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• Pilot study testing transferability of
Bayesian Network for P losses

• Sensitivity Analysis of a hybrid network
identified redundant variables.

• Expert elicitation supports model
parameterization of uncertain process.

• Models should prioritize P transfer
pathways over in-stream cycling.
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A B S T R A C T

Biogeochemical catchment models are often developed for a single catchment and, as a result, often generalize
poorly beyond this. Evaluating their transferability is an important step in improving their predictive power and
application range. We assess the transferability of a recently developed Bayesian Belief Network (BBN) that
simulated monthly stream phosphorus (P) concentrations in a poorly-drained grassland catchment through
application to three further catchments with different hydrological regimes and agricultural land uses. In all
catchments, flow and turbidity were measured sub-hourly from 2009 to 2016 and supplemented with 400–500
soil P test measurements. In addition to a previously parameterized BBN, five further model structures were
implemented to incorporate in a stepwise way: in-stream P removal using expert elicitation, additional
groundwater P stores and delivery, and the presence or absence of septic tank treatment, and, in one case,
Sewage Treatment Works. Model performance was tested through comparison of predicted and observed total
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Phosphorus
Structural uncertainty

reactive P (TRP) concentrations and percentage bias (PBIAS). The original BBN accurately simulated the absolute
values of observed flow and TRP concentrations in the poorly and moderately drained catchments (albeit with
poor apparent percentage bias scores; 76 % ≤ PBIAS≤94 %) irrespective of the dominant land use, but performed
less well in the groundwater-dominated catchments. However, including groundwater total dissolved P (TDP)
and Sewage Treatment Works (STWs) inputs, and in-stream P uptake improved model performance (− 5 % ≤

PBIAS≤18 %). A sensitivity analysis identified redundant variables further helping to streamline the model
applications. An enhanced BBN model capable for wider application and generalisation resulted.

1. Introduction

Generalised scientific theories are the most powerful and ideally,
water quality models should be applicable to all catchments. A trans-
ferable model will likely have greater predictive power and utility,
greater confidence that the model performs well for the right reasons,
and an ability to help inform data collection for the model’s application
(Hatum et al., 2022; Mieleitner and Reichert, 2006; Schuwirth et al.,
2019).

Testing model transferability is therefore important. Hatum et al.
(2022) demonstrated that transferring a model across different seagrass
ecosystems, using expert elicitation to support model formulation,
enabled forecasting and decision-making. To date, only one Bayesian
Belief Network (BBN) aimed at modelling water quality has been tested
across multiple catchments. Glendell et al. (2022), tested a hybrid BBN
(including both discrete and continuous variables) to predict stream P
concentrations and applied the model to seven Scottish catchments. The
outcomes demonstrated wider ranges in the BBN predictions than in the
observations and, given that inadequate water quality data constrains
the calibration and validation of P models (Drohan et al., 2019), the use
of high-frequency data was suggested as a means to reduce model pre-
dictive uncertainty (Glendell et al., 2022).

Phosphorus retention in river catchments results from a combination
of biological, physical, and chemical processes (Withers and Jarvie,
2008) and there is uncertainty around the retention rate in different
catchments due to variations in P uptake and release by plants,
adsorption to and desorption from sediment, co-precipitation, dissolu-
tion, and advection. Both biotic and abiotic in-stream P uptake can be
significant, especially during low-flows and effluent exposure (Stutter
et al., 2010). Its inclusion could improve process representation, and
therefore transferability, in process-based semi-distributed P models
(Jackson-Blake et al., 2015) and stochastic P models (Negri et al., 2024).

Mechanistic P models typically include processes such as calcite-P
co-precipitation, sorption and desorption to and from suspended sedi-
ments, P exchange between the pore water and the water column, P
entering the reach from upstream or Sewage Treatment Works (STWs),
and epiphyte uptake (for example, the INCA-P model, (Jackson-Blake
et al., 2016; Wade et al., 2002)). Similarly, stochastic P models include
estimating numerous P sources, their transport through the land-water
continuum, and delivery to surface waters (for example, Glendell
et al., 2022; Igras and Creed, 2020; Neumann et al., 2023). However,
some BBNs modelling P concentrations in the stream lack representation
of processes such as stream P retention, as well as groundwater P stores
(Glendell et al., 2022; Negri et al., 2024).

The observational evidence to quantify in-stream retention processes
is difficult to find in a single catchment, stream, or study area, therefore
gathering data and comparing across diverse catchments with different
P pressures strengthens findings. Expert elicitation (acquiring experts’
opinions using formal protocols, e.g., Krueger et al. (2012) is a route to
help model parameterization without having to set up costly site-specific
experiments and is often used to inform onmodel parameter uncertainty
(O’Hagan, 2019).

The overall study aim was to test the transferability of a recently
developed (BBN Negri et al., 2024) in a grassland catchment in Ireland,
and make enhancements as necessary. The aim was addressed through
three research objectives: application of the BBN to three additional

catchments in Ireland with performance assessment using daily total
reactive P (TRP) observations; addition of in-stream P removal processes
using expert elicitation; and the assessment of whether step-wise addi-
tion of in-stream P uptake, groundwater dissolved P concentration, and
the presence or absence of septic tank treatment or Sewage Treatment
Works improved model performance and transferability (in terms of
reduced percentage bias across all four catchments).

2. Study areas

This study focuses on four (< 1200 ha) agricultural catchments in the
east and south of Ireland: Timoleague, Ballycanew, Castledockrell, and
Dunleer, that are monitored by the Agricultural catchments Programme
(ACP) from Teagasc; a programme created to monitor the effectiveness
of Ireland’s National Action Programme under the European Union Ni-
trates Directive (Wall et al., 2011). These catchments have different
agricultural land uses and contrasting hydrology. The catchments were
chosen because agriculture is the only significant anthropogenic pres-
sure (housing density is low and domestic waste is treated with septic
tanks) (Jordan et al., 2012). The location of the four catchments is
shown in Fig. 1 and further information about the catchments is given in
Negri and Mellander (2024).

2.1. Timoleague

The Timoleague catchment (Fig. 1, bottom left) in County Cork has
an area of 758 ha, of which 85–89 % is grassland and 4–5 % tillage, the
remainder being non-agricultural land use. Stocking rates are ~2 live-
stock units (LU) ha− 1 (Sherriff et al., 2015) and many of the dairy farms
are managing soils under derogation (i.e. deviation from the EU Nitrates
Directive, with organic N loading between 170 and 250 kg ha− 1 year− 1),
(Jordan et al., 2012), which indicates the catchment has high P sources
(Mellander et al., 2022). In general, the soils are well drained except for
small areas neighboring the stream at the valley bottom. The catchment
is mostly groundwater-fed with a large proportion (60 %) of TRP
delivered via belowground pathways in winter (Mellander et al., 2016).

2.2. Ballycanew

The Ballycanew catchment (Fig. 1, top right) is located in County
Wexford. The catchment area is 1191 ha, with 78 % grassland 14–20 %
tillage. None of the farms in this catchment are tillage only, all of them
have a combination of tillage plus grassland. Two-thirds of the catch-
ments’ soils (the lowlands) have poor drainage characteristics due to
heavy clay deposits. However, farmers have improved the land for grass
production with tile and mole drains. Due to the low soil permeability,
the catchment has a flashy hydrology and a high risk of P loss to water
through quick and erosive surface pathways during heavy rain events
(Mellander et al., 2015).

2.3. Castledockrell

The Castledockrell catchment (Fig. 1, bottom right) is also located in
CountyWexford. The total area is 1117 ha, typically with 39% grassland
and 54 % tillage. Soils are generally well drained with free draining
brown earths underlain by slate and shale, ideal for spring barley, which

C. Negri et al.
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is the main crop. However, some of the lower lying areas near the stream
(east- southeast of the catchment) have gley soils which are artificially
drained. The catchment is mostly groundwater-fed with a large pro-
portion (58 %) of TRP delivered via belowground pathways in winter
(Mellander et al., 2016). This catchment represents an exception in that
there is a single Sewage Treatment Works (STWs) managing waste for
about 75 people, while the remaining population (approx. 200) uses
septic tanks (Jordan et al., 2012).

2.4. Dunleer

The Dunleer catchment (Fig. 1, top left) is located in County Louth.
The catchment has a total area of 948 ha with 49 % grassland and 33 %
tillage. In this catchment soil drainage classes are a mixture of well,
moderately, imperfectly and poorly drained soils (Thomas et al., 2016a),
the latter being up to 70 % of the total area (Teagasc - Agriculture and
Food Development Authority, 2018).

3. Methods

3.1. BBN parameterization

We developed a catchment-specific Bayesian Belief Network that
simulates flow-weighted P concentrations and parameterized the model
using high-frequency data from the Ballycanew catchment (Negri et al.,
2024). The BBN was parameterized with high-frequency discharge and
turbidity data (collected every 10 min and summarized at daily time-
step), as well as 515 (Timoleague), 406 (Ballycanew), 408 (Cas-
tledockrell), and 392 (Dunleer) samples of soil Morgan P (McDonald
et al., 2019; Thomas et al., 2016b), and calibrated against high- fre-
quency TRP concentrations (Mellander et al., 2012). In this study, we
test the BBN transferability by parametrizing the model for the first time
for three further (8–12 km2) Irish ACP catchments. The initial BBN
parametrization for each catchment was identical to that presented in
Negri et al. (2024) and referred to here as “Structure 1”. Structures are
the graphical definitions of BBNs, also referred to as Directed Acyclic
Graphs (DAGs) (Henderson and Pollino, 2010) encoding the causal (in)
dependencies between variables (Aguilera et al., 2011). In this case, the
structure represents the BBN’s P inputs, processes, pathways, and

outputs, describing their relationships. When discussing uncertainty in
environmental models, the word structure indicates the conceptual
model (Refsgaard et al., 2006). Where the information was available the
BBN variables were parameterized with catchment-specific datasets
(these are specified in the Supplementary Information). However,
catchment-specific parametrization was not possible for the following
nodes (i.e., BBN variables): “Direct Discharge”, “Septic Tank Treat-
ment”, “Sediment Water Soluble P", “Predicted Dissolved P concentra-
tion” (i.e., P that is dissolved from the soil matrix into the stream), and
the total number of septic tanks in the catchment needed to calculate the
total septic tank load. A detailed description of these nodes is given in
Table 1. Additionally, data was not available for the “Septic Tank
Treatment” node for Timoleague and Dunleer, and therefore an addi-
tional BBN structure was tested where the treatment was not imple-
mented, and the distribution of P concentration across the catchment’s
septic tanks was set up as equal to the “Unknown treatment” option
(Structure 3). For the Timoleague and Castledockrell catchments,
further model structure implementations (Structure 4, 5, 6) saw the
addition of the node “Groundwater Dissolved P Concentration mg l-1” to
describe the groundwater total dissolved phosphorus (TDP) concentra-
tion contributing to the total in-stream TRP concentration at catchment
outlet (the details of Structure 2 will be introduced later on in this sec-
tion). This was done with the same bootstrapping methodology that was
applied to observed in-stream TRP concentrations in Negri et al. (2024),
here applied to monthly samples of groundwater total dissolved P (TDP,
2009–2016) monitored in multi-level wells described in Mellander et al.
(2016). An assumption was made that the wells near the stream (<40 m
from the stream) contribute the most to stream TRP (Mellander et al.,
2016), hence we only used data from these wells for the parameteriza-
tion. For all catchments, a model structure including the in-stream P
uptake derived in the expert elicitation workshop was parameterized,
and labelled Structure 2 for the Ballycanew and Dunleer catchments,
Structure 5 for the Timoleague catchment, and Structure 5 and 6 for the
Castledockrell catchment. For the Castledockrell catchment the Sewage
Treatment Works loads were included in the finalized BBN labelled
Structure 6. This was done by incorporating the P concentration (mg l− 1)
after tertiary treatment (Truncated Normal (μ = 1.44; ơ = 1.61, (Glen-
dell et al., 2022), in this case truncated at 0), and the design size (130
people) found through the Irish Environmental Protection Agency (EPA)

Fig. 1. Location of the four study areas within the republic of Ireland, and overview of each study area. Top left: Dunleer, top right Ballycanew, bottom left:
Timoleague, bottom right: Castledockrell. Location of the high-resolution monitoring kiosk and hydrometric station at the catchment outlet is shown as a dot.
Magenta lines represent streams and yellow lines represent artificial drainage (this is not available for the Dunleer catchment).

C. Negri et al.
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data. This is consistent with the fact that STWs with tertiary treatment
are required to keep the orthophosphate concentration below 2 mg l− 1

for their effluent discharge (Fitzsimons et al., 2016). The model struc-
ture and the datasets used for the finalized parametrization are specified
for each catchment in the Supplementary Information, and a summary
of each Structure’s specifications is given in Table 3.

3.2. In-stream P uptake

P uptake is complex with multiple components based on physical,
chemical, and biological processes (Withers and Jarvie, 2008). Whilst
uptake rates might be available for specific components (e.g., algal up-
take, large plant uptake, sediment uptake), this study focusses on
providing an overall effect from the combined processes in each catch-
ment for each season via expert elicitation because the necessary data to
quantify uptake rates was not available for the catchments. Here P up-
take was framed as the percentage (%) of in-stream P that is removed by
both biotic and abiotic uptake. A simplified version of the methodology
presented in Mzyece et al. (2024) for expert elicitation was used to
determine P uptake for the four catchments for four seasons. We selected
6 key papers describing UK-led experiments on this topic (Bowes et al.,
2016; Jarvie et al., 2002; Stutter et al., 2021, 2010; Wade et al., 2001;
Withers and Jarvie, 2008), and invited four authors of these papers to
contribute to our elicitation exercise as experts who have published on
the topic of P uptake in rivers. Three accepted, one declined. The elici-
tation process then comprised of three steps: 1) The Sheffield Elicitation
Framework (SHELF) e-learning course for experts (Gosling, 2018),
which the experts took on their own, 2) a preliminary exercise where the
experts were asked to complete an elicitation table per catchment,
providing their personal judgement on the two tertiles, T1 and T2, (33th
and 66th quantiles) and the median M (50th quantile) percentage in-
stream P uptake for each season. Initially, the upper limit of the distri-
bution was fixed at 100 % removal and the lower limit at 0 % removal.
To aid the experts with their judgements, supporting documentation
containing both a summary of the literature on in-stream P removal and
information on the four catchments, was provided to the experts ahead

of time (published in an evidence dossier in Negri and Mellander, 2024).
For the scope of this elicitation, we aimed to quantify global uptake (see,
for example, the quantities in bold under the column ‘P retained’ in
Table 1 Negri and Mellander (2024)) and asked the experts to provide
judgement on what was the likely P uptake based on their experience of
other river systems. 3) Preliminary prior Normal distributions were
fitted with the SHELF R package version 1.8.0 (Oakley, 2020) to the
elicited distributions at Step 2 and presented to the experts during the
workshop. In the workshop, the experts were asked to discuss the pre-
liminary distributions and to agree on a single consensus distribution per
season per catchment. Based on what emerged during the discussion,
and to facilitate consensus, distributions were re-fitted and plotted in
real time for the experts to examine. The final consensus distributions
were then used to parameterize the “In-stream P uptake” node in the
BBNs, and the updated BBN was subsequently tested against in-stream
TRP observations.

3.3. Sensitivity analysis

Sensitivity analysis was done to understand the effect of using non-
catchment specific data on model transferability for the variables lis-
ted in Table 1. For direct discharge presence (0–100 %) or absence
(0–100 %), the relative fraction of direct discharge presence/absence
was varied in 5 % steps, with the probabilities for the two categories
summing to 100%. To assess the impact of number of septic tanks within
each catchment boundary on in-stream P concentration, increases of two
septic tanks per step were applied, ranging from 30 to 150 septic tanks.
This range assumed 2.4 people per household (and therefore per tank)
for these scarcely populated catchments. To understand the effects of
varying the Water Soluble P (WSP, described in Table 1) we applied a
stepwise variation (0.1 increments) on the parameters of the Lognormal
distribution used in the Ballycanew catchment: the mean (− 2 ≤ μ ≤ 2)
and, separately, the same variation on the standard deviation (0 ≤ ơ ≤

2). The Gamma distribution has two parameters (shape, k, and scale, ꝋ)
that together control the shape of the distribution. These parameters do
not correspond directly to physical values (unlike, for example, the

Table 1
Variables for which catchment-specific data was not unavailable in the Timoleague, Castledockrell, and Dunleer catchments. These parameters were chosen for a
preliminary sensitivity analysis to understand their effects on the targeted P concentration and inform model transferability.

Node Septic tank treatment Direct discharge Number of
septic tanks

Sediment Water Soluble P (WSP)
[mg kg− 1]

Predicted dissolved P concentration
[mg l− 1]

Description Probability of having “unknown”,
“primary” or “secondary” treatment of
the effluent in a septic tank.

Probability of ST
discharging
directly into the
stream.

Septic tanks
within
catchment
boundary.

Describes the phosphorus released
from the sediments into the stream.
Defined as the best fitting
distribution, fitted with the SHELF R
package version 1.8.0 (Oakley,
2020a) to observed Water
Extractable P in the catchment
sediments (Shore et al., 2016) when
data was available.

Describes the Water Extractable
Phosphorus (WEP) dissolved from the
soil matrix into the stream. Defined
with the linear model: Predicted
Dissolved P = β(WEP)-α, where β
=0.08, α =0.158, derived from (
Thomas et al., 2016b), whereby WEP
stands for Water Extractable P. An
assumption is made that when the
linear model yields a negative value,
that is resampled as a zero. This
equation is not catchment specific.

Timoleague Unavailable. As Ballycanew. As Ballycanew. As Ballycanew. Same everywhere.
Ballycanew Probabilities based on a survey

conducted within WaterProtect, a
research project supported by the
European Union research and
innovation funding programme
Horizon 2020 [grant no. 727450].
Probabilities are reported in Negri
et al. (2024)

Assumed. Available from
data (88 tanks).

Defined as a Lognormal distribution
(μ = − 0.9, ơ = 1), fitted with the
SHELF R package (version 1.8.0,
Oakley, 2020) to observed Water
Extractable P in the catchment
sediments (Shore et al., 2016).

Same everywhere.

Castledockrell Probabilities based on a survey
conducted within WaterProtect, a
research project supported by the
European Union research and
innovation funding programme
Horizon 2020 [grant no. 727450].

As Ballycanew. As Ballycanew. Defined as a Gamma distribution (k
= 1.03, ꝋ = 0.44).fitted with the
SHELF R package (version 1.8.0,
Oakley, 2020) to observed Water
Extractable P in the catchment
sediments (Shore et al., 2016).

Same everywhere.

Dunleer Unavailable. As Ballycanew. As Ballycanew. As Ballycanew. Same everywhere.

C. Negri et al.
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mean value of a Normal or Poisson distribution) and are always >0.
Here we stepped through these parameters in increments of 0.1 over the
range 0.1 ≤ k ≤ 2 and 0.005 increments over the range 0.05 ≤ ꝋ ≤ 1 for
the WSP node parameterized for Castledockrell. For the “Predicted
Dissolved P Concentration, 0.02 stepwise increases were applied to the β
parameter (− 1 ≤ β ≤ 1), and 0.005 stepwise increases were applied to
the α (0 ≤ α ≤ 0.2). The sensitivity analysis was conducted indepen-
dently for each parameter in each catchment, (no nodes were varied
simultaneously) and carried out only for the finalized and best per-
forming model structure in each catchment (specifically, Structure 5 for
Timoleague, Structure 6 for Castledockrell, and Structure 2 for Dunleer).
The analysis was performed using rSMILE version 2.0.10 (BayesFusion,
2019a), an API engine available in R which can perform the same
Bayesian inference operations performed by GeNIe Modeler (BayesFu-
sion, 2019b), the software used to design the BBNs. In each catchment,
the parameter variations were applied to predict the TRP concentration
(in the model, the target node is called “In-stream P concentration [mg
l− 1]” and it describes the variable of interest). The effects of changing
the input parameters on the full distributions was assessed visually by
comparison against the distribution from “simulation 0″ (the initial BBN
parameterization). The effects of the presence of the nodes “Septic Tank
Treatment”, “Groundwater Dissolved P Concentration mg l-1”, the nodes
relative to in-stream P uptake, and those pertaining to the STWs in
Castledockrell were tested by comparing distributions derived from
different model structures to those obtained from the original BBN.

3.4. Model evaluation

The model structures were evaluated by comparing the predicted
TRP concentrations with the available observed TRP concentrations
(available as daily mean, mg l− 1) (2009-10-01 to 2016-12-31) by:
calculating percentage bias (PBIAS) in the R package hydroGOF version
0.4–0 (Zambrano-Bigiarini, 2020), plotting and visually comparing the
full posterior distributions, and comparing median concentrations.
PBIAS calculation and visual assessment are recommended when
modelling P in catchments with a prevalence of diffuse sources, as in
these instances models struggle to produce good Nash-Sutcliffe statistics
(Jackson-Blake et al., 2015). In addition, for the model version con-
taining the “In-stream P removal”, the Normal distribution allows for
negative concentrations due to the potential for release of in-stream P
(considered to be plausible by the expert elicitation). For the purposes of
model evaluation these were resampled into zeros prior to analysis.

4. Results and discussion

4.1. BBN parameterization

The results of the preliminary BBN parametrization are shown in
Fig. 3, where the density plots from all model structures are shown
against the distribution fitted to the observations. When comparing the
TRP distributions and boxplots of Structure 1 (in green) against the
observed (light brown), the figure shows that the model performs well
for Ballycanew and Dunleer, and less well for the Timoleague and Cas-
tledockrell catchments. For Timoleague and Castledockrell, the initial
parameterization (Structure 1) overpredicts the stream P concentration
by 65–82 % (data not shown), which is a consequence of the parame-
terization being tailored for a surface-driven catchment instead of a
groundwater-driven one. Specific details of the each of the models’
performances are discussed in Section 4.4. The state-of-the-art high-
resolution and long-term monitoring data available in these catchments
could also facilitate other model structures besides the ones considered
in this study. For example, soil chemistry data could be leveraged to
improve process representation for the groundwater-driven catchments,
because the presence of aluminium-rich or iron-rich soils is known to
impact P solubilization and transfer to the groundwater table (Mellander
et al., 2016).

4.2. In-stream P uptake

During elicitation, consensus was reached by initially focusing on the
first catchment (Timoleague), first comparing summer and winter, then
spring and autumn. Consensus about the other three catchments was
then reached by comparison with the first. For wintertime, the experts
agreed to use − 100 % as the lower limit which represents complete
sediment P release into the water column and biotic uptake close to zero.
For wintertime in Timoleague, averaged values (tertiles and median)
and fitted a Normal distribution were used (Fig. 2). For summertime in
Timoleague, expert consensus had the probability density centred on a
43 % removal rate, and this was the same for autumn and spring. For
Ballycanew, the experts decided to reduce P removal by 30 %, due to the
high flashiness of the catchment. The experts considered the catchment
P saturation and loading to be the most influential factors in determining
in-stream uptake, catchment flashiness was considered less important.
As a result, the mean P uptake was similar across catchments (Table 2).
The consensus also reflected that, even though Castledockrell is less
flashy than Ballycanew, the two catchments have similar P uptake
because high loading in Castledockrell due to a Sewage Treatment
Works and septic tanks. An exception is made for Castledockrell in the
wintertime, with tertiles and median values similar to Timoleague, and
therefore the same parameterization (Table 2). For Dunleer, the
wintertime uptake was considered very low, then the rest of the seasons
were considered comparable to Timoleague. Overall, the experts had
greater confidence estimating P removal in the colder seasons (winter
and autumn), than in the warmer ones, where the distributions are wider
and more uncertain (Fig. 2). Furthermore, the experts suggested that
visual aids such as photos of the river corridor could assist in estimating
uptake, allowing the approximate width and depth of ditches and rivers
to be estimated, as well as the presence of submerged and emergent
vegetation and algae to be assessed. This is especially important because
increased riparian vegetation and algae can lead to decreased dissolved
P concentrations (Bowes et al., 2016; Chase et al., 2016). The distribu-
tions obtained were used in each catchment model to calculate the in-
stream P load reduction (Eq. (1)):

r = (1 − Normal (μs;ơs) )*L (1)

where r is the in-stream reduced load, L the total catchment load, and N
(μs;ơs) is a Normal distribution with a seasonal dependent mean and
standard deviation (specified in Table 2), and the loads are expressed in
T month− 1. In the BBN, the seasonal monthly distributions are child
nodes of a deterministic node termed “Season”, which indicates the
meteorological seasons.

4.3. Sensitivity analysis

The sensitivity analysis showed that the three tested BBNs are not
sensitive to changes in the variables representing septic tank “Direct
Discharge” (% of tanks that discharge the effluent directly into the
stream), and “Sediment Water Soluble P" (that is, P released into the
stream by sediments). One BBN showed sensitivity to changes in the β
parameter used for the node “Predicted Dissolved P concentration”.
Details of the sensitivity to the Predicted Dissolved P concentration”
node are shown for one catchment (Dunleer) in the Appendix. This
shows the log10(TRP) concentration boxplot for each parameter value
against the “simulation 0″ (in light green) overlayed with a sample of the
full distribution plotted as dots. The equation in the node “Predicted
Dissolved P concentration” was derived from Thomas et al. (2016b), and
is an aggregated result of catchment-specific regression models, which
were not available at the time of model parametrization. It would be
instructive to reparametrize the BBN if/when these individual models
become available, and to compare the results of a corresponding sensi-
tivity analysis on this new model structure with these results.

Sensitivity analysis is a pivotal component of model calibration and
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design, however, methodologies for conducting it for hybrid BBNs aren’t
readily accessible in the software used for BBN parameterization or in R
packages, and therefore require bespoke coding for implementation. For
example, Glendell et al. (2022), conducted a sensitivity analysis on a
discretized version of their hybrid network, which causes loss of infor-
mation (Uusitalo, 2007), and makes the BBN sensitive to the chosen
discretization. Similarly, Piffady et al. (2021) tested the sensitivity of a
discretized BBN by varying nodes deemed important across a reasonable
range. Here we provided a preliminary approach to the sensitivity

analysis of a hybrid BBN without triggering discretization.

4.4. Model evaluation

Results of the model evaluation are shown in Fig. 3, which shows
boxplots with the median, interquartile range with the whiskers
extending to the highest and lowest datapoints, and a representative
selection of datapoints, from ten-thousand simulated realizations of
each BBN structure tested. These are summarized in Table 3, where

Fig. 2. Consensus Normal distributions grouped by season. The y axis shows the probability density function, the x axis is the agreed upon plausible range for in-
stream P uptake (%). Different colours show the distributions for each catchment. For the winter season, Castledockrell and Timoleague are overlapping; for spring
and summer, Timoleague and Dunleer are overlapping; and for the autumn, Timoleague, Castledockrell, and Dunleer are overlapping.

Table 2
Characteristics of seasonal P uptake as discussed by the experts during the workshop, including re-defined lower and upper limits of uptake, and the elicited parameters
for the Normal distributions. A mean (μ) of 0.10 corresponds to 10 % mean uptake.

% P uptake Justification Normal distributions parameters fitted from consensus

Timoleague Ballycanew Castledockrell Dunleer

Lower limit
consensus

Upper limit
consensus

μ ơ μ ơ μ ơ μ ơ

Winter − 100 +100 To describe the fact that there can be release of P (− 100 %)
rather than uptake (+100 %)

0.12 0.10 0.08 0.06 0.12 0.10 0.10 0.05

Spring 0 80 Uptake can never be 100 %, but the experts agree on absent
or negligible P release

0.35 0.21 0.24 0.15 0.08 0.06 0.35 0.21

Summer 10 80 Biological uptake always present, so lower limit cannot be 0
%

0.43 0.12 0.30 0.05 0.35 0.21 0.43 0.12

Autumn 0 65 Uptake can never be 100 % and is lower than in spring, but
the experts agree on absent or negligible P release

0.25 0.07 0.18 0.04 0.25 0.07 0.25 0.07
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predicted log10 TRP concentrations are compared to the observations
(daily time-step, data from 2009 to 2016). In the surface-drained
catchments (Fig. 3, Ballycanew and Dunleer, right-hand side), the dis-
tribution of log10(TRP) concentrations predicted by the BBN models is
not sensitive to the structure of the BBN. The BBN parameterized in
Negri et al. (2024) (Structure 1) can reproduce the mean and median
observed P concentrations in the Ballycanew and Dunleer catchments.
For Ballycanew, the percentage bias is within acceptable ranges (close to
the 50 % departure from observations or less, shown in Table 3). For
Dunleer, a bias of 94 % is still considered acceptable because the mean
predicted concentration was 0.11, whilst the observed was 0.10 mg l− 1.
The addition of an in-stream P removal node improved the ability of the
model to replicate the mean and median in-stream P concentration in
these two catchments (Table 3, comparing Structure 1 and 2), by
introducing a linear scaling factor. Further, the percentage bias in
Dunleer went from 94 % to 45 %with the addition of removal, however,
because the concentrations being predicted are small, small changes in
their absolute values represent large changes in bias, therefore bias
values should be looked at critically in context with mean TRP con-
centrations, as shown in Table 3. For the two groundwater-dominated

catchments (Timoleague and Castledockrell), the introduction of
groundwater TDP concentration (Structures 4, 5, and 6) improved the
simulated TRP concentrations: in the final structure, the predicted me-
dian was the same as the observed, 0.05 (Timoleague) and 0.02 mg l− 1

(Castledockrell). This could not be achieved in the Castledockrell
catchment with a process-based model such as SimplyP (Hawtree et al.,
2023), even though the BBN and SimplyP deploy similar strategies to
represent below-ground processes. An improvement in percentage bias
(from 40 % to − 5 %) is provided by the addition of in-stream P removal
in the Timoleague catchment (also in Table 3, comparing Structure 4
and 5), however, the bias was already within the 50 % departure from
observations, which indicates that this remains a secondary process, at
least if compared to correctly representing groundwater concentrations
(Structure 4).

Knowledge of the type of septic tank treatment adopted (i.e.,
comparing Structure 1 to Structure 3), provides little to no advantage
(concentrations remain unvaried), except for better representing the
available datasets. Increasing the structural complexity of the BBN had
the most impact in the Castledockrell catchment, where the percentage
bias of posterior simulations has decreased more than twenty-fold

Fig. 3. Predicted and observed log10(TRP) concentrations for each of the four catchments. The grey density shows the distribution obtained by simulated realizations
from the BBN (all plots except the rightmost of each panel), filled points the scatter of the realizations (100 samples per catchment), coloured boxplots show the
median (central line), interquartile range (box) and highest and lowest datapoints (shown by the whiskers). Observations are shown in the rightmost plot in each
panel, where the grey density shows the distribution fitted to the full suite of observations, filled points the scatter of the realizations, the light brown boxplots show
the median (central line), interquartile range (box) and the 95 % quantile range for the distribution. Data outside the instrument’s limit of detection (0.01–5.00 mg
l− 1) were excluded from the plot, and the text shows the number of valid samples for each model (with 10,000 being the maximum number of available samples
generated by the model). This plot was produced with the ggdist R package version 3.3.0 (Kay, 2023). A complete description of the finalized model structures is
given in the Supplementary Information for the Timoleague, Dunleer, and Castledockrell catchments, a description of Structure 1 is given in Negri et al. (2024).
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(Table 3, comparing Structure 1 with Structure 6). To further demon-
strate this, monthly predicted log10(TRP) concentrations (yellow bars)
are plotted as histograms against daily observed log10(TRP) concentra-
tions (blue bars, grouped by month) across all model structures devel-
oped for the Castledockrell catchment in Fig. 4. This shows the progress
made in adapting Structure 1 in this catchment (top histograms), where
yellow and blue are not overlapping, up to the last model structure
(Structure 6, bottom panel), which shows good correspondence between
predicted and observed TRP concentrations. The addition of P removal
had the added benefit of improving seasonality in the BBN predictions,
which was not a behaviour that emerged in the first parameterization;
however, the observations still show stronger seasonality patterns than
the simulations. A summary table of these results is reported in the
Supplementary Information, where, for each catchment, monthly

predictions from the first versus the final model version are compared
against the observations. Percentage bias shows that the final and best
performing model in each catchment performs best in dry conditions
(summer months). However, in Dunleer and Ballycanew, the model
predicts the mean concentration better in winter than in summer. This is
notable, as predicting P concentrations correctly in summer may be
more relevant from the point of view of assessing ecological impacts in
running waters than predicting them during the ecologically less active
winter period. In the groundwater-dominated catchments, the final
model is better constrained than in the runoff-dominated catchments
(Ballycanew and Dunleer), as evident when comparing the predicted
upper (μ + ơ) concentrations versus the observed in Table 5 of Sup-
plementary Information. Table 4 shows both the observed and the
marginal probabilities of Environmental Quality Standard of 0.035 mg

Table 3
Overall results of the different BBN versions for the four catchments, concentrations (mg l− 1) outside the instrument limit of detection (0.01–5.00 mg l− 1) have been
excluded from the analysis. Both observed and predicted TRP concentrations were log-transformed before calculating the statistics, and then converted back to normal
values. A positive bias indicates overestimation.

1 2 3 4 5 6 Observations

Negri
et al.
(2024)

Negri et al. (2024) + in-
stream removal (no ST
treatment in Dunleer)

Negri et al.
(2024), no ST
treatment

No ST
treatment +
GW TDP

No ST treatment
+ GW TDP +

in-stream P
removal

No ST treatment
+ GW TDP +

in-stream P
removal +
STWs 130 p.e.

Timoleague mean mg
l− 1

0.14 – 0.14 0.08 0.05 – 0.05
lower limit
(μ-1ơ)

0.05 – 0.05 0.05 0.03 – 0.03

upper limit
(μ + 1ơ)

0.40 – 0.41 0.11 0.08 – 0.09

median 0.14 – 0.15 0.07 0.05 – 0.05
5th quantile 0.02 – 0.02 0.05 0.03 – 0.02
25th
quantile

0.08 – 0.07 0.06 0.04 – 0.04

75th
quantile

0.21 – 0.21 0.09 0.08 – 0.08

PBIAS % 285 – 291 40 − 5 – –
Ballycanew mean mg

l− 1
0.08 0.07 – – – – 0.06

lower limit
(μ-1ơ)

0.03 0.03 – – – – 0.03

upper limit
(μ + 1ơ)

0.21 0.17 – – – – 0.11

median 0.10 0.08 – – – – 0.06
5th quantile 0.02 0.02 – – – – 0.01
25th
quantile

0.05 0.04 – – – – 0.04

75th
quantile

0.14 0.12 – – – – 0.14

PBIAS % 80 49 – – – – –
Castledockrell mean mg

l− 1
0.11 – 0.10 0.03 0.02 0.02 0.02

lower limit
(μ-1ơ)

0.04 – 0.04 0.01 0.01 0.01 0.01

upper limit
(μ + 1ơ)

0.29 – 0.29 0.05 0.04 0.05 0.04

median 0.13 – 0.13 0.02 0.02 0.02 0.02
5th quantile 0.02 – 0.02 0.01 0.01 0.01 0.01
25th
quantile

0.07 – 0.06 0.02 0.01 0.02 0.02

75th
quantile

0.18 – 0.19 0.04 0.03 0.03 0.04

PBIAS % 445 – 453 34 12 18 –
Dunleer mean mg

l− 1
0.11 0.09 0.11 – – – 0.10

lower limit
(μ-1ơ)

0.03 0.03 0.03 – – – 0.06

upper limit
(μ + 1ơ)

0.38 0.28 0.39 – – – 0.16

median 0.12 0.09 0.12 – – – 0.09
5th quantile 0.01 0.01 0.01 – – – 0.05
25th
quantile

0.05 0.04 0.05 – – – 0.06

75th
quantile

0.27 0.20 0.28 – – – 0.14

PBIAS % 94 45 97 – – – –

Abbreviations: ST septic tanks; GW TDP groundwater total dissolved phosphorus; STWs sewage treatment works; p.e. people equivalent.
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l− 1 (EQS) exceedance in each catchment and across two model struc-
tures. The Table shows that even though the models can work for two
catchments and is improved by the inclusion of P removal, the model
predicts a lower probability of exceeding the EQS than the observational
data in the two P risky catchments (Ballycanew and Dunleer). Mean-
while, the prediction of EQS exceedance for the Timoleague catchment
is either under- or over- predicting by 8 %, depending on BBN model
structure, while at Castledockrell, the prediction of exceedance for the
final model is 10 % lower than the observed. These findings suggest that
the BBN may be best used as Decision Support Tool by calculating the
quantiles of monthly predicted concentrations as seen in Negri et al.
(2024) or the monthly mean and upper and lower limits (μ ± ơ, as
shown in the Supplementary) rather than as a discrete probability of
EQS exceedance, due to the predicted distributions being wider and
more skewed than the observations, also seen in Negri et al. (2024).

5. Conclusions

This study is the first application of a BBN aimed at predicting stream
P concentrations in four Irish agricultural catchments. We set out to test
the transferability of a hybrid BBN targeting P pollution across agri-
cultural catchments with diverse dominant hydrological processes. The
initial BBN proved to be transferrable between catchments dominated
by surface or mixed hydrological pathways, irrespective of land use, but
less so between catchments dominated by sub-surface delivery. Inclu-
sion of groundwater total dissolved P (TDP), Sewage Treatment Works
(STWs) inputs, and in-stream P uptake improved model performance in
all four catchments and made the BBN more transferable, though at the
cost of increased complexity and data requirements.

In this work, we explored two strategies to improve model structure:
bootstrapping to estimate the groundwater TDP concentration, and
expert elicitation to assess in-stream P removal. The addition of
groundwater TDP loads improved the predictions in sub-surface-driven
catchments. Expert elicitation aided the P uptake parameterization,
which lacked generalizable data, highlighting a research gap. However,
we found that in-stream P uptake remained a secondary process
compared to the representation of P transfers via both surface and
subsurface pathways when simulating daily P concentrations.

To avoid discretizing the continuous distributions that form critical
components of the BBN nodes prior to sensitivity analysis, we imple-
mented a method to evaluate the effects of parameter variation on the
full posterior distribution of the target node, by varying the parameters
of interest while holding the others fixed. This demonstrated the trans-
ferability of non-catchment specific data to further catchments and
found redundant parameters in the sediments and septic tanks compo-
nents of the model.

Testing BBN applicability also revealed constraints in this study
related to the limited presence of BBN studies conducted in catchments
comparable to those examined in this research, and the fact that few

Fig. 4. Histograms of monthly log10(TRP) concentrations (mg l− 1). Observa-
tions are shown in blue, predictions obtained from each model structure
adapted for the Castledockrell catchment are shown in yellow. The dark grey
box indicates concentration values below the limit of detection (0.01 mg l− 1).

Table 4
Marginal probability of exceeding EQS limits in the four catchments.

Probability to exceed EQS limits

2010–2020
data (
Mellander
et al., 2022)

2009–2016
data

Model in
Negri et al.
(2024)

Model with
in-stream P
removal

Hourly mean
concentration

Daily mean
concentration

Structure 1 Final
structure (a
different one
for each
catchment)

Timoleague 81 % 80 % 72 % 88 %
Ballycanew 94 % 88 % 65 % 61 %
Castledockrell 29 % 28 % 46 % 18 %
Dunleer 99 % 99 % 58 % 55 %
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modelling studies have been performed in our study catchments.
Therefore, future work should involve the use of other modelling ap-
proaches in these catchments, allowing the intercomparison of models
parameterized with high-frequency datasets. Given the scope of the
Agricultural Catchments Programme, in the future, the BBNs developed
here present an effective tool for modelling of catchment-scale effects of
water quality mitigation measures.
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Appendix A

Appendix. Results of the sensitivity analysis on the two parameters for the “Predicted Dissolved P concentration” node, β (slope, top plot) and α (intercept, bottom
plot) displayed as boxplots showing the median (central line), interquartile range (box) for the log10(TRP) concentration (mg l− 1) distribution of each simulation,
filled black points show the scatter of the realizations. Values assumed for each parameter in each simulation are shown on the x axis, the boxplots of the “simulation
0” are shown in light green. Results are shown for the model Structure 2 for the Dunleer catchment.

Appendix B. Supplementary data

The R code for the sensitivity analysis conducted in this study as well as the supplementary results are publicly available at the link https://github.
com/CamillaNegri/Transferability_Ptool under the MIT license. The figures in this study have been made by adapting the code published by Negri
et al. (2024) and available at https://github.com/CamillaNegri/Ballycanew_Ptool under the MIT license (https://github.com/git/git-scm.com
/blob/main/MIT-LICENSE.txt). Supplementary data to this article can also be found online at https://doi.org/10.1016/j.scitotenv.2024.174926.
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