin Liet al (2020)

Mean SST anomaly in the region
10-25° N, 60-75° E

Mean SST anomaly in the region
10-23° N, 80-100° E

Mean SST anomaly in the region
25-33° N, 120-130° E

Mean SST anomaly in the region
10-23° N, 105-120° E

As in Wang and Fan (1999), Wang
et al (2001), Wang et al (2008)
As in Lu (2002)

Asin Lu (2002)

West Index (WNPSH-West)

2. Data

Observed precipitation data over China from 1961 to 2018 is obtained from CN05.1 (Wu and Gao 2013).
CNO05.1 is a high resolution (0.25° x 0.25°) gridded daily data set constructed by interpolating data from
more than 2400 observation stations in China using the ‘anomaly approach’ (Xu et al 2009, Wu and

Gao 2013).

The European Centre for Medium-Range Weather Forecasts fifth generation reanalysis data (ERAS,
Hersbach et al 2020) and ERA5 back extension (preliminary version) (Bell et al 2020a, 2020b), with spatial
resolution of 0.25° x 0.25°, were used to calculate indices of known LSCMs (table 1), MYF and tropical
cyclone detection (see section 3.2).

Observed NCEI PDO indices are obtained from National Oceanic and Atmospheric Administration
(NOAA 2022). The indices are derived based on the extended reconstruction sea surface temperature (SST)
dataset version 5 (ERSSTv5, Huang et al 2017). Detailed description of the related methodology is available
at www.ncei.noaa.gov/access/monitoring/pdo/ (last accessed 13 July 2023).

To demonstrate the added value of the PDO phase specific CGSM2, hindcast outputs of DePreSys4
(Scaife et al 2022) have been used. The setup of DePreSys4 is based on the HildGEM3-GC3.1-MM historical
simulations suite (Williams et al 2018). The hindcast outputs were generated following the decadal climate
prediction project of CMIP6 component A protocol (Boer et al 2016). DePreSys4 has 10 ensemble members,
and hindcasts were initialised on the 1st of November for every year in the period of 1960-2018 with 10 years
hindcast period. In this study, DePreSys4 hindcast outputs of lead year 2—10, which are initialised from 1960
to 2009, are used. This study period ensures all hindcast years can be evaluated against observations and the
number of hindcast for each lead year are identical. Hindcasts of lead year 1 are not used as the hindcast data
do not cover the period where causal predictors can be identified (see section 3.1). The total number of
model years evaluated is 4,410. HadGEM3-GC3.1-MM historical simulations (Andrews et al 2020) are used
to derive the PDO patterns of the HadGEM3-GC3.1 system for the PDO index (see section 3.3).


https://www.ncei.noaa.gov/access/monitoring/pdo/
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3. Methods

3.1. CGSM with consideration of spatial coherency—CGSM2

CGSM2 aims to use the information of monthly LSCMs, i.e. predictors, to infer total monthly MYR, i.e.
predictand. For each grid box of a given month of interest, a CGSM2 is constructed if there are at least 10
non-zero MYR entries. CGSM2 contains three main steps: (i) causal predictor selection for each grid box; (ii)
evaluation of the spatial coherency of the causal predictors; and (iii) model construction for each grid box. In
comparison to CGSM (Ng et al 2022), CGSM2 utilises the notion of spatial coherency of causal predictors,
which further constrains the choice of causal predictor and reduces the possibility that a predictor is selected
due to purely statistical optimisation. The schematic workflow of CGSM2 can be found in figure S1. A brief
description of CGSM2 is as follows.

3.1.1. Causal predictor selection for each grid box

To capture known and unknown relationships between known LSCMs and MYR using causality approach, a
pool of potential predictors is constructed using the indices of known LSCM (table 1) with a lead time of up
to 11 months prior to the month of interest. The total number of potential predictors in the pool is 176. The
use of potential predictors with various lead times aims to compensate for the incomplete set of potential
predictors. LSCMs of large lead time could increase the likelihood of capturing ‘missing LSCMs’ because they
would act as proxies for hidden processes.

The correlation between the potential predictors and the predictand is calculated. Conditional
dependency between the potential predictors, which are significantly correlated (p-value < 0.1; as in Ng et al
(2022)) with the predictand, and the predictand is evaluated using the modified Peter-Clark algorithm
(Tigramite v4.2; Runge et al 2019, Runge 2020). Causal predictors are identified if the predictand is
conditionally dependent on them. This forms a preliminary set of causal predictors.

3.1.2. Evaluation of the spatial coherency

Ng et al (2022) showed that the grid boxes of a given CGSM predictor would form spatially coherent clusters,
indicating these predictors have physical meaning and significance. They suggested to use those spatially
coherent clusters to further constrain the choice of causal predictors and reduce the possibility that a
predictor is selected due to purely statistical optimisation. CGSM2 utilises the notion of spatial coherency in
the predictor selection step by incorporating the density-based spatial clustering (DBSCAN; Ester et al 1996).
For a given causal predictor X, the spatial positions of the grid boxes that have causal predictor X in the
preliminary set of causal predictors are first identified. DBSCAN is then applied to the spatial positions of
these grid boxes, and subsequently, spatial clusters are identified. Figure 1 shows a schematic example of the
DBSCAN output.

Unlike other commonly used clustering algorithms, such as K-means clustering, DBSCAN does not
require a pre-defined number of clusters and the clusters identified by DBSCAN are not constrained by a
specific shape or relative size to other clusters. This provides the necessary flexibility to capture clusters with
potentially erratic shapes and uneven sizes. A similar approach has been successfully applied to objectively
identify tropical cyclone cloud clusters from satellite images in Ng e al (2020). Clusters smaller than the
minimum cluster size, are labelled as noise. Predictors of the noise clusters are removed from the preliminary
set of causal predictors and are not used in model construction. The minimum cluster size is chosen to be 16
grid boxes (equivalent to a 1° x 1° grid box). While the threshold of 16 grid boxes is an arbitrary choice, this
threshold is effective in removing isolated points and maintaining the performance of CGSM2.

3.1.3. Model construction for each grid box

For each grid box, a linear model is constructed between the set of causal predictors identified in

section 3.1.2 and predictand using multiple linear regression. Depending on the month of interest and
period of consideration, the total number of models constructed ranges from 3142 to 6488. Typically two to
five causal predictors are used in model construction (table S1).

3.2. Identification of extreme Mei-yu precipitation

MYR is defined as the extreme rainfall above the 95th percentile of the local climatological daily rainfall
within 500 km north and south of the MYF, excluding precipitation caused by tropical cyclones. Position of
MYFs were detected by a scheme described in Ng et al (2022). The MYF detection scheme locates the daily
position of MYF by using the minimum of the product of the meridional gradient of daily equivalent
potential temperature at 850 hPa and specific humidity at 850 hPa. MYFs in ERA5 are identified following
the aforementioned description. For DePreSys4, as daily data of specific humidity and temperature at

850 hPa level are not available, monthly data were used instead for monthly MYF identification. The MYF

4
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Figure 1. A schematic example of a DBSCAN output. Each dot represents a grid box with a given predictor chosen by the CGSM
procedure. Black indicates noise whereas other colours indicate different clusters identified by DBSCAN.

climatology of DePreSys4 constructed using monthly data is similar to the MYF climatology of
HadGEM3-GC3.1-MM historical simulations constructed using daily data (figure S2). Tropical
cyclone-related rainfall is defined as any rainfall within a 500 km radius of the centre of a tropical cyclone,
where the location of the tropical cyclone is identified by the TRACK algorithm (Hodges et al 2017).

3.3. Determination of PDO phase

Since CGSM2 can be constructed using indices of known LSCM with lead time up to 11 months prior to the
month of interest, the PDO phase is determined by the mean value of PDO indices over the 12 month period
ending with the month of interest. This ensures that the PDO phase is not biased by any high-frequency
variability, making the approach self-contained. The main findings of the current study are not sensitive to a
longer calculation period for determining the PDO phase. For the construction of the CGSM2, the observed
NCEI PDO indices (c.f. Section 2) were used. The ratio between the number of years with PDO+ and the
number of years with PDO- is roughly 4:6.

For DePreSys4, the PDO index is calculated based on the approach of Mantua et al (1997), and Boer and
Sospedra-Alfonso (2019): First the PDO pattern, i.e. the leading empirical orthogonal function of the
detrended monthly SST anomalies in the North Pacific Ocean poleward of 20° N with global monthly mean
SSTs subtracted, from HadGEM3-GC3.1-MM historical simulation is obtained. Then projecting the PDO
pattern of the HaddGEM3-GC3.1-MM historical simulations onto the detrended DePreSys4 SST with
seasonal cycle removed. This ensures the derived PDO pattern is purely from the long-term intrinsic
variability of the HadGEM3-GC3.1 system and not influenced by initial conditions and boundary conditions
for each initialisation of DePreSys4.

4, Results

The PDO phase specific CGSM2s are constructed by separating training data into PDO+ and PDO- (see
section 3.3), and the corresponding models are referred to as PDO+ CGSM2 and PDO- CGSM2, respectively.
The CGSM2 constructed using the full period (1961-2018) is referred to as the full period CGSM2. Figure 2
shows the top 10 most frequently selected predictors (table S2) per grid cell chosen in PDO+ CGSM2 and
PDO- CGSM2 for each month in the EASM season. For each month, the predictor clusters (i.e. the colour
patches; see table S2 for the corresponding predictor of each colour), show different spatial patterns and

5
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PDO-
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s =

Figure 2. Map of top 10 popular predictors chosen using CGSM2 constructed with data in the period of PDO+ (top), PDO-
(middle), 1961-2018 (bottom) for (left to right) May, June, July, and August. The predictor that is represented by any colour in a
given panel is independent to other panels in this figure. The list of predictors that are represented by each colour in each panel
are stated in table S2.

organisation. This indicates there are systematic changes in the set of causal predictors in different PDO
phases. A similar observation can be made when comparing the PDO phase specific maps of predictors with
the map of predictors derived using the full period (1961-2018) (figure 2). This shows that the full period
CGSM2 attempts to identify causal predictors that would satisfy both PDO phases but not a particular PDO
phase. It should be noted that the detailed investigation on the physical linkage between individual causal
predictor and MYR is beyond of the scope of this study (further discussion can be found in section 5).

The performance of PDO+ CGSM2, PDO- CGSM2, and full period CGSM2 is shown in figure 3. Across
all months in the EASM season, full period CGSM2 (figure 3 bottom row) has the lowest performance, with
the overall mean Pearson correlation coefficient (r) of 0.59-0.63 (table 2). CGSM2 constructed using PDO
phase specific data have higher performance in comparison to full period CGSM2 (significant at 0.0001
level) with the overall mean r of 0.75-0.79 and 0.68-0.74, for PDO+ CGSM2 and PDO- CGSM2,
respectively (table 2). The results are consistent across all months of interest, and they have been validated
using 10 000 times repeated five-fold cross validation. This demonstrates that the CGSM2 constructed based
on PDO phase specific data can better capture the spatiotemporal variability of the MYR. As the set of causal
predictors, which modulates MYR, in different PDO phases is different, this implies the underlying physical
mechanisms that modulate the MYR in different PDO phases are different. An interesting observation is that
PDO+ CGSM2 has higher performance than PDO- CGSM2 (figure S3). A possible explanation is that since
the ratio between number of years with PDO+ and number of years with PDO- is roughly 4:6, i.e. the data
set of PDO- is longer than the data set of PDO+. Since other low frequency variability, e.g. AMO could also
be modulating factors of MYR, longer datasets may be more likely to be less stationary and consequently have
lower performance. Another possible explanation is that the current set of known LSCMs does not include
all the necessary LSCMs, related to the MYR modulation during PDO-. This requires further investigation.

To demonstrate the added value of the CGSM2 approach in modelling the MYR, the PDO phase specific
CGSM2 are applied to the indices of known LSCMs of DePreSys4, and compared with the direct model
outputs of MYR from DePreSys4. In order to correctly assess the added value of CGSM2, the following
evaluation criteria were applied: (1) For each forecasted year of a member, the predicted MYR by a
DePreSys4 member was only compared to the predicted MYR by PDO phase specific CGSM2, if the PDO

6
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Figure 3. Performance of monthly CGSM2 (Pearson r) constructed using data in the period of PDO+ (top), PDO- (middle),
1961-2018 (bottom), for (left to right) May, June, July, and August with CNO05.1 as reference. The black box indicates the region
middle/lower Yangtze River Valley.

Table 2. Mean and standard deviation (in brackets) of regional performance, quantified by Pearson correlation coefficient (r), of
CGSM2 (figure 3) of different months.

May June July August
PDO+ 0.77(0.13)  0.75(0.13)  0.79(0.12)  0.75(0.13)
PDO- 0.68(0.13) 0.68(0.13) 0.71(0.12) 0.74(0.12)

1961-2018 0.62(0.11) 0.59(0.11) 0.63(0.11) 0.63(0.12)

phase was correctly predicted by that member of DePreSys4. The number of correctly predicted PDO phase
for each lead year by the DePreSys4 is shown in figure S4; (2) The performance of the MYR prediction of lead
year one was not evaluated. This is because CGSM2, following the basic principle approach of Ng et al
(2022), considers LSCMs with large lead time (up to 11 months ahead of the month of interest). As discussed
in Ng et al (2022), there could exist hidden (physical) processes, which are not documented in literature but
are important in MYR modulation, the use of large lead time of known LSCMs would assist the models to
capture hidden process indirectly. Since the hindcast outputs of DePreSys4 were initialised in November of
each year, it does not cover the necessary range of data that is required as input of CGSM2 for MYR
prediction of lead year one. (3) The evaluation is to compare the prediction to observations, i.e. CN05.1, of
the regional mean MYR over the middle/lower Yangtze River Valley as indicated by the black boxes in

figure 3, as this region experiences significant amount of MYR throughout the EASM season (Ding and Chan
2005), posing significant flood risk. Figure 4 shows the root-mean-squared-error (RMSE) of the predictions
for each month. MYR predicted using PDO phase specific CGSM2 has a lower RMSE, in comparison to the
DePreSys4 direct predictions for both PDO phases for all the lead years, i.e. lead years 2—-10, investigated. The
performance of both DePreSys4 and PDO phase specific CGSM2 is relatively constant for all lead years of
interest. This again confirms the usefulness of the CGSM2 approach.

5. Discussion and conclusions

The performance of CGSM2 constructed using data in the period of 1961-2018 is significantly lower than
PDO phase specific CGSM2 (figure 3, table 2). Furthermore, it can be shown that the overall performance of
CGSM2 constructed using data in the period of 1979-2018 is statistical significantly higher than the CGSM2
constructed using data in the period of 1961-2018 across all months of interest (figure S5). This highlights a
potential issue with using long timeseries for statistical model building—violation of the stationarity
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Figure 4. RMSE of monthly mean MYR (mm/d) in the middle/lower Yangtze River Valley predicted by PDO phase specific
CGSM2 (solid lines) and DePreSys4 direct extreme precipitation simulation (broken lines) in PDO+ (red) and PDO- (blue)
phases for (a) May, (b) June, (c) July, and (d) August for lead years 2-10.

assumption. Based on this observation, future analysis, in addition to different phases of PDO, could also be
performed based on different AMO phases as AMO is also known to be a modulating factor of the EASM
rainfall (Ding et al 2018). This is beyond the scope of the current study as well as we are limited by the
number of available reliable observations. One idea to increase the number of observations is to make use of
century long observations and reanalysis. However, the quality of the earlier period of century long datasets
tend to suffer from significant uncertainty due to changes in the number of observations and their
distributions in the early part of the century. Consequently, constructing CGSM2 based on century long data
could be unreliable. An alternative approach to overcome this issue is to make use of a so-called
Osinski-Thompson approach, also known as the UNSEEN approach (Osinski et al 2016, Thompson et al
2017), as suggested by Ng et al (2022). The Osinski-Thompson approach aims to increase the number of
‘observations’ by using ensemble outputs of state-of-the-art climate models. This approach has been applied
to various studies of extreme events (e.g. Angus and Leckebusch 2020, Ng and Leckebusch 2021). While
simulated rainfall in climate models tends have bias due to sub-grid scale parameterisation schemes, this
could be addressed using bias correction technique. As demonstrated in previous section, CGSM2 can reduce
RMSE of MYR prediction in DePreSys4 using known LSCM:s (figure 4). This shows that in addition to
improvement in sub-grid scale parameterisation schemes, improving extreme rainfall prediction in climate
models could also be done by increasing the skills in predicting known LSCMs.

While the current approach may not have accounted for all relevant large-scale environmental factors
known to influence MYR, such as the upper level westerly jet over East Asia (Kong and Chiang 2020, Zhou
et al 2021, He et al 2023), statistically, using LSCMs with large lead time as proxies appears to indirectly
capture these factors. However, the linkage between these proxies and the relevant large-scale environmental
factors and MYR remains an open question. Further investigations are required to explore these factors.
Nevertheless, our approach presents an opportunity to study the EASM and its associated extremes using
data-driven approaches.

In conclusion, a new version of the CGSM, CGSM2, which incorporated the notion of spatial coherency
of predictor selection, has been developed. Using CGSM2, we have shown that there exists different causal
predictor set in different PDO phases. The CGSM2 constructed using PDO phase specific data has better
performance than CGSM2 that are constructed using long-term data (1961-2018) with all PDO phases
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together. This is linked to the fact that using long-term data to construct CGSM2 does not necessarily satisfy
the stationarity condition that is required for construction of statistical model. This is because there
obviously exist different sets of causal predictors that modulate MYR in different PDO phases. To
demonstrate the added value of CGSM2, the PDO phase specific CGSM2 was applied to DePreSys4 and we
could show that PDO phase specific CGSM2 performs consistently better than the MYR predicted based on
direct DePreSys4 output. Consequently, it provides evidence that causality approach can be useful in
improving climate prediction. We have thus demonstrated the advantage of combining machine learning
methods, classical statistical approaches and state-of-the-art dynamical model to produce a better
representation of extreme rainfall in climate predictions.
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