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Abstract
The emergence of a climate change signal relative to background variability is a useful metric for
understanding local changes and their consequences. Studies have identified emergent signals of
climate change, particularly in temperature-based indices with weaker signals found for
precipitation metrics. In this study, we adapt climate analogue methods to examine multivariate
climate change emergence over the historical period. We use seasonal temperature and
precipitation observations and apply a sigma dissimilarity method to demonstrate that large local
climate changes may already be identified, particularly in low-latitude regions. The multivariate
methodology brings forward the time of emergence by several decades in many areas relative to
analysing temperature in isolation. We observed particularly large departures from an early-20th
century climate in years when the global warming signal is compounded by an El Niño-influence.
The latitudinal dependence in the emergent climate change signal means that lower-income
nations have experienced earlier and stronger emergent climate change signals than the wealthiest
regions. Analysis based on temperature and precipitation extreme indices finds weaker signals and
less evidence of emergence but is hampered by lack of long-running observations in equatorial
areas. The framework developed here may be extended to attribution and projections analyses.

1. Introduction

As the planet has warmed, local changes in tem-
perature and precipitation have been observed and,
in many regions, attributed to anthropogenic green-
house gas emissions (IPCC 2021). These changes
extend to temperature and precipitation extremes
(Easterling et al 2016, Paik et al 2020) and the
observed changes in climate have resulted in many
local impacts (Lee et al 2023). There are a variety of
ways that these changes in climate are estimated stat-
istically, such as trend analyses or shifts in climato-
logical conditions. There have also been attempts to
estimate climate change emergence from background

climate variability as an alternative means of meas-
uring local climate changes and their perceptibility
(Diffenbaugh and Scherer 2011, Hawkins and Sutton
2012, Mahlstein et al 2012).

Analyses of climate change emergence have been
based on various statistical techniques applied to uni-
variate distributions, including:

• Signal-to-noise ratios, often abbreviated to S/N
(changes between time periods are computed rel-
ative to local climate variability; (Mann and Lees
1996, Hawkins and Sutton 2012, Frame et al 2017,
Hawkins et al 2020)),

© 2024 The Author(s). Published by IOP Publishing Ltd
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• Kolmogorov–Smirnov tests, often abbreviated to
K-S tests (comparing distributions of a variable
between the past and present, or present and future;
(Mahlstein et al 2011, 2012, King et al 2015)),

• Probability ratios (examining changes in likeli-
hood of extreme events between time periods;
(Harrington et al 2016, King et al 2016)).

Climate change emergence statistics are of relevance
to many climate impacts, particularly ecosystems, as
an indicator of where impacts may be particularly
extreme (Deutsch et al 2008, Beaumont et al 2011).

Climate change emergence statistics allow for
changes to be examined in the context of local
climate variability which is strongly spatially het-
erogeneous and differs between variables. Thus,
the patterns of emergence are very different from
those of simple long-term trends. For example,
trends in seasonal temperatures are strongest over
Northern Hemisphere high latitude regions and typ-
ically greater over land than ocean (figure S1).
However, interannual variability is also generally
greater over land and high-latitude regions of the
Northern Hemisphere in particular (Hawkins and
Sutton 2012, Hawkins et al 2020). As a result, the
emergence of warming relative to background vari-
ability is clearest in low-latitude areas (Mahlstein et al
2011, Hawkins et al 2020). As mid-to-high latitude
regions tend to be wealthier than equatorial areas,
there is also a tendency for the poorest areas of the
world to be experiencing the clearest and earliest
emergence of detectable warming (Harrington et al
2016, King and Harrington 2018). For precipitation,
trends are more spatially variable (figure S2), and
emergence tends to be harder to detect, but there is
some evidence of northern high-latitude increases in
precipitation already emerging from noise (Hawkins
et al 2020).

While existing univariate climate change emer-
gence measures are useful for examining climate
changes with respect to a relevant variable, it is also
of interest to consider changes as a function of more
than one variable at a time rather than considering
temperature, precipitation or another variable in isol-
ation. Subtle shifts in multiple variables concurrently
could result in larger impacts (Zscheischler et al 2018)
and focussing on univariate emergence risks under-
stating the climate changes experienced in a given loc-
ation. Indeed, Mahony and Cannon (2018) showed
that changes in precipitation coupled with temper-
ature amplify the climate change signal in the warm
season. Also, Abatzoglou et al (2020) found that con-
sidering changes across multiple ecosystem-relevant
variables together increased the magnitude of identi-
fied changes relative to univariate analysis.

Climate analogues have been used to highlight
how a location’s climate may change in future and

become more similar to another location’s present-
day climate (Williams et al 2007, Veloz et al 2012,
Fitzpatrick and Dunn 2019). Climate analogues are
typically computed across multiple variables (usually
seasonal average temperature and precipitation) to
represent more than one aspect of the climate system.
Climate analogues are often used as a communication
tool and are also applied to impacts studies focussed
on ecosystems (Povak and Manley 2023).

In this study we explore the possibility of adapt-
ing a climate analoguemethod to examine emergence
of climate changes in a multivariate framework and
assess its advantages in identifying climate change
signals over the typical univariate analysis. In this
instance a baseline climate (temperature and precipit-
ation) is established at each location in the early 20th
century and changes from the baseline are tracked
at that location. We use observation-based climate
datasets as well as information representing aspects
of exposure and vulnerability to establish the utility
of our proposed framework.

2. Data andmethods

2.1. Observational datasets
This study focusses on applying a novel frame-
work for climate change emergence to observational
datasets. The majority of the analysis focuses on
climate change emergence of seasonal means. We
use seasonal-average temperature and precipitation
data from the Berkeley Earth Surface Temperature
(BEST; Rohde et al 2013, Rohde and Hausfather
2020) and the Global Precipitation Climatology
Centre (GPCC; Schneider et al 2014), respectively.
Both BEST and GPCC datasets have been widely
used in climate change studies, including for ana-
lysis of univariate emergence (Hawkins et al 2020).
The seasons are defined as March–May (MAM),
June–August (JJA), September–November (SON)
and December–February (DJF). Analysis was per-
formed over the common 1901–2022/23 period
(March 1901 to February 2023). Both datasets were
analysed on native regular 1◦ grids.

Analysis of emergence in climate extreme indices
was also conducted by using the highest daily max-
imum temperature (TXx), lowest daily minimum
temperature (TNn) and maximum 1-day precipit-
ation (Rx1day) in each season. These indices were
computed from the HadEX3 gridded observational
product (Dunn et al 2020) which was analysed on its
native 1.25◦ latitude× 1.875◦ longitude grid.

The BEST and GPCC datasets are near spa-
tially complete over land, but HadEX3 has many
gaps in coverage, so the same analysis was per-
formed on temperature and precipitation means
and extremes from the ensemble-mean Twentieth
Century Reanalysis version 3 (20CR; Compo et al
2011, Slivinski et al 2019) for comparison. Analysis
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with 20CRwas conducted for 1901–2015 only as 2015
is when the dataset finishes. The 20CR was construc-
ted by running an atmospheric model constrained
by observed sea surface temperatures (SSTs) and sur-
face pressure observations. Even though it is spatially
complete it is more accurate where and when obser-
vations are assimilated locally. Thus, results derived
from 20CR are masked for only locations with an
average of at least one observation per month over
the 1901–1930 period which is used as a baseline as
described in section 2.2. The analysis of 20CR was on
its native regular 1◦ grid.

Effects of climate variability on multivariate cli-
mate changes were examined by using the Niño-
3.4 index to represent the El Niño-southern oscilla-
tion (ENSO). This was calculated from SSTs in the
HadISST dataset (Rayner et al 2003). Monthly values
of Niño-3.4 region-average SSTs were computed and
detrended by taking anomalies from a centred mov-
ing 15-year window. July–June average values were
calculated, to ensure distinct ENSO events were cap-
tured, and the standard deviation was used to classify
ENSO events. Values above +0.5σ were defined as El
Niño and values below−0.5σ were defined as LaNiña
with all other events defined as ENSO-neutral. The
method described in section 2.2 provides values rep-
resenting 12-month periods for studying multivari-
ate emergence, so an ENSO classification based on
12-month windows that does not combine different
events is of most use and this is why the July–June
average is used.

Analysis of exposure and vulnerability to emer-
gence of multivariate climate change signals was
examined using population and gross domestic
product (GDP) data. Estimates of these vari-
ables for the year 2020 were extracted from the
NASA Socioeconomic Data and Applications Centre
(CIESIN 2018). These data were aggregated onto a 1◦

grid to correspond to the grid of the BEST and GPCC
datasets. The GDP per capita is simply derived as the
GDP divided by the total population in each gridcell.
There are many indices that could be used to rep-
resent vulnerability, such as Human Development
Index (HDI). Both GDP per capita and HDI have
been applied in climate change analyses in identifying
inequalities of climate change experience or under-
standing of climate variability (e.g. Lieber et al 2022,
King et al 2023). Locations were assigned by their
income decile (figure S3) for the analysis of exposure
and vulnerability.

2.2. Method for estimating local multivariate
change
As the aim of this analysis was to examine climate
change emergence with respect to multiple variables
at once, standard methods, such as S/N ratios, were
deemed unsuitable. An adaptation to an approach
typically used in climate analogue studies was taken
instead. Early analogue studies used the Standardised

Euclidean Distance (Williams et al 2007, Veloz et al
2012), but this places equal weight on all variables
and does not account for covariance, so a new more
robust method for analogue analysis was proposed by
Mahony et al (2017). The sigma dissimilarity method
implicitly accounts for covariance between variables
and has been applied in many climate analogues ana-
lyses. The framework used in this analysis is adapted
from themethod ofMahony et al (2017), King (2023)
and Paik et al (2024) where more detailed descrip-
tions of the sigma dissimilarity calculation may be
found. The steps taken are summarised here for the
mean variable analysis based on temperature (from
BEST) and precipitation (from GPCC) together for a
given location. This analysis is thus being performed
on an array of eight vectors (MAM, JJA, SON andDJF
average temperature and precipitation) each of 122
values (1901–2022/23):

1. Firstly, a cube-root transformation was applied to
all precipitation data to decrease skewness in each
precipitation timeseries. This transformation has
the effect of making the timeseries more gaussian
which is useful for subsequent steps.

2. The seasonal-average temperature and cube-root
seasonal-average precipitation timeseries for the
entire 1901–2022/23 period were standardised
using the mean and standard deviation calcu-
lated for each season in the baseline 1901–1930
period. For example, the entire MAM temperat-
ure timeseries was standardised using the mean
and standard deviation of MAM temperatures for
1901–1930. The 1901–1930 period is a pragmatic
choice of baseline representing an early-industrial
climate state for which adequate observational
data exist.

3. Principal component analysis was performed on
the sub-array of standardised seasonal temper-
ature and precipitation timeseries for the 1901–
1930 baseline period (i.e. an array of 8 vectors of
30 values each).

4. Arrays for the entire standardised seasonal tem-
perature and precipitation timeseries from 1901–
2022/23 were projected on to the extracted prin-
cipal components (PCs).

5. The Mahalanobis distance (Mahalanobis 2018)
was computed for each year (March–February to
match definition of seasons) in the transformed
timeseries compiled in step 4. The Mahalanobis
distance is computed as:

Dj =

√√√√ N∑
n=1

(
z̄n − yjn

)2
sn2

,

where N is the number of PCs, z̄n is the mean of
each PC projected on to the standardised variables
for 1901–1930, yjn is each PC projected on to the
standardised variables for each year over 1901–
2022/23, and sn is the standard deviation of each
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PC projected on to the standardised variables for
1901–1930. For the example of seasonal-average
temperature and precipitation, N = 8.

6. The Mahalanobis Distance was converted to
a sigma dissimilarity metric using the Chi-
distribution where the mean, µ, is:

µ=
√2Γ

(
N+1
2

)
Γ
(
N
2

)
and the standard deviation, σ, is

σ =
√

N−µ2,

where N is the number of PCs. By converting
Mahalanobis distance to sigma dissimilarity, res-
ults may be compared between analyses where N
is different.

These steps were repeated for each gridcell with avail-
able observational data. The framework was also
applied to different sets of variables and other datasets
to aid in interpretation and to establish the robustness
of the results:

• seasonal temperatures only (BEST),
• seasonal precipitation only (GPCC),
• seasonal temperature and precipitation (20CR),
• seasonal temperatures only (20CR),
• seasonal precipitation only (20CR),
• seasonal TXx, TNn and Rx1day (HadEX3),
• seasonal TXx, TNn and Rx1day (20CR).

While the method here largely follows from previ-
ous work there are some differences that should be
noted. Here, the climate at each location is being
compared with its own baseline rather than the
comparison being made between locations. Also,
Mahony et al (2017) suggest use of separate seasonal-
average maximum and minimum temperatures may
be more suitable for characterising a baseline cli-
mate state and identifying changes compared with
using only seasonal-mean temperatures. There are
BEST maximum and minimum temperature data
products over land only. The decision to include
ocean areas for the temperature-only analysis meant
we chose to use seasonal-mean temperatures for this
analysis. Example timeseries of seasonal temperature
and precipitation and associated sigma dissimilarity
values are shown in figure S4 for the gridcell over
Melbourne, Australia.

2.3. Identifying multivariate climate changes

The sigmadissimilaritymetricmay be used to identify
timings and locations where significant changes from
the 1901–1930 baseline climate have occurred. At
every location with observational data there is an

annual timeseries of the sigma dissimilarity metric
(with each value representing the 12-month period
fromMarch of one year to February of the next). The
average sigma dissimilarity over 30-year periods was
computed for 1961–1990 and 1991–2020. The time
of emergence was computed as the central year when
the 11-year running average of the sigma dissimilarity
exceeds a threshold and remains above that threshold
for all subsequent values of the 11-year running aver-
age. A 2σ threshold was used for most of the time
of emergence analysis, but thresholds of 3σ and 4σ
were also examined. Dissimilarity of 2σ corresponds
to the 95th percentile of the baseline period and may
be used to approximate moderately novel climates
(Mahony et al 2017). Dissimilarity values exceeding
2σ can be thought of as representing climates which
are significantly different (p< 0.05) from the baseline
period and, statistically, very likely to be drawn from
different populations. Times of emergence identi-
fied after 2010 may well not be permanent as they
are near the end of the timeseries (Hawkins et al
2014), so these were not plotted. Ideally, a longer
period before the end of the observations would be
excluded as emergence could be temporary, but any
emergence identified by 2010 is at least maintained
to the end of the timeseries including 11-year peri-
ods with less than 50% overlap. Use of different
lengths of running averages have little effect on the
results.

As the sigma dissimilarity metric has annual val-
ues, individual years or frequencies of departures
from the baselinemay also be assessed. The frequency
of years greater than 2σ, 3σ and 4σ from the 1901–
1930 baseline were computed for 1961–1990 and
1991–2020.

Aggregate timeseries were computed to exam-
ine global trends, ENSO relationships and popula-
tion exposure to multivariate climate changes. Global
area exceeding 2σ, 3σ and 4σ dissimilarity from
location-specific baseline climate was computed for
each year, discounting for locations with missing
data. The global population exposed to local climate
changes greater than 2σ, 3σ and 4σ dissimilarity in
each year up to 2023 was also estimated by simply
summing the population in the locations exceeding
these thresholds. Composites of mean frequency of
exceeding 2σ thresholds by ENSO state were plotted
for years from 1990 onwards.

In addition to population exposure, vulnerabil-
ity was also considered. Box-and-whisker plots were
compiled for each income decile to examine rela-
tionships with various measures of multivariate cli-
mate changes (average sigma dissimilarity in 1991–
2020, number of years exceeding 2σ difference in
1991–2020, and time of emergence). The purpose of
this analysis was to identify whether the inequality
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Figure 1.Mapped differences in sigma dissimilarity between 1901–1930 and (a)–(c) 1991–2020, and (d)–(f) 1961–1990 for (a),
(d) combined seasonal temperature and precipitation, (b), (e) seasonal temperatures only, and (c), (f) seasonal precipitation only,
using BEST and GPCC. The time of emergence of a climate change signal, defined as the centre year of an 11-year moving
window exceeding 2σ difference from the 1901–1930 climatology and not returning below that level, for (g) combined seasonal
temperature and precipitation, (h) seasonal temperatures only, and (i) seasonal precipitation only. White areas are regions of
sparse data where calculations were not performed.

identified previously in univariate climate emergence
studies (Mahlstein et al 2011, Harrington et al 2016,
King and Harrington 2018) extends to multivariate
climate change patterns.

An extremes analysis was performed using
HadEX3 and 20CR and the average sigma dissim-
ilarity was computed for 1961–1990 and 1991–2015
relative to the 1901–1930 baseline. The time of emer-
gence was defined in the same way as in the means
analysis using the 2σ threshold.

3. Results

The metric of multivariate climate change used here,
the sigma dissimilarity, exhibits increasing values
over time as temperatures increase and precipitation
changes (figures 1(a) and (d)). The average sigma dis-
similarity is greater for the 1991–2020 period than
1961–1990 with stronger dissimilarity identified in
equatorial regions compared with mid-to-high lat-
itudes. There are observational gaps, but there is
still evidence of a strong latitudinal relationship with
sigma dissimilarity due to high values in eastern
South America, parts of Africa, and the Maritime
Continent. When sigma dissimilarity statistics are

computed and analysed for temperature and precip-
itation separately we see that temperature is dom-
inating the changes in the multivariate sigma dis-
similarity values (figures 1(b), (c), (e) and (f)). In
both the multivariate and the temperature-only pat-
terns, low-latitude areas have experienced greater
climate changes compared with mid-to-high latit-
udes, in line with previous findings (Mahlstein et al
2011, Hawkins and Sutton 2012, Harrington et al
2016).

The time of emergence maps reflect the spatial
patterns seen in sigma dissimilarity. Earlier emer-
gence is found in low-latitude areas than elsewhere
with a lack of emergence in many mid-to-high latit-
ude regions (figure 1(g)). Emergence of temperature
changes alone is evident in many low-latitude areas
(figure 1(h)), including some ocean locations which
are masked in the multivariate analysis due to lack of
precipitation data. There is little evidence of precip-
itation emergence, although some northern high lat-
itude areas are masked for lack of data where there
has been some evidence of precipitation emergence in
previous work (King et al 2015, Hawkins et al 2020).
Despite the lack of emergence of a precipitation sig-
nal, the inclusion of precipitation in the multivari-
ate analysis brings forward the time of emergence

5



Environ. Res. Lett. 19 (2024) 094018 A D King et al

Figure 2. The number of years more than (a), (d) 2σ, (b), (e) 3σ, and (c), (f) 4σ different from the 1901–1930 climatology in
(a)–(c) 1991–2020 and (d)–(f) 1961–1990. The time of emergence of a climate change signal is defined as the centre year of an
11-year moving window exceeding (g) 2σ, (h) 3σ and (i) 4σ difference from the 1901–1930 climatology and not returning below
that level. (g) Is identical to figure 1(g)). White areas are regions of sparse data where calculations were not performed.

relative to analysis of temperature alone by two to
three decades in some areas (figure S5). This is expec-
ted as even small changes in one variable will act to
increase the overall shift from the baseline climate
as represented by the sigma dissimilarity. The phys-
ical reasons for this will differ between locations and
could include not only increases or decreases in pre-
cipitation, but also changes in seasonal cycles.

The frequency of individual years exceeding
sigma dissimilarity thresholds increases over time
and follows a similar pattern to average sigma dis-
similarity with more exceedances in equatorial areas
(figure 2). In the 1991–2020 period, most years
exhibit departures above 3σ from the reference
period in sampled low-latitude areas, particularly
eastern South America, Sub-Saharan Africa, and the
Maritime Continent. There is a hint of a similar spa-
tial pattern in the 1961–1990 results (figures 2(d)–
(f)), but the lack of a signal until the more recent
period makes this less clear. Time of emergence ana-
lysis based on different sigma dissimilarity thresholds
shows the same broad pattern (figures 2(g)–(i)).
There are equatorial locations where emergence has
occurred using a strict 4σ thresholdwhile large swaths
of the mid-to-high latitudes have not yet experienced
local climate change emergence even using a less strict
threshold of 2σ.

Area and population exposure to multivariate cli-
mate changes were examined utilising the annual cal-
culation of the sigma dissimilarity metric. The accel-
erated trend in area experiencing markedly differ-
ent climate states from their 1901–1930 baselines is
clear with large increases in this area from the 1970s
onwards (figures 3(a)–(c)). Between adjacent years
there are increases in area experiencing high sigma
dissimilarity in El Niño years and small decreases
in La Niña years. For the calculation of popula-
tion exposure, overall 6.7 billion people are estim-
ated to live in areas where the analysis could be
conducted due to adequate observational coverage
(figures 3(d)–(f)). There is an ENSO relationship
with population exposed to high sigma dissimilar-
ity events albeit less clear than in the area average.
There has been a marked increase in the proportion
of global population living in areas where large local
climate changes have occurred relative to their 1901–
1930 baseline state. The proportion of the world pop-
ulation exposed to local climate changes exceeding
2, 3 and 4σ from the baseline climates is higher in
all years from 2015 onwards than all years prior to
2015.

While ENSO effects are identifiable in global
aggregate statistics of departures from baseline cli-
mate states, the ENSO relationship with local sigma
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Figure 3. Timeseries of percentage of global area and population experiencing exceedance of (a), (d) 2σ, (b), (e) 3σ and (c), (f)
4σ difference from 1901–1930 climatology, respectively. Areas of missing data are excluded from these calculations. Bars are
coloured red following El Niño events, blue following La Niña events and grey following ENSO-neutral events. Maps of the
fraction of (g) El Niño events, (h) ENSO-neutral events and (i) La Niña events where each location exceeds 3σ difference from
1901–1930 climatology. Only years since 1990 are considered here.

dissimilarity is spatially variable (figures 3(g)–(i) and
S6). In southern Africa, southeast Asia and parts of
Australia, the occurrence of large climate departures
from the reference climate is higher in El Niño years.
In parts of central Asia, North and SouthAmerica and
southern Europe, the chance of high sigma dissimil-
arity years is greater in La Niña. Individual years show
large local differences in sigma dissimilarity, but the
larger sigma dissimilarity in the tropics remains clear
(figure S7).

Given the latitudinal relationship with sigma dis-
similarity and the inequalities identified in univari-
ate climate change emergence studies, an analysis of
relationships between metrics based on local sigma
dissimilarity and local GDP per capita was conducted
(figure 4). There is some tendency for lower income
regions of the world to have experienced greater
change in mean sigma dissimilarity (figure 4(a)),
greater frequency of high sigma dissimilarity years
(figure 4(b)), and earlier emergence of multivariate
climate changes (figure 4(c)). In fact, between the loc-
ations of the richest and poorest people by decile,
we see substantially different experiences of climate
change with non-overlapping interquartile ranges in
all three charts. Comparable scatter plots (figure S8)
illustrate the same relationships with significant cor-
relations, although this is in part due to the large
number of points.

Finally, we examined for changes in extremes by
computing sigma dissimilarity statistics based on sea-
sonal values of TXx, TNn and Rx1day (figure 5).
Results based on HadEX3 show little evidence of
substantial changes in local climate based on these
extreme indices. This is in part due to the lack of spa-
tial coverage extending back to the early 20th century.
Analysis was repeated for 20CR which shows similar
mean climate results as the analysis based on BEST
and GPCC (figure S9). The 20CR results are based
on greater spatial coverage and suggest some signific-
ant changes, particularly in equatorial areas. There is
evidence of emergence in tropical areas, but these are
generally poorly observed areas of the world, particu-
larly for historical instrumental climate data that acts
to constrain 20CR.

4. Discussion and conclusions

In this study we have adapted a framework used to
identify climate analogues and applied this to exam-
ine for multivariate climate change and emergence.
By applying this technique to observational data, we
find larger local climate changes and earlier emer-
gence of a climate change signal in tropical regions
than at higher latitudes. This is in line with previous
climate change emergence analyses (Mahlstein et al
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Figure 4. Box-and-whisker plots by income decile of (a) change in sigma dissimilarity between 1991–2020/21 and 1901–1930/31,
(b) number of years greater than 2σ from 1901–1930/31 in 1991–2020/21 period, and (c) time of emergence based on permanent
exceedance of 2σ departure from 1901–1930/31 baseline. In (c) emergence at or after 2010 is considered as non-emergence.

2011, Hawkins and Sutton 2012), although the inclu-
sion of precipitation in themethod increases themag-
nitude of identified changes. Local departures from
an early 20th century baseline climate are clearer in
some years than others, but on average, across the
locations where this analysis was performed, these
departures are larger in El Niño years than La Niña
years. The dominant pattern of larger local climate
changes in the tropics than mid-to-high latitudes
gives rise to inequality whereby poorer areas exper-
ience earlier emergence of climate change. Analysis of
changes in extremes is hampered by lack of long-term
observations, but there is some evidence of earlier
emergence in tropical areas also.

This study builds on previous climate change
emergence work by moving from univariate to mul-
tivariate analysis. This allows for a more holistic
approach to identification of climate change, but res-
ults should be interpreted in the context of known

changes in component variables. The sigma dissim-
ilarity method used here is robust, does not require
choices to be made about weighting, and implicitly
incorporates covariance information. This method
also allows for analysis of individual years and their
departures from a baseline climate which is not typ-
ically possible using S/N ratios or K–S test-based
approaches.

This work also extends the framework proposed
for robust detection of climate analogues (Mahony
et al 2017), which was subsequently applied to iden-
tification of observed multivariate climate changes
relevant to ecosystems (Abatzoglou et al 2020), a
step further into analysis of climate emergence. Given
the growing focus on multi-hazard or compound
events and their changes (Zscheischler et al 2018),
we hope that our framework for identifying mul-
tivariate climate change emergence is useful to the
community.
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Figure 5.Mapped differences in sigma dissimilarity between 1901–1930 and (a), (b) 1991–2020, and (c), (d) 1961–1990 for
combined temperature and precipitation extreme indices (TXx, TNn, Rx1day) in HadEX3 and 20CR ensemble medians,
respectively. The time of emergence of a climate change signal, defined as the centre year of an 11-year moving window exceeding
2σ difference from the 1901–1930 climatology and not returning below that level, in (e) HadEX2 and (f) 20CR. White areas are
regions of sparse data where calculations were not performed.

There are caveats to note as well as possible exten-
sions to this work. This study is reliant on the under-
lying observational data. Masking was performed
to restrict analysis to locations with complete data
throughout the timeseries, but inhomogeneities have
the potential to influence results. There is greater con-
fidence in results in well-observed areas of the world,
such as parts of western Europe, North America and
southeast Australia, compared with other areas where
large changes are identified, such as the Maritime
Continent and Sub-Saharan Africa. King (2023) used
a recent baseline period to identify historical changes
when examining Australian climate analogues, as the
sigma dissimilarity calculations are based on a better
constrained observational period. While this was not

done here, so that a time of emergence may be estim-
ated, a sensitivity test using a 1991–2020 baseline and
examining differences from that period gives a sim-
ilar pattern of sigma dissimilarity change (figure S10)
and this provides some confidence in the overall con-
clusions of the analysis.

The analysis shown here uses a 1901–1930
baseline and examines for changes since that time.
Analysis with different baselines will lead to local
differences, but the general geographical patterns
appear to be robust. For example, we repeated the
analysis on a 1911–1940 baseline, which includes sev-
eral warm years for the globe in the 1930s and the
Dust Bowl period in the central United States (e.g.
Donat et al 2016, Cowan et al 2020). In general, use

9
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of a 1911–1940 baseline makes little difference and
the latitudinal variability in sigma dissimilarity and
emergence remains (figures S11 and S12).

Use of a 1901–1930 baseline means that our ana-
lysis is over a period of significant climate changewith
the majority of warming due to human influences.
As the analysis is only on the observational record,
there is no distinction made between changes due to
internal climate variability and anthropogenic influ-
ence, although given the long period of analysis it
is likely to be dominated by human-caused climate
change (Haustein et al 2019). A model-based ana-
lysis could be used to extend this work and estim-
ate anthropogenic and natural changes as well as a
time of anthropogenic emergence (King et al 2016).
Furthermore, the framework used here could be
extended to future changes under different green-
house gas emissions scenarios for the 21st century.

Overall, we believe that the framework outlined
here is useful and in applying it to observational data
we have identified and quantified multivariate cli-
mate change signals that have occurred. Further ana-
lyses using this framework may be of use in identify-
ing climate change hotspots and informing associated
impacts under continued global warming.
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