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Abstract

This study examines the performance of 52 models from phase 6 of the Coupled Model
Intercomparison Project (CMIP6) in capturing the effects of the Indian summer monsoon on the
evolution of El Nino—Southern Oscillation (ENSO). The ISM’s impacts on ENSO show a
substantial diversity among the models. While some models simulate the strength of the impacts
comparable to observations, others represent much weaker influences. Results indicate that the
diversity is highly related to inter-model spread in interannual variability of ISM rainfall (ISMR)
among the models. Models with a larger ISMR variability simulate stronger ISM-induced
anomalies in precipitation and atmospheric circulation over the western North Pacific during the
monsoon season. As a result, these models exhibit larger wind anomalies induced by monsoon on
the south flank of the anomalous circulation in the western Pacific, thereby influencing subsequent
ENSO evolution more significantly by causing stronger air-sea coupling processes over the tropical

Pacific.

1. Introduction

The Indian summer monsoon (ISM), or South Asian
summer monsoon, is an important component of
the Asian monsoon system. It exerts pronounced
impacts on the ecosystem and human activities in
densely populated regions (Gadgil and Gadgil 2006,
Wahl and Morrill 2010, Chowdary et al 2021). The
El Nino-Southern Oscillation (ENSO), originating in
the tropical Pacific, is a major driver of global climate
variability on interannual timescale (Zhang et al 1999,
Yeh et al 2018, Yang et al 2018b, Taschetto et al 2020).
The relationships between these two vital climate sys-
tems have long been a focal topic in climate research.
It has been well known that during the develop-
ing summer of El Nino (La Nina), the ISM rainfall
(ISMR) tends to be weaker (stronger) than normal,
with a negative simultaneous correlation between
the two (Rasmusson and Carpenter 1983, Webster

© 2024 The Author(s). Published by IOP Publishing Ltd

and Yang 1992, Miyakoda et al 2003, Kumar et al
2006). The impacts of ENSO on ISM are primar-
ily established through the ENSO-induced anom-
alous Walker circulation during the monsoon sea-
son (June-September, JJAS) (Pant and Parthasarathy
1981, Ju and Slingo 1995, Kumar et al 1999, 2006).
On the other hand, previous studies have proposed
that the ISM could also influence ENSO. Both ENSO
and the monsoon are integral components of the
coupled climate system, and they interact with each
other (Webster and Yang 1992, Yang et al 2018a, Yuan
et al 2020). The lead-lag relationship between ISMR
and sea surface temperature (SST) anomalies in the
central-eastern Pacific features as a maximum neg-
ative correlation when the SST anomalies (SSTAs)
lag the ISMR by 3-6 months (Yasunari 1990, Lau
and Yang 1996, Kirtman and Shukla 2000). In addi-
tion, composite analyses based on anomalous ISM
years show that when the ISM is stronger (weaker)
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than normal, the Pacific trade winds become stronger
(weaker) than average, accompanied by cold (warm)
SSTAs in the eastern Pacific (Yasunari 1990, Webster
and Yang 1992). Although these statistical results may
not necessarily clarify the cause-and-effect relation-
ship between the ISM and ENSO, they have led to the
implication that the ISM could influence the ongoing
ENSO evolutions (Yasunari and Seki 1992, Kirtman
and Shukla 2000). Several studies have further found
that the El Nino (La Nina) events with a weak ISM
in their developing summer, tend to peak with a lar-
ger (smaller) amplitude in the following winter than
those with the normal monsoon, and vice versa for a
strong ISM (Wu and Kirtman 2003, Lin et al 2023).
Furthermore, numerical experiments with simple or
intermediate coupled models have also claimed that
ISM variability can influence the intensity or other
statistical properties of ENSO (Nigam 1994, Wainer
and Webster 1996, Meehl 1997, Chung and Nigam
1999). Kirtman and Shukla (2000) found that the lag
correlation between ISM and ENSO was also repro-
duced in the intermediate coupled model, even if
the parameterized monsoon anomaly was shifted to
be centered on December—March. They thus claimed
that the lag correlation was mainly determined by the
time it took for the Pacific coupled system to respond
to the monsoon-induced wind anomalies, rather than
by the ENSO phase locking with the annual cycle.
The latest study by Lin et al (2023) further revealed
the detailed physical processes involved in the effect
of the ISM on subsequent ENSO evolution. A weak
(strong) monsoon can induce an anomalous cyclonic
(anticyclonic) circulation over the western North
Pacific (WNP). The westerly (easterly) wind anom-
alies on the southern flank of the anomalous circula-
tion can affect the following ENSO evolution by excit-
ing Pacific air-sea coupling processes thereafter, and
these air-sea interactive processes induced by anom-
alous ISM were confirmed by a series of sensitivity
experiments with a fully coupled climate model.

The latest generation of climate models, par-
ticipating in the phase 6 of the Coupled Model
Intercomparison Project (CMIP6), has recently been
released (Eyring et al 2019). While the majority of
CMIP6 models exhibit notable improvements in rep-
resenting the climatological and interannual variabil-
ity of the ISM compared to the previous generations
(Rajendran et al 2022), their performance in simu-
lating the simultaneous correlation between ENSO
and ISM in the historical period of 1900-2014 has
been improved slightly (Choudhury et al 2022). The
CMIP6 models also display a large inter-model spread
in the strength of simultaneous correlations between
ENSO and ISM (Meehl et al 2023, Yu et al 2023),
as observed in the previous generation (Ramu et al
2018). However, as an important aspect of the inter-
action between monsoons and ENSO, the abilities of
CMIP6 models in representing the impacts of ISM
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on ENSO and the potential reasons for the inter-
model diversity in this regard have not been addressed
appropriately. In this study, we assess the perform-
ances of 52 CMIP6 models in simulating the ISM’s
influences on subsequent ENSO evolution and invest-
igate the possible sources of the inter-model spread in
the impacts.

2. Data and methods

Observational data used in this study include 1)
the monthly SST data from the Hadley Centre Sea
Ice and Sea Surface Temperature (HadISST) ver-
sion 1 (Rayner et al 2003) from 1871 to 2016;
2) the All-India rainfall from the Indian Institute
of Tropical Meteorology for the period 1871-2016
(Parthasarathy et al 1994). To examine the inter-
model diversity in ISM’s impact on ENSO, we ana-
lyze the monthly mean outputs of the first realization
from the historical simulations of 52 CMIP6 models
(table SI in supplementary material). The monthly
mean outputs of the ensemble members 1-50 of the
Community Earth System Model Version 2 Large
Ensemble (CESM2-LE; Rodgers et al 2021) are also
used. All model outputs are horizontally interpolated
onto a common 2.5° x 2.5° grid before analysis.

To ensure the sufficient samples for both anom-
alous monsoon and ENSO events, the longest time
period in the observations is analyzed (1871-2016),
and the entire period of historical simulations (i.e.
1850-2014) is considered for CMIP6 models. We
have also repeated our analyses using the time period
mutually covered by both observations and mod-
els (i.e. 1871-2014) and found that the conclusions
remained unchanged. Anomaly fields are obtained
by calculating their deviations from the climatolo-
gical seasonal cycle. To focus on the ISM’s impacts on
ENSO on the interannual timescale, the linear trend
of anomaly fields is removed and a 4-108-month
bandpass filter is applied to these fields (Park and
Burrus 1987).

ENSO variability is represented by the averaged
SSTAs in the Nino-3.4 region (170°-120° W, 5° S—
5° N). The JJAS rainfall averaged over the Indian
region (70°-90° E, 10°-30° N) is used to denote
the ISMR variability in the CMIP6 models. Since the
ISM variability is not independent from ENSO, that
is, a high tendency of El Nino (La Nina) events to
co-occur with weak (strong) ISMs, composite anom-
alies of anomalous ISM years thus also include the
influence of ENSO, making it difficult to isolate the
anomalies induced by the ISM alone. To better illus-
trate the ISM’s impacts on ENSO, we make a condi-
tional classification as in previous studies (Wu and
Kirtman 2003, Lin et al 2023). Specifically, a year of
El Nino, La Nina, and non-ENSO is identified when
the JJAS-averaged Nino-3.4 SST index is above 0.43,
below —0.43, and in the range of —0.43 to 0.43 of
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its standard deviation (STD), respectively. Similarly,
a strong (weak) ISM year is determined by the ISMR
index versus its STD. The 0.43 STD is used as the cri-
terion to ensure that the three categories have nearly
equal numbers of years, considering an approxim-
ately normal distribution with a zero mean for both
the Nino-3.4 SST index and the ISMR index. Based
on this classification, the El Nino or La Nina events
are categorized into three groups: those that co-occur
with strong, weak, and normal ISMs (see table S2),
referred to as EN (LN)-Wet years, EN (LN)-Dry years,
and EN (LN)-Nor years, respectively. The anomal-
ous monsoon years that are independent from ENSO
are also identified, referred to as NE-Dry and NE-Wet
years. The difference between the ENSO events with
and without anomalous ISMs implies the influence
of ISM on ENSO. The composite anomaly of NE-Dry
and NE-Wet years indicates the impact of anomalous
ISM under the ENSO neutral condition. The above
classification is also conducted using the December—
February (DJF) averaged Nino-3.4 SST index, and the
main conclusions remain unchanged.

3. Results

3.1. Diverse impacts of ISM on ENSO in CMIP6
CGCMs

Figure 1(a) exhibits the lead-lag correlations between
ISMR and monthly Nino-3.4 SST index. In obser-
vations, the maximum negative correlation appears
in October—November after the monsoon season.
This timing in the ENSO-ISM association implies the
potential influences of ISM on the following ENSO
evolution, as proposed in previous studies (Webster
and Yang 1992, Kirtman and Shukla 2000). To exam-
ine the performances of the 52 CMIP6 models in
representing the ENSO-ISM relationship, we calcu-
late the correlations between ISMR and Nino-3.4 SST
index averaged in the subsequent October—December
(OND) in the models and observations (figure 1(b)).
There exists a large spread in the correlations among
the models. Some models show much weaker val-
ues of the correlations compared with observations,
while others simulate comparable correlation values.
This result may indicate a considerable diversity in the
ISM’s effects on ENSO among the CMIP6 models. To
better depict the diversity, we further divide the 52
models into two groups according to whether or not
the lag correlation in the individual models is stronger
than the multimodal ensemble (MME) mean of
the 52 models, referred to as high-impact models
(HIMs) and low-impact models (LIMs), respectively.
The MME mean of HIMs effectively reproduces the
observed evolution and magnitude of lag correla-
tions during the monsoon season and in the follow-
ing months (figure 1(a)). By contrast, the MME mean
of LIMs simulates relatively weaker values (—0.29)
compared to those in both observations (—0.58) and
HIMs (—0.51) (figure 1(b)).

S Lin et al

One possible scenario that should be discussed
here is that the spread observed from the single
realizations of CMIP6 models may be determined
by internal variability rather than model differ-
ences. For example, Bodai et al (2023) claimed that
the assessment of model performance with regard
to decadal variability of ENSO-ISM teleconnection
using a single realization of different CMIP mod-
els could lead to spurious model classification. To
further examine whether the inter-model spread is
governed by internal variability, we repeat the ana-
lysis in figure 1(b) by using 50 ensemble members
of CESM2-LE. Figure S1 shows that the spread in
the lag correlation among the 50 ensemble members
is rather small compared to the diversity of the 52
CMIP6 models. The standard deviation of lag correl-
ations across the 50 CESM2-LE ensemble members is
0.05, which is also significantly smaller than that of
the CMIP6 models (0.32). These results suggest that
the model difference, rather than internal variability,
plays a dominant role in the inter-model spread in
the lag correlation among single realizations of the 52
CMIP6 model.

To further illustrate the ISM’s impacts on ENSO
among the CMIP6 models, figure 2 depicts the time
evolution of composite Nino-3.4 SSTAs associated
with categorized ENSO and anomalous monsoon
years. In observations, the El Nino events concurrent
with a weak ISM grow more rapidly during the devel-
oping summer and autumn, peaking with a larger
amplitude in the mature winter compared to the EN-
Nor years (figure 2(a)). Conversely, El Nino events
co-occurring with a strong monsoon are weaker
than those with normal monsoon. Similarly, the La
Nina events concurrent with strong monsoon are
more intense than those with normal monsoon, and
vice versa (figure 2(b)). Anomalous ISMs alone can
also affect the central-eastern Pacific SSTs under an
ENSO-neutral condition, with notably warm (cold)
SSTAs appearing in the subsequent winter after a
weak (strong) ISM (figure 2(c)). These composite
results can be reproduced successfully by a series of
sensitivity experiments based on a fully coupled cli-
mate model (NACR CESM1), in which monsoon
heating or cooling is imposed in the ENSO devel-
oping summer (Lin et al 2023), suggesting that a
weak ISM can enhance an ongoing El Nino event but
weaken a La Nina event, and conversely for a strong
ISM. HIMs reasonably simulate the observed ISM’s
impacts on Nino3.4 SSTAs during ENSO and non-
ENSO years, though some quantitative discrepancies
exist (figures 2(d)—(f)). In contrast, LIMs show much
smaller differences in Nino3.4 SSTAs between ENSO
events concurrent with anomalous ISM and those
with normal ISM, indicating a significant underes-
timation of the ISM’s effects on ENSO in these models
(figures 2(g) and (h)). Moreover, the Nino3.4 SSTAs
during anomalous ISM years without ENSO are also
notably weaker in LIMs (figure 2(i)). In summary,
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Figure 1. (a) Lead-Lag correlations between ISMR and monthly mean Nino-3.4 SST index. The black line denotes observation,
and orange and blue lines represent the MME mean of the models with higher and lower negative correlation coefficients between
JJAS ISMR and the Nino-3.4 index in subsequent October—December (OND), referred to as high- and low-impact models (HIMs
and LIMs), respectively. Orange and blue shadings indicate the corresponding standard deviations. Green shading highlights the
monsoon season. (b) Correlation coefficients between JJAS ISMR and the subsequent OND Nifno-3.4 index in observation and 52
CMIP6 models. The black bar indicates observation and the red bar denotes the MME mean of 52 CMIP6 models. Orange (blue)
bars highlight the HIMs (LIMs), and the orange (blue) text shows the mean correlations in HIMs (LIMs).

these composite results are consistent with the find-
ings in figure 1 and confirm the substantial differ-
ences between HIMs and LIMs in simulating the
impacts of ISM on ENSO.

3.2. Causes of model diversity in ISM’s influence on
ENSO

Figure 3 shows the differences in composite anom-
alies of precipitation, 850-hPa winds and SST between
the EN-Dry and EN-Nor years in HIMs and LIMs.
One important feature is that differences in both pre-
cipitation and circulation between HIMs and LIMs
are large during and after the monsoon season but
relatively weak before that (figures 3(a)-(c)). For

HIMs, a substantial reduction in summer rainfall cov-
ers the Indian region in the EN-Dry years compared
to EN-Nor years, accompanied by significant pre-
cipitation and cyclonic circulation differences over
the WNP (figure 3(d)). Notably, prominent west-
erly wind differences prevail over the western Pacific.
As demonstrated by Lin et al (2023), a weak ISM
can cause increased precipitation and associated cyc-
lonic circulation over the WNP, and conversely for
a strong ISM. Specifically, a weak ISM can stim-
ulate the atmospheric cold Kelvin waves propagat-
ing eastward, resulting in cyclonic wind shear in
the lower troposphere of the WNP. The anomalous
boundary layer convergence induced by anomalous
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Figure 2. Time series of composite Nino-3.4 SSTAs (units: °C) for (a) El Nifio, (b) La Nina, and (c) Non-ENSO years with a weak
(dry; red line), strong (wet; blue line), or normal ISM (black line) co-occurring during the developing summer. Both (d)—(f) and
(g)—(i) are the same as (a)—(c), but for the MME mean of HIMs and LIMs, respectively. Gray dashed lines represent the 0.43
standard deviations of the JJAS-averaged Nino-3.4 index. In (a) and (b), thick curves indicate that the differences in SSTA
between ENSO years concurrent with anomalous ISM and those with normal ISM are significant at the 95% confidence level

based on the bootstrapping method of Lin et al (2023). In (d), (e),

(g) and (h), they represent that at least two-thirds model agree

on the sign of the MME mean of differences in the SSTA. For (c), (f) and (i), thick curves denote the anomalies at above 95%
confidence level and at least two-thirds model agreement on the sign of the MME mean of SSTAs, respectively. Purple and green
shadings highlight the monsoon season and the following October—December, respectively.

wind shear increases the WNP precipitation, which
in turn induces the anomalous cyclonic circulation
as an atmospheric Rossby wave response. The west-
erly wind anomalies on the southern flank of the cir-
culation can perturb the SSTs in the central-eastern
Pacific by inducing oceanic downwelling Kelvin waves
and zonal advection of warm water (figure 3(m)).
Due to the existence of strong air-sea coupling in the
equatorial Pacific during boreal summer and autumn
(Tziperman et al 1997, Galanti et al 2002), the pos-
itive SST differences are further intensified through
exciting the Bjerknes feedback thereafter (Bjerknes
1969) (figure 3(p)). However, the ISMR anomalies
are significantly weaker in LIMs compared with HIMs
(figures 3(d)—(f)). Accordingly, the ISM-related pre-
cipitation and circulation anomalies over WNP are
much weaker in LIMs, corresponding to smaller
westerly wind anomalies in the western Pacific. The
SST differences in the central-eastern Pacific dur-
ing the subsequent winter, therefore, show smaller
values in LIMs in comparison with those in HIMs
(figures 3(p)—(r)).

For the EN-Wet years, the precipitation and cir-
culation anomalies show insignificant differences in
comparison with EN-Nor years in both HIMs and
LIMs before the summer monsoon (figures 4(a) and

5

(b)). In the monsoon season, HIMs simulate posit-
ive precipitation anomalies over the Indian region,
while significantly negative values are observed over
the WNP (figure 4(d)). A prominent anticyclonic cir-
culation dominates the WNP, with anomalous east-
erly winds prevailing on its southern flank. The neg-
ative SSTAs thus occur in the central-eastern Pacific
after the monsoon season (figure 4(p)). Similar to
EN-Dry years, the ISMR anomalies are weaker in EN-
Wet years in LIMs, accompanied by weaker WNP
precipitation and circulation anomalies induced by
ISM (figures 4(e) and (f)). Consequently, the differ-
ences in El Nino SSTAs are insignificant and smaller
in LIMs than those in HIMs in the following months
(figures 4(q) and (r)). LIMs also display weaker [ISMR
anomalies in both LN-Wet and LN-Dry years, corres-
ponding to the weaker precipitation and circulation
anomalies over the WNP during the monsoon season
(figures S2(d)—(f) and S3(d)—(f)). Therefore, anom-
alous ISMs also exert weaker impacts on La Nina
events in LIMs than HIMs (figures S2(r) and S3(r)).
For both NE-Wet and NE-Dry years, the summertime
dipole-like rainfall anomalies between the Indian and
WNP regions are also pronounced in HIMs but rel-
atively weak in LIMs (figures S4(d)—(f) and S5(d)-
(f)). Consistently, there are noticeable SSTAs in the
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Figure 3. Differences in composite precipitation (shading; units: mm d~!) and 850-hPa wind anomalies (vector; units: m s~ ')
between EN-Dry and EN-Nor years during March—-May (MAM) for the MME mean of (a) HIMs, (b) LIMs. (c) Same as (a) and
(b), but for the difference between HIMs and LIMs (HIMs minus LIMs). Both (d)—(f) and (g)—(i) are the same as (a)—(c), but for
June-September (JJAS) and October—December (OND), respectively. (j)—(r) Same as (a)—(i), but for the differences in composite

SSTAs (shading; units: °C). Stippling denotes at least two-thirds model agreement on the sign of MME mean. In the left two
panels, only the wind vectors with at least two-thirds model agreement on the sign of MME mean are plotted. Red, blue, and
green boxes indicate the Indian, WNP, and Nino-3.4 regions, respectively.

central-eastern Pacific after the monsoon season in
HIMs, whereas LIMs show comparatively weaker
SSTAs (figures S4(p)—(r) and S5(p)—(r)). Indeed, the
ISMR anomalies exhibit significantly negative inter-
model correlations with those in ISM-induced Nino-
3.4 SSTAs during OND in both El Nino and La Nina
events (figures S6(a)—(d)). Models with larger negat-
ive ISMR anomalies would represent a stronger pos-
itive (negative) impact on the El Nino (La Nina)
SSTAs, and conversely for a strong ISM. Therefore,
the diverse impacts of ISM on ENSO are highly asso-
ciated with the diverse intensity of ISMR anomalies
among the CMIP6 models. Furthermore, there also
exist negative inter-model correlations between the
ISMR anomalies and OND Nino 3.4 SSTAs in both
NE-Dry and NE-Wet years (figures S6(e) and (f)),
indicating that the diversity in ISM’s effects on Pacific
SSTs under ENSO-neutral conditions is also related
to the inter-model spread in ISMR anomalies without
ENSO.

The inter-model correlation between the inter-
annual variability of ISMR and lag correlation of
ISMR and OND Nino-3.4 SST index shows a signi-
ficant negative value (—0.70; above 95% confidence
level), reconfirming that the diverse ISM’s impacts on
ENSO are closely linked to the inter-model spread
in ISMR variability among the models (figure 5(a)).
The ISMR variability in HIMs is about 32% lar-
ger than that in LIMs. Given that the intensity of
ISM’s impact on ENSO also relies on the strength
of air-sea coupling in the Pacific Ocean, we cal-
culate the Bjerknes feedback intensity (BFI) in the
CMIP6 models to examine whether the inter-model
spread in the strength of Pacific air-sea coupling
could potentially influence the diversity of the ISM’s
impacts on ENSO. Detailed descriptions of the BFI
can be seen in Text S1 in supplementary material.
The BFI is negatively correlated with the lag correl-
ation between ISMR variability and OND Nino-3.4
SST index among the CMIP6 models, suggesting that
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120W

models with a stronger BFI tend to simulate a lar-
ger impact of ISM on ENSO (figure 5(b)). However,
the inter-model correlation coefficient is statistically
insignificant and small, and the difference in BFI
between HIMs and LIMs is also negligible. Therefore,
the main cause of the diverse influences of ISM on
ENSO is the diversity in ISMR variability, rather than
that in the air-sea coupling strength in the tropical
Pacific.

4. Discussion

We find that the difference in ISM’s impacts on ENSO
is primarily attributed to the difference in ISMR vari-
ability between HIMs and LIMs. The potential pro-
cesses for the differences in ISMR variability are dis-
cussed below. In EN-Dry and LN-Wet years, the
monsoon anomalies are related to the concurrent
ENSO, and the ENSO-monsoon interaction is strong
(Webster and Yang 1992, Kirtman and Shukla 2000,
Lin et al 2023). HIMs exhibit larger ISMR anom-
alies during EN-Dry and LN-Wet years compared to
LIMs, possibly due to a stronger ENSO amplitude
during the monsoon season in HIMs. In the sum-
mer of EN-Dry years, the El Nino SSTAs are warmer

in HIMs than in LIMs (figures 3(m)—(0)), which
can cause a substantial monsoon precipitation defi-
cit by inducing a strong anomalous Walker circula-
tion, consistent with the higher simultaneous correl-
ations between ENSO and ISM (figure 1(a)). Recent
studies have also shown that the CMIP6 models with
larger ENSO amplitude tend to simulate a stronger
simultaneous ENSO-ISM relationship (Meehl et al
2023, Yu et al 2023). The larger ISMR anomalies, in
turn, exert stronger feedback on ENSO. The warmer
summertime SSTAs and resultant stronger ENSO-
monsoon interaction in HIMs may be attributed to
the pronounced westerly wind anomalies over the
western Pacific in the preceding spring (figure 3(a)),
which are associated with the springtime SSTAs in
the subtropical central Pacific (figure 3(j)). The wind
anomalies may trigger oceanic downwelling Kelvin
waves that transport subsurface warm water east-
ward, thereby facilitating the El Nino development
from the spring to summer. By contrast, in LIMs the
subtropical warm SSTAs are weak (figure 3(k)), and
the wind anomalies are not present in the western
Pacific but are confined to the central-eastern Pacific
(figure 3(b)). Similar results are observed in LN-Wet
years (figures S2(a)—(c) and (j)—(1)). Indeed, there are
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Figure 5. (a) Scatterplots of ISMR variability and lag correlation between ISMR and OND Nifo-3.4 SST index among 52 CMIP6
models. (b) Same as (a), but for Bjerknes feedback intensity and lag correlation. Black lines denote the linear fit, and the
correlation coefficient is shown in the top-right corner. The significant correlation coefficients at the 95% level based on the

two-sided Student’s ¢-test are indicated by two asterisks.

significant differences in the amplitude of SSTAs in
the central-eastern Pacific between HIMs and LIMs
(figure S7(a)). Moreover, the inter-model correlation
between ISMR variability and ENSO amplitude dur-
ing JJAS is 0.56, explaining about 31% inter-model
variation of interannual variability of ISMR (figure
S7(b)).

During the EN-Wet (LN-Dry) years, the con-
current El Nino (La Nina) SSTAs are less likely
to cause the strong (weak) ISM. Apart from the
ENSO effects, the interannual variability of ISM is
also influenced by other boundary forcings, includ-
ing SSTs in the Indian Ocean (Ashok et al 2001,
Crétat et al 2017) and Atlantic Ocean (Kucharski
et al 2008, Sabeerali et al 2019), as well as sur-
face air temperature over the Eurasian continent
related to land surface conditions (e.g. snow cover
and soil moisture) (Parthasarathy and Yang 1995,
Yang and Lau 1998, Robock et al 2003, Halder and
Dirmeyer 2017). Atmospheric internal dynamics also
account for a large portion of the ISM variability
(Goswami 1998, Hsu and Yang 2016). However, insig-
nificant differences in summertime SSTAs between
HIMs and LIMs are observed in the tropical Indian
Ocean (figures 4(0) and S3(0)) and Atlantic Ocean
(figure not shown) in EN-Wet and LN-Dry years, as
well as in both NE-Wet (figure S4(o0)) and NE-Dry
years (figure S5(0)). Consistently, the differences in

SSTA amplitude between HIMs and LIMs are negli-
gible in the two oceans (figure S7(a)). Additionally,
there are no significant surface air temperature anom-
alies over the Eurasian continent (figure S8) that
could explain the differences in monsoon anom-
alies between the two groups of models. The differ-
ence in ENSO-unrelated ISMR anomalies between
the two groups of models might be associated
with atmospheric internal dynamics or other poten-
tial factors, requiring further investigation in future
studies.

5. Conclusions

In this study, we examine the performances of 52
CMIP6 models in representing the influences of
ISM on the following ENSO evolution. The res-
ults reveal a significant inter-model diversity in the
impacts of ISM on ENSO. Although some models
can simulate the impacts comparable to observa-
tions, others represent notably weaker influences. The
primary factors contributing to the diverse impacts
are investigated and summarized in figure 6. The
diversity in ISM’s effects on ENSO is highly associ-
ated with the simulated amplitude of ISMR inter-
annual variability. Models with a larger ISMR vari-
ability simulate a higher ISM’s impacts on ENSO,
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while those with a smaller ISMR variability sim-
ulate weaker influences of ISM on ENSO. The
strongly increased ISMR can cause more pronounced
negative precipitation anomaly and anticyclonic cir-
culation over the WNP. The larger easterly wind
anomalies over the western Pacific induced by the
ISM can lead to cold SSTAs in the central-eastern
Pacific in the following seasons by exciting stronger
oceanic upwelling Kelvin waves and zonal advec-
tion of cold water. The inter-model diversity in the
ENSO-related monsoon amplitude among the mod-
els may be linked to the ENSO amplitude during
the boreal summer. Models with a larger ENSO
amplitude would simulate a larger ISMR anomaly
and stronger ENSO-ISM interaction, and vice versa.
The differences in the ENSO-unrelated monsoon
variability between strong and weak-impact mod-
els remain unclear and further studies are needed.
Our findings could contribute to enhancing the skills
of climate models in capturing the ENSO-monsoon
interactions.

Data availability statement

The HadISST1 dataset is downloaded from the UK
Met Office (www.metoffice.gov.uk/hadobs/hadisst/).

The all-India monthly rainfall dataset is provided
by the Indian Institute of Tropical Meteorology at
https://tropmet.res.in/data/data-archival/rain/iitm-
regionrf.txt. The monthly outputs of CMIP6 mod-
els used in this study are available at the Earth
System Grid Federation (https://esgf-index]1.ceda.
ac.uk/search/cmip6-ceda/). The monthly outputs of
CESM2-LE are available at www.earthsystemgrid.
org/dataset/ucar.cgd.cesm2le.output.html.

All data that support the findings of this study are
included within the article (and any supplementary
files).
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