
SCHOOL OF MATHEMATICAL, PHYSICAL AND COMPUTATIONAL
SCIENCES

A Study of Relational Structure in
Multi-Discrete Action Spaces in Reinforcement

Learning
by

Perusha Moodley

Thesis submitted for the degree of Doctor of Philosophy

PhD
COMPUTER SCIENCE

January, 2024
UNIVERSITY OF READING

To my Mum and Dad
Tilly and Reuben

ii

Acknowledgements

Professor Xia Hong, thank you for taking me on as a PhD student; working with
you over the years has shown you to be a very open-minded, curious person who
gives genuine feedback and who has the best interests of her students at heart. I
also appreciate that you pushed me to start writing early and for all the guidance
you provided. I have a feeling that if I listened to you from the start, my journey
would have been easier but apparently I had to do it my way!

Professor Benjamin Rosman, it is no exaggeration to say that without your
supervision I would have given up a long time ago. I am grateful to the DL
Indaba for introducing us and forever grateful to you for giving up your time,
without hesitation, over so many years to coach me on a bi-weekly basis. Your
positivity, wisdom, technical and other guidance picked me up and helped me to
stay the course. I am very appreciative to you for what you did for me and will
not forget it. Thank you too for making the effort to introduce me to people, some
of whom have made my PhD life richer and are still friends.

I would also like to thank my PhD advisors Pat Parslow, Guiseppe di Fatta
and Carmen Lam for supporting me over the years and turning what could have
been gruelling monitoring sessions into interesting discussions. In addition I would
like to thank Mark Trovinger for sharing his knowledge and experience with GPU
related hardware and software systems that was very much appreciated! I would
also like to thank Pramod Kaushik who pushed us to submit a paper to a NeurIPS
workshop that was accepted! It was an amazing experience!

I met many kindred spirits on this journey, some who studied with me, others
who collaborate with me even now. This has not been an easy journey; I therefore
feel very lucky to have met and interacted with such a lovely group of collabora-
tors, Maria Jacob, Saeed Taffazol, Pramod Kaushik, Mark Trovinger and Dhillu
Thambi, who push me, advise me, help me understand, allow me to speak and
most importantly, listen to me without judgement.

Two organisations that I felt really helped me include the Google Developer
Group (GDG) and the ML Collective (MLC). As someone who has had trouble
fitting in all her life, I felt like I discovered community for the first time when I
joined the GDG as an organiser, running huge technical events drawing up to 300
people at times. My PhD journey started in the GDG and I think it is a brilliant
endeavour! I realised quite late in my PhD the power of collaborating with other
researchers and fortuitously discovered the MLC at a conference. I met most of
my collaborators via the MLC which is a great place to meet researchers of various

iii

skill levels and offers opportunities to grow in a research environment.

Finally, and importantly, I would like to thank Dr Omer Dawelbeit, who sparked
this PhD journey and was generous with his friendship and inspiration. He just
assumed I could do it and had confidence in me. I hope I can pass that forward.

Personal Acknowledgements
I would like to acknowledge and thank my parents, Tilly, the pragmatist and
Reuben, the visionary, responsible for the start of this unusual journey. My Father
inspired me all his life; he had more spunk and get-up-and-go than anyone I have
ever met. He made himself a man to be proud of despite numerous setbacks and
hardships. He taught me the power of knowledge, to be a free thinker, to always get
back up and never give up. He was a fighter, had an unerring ability to understand
whatever you spoke about and an undying passion for knowledge. He believed in
his 3 daughters, always told us we could achieve anything if we set our minds to
it and never doubted our capabilities. I am so grateful I knew him and that I
could benefit from his wisdom and his spirit. Tragically he passed away while I
was working on my dissertation and I regret very much that he did not get to see
me finish.

My Mum was my rock throughout my life. She was a constant force in the
swirling rush of life. She always believed in us and gave us the pragmatic stability
that has rooted me and allowed me to move forward. It is easy to under-appreciate
stability but a PhD is an endeavour that tests all of you and I am grateful for
this skill. Thank you for your unconditional love. It makes all the difference in
this world. Like most people, it took me years to realise that my parents were
something special. They had few of the benefits in life they bestowed upon us but
they did something special and they should be proud of that!

My husband, Mark, I thank for being himself, genuinely interested and fasci-
nated with the world, always ready for a discussion about any topic, a friendly
smile and easy-going style … except when he reviews documents! Thank you for
reviewing my dissertation, I know the document is better for it, and I am thrilled
that you enjoyed the process. There are many things I am grateful for but, most
importantly, thank you for keeping me sane, for balancing my intensity and for
allowing me to make this long journey without complaint, only support. Not many
people would do that and still be smiling at the end of it.

To my sisters and their families: Thosha and Renze, those weekly golf sessions
became a stable point for me and I enjoyed it immensely. To Davina, Jan and
Michael, thanks for being patient while I finished up; I have a lot of catching up to
do and many missed birthdays. My sisters were always supportive of my decision
and allowed me to get on with it, inspiring us with their own lives.

Dear Anne, you are an unconventional mother-in-law; I wish you saw yourself
as we see you. I thank you for your interest, support and faith in me; it is very
much appreciated. I wish you could have had the opportunity to complete your
PhD.

iv

My technical female friends Maria Jacobs, Luisa Zintgraf, Kubra Harmankaya,
Amanda Cavallaro and Siobhan Hall; I know it should not matter, but it is lovely
to know female techies! I am so happy to know you, feel very supportive of you
and wish you all the best in life! My longer term technical friends Lisa Smith,
Shireen Khan and Sharan Foga, you have inspired me with your amazing lives! I
love that you are all so quirky and interesting! You are great role-models!!

My friends helped keep me sane: they listened patiently when I was unable or
too stressed to meet them, dropped by for games of Die Crew, Pandemic, Quacks
and Dominion, gave me kefir grains, sourdough starters and home made vinegar,
generously invited us for a much needed holiday to Turkey, housed and fed us for
the amazing Hay Book Festival, shared the precious Ted and Reggikins with us,
and are just some of the most wonderful people I know. Janet, Julie, Steve you
guys rock! Thank you for being such good friends to us and inspiring us to be
better!

Finally, to the people who made that work of art, Ted Lasso - I Believe!!

v

Declaration: I confirm that this is my own work and the use of all material from
other sources has been properly and fully acknowledged.

Signed: Perusha Moodley

vi

Abstract

This thesis proposed three novel methods for learning and exploiting relational

structure in the action space of reinforcement learning (RL) environments. It pro-

vides initial evidence across model-free online and offline RL algorithms that mech-

anisms adapted for extracting and exploiting action structure can mitigate key

challenges in multi-discrete domains like sparse rewards and large action spaces.

It is demonstrated that the proposed techniques could significantly improve the

performance of RL algorithms in multi-discrete action spaces.

Firstly, a multi-task approach trains agents across diverse procedural tasks,

using state-action visitations to identify task-agnostic action space structure de-

rived from bottlenecks. Count matrices reveal underlying action clusters that are

transferred to enhance exploration in new tasks. The approach for extracting and

transferring structure is novel compared with other work in multi-task RL and

prior information transfer. The proposed approach successfully demonstrates the

transfer of task and context agnostic action structure to new tasks and significantly

improves convergence over baselines.

Secondly, an auxiliary module for proximal policy optimisation (PPO) uses a

self-supervised signal from successful state transitions to shape action representa-

tions around beneficial relationships. Compared with related work, the relational

auxiliary objective is an uncomplicated approach to extracting action structure

from multi-discrete action spaces online. The shaped representations demonstrate

faster adaptation to complex tasks and better generalisation.

vii

Finally, Decision Transformers are adapted through novel multi-token expan-

sions of multi-discrete actions, exposing more mixing opportunities. Comparisons

against single token variants reveal consistent gains in the Deadly Corridor sce-

nario within the ViZDoom platform. Further analyses confirm individual actions

are actively attended to by the Decision Transformer after multi-tokenisation.

In summary, the contributions in this thesis provide good evidence that mech-

anisms that expose and exploit relational attributes can enhance sample efficiency

and generalisation in multi-discrete action spaces. Multi-tokenisation and auxiliary

modules are two particular methods that show promise for further exploration for

leveraging structure. Further work remains in validating and interpreting learned

relationships, however this research direction appears fruitful.

viii

Table of Contents

Acknowledgements iii

Abstract vii

Table of Contents xiii

List of Tables xiv

List of Figures xxiii

List of Acronyms xxviii

1 Introduction 1

1.1 Thesis organisation . 12

1.2 Summary . 14

2 Preliminaries 15

2.1 Introduction . 15

2.2 The RL framework . 15

2.2.1 Partially Observed Environments 17

2.2.2 Action Spaces . 17

2.2.3 Model-Free and Model-Based RL 20

2.2.3.1 Model-Free RL . 21

2.3 Introducing the Q-value function: 22

ix

2.3.1 Temporal Difference (TD) 23

2.3.2 Exploration . 24

2.3.3 Value Based algorithms . 25

2.4 Neural Networks, Deep Learning and function approximators 26

2.4.1 Deep Q-Network (DQN) 29

2.5 Policy Gradient algorithms . 30

2.5.1 Proximal Policy Optimization (PPO) 33

2.6 Transfer . 36

2.6.1 Multi-Task RL and Meta-RL 37

2.6.2 Learning from Demonstrations and Distillation 38

2.7 Auxiliary Tasks . 39

2.8 Offline RL . 42

2.9 Imitation Learning (IL) . 44

2.10 Transformers . 46

2.11 Summary . 50

3 Literature Review 51

3.1 Transfer . 52

3.1.1 Transfer of prior knowledge 52

3.1.2 Exploration Methods . 52

3.1.3 Multi-Task RL . 55

3.2 Structure in Action Spaces . 56

3.2.1 Structure from Factorization and Decomposition 57

3.2.2 Options . 61

3.2.3 Multi-Discrete Action Spaces 62

3.3 Action Relations in Reinforcement Learning 63

3.4 Summary . 68

x

4 Multi-task transfer of action structure in multi-discrete action

spaces 70

4.1 Introduction . 70

4.2 Related Work . 73

4.3 Spectral Clustering . 75

4.4 Proposed Approach: Concurrent Action structure using clustering

(CASC) . 77

4.4.1 Approach and Motivation 78

4.4.2 Extracting task-agnostic structure in a multi-task setting . . 79

4.4.3 Using spectral clustering to exploit relationships between

actions . 83

4.4.4 Transferring action structure to enhance exploration 85

4.4.5 Action elimination in a multi-discrete action setting 86

4.4.6 Discussion . 87

4.4.7 Implementation Details . 88

4.4.7.1 Environment . 88

4.4.7.2 Task Setup . 91

4.4.7.3 Training the RL algorithm 91

4.5 Experiments and Results . 93

4.5.1 Concurrent Action structure using clustering - CASC 93

4.5.2 Action Elimination . 95

4.5.3 Random clusters . 98

4.5.4 Discussion . 100

4.6 Conclusions . 101

5 Relational Representations in Multi-Discrete Action Spaces 103

5.1 Introduction . 103

5.2 Related Work . 107

5.2.1 Multi-discrete and large action spaces 107

xi

5.2.2 Action Relations . 109

5.3 Multi-discrete Proximal Policy Optimisation 110

5.4 Proposed relational auxiliary module 112

5.4.1 Self-supervised signal . 113

5.4.2 The relational auxiliary objective 115

5.4.3 Discussion . 116

5.4.4 Implementation Details . 118

5.4.4.1 Environment . 118

5.4.4.2 Actions . 118

5.4.4.3 RL Algorithm . 120

5.5 Experiments and Results . 120

5.5.1 Relational Auxiliary Task Setup 121

5.5.2 Results - Relational Model Performance 121

5.5.2.1 Easy and Intermediate Tasks 122

5.5.2.2 Hard/Complex Task 125

5.5.3 The Action Representation 127

5.5.3.1 Learning Dynamics 130

5.5.3.2 Generalisation test 132

5.6 Conclusions . 133

6 Action Structure in Decision Transformers 135

6.1 Introduction . 135

6.2 Preliminaries . 140

6.2.1 Decision Transformers . 141

6.2.1.1 Prompting . 144

6.3 Related Work . 144

6.3.1 Prompting and In-context learning (ICL) 145

6.3.2 Other aspects of Decision Transformers 146

xii

6.4 Proposed Approach: Multi-State-Action Tokenisation (M-SAT) in

Decision Transformers . 149

6.4.1 Sequence Modelling using Decision Transformers 149

6.4.2 M-SAT Approach and Motivation 150

6.4.3 Tokenisation and action generation 153

6.4.4 Implementation Details . 156

6.4.4.1 Environment . 156

6.4.4.2 Decision Transformer Related Setup and Imple-

mentation . 158

6.4.4.3 Data Generation 162

6.4.5 Methods of Analysis . 165

6.4.5.1 Position Encoding 167

6.5 Experiments and Results . 168

6.5.1 Baseline Method . 169

6.5.2 Decision Transformer trained with Multi-Action Tokens (M-

SAT) . 170

6.5.3 No Position Encoding . 171

6.5.4 No State-Action (MAT) . 171

6.5.5 Action PE . 171

6.5.6 Discussion and Analysis . 171

6.5.6.1 Raw attention and Attention Flow 173

6.5.6.2 Interpreting the Transformer 181

6.6 Conclusions . 189

7 Conclusion and Future Work 191

7.1 Future Work . 193

xiii

List of Tables

4.1 Action-State Categories; the index of the action and an abbreviated

form is also provided. Multiple actions may be selected from within

and across categories. 89

4.2 The full set of primitive actions with action index 90

5.1 Special states and corresponding action combinations 119

5.2 The full set of primitive actions with action index 119

6.1 ViZDoom Deadly-Corridor multi-discrete action space 157

6.2 ViZDoom Deadly-Corridor 11-dim multi-discrete action where N is

NoOp, L Left, R Right, SL Strafe Left, SR Strafe Right, F Forward,

B Backward, A Attack . 169

6.3 Table of Results: Baseline (single action token) and M-SAT are

compared over 100 evaluation runs and multiple seeds. A version

of M-SAT without state-action associations (MAT) tests how effec-

tive multiple-action tokens are without any reference to the state

during action tokenisation. Two Position Encoding (PE) variants

are included: first, PE is removed (No PE) and second, additional

action PE is added (Action PE). 170

xiv

List of Figures

1.1 An overview of the RL process, with the agent interacting with a

maze environment. The environment is characterised by a reward

function and a transition function. The agent is characterised by a

policy, which can generate the actions [Up, Down, Left, Right]. The

current policy’s action for each state is displayed on the maze for

clarity. Likewise, the reward for each state in the maze is illustrated

on the right. Source: (Silver, 2015) 2

1.2 Image demonstrating the difference between discrete and multi-

discrete actions. In the top image the robot maid composes multi-

discrete actions from an action space of individual discrete actions.

In the bottom image the robot maid selects a discrete action from

an action space of discrete actions. In the bottom image, the action

space is expanded to hold all possible actions the robot can take. . 7

2.1 Keyboard mappings for an interactive game, demonstrating how

multi-discrete actions may be generated. Pink keys are navigation

actions, purple keys are weapons related actions and blue keys are

other actions. Any number of these keys may be selected together

in a timestep, resulting in a multi-discrete action. 18

xv

2.2 A single neuron, with a linear function passed into one of several

possible activation functions (including sigmoid, Tanh and ReLU)

is illustrated, where xi are the inputs to the neuron and wi and b

are the trainable neuron weights. 26

2.3 A sample neural network architecture with multiple layers of neu-

rons. This is a fully connected network where neurons in one layer

are connected with all neurons in the next layer. Neurons in the

same layer do not have any associations. The internal layers are

referred to as hidden layers, where x is the input to the first layer,

hi is the output from the ith hidden layer and the input to the sub-

sequent layer and Wi and bi are the weight matrices for each layer.

. 27

2.4 Parameter sharing with auxiliary tasks (Hernandez-Leal et al., 2019)

Source: (Hernandez-Leal et al.) . 42

2.5 Parameter sharing (AMS) and policy features (AMF) architecture

in Hernandez-Leal et al. (2019) Source: (Hernandez-Leal et al.) . . 42

2.6 In offline RL a dataset D is collected by an unknown behaviour

policy πβ. A policy is trained over the static dataset without further

interaction with the environment and is only deployed after being

fully trained. Source: (Levine et al., 2020) 43

2.7 A simplified 1-layer Transformer, displaying the residual stream as

the backbone of the Transformer architecture. Source (Elhage et al.,

2021) . 48

xvi

4.1 Process Flow for CASC: In step 1 tasks are randomly generated by

varying the locations of the start (S), goal (G) and special states

(coloured states). Data generated from solving these tasks using

an RL algorithm is processed in step two to produce the affinity

matrix. Step three applies spectral clustering to the affinity matrix

to create clusters of primitive actions with high affinity. Finally, in

step four a Q-learning algorithm is modified to select actions from

the clusters during exploration for new tasks. 80

4.2 Process Flow for Action Elimination: In step 1 tasks are randomly

generated by varying the locations of the start (S), goal (G) and

special states (coloured states). Data generated from solving these

tasks using an RL algorithm is filtered in step two to retain only

the highest performing actions. Step three converts the highest per-

forming actions into an exploration policy. Finally, in step four a

Q-learning algorithm is modified to select actions using the explo-

ration policy during exploration for new tasks. 81

4.3 Grid-World requiring multi-discrete actions on every step, where S-

Start, G-Goal, H-Holes, O-Obstacles and gaps in the walls indicate

doors . 89

4.4 Three visible clusters generated in the 10-action space align with

the states defined in Table 4.1 . 95

4.5 Comparison of task convergence using Q-learning (Base - red), spec-

tral clustering enhanced Q-learning (SC - blue) and an action elim-

ination based exploration policy (AE - green), over 10 randomly

generated tasks. 96

4.6 Sample of heatmaps for action elimination generated exploration

policies (10 primitive actions) . 97

xvii

4.7 Comparison of task convergence over randomly generated tasks for

base Q-learning (Base), with spectral clustering (SC), A with 2

clusters (2 Clusters) and B with 3 random clusters (Rnd clusters) . 99

5.1 Relational auxiliary component fitted in an Actor-Critic model.

The state feeds the Critic network (top row) and the Actor net-

work (bottom row). The Actor’s head splits to produce the clipped

policy and entropy losses and, separately, the proposed relational

loss. 116

5.2 Grid-World requiring multi-discrete actions on every step, where S-

Start, G-Goal, H-Holes, O-Obstacles and gaps in the walls indicate

doors . 118

5.3 From left to right: easy (with 4 doors and holes), intermediate (with

4 doors, holes and obstacles), hard tasks (with 3 doors, holes and

obstacles; the agent start location is furthest from the goal) Legend:

Walls - bright red; obstacles - pale red; start state - pale green; goal

state - green; holes - blue . 121

5.4 Easy Task - Episodic length and Returns: comparison of relational

(orange) and vanilla ppo models (green) over 10 seeds. 123

5.5 Easy Task - Value loss: comparison of relational (green) and vanilla

ppo models (orange) over 10 seeds 123

5.6 Intermediate Task - Episodic length and Returns: comparison of

relational (green) and vanilla PPO models (pink) over 10 seeds . . . 124

5.7 Complex task. Walls - bright red; obstacles - dark red; start state

- dark green; goal state - bright green; holes - blue 125

5.8 Complex Task - Episodic length: comparison of relational (red) and

vanilla PPO models (blue) over 10 seeds 126

5.9 Complex Task - Episodic returns: comparison of relational (red)

and vanilla PPO models (blue) over 10 seeds 126

xviii

5.10 Complex Task - Value loss: comparison of relational (red) and

vanilla PPO models (blue) over 10 seeds 127

5.11 Heatmaps for Relational PPO (left) vs Vanilla PPO (right) taken at

various policy model updates (300, 400 and 500) show the relational

model has already learnt more structure at update 300 than the

vanilla model. Lighter squares indicate strong affinities between

the set of actions. 128

5.12 Singular values plotted for action representations over training pe-

riod. X-axis is the update number, Y-axis is the singular value or

mode . 131

5.13 Testing the generalisability of the trained representation on a new

complex task. Dark blue (vanilla) and red (relational) are the from-

scratch runs training over the new task. Light blue (vanilla) and

violet (relational) are the runs using the transferred representation. 132

5.14 The vanilla plot (green - based on the representation from the

vanilla model) does not perform well while the relational (brown

- based on the representation from the relationally-trained model)

performs well and converges . 133

6.1 Flow of data through the Decision Transformer (Chen et al., 2021),

from trajectory steps (timestep, RTG, state, action) to either a loss

calculated during training OR to action generation. The position

encoding is added to each of state, action and RTG tokens. The

state logits are used to generate actions, which are next in the

sequence. The feint grey lines indicate the transformation of tokens

to logits in the context. The use of the state logits when generating

actions or the training loss is also indicated. 143

xix

6.2 Tokenisation of the RTG, state and multi-discrete action in the

standard Decision Transformer model to the model dimension. The

timestep is encoded and added to each token as the position encod-

ing. 151

6.3 Tokenisation of the RTG, state and multi-discrete actions in the M-

SAT Decision Transformer, with the proposed multi-token actions

. 151

6.4 Sample state from the ViZDoom Deadly Corridor environment . . . 152

6.5 Simple map outline of ViZDoom’s Deadly Corridor scenario show-

ing the locations of the agent, enemies and the goal. 156

6.6 Sample Factory architecture overview - Source: (Petrenko et al.,

2020) . 164

6.7 APPO Training curves for Deadly Corridor training - length (Sam-

ple Factory) . 166

6.8 APPO Training curves for Deadly Corridor training - reward (Sam-

ple Factory) . 166

6.9 APPO Training curves for Deadly Corridor training - loss (Sample

Factory) . 166

6.10 Tokenisation of the RTG, state and multi-discrete actions to the

Decision Transformer model dimension, with the proposed multi-

token action for MAT. Notice the actions are not encoded with the

state, as in M-SAT (Figure 6.3) . 168

6.11 Baseline model: Each plot is the value contributed by each token,

summarised by layer. The value is averaged across all attention

heads, then averaged across the last dimension. The x-axis is the

timestep for an evaluation run and the y-axis is the averaged value.

The value is separated by token type with a different colour for

states, RTGs and actions. 174

xx

6.12 Multiple Action Tokens (MAT) model - no State Action:

Each plot is the value contributed by each token, summarised by

layer. The value is averaged across all attention heads, then aver-

aged across the last dimension. The x-axis is the timestep for an

evaluation run and the y-axis is the averaged value. The value is

separated by token type with a different colour for states, RTGs

and actions. 175

6.13 M-SAT model: Each plot is the value contributed by each token,

summarised by layer. The value is averaged across all attention

heads, then averaged across the last dimension. The x-axis is the

timestep for an evaluation run and the y-axis is the averaged value.

The value is separated by token type with a different colour for

states, RTGs and actions. 176

6.14 The first row of plots is the baseline, the middle row is MAT and

the last row is M-SAT. Each plot is summary over all layers of the

value on the Left and the attention scores on the Right. The x-axis

is the timestep for an evaluation run and the y-axis is the averaged

value (Left) or attention score (Right). 178

6.15 Each plot displays the attention rollout (Abnar and Zuidema, 2020)

for each model: baseline (Top), MAT (Middle) and M-SAT (Bot-

tom). The rollout is calculated by fusing attention heads using the

mean. The x-axis is the timestep for an evaluation run and the

y-axis is the attention rollout value. 180

6.16 Original images (top row) and EigenCAM images (bottom row)

samples displaying the model’s focus when enemy is located in the

image. 182

xxi

6.17 Original images (top row) and EigenCAM images (bottom row) for

the baseline model at the end of the corridor, where the agent loses

track of the goal but somehow achieves the goal 182

6.18 Original images (top row) and EigenCAM images (bottom row) for

the M-SAT model at the end of the corridor, where the agent keeps

track of the goal until it is reached 183

6.19 Sample CircuitsViz output showing each of 8 attention heads in the

upper section and all tokens in the sequence in the lower section. All

timesteps have 3 modes, for example timestep 0 has 3 tokens, viz.

r0-RTG, s0-state and a0-action. In the Figure the token a19 is se-

lected resulting in several states (s8,s13,s14,s15,s16,s17) highlighted

according to the amount of attention contributed to the action by

the head (where each head is denoted by a different colour). The

intensity of the highlighted tokens convey the amount of influence

other tokens in the sequence have on each other. 184

6.20 Switching the focus from Destination to source and selecting RTG

r1 shows the influence r1 has on other tokens. Note in this example

the tokens are from a multi-token action model where, for example,

the action for timestep 0 is represented by [a10, a20, a30, a40] and

timestep 20 is [a120, a220, a320, a420] 184

6.21 The top snippet is from Attention layer 1, head 0 and the bottom

snippet from layer 2, head 0 - both show the influence of state s21 on

future tokens, including individual action tokens. Refer to Figure

6.22 to view a sample of the associated states from this evaluation

trajectory. 185

6.22 states from ViZDoom dataset, supporting attention heatmap snip-

pets (Figure 6.21) from left to right, top to bottom: S1, S2, S5, S7,

S16, S21, S31, S32, S33, S35, S40, S44 186

xxii

6.23 Top to bottom: L3H0, L7H5, L7H7 187

6.24 Left, top to bottom: L1H0, L3H0, L2H7, L5H7. Right, top to

bottom: L6H4, L6H4 . 188

6.25 Transformer loss curve showing the initial drop corresponding to

early learning rate increase . 189

xxiii

List Of Acronyms

AI Artificial Intelligence . 65

API Application Programming Interface 138

APPO Asynchronous-PPO . 163

BC Behaviour Cloning . 45

BERT Bidirectional Encoder Representations from Transformers 49

CASC Concurrent Action Structure using Clustering 73

CoT Chain of Thought . 145

CNN Convolutional Neural Network . 27

DC Deadly Corridor . 156

DL Deep Learning . 27

DQN Deep Q-Network . 4

xxiv

DRL Deep Reinforcement Learning . 15

DT Decision Transformer . 141

GAE Generalised Advantage Estimate . 35

GAN Generative Adversarial Network . 67

GANs Generative Adversarial Networks 64

GN Graph Network . 66

GPI Generalised Policy Improvement . 39

GPT Generative Pre-trained Transformer 4

GPU Graphics Processing Unit . 48

HGS Health Gathering Supreme . 157

ICL In-Context Learning . 145

ICM Intrinsic Curiosity Module . 53

xxv

IL Imitation Learning . 44

IRL Inverse Reinforcement Learning . 45

KL Kullback Leibler divergence . 39

LLM Large Language Model . 183

LLMs Large Language Models . 4

LSTM Long-Short Term Memory . 48

MARL Multi-Agent Reinforcement Learning 41

MAT Multiple Action Tokens . 168

MCMC Markov Chain Monte Carlo . 59

MDP Markov Decision Process . 16

ML Machine Learning . 27

MLP Multi-layer perceptron . 27

xxvi

M-SAT Multi-State Action Tokenisation 139

MSE mean square error . 29

NN Neural Network . 27

PCA Principal Component Analysis . 94

PE Positional Encoding . 167

POMDP Partially Observable Markov Decision Process 17

PPO Proximal Policy Optimisation . 4

RL Reinforcement Learning . 1

RLHF Reinforcement Learning from human feedback 4

RN Relational Network . 65

RNN Recurrent Neural Network . 27

RTG return-to-go . 141

xxvii

SARSA State Action Reward State Action 25

SF Sample Factory . 163

SOTA State of the Art . 49

SVD Singular Value Decomposition . 127

TD Temporal Difference . 23

TRPO Trust Region Policy Optimisation 33

UVFA Universal Value Function Approximators 55

VAE Variational Autoencoders . 65

xxviii

Chapter 1

Introduction

Reinforcement Learning (RL) is a framework for learning how to make decisions

while interacting with an environment and receiving a reward feedback signal. It

leads to the development of an autonomous agent that is knowledgeable about

the specific environment and can make decisions about how to behave in the en-

vironment. To make this a little more concrete consider a robotic maid: the

environment could take the form of a kitchen with utilities and utensils and the

agent will interact with the environment until it is able to cook a meal, wash dishes

or achieve some specified goal. The activities are known as tasks and actions are

taken to perform each task. A decision is taking an informed action based on a

given situation, while working towards completing the task. Feedback in the form

of rewards is available from the environment, sometimes frequent but often sparse,

for instance washing dishes might provide a reward signal per dish washed but

cooking a meal could provide a reward only at the end, once the meal is fully

prepared. The RL framework (Sutton and Barto, 1998b) formalises these con-

cepts and provides the basis for developing algorithms to train the aforementioned

agents in environments with a multitude of complexities.

Figure 1.1 illustrates the core elements of the RL framework applied to a simple

1

Page 2

Figure 1.1: An overview of the RL process, with the agent interacting with a maze envi-
ronment. The environment is characterised by a reward function and a transition function.
The agent is characterised by a policy, which can generate the actions [Up, Down, Left,
Right]. The current policy’s action for each state is displayed on the maze for clarity.
Likewise, the reward for each state in the maze is illustrated on the right. Source: (Silver,
2015)

2

Page 3

maze environment. In this image, the agent is represented by a policy π and the

environment consists of a reward function and a transition function. The agent’s

policy is trained by interacting with the environment, starting at an initial state

or observation. Observations refers to the information the environment provides

about the state at each timestep. In this case the observations will be the agent’s

position in the maze. Observations provide insight into the state, but the state

fully describes the environment and may have additional information. In this

environment, the states and observations are the same.

In the maze, the start state is clearly defined, and the agent needs to make

the first decision, viz. which action to take at that state. The policy is used to

make decisions, mapping states to actions, and controls how the agent behaves.

The decision or action is sent to the environment which responds with the reward

feedback signal and an observation of the new state. Initially, the policy is probably

bad at solving the maze, however an RL algorithm will update the policy over

time and eventually reach a better policy. The best policy is known as the optimal

policy, and the policy shown in the image is optimal for the maze, with the actions

for all states directing the agent towards the goal state. In the maze environment

the states will be the co-ordinates of the agent, the actions are discrete (where

an integer is associated with each individual action) and rewards are scalar and

dense, with a reward on every step.

Defining the environment is important and requires domain knowledge to cor-

rectly determine the observations, actions and rewards that the agent will en-

counter and the tasks to solve. Observations could also be images from a video

game, images from an MRI scan, joint information from a robotic arm and so on.

The reward signal is very important in RL; providing too much information can

be misleading but too little information makes the problem harder to solve. The

reward signal allows complex behaviour to emerge in the trained agent.

RL is used to develop agents for a variety of environments, however it is proba-

3

Page 4

bly most famous for achievements in games such as Chess, Go, Atari and StarCraft

II. These game environments are complex and can be useful playgrounds for al-

gorithmic development, within which real-world features may be simulated and

problems tackled. The potential for RL is still being realised as it is gradually

used for problems that are too complex to model, control or programmatically

manage. For example a robotic simulation environment used to develop algo-

rithms and train agents can be particularly beneficial if the physical robots are

expensive or potentially dangerous. Areas where it has been applied include mi-

crochip placement (Mirhoseini et al., 2020), optimising data-center cooling (Luo

et al., 2022) and medicine (Raghu et al., 2017; Fatemi et al., 2021; Yu et al.,

2019). More recently RL was applied to Large Language Models (LLMs) to incor-

porate rewards and human feedback into the language generation process, known

as Reinforcement Learning from human feedback (RLHF). This has led to ex-

ceptional improvements in the performance of LLMs and the proliferation of the

Generative Pre-trained Transformer (GPT) (Wikipedia contributors, 2023a) range

of models.

Modelling dynamic systems is essentially hard, so any algorithm that encapsu-

lates the elements for modelling, or “knows how to model”, will be useful and RL

algorithms fall into this category. These elements mean that, if the environment

is well defined, a set of generic RL algorithms can be applied to vastly different

environments solving problems that seem on the surface very different from each

other. For instance the Deep Q-Network (DQN) algorithm (Mnih et al., 2013)

used to solve Atari has also been applied to analysing cancer data and generating

medical dosing strategies (Yu et al., 2019). The collection of available generic RL

algorithms has become quite extensive, including actor-Critic algorithms such as

Proximal Policy Optimisation (PPO) (Schulman et al., 2017), DQN (Mnih et al.,

2013) and variants, and Transformer-based algorithms (Agarwal et al., 2023). Like-

4

Page 5

wise the available techniques in RL have expanded to include, amongst others:

learning from the most recent interactions versus learning from batched data;

learning from interactions with the environment versus learning from experts; in-

centivising learning using intrinsic rewards or auxiliary signals and optimising

exploration techniques.

Any generic framework that can tackle a wide variety of problems is subject

to challenges specific to the nature of the framework and RL is no different. The

agent needs to interact with the environment to learn how to behave, guided by

pre-defined task-reward definitions. A behaviour policy needs to learn what ac-

tions are best to take for every state, mapping states to actions. Considering the

robotic maid scenario once more, the untrained agent needs to implement an ex-

ploration strategy to experience as many states (locations, utilities, etc) as possible

and determine which actions are effective in those states (place clothes in washing

machine, wash dishes, stack dishes, etc.) Exploration ensures the agent experiences

many state-actions and learns knowledge for a more generalised policy. Generali-

sation is a concept that refers to how well a trained policy performs when tested

on new tasks or environments that differ from the training task or environment.

For instance different types of plate should not affect the robot maid, because its

internal representation of plates is general enough to manage this slight difference.

As RL is reward driven, the agent will receive little reward just for exploration

and needs to balance exploring with exploiting the knowledge it has gained, using

it’s policy to make decisions and gain rewards. Say the house is a hotel with

many rooms, similar but in slightly different states of disarray; the size of the

state-action space has increased and this directly impacts exploration. The curse

of dimensionality (Bellman, 1954) has a high impact in RL where increases in

the state and/or action space makes learning harder. Ideally the similarity of

tasks should mitigate this increase in problem complexity but it turns out that

training an agent to generalise over many different tasks successfully requires a

5

Page 6

significant amount of diverse interaction with the environment and the assistance

of appropriate strategies for exploration and updates. The observation space can

be large especially if it is image based, so techniques to reduce dimensions and

improve representations are necessary, increasing model size. Larger models can

require significant compute time taking days or months of training, all of which

makes the attainment of a general RL agent non-trivial.

So RL algorithms are generic and can solve diverse problems. The downside

is that applying RL to real world problems is complicated by many factors from

the dimension and visibility of the observation space to balancing exploring and

exploiting, all the while updating a policy towards the goal of maximising returns.

This statement hides many details: efficiently exploring the state-action space is

often non-trivial and sometimes task dependent; algorithms require tuning to pro-

vide the best performance; reward sparsity can massively complicate the above.

Whether the agent has full visibility of the environment or partial can likewise

extend the training process. Unless the agent is trained over a diversity of tasks

to be as generalisable as possible, the agent is often over-specialised for the en-

vironment and/or task such that a change of scenery is enough to make training

obsolete. Given this, any optimisations that simplify training are welcome.

This dissertation contributes to the research efforts focused on the action space,

in particular the multi-discrete or concurrent action space, proposing methods for

leveraging structural information within the action space to improve the efficiency

of simultaneous action selection. In the multi-discrete action setting, the agent

selects multiple discrete actions per timestep as opposed to a single action per

timestep. Multi-discrete actions are commonplace in RL environments, but the

action space increases exponentially with the number of concurrent actions and

problem complexity increases with the size of the action space. This makes the

mapping at the algorithmic level from state to action more complicated, and en-

tangled, which is often managed by not focusing on the individual discrete actions,

6

Page 7

Figure 1.2: Image demonstrating the difference between discrete and multi-discrete
actions. In the top image the robot maid composes multi-discrete actions from an
action space of individual discrete actions. In the bottom image the robot maid
selects a discrete action from an action space of discrete actions. In the bottom
image, the action space is expanded to hold all possible actions the robot can take.

7

Page 8

but on the combined action. To make the multi-discrete action more concrete, say

the robot maid needs to lift a vase off a table to dust. It could move the vase

then dust as two separate actions, but being a superior robot maid with multiple

limbs it can perform multiple actions at once, in this case lifting with one limb

and dusting with the other. As illustrated at the top of Figure 1.2 the robot could

compose the action [[Lift], [Dust]] when needed, or alternatively select the single

[Lift, Dust] action from the action space as shown at the bottom of Figure 1.2.

There are disadvantages to both approaches; for example if the number of individ-

ual actions is large, the action space in the bottom image will grow faster, however

learning to compose actions is non-trivial for the RL agent.

Conventional approaches to solving problems in multi-discrete action spaces

(Kanervisto et al., 2020) tend to treat the multi-discrete action as a single entity

and not as individual discrete actions that can interact and have relationships with

each other. This is partly as a result of the nature of the most commonly used

RL algorithms and the desire to reduce the complexity of training where possible.

In the example above, “lift and dust” appears as a single action. The downside

of this is if all actions are expanded in this way, the action space is still large,

so supplementary techniques are adopted such as eliminating useless combinations

(Zahavy et al., 2018) or embeddings (Chandak et al., 2019), primarily to reduce the

size of the action space. In this dissertation the benefits of explicitly considering

individual actions in multi-discrete settings and exploiting the potential relations

between them is explored. This is limited to environments where action relations

are possible, such as Minecraft (Fan et al., 2022) and ViZDoom (Kempka et al.,

2016). The focus is first to identify and learn relational structure from actions

and second to leverage this information in the action selection process. Relational

structure refers to how actions interact with each other, for example, synergistic

or contradictory actions.

In the real world, actions interact in most multi-discrete environments, from the

8

Page 9

low level basic coordination of limbs while walking to high level actions like tying

shoelaces, a multi-drug treatment plan for patients, twisting the lid on/off a jar or

opening a door and walking through it. In the RL world where the agent has to

select multiple actions from a pool of actions, determining relationships between

actions is a complex task. The task of the agent is already complicated and

resource intensive: learning from interactions, balancing exploring and exploiting,

updating a policy at the same time as using it to generate future learning data are

standard aspects of training agents. Often the focus is on the observation space or

the learning signals and the action space is less explored. An approach that can

learn relational structure and use this to capitalise on combinations of actions that

interact would speed up learning and enhance the agent’s capacity to generalise

to new objects and tasks.

The specific research questions in this dissertation focus on learning relational

structure in multi-discrete action spaces to improve the agent’s ability to solve a

task, with minimal impact on the RL algorithm. Environments are increasingly

complex in nature, with vast state spaces and richly connected action spaces. Mul-

tiple actions per timestep increases the size of the action space and an increased

space requires more exploration and longer training times. To deal with the in-

creased problem space, complex modellers and large amounts of computing power

are used to train agents in these environments, however there are problems as-

sociated with using such systems. Models with a large learning capacity need a

lot of diverse data to prevent the model from overfitting (Kirk et al., 2023). The

model must have access to as much of the problem space during training as pos-

sible which is where both task diversity and exploration strategies for the space

become crucial.

The review of literature in the area of multi-discrete or concurrent action spaces

in RL environments reveals that few works attempt to exploit potential relational

structure between the individual discrete actions. The few works that do focus

9

Page 10

on the multi-discrete action space are limited by the availability of expert data

(Harmer et al., 2018; Tennenholtz and Mannor, 2019) or some form of manual

manipulation or decomposition of the action space (Sharma et al., 2017; Jain

et al., 2022). It turns out that generalisation is a problem in most of these works

(Sharma et al., 2017; Tennenholtz and Mannor, 2019; Jain et al., 2022; Li et al.,

2023b; Harmer et al., 2018). In general, there is no established approach in RL for

extracting and utilising action relationships. While there is some work on applying

relational reasoning to complex tasks in RL, most of these works target the state

or task space (Zambaldi et al., 2018; Battaglia et al., 2018; Garnelo et al., 2016;

Hill et al., 2019) and not the multi-discrete action space. RL algorithms like PPO

perform independent action sampling and do not exploit relational reasoning in the

multi-discrete action space. Most work in multi-discrete action spaces expands the

space to include all combinations of the discrete actions, preferring to manage the

growth of the action space. This, however, creates exploration and convergence

issues. The most common methods for dealing with exploration include intrinsic

signals and count-based bonus methods (Pathak et al., 2017; Tang et al., 2017)

that ignore action structure. Multi-task methods that transfer task-agnostic prior

knowledge (Rosman and Ramamoorthy, 2012) could be effective in many situa-

tions however no research in the multi-discrete action space was found.

Some of the key research challenges that this thesis is aiming to address includes:

• Multi-discrete action spaces are common in RL environments, but algorithms

typically do not try to exploit potential relational structure between the indi-

vidual discrete actions. This misses opportunities for more efficient learning.

• Large action spaces pose exploration and convergence issues, and naively ex-

panding multi-discrete spaces exacerbates these challenges. Action structure

could inform more principled exploration.

10

Page 11

• There is no established approach in RL for extracting and utilising action

relationships in online or offline settings. Prior techniques rely more on

manual factorisation or offline expert data.

• Model-free RL algorithms like PPO perform independent action sampling,

making it difficult to directly capture action dependencies. The algorithms

require modifications to enable relational learning.

• Complex neural network policies in RL are difficult to analyse in terms of

what relational concepts are learned and how these aid task performance.

Transparency is limited.

The overall aim of this thesis is to develop techniques that enable RL agents to

extract and exploit relational attributes in multi-discrete action spaces. Designing

and assessing techniques to handle multi-discrete action dependencies, where in-

dividual actions can have relations, poses algorithmic, architectural and empirical

challenges that this thesis works to address. Both online and offline RL algorithms

are considered in the model-free space. Specifically, the objectives are:

• Learn task-agnostic action structure via multi-task training and transfer the

relational attributes to improve exploration efficiency in new tasks (Chapter

4).

• Develop an online relational auxiliary module for PPO that reinforces bene-

ficial action relationships during training, speeding up convergence (Chapter

5).

• Apply Decision Transformers, which specialise in detecting relationships in

sequential data, to multi-discrete actions by expanding actions into multiple

tokens. Assess whether this multi-token approach improves performance and

attention to action structure (Chapter 6).

11

1.1. THESIS ORGANISATION Page 12

This thesis hypothesises that increasing the visibility of individual actions and

providing explicit mechanisms to exploit relational insights will enhance sample

efficiency and task performance. Both online and offline model-free methods are

explored. The evaluation metrics focus on improved convergence times, attention

patterns, and generalisability.

1.1 Thesis organisation

This thesis studies mechanisms for learning and leveraging relational structure in

multi-discrete action spaces in an RL context. Three different mechanisms are

presented that consider the problem in specific RL settings with the underlying

goal of improving the performance of the algorithm by better leveraging action

structure.

The thesis is organised as follows:

• Chapter 2 is a summary of RL background information.

• Chapter 3 reviews the literature in the action structure and representation

space, building the case for the action structure problem.

• Chapter 4 considers the problem of learning and transferring task-agnostic

relational action structure as prior knowledge to improve exploration in the

multi-task, multi-discrete action space context. The proposal is to exploit

the multi-discrete nature of the action space to better inform exploration

using action priors. More concretely, Chapter 4 uses a multi-task setting to

demonstrate that task-agnostic relational action structure can be revealed

by bottlenecks. Bottlenecks are states that are an essential part of the task

solution, viz. a key decision state. Identification of key actions in turn

highlights key relationships and the relationships extracted are transferred

to future tasks, increasing the exploration efficiency of the agent on the new

12

1.1. THESIS ORGANISATION Page 13

tasks significantly and demonstrating an element of generalisation. This

approach focuses on context-free actions, not associated with any particular

state but generally useful in the environment. This work was accepted for

publication and presented at a conference 1.

• Chapter 5 targets the relational action problem in the online RL setting,

specifically how to capture action relationships in algorithms like PPO. The

proposal in this chapter is to use an auxiliary, self-supervised signal and

objective loss to train alongside PPO that contributes towards relationally

shaping the action representation. While the approach in Chapter 4 was

effective, the method was limited to small environments and relied on a 2-

phase approach, namely extensive task generation and pre-training to extract

the action structure before it could be transferred and applied to new tasks.

In this chapter, a relational auxiliary signal derived from positive transitions

was used to shape the agent policy online. Results indicate the shaping

provided by this component was effective and achieved earlier convergence

than the baseline algorithm.

• Chapter 6 tackles the relational action problem in a multi-discrete offline RL

setting, using the Transformer (Vaswani et al., 2017) to exploit action rela-

tionships. A multi-token expansion with state associations is proposed for

better transparency and interpretability at the multi-discrete action level.

This chapter considers using attention models for RL, in particular the

Transformer model which has demonstrated proficiency for learning relation-

ships in sequential data. This aligns with the nature of the data generated

in RL. This chapter applies the Transformer model to the problem of learn-

ing action structure and relationships in multi-discrete action settings, and

focuses on techniques for increasing action communication. The key idea is
1Perusha Moodley, Benjamin Rosman, and Xia Hong. 2019. Understanding structure of

concurrent actions. In International Conference on Innovative Techniques and Applications of
Artificial Intelligence. Springer, 78–90

13

1.2. SUMMARY Page 14

to increase action interaction and information exchange in Decision Trans-

formers (Chen et al., 2021), a variant of the Transformer model adapted for

RL. Results show an improvement in overall performance. An analysis of

the inner workings of the Decision Transformer is attempted to determine

where the performance gains originate using several techniques, including

Mechanistic Interpretation (Elhage et al., 2021).

• Chapter 7 concludes with a discussion of findings and future research direc-

tions stimulated by this dissertation.

1.2 Summary

Reinforcement learning is a powerful and generic framework for developing au-

tonomous agents that can learn complex behaviour by interacting with environ-

ments and receiving feedback signals. Challenges arise, however, in applying RL

to real-world problems, including the curse of dimensionality from large state and

action spaces, difficulties balancing exploration and exploitation, and issues gen-

eralising learned policies across diverse tasks. This thesis focuses on multi-discrete

action settings where an agent selects multiple discrete actions per timestep, hy-

pothesising that explicitly modelling relational structure between individual ac-

tions can enhance sample efficiency, task performance and generalisability. Three

mechanisms are studied across online, offline and multi-task RL settings - spectral

clustering for pre-training relational priors, an auxiliary shaping module for on-

line learning, and multi-token actions to improve relational encoding. Evaluation

methods assess convergence rates, attention analysis, and transfer learning capa-

bilities. By increasing visibility into action dependencies and providing algorithms

with the ability to leverage this relational information, the goal is developing more

adaptable RL agents suited to complex, interactive environments.

14

Chapter 2

Preliminaries

2.1 Introduction

This chapter provides an overview of the theory and frameworks used in this

dissertation. It includes a brief overview of the RL framework (section 2.2) and

outlines the two most commonly used algorithmic approaches in RL viz. value-

based algorithms (section 2.3) and policy-based algorithms (section 2.5), including

extensions of these algorithms to Deep Reinforcement Learning (DRL), viz. deep

Q-Networks (Mnih et al., 2013) (section 2.4.1) and proximal policy optimisation

(Schulman et al., 2017)(section 2.5.1). A brief overview of transfer in RL is included

in section 2.6, followed by an introduction to using auxiliary signals (section 2.7),

supporting Chapter 5. Sections 2.8 and 2.9 provide some foundations to support

Chapter 6. Finally section 2.10 provides an introduction to transformer models

(Vaswani et al., 2017) used as the basis for Decision Transformers (Chen et al.,

2021).

2.2 The RL framework

The classic RL framework (Sutton and Barto, 1998a; Alekh et al., 2022) describes

how an agent interacts with an environment and learns a policy for how to behave

15

2.2. THE RL FRAMEWORK Page 16

or take actions within the environment. The framework is based on a Markov Deci-

sion Process (MDP) (Bellman, 1954) formulation for∞-horizons with discounting

defined by the tuple:

M = (S, A, T, R, γ) where

S is the space of all possible states the agent can take in the environment,

A is set of n primitive actions such that ai ∈ A,

T is the transition function T : S×A×S → [0, 1] that defines the dynamics of the

environment, i.e. how to move through the environment from state to state. The

transition T (s′|s, a) is the probability of moving from a state s to the next state

s′ after taking action a,

R is the reward function R : S × A→ R such that R(s, a) is the expected reward

received when taking action a at state s, and

γ ∈ [0, 1] is a geometric discount factor used in the return over the ∞-horizon.

The ultimate aim of the agent is to learn a behaviour policy, denoted as π :

S × A → [0, 1] where π(s, a) is the probability of selecting an action a while in

state s.

The agent begins an episode or trajectory, τ , at the initial state, denoted s0,

selects an action a0 according to the policy π(s0) and transitions to the next state

according to the transition function: T (s1|s0, a0). A reward, r0 is received from

the environment based on the reward function: R(s0, a0). The process repeats

with the next state, s1, used to select the next action, a1, and so on, generating a

trajectory with a horizon. The horizon, H is the length of the episode or trajectory.

In practice, the RL horizon is finite, however the core RL framework is based on

discounted ∞-horizon MDPs, described in more detail by Alekh et al. (2022).

16

2.2. THE RL FRAMEWORK Page 17

2.2.1 Partially Observed Environments

The RL environments referenced in this dissertation are described as partially ob-

served, i.e. some aspects of the environment are not visible to the agent. In a

Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998)

the agent cannot directly observe the underlying state of the environment and

instead receives observations. States fully describe the environment, while obser-

vations provide partial or noisy information about the state. Most RL algorithms

applied to the POMDP rely on approximations and assumptions, such as assum-

ing observations provide enough information to identify the underlying state and

learning a compressed representation of the state that is sufficient for policy opti-

misation.

More common is the use of memory-based architectures. As the current obser-

vation does not fully describe the underlying state, the POMDP requires a memory

of past observations to find optimal policies. Methods that can process sequences

of history or utilise memory are commonly adopted (Ni et al., 2022) to solve such

environments in RL. The Decision Transformer is another architecture that can

process sequences of historical data to learn state representations based on past

observations, for the purpose of guiding the agent in a POMDP. This topic is

described further in section 2.10.

2.2.2 Action Spaces

This dissertation focuses on a distinctive type of action, the multi-discrete ac-

tion, so a brief overview of the most common types of action spaces used in RL

follows, including discrete, multi-discrete, continuous, hybrid and parameterised

action spaces. This dissertation will only consider discrete and multi-discrete ac-

tion spaces.

17

2.2. THE RL FRAMEWORK Page 18

Discrete Actions: The discrete action is arguably the simplest form of ac-

tion, where each action belongs to a countable set of independent actions a ∈

{0, 1, 2,, N − 1} and is an integer, with N possible actions to choose from. The

integers represent actual actions, for example the agent can select an integer repre-

senting the following actions in the environment: {0−Up, 1−Down, 2− Left, 3−

Right, 4 − Attack}. In the discrete action space only one action is selected per

timestep and it is represented as a one-hot vector.

Figure 2.1: Keyboard mappings for an interactive game, demonstrating
how multi-discrete actions may be generated. Pink keys are navigation
actions, purple keys are weapons related actions and blue keys are other
actions. Any number of these keys may be selected together in a timestep,
resulting in a multi-discrete action.

Multi-Discrete Actions: The multi-discrete action is a vector of discrete ac-

tions: a = (a1, a2, ..., an) where ai ∈ {0, 1, ..., Ni} for i = 1, 2, ..., n. In each

timestep the agent composes an action by selecting actions from subsets of discrete

actions, for example in the multi-discrete environment illustrated in Figure 2.1 an

agent could select the multi-discrete action [A− Left, W − Forward, C − Crouch]

where:

Left ∈ {A− Left, D − Right}, Forward ∈ {W − Forward, S − Back}, and

Crouch ∈ {E − Interact, C − Crouch, Space− Jump}.

Multi-discrete actions are managed in various ways; two common approaches are

18

2.2. THE RL FRAMEWORK Page 19

to either model each discrete action separately and use categorical distributions to

generate multi-discrete actions or to convert the multi-discrete action into a single

discrete action (Kanervisto et al., 2020). The size of the discrete action space is the

number of possible unique action combinations that can be taken. As the number

of actions that can be taken simultaneously increases, the number of dimensions

of the action space increase. Consequently the size of the action space increases

exponentially with the number of discrete actions.

Continuous Actions: In continuous action spaces, the action a ∈ R is a real

number or real vector. This is the most common type of action in the real world,

for example actions that represent the speed or angle of movement or any kind of

fine-grained control action.

Hybrid actions and Parameterised actions: In real-world scenarios com-

binations of discrete and continuous actions occur frequently, and are managed in

RL in two slightly different formats, namely hybrid actions and parameterised ac-

tions. In hybrid action spaces both discrete and continuous components exist and

the agent’s policy will be required to select both the discrete action and the contin-

uous parameters. In parameterised action spaces, discrete actions have associated

continuous parameters, but these are kept distinct from the discrete actions. The

agent first selects the discrete action, then the continuous parameters. For more

details on hybrid and parameterised actions the reader is referred to Delalleau

et al. (2019) and Masson et al. (2016).

Action Relationships RL agents explore both the state space and the action

space; the total search space is the product of the two spaces. As either space

becomes large it becomes less practical for the agent to explore the whole space.

There will, however, normally be relationships between actions, for example:

19

2.2. THE RL FRAMEWORK Page 20

• actions which to some degree synergise (enhance the effects of each other)

e.g. Forward and Run

• actions which conflict with each other e.g. Forward and Backwards

• actions which in some contexts can replace each other e.g. Turn Left and

Strafe Left (either can be used to aim at an enemy to the left of center, but

only one will look around a corner)

These relationships can be treated as structure within the action space. As de-

scribed above, as the number of discrete actions taken in a multi-discrete environ-

ment increases, the size of the action space can quickly become large. A hypothesis

of this thesis is that learning the structure of the action space can help a model

explore such a large action space more efficiently.

2.2.3 Model-Free and Model-Based RL

RL algorithms update the behaviour policy from an initial policy to an optimal

version of the policy that produces the optimal or best action for a given state, and

this is true for all states. There are multiple approaches to determine the optimal

policy, and various algorithms within each approach. A brief characterisation of

the two main branches, model-free and model-based, is provided below.

The model in the context of model-free or model-based RL refers to the func-

tions that describe the environment, viz. the transition and reward functions.

When the model is known, i.e. given the transition and reward functions of an

environment, it is possible to determine the optimal policy using, for example,

a dynamic programming algorithm (Bellman, 1954). When the model transition

and reward functions are unknown, the model-free approach generates data by

interacting with the environment which it uses at intervals to update its policy

in an iterative process. While the aim of model-free approaches is to learn the

20

2.2. THE RL FRAMEWORK Page 21

behaviour policy, in the model-based approach the aim is to first learn a represen-

tation of the model from interactions, then use the model to solve the environment.

Model-based RL is not in scope in this dissertation where model-free approaches

are used.

2.2.3.1 Model-Free RL

There are a few elements to consider in model-free learning, including data collec-

tion for training an agent, the functions that represent the agent and the algorithms

used to learn these functions.

Consider an agent that is initialised in an environment, with a task defined

as follows: navigate a room and find an object, for a reward of 10 points. The

environment is initialised and provides the agent with an initial state s0. The

agent selects an action based on its policy and sends this to the environment,

that responds with the next state, s′, the reward and the done-flag that indicates

if the episode has terminated. This interaction is described by a tuple of data,

(st, at, st+1, rt) where st+1 ≡ s′ and st ≡ s, and is known as the trajectory tuple

at timestep t. The agent will continue to take actions, generating a trajectory of

data points, until the goal is reached, the agent is destroyed or the episode times

out. In model-free RL, this interaction is used to derive a policy; when a value

function is learnt first, this is known as a value-based method.

In value-based methods the agent learns a value function such that, given any

state, the value at that state is an indicator of how good or bad it is to be in that

state. The value of a state is defined by Equation 2.1 as the expected discounted

return from a given state s, taking actions based on the policy π from that state

onwards and summing the discounted rewards:

V π(s) = E
[∞∑

t=1
γt−1rt | s1 = s, π

]
(2.1)

21

2.3. INTRODUCING THE Q-VALUE FUNCTION: Page 22

The Bellman policy evaluation Equation 2.2 (Bellman, 1954; Russell and Norvig,

2010) expands the expected return into a more useable form, given the reward

function R(s, π(s)) and the transition function P (s′ | s, π(s)). The reformulated

equation introduces a relationship between the values of the current state s and the

next state s′ that enables a recursive iterative optimisation algorithm like dynamic

programming to update the value function towards an optimal solution.

V π(s) = R(s, π(s)) + γ
∑
s′∈S

P (s′ | s, π(s)) V π (s′) (2.2)

The Bellman Optimality Equation 2.3 (Sutton and Barto, 1998b; Alekh et al.,

2022) expands the definition above to find a stationary and deterministic (but not

unique) policy that is optimal for all states. Stationarity refers to the dynamics,

with the transition and reward functions remaining static over time. The non-

stationary condition is more generalised and complex to solve and is out of scope

in this document. A deterministic policy will always produce the same actions for a

given set of states while a stochastic policy is impacted by uncertainty that results

in a potentially different outcome each time. While Bellman policy evaluation

is about prediction, i.e. determining the value of policies, Bellman optimality is

about control, i.e. finding the optimal policy. Note the ∗ denotes the optimal

value function.

V ∗(s) = max
a∈A

(
R(s, a) + γEs′∼P (s,a) [V ∗ (s′)]

)
(2.3)

2.3 Introducing the Q-value function:

The value function in Equation 2.1 may be expanded to be more granular at the

action level, viz. the action value function, Q(s, a), defined as the expected value

of being at a state s, taking action a and then following the policy π to the end of

the trajectory, defined in Equation 2.4.

22

2.3. INTRODUCING THE Q-VALUE FUNCTION: Page 23

Qπ(s, a) = E
[∞∑

t=1
γt−1rt | s1 = s, a1 = a, a2:∞ ∼ π

]
(2.4)

This leads to the Q-value form of the optimality Equation 2.5 from which it is

easier to derive the optimal policy, Equation 2.6, because it is at the action level

and the argmax of the Q-value selects the optimal action.

Q∗(s, a) = R(s, a) + γ E
s′∼P (s,a)

[
max
a′∈A

Q∗ (s′, a′)
]

(2.5)

π∗(s) = argmax
a′∈A

Q∗ (s, a) (2.6)

2.3.1 Temporal Difference (TD)

From these base definitions a number of classic value-based algorithms emerge,

including the commonly used Q-learning algorithm, introduced by Bellman (Bell-

man, 1954). A key element in value-based model-free RL is the temporal difference

concept, where the value function is re-written in the form shown in Equation 2.7.

In this equation the value is updated by taking a step, obtaining a reward and

adding this to the estimated value of the next state. The reward plus value of the

next state, r + γV (s′), is known as the target and may be viewed as the more

up-to-date value of the current state V (s), having taken a step and received real

feedback from the environment. The term (r + γV (s′)− V (s)) is known as the

Temporal Difference (TD)-error, the difference between the current value and the

most up-to-date value of the state. The TD-error is used to update the current

value V (s) towards the target.

V (s)← V (s) + α (r + γV (s′)− V (s)) (2.7)

The value estimates are based on taking steps in the environment and making

updates to the value function from samples in an iterative process. The agent

23

2.3. INTRODUCING THE Q-VALUE FUNCTION: Page 24

interacts with the environment, collects a tuple of data (s, a, s′, r) and uses the

Bellman equations to update the estimated value for the current state, s. The

value at the next state, s′, is also an estimate, based on the previous iteration.

Using an estimate of the value function as a target is referred to as bootstrapping.

2.3.2 Exploration

In model-free value-based methods, the quality of the estimated value function

is based on the quality of the data collected. Specifically there needs to be a

mechanism for ensuring that as much of the state-action space is experienced as

possible to ensure the value function is representative of the space. In RL this

process is known as exploration. Exploration is a function of the state-action

space that makes it challenging in environments with large discrete state-action

spaces or continuous spaces where it is impossible to experience all possible states

and actions. Exploration in RL is a significant field of study in itself (Kuleshov

and Precup, 2014; Yuan et al., 2018; Tang et al., 2017; Ecoffet et al., 2021) and

will be referred to again later with respect to transfer in a multi-task context.

Once the Q-function is a fair representation of the value of the state-action

space, it is used to make optimal decisions for acting in this space. Establish-

ing when the Q-function is good enough introduces the so called exploration-

exploitation dilemma: while initially the focus should be on exploring as much

of the space as possible, over time exploration should be reduced in favour of ex-

ploiting the knowledge learnt. A commonly used exploration method is ϵ-greedy

exploration (Sutton and Barto, 1998b) where the ϵ is the percentage of exploration

applied in the algorithm and (1−ϵ) is the percentage of exploitation. ϵ is generally

initialised to a high value (90 − 100%) and annealed over the course of training

to close to 0, where exploitation takes over almost completely. While ϵ-greedy is

a very basic approach to exploration, it is proven to be a very effective method

24

2.3. INTRODUCING THE Q-VALUE FUNCTION: Page 25

(Kuleshov and Precup, 2014).

2.3.3 Value Based algorithms

This section describes some of the classic model-free value-based algorithms, in-

cluding Q-learning, State Action Reward State Action (SARSA) and TD-λ (Sutton

and Barto, 1998b). These three algorithms cover a variety of the classic RL prob-

lem space: Q-learning is an off-policy algorithm while SARSA is on-policy and

TD-λ capitalises on the powerful temporal difference methods. Q-learning is used

in this dissertation and is expanded on further below.

The Q-function update equation for SARSA (Equation 2.8) is derived in the

same way as the value function update in Equation 2.7, but at the state-action

level and therefore is more directed towards control. The target used to update the

Q-function is the approximated Q-value of the next state and action, taken from

a previous iteration of the Q-function. This is an on-policy algorithm, where the

policy used to select actions (behaviour policy) is the same as the policy updated

in the Q-function update.

Q (s, a)← Q (s, a) + α (r + γQ (s′, a′)−Q (s, a)) (2.8)

The Q-learning update function in Equation 2.9 has a similar form to SARSA,

with the primary difference being the target that the Q-function is updated towards

is the maximum Q-value of the next state. This is equivalent to finding the optimal

action from the next state and updating the Q-function towards this optimal value.

Q-learning is an off-policy algorithm because the optimal Q-value of the next

state is in effect different from the behaviour policy that was used to generate

the actions. This algorithm improves the Q-function over each iteration, always

heading towards the optimal Q-function, Q∗(s, a).

25

2.4. NEURAL NETWORKS, DEEP LEARNING AND FUNCTION
APPROXIMATORS Page 26

Q (s, a)← Q (s, a) + α
(

r + γ max
a∈A

Q (s′, a)−Q (s, a)
)

(2.9)

When the Q-function is represented by a matrix, this is referred to as a tabular

representation, where the rows are states and columns are actions. When the

state-action space is very large and tabular methods that calculate the Q-function

for the entire state-action space are not feasible, the Q-function is modelled using

neural networks or similar function approximators. The next section provides a

brief overview of neural networks and deep learning before returning to the Deep

Q-Network, an extension of the Q-learning algorithm using neural networks to

model the Q-function.

2.4 Neural Networks, Deep Learning and func-

tion approximators

Figure 2.2: A single neuron, with a linear function passed into one of several
possible activation functions (including sigmoid, Tanh and ReLU) is illustrated,
where xi are the inputs to the neuron and wi and b are the trainable neuron
weights.

26

2.4. NEURAL NETWORKS, DEEP LEARNING AND FUNCTION
APPROXIMATORS Page 27

Figure 2.3: A sample neural network architecture with multiple layers of neurons.
This is a fully connected network where neurons in one layer are connected with all
neurons in the next layer. Neurons in the same layer do not have any associations.
The internal layers are referred to as hidden layers, where x is the input to the first
layer, hi is the output from the ith hidden layer and the input to the subsequent
layer and Wi and bi are the weight matrices for each layer.

A Neural Network (NN), depicted in Figure 2.3 is comprised of layers of con-

nected neurons (Figure 2.2), designed for modelling a subset of input data provided

from a source distribution. The NN is trained using the Machine Learning (ML)

framework, that defines the principles for training and fitting a learning algorithm

to a subset of data with the intention of learning sufficient patterns in the data

to allow the algorithm to generalise to new, unseen data. Deep Learning (DL) is

a branch of ML that trains large volumes of data through deep network architec-

tures, such as Multi-layer perceptron (MLP) (Figure 2.3), Convolutional Neural

Network (CNN) or Recurrent Neural Network (RNN). Readers may refer to Bishop

(2007) and Goodfellow et al. (2016) for the fundamentals of machine learning and

deep learning.

The NN modeller is also referred to as a function approximator because it is

effectively fitting a function to the data. The function comprises a linear function

27

2.4. NEURAL NETWORKS, DEEP LEARNING AND FUNCTION
APPROXIMATORS Page 28

(Figure 2.2), wx + b, where the input data x is weighted by trainable parameters

w and a bias parameter b. To model not only linear but non-linear data, the

linear function is passed through a non-linear activation function such as a ReLU

(Agarap, 2018). This allows the NN to model complex non-linear patterns in data

more effectively. During training, batches of data are passed through the network

over multiple iterations, and a loss objective calculation is performed on each pass.

Using backpropagation (Goodfellow et al., 2016), an algorithm used to calculate

the gradients or derivative of the loss function with respect to the weights and

biases of the neural network, an error term is fed backwards from the output layer

through all the layers. Backpropagation calculates the error contribution of each

neuron using the chain rule from calculus (Kreyszig, 2006) and this error signal is

used to update the weights and biases in each layer to minimise the total error of

the model.

A number of factors influence training and generalisation of DL models, in-

cluding the depth of the network, the width of the layers (number of neurons per

layer) (Cheng et al., 2016), how the weights are shared, the volume and distri-

bution of the input data and a number of configurable hyperparameters. Deep

learning is employed for supervised learning, where a learning signal is provided

with the training data, unsupervised learning, where there is no learning signal

but algorithms attempt to extract patterns from the source data, and reinforce-

ment learning, where a reward signal is provided in an interactive setting. One of

the complexities of using neural networks and machine learning in reinforcement

learning is the nature of the data. A key requirement in ML is that the data is

i.i.d., independent and identically distributed. Independence refers to the random

variables, statistical concepts (Bishop, 2007), in input data being independent by

nature, which is often not the case in sequential RL. Identically distributed means

the training data the model is trained on being generated by an identical distri-

bution, however this too is complicated by the RL process constantly generating

28

2.4. NEURAL NETWORKS, DEEP LEARNING AND FUNCTION
APPROXIMATORS Page 29

and learning from data derived by a new, updated policy (Mnih et al., 2015). The

next section 2.4.1 describes the use of NNs in the DQN and how some of these

problems are managed.

2.4.1 Deep Q-Network (DQN)

When the state-action space is large enough such that the agent is unable to visit

all state-action combinations, value function approximators are used, V (s; θ) or

Q(s, a; θ), where the function approximator is modelled as a neural network. DRL

(Francois-Lavet et al., 2018) uses deep neural networks to represent the value or

policy function in large or complex environments.

The DQN algorithm (Mnih et al., 2013, 2015) is an extension of the Fitted-Q

iteration algorithm (Sart-Tilman, 2005) adapted for DL (Goodfellow et al., 2016).

DQN transforms the Q-learning algorithm to a supervised learning type of algo-

rithm that uses a neural network to represent the Q-function. There are strong

reasons for using DL, including the ability to model a state-action space that is

very large and to draw on the representational power of DL neural networks (Deng

et al., 2022) given raw inputs such as images instead of a pre-processed observa-

tion. In tabular models the Q-function is effectively modelled as a matrix, where

taking the “argmax” function used in Q-learning over all actions in a state is pos-

sible. The tabular model is insufficient to represent a continuous state or action

space. The capacity for generalising and modelling more complex representations

in a tabular format is quite limited, hence the use of more generic function ap-

proximators like neural networks.

The DQN algorithm collects and stores trajectory tuples in a replay buffer.

Batches are sampled from the replay buffer and the loss or objective function is

calculated for the batch and optimised using stochastic gradient descent. The ob-

jective function for the DQN is modelled on the mean square error (MSE) between

29

2.5. POLICY GRADIENT ALGORITHMS Page 30

the predicting function (neural network in this case) and the target. In typical su-

pervised learning processes the target is sourced from an i.i.d dataset. In the DQN

the target is not i.i.d., but several modifications were applied to the algorithm

to correct for this. The sampling of batches from the replay buffer helps break

the correlations between data points that would be found in sequential trajectory

data. The DQN target is bootstrapped, i.e. it is also based on the Q-function

that is being estimated. To stabilise the DQN algorithm, a separate target net-

work is initialised from the Q-network, then fixed during training for a period of

time, after which it is updated from the latest Q-network; this process repeats,

ensuring the DQN has a stable target. The DQN dataset will never be identically

distributed as the replay buffer is continuously populated from newer versions of

the policy and will typically contain data generated by multiple policies at any

point in time. There are no guarantees the algorithm will converge but in practice

it does perform reasonably well.

The DQN is not directly used in this dissertation but is covered to provide some

back-ground for the actor-critic methods related to policy gradient algorithms.

2.5 Policy Gradient algorithms

Policy-based algorithms are viewed as a more direct approach to learn the policy

(Sutton and Barto, 1998b; Sutton et al., 1999) than value-based methods, where

the objective function for policy gradients is derived directly from maximising the

expected reward R(τ) for a trajectory τ , as defined in Equation 2.10. Trajecto-

ries, τ , are sampled from the policy πθ, parameterised by θ, and J(πθ) represents

the policy performance. The objective is to learn the policy that optimises the

performance J(πθ).

J(πθ) = E
τ∼πθ

[R(τ)] (2.10)

To optimise J(πθ) using gradient-based learning to learn the parameters θ re-

30

2.5. POLICY GRADIENT ALGORITHMS Page 31

quires the derivation of the gradient of the objective function J(πθ). Taking the

gradient of J with respect to θ (∇θJ) leads to a formulation of the policy gradient,

derived from Equation 2.10 (Achiam, 2018) analytically to the form

∇θJ = E
τ∼πθ

[∇θ log P (τ | θ)R(τ)]

where τ , the trajectory, is sampled from the policy πθ with distribution P (τ | θ).

This formulation is derived by expanding the expectation, using the log-derivative

trick and then returning to expectation form. In practice the expectation is esti-

mated using samples generated by interacting with the environment. The more

common form of the policy gradient is therefore Equation 2.11. The intuition is

the return R(τ) scores the gradient of the policy.

∇θJ (πθ) = E
τ∼πθ

[
T∑

t=0
∇θ log πθ (at | st) R(τ)

]
(2.11)

Policy gradient algorithms are based on the policy gradient equation derived

above. Samples of data are generated by interacting with the environment for an

episode and collecting the tuples of data. The return for each timestep is calculated

from the rewards. Working backwards from the policy gradient function (equation

2.11), the loss function required to produce this gradient simplifies to Equation

2.12. This is a simpler, practical form of the objective that involves plugging the

returns and sampled states into the objective function and allowing the optimiser

to manage the back-propagation.

J (πθ) = E
τ∼πθ

[
T∑

t=0
log πθ (at | st) R(τ)

]
(2.12)

The REINFORCE algorithm (Sutton et al., 1999) described above is an online

algorithm, that collects data and uses it to update the policy whereafter it is dis-

carded. As a result it is less sample efficient than value based methods that use a

replay buffer and can potentially train over data more than once. In the format

31

2.5. POLICY GRADIENT ALGORITHMS Page 32

above, full episodes are required to calculate the return and overfitting is a known

problem. Several changes were made to the basic policy gradient algorithm to

overcome these problems, resulting in the so-called Actor-Critic methods (Konda

and Tsitsiklis, 1999).

Actor-Critic methods (Konda and Tsitsiklis, 1999) have both a parameterised

policy and value function that are trained from the same data collected from the

environment. The value function (critic) estimates the value that is used to guide

the gradient in Equation 2.12. It is trained against the return calculation using

a mean squared error loss component (equation 2.16). The critic was introduced

to reduce the variance that is endemic in pure policy gradient methods like RE-

INFORCE above. An entropy loss component, H in Equation 2.13, addresses the

problem of overfitting: if the policy becomes too certain about an action, the en-

tropy of the policy, H(π), becomes small and the entropy loss component acts to

punish the policy for being too certain.

H (π (· | st)) = −
∑
a∈A

π (a | st) log π (a | st) (2.13)

The loss function (LP G+V F +S) for a typical Actor-Critic model in Equation 2.14

combines all 3 components, viz. the policy gradient (LP G), the value function loss

(LV F) and the entropy loss (H [πθ]).

LP G+V F +S(θ) = E
[
LP G(θ)− αLV F (θ) + βH [πθ] (s)

]
(2.14)

where

LP G(θ) = E [log πθ (a | s) A] (2.15)

and

LV F (θ) = (Vθ(s)− V target)2 (2.16)

32

2.5. POLICY GRADIENT ALGORITHMS Page 33

and α and β are co-efficients for each additional loss component. The policy

gradient loss in Equation 2.15 uses the advantage, A, defined as A(s, a) = Q(s, a)−

V (s). The advantage is a common formulation of the return that removes the state

return, V , from the state-action return, Q, providing information on how much

better or worse actions are on average from each state. The critic or value function

loss in Equation 2.16 is determined by the difference between the estimated and

target returns, where the target return is often also an estimate, as described in

section 2.4.1. This model is a baseline policy gradient model from which other

more complex methods are derived, for example PPO (Schulman et al., 2017),

described next.

2.5.1 Proximal Policy Optimization (PPO)

While policy gradient algorithms are very popular and experience reasonable per-

formance in many applications, there is a tendency for these algorithms to suffer

from performance collapse (Schulman et al., 2017; Achiam et al., 2017), a situa-

tion where the policy worsens over training. In policy gradient methods the latest

policy is used to generate data for the next policy update; if the policy resides

in an unfavorable region of the policy space, the resulting data and subsequent

policy update may also be unfavorable. If this trend continues, the policy does not

recover and this leads to what is known as performance collapse. Prevention of

performance collapse led to the rise of algorithms such as PPO and Trust Region

Policy Optimisation (TRPO) (Schulman et al., 2017).

The PPO algorithm tackles performance collapse by designing the objective

function directly on the policy performance, J(πθ). It turns out that performance

collapse is due to the indirect optimization of the policy via the policy parameters.

A step in the policy’s parameter space can have very different results in the policy

space, for instance moving from parameters θk to θk+1 has no real control over the

33

2.5. POLICY GRADIENT ALGORITHMS Page 34

change from policy πθk
to πθk+1 . In other words, a step in parameter space could

translate to a larger or smaller step in policy space, or a step into a very different

part of policy space.

A surrogate objective is derived based on the performance difference between

two consecutive policies, J(π′)− J(π), leading to the clip component in Equation

2.17.

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.17)

Eτ∼π

∑
t⩾0

Aπ (st, at)
π′ (at | st)
π (at | st)

 = JCP I
π (π′) (2.18)

The rt(θ) term is the ratio of the new (π′) and old (π) policies (as in Equation

2.18), applied as an importance sampling based adjustment of the advantage re-

turn, Ât, where Ât is the estimated version of the advantage A. The objective is

named JCP I
π for conservative policy improvement. The minimization in Equation

2.17 comes from the idea of constraining the distance the new policy moves away

from the old policy to a radius of ϵ, i.e. calculate the importance sampling ratio

of the new and old policies and clip it if necessary before calculating the clip loss

component. The complete PPO loss is a summation of the clip loss component,

the value loss LV F and entropy loss S, shown in Equation 2.19. The final form

of the PPO loss function is very similar to the Actor-Critic loss in Equation 2.14

except for the first term where the policy gradient is replaced by the surrogate

objective, LCLIP .

LCLIP +V F +S
t (θ) = Êt

[
LCLIP

t (θ)− c1L
V F
t (θ) + c2S [πθ] (st)

]
(2.19)

The algorithm (Schulman et al., 2017) is outlined below.

There are effectively two stages: a data collection stage and an update stage.

34

2.5. POLICY GRADIENT ALGORITHMS Page 35

Algorithm 1: PPO Algorithm (Schulman et al., 2017)
For iteration=1, 2,... do

for actor=1,2,....,N do
Run policy πθold

in env for T timesteps
Compute advantage estimates Â1,, ÂT

end for
Optimise surrogate L wrt θ, with K epochs and minibatch
size M ≤ NT
θold ← θ

end for

PPO makes more efficient use of the data collected because unlike the policy gradi-

ent algorithm above, it trains over the data for multiple epochs before discarding.

The PPO agent collects data from multiple environments running concurrently

to ensure decorrelation of data. In a discrete action space, the agent’s policy is

based on the categorical distribution. In the multi-discrete action space, a list of

categorical distributions is held, one for each action in the action tuple. Actions

are sampled from the distributions during action selection and submitted to the

environment. The trajectories generated are stored in a buffer until the maximum

timestep is reached, whereafter the update phase begins.

The update phase samples data from the buffer in batches and calculates the

loss components in Equation 2.19. The update of the Critic value function requires

the calculation of a return target. Multiple options are available for calculating

the target return but the most commonly used is the Generalised Advantage Es-

timate (GAE) (Schulman et al., 2017) as it was found to be more performant

(Andrychowicz et al., 2021). The update phase runs for 1 or more epochs over the

full data buffer, updating the actor and critic models. At the end of this phase,

the buffer is cleared and the cycle begins again until the maximum step count is

reached.

35

2.6. TRANSFER Page 36

2.6 Transfer

Transfer in RL involves using the knowledge gained from one environment or task

to improve learning in a new, related environment or task. Some of the key goals

of transfer in RL include improving sample efficiency by solving new tasks faster

using prior knowledge instead of learning from scratch, and learning tasks that

are too complex to learn from scratch by re-using knowledge. A task in RL is

equivalent to the MDP, characterised by the transition dynamics and the reward

function. This section defines a few concepts, considerations and methods for using

transfer in RL.

Transfer occurs between one or more source domains to a target domain.

What information is transferred, varies, ranging from environmental or domain

knowledge (for example transition dynamics), policies on which actions are useful

or not, value functions with knowledge of which state-action combinations are

good and common features or latent representations that have been shown to be

effective (Shelhamer et al., 2016). The key idea in transfer is the extraction and

use of generalised knowledge to improve the training speed or performance of a

similar task.

If the source policy can simply be transferred to a target domain and used im-

mediately, this is referred to as zero-shot transfer. In Zero-shot (Palatucci et al.,

2009) the model has not been exposed to this data previously so the transferred

model is probably generalised, with latent features that can map new objects en-

countered. In one-shot (Fei-Fei et al., 2006) transfer some training is required

but the model requires very few samples and relies on its ability to generalise. By

contrast, in fine tuning, the model is transferred but the final layers are retrained

over more data from the new task.

Some of the problems with transfer are described next, including the need for

diverse datasets and the problem of domain shift. The training dataset should be

sufficiently diverse to produce models that generalise well so that when the model

36

2.6. TRANSFER Page 37

encounters a new task, it is not so foreign that the model fails to handle it. This is

difficult to achieve in reality as environments are large and complex, for example

training a robotic agent to perform tasks in a domestic setting, where the average

human home has a diverse array of objects and associated tasks. The high volume

of data required to train generalisable models often requires the use of simulators

for data generation and then model transfer to the real world (Chebotar et al.,

2018). This approach introduces the problem of domain shift (Higgins et al.,

2017) where the simulated source representations differ from real world images

and makes transfer problematic. In other scenarios it is the MDP or dynamics

of the environment that are different in the source and target tasks. Work on

domain adaptation and randomisation focus on these types of problems. Domain

adaptation acknowledges the differences in the source and target domains, and

learns domain mapping functions or adds reward shaping to manage the differences

(Eysenbach et al., 2021; Tzeng et al., 2014). For more approaches for managing

these problems in transfer refer to the review by Zhu et al. (2023). This dissertation

focuses on a few transfer approaches to support the following chapters, including

multi-task transfer, learning from demonstrations and policy distillation.

2.6.1 Multi-Task RL and Meta-RL

Multi-task RL learns policies for a fixed set of tasks by exploiting commonalities

and shared structure between the tasks. The goal is to leverage knowledge gained

from each task to improve learning on other tasks by exploiting relationships and

overlaps between tasks. The training process is a joint training process across

multiple tasks in parallel rather than in isolation. This increases sample efficiency,

making better use of available data compared with learning each task individually.

Meta-RL is another variant of RL that trains across multiple tasks that share

similarities. The purpose in Meta-RL is to learn a generalised model that learns

new tasks faster. The training process for Meta-RL is different in a few very

37

2.6. TRANSFER Page 38

specific ways. First the tasks are sampled from a distribution of tasks to train a

model that learns how to identify the task from the data. The goal here is to learn

how to quickly adapt to new tasks drawn from this task distribution. A second

phase, the test phase, evaluates the model on new unseen tasks. The model is

expected to perform few-shot generalisation, that is, with only a few samples of a

new task it should solve the task.

Meta-RL tackles the problem of learning and transferring structure simultane-

ously. The agent is trained over a distribution of tasks, Mi ∈ M , from which the

training and test tasks are drawn. The model’s MDP tuple is Mi =< S, A, Pi, Ri >

where Pi and Ri, the transition and reward functions, depend on the sampled task

Mi. The policy depends on the previous action and reward from the sampled

model in addition to the state:

πθ (at−1, rt−1, st) → a distribution over A. This means the environmental and

task structures are built into the policy directly requiring no other transfer mech-

anism. The need to learn from historical context means recurrent neural networks

are often used to model the policy which effectively captures the dynamics in the

model. When faced with a completely new task in the same domain the agent is

able to select from its pool of task dynamics. Some key related works in Meta-RL

include Wang et al. (2016); Finn et al. (2017). Meta-RL is mentioned to clarify

the difference with multi-task methods; it is not used in this dissertation and is

mentioned only for completeness.

2.6.2 Learning from Demonstrations and Distillation

Learning from demonstrations (Schaal, 1996) is used when the source and target

MDPs are closely aligned. Expert or sub-optimal data is provided, from human

experts or an optimal/sub-optimal policy, for offline supervised training of a policy

or value function or for training a complete agent (Chen et al., 2021). Offline RL,

covered in more detail in section 2.8, is a branch of RL that involves learning from

38

2.7. AUXILIARY TASKS Page 39

data without further interaction with the environment.

By comparison, policy distillation or policy re-use learns from multiple source

policies (teacher) and transfers knowledge to a target policy (student). Distillation

(Hinton et al., 2015) samples from either the teacher policies or the student policies,

using techniques like supervision to push the student features closer to the teachers,

or Kullback Leibler divergence (KL) to keep the student and teacher policies close

together. In policy re-use, Generalised Policy Improvement (GPI) is applied to

improve the policy greedily from the set of teacher policies, resulting in a student

policy that is at least as good as the best teacher at every step.

This completes a very brief outline of some of the transfer approaches that will

be referred to in this dissertation.

2.7 Auxiliary Tasks

In RL the agent learns from a reward signal, but in many domains and environ-

ments there are more signals available for learning. In Jaderberg et al. (2017) aux-

iliary tasks incorporating other learning signals supplemented learning, improving

the speed, performance, stability and efficiency of the RL agent.

The earliest mention of auxiliary-like signals is the “hint” (Suddarth and Ker-

gosien, 1990) injected into a neural network to influence training. Suddarth and

Kergosien (1990) noticed that the hint had the effect of flattening local minima

but also stressed that the network needed sufficient capacity to be able to encode

both the hint and the original data for this technique to be effective. The idea

was that the hint provided additional information to the input data that was en-

coded into the network during training and made the network more effective. At

inference the hints were not required because the network had already captured

the additional structure and relations.

39

2.7. AUXILIARY TASKS Page 40

More recently Jaderberg et al. (2017) demonstrated the use of auxiliary tasks

Taux supporting the main task Tmain with both control and feature learning. Specif-

ically, they introduce auxiliary control and auxiliary prediction tasks based on

alternative sensory streams to improve learning in complex environments, such as

a first-person visual maze with sparse rewards. Predictions were converted into

alternative signals, such as reward prediction or end of episode prediction, which

could work across many domains more generally. Jaderberg et al. (2017) made

innovative use of the visual stream, monitoring and encouraging large changes in

pixel maps, or measuring the size of activations in a layer of the network and

converting this into a learning signal. The methods adopted are outlined briefly

to provide more context on how auxiliary signals can be used to affect control and

feature shaping, the latter of which is more commonly used.

Auxiliary control tasks use an alternate reward or pseudo-reward signal in the

same environment as the agent to improve learning about the dynamics of the

system. Formally, the auxiliary control task c ∈ Taux is defined by a reward

function rc : SxA→ R. The control task has policy π(c) and the task objective is

added to the main task, controlled by a task weight λc. Equation 2.20 shows the

final objective with the main task and the auxiliary control tasks where Rc
1:∞ is

the discounted return for the auxiliary task.

argmax
θ

Eπ [R1:∞] + λc

∑
c∈C

Eπc

[
R

(c)
1:∞

]
(2.20)

The task weights λc balance the auxiliary tasks with the main task during

training. In Jaderberg et al. (2017) two forms of auxiliary control signals were

employed: pixel control and feature control. In pixel control the reward signal is

derived from pixel changes or changes in the perceptual stream, while feature con-

trol monitors changes in network features; specifically it rewards and encourages

higher activations in a hidden layer that contains features of interest.

40

2.7. AUXILIARY TASKS Page 41

Auxiliary prediction tasks focus on increasing the rewards gained versus im-

proving learning about the system dynamics. Ultimately a good RL agent needs

good feature representations (Shelhamer et al., 2016) and the ability to recognise

states and actions that lead to high values. Auxiliary prediction tasks help shape

the features of the agent and are often unsupervised, using the trajectory data

already available. In Jaderberg et al. (2017) a reward predictor is used to predict

the reward at the next state when passed a stream of states and reward history.

The reward predictor is especially designed to supplement the value function train-

ing: the reward predictor is trained over a positively-biased dataset and can inject

additional reward information into the value function network without affecting

the core RL algorithm (as in auxiliary control). This example shows how an auxil-

iary task can feed really directed information (positive reward bias in the example

above) from the same system to support the core algorithm.

An important part of the agent and auxiliary task design in (Jaderberg et al.,

2017) is that the agent network shares at least some parameters with the auxiliary

tasks to benefit from the additional signals. This concept of parameter sharing

is more clearly illustrated by Hernandez-Leal et al. (2019) in figure 2.4 showing

the splitting of the network head into the critic, actor and auxiliary tasks, where

the base network is a CNN plus two fully connected layers. Hernandez-Leal et al.

(2019) use auxiliary tasks in a Multi-Agent Reinforcement Learning (MARL) con-

text to learn models of the other agents while training the main RL algorithm (a

fully online algorithm, A3C). This is known as agent modelling (learning models

of other agents in a MARL system) and is useful for informing the agent in co-

operative or competitive scenarios. Two different architectures for learning agent

modelling are proposed to supplement the main task, which is an online A3C

agent, viz.:

AMS - using parameter sharing (Foerster et al., 2016) to learn the opponent or

41

2.8. OFFLINE RL Page 42

teammate policy as an auxiliary task together with the actor and critic

AMF: agent modelling learning latent policy features

These architectures, illustrated in Figure 2.5, provides some background on the

architectures adopted in this dissertation.

Figure 2.4: Parameter sharing with auxiliary tasks (Hernandez-Leal et al.,
2019) Source: (Hernandez-Leal et al.)

Figure 2.5: Parameter sharing (AMS) and policy features (AMF) archi-
tecture in Hernandez-Leal et al. (2019) Source: (Hernandez-Leal et al.)

2.8 Offline RL

Offline RL (Lange et al., 2012), also known as batch RL, is a variant of rein-

forcement learning where the agent is provided with a static batch of generated

42

2.8. OFFLINE RL Page 43

Figure 2.6: In offline RL a dataset D is collected by an unknown behaviour
policy πβ. A policy is trained over the static dataset without further
interaction with the environment and is only deployed after being fully
trained. Source: (Levine et al., 2020)

trajectory data and must learn the best policy based on this data without any

interaction with the environment. Training purely from the dataset means offline

RL most resembles supervised learning methods.

To formulate the offline RL problem (refer to Figure 2.6), a dataset of trajectory

tuples

D = {(si, ai, s′
i, ri)}

is provided from an unknown generating or behaviour policy πβ. The trajectory

data could be used to calculate a supervised-style Q-value target for training a

Q-network, similar to how the DQN is trained (section 2.4.1), where for each

datapoint (s, a, s′, r) the target y is defined as :

y(s, a) = r(s, a) + Ea′∼πnew [Q(s′, a′)]

where πnew is the new policy derived from the Q-network, and the Q-network loss

is

L = min
Q

E(s,a)∼πβ(s,a)[(Q(s, a)− y(s, a))2]

43

2.9. IMITATION LEARNING (IL) Page 44

This formulation is based on two policies, viz. the sampled datapoints are from

πβ while the target y(s, a) uses πnew. The goal is to make πnew better than the

original behaviour policy πβ. If the two policies are similar, accuracy is good, but

Kumar et al. (2019) demonstrated that there are several sources of distribution

shift that affect how well offline Q-learning methods perform. Particularly they

show that the argmax operation used in Q-learning exacerbates the shift problem

when it is used to determine πnew.

πnew = argmax
π

Ea∼π(a|s)[Q(s, a)]

a′ is sampled from πnew for the target calculation and if πnew differs from πβ,

the argmax makes the target values more extreme.

Various constraining methods (Levine et al., 2020) were developed to counteract

the distributional shift problem, including applying the KL-divergence to constrain

the policies such that the divergence between the two policies is less than or equal

to some small value ϵ,

D(πnew(a|s), πβ(a|s)) ≤ ϵ

which effectively limits how different the new policy can be from the original

behaviour policy. This constraint is similar to the policy constraint used in PPO

(section 2.5.1) and limits the out-of-distribution actions that are generated by

the offline model, keeping it closer to the behaviour policy and trying to contain

shift. Refer to Levine et al. (2020) for a comprehensive overview of modern offline

methods.

2.9 Imitation Learning (IL)

A brief outline of the core concepts in Imitation Learning (IL) is provided. Imita-

tion learning (Schaal, 1999) emerged from the humanoid robotics field of study, a

44

2.9. IMITATION LEARNING (IL) Page 45

response to learning complex tasks requiring manual input in the form of reward-

ing functions, constraints, skills and so on. The premise behind IL is instead of

specifying the complexities of training, the agent learns how to behave or perform

a task from expert demonstrations, human or machine generated. There are two

main branches, Behaviour Cloning (BC) (Bain and Sammut, 1995) and Inverse

Reinforcement Learning (IRL) (Russell, 1998).

In BC, supervised learning is used to learn from expert data in the form of

state-action pairs called demonstrations. The agent is trained to learn how to

map from states to actions and mimic the expert, without reference to rewards.

When fully trained on the data, the agent should be able to generate actions even

for new, previously unseen states. A common problem in BC is that the actions

generated may lead to out-of-distribution states and the distribution shift problem

described in section 2.8 is experienced here too. Various constraint techniques are

applied to contain the distribution shift, such as using the KL-divergence over the

policies. A number of methods are based on the DAgger paper (Guo et al., 2014)

that addresses the problem of shift by using an interactive process that alternates

between training the policy on the currently aggregated dataset and rolling out

that policy to collect more state-action samples.

In contrast to BC, that learns to map from states to actions, IRL (Russell, 1998)

uses expert demonstrations to learn a reward function, employing an iterative

process that alternatively learns, then evaluates a reward function. This is an

interactive process with the agent communicating with the environment, receiving

feedback and making updates. IRL methods are potentially more complex than

BC because reward function recovery from data, especially in sparsely rewarded

environments, is non-trivial.

Refer to the surveys of Zare et al. (2023); Zheng et al. (2022) for more details

of imitation learning methods.

45

2.10. TRANSFORMERS Page 46

2.10 Transformers

To conclude this chapter, a brief introduction to Transformer models is provided

to support Decision Transformers (Chen et al., 2021) referenced in Chapter 6, an

example of an offline RL method that is competitive with BC.

The Transformer architecture was introduced by Vaswani et al. (2017) to pro-

cess sequential data such as text or time series data, used either for modelling

and understanding the data, or for the purpose of generating the next item in

the sequence. The transformer parses fairly long bodies of text for translation,

summarisation or to generate text that is similar in context. It is composed of

multiple layers of multi-headed attention and is capable of both self-attention and

causal-attention. These concepts are expanded upon below in more detail.

The original Transformer in Vaswani et al. (2017) has an encoder-decoder ar-

chitecture. The encoder and decoder both receive batched, parallelised data but

apply a different type of attention to the data. The encoder model uses what

is known as self-attention due to having visibility over the entire context. The

context is a fixed length window of input word tokens (in the case of language

modelling) and the attention mechanism of the encoder can see and attend to all

words in the context, hence the term self-attention. The decoder employs a slight

modification to self-attention, known as causal attention, over the same data. In

causal attention, each word in the context is revealed one token at a time, using

a mask, and the attention head is unable to see words ahead of the current word

(future words), only preceding words (the past). The decoder is trained to predict

the next word given only the history, forcing it to learn how to generate text token

by token, which is a core aspect of the generative ability of the Transformer. The

model is auto-regressive because it uses previously generated tokens in the context

when generating new tokens.

The attention mechanism is designed to learn relationships between tokens, i.e.

encoded sequential data, in a context. When a batch of contexts passes through

46

2.10. TRANSFORMERS Page 47

the attention layer, an attention score is calculated for each token that indicates

how much it attends to every other token in the context. The attention mechanism

has multiple layers with multiple heads, where each head has its own set of query,

key and value weights, WQ, WK , WV respectively, that are shaped during training.

Each layer has multiple heads so that different heads can specialise in different

aspects of the data and task. Head specialisation means that each head potentially

extracts different information pertaining to the task, which is fed to the heads in

the next layer for further processing in a recursive manner. This is important

because it effectively disentangles task-related information into composable, re-

useable elements, a desirable feature for foundation models (Yang et al., 2023). A

batch of input data is first passed through the weight matrices (WQ, WK , WV) to

generate the Q, K and V matrices. The attention score is derived from the dot

product of the Q and K matrices, matching query information in the input data

with key information already learned by the model. The softmax of the attention

score in the Transformer model is displayed in the attention Equation 2.21 from

Vaswani et al. (2017)

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V (2.21)

The core idea is that an attention score is indicative of how strongly the current

token is connected to, or influenced by, other tokens in the context. If the score is

high, this implies a relationship exists that should be used to influence the outcome,

for example, generating the next word in a sentence. The attention score is used

for this purpose, to weight the value matrix and influences how much of the value

of a token should be used when completing the task.

Each layer has layer normalisation and an MLP before rejoining the backbone,

also referred to as the residual stream. The Transformer is supported by a back-

bone of residual connections that link multiple attention layers to an embedding

layer at the start and an unembedding layer at the end. A simplified version of the

47

2.10. TRANSFORMERS Page 48

core components of the Transformer, highlighting the residual stream backbone is

in Figure 2.7. It turns out that the multiple layers of multi-attention heads in

a Transformer, together with the MLPs, form circuits (Elhage et al., 2021) that

achieve complex behaviours via communication both between tokens and between

layers using the residual stream.

Figure 2.7: A simplified 1-layer Transformer, displaying the residual stream as the
backbone of the Transformer architecture. Source (Elhage et al., 2021)

The Transformer effectively replaced the Long-Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) family of sequential text processing models

(language modelling) for several reasons, one of which is better parallelisation but

also because of the significant improvement it contributed to translation (Devlin

et al., 2019) and text generation (Brown et al., 2020), leading to the so called family

of LLMs. Transformers differ from LSTMs in several ways: the LSTM receives

data (for example words in a sentence) sequentially, while the Transformer has

parallelised this process, adopting a word position encoder to retain the sequential

positioning of words instead. The parallelisation of the Transformer model results

in better performance on Graphics Processing Unit (GPU) (Vaswani et al., 2017;

Popel and Bojar, 2018) that benefit from parallelised operations in particular.

The Transformer of Vaswani et al. (2017) is both an encoder and decoder

model, with the attention learnt by the encoder accessible to the decoder as cross-

48

2.10. TRANSFORMERS Page 49

attention. The most popular LLMs are decoder-only, the GPT (Brown et al.,

2020) models, while the BERT-style (Devlin et al., 2019) models are encoder only.

While Bidirectional Encoder Representations from Transformers (BERT) models

excel at various language understanding tasks (for example semantic understand-

ing, sentiment, etc.), GPT models are more commonly used for generation and

are of interest in this dissertation. Generative models such as the GPT models

require prompting, a term that refers to the provision of some context for the gen-

eration process, for example a prompt could be a recipe request with some details

of desired ingredients.

Finally, a few of the key aspects of Transformer architecture and design respon-

sible for the leap in performance in language modelling are specifically mentioned

below:

• the attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017) gives

the Transformer visibility over the whole context in encoders and historical

context in decoders. Crucially the attention mechanism allows for relation-

ships between tokens to be derived using information passing between tokens

in a context.

• causal attention in the decoder is crucial for the generative aspect of the

Transformer model. Language modelling has seen two main variants of the

Transformer emerge, viz. the BERT-style models (Devlin et al., 2019) that

are encoder-only and the GPT-style models (Brown et al., 2020) that are

decoder only. The latter employs the causal mechanism which limits access

to future tokens, enabling visibility of historical tokens only. The decoder is

trained to predict the next word in the sequence, the basis of the generative

capabilities of the GPT-style models.

• parallelisation of Transformer data. Previous State of the Art (SOTA) lan-

guage models were based on variants of the LSTM (Hochreiter and Schmid-

49

2.11. SUMMARY Page 50

huber, 1997) architecture, where the sequential nature of the data limited

the use of GPUs for training. The Transformer replaced the sequential train-

ing data with batches of position encoded data, significantly improving the

parallelisability of training and the use of GPUs (Vaswani et al., 2017).

• the residual stream, that forms the backbone of the Transformer models

where residual connections (He et al., 2016) allow complex interactions be-

tween layers of the Transformer. The residual stream is said to contain a

number of subspaces (Elhage et al., 2021) and token information is copied

from the stream to the attention heads and back again, sharing specific

information about tokens. The residual connection is also associated with

vanishing gradient problems, that are common in very deep networks (He

et al., 2016).

2.11 Summary

This chapter reviews the background topics that support this dissertation. It

begins by outlining the definitions, principles and algorithms of the RL frame-

work including value and policy based approaches to solving the RL problem. An

overview of the different types of action spaces is provided, with a focus on the

multi-discrete action space studied more closely in this dissertation. A very brief

overview of neural networks is followed by sections on DQN and PPO, both of

which support neural network function approximators. Transfer in RL, especially

in multi-task contexts is outlined to support Chapter 4. Fundamental concepts

for auxiliary tasks are defined to support Chapter 5. Finally a very brief overview

of offline RL, imitation learning and Transformers closes this chapter, in support

of Chapter 6.

50

Chapter 3

Literature Review

The key research problems addressed in this thesis are related to learning and lever-

aging potential relational structure between individual actions in multi-discrete

action spaces in RL environments. This chapter covers some of the literature

that motivates the work in this dissertation. The first area (section 3.1) reviews

transfer in RL, specifically work that explores how to extract and transfer prior

knowledge, methods for improving exploration in new tasks and transfer in the

multi-task context. The second area (section 3.2) reviews related research for

learning and exploiting structure in RL including the factorisation and decompo-

sition of state-action spaces and the use of options and macro-actions as composite

action structures. The section ends with a review of work in the multi-discrete ac-

tion space with a focus on structure, a topic of specific interest in this dissertation.

The final section (section 3.3) reviews work in the area of relational reasoning in

RL. The area of relational reasoning is vast so only a subset of topics are reviewed,

including multimodal data, disentanglement of learned concepts for composition,

architectures for reasoning including attention-based architectures and auxiliary

signals.

51

3.1. TRANSFER Page 52

3.1 Transfer

3.1.1 Transfer of prior knowledge

A key idea for accelerating RL is by reusing prior knowledge rather than exploring

and learning from scratch. As environments grow in complexity and size several

works have looked at ways of supplementing the knowledge or ability of the agent

in the form of prior knowledge, sometimes applied during exploration or as struc-

ture added to the model (Rosman and Ramamoorthy, 2012; Wingate et al., 2011;

Sherstov and Stone, 2005).

Rosman and Ramamoorthy (2015) proposed learning a model that outputs ac-

tion priors, a weighting over possible actions for a given state that encodes useful

knowledge about actions that are used in new tasks to bias the agent’s exploration

toward more promising actions. Leveraging these learned priors accelerates learn-

ing on the new task compared to unbiased exploration or random action selections.

Typically these types of methods will be limited to environments where the source

and target tasks have a level of similarity and a diverse range of tasks is needed

to generate effective priors.

In all methods that transfer prior knowledge, negative transfer is possible and

safeguards are required to prevent this. Sufficient diversity in the source tasks is

crucial.

3.1.2 Exploration Methods

Exploration is core to the RL process and its efficiency is linked to changes in the

nature and size of the state or action space. Sparsely rewarded settings make the

task of exploration more important because RL is traditionally reliant on reward

signals. The works reviewed below cover some of the more common approaches to

improving exploration including intrinsic motivation and count-based exploration.

Note this is not an exhaustive review of exploration in RL and the reader is directed

52

3.1. TRANSFER Page 53

to Amin et al. (2021) and Ladosz et al. (2022a) for a more comprehensive treatment

of this topic.

The complexity of a task determines how intelligent exploration strategies

should be; random exploration is sufficient for a simple task in a small state space,

while a complex task requires better exploration strategies for fast and efficient

coverage of the space. A survey of exploration in RL conducted by Amin et al.

(2021) roughly categorises exploration into two groups: un-directed and directed

exploration. Un-directed exploration is uninformed, not using exploration-specific

information and includes random exploration; this is effective in limited settings

such as small environments. Most work in exploration targets exploration in com-

plex environments or tasks, where direct or informed exploration is more useful,

using exploration-specific information to assist the agent.

The process of exploration entails selecting an action to perform at a given

state. Random exploration selects the action at random and does not use infor-

mation from the environment to do so. A common exploration method used in

value-based algorithms is ϵ−greedy exploration (Sutton, 1995), described in sec-

tion 2.3.2. In this method, the exploration generates an action randomly and is

balanced with exploitation, that selects an action using the current value or pol-

icy function. Intrinsic reward methods are similar to ϵ−greedy as these methods

do not use the extrinsic reward from the environment to select an action either.

However, unlike ϵ−greedy exploration, intrinsic methods use other information

from the environment (i.e. directed exploration) to encourage exploration of the

state-action space or improve learning when rewards are sparse. Pathak et al.

(2017) propose the Intrinsic Curiosity Module (ICM) for generating an intrinsic

learning signal wholly disconnected from the extrinsic reward in the environment.

Instead the prediction of the state features is used to generate an error signal that

helps the agent explore the space in a controlled way, by predicting something

and using that prediction error as a reward to indicate something is novel. The

53

3.1. TRANSFER Page 54

ICM is an example of an exploration bonus method, described next, that is self-

limiting because once the novelty (prediction error signal) dies down, so does the

extra signal (intrinsic reward). The method generalises well and exhibits faster

learning in many environments but performance is sensitive to how these models

are architected and tuned. Sub-optimal models may not produce useful intrinsic

reward signals.

Count-based exploration methods (Tang et al., 2017) are also bonus based

methods where a bonus signal is derived from the environment to supplement

the extrinsic reward. The traditional use of count-based bonuses was to measure

state-action visitations and use this as a signal to prompt more exploration of less

frequently visited state-action pairs. Bellemare et al. (2016) extended this ap-

proach to modern DRL methods, generating count-based exploration bonuses by

deriving generalised pseudo-counts from density models, and converting pseudo-

counts into intrinsic rewards for exploration. The core idea with these methods is

the derivation of a new signal from the environment or task to improve exploration

and supplement learning, especially useful when rewards are sparse. While explo-

ration bonus methods are effective, the signal provided is non-stationary as counts

change over time. This will impact the learning process and make optimisation

harder. Furthermore in very large or noisy state spaces where novelty does not

reliably die down there could be stability issues.

Finally, Zahavy et al. (2018) propose an action elimination method that affects

exploration by using an additional network to filter out sub-optimal actions. The

filtered set of actions is provided to the main RL algorithm, DQN in this case, that

explores and selects actions from the filtered set. The Action Elimination Network

(AEN) predicts invalid actions using an external elimination signal provided by

the environment. The method is designed for large discrete action spaces, however

it requires an additional elimination signal from the environment that is generally

unavailable.

54

3.1. TRANSFER Page 55

3.1.3 Multi-Task RL

In multi-task RL (Vithayathil Varghese and Mahmoud, 2020), task-agnostic struc-

ture is learnt by training over a diverse range of related tasks to induce task invari-

ance. Representation transfer is based on the idea that there is some invariance

in the task-space that can be exploited for transfer, i.e. if the source and target

domains disentangle one of the state, action or reward spaces into orthogonal com-

ponents, there will be a shared set of components between the source and target

domains that can be re-used. Representation transfer boils down to the transfer

of features, achieved either by directly re-using features or disentanglement of fea-

tures into a set of shared sub-features. In pure feature re-use, the problem relates

to task association: some features will be associated more strongly with some tasks

and this association is necessary for transfer. For example Progressive Networks

(Rusu et al., 2016) add one task at a time, freezing existing layers then adding

and training a new layer for the new task. PathNet (Fernando et al., 2017) uses a

fixed network rather than adding layers for each task, but the weights are divided

into subsets at the task level so there is still a task association.

In disentanglement (Higgins et al., 2018), the key idea is to break down one of

the main functions (value, policy or reward) into two parts, one that will change

with every task and one that will not. If the static part is transferred, it reduces

the time needed to learn the task-specific part. Successor representations (Barreto

et al., 2017) and Universal Value Function Approximators (UVFA) (Schaul et al.,

2015b) are examples of these approaches. The successor representation disentan-

gles the state occupancy and the reward function. This method assumes that

the dynamics are the same across the source and target domains but the reward

functions differ.

The concept of invariance is also used in task-agnostic RL, that learns structure

from tasks that can be applied to downstream tasks, reducing the training time

55

3.2. STRUCTURE IN ACTION SPACES Page 56

for new unseen tasks. There is an underlying assumption that there is common

or related structure between tasks that may be exploited in new tasks, much like

the invariant representation learning above. A key part of this approach relies on

training over a range of related tasks and generating a diversity of data that results

in inducing task invariance. In these methods, a task variable is used to provide

context for the state; the policy conditions on both the state and the task.

3.2 Structure in Action Spaces

This section provides a review of methods that specifically consider leveraging

structure in RL including factors and decomposition, abstractions such as options

and embeddings followed by work on multi-discrete action spaces.

The concept of “structure” as it pertains to RL and action spaces requires

further clarification. As per the Oxford English Dictionary (University, 2016),

structure is formally defined as “the arrangement of and relations between the

parts or elements of something complex”. The structure of interest in the context

of this dissertation is the inter-relations between individual discrete actions in

the multi-discrete action space of an agent. Structure between actions is quite

intuitive, for instance, moving a jointed object towards some goal often requires

co-ordinated movements across multiple joined limbs where the choice of action

for one joint dynamically influences the subsequent action of another joint. The

relationship between actions can be important in some environments however this

is often not taken into account for various reasons. Nevertheless, recent works have

proposed mechanisms to incorporate action structure, in the form of abstractions,

directly into the learning process. Transfer, extracting and using prior knowledge,

can be very domain specific necessitating the use of very different approaches to

abstractions at various levels within the RL framework (Thrun and Schwartz, 1995;

Pazis and Parr, 2011; Precup, 2000; Singh, 1992; Dean et al., 1998; Wang and Yu,

56

3.2. STRUCTURE IN ACTION SPACES Page 57

2016). These different approaches are outlined below.

3.2.1 Structure from Factorization and Decomposition

Methods for factoring state-actions spaces were adopted for managing large spaces

and exposing more meaningful representations.

The process of reformulating the large state and action space MDP into a

reduced, factored form is known as model minimisation (Dean et al., 1998). This

entails extracting from the original MDP, M , an MDP M ′, whose states and

actions are factored sets of states and actions such that the optimal value function

V ∗ of M ′ may be interpreted as the optimal value function of M . The smallest M ′

is sought in the process of model minimisation. Factored state and action space

MDPs are used to construct minimal models. In the factored model, the state

space Q is divided into J state variables, {Xi} such that

Q =
J∏

i=1
ΩXi

X⃗ = (X1, . . . , XJ)

Likewise the action space A is represented by K parameters, {Ui} such that

A =
K∏

i=1
ΩUi

U⃗ = (U1, . . . , UK)

where ΩUi
and ΩXi

are the sets of possible values or decompositions for U and

X respectively. This forms the basis for factoring a large state and action space.

Once the factored representation is available the value iteration process is applied

to the new representation and the minimised MDP, i.e. the equivalent MDP. The

key idea is to partition the state and action spaces, i.e. create factors, such that

the transition behaviour of the factors matches the transition behaviour of the

primitive states and actions. Model minimisation works because the transition

function of the minimised factored MDP is consistent with the transition function

of the original MDP, implying similar states are grouped together and similar ac-

57

3.2. STRUCTURE IN ACTION SPACES Page 58

tions are grouped together to achieve a similar outcome. Minimisation reduces

the exploration space and the amount of time the agent needs to explore. Fac-

toring or partitioning approaches rely on actions within the set having some level

of similarity. Early work on factored action spaces (Dean et al., 1998) extends

previous work on online model minimisation algorithms and MDPs that deal with

large state spaces.

Pazis and Parr (2011) look into the evaluation of factored action spaces, ex-

tending the concept of the value function in the RL framework to a more generic

form. They also demonstrate how to build a structure into the value function

that facilitates faster action selection. The premise is that selection in large action

spaces is limited by the value function representation. Pazis and Parr (2011) ob-

serve that V (s) and Q(s, a), the traditionally used value function representations,

are but two out of a distribution of possible representations. V (s) holds the value

of all actions for a state s whereas Q(s, a) holds a value at state s for every

single action a. If the action space is partitioned into sets and the value at each

state is the value for the set, then a distribution of value function representations

is possible as the number of sets and actions in a set vary. A new value function

representation is suggested, based on a hypercube mechanism for efficient storage

and retrieval of information and the problem is framed as an optimisation prob-

lem soluble using linear programming. In this form the value function is optimised

subject to Bellman constraints. Approximate linear programming is invoked. The

size of the action space means a high number of constraints so constraint sampling

is used and the samples are generated via an RL algorithm. The use of the hyper-

cube as a structure for efficient storage and fast retrieval of actions is interesting

especially as it allows for parallelisation of processing. This method of adding

structural placeholders into the value function is adopted in several other works,

some of which are described below. Although this is a batch-based approach rather

than online, there are several novel ideas in this paper demonstrating how to build

58

3.2. STRUCTURE IN ACTION SPACES Page 59

structures into the RL framework.

Similarly, Schaul et al. (2015a) build structure into the value function, adding

a more generic placeholder. They use the value function to extract structure from

goals, suggesting that goals are structure-rich and should be included in value

functions in addition to the state. The UVFA is a value function approximator

that generalises over the goal in addition to the state: V (s, g, θ). This addition

increases the size of the space so a few different architectures are considered to

manage this, including a two stream factorised embedding structure where the

state and goal matrix is factorised into a lower dimensional space. Using a four

room environment they show how the resulting structure learnt by the embeddings

adequately map to the environmental structure. This is a multi-goal method (as

opposed to multi-task) and is designed for use within an MDP for purposes such as

the extraction of options Precup (2000) or predictive representation. Nevertheless

it is an extension of the value function that makes it a more useful and composite

unit that can be used in other contexts.

Factoring a state or action space is also used for task decomposition and skill

discovery. Some of the works below focus on the action space in particular where

implicit and explicit relational structure in the action space emerges.

Sallans and Hinton (2004) consider a factored representation to deal with large

state or action spaces, using a Product of Experts (PoE) to represent the value

function approximation and uncover any implicit structure in the space. They

use Markov Chain Monte Carlo (MCMC) (Robert and Casella, 2011) sampling to

sample action values relying on the MCMC to converge to the optimal represen-

tation of the value function. Sallans and Hinton (2004) test against two tasks,

a task with a large number of action and a co-operative multi-agent game called

59

3.2. STRUCTURE IN ACTION SPACES Page 60

Blocker which is a concurrent action scenario. The PoE performs well by learning

hidden representations that appear like macro-actions when analysed and seem to

automatically eliminate less useful actions. The MCMC algorithms selected were

designed for finding relevant regions in large spaces.

The works below are also factor or decomposition based but have a relational

or compositional component added. Wang and Yu (2016) decompose an action

into sub-action components and focus specifically on learning the relationships

between sub-actions. They build a novel structure to model the parameters of

the sub-action components in a maximum a posteriori setting to induce relations

between sub-actions. Similarly Sharma et al. (2017) first factor the action space

manually, then change the representations for the policy (in A3C) or value function

(for DQN) to be based on the corresponding factors. The agent learns how to com-

pose concurrent actions or compositions of actions based on these pre-determined

factors. Harmer et al. (2018) propose a network architecture that outputs multiple

actions per timestep in a deep RL setting. The network is trained using auxiliary

signals from experts resulting in an online approach and is one of the few on-line

models in the area of action structure. The agent benefits from having a concur-

rent action structure as it can model and learn from experts without restriction.

While this approach requires expert input, it is very effective. Two interesting

features of this work include building the capacity for action concurrency into the

model structure and the use of an auxiliary expert signal. The availability of an

expert signal will be a limitation in most environments.

Most of the factored action space work benefits from a reduced exploration

space. The next two papers learn lower dimensional embeddings to extract struc-

ture instead of factoring the space. Tennenholtz and Mannor (2019) developed a

context-based action embedding representation, Act2Vec, modelled on word em-

beddings using skip-grams (Mikolov et al., 2013). The action embeddings, once

trained, were used to enhance Q-function learning and to cluster similar actions

60

3.2. STRUCTURE IN ACTION SPACES Page 61

together, thereby reducing the exploration space. The embeddings were generated

from optimal demonstrator trajectory data. The paper used this representation

and a new measure of similarity to consider a broad spectrum of analysis that

included concurrent actions and exploration across clusters. Chandak et al. (2019)

learnt a lower dimensional action representation, and a transformation function

between the representation policy and original policy. The embedding is used for

training the agent in the lower dimensional space and makes use of underlying

structure, similar to Tennenholtz and Mannor (2019).

Representing structure in action spaces is useful for skill learning, generalisation

and transfer to new tasks and domains. Ganin et al. (2018) show that the agent

can learn very effectively from external structure and train an agent to compose

images by effectively writing programs for a graphics engine. The graphics engine

contained all the structures needed to produce images so the agent architecture

did not need to build this in separately. This paper shows that the structure can

be external to the system, and that structure learning modules can be used as

external support for other systems. For real world problems this may be a very

effective solution.

3.2.2 Options

Action abstractions and structure are often analysed at the task, skill or subgoal

level. Some of the earliest work in this area includes options Precup (2000), skills

Thrun and Schwartz (1995) and macro-actions Randlov (1999). A natural exten-

sion of the primitive action is the macro-action or option, which is a multi-step

action that (often representing a skill) is re-useable and associated with a sub-task.

Macro-actions and options are very useful in hierarchical decision making where

the agent can abstract at a higher level and solve more complex, multi-layered

tasks. Options are temporal abstractions and are composed of a sequence of ac-

tions, the start states for which the option is eligible and a completion probability.

61

3.2. STRUCTURE IN ACTION SPACES Page 62

Options may be added to the pool of primitive actions to give the agent the advan-

tage of selecting a skill where appropriate. Option discovery is an on-going area of

research Harb et al. (2018); Barreto et al. (2019). Options differ from concurrent

actions in that options are generally attached to sub-goals or sub-tasks while this

is not necessarily the case with concurrent actions and options are multi-step while

concurrent actions are single step.

3.2.3 Multi-Discrete Action Spaces

This section describes work that focuses on the multi-discrete or concurrent action

space in particular. Several approaches are adopted when working with concurrent

or joint actions including learning intuitive embedding representations (Tennen-

holtz and Mannor, 2019; Chen et al., 2019), decomposition of joint into factored

actions (Sharma et al., 2017), intrinsic motivation as an auxiliary signal (Chitnis

et al., 2020) and imitation learning (Harmer et al., 2018).

Sharma et al. (2017) leverage compositional structure in action spaces by learn-

ing factored policy representations. Their method decomposes the policy learned

by a deep reinforcement learning agent into factors that can be learned in paral-

lel, allowing efficient learning about multiple actions simultaneously. The overall

action is then composed from the outputs of the modular factored policies and

shows performance improvements in the Atari environment.

Harmer et al. (2018) adopt a multi-pronged method to work with multi-action

environments. They combine expert data with environment interactions instead

of pre-training on expert data alone. Using mixed batches of expert and real

data, a model designed to handle concurrent actions is trained to benefit from

knowledge of how humans select actions concurrently. Chen et al. (2019) learn

action embeddings from semantics of actions in an outcome-based approach. The

multi-task space features different state and action spaces where shared rewards

and goals are used to drive similar embeddings across the tasks.

62

3.3. ACTION RELATIONS IN REINFORCEMENT LEARNING Page 63

Chitnis et al. (2020) consider concurrent actions in a sparsely rewarded multi-

agent, co-operative setting and use intrinsic rewards to encourage synergistic be-

haviour when selecting actions. The intrinsic reward is based on the deviation

between the predicted outcome of the joint action versus the predicted outcome

of the combination of the individual actions. The intrinsic motivation reward is

used to incentivise agents to take joint actions that have synergistic effects.

Finally, recent work by Li et al. (2023b) introduces a method for solving struc-

tured action spaces, defined in the paper as having two properties:

• Composability, where the action space is composite, consisting of multiple

primitive action components, such as a sequence or set of primitive actions

• Local dependencies, where there are local correlations between primitive

actions

This definition is very similar to the topic of this dissertation. Li et al. (2023b)

propose Diverse Policy Optimization (DPO), a method that models policies as

energy-based models (EBM) within a probabilistic RL framework. DPO uses a

generative model, GFlowNet, for sampling diverse policies in structured action

spaces. GFlowNet is used because sampling policies in structured action spaces

is complicated by the high dimensionality of such spaces. In the proposed pro-

cess, primitive actions are generated and composed by GFlowNet until the global

action, composed of multiple primitives, is constructed, to match a target policy

distribution. This is a creative use of EBM and generative methods in RL.

3.3 Action Relations in Reinforcement Learning

This section reviews work that focuses on learning relationally in RL, beginning

with a brief review of relational reasoning, followed by where relational learning

has been applied and finally closing with some of the architectures developed for

relational approaches.

63

3.3. ACTION RELATIONS IN REINFORCEMENT LEARNING Page 64

The motivation for relational learning in RL arises from the complexity of some

environments, modelled using games such as Atari (Bellemare et al., 2015), Go

(Silver et al., 2017), StarCraft II (Vinyals et al., 2017), MineCraft (Guss et al.,

2019), Poker (Brown and Sandholm, 2019) and Diplomacy (, FAIR). As environ-

ments approach the complexity of real-world environments, so too do the states,

actions and rewards. Visually-based observation spaces are high dimensional by

nature requiring large volumes of data and high amounts of compute to train

DRL agents. As environments become more realistic, additional sensory data is

provided making the observation space more complex and prompting work that

focuses on better abstractions. Some types of abstraction were discussed in the

previous section 3.2 such as embeddings and temporal abstractions such as op-

tions, often used to learn a set of latent features that are relevant for solving the

RL task. Another form of abstraction is to identify relational information inherent

in the data that is useful for solving complex tasks. This may be multimodal data,

combining images, text, video or other inputs (Reed et al., 2022) or in the space

of multiple agents (Mathieu et al., 2023) all required to solve related tasks. This

topic is vast and, at the time of this dissertation, very topical. A brief summary

of work relevant to this thesis is provided.

Relational reasoning is emerging as a fundamental component required for

learning in large, complex systems (Battaglia et al., 2018; Garnelo et al., 2016;

Hill et al., 2019; Lampinen et al., 2022). There is divided opinion on how best to

learn relational abstractions. Some approaches advocate building structure into

the architecture (Zambaldi et al., 2018; Battaglia et al., 2018; Shanahan et al.,

2020), others into the input (Sanchez-Gonzalez et al., 2018), yet others demon-

strate that all structure can be external to the agent (Ganin et al., 2018). Hill

et al. (2019) show that careful preparation of training data can be used to learn

complex relational reasoning patterns and suggest training Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014) to generate data of the nature required.

64

3.3. ACTION RELATIONS IN REINFORCEMENT LEARNING Page 65

Andreas et al. (2017) show that a coarse symbolic outline of the relations between

tasks is enough to learn components that generalise and improve performance.

Learning compositional representations is complex. While DL is able to take

raw input data and produce representations in the intermediate layers, it turns out

that different representations are learnt depending on the type of training (Garnelo

et al., 2016). Garnelo et al. (2016) find that learning disentangled representations

alone are not enough when building compositional systems, and incorporating

relational structure during training moulds the representation into components

that work compositionally. Garnelo et al. (2016) specifically looked at combining

symbolic Artificial Intelligence (AI) and DL. Symbolic AI requires a compositional

model with objects and a language for making queries. Object representations are

often trained using auto-encoders however when training representations from raw

data using an auto-encoder, entangled representations emerge in the intermediate

layers. Variational Autoencoders (VAE) (Kingma and Welling, 2014) are able

to disentangle representations, but a further problem emerges when using these

representations as components in tasks that require reasoning about objects and

their relations. It turns out that when composition is required, the representation

training process must impose structure so that the representation is primed or

tweaked for composition. They consider two similar mechanisms for forcing the

learning of relational information: Relational Network (RN) (Santoro et al., 2017)

and self-attention (Vaswani et al., 2017). Both of these approaches learn pairwise

relations such that if there are n objects, n2 relations are learnt.

Andreas et al. (2017) look at compositional reasoning models in RL and intro-

duce the concept of policy sketches, a coarse definition or outline of the subtasks in

a sequential task. No details of the components of the subtask are provided, just

the sequence of the subtask (in symbolic form) in the task, with re-use of subtasks

across multiple tasks. This paper demonstrates that simply a high-level outline

of the abstract relational structure of a task allows the agent to learn re-usable

65

3.3. ACTION RELATIONS IN REINFORCEMENT LEARNING Page 66

subtask policies and achieve good performance improvements for sequential tasks

in multi-task environments compared with other approaches.

In “Relational Deep Reinforcement Learning”, Zambaldi et al. (2018) build

relational reasoning into the architecture of a DRL agent, to allow the agent to

reason about relations between entities in a scene using a self-attention mechanism.

Zambaldi et al. (2018) apply self-attention to iteratively reason about the relations

between entities in a scene, specifically, self-attention is used to update the agent’s

relational representations between entities to improve its understanding of the re-

lations in the scene. They show that their method works well, inducing relational

inductive biases in StarCraft II and allows an element of interpretability, however

some limitations were observed, including a tendency to overfit, a lack of general-

isability and limitations on the nature of the environment, requiring objects and

relations to be clearly detectable. Other neural network architectures in the area

of relational structure include the RN (Santoro et al., 2017), interaction network

(Battaglia et al., 2016), the Transformer self-attention approach (Vaswani et al.,

2017) and graph networks (Sanchez-Gonzalez et al., 2018; Battaglia et al., 2018).

Recent work on Graph Network (GN) by Battaglia et al. (2018) was developed to

support relational reasoning over graph structures, designed to be added to any

learning process as an architecture that can accept a graph. Sanchez-Gonzalez

et al. (2018) use GNs to model articulated bodies as a graph of limbs, joints and

some global attributes, showing how effective the GN is at learning the relational

structure and updating the graph representation. This work illustrates how more

complex systems may be modelled in a more intuitive manner by using these ar-

chitectural components in deep neural networks.

By contrast to using architectures, Hill et al. (2019) find, using a theory from

analogical reasoning, viz. Structure Mapping Theory (SMT), that relational ab-

stractions can be learnt from only the input data. Analogies require relational

structure and Hill et al. (2019) believe it is a key element to human general intel-

66

3.3. ACTION RELATIONS IN REINFORCEMENT LEARNING Page 67

ligence, i.e. abstracting the core relations from an input source and applying the

relational abstraction to a completely different set of data. They believe in induc-

ing analogical reasoning from the input data instead of architecture, and introduce

a new method of training (LABC) that can be applied to any neural network. A

key feature of this work is the careful generation of training data to expose the type

of learning desired, providing a new dataset that uses the interplay between rela-

tions, domains and values to create many different tasks for this purpose and later

train a Generative Adversarial Network (GAN) to automatically generate data for

future training. This work provides an alternative to architecting for structure

by relying on data instead, and proposes a means for an agent to automatically

generate the data it needs to learn the structure, opening up new possibilities for

agents to perform more intelligent pre-exploration of the space autonomously.

In “Measuring abstract reasoning in neural networks” Barrett et al. (2018) tack-

les the question of whether relational modules like the relational NN are actually

learning relational reasoning. Experiments based on the Raven grids used for IQ

testing are designed and a variant of the RN model from Santoro et al. (2017)

is used to learn relations and train an auxiliary model that tests whether valid

relations are learnt. Barrett et al. (2018) find that when the agent makes a se-

lection the relation metric is higher than the other metrics, pointing positively to

relational reasoning driving action selections.

A common feature in Garnelo et al. (2016) and Barrett et al. (2018) is the use

of an auxiliary task for grounding learning. Garnelo et al. (2016) are interested in

symbolic representations and notice that training the query with symbols seems

to improve the nature of representations learnt. The same observation is made

in Barrett et al. (2018), that an auxiliary model trained to predict features that

agents focus on in reasoning tasks in a more granular way, produced improved

results.

67

3.4. SUMMARY Page 68

3.4 Summary

A summary of the related work and the gaps identified is outline below.

Transfer in Reinforcement Learning (Section 3.1)

• Transfer of prior knowledge to accelerate learning in new tasks

• Exploration methods for sparse and delayed reward settings

• Multi-task RL for learning common knowledge across tasks

Gaps Identified

• In general, most transfer methods are limited when source and target tasks lack

similarity

• Sufficient diversity in source tasks is crucial to avoid negative transfer or over-

fitting

Structure in Action Spaces (Section 3.2)

• Factorisation and decomposition of state-action spaces

• Abstractions such as options and embeddings

• Approaches tackling multi-discrete action spaces

Gaps Identified

• Factorisation and decomposition rely on actions having similarity within sets

and methods are often manual

• Generalisation remains a challenge in most works on multi-discrete action spaces

Action Relations in Reinforcement Learning (Section 3.3)

• Representing and leveraging relationships between actions

• Frameworks combining relational reasoning with DRL

• Architectures for relational learning like attention mechanisms

68

3.4. SUMMARY Page 69

Gaps Identified

• While there is work on relational reasoning in RL, most target the observation

or task space, not the action space. Model-free RL algorithms tend not to exploit

relational reasoning in multi-discrete action spaces.

• In general, there is no established approach for extracting and utilising action

relationships in online, offline or multi-task RL settings. Expert data or manual

manipulation of the action space is often required.

• Architectures for relational learning like attention are promising but tend to

overfit, lack generalisation, and have limitations based on the environment. Graph

networks are an emerging direction.

In summary, the related work covers key areas related to structure and rela-

tionships in RL action spaces and identifies significant remaining gaps, especially

in leveraging action relations without expert data, improving generalisation, and

developing architectures for more complex environments. Addressing these open

problems is a key motivation for the research in this paper.

69

Chapter 4

Multi-task transfer of action

structure in multi-discrete action

spaces

4.1 Introduction

One of the challenges in RL is to ultimately obtain enough of a signal to facil-

itate learning, especially in environments where rewards are sparse (Shelhamer

et al., 2016; Ladosz et al., 2022b; Eysenbach et al., 2019; Raileanu and Rock-

täschel, 2020; Pathak et al., 2017). An important part of the RL process entails

exploring the state-action space efficiently and effectively. The problem addressed

in this chapter is to improve the exploration capabilities of an agent in sparsely

rewarded environments that have multiple discrete actions per timestep, known

as multi-discrete actions. The nature of multi-discrete actions and the types of

relationships that can form between individual actions in the multi-discrete action

are described in section 2.2.2. Multi-discrete actions increase the size of the ex-

ploration space combinatorially. A sparse reward signal further exacerbates the

RL learning challenge, that is directly tied to the size of the state-action space

70

4.1. INTRODUCTION Page 71

(Sutton and Barto, 1998b; Amin et al., 2021). Random exploration is often used

as a starting point when training RL algorithms (Kuleshov and Precup, 2014;

Houthooft et al., 2016), however this approach is problematic when rewards are

sparse (Pathak et al., 2017; Shelhamer et al., 2016) and learning is dependent on

the agent randomly encountering a reward signal.

Reward sparsity (refer to Chapters 2 and 3 for context), is not an unusual

problem in RL and much work has already been proposed to tackle this problem

(Pathak et al., 2017; Schaul et al., 2015c; Vecerik et al., 2017; Rengarajan et al.).

In sparsely rewarded settings learning can be very slow until exploration provides

some positive signal. When the extrinsic reward signal is unavailable alternative

approaches are adopted to guide the agent, including auxiliary signals (Jaderberg

et al., 2017; Shelhamer et al., 2016), intrinsic rewards (Machado et al., 2017; Pathak

et al., 2017; Raileanu and Rocktäschel, 2020), providing the agent with additional

knowledge about the environment (Goyal et al., 2019; Salimans and Chen, 2018)

or task (Zhang and Yang, 2022; Chitnis et al., 2020).

In multi-task RL (section 2.6.1) there is some level of redundancy and invari-

ance across tasks (Du and Narasimhan, 2019; Zhang and Yang, 2022; Zintgraf

et al., 2019) that could speed up the learning of future, unseen tasks if exploited.

This finding motivates the approach in this chapter that considers learning task-

invariant action structure in a multi-task setting and transfers this knowledge to

support exploration when training new tasks. The exploration space is normally

increased by the multi-discrete action setting, so the invariant structure is used to

enhance action selection by reducing the size of the exploration space.

In a synergistic action combination the outcome of the joint action exceeds

the sum of the individual action outcomes. In multi-discrete environments where

synergistic action combinations are required to transition some states on the op-

timal trajectory, these states are referred to as bottleneck states. The concept

of bottleneck states arises from the skill discovery literature (Bacon; Goyal et al.,

71

4.1. INTRODUCTION Page 72

2019; Kulkarni et al., 2016), and refers to a state that may be used as a goal state

because it is on the critical path. By nature, bottlenecks are states that occur fre-

quently on successful trajectories and less frequently on unsuccessful trajectories,

a concept that is exploited in this chapter.

The proposed approach in this chapter is to explicitly learn synergistic relational

structure in multi-discrete action spaces in sparsely rewarded environments. This

structure is learnt in a task-agnostic way that leverages bottleneck states (Goyal

et al., 2019; Kulkarni et al., 2016) and is transferred to new tasks to bias the

exploration process. Bottlenecks are used to identify effective action combinations

across a diverse range of tasks. The actions linked to bottleneck states are mined

for structural information, specifically relational structure or action affinities. By

accessing the structural information from the actions rather than the states, the

context problem associated with a task is reduced. In each task the specific states

and transitions are different, however, context-free action structure is transferable

to new tasks. This approach is limited to problems with a static action space that

remains consistent across all tasks.

Context-free structure is achieved by first establishing common action structure

across multiple tasks using bottleneck states, then clustering the action space to

group individual discrete actions that demonstrate affinities. The clusters are used

as transferable structure to modify the exploration process, impacting how actions

are selected. During exploration for new, unseen tasks, actions are selected from

within these clusters.

A four-room grid-world environment with a multi-discrete action space was

used to demonstrate the effectiveness of this approach, using a Q-learning RL

algorithm. The results were compared with a baseline Q-learning algorithm and

an action elimination approach. The empirical results demonstrate that when the

clusters were applied to the exploration process of downstream tasks, exploration

efficiency improved, enabling the agent to converge much faster on new tasks. For

72

4.2. RELATED WORK Page 73

convenience the proposed approach is referred to as Concurrent Action Structure

using Clustering (CASC) for the duration of this document.

The specific contributions of this chapter include:

• learning task-agnostic and context-free relational action structure across

multiple RL tasks by leveraging bottleneck states

• transferring action structure in the form of clusters to new unseen tasks to

improve exploration efficiency

• comparisons of CASC against baseline and action elimination methods over

the same set of tasks

• demonstration of faster convergence on new tasks by biasing exploration to

use learned clusters

The chapter is organised as follows: section 4.2 provides some related literature,

followed by section 4.3 that provides background material on the spectral clustering

method used to learn structure; section 4.4 provides the motivation and details for

the proposed approach, including the extraction and transfer of action structure to

new, unseen tasks and details of the implementation; section 4.5 outlines particular

experiments performed and results and finally section 4.6 concludes the chapter.

4.2 Related Work

Chapter 3 provides an overview of literature relating to exploration and reward

sparsity (section 3.1.2), multi-task transfer learning (section 3.1) and structure in

RL (section 3.2). This section reviews some literature more specific to this chapter,

particularly how other approaches manage structure in concurrent action spaces.

Several works use factors or decomposition of the action space in concurrent

action environments although the approaches for obtaining the factors and the

73

4.2. RELATED WORK Page 74

methods of composition vary across approaches. Wang and Yu (2016) use a regu-

larisation technique to model and exploit the relationships between multiple con-

current actions to improve sample efficiency. The regularisation encourages the

values of related actions to be similar and allows the agent to learn relationships be-

tween actions instead of treating each action independently. The method requires

manual intervention to decompose actions into components and it is uncertain

how well this approach would scale to larger action spaces. Sharma et al. (2017)

also decompose actions into a set of action-factors forming a factored action rep-

resentation. The agent is trained to compose concurrent sets of actions based on

the factors. As with Wang and Yu (2016), the decomposition is manual. Harmer

et al. (2018) adopt the composition approach too and propose a network architec-

ture that outputs multiple actions per timestep in a DRL setting. The network is

trained using auxiliary signals from experts resulting in an online approach, one

of the few online models in this problem space. The agent benefits from having

a concurrent action structure that means it has the capacity to learn relational

information from expert data. This approach seems very effective but does require

expert data.

Rosman and Ramamoorthy (2015) and Zahavy et al. (2018) look at prior knowl-

edge and action elimination to bias the agent’s learning of new behaviour. In

Rosman and Ramamoorthy (2015) action priors are modelled using Dirichlet dis-

tributions where the concentration parameters are the counts for a task. Zahavy

et al. (2018) propose reducing the size of the relevant actions per state using a

separate network, viz. a model that is trained with an externally provided action

elimination signal, controlling which actions to eliminate in the main DQN agent.

The motivation is to remove unnecessary actions and improve sample efficiency.

Tennenholtz and Mannor (2019) and Chandak et al. (2019) focus on struc-

ture in action spaces specifically, both learning embedded action representations.

Tennenholtz and Mannor (2019) developed an action-context embedding represen-

74

4.3. SPECTRAL CLUSTERING Page 75

tation, Act2Vec, modelled on word embeddings in the manner of language-based

skip-grams models Mikolov et al. (2013). Action embeddings were trained in the

first phase, and used to enhance Q-function learning in the second phase. Ac-

tions were clustered, by similarity of outcome, to reduce the exploration space and

improve performance. To learn the embeddings, expert trajectory data was pro-

vided. Chandak et al. (2019) also learn a lower dimensional action representation

and a transform function between the lower dimensional representation policy and

original policy. The embedding is used for training the agent in the lower dimen-

sional space and makes use of underlying structure, similar to Tennenholtz and

Mannor (2019). The choice of action structure is left to the implementer and the

transformation function from embedding to real actions makes an assumption that

is related to the convergence guarantees. In practice, this method was tricky to

implement successfully.

4.3 Spectral Clustering

This section provides a brief overview of spectral clustering to support the algo-

rithm used in this chapter (Ng et al., 2002). Spectral clustering is a non-generative

clustering method based on the eigenvectors of a matrix representing the similar-

ity or affinity between data points. There are many ways to generate the affinity

matrix, as described by Luxburg (2007).

The affinity matrix may be viewed as a graph of nodes that reflect the data

points and edges that reflect the strength of connection between the points. For

example, if the affinity matrix is defined as A = (aij)i,j=1,...,n where aij = 0, this

means the ith and jth points have no connectivity.

75

4.3. SPECTRAL CLUSTERING Page 76

The degree matrix is a diagonal matrix, D, whose elements are defined by

di =
n∑

j=1
aij

The graph Laplacian matrix is defined from this matrix. There are various

forms of Laplacian matrix definitions. The definition used in Ng et al. (2002) is

the normalised Laplacian:

L := D−1/2AD−1/2

There are two approaches for using the eigenvectors of the Laplacian to cluster

the data, viz. spectral graph partitioning or clustering of k eigenvectors. In the

former the eigenvectors are used to make graph cuts. The latter approach is used

here and described next. A preceding step to re-normalise the k eigenvectors to

form tighter clusters is used. If X = {x1, x2, ..., xk} are the k eigenvectors of the

Laplacian L, calculate Y , the renormalised eigenvectors as:

Yij = Xij/

∑
j

X2
ij

1/2

Finally k-means clustering was applied to the matrix Y to generate clusters and

allocate the original data points according to the clustering.

There are several clustering methods that are applicable for data that exhibit

affinities, including Agglomerative Clustering and Density-Based Spatial Cluster-

ing of Applications with Noise (DBSCAN) (Pedregosa et al., 2011). These two

methods require feature vectors for the Euclidean distance calculations whereas

with spectral clustering it was possible to provide an affinity matrix directly.

76

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 77

4.4 Proposed Approach: Concurrent Action struc-

ture using clustering (CASC)

In this section the proposed approach for extracting task-agnostic, relational action

structure from multi-task data, thereby enhancing action selection for improved

exploration of new tasks, is defined.

This problem is cast in the multi-task space where a range of tasks, similar in

nature, are generated and share some task-invariant features. This is also a multi-

discrete action space where the agent must select multiple actions in one timestep.

In this work, the agent is limited to two actions per timestep. In this setting,

relationships between individual actions in a concurrent action are possible, such

that some action combinations are synergistic in nature and typically associated

with bottleneck states.

The remaining sections outline the CASC approach:

• Section 4.4.1 describes the proposed approach and motivation

• Section 4.4.2 describes the process used to generate data and extract task-

agnostic structure in a multi-task setting

• Section 4.4.3 defines the spectral clustering method for extracting relational

structure from the action space

• Section 4.4.4 elaborates on how action structure is transferred to enhance

exploration

• Section 4.4.5 provides details of a comparative action elimination method

using the same multi-task data

• Section 4.4.6 places this work in the context of the related work in this area

• Section 4.4.7 provides an overview of implementation details

77

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 78

4.4.1 Approach and Motivation

The proposed approach in this chapter is to generate data from multiple tasks

and use bottlenecks to highlight which actions are important. The hypothesis

is that the high state visitations that accompany bottleneck states in successful

trajectories effectively identifies actions whose structure might be useful. The high

state visitations associated with bottlenecks are used to divide the action space

into regions of high affinity actions. The implication is if this action is important

then the composition of actions is useful to remember and might be useful for

other tasks too. Spectral clustering (Ng et al., 2002) is used to categorise and

divide the action space. The important action relations are retained and indirectly

suppresses relations that are less important. Both clustering and action elimination

are applied to a modified exploration process as described below in sections 4.4.3

and 4.4.5.

Intuitively, categorisation and elimination are very human concepts. Almost

the first thing we do, as humans, is to perform a mental categorisation of data

when learning something new (Chi et al., 1981). Similarly, the human brain elim-

inates an enormous amount of sensory and other data to focus on the essentials.

These two approaches lead to an implicit and explicit perspective on extracting,

learning and using structure. Action elimination may be viewed as implicit, i.e.

not including any particular architecture for learning structure. The idea is that

task invariant actions are associated with features in the environment even if the

specific features are unknown. This implicit structure is applied as prior knowl-

edge during action selection to new tasks.

Clustering on the other hand is more explicit, i.e it separates the action space

based on inherent structure in the space and the model is architecturally modified

to adopt this structure during action selection. The agent is trained to learn ex-

plicit structure in the action space in the form of clusters. The premise is that high

78

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 79

counts of some action sets imply an underlying relationship or affinity between the

primitive actions in those sets, that can be used to separate the action space into

clusters. During exploration and action selection the agent would select concur-

rent actions from within a cluster on the basis that there is a higher likelihood of

picking an effective action set.

A comparative approach was not easy to find because a common way to deal

with multi-discrete action spaces is to transform the space into a discrete action

space (Kanervisto et al., 2020). If the resultant action space was too large, less

common actions were dropped in a process known as action elimination (Even-

Dar et al., 2003; Zahavy et al., 2018). Kanervisto et al. (2020) actually find

that multi-discrete actions perform better overall than the discrete transformation

nevertheless, empirically, action elimination can be an effective approach and is

used as a comparative method against the proposed clustering approach. This

approach conceptually improves sample efficiency by applying prior knowledge

during exploration. A possible complication for action elimination in the multi-

task setting could be a lack of diverse data leading to some actions being eliminated

prematurely.

The sections 4.4.2-4.4.4 below describe the proposed CASC algorithm, that

first extracts structure then transfers it to train new tasks. A sub-set of this

process (section 4.4.5) is used to implement the action elimination method used

for comparison. Refer to Figure 4.1 for an overview of the spectral clustering

process and Figure 4.2 for an overview of the action elimination process flow.

4.4.2 Extracting task-agnostic structure in a multi-task set-

ting

This section describes the proposed method for collecting data across multiple

tasks and extracting task invariant structure by averaging action frequency data,

79

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 80

Figure 4.1: Process Flow for CASC: In step 1 tasks are randomly gener-
ated by varying the locations of the start (S), goal (G) and special states
(coloured states). Data generated from solving these tasks using an RL
algorithm is processed in step two to produce the affinity matrix. Step
three applies spectral clustering to the affinity matrix to create clusters
of primitive actions with high affinity. Finally, in step four a Q-learning
algorithm is modified to select actions from the clusters during exploration
for new tasks.

generating the frequency or count matrix for section 4.4.3.

A key feature of this approach is that the action structure is task invariant and

context-invariant, which means it is transferable to other tasks without concern

about the nature of the source or destination tasks, or about state associations.

The idea is to extract and transfer only the elements common to multiple tasks

that are not conditional on task specific elements such as the transition dynamics

or goal states. This is achieved by first using a pre-training phase to collect data

from multiple tasks so that common structural information can be harvested, as

outlined in algorithm 2.

In step 1, the tasks are trained using a Q-learning algorithm with ϵ−greedy

exploration to generate trajectories. A sample of successful trajectories is collected,

where success is defined by whether the goal state is reached before the maximum

80

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 81

Figure 4.2: Process Flow for Action Elimination: In step 1 tasks are
randomly generated by varying the locations of the start (S), goal (G) and
special states (coloured states). Data generated from solving these tasks
using an RL algorithm is filtered in step two to retain only the highest
performing actions. Step three converts the highest performing actions
into an exploration policy. Finally, in step four a Q-learning algorithm is
modified to select actions using the exploration policy during exploration
for new tasks.

allowed step count (a hyperparameter). This process is effectively collecting expert

or optimal data from multiple tasks to refine the quality of data transferred to

future tasks.

In step 2, the frequency counts of actions from optimal trajectories are processed

for transferable structural data. The intuition is that optimal trajectories will have

the highest percentage of bottleneck states, with corresponding useful actions,

which is a good starting point for analysing structural information in a multi-

discrete action setting.

Step 2b in algorithm 2 outlines how the count data is processed for the clus-

tering approach. The counts per set of actions are collected across multiple tasks,

retaining only the most frequently used actions, controlled by a threshold hyper-

parameter, t. The threshold and top counts hyperparameters are used to control

81

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 82

Algorithm 2: Processing Count Data
Inputs
N - Number of primitive actions
Hyperparameters: threshold t, no. of top counts NC
1. Generate Counts matrix
Generate trajectories from multiple tasks using RL algorithm (eg.
Q-learning)
Collect count of each action set selected per state for successful
near-optimal episodes
Average over multiple tasks and runs to generate a count matrix by
state and action set, Counts(s, a, a)
2. Process Action Counts
Reshape Counts from SxNxN to SxN2, unrolling action sets per
state

2.a. Process Action Elimination Count Matrix
Set threshold t > 0 and NC to low number
Apply threshold filter to Counts and accumulate only the
remaining top NC action counts across all states
Combine count matrices for all tasks and normalise the
vector formed: probs(Ai)
Return Vector probs(Ai) with dim 1xN2

2.b. Process Clustering Count Matrix
Set threshold t = 0 and increase NC
Apply threshold filter to Counts and accumulate the top
NC action counts across all states
Reshape to form matrix W with dimensions N x N
Return Matrix W , with dim N x N

the sparsity of the action frequency count matrix. The process of filtering only the

best trajectories and averaging over all tasks builds a collection of task-invariant

actions. Specifically, the action counts are averaged across all tasks and the action

frequency count matrix is re-formed to a N × N matrix, where N is the number

of primitive actions.

For example, if the primitive action set is A = {0, 1, 2, 3, 4, 5} in a multi-discrete

action space of MultiDiscrete([6, 6]) such that a sample action [3, 0] that has an

averaged count of 23 over multiple tasks, that action will contribute 23 to row 3

and column 0 of a sample 6x6 action frequency matrix,

82

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 83



10 2 30 1 0 0

45 20 19 1 0 15

0 0 0 1 0 1

23 0 9 40 0 0

1 0 0 1 50 0

7 0 0 1 0 10


The output of this algorithm is the averaged action affinity matrix that is used

as the input to the clustering algorithm 3. The count frequencies are likened

to action affinities: a high frequency or count is taken to mean a high action

affinity which implies a strong relation between the two actions in the set. In this

first phase, averaging the counts over multiple tasks makes this a task-agnostic,

context-free approach so that there is no direct association with states or tasks.

The task-agnostic matrix of action frequencies is therefore used as an action affinity

matrix that denotes the strength of the action relationships. The next step will

extract the transferable structural information from the task-agnostic matrix of

action frequencies.

4.4.3 Using spectral clustering to exploit relationships be-

tween actions

This section describes the proposed method for clustering the action space by

applying spectral clustering over the average frequency counts or affinity matrix.

The output from the pre-processing in algorithm 2 is a task-agnostic, averaged

action affinity matrix. The spectral clustering algorithm 3 receives this matrix as

input. Relationships in the action space are important in this problem setting so

the main idea is to extract the relational behaviour and transfer it to new tasks

for faster learning. Spectral clustering separates data using the eigenvectors of

the Laplacian of an affinity matrix (Luxburg, 2007). The affinity matrix may be

83

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 84

Algorithm 3: Spectral Clustering of Actions
Input:
Count matrix for action sets, W , with dim N x N , where N is no.
of primitive actions
1. Prepare Affinity Matrix:
Check for symmetry, zero diagonals
2. Apply Spectral Clustering algorithm (Ng et al., 2002)
Degree matrix: D where dii is the diagonal sum of row W [i]
Normalised Laplacian: L = D−1/2WD−1/2

V is a matrix formed from the top k of eigenvectors of L
Y is the matrix V normalised
Apply k-means to Y for k clusters and create list of clusters, C

3. Post Process Clusters
Remove clusters with low silhouette score
Remove single item sets
Return List of clusters C

viewed as a graph where each action is a node and the edge is the strength of

the relationship between actions, the strength in this case is reflected by the av-

eraged counts in the frequency matrix. Spectral clustering was performed on the

frequency matrix to find clusters in the action space. This results in the genera-

tion of clusters with elements consisting of actions that are grouped by strength of

relationship. Specifically this means that if three actions display relationships and

this manifests in the training data, these three actions are likely to be clustered

together.

Algorithm 3 describes how the spectral clustering algorithm from Ng et al.

(2002) is applied to cluster actions using the affinity (frequency) matrix, including

some conditions that the affinity matrix should meet. Step 1 in Algorithm 3 trans-

forms the count matrix into the appropriate form. In step 2 the eigenvalues and

eigenvectors of the normalised Laplacian are calculated; typically cluster blocks

are revealed in this step. K-means clustering (Pedregosa et al., 2011) was used to

group the top eigenvectors. The number of clusters k is a hyperparameter, how-

84

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 85

ever it is also determinable using an eigengap heuristic (Luxburg, 2007; Ng et al.,

2002) that monitors the gaps between the eigenvalues for distinct jumps or steps.

Step 3 is a processing step that uses a cluster measure to check the validity of each

cluster and retains only the most confident clusters based on the silhouette score.

Given the nature of how the clusters are used for action selection, single element

clusters are removed. This will be described further in algorithm 4. The output

of this algorithm is a set of clusters for the action space.

It should be noted that although spectral clustering was applied to this data,

another clustering method could be used instead. Spectral clustering was found

to be convenient for this purpose as the frequency matrix functionally aligns with

the requirements for an affinity matrix.

4.4.4 Transferring action structure to enhance exploration

This section describes the proposed method for transferring the clusters defined in

algorithm 3 to enhance the exploration process of new tasks.

Algorithm 4: Action Selection - Clustering
Input:

C: list of clusters
Q(s, Ai): current Q-function
np: number of individual actions in a concurrent action set

If Exploration:
Sample a cluster ci from C randomly
Select np actions from within ci → Ai

Else if Exploitation:
Find action set with max value in Q(s, Ai)→ Ai

Return Ai

The previous algorithm 3 extracted structural information from the action space

in the form of clusters of related actions. Algorithm 4 describes the approach

for transferring this structure to new tasks to improve performance. This algo-

85

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 86

rithm targets the exploration process in multi-discrete action spaces because multi-

discrete actions increase the size of the exploration space (Kanervisto et al., 2020;

Sutton and Barto, 1998b). The approach modifies the action selection process to

use the clusters derived in algorithm 3 to improve exploration. In Algorithm 4

actions are selected by, first, randomly selecting a cluster, then second, randomly

selecting actions from within that cluster. The actions within each cluster should

be related actions with strong affinities. In practice, this reduces illegal or useless

sets generated by random action selection during exploration.

4.4.5 Action elimination in a multi-discrete action setting

This section describes the proposed method for implementing action elimination

in a multi-discrete action context. The method takes as input the vector of prob-

abilities calculated by algorithm 2 and uses this as an exploration policy for the

exploration of new tasks. The exploration policy provides biased input into which

actions are good or bad.

Algorithm 5: Exploration with Action Elimination Prior
Input:

Exploration policy probs(Ai)
Current Q-function Q(s, Ai)

If Explore:
Sample an action set from probs(Ai)→ Ai

Else if Exploit:
Find action set with max value in Q(s, Ai)→ Ai

Return Ai

An action elimination (Zahavy et al., 2018; Even-Dar et al., 2003) method

was selected as a comparative method for the main proposed clustering approach

defined in algorithms 3 and 4.

A policy, called the exploration policy, is extracted from the frequency count

matrix as described in step 2a of algorithm 2. The algorithm describes how the

86

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 87

frequencies per action set are collected across multiple tasks in step 1. Step 2a

(algorithm 2) describes how only the most frequently used action sets are retained,

controlled by a threshold hyperparameter, t. Frequencies below this threshold will

be filtered out, effectively pruning the matrix. The matrix is unrolled to a more

use-able probability vector (exploration policy) format, after normalising the data

to create a distribution, with dimensions 1×N2, a distilled set of actions averaged

across multiple tasks.

Algorithm 5 defines how the exploration policy is transferred to impact action

selection in new tasks as part of a Q-learning algorithm. The biased exploration

policy is sampled for actions during the explore phase while the exploit phase is

unmodified. Normally during exploration all actions would be available for selec-

tion so this may be viewed as providing the agent with prior expert information

on which actions are better. The intuition is that high frequency action sets are

probably more useful and could be used as a basis for action elimination. Action

elimination is, however, potentially dangerous to the agent if useful actions are

removed due to inadequate pre-training data. The task-agnostic manner in which

this data was collected should help to minimise bias towards any one task and

remove generally useless actions by favouring the task-invariant sets, assuming

task diversity is maintained. The action elimination process amounts to injecting

implicit structural knowledge about the action space into the system versus the

explicit structure transferred in the spectral clustering approach (Section 4.4.3).

4.4.6 Discussion

In CASC, action clusters are proposed to speed up exploration by reducing the

number of elements to select. In general, exploration should have an element

of randomness to prevent falling into local optima too early (Sutton and Barto,

1998a). The action selection process in CASC tries to maintain this randomness,

by first randomly selecting a cluster, then randomly selecting actions within the

87

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 88

cluster. The structural information imparted by the clusters makes the exploration

space more meaningful, and potentially more interpretable, while allowing actions

to be selected at random. This method is similar to the k-Exp exploration ap-

proach adopted in Tennenholtz and Mannor (2019) but in that work the purpose

for the clustering was different; Tennenholtz and Mannor (2019) used clusters to

reduce the size of the action space by grouping similar actions together, whereas

CASC is using clusters to denote relational structure, grouping actions that syn-

ergise instead.

This chapter has expanded on some of the ideas in Rosman and Ramamoorthy

(2015), but in a concurrent action setting, specifically extracting task-invariant

structure into a prior for action exploration. There are a few similarities with

the approach of Tennenholtz and Mannor (2019) who use supervised embedding

and clustering of the action space versus the unsupervised, count-based spectral

clustering approach of CASC; both works consider the action-only context. The

use of the clusters during exploration is also different; Tennenholtz and Mannor

(2019) cluster to prevent redundant selections of actions whereas CASC clusters

effective action combinations with high affinities.

4.4.7 Implementation Details

4.4.7.1 Environment

A requirement for testing the approaches mentioned above is a rich action space

with actions that interact and have relations. Specifically, unique synergies exist

where some actions, when combined, will achieve a state transition that no other

action combinations are capable of making. The environment should therefore

have some states that require special combinations of actions to transition to the

next state.

A four-room 10× 10 grid-world environment (Figure 4.3) was modified to sup-

88

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 89

Figure 4.3: Grid-World requiring multi-discrete actions on every step,
where S-Start, G-Goal, H-Holes, O-Obstacles and gaps in the walls indi-
cate doors

Table 4.1: Action-State Categories; the index of the action and an abbreviated
form is also provided. Multiple actions may be selected from within and across
categories.

State Action Set Category
Normal Up (U-0), Down (D-1), Left (L-2), Right (R-3) Navigation

Obstacle Hack (H-7), Jump (J-6) Obstacles
Doors Open (O-4), Enter (E-5) Doors
Holes Fill (F-8), Jump (J-6) Holes
Any No-Op (N-9) None

port these requirements. To support the generation of multiple tasks for pre-

training, the environment was designed to be configurable, i.e. the start (S) and

goal (G) positions, internal walls and special states are moveable to support ran-

dom task generation. A single goal state (G) is located in one of the rooms for

each task and the agent is allocated a start state (S).

The set of ten primitive actions is fixed across all tasks and listed in Table 4.2.

The environment accepts a multi-discrete action on every step and has special

states with corresponding special or synergistic action combinations, as detailed

in Table 4.1. For example, a set of door related actions [Open, Enter] are associated

89

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 90

Table 4.2: The full set of primitive actions with action index

0 1 2 3 4 5 6 7 8 9
U D L R O E J H F N

with a special type of door-state such that only this set of actions can transition

through a door state. The expectation is that the agent would learn that the Open

and Enter actions are door-related and create a cluster for door-related actions that

is independent of, say, navigation actions [Up, Down, Left, Right]. Two additional

special state categories add a further element of complexity, viz. the holes and

obstacles were designed to share a primitive action (the Jump action), to mimic

possible real-world scenarios where actions overlap. Finally a no-op action was

added that can be combined with any action but has no effect.

Rewards: there is a per-step penalty of -0.01 and the goal state has a reward of

10.

More details of the dynamics and other aspects of the environment are provided

below:

• Special states require a particular action combination to successfully transi-

tion to the next state. There is no reward if the agent is successful and no

penalty if the agent fails.

• Any action combination may be selected in any state. There is no reward

penalty for selecting an incompatible set of actions in a state.

• The environment is sparsely rewarded with a positive reward received only

on reaching the goal state. There are no other positive rewards.

• The every-step penalty serves to encourage the agent to be optimal in terms

of timesteps.

• While the environment is small, the agent does not have location of the goal

state, special states or walls included in the agent state. The agent state is

90

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 91

simply the one hot encoded position of the agent in the grid. This makes

the problem partially observable or a POMDP.

• More details on action combinations:

– [Open, Enter] is required to transition a door-state. Taking this action

combination on another state is possible but has a neutral response (i.e.

no state change).

– Hole and Obstacle states share the Jump action. [Hack, Jump] transi-

tions obstacle states while [Fill, Jump] transitions hole states. A nav-

igation action is not required; the environment manages the direction.

The agent needs to be facing the state in the correct direction in order

to successfully transition.

– The No-Op action can be combined with any action but is neutral. For

example [Up, No-Op] will move up one step. There are no penalties

for taking a No-Op action. Combinations of special actions and No-Op

will also have a neutral result.

4.4.7.2 Task Setup

In this environment, a task is characterised by the location of the start and goal

states, walls and door states. Tasks are configurable and are generated by ran-

domly allocating the start and goal states, and the positions of the internal walls

and doors. For each task configuration the agent was trained for 50 runs of 200

episodes; each episode was truncated after 200 timesteps. 10 tasks were used for

the initial pre-training phase.

4.4.7.3 Training the RL algorithm

Due to the small number of states and actions, a tabular Q-learning algorithm

was used to solve this environment. The multi-discrete actions were converted

91

4.4. PROPOSED APPROACH: CONCURRENT ACTION STRUCTURE
USING CLUSTERING (CASC) Page 92

into discrete actions for evaluation in the Q-function, but actively composed from

primitive actions during action selection based on the clustering mechanism de-

fined in algorithm 4. Other value-based algorithms (Sutton and Barto, 1998b)

would work as the approach is algorithm agnostic and just requires a method for

incorporating the clusters into the exploration process. The agent was configured

to select and take multi-discrete actions, in this case two actions per timestep.

There were no limitations on the composition of the action sets, so potentially

useless action sets such as [Up,Down] were possible.

There are three phases of training, viz. a pre-training phase for data collection

across multiple tasks, an analysis phase for extracting structural information for

transfer and finally the multi-task transfer phase with structural action informa-

tion applied to new tasks.

Pre-training: This phase aligns with section 4.4.2, algorithm 2, step 1, where

multiple random tasks were generated and trained using Q-learning with ϵ-greedy

exploration, starting at 0.9 and annealed to 0. All data was collected in the form

of trajectory tuples (s, a, r, s′).

Analysis: during this phase, data from the pre-training phase was collated ac-

cording to the approach in sections 4.4.2-4.4.5.

For CASC: the cluster frequency matrix generated as per algorithm 2, step 2b was

subjected to spectral clustering as described in algorithm 3. The output of this

process is a list of clusters in the action space.

For the action elimination approach: an exploration policy was generated as per

algorithm 2, step 2a, ready for the transfer step.

Multi-task Transfer:

For CASC: the exploration process of the RL algorithm is enhanced to use the

clusters generated, as described in algorithm 4.

For the action elimination approach: the exploration process of the RL algorithm

is fitted with the exploration policy described in section 4.4.5, algorithm 5.

92

4.5. EXPERIMENTS AND RESULTS Page 93

The CASC and action-elimination agents are evaluated over randomly gener-

ated tasks. The training performance of these algorithms is compared with a

vanilla or un-modified Q-learning baseline algorithm (section 2.3.3) over the same

set of tasks.

4.5 Experiments and Results

Experiments were designed to address several key questions:

• Is it possible to learn context-free, task-agnostic relational action structure

from multiple tasks in the multi-discrete action space? (section 4.5.1)

• Does the transfer of this structure, applied to the exploration process, im-

prove the training of new unseen tasks? (section 4.5.1)

• Is the performance achieved comparable with a high performing action elim-

ination algorithm? (section 4.5.2)

• Does the method perform well compared with ablative random clustering

methods? (section 4.5.3)

4.5.1 Concurrent Action structure using clustering - CASC

The multi-phase CASC algorithm was executed as described in section 4.4.7.3,

specifically:

• Random tasks were generated for the pre-training, multi-task data collection

phase as per algorithm 2 (step 1)

• Each task was trained using a Q-learning algorithm with ϵ-greedy exploration

for 200 episodes and 50 runs

93

4.5. EXPERIMENTS AND RESULTS Page 94

• The cluster frequency matrix was collated as described in Step 2b of algo-

rithm 2 and spectral clustering was applied to this matrix to generate clusters

of actions, as per algorithm 3.

• Next a vanilla agent’s exploration process was enhanced with clustering as

per algorithm 4, so that action selection during exploration was constrained

to intra-cluster selections rather than inter-cluster. This meant the agent

would select actions from within a door-related cluster or within a navigation

cluster in a more intuitive way, versus free-format action composition.

Results in Figure 4.4 demonstrate that when spectral clustering was applied

to the task-agnostic frequency matrix it revealed partitions in the action space

according to expectations. The threshold was set to zero so no action sets were

removed from the action space during the analysis phase. The eigenvalues gener-

ated by the algorithm gave an indication of how the matrix could be partitioned,

particularly the second smallest eigenvalue (Ng et al., 2002). Plotting the eigen-

vectors of the first and second smallest non-zero eigenvalues, after reducing the

dimension of the eigenvectors to 2D using Principal Component Analysis (PCA),

shows a clear separation of the action space and Figure 4.4 shows clusters of actions

distinguishable and associated with the types of state in Table 4.1.

The clusters identified above were transferred to a vanilla Q-learning agent to

enhance action selection during exploration in new tasks, as described in algorithm

4.

The plots in Figure 4.5 show the average performance over multiple randomly

generated tasks compared with other approaches, including transfer using action

elimination and a baseline Q-learning algorithm. The plot shows a significant

improvement in convergence times when CASC is compared to the baseline. The

results support the hypothesis that the transfer of task-agnostic action structure

in a multi-discrete setting can produce a significant reduction in training times

over new, unseen tasks.

94

4.5. EXPERIMENTS AND RESULTS Page 95

Figure 4.4: Three visible clusters generated in the 10-action space align
with the states defined in Table 4.1

4.5.2 Action Elimination

The action elimination approach, a comparative method to CASC, was executed

as described below:

• Random tasks were generated for the pre-training, multi-task data collection

phase as per algorithm 2 (step 1)

• Each task was trained using a Q-learning algorithm with ϵ-greedy exploration

for 200 episodes and 50 runs

• The exploration policy was derived as per algorithm 2 (step 2a); specifically

the frequency counts were aggregated across all states for each action set and

normalised, resulting in a vector of proportional representation (weighting

vector or exploration policy) for all action sets. The threshold hyperparam-

eter was set to 7 and the number of top actions to 2 to generate a sparse

count matrix

95

4.5. EXPERIMENTS AND RESULTS Page 96

Figure 4.5: Comparison of task convergence using Q-learning (Base - red),
spectral clustering enhanced Q-learning (SC - blue) and an action elimi-
nation based exploration policy (AE - green), over 10 randomly generated
tasks.

96

4.5. EXPERIMENTS AND RESULTS Page 97

• Next a vanilla Q-learning agent’s exploration process was enhanced with

the exploration policy, as per algorithm 5, so that action selection during

exploration was influenced by the task-agnostic weightings learnt above

A sample of the resulting exploration policy or vector of proportions for the

action sets is illustrated as a heatmap in Figure 4.6. Each location on the grid is

a potential action combination, for example the first block on the top left is the

action [Up, Up]. The intensity reflects how frequently an action set occurred in

successful trajectories collected. The [Open, Enter] action set is relatively frequent,

as is the [Down, Down] action set. The heatmap reflects some of the bias that

arises from the data collection process, indicating how crucial it is to train over

a diverse range of tasks. Increasing the number of tasks during the pre-training

phase should reduce this bias but will increase the cost of pre-training.

Figure 4.6: Sample of heatmaps for action elimination generated exploration poli-
cies (10 primitive actions)

The vector of proportions acts as an exploration policy, injected into the ex-

97

4.5. EXPERIMENTS AND RESULTS Page 98

ploration process as prior knowledge and tested over new, randomly generated

unseen tasks. Figure 4.5 compares the time to task convergence for new, unseen

randomly selected tasks, with the spectral clustering approach in CASC and the

baseline Q-learning algorithm. The plots show a significant reduction in time to

convergence for both CASC and action elimination, supporting the effectiveness

of action elimination during exploration in concurrent action spaces. The results

demonstrate that the task-agnostic pre-training data collected can be useful as a

basis for eliminating less useful action sets, without any contextual reference to

the task.

4.5.3 Random clusters

To demonstrate that the effectiveness of the learned clusters in CASC is not ran-

dom, an ablative experiment is performed that randomly separates the action space

into clusters and injects this into the CASC algorithm in place of the learned clus-

ters. In this experiment the action space is divided into 2 and 3 clusters respectively

and injected into algorithm 4 as the action clusters. This experiment is evaluated

in the same manner as the CASC experiment, over a set of randomly generated

tasks.

Figure 4.7 displays the results of the random cluster ablations compared with

the baseline Q-learning (red) and the spectral clustering (blue) approaches. The

specific clusters used to generate these results are listed below:

The two cluster scenario, with 5 actions in each cluster (the green plot) - re-

ferred to as Cluster-A in discussions:

[(0Up, 1Down, 2Left, 3Right, 9No−op), (4Open, 5Enter, 6Jump, 7Hack, 8F ill)]

The randomly generated set of 3 clusters (the pink plot) - referred to as Cluster-

98

4.5. EXPERIMENTS AND RESULTS Page 99

B in discussions:

[(0Up, 4Open, 2Left), (7Hack, 1Down, 5Enter), (6Jump, 3Right, 8F ill)],

The plot shows that spectral clustering demonstrates a significant performance

improvement over the other methods, however, both the A and B clusters appear

to outperform the base Q-learning algorithm. Given that Cluster-A provides a

natural break between navigation and special actions, it is less surprising that this

approach performs slightly better than the baseline Q-learning.

0 20 40 60 80 100 120 140
Episodes

−2

0

2

4

6

8

10

R
ew

ar
ds

Rewards episode

SC
Base
2 Clusters
Rnd clusters

Figure 4.7: Comparison of task convergence over randomly generated tasks
for base Q-learning (Base), with spectral clustering (SC), A with 2 clusters
(2 Clusters) and B with 3 random clusters (Rnd clusters)

99

4.5. EXPERIMENTS AND RESULTS Page 100

4.5.4 Discussion

Figure 4.4 demonstrates that CASC was able to identify actions with strong rela-

tionships, with the clusters showing which actions displayed affinities. The task-

agnostic context-free approach adopted meant that a limited model capacity was

sufficient, without the need to hold state-action relationships. In this simple en-

vironment, ten tasks were sufficient to generate data from which to extract task-

agnostic structure. It is assumed that if the number of primitive actions in the

action space is increased, the number of tasks would need to be scaled accordingly.

In Figure 4.5 the action elimination approach used as a comparative, highly per-

formant method, is shown to converge slightly faster than CASC, in this environ-

ment. This is presumably because the exploration policy used in the action elimi-

nation approach contained effective action combinations, while CASC is subject to

in-built stochasticity, by design. One of the limitations with the action elimination

approach is a dependence on capturing sufficient task-agnostic behaviour without

eliminating actions that were under-represented in the pre-training tasks. While

the action elimination method was very effective, the results show that CASC

is very competitive. While CASC is also susceptible to representation issues in

the pre-training tasks, it is a less exclusive method as actions are not eliminated

so there is less risk of prematurely rejecting actions with the clustering approach

as compared with action elimination. It is envisaged that CASC will outperform

action elimination in larger action spaces where the impact of elimination is poten-

tially more harmful. Furthermore, as illustrated in Figure 4.7, even if the clusters

are imperfect, there is evidence that CASC will still improve performance when

compared to vanilla Q-learning. The clustering ablation compared CASC and the

baseline method with a CASC variant using randomly generated clusters, where

CASC outperforms the random cluster methods.

The transfer of structure approach adopted proved effective at maintaining a

required level of stochasticity during exploration in the target task. Transferring

100

4.6. CONCLUSIONS Page 101

a deterministic policy to the target task would have created difficulties for ad-

equately exploring the new state-action space (Silver et al., 2014). CASC was

effective at preventing this limitation, using higher-level structural priors over the

action distribution in the form of clusters. Each cluster comprises a subset of

related actions. By first randomly selecting a cluster, then randomly choosing an

action within said cluster, sufficient stochasticity was induced to avoid fully deter-

ministic selections. This two-tiered action sampling process retained exploratory

noise while still benefiting from the guidance of the transferred policy clusters.

This semi-structured stochasticity manages to circumvent the lack of exploration

problem that would arise from using a fully deterministic source policy.

Finally a brief comment on how these methods fit into current exploration lit-

erature. The key exploration-related methods proposed and tested is CASC, that

uses spectral clustering on a task-agnostic and context-free action frequency ma-

trix to identify clusters of related actions. These clusters are then used to constrain

action selection during exploration to sample actions from within a randomly se-

lected cluster. The method is based on extracting and transferring task-invariant

structure from the action space itself rather than using common intrinsic reward

or count-based exploration techniques and is a novel way of guiding exploration in

multi-discrete action spaces by analysing action relationships across tasks.

4.6 Conclusions

This chapter demonstrated that learning action structure and transferring it to

support the training of new tasks can significantly reduce convergence times in

a multi-task scenario. Task-agnostic data was collected from optimal trajectories

across a range of tasks to improve diversity and generalisation, and spectral cluster-

ing was used to identify structure in the form of clusters in the action space. Plots

of the eigenvectors (see Figure 4.4) revealed the existence of relational structures

101

4.6. CONCLUSIONS Page 102

in the action space, manifesting as clusters of actions that exhibit high effective-

ness when combined. This structural information was transferred to enhance the

exploration process of a standard Q-learning algorithm and results showed a sig-

nificant improvement was obtained from using the clusters during action selection.

The action relationships were demonstrated to be as effective as the highly per-

formant action elimination approach, evaluated on the same tasks. Comparative

and ablative methods showed the clustering approach was effective at extract-

ing task-agnostic structure with less risk of eliminating an action prematurely.

While not uncommon in similar approaches (Tennenholtz and Mannor, 2019) a

noteable disadvantage to the approach was the need for a pre-training phase that

meant relationships were not learnt online, for which there is a preference in most

competitive and widely used RL algorithms and processes (refer to section 2.5).

Additionally, a tabular Q-learning algorithm was used, limiting the size of the

state-action space of the environment and the generalisation capabilities of the

model.

The next chapter addresses both these limitations and considers a more scalable

method of learning and capitalising on structure in the concurrent, multi-discrete

action space.

102

Chapter 5

Relational Representations in

Multi-Discrete Action Spaces

5.1 Introduction

This chapter proposes a novel self-supervised approach to learning relational repre-

sentations of actions during online RL in environments with multi-discrete action

spaces. Such spaces, where multiple discrete actions must be selected concurrently

per timestep, present an opportunity for incorporating relational information that

could be beneficial for solving complex tasks.

Multi-discrete action spaces are common in RL environments, for example, con-

trolling a humanoid robot with multiple limbs or managing the actions of multiple

teams in strategy games. Naively expanding the multi-discrete action space can

lead to an intractably large joint action space and, importantly, fails to utilise re-

lational structures between the concurrent actions that could be useful for solving

the task.

Prior works (Harmer et al., 2018; Sharma et al., 2017; Moodley et al., 2019) have

shown the potential benefits of leveraging the multi-discrete nature of the action

space for learning and exploiting relationships between actions. Incorporating

103

5.1. INTRODUCTION Page 104

relational information, such as which actions can and cannot be used together,

directly into the action space in an online manner has proven to be challenging

however, leading to pre-factorisation of the action space (Sharma et al., 2017)

or using imitation learning (Brys et al., 2015) to extract relational information

(Harmer et al., 2018).

Although many RL environments have multi-discrete action spaces, it is cus-

tomary for the action space to be transformed into a single discrete action space

(i.e. a single compound discrete action per timestep) by expanding out the space

to the full combination of all actions (Kempka et al., 2016; Vinyals et al., 2017;

Fan et al., 2022). For example, a multi-discrete action space with elements A =

{a1, a2, a3} would be expanded to the following set of all action combinations 1:

Aexp = {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1), (a3, a2), (a3, a3)}

In the naive case multiple action selections would require multiple value or policy

networks, one for each multi-discrete action, or a more complex change to the

algorithm as mentioned in Kanervisto et al. (2020). The expansion can, how-

ever, drastically increase the size of the action space. There are incentives to

reduce the size of the increased action space because of the direct impact on the

amount of exploration required if the state-action space is large, which directly

affects the performance of algorithms (such as DQN) that need to learn the value

of state-action combinations, often requiring the agent to experience each state-

action combination multiple times. This leads to solutions involving the manual

removal of actions to achieve a more manageable size (Kanervisto et al., 2020;

Harmer et al., 2018; Fan et al., 2022), learned action elimination (Zahavy et al.,

2018; Even-Dar et al., 2003) or using action masking (Huang and Ontan’on, 2020;

Bamford and Ovalle, 2021) to limit the actions available during training.

In multi-discrete action spaces with relational actions there is, as yet, no con-

venient method to leverage the relationships between individual primitive actions.
1assuming two actions are selected per timestep

104

5.1. INTRODUCTION Page 105

Learning relational knowledge during training can provide a useful inductive bias

for shaping the action representation and accelerating learning that RL algorithms

focused purely on maximising returns may fail to detect. The core motivations for

this chapter are summarised below, including:

• to retain native multi-discrete action spaces to facilitate learning and use of

the relationships between actions

• to derive a self-supervised signal from trajectory training data that identifies

positive relationships

• to incorporate a relational objective in an online RL algorithm that shapes

action representations and results in faster learning on multi-discrete tasks

that benefit from relational knowledge

The goal is an integrated framework allowing online relational learning in na-

tively multi-discrete spaces, without external guidance or demonstrations.

The approach proposed in this chapter is a novel method for learning relational

representations online that are relevant to an RL task, using a relational auxiliary

module that is trained alongside a multi-discrete RL algorithm. The relational

module derives a self-supervised signal from online trajectory data which is used to

identify and reinforce effective action relationships while the agent is being trained.

This signal is used to train a relational loss objective that is incorporated into the

overall reinforcement loss and contributes to shaping the action representation

(Figure 5.1).

The hypothesis is that to benefit from relational structure requires an action

space that supports relationships, viz. a multi-discrete action space, and that to

provide relational shaping of the representation requires a relationally-directed loss

component.

The multi-discrete PPO algorithm (Huang et al., 2022) was used due to the

availability of existing coded implementations however the approach is not lim-

105

5.1. INTRODUCTION Page 106

ited to this algorithm. Unlike existing techniques such as factoring the action

space, using embeddings or expert data, the proposed approach focuses on di-

rectly learning the relational structure during the training of the PPO algorithm.

The relational agent is compared with a vanilla PPO baseline that does not exploit

action relations, and the relational agent shows faster convergence on average. The

development of the representations learnt by both agents is tracked and visualised

over several updates and the results demonstrate that the relational agent benefits

from the structured representation shaping, contributing to faster convergence.

The specific contributions in this chapter are:

• the development of an online auxiliary module for PPO to reinforce beneficial

action relationships consisting of a derived self-supervised signal for shaping

action representations, and a relational loss optimised alongside PPO

• analysis of the emergence of relational structure in action representations

There is currently no similar contribution that specifically targets the multi-

discrete, concurrent action space, to the best of the author’s knowledge. The

approach in this chapter is limited to environments with multi-discrete action

spaces where actions have dependencies or relationships that would benefit task-

solving.

The rest of the chapter is organised as follows: a brief overview of related re-

search is provided in Section 5.2, followed by Section 5.3 providing an overview

of the multi-discrete PPO algorithm used in the implementation. The approach

in Section 5.4 outlines the proposed relational auxiliary method, providing details

of the self-supervised signal and relational auxiliary objective, followed by imple-

mentation details. Section 5.5 provides details of the experiments conducted and

the results, concluding with Section 5.6.

106

5.2. RELATED WORK Page 107

5.2 Related Work

There are two steps required when solving relational action structure problems in

RL tasks, namely choosing an action space that is conducive to learning relational

attributes, and modifying the RL algorithm to manage actions with relations.

5.2.1 Multi-discrete and large action spaces

Although many environments have multi-discrete action spaces, such as Vizdoom

(Kempka et al., 2016) or StarCraft (Vinyals et al., 2017), it is customary to convert

this into a discrete action space by expanding out the full combination of all actions

as outlined in (Kanervisto et al., 2020; Harmer et al., 2018). This, however, results

in a larger action space that is often managed by the manual removal of actions to

achieve a more manageable size (Kanervisto et al., 2020; Vinyals et al., 2017), the

learned elimination of useless actions (Zahavy et al., 2018) or representing actions

with a reduced latent representation (Tennenholtz and Mannor, 2019; Dean et al.,

1998; Dulac-Arnold et al., 2015; Chandak et al., 2019). In general large action

spaces often result in significantly slower convergence times which is already a

challenge in DRL (Irpan, 2018; Achiam, 2018).

In contrast to this expansion to a single discrete space, other approaches have

proposed exploiting the benefits of the multi-discrete nature of the action space

in RL (Sharma et al., 2017; Harmer et al., 2018; Wang and Yu, 2016). However,

incorporating relational information, such as which actions can and cannot be

used effectively together, directly into the action space in an online manner is a

challenging task. To address this issue, Sharma et al. (2017) proposed a method

that factorises the action space, converting 18 discrete Atari actions into multi-

discrete actions with 3 dimensions (Up/Down, Left/Right, Fire). The factorisation

is extended to the policy or value function, to learn values at the factored action

level. This approach allows action relationships to be leveraged in an online, on-

107

5.2. RELATED WORK Page 108

policy algorithm such as A3C, however the factorisation process requires human

intervention to define the factors.

Another approach (Harmer et al., 2018) models the multi-action space as a

multi-discrete Bernoulli policy consisting of independent actions and injects use-

ful action information into an online algorithm using an auxiliary imitation signal

based on expert data. This technique combines imitation learning with RL, en-

abling the algorithm to learn from both its own experiences and the expert demon-

strations. Importantly the multi-discrete nature of the space gives the agent the

capability to benefit from relational structure exhibited by the experts. By tak-

ing advantage of the structure and relationships within the action space, these

approaches provide a way to learn more efficiently and effectively in complex en-

vironments. While there is no consensus on what the best algorithm should be,

manual factorisation of the action space and the use of expert data are limitations

that motivate the approach in this chapter to pursue an online solution without

manual or expert intervention.

Zambaldi et al. (2018) introduces a framework called relational deep reinforce-

ment learning that combines DRL with relational reasoning and uses self-attention

(Vaswani et al., 2017), a relational mechanism, to align with the relational nature

of the task. Zambaldi et al. (2018) use attention in a relational reasoning RL

approach, learning relationships between entities in a scene in the BoxWorld and

StarCraft II environments, where multiple objects exist and knowledge of where

objects are in relation to each other is important to the agent. The central prob-

lem addressed by this work is that DRL struggles to solve problems that require

relational reasoning, the ability to understand and reason about the relationships

between entities. This can be crucial for problems with multiple entities or objects

where reasoning can provide valuable information about relationships (Battaglia

et al., 2016; Barrett et al., 2018; Hu et al., 2017). In this work, the policy is

trained using a combination of RL and supervised learning, where the RL com-

108

5.2. RELATED WORK Page 109

ponent learns to maximise the expected reward, while the supervised component

learns to predict the relationships between entities in the environment.

5.2.2 Action Relations

Existing works in RL (Kerg et al., 2022; Webb et al., 2020, 2021; Shanahan et al.,

2020; Santoro et al., 2017) have sought to learn relationships in the state and task

space where the agent could benefit from related objects in a state or related tasks.

The pursuit of relationships between actions is less common. A few of the works

most relevant to this chapter are described next.

Jain et al. (2022) explore action relations but focuses on a varying action setting

where, at any point in time, only a subset of actions are available to solve a task.

The approach adopted relates actions that achieve similar outcomes so that, for

example, if a hammer is not available but a nail is, an action similar to hammer-

ing should be selected. Graph Attention Networks (Veličković et al., 2018) are

used to learn the relational representation. This approach is conceptually similar

to the Natural Language of Actions (NLoA) by Tennenholtz and Mannor (2019)

where actions are grouped by similar outcomes, effectively reducing the dimension

of the action space to a more compact representation. This provides a method

for allocating even new, unseen actions to possible outcomes. Other methods that

focus on reducing the dimensions of the action space to a more manageable and

generalisable representational form include Dean et al. (1998); Dulac-Arnold et al.

(2015); Chandak et al. (2019). In these approaches the reduced action representa-

tions will contain elements of structural or relational information available in the

action space.

Chitnis et al. (2020) investigate learning synergistic actions in a multi-agent

setting, comparing the actions of the joint agent (with a joint action space) with

the composition of actions of the individual agents. Here a synergistic set of joint

actions will have an outcome that is greater than the combined outcomes of the

109

5.3. MULTI-DISCRETE PROXIMAL POLICY OPTIMISATION Page 110

individual actions, taken independently. The most synergistic outcome is favoured

and converted to an intrinsic reward signal for training, so the agent learns how to

select the most synergistic combinations of actions. This approach requires pre-

trained data from the individual agents as well as the joint agent and is therefore

not an online process. Synergistic action relations are a very desirable form of

action relation learning (Moodley et al., 2019) and is similar to the goals of this

chapter.

5.3 Multi-discrete Proximal Policy Optimisation

A brief overview of multi-discrete PPO follows, extending the original algorithm

defined in section 2.5.1. This section provides the fundamentals of the algorithm

modified in the proposed approach, section 5.4.

The PPO algorithm is divided into two phases: a data collection phase and

an update phase. In the data collection phase the algorithm spawns multiple

instances of the environment, parallelising the interaction of the agent with the

environments. The trajectory data of T timesteps over N parallel environments is

collected in a buffer of size NxT . Once the buffer is collected, the update phase

begins, generating batches from the buffer in one or more epochs and passing this

to the PPO algorithm. Recall the PPO loss from Section 2.5.1 that is rewritten

here for convenience:

LCLIP +V F +S
t (θ) = Êt

[
LCLIP

t (θ)− c1L
V F
t (θ) + c2S [πθ] (st)

]

The agent parameters are updated using stochastic gradient descent over the

loss. After a number of update epochs performed on this buffer, the buffer is

discarded and the process repeats with a new collection phase. The number of

epochs, timesteps, environments and batch size are all hyper-parameters of the

PPO algorithm.

110

5.3. MULTI-DISCRETE PROXIMAL POLICY OPTIMISATION Page 111

The pseudocode for the multi-discrete PPO algorithm provided by Huang et al.

(2022) is illustrated in Algorithm 6, describing the splitting of the logits to manage

multi-discrete actions.

Algorithm 6: Multi-Discrete PPO Algorithm (Schulman et al.,
2017; Huang et al., 2022).

Initialise Actor’s policy network π(a|s; θ) and Critic’s value
network V (s; θv) with weights θ, θv

Initialise environments with multi-discrete action space A
For each iteration:

Get initial state s from environments
For each timestep in trajectory, starting from t = 0:

// Get action logits for each discrete action
logits from π(s; θ)
// Split logits into each discrete action component
action_logits = split(logits)
// Sample action for each component
For each discrete action i:

action[i] ∼ Categorical(action_logits[i])
Take multi-discrete action generated, observe r, s′

Store (s, a, r, s′) in buffer
Compute discounted returns R and advantage
// Update policy
For each epoch:

Shuffle buffer
For each minibatch:

// Calculate PPO, value and entropy losses
L = LCLIP + LV F + S Eqn 2.19
// Update policy and value networks
θ ← Adam(∇θL)
θv ← Adam(∇θvL)

The agent has an actor-critic architecture with a separate neural network for

the actor and the critic. In the multi-discrete version of the algorithm the actor

generates a tuple of actions versus a single discrete action on each timestep, for

example, a tuple of two discrete actions could be [0, 1] or four discrete actions

could be [1, 0, 2, 1] where each action a ∈ {0, 1, 2,, N}.

Multi-discrete actions are generated by feeding a batch of states through the

actor network to generate action predictions, specifically a set of logits for each

111

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 112

multi-discrete action. The logits are used as the basis for a corresponding set

of categorical distributions that span the action space, one distribution per set

of logits. Actions are sampled from each categorical distribution to compose the

multi-discrete action set, for example [ai, aj] where ai ∼ δi and aj ∼ δj in a

multi-discrete setting with two categorical distributions, referred to as [δi, δj]. It

is worth noting that each action is independent of each other action in the tuple.

The critic in the multi-discrete PPO algorithm is unmodified from the original

PPO algorithm; it outputs the value of the state and is only indirectly impacted

by the action space.

5.4 Proposed relational auxiliary module

This section provides details of the proposed relational auxiliary module designed

to be trained alongside an online RL algorithm to induce relational representations

of actions in multi-discrete action spaces. The multi-discrete PPO algorithm used

in this chapter (Huang et al., 2022) is modified to include the self-supervised

relational module.

There are three core aspects of the proposed approach and these are outlined

below:

1. A multi-discrete action space is adopted that facilitates relationships between

actions, instead of expanding to a single discrete action space, providing the

capacity to represent and leverage relationships.

2. A self-supervised relational auxiliary module is introduced that derives a

signal from the agent’s training data to identify positive relationships be-

tween concurrently selected actions. This signal is used to train a separate

relational loss objective, described in more detail in section 5.4.1.

3. The relational loss is added to the PPO loss as an auxiliary objective, influ-

encing the shaping of the action representation during training. This aligns

112

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 113

the representation with the relational nature of the task. Section 5.4.2 elab-

orates on the auxiliary objective.

5.4.1 Self-supervised signal

The self-supervised module derives a learning signal from trajectory data collected

in the buffer for PPO updates (referenced in Algorithm 6). The signal determines

which relationships between discrete actions in a multi-discrete action tuple to

reinforce during training. Together with the relational auxiliary objective (section

5.4.2) the self-supervised module helps shape the action representation learnt by

the agent.

The basis for the signal is successful transitions. In domains with many inef-

fective action combinations or sparse rewards, a successful state transition to a

different, next state is a useful signal. This derived, self-supervised signal is used

to train a relational auxiliary component (see Figure 5.1), however, the signal is

noisy and not all state transitions are optimal, which is normal in a developing

policy. An example of a non-optimal transition is action [Forward, No-Op] which

is less effective than, say, [Forward, Jump]. The inclusion of signals like this cre-

ate noise. Without knowing how effective a transition is, it will still be flagged

as positive, i.e. reinforce this relationship, for both actions. Nevertheless, using

this noisy, non-optimal signal for learning relationships results in a performance

improvement over the baseline algorithm. For example, in an environment with ac-

tions a ∈[..., turn_on_heating, turn_on_ac, turn_on_fan, no_op, ...], the action

[turn_on_heating, turn_on_ac] would not lead to a successful state transition

while the action [turn_on_ac, turn_on_fan] would, as would the partially suc-

cessful action [turn_on_ac, no_op]. This models that there is a contradictory

relationship between turn_on_heating and turn_on_ac and these are excluded

by the signal.

The self-supervised signal for determining which action relationships to rein-

113

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 114

force is based on a filter criterion applied to the trajectory dataset. A positive

transition occurs when an action taken leads to a successful change in state, while

a negative transition occurs when it does not. Although some environments pro-

vide an appropriate reward signal for positive transitions, in sparsely rewarded

environments, rewards are often unavailable, making positive transitions a useful

generic indicator for positive data points. By applying a filter that selects only

records with successful state transitions, those data points with positive transi-

tions are transformed into an auxiliary signal that reinforces the agent’s relational

structure.

The filtered records are reinforced with a similarity loss to induce relational

structure in the action space. The state is fed to the actor to obtain logits which are

used to predict actions for the state. The logits are used to compute both the PPO

loss objective and the new relational objective. After a comparison of similarity

losses, a relational loss based on the dot product (equation 5.1) (Kreyszig, 2006)

preceded by z-score batch normalisation was adopted. The rationale behind using

the dot product as a relational measure is that it captures the degree of similarity

between actions, inducing similar features in the representation of the actions that

have a high affinity for each other and are likely to result in positive transitions.

The relational objective is thus based on the log sigmoid of the dot product of

the logits (equation 5.2), with the sigmoid ensuring that the dot product is in the

interval [0, 1] and suitable for the log loss.

SC(l1, l2) = l1.l2

∥l1∥.∥l2∥
(5.1)

LREL = Ê[−log(σ(l1.l2))] (5.2)

where l1 and l2 refer to the raw logits for each action prediction after batch

norm and σ(z) = 1
1+e−z is the sigmoid function.

114

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 115

The modifications to the update section of the multi-discrete PPO (described

in Algorithm 6) are shown in Algorithm 7.

Algorithm 7: Update section of Multi-Discrete PPO Algo-
rithm (Schulman et al., 2017; Huang et al., 2022) modified to
support relational component.
// Update policy
For each epoch:

Shuffle buffer
For each minibatch:

Calculate LREL:
• positive_filter ← Filter records with positive
transitions only
• logits ← π(s; θ)
• action_logits = split(logits)
• LREL ← similarity_loss(action_logits[positive_filter])

// Add ppo, value, entropy losses to relation loss
L = LCLIP + LV F + S + LREL ... Eqn 5.3
// Update policy and value networks
θ ← Adam(∇θL)
θv ← Adam(∇θvL)

5.4.2 The relational auxiliary objective

Prior knowledge of relationships allows the actor to more effectively combine ac-

tions earlier in the training process, leading to faster convergence than the vanilla

PPO algorithm. Figure 5.1 illustrates the placement of the relational module in

the actor-critic model. The relational auxiliary module influences the training of

the standard PPO algorithm and improves convergence times by shaping the actor

network’s representation to include a relational aspect. The relational loss, shown

in Equation 5.3, positively reinforces action relations based on a self-supervised

signal, which is incorporated into the standard PPO loss (equation 2.19). The

relational module is attached to the head of the actor network as it is based on

the actor’s logits and affects the actor’s weights, thus inducing relational struc-

ture in the agent’s action representation. This is a common method used to add

auxiliary signals to shape the actor or critic networks (Jaderberg et al., 2017),

115

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 116

Figure 5.1: Relational auxiliary component fitted in an Actor-Critic model. The
state feeds the Critic network (top row) and the Actor network (bottom row).
The Actor’s head splits to produce the clipped policy and entropy losses and,
separately, the proposed relational loss.

also described in Chapter 2. The critic is left unmodified since the intention is

to retain it as a separate network that provides strong direction to the actor, and

because it is harder to directly involve the critic in the action structure without

more modifications to the algorithm.

LCLIP +V F +S+REL
t (θ, θv) = Êt

[
LCLIP

t (θ)− c1L
V F
t (θv) + c2S [πθ] (st) + c3L

REL
t (θ)

]
(5.3)

The relational loss is added to the PPO loss with a hyperparameter coefficient

that controls the scale of the loss.

5.4.3 Discussion

1. The approach proposed in this chapter is similar to the approaches of Wang

and Yu (2016), Sharma et al. (2017) and Harmer et al. (2018) in adopting

a multi-discrete action space to capitalise on relationships between actions.

116

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 117

The specific approach proposed makes use of auxiliary signals as described

in Jaderberg et al. (2017) but not expert data in contrast with Harmer et al.

(2018) and no factoring or embedding of the action space in contrast to

Sharma et al. (2017), Chandak et al. (2019) and Tennenholtz and Mannor

(2019). Like Zambaldi et al. (2018), the proposed approach modifies the

architecture of the agent to include a relational component. In this chapter

a self-supervised relational mechanism is trained alongside the agent, unlike

the Actor Critic relational attention mechanism used by Zambaldi et al.

(2018). The inspiration for a mechanism dealing with relationships was

drawn from the theory of Xu et al. (2021) that says if the network is aligned

with the algorithm required to solve a task, the network will be able to

generalise and extrapolate well. The relational component added to the

PPO agent serves to align the agent with the relational nature of the task.

2. There are several ways to provide reinforcement signals in sparsely rewarded

environments, and the approach described in this chapter is just one exam-

ple. Other options for generating intrinsic rewards include using curiosity-

based approaches (Pathak et al., 2017) or prediction error signals (Jaderberg

et al., 2017). Pseudo-rewarding bottlenecks (Parisi et al., 2021), exploration

bonuses for rarely visited states (Bellemare et al., 2016; Raileanu and Rock-

täschel, 2020), and oversampling positive data points (Schaul et al., 2015c)

are other approaches that have been adopted in sparsely rewarded settings.

The choice of which filter to use as a reinforcement signal should depend on

the specific environment or task being trained. The positive transition fil-

ter used in this chapter is available in most multi-discrete RL environments

because transitioning to new states is a common feature and may be viewed

as a metaphorical lower bound on the amount of information that can be

extracted from any RL trajectory.

117

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 118

5.4.4 Implementation Details

5.4.4.1 Environment

A toy environment was designed to test the relational model. The 10x10, four-

room, multi-discrete grid-world environment shown in Figure 5.2 has a relational

action space with 10 primitive actions that are combined to form multi-discrete

actions. In this domain, the agent must select a tuple of two actions at each

timestep. To generate a diverse set of tasks, the environment is configurable by

randomly moving the walls, start, goal, and special states, while the action space

remains static. The environment is sparsely rewarded, providing only a reward of

10 if the agent reaches the goal state. There are no other rewards or penalties. The

state is purely the co-ordinates of the agent in the grid and is one-hot encoded.

Figure 5.2: Grid-World requiring multi-
discrete actions on every step, where S-
Start, G-Goal, H-Holes, O-Obstacles and
gaps in the walls indicate doors

5.4.4.2 Actions

The environment features five types of actions mapped to different categories of

state, as illustrated in Table 5.1, where the set of primitive actions is listed in Table

118

5.4. PROPOSED RELATIONAL AUXILIARY MODULE Page 119

Table 5.1: Special states and corresponding action combinations

State Action Set Category
Normal Up (U), Down (D), Left (L), Right (R) Navigation
Obstacle Hack (H), Jump (J) Obstacles

Doors Open (O), Enter (E) Doors
Holes Fill (F), Jump (J) Holes
Any No-Op (N) None

Table 5.2: The full set of primitive actions with action index

0 1 2 3 4 5 6 7 8 9
U D L R O E J H F N

5.2. A multi-discrete action tuple is composed of combinations of primitive discrete

actions, whose effectiveness varies. Most of the states in the task (room) are classed

as normal and traversed using navigation actions. There are 3 special types of

state, viz. obstacles, doors and holes where only the corresponding synergistic

action combination results in successfully changing state, for example, taking the

multi-discrete action combination [Open, Enter] at door states results in the agent

moving through the door. Likewise taking the action combination [Fill, Jump]

results in the agent jumping over the hole states.

There are no constraints on action selection, so any two actions may be com-

bined to form a tuple or multi-discrete action. If a navigation action is selected

with any of the special actions, the environment will perform the navigation action

if possible. While any action can be combined with any other action, including

itself, some combinations may be redundant or inefficient. Where [Up, Down]

would result in the agent standing still and is normally a redundant action, it has

a different effect when applied against a wall, where the Up action does nothing

but the Down action moves the agent away from the wall. This makes it more

difficult for the agent to work out the action relationships within the action tuple

and generates noisy data. Finally, to test the agent’s ability to learn shared com-

binations, the hole and obstacle states share the Jump action. The agent must

learn two relationships associated with the Jump action, adding an element of

119

5.5. EXPERIMENTS AND RESULTS Page 120

complexity to the relational representation.

5.4.4.3 RL Algorithm

The PPO algorithm (Schulman et al., 2017) was used in this chapter but any

similar actor-critic algorithm could be used. PPO was selected because it meets

the online learning requirement of this chapter to investigate relational learning

in an online setting and, importantly, it is less sensitive to hyperparameter tuning

than other algorithms (Schulman et al., 2017). A multi-discrete implementation

provided by (Huang et al., 2022) was used. This same version was modified to

incorporate the relational model and provide a like-for-like comparison.

5.5 Experiments and Results

This section outlines the experiments carried out to test the relational auxiliary

model in tasks with increasing levels of difficulty to demonstrate that the relational

module is most effective in complex tasks where base PPO struggles to learn.

Analysis of the action representation is compared with base PPO to show the

contribution of the relational module to the shaping of the representation. The

learning dynamics of the base and relational models are compared in a final section

that tests the generalisation ability of each model.

The baseline model is the vanilla multi-discrete PPO referenced in section 5.3.

In the experiments that follow, both the base and relational model were trained

on each task for 10 randomly generated seeds and the average convergence per-

formance was compared. The random seed impacts a number of areas in training

deep learning models, including weight initialisation, sampling of batches, the or-

der of data and sampling of actions from policies. Refer to Patterson et al. (2023)

for more complete guidelines on training RL models.

120

5.5. EXPERIMENTS AND RESULTS Page 121

5.5.1 Relational Auxiliary Task Setup

The environment is configurable and able to generate random tasks programmat-

ically simply by varying the start and/or goal states and controlling the position

and number of each of the special states as per Table 5.1. Using these parameters,

3 different categories of tasks were defined:

• easy, featuring two special states from Table 5.1, for example doors and holes

• intermediate, featuring all three categories of special states from Table 5.1

• hard/complex, featuring all three categories of special states and one less

door.

For examples of each type of task, see Figure 5.3.

Figure 5.3: From left to right: easy (with 4 doors and holes), intermediate (with
4 doors, holes and obstacles), hard tasks (with 3 doors, holes and obstacles; the
agent start location is furthest from the goal)
Legend: Walls - bright red; obstacles - pale red; start state - pale green; goal state
- green; holes - blue

5.5.2 Results - Relational Model Performance

The results show that the relational model is able to solve the complex task faster

than the baseline model on average. Given that both models solve the easy and

intermediate tasks (section 5.5.2.1) at a similar rate, the result for the complex

task (section 5.5.2.2) suggests the extra relational information proved useful to the

agent’s ability to converge.

121

5.5. EXPERIMENTS AND RESULTS Page 122

5.5.2.1 Easy and Intermediate Tasks

In this experiment the relational model and the baseline PPO model were trained

over the easy task defined in section 5.5.1. Each model was run for 10 seeds

and the mean result across all seeds, with standard deviation, is plotted. The

episodic length and return plots illustrate how fast the model converges, indicated

by the episode length approaching the optimal length (14 steps) and the episode

return approaching the maximum of 10. The length and return together determine

whether a run is efficient and therefore whether the agent has learnt the relation-

ships between actions effectively enough to solve the task optimally. An agent can

achieve a high return but take a less optimal route with a longer episodic length,

so both measures are used to indicate optimal performance. Of the loss plots, the

value loss is most illustrative of how well the model is performing, with the loss

expected to approach 0.0.

Figure 5.4 shows that the relational model only slightly out-performs the vanilla

PPO over the 10 seeds in the tasks with easy complexity. In the episodic length plot

the trajectory length for both models reduces to close to optimal length however

the relational plot descends earlier and achieves a better length on average. The

difference in the return plots is less significant. On average the vanilla model does

not converge as evidenced in the value loss plot in Figure 5.5, which shows the

vanilla PPO model average value loss remains higher than the relational model.

Nevertheless, this is a very easy task with only two special actions and not a

particularly good test of the relational model’s capabilities.

In the intermediate task not all seeds converge for both the relational and the

vanilla models (Figure 5.6), unlike in the easy task, with both algorithms perform-

ing very similarly. While the easy task was run for a total of 200k timesteps, the

intermediate tasks were run for a total of 250k timesteps.

The impact of the relational component is less clear in the intermediate task

than in the easy task, however the key question is whether the relational component

122

5.5. EXPERIMENTS AND RESULTS Page 123

Figure 5.4: Easy Task - Episodic length and Returns: comparison of relational
(orange) and vanilla ppo models (green) over 10 seeds.

Figure 5.5: Easy Task - Value loss: comparison of relational (green) and vanilla
ppo models (orange) over 10 seeds

123

5.5. EXPERIMENTS AND RESULTS Page 124

Figure 5.6: Intermediate Task - Episodic length and Returns: comparison of rela-
tional (green) and vanilla PPO models (pink) over 10 seeds

124

5.5. EXPERIMENTS AND RESULTS Page 125

has a positive impact on convergence when task complexity increases.

5.5.2.2 Hard/Complex Task

For the easy and intermediate tasks, the benefits of using the relational model

are not immediately apparent. This is likely due to the relative simplicity of the

tasks. Vanilla PPO is already effective at solving these tasks, suggesting that the

agent had enough time to learn the best action combinations through the normal

exploration process of PPO. The focus of this section, however, is to examine the

effect of the relational model on tasks that are harder for vanilla PPO to solve.

This experiment asks the question “can the agent benefit from knowledge of which

actions relate well to one another?”

In this experiment the agent is faced with a complex task as per Figure 5.3 that

requires the agent to learn all the special action combinations described in Table

5.1. The goal state is boxed in between obstacles and a wall (Figure 5.7), making

it unreachable without knowing the correct action combinations. Furthermore,

the agent is initially trapped behind a different type of special state, making it

impossible to complete the task without learning all special actions. Finally, one

door is removed to increase the time required to reach the goal. For this task, the

total number of training timesteps was increased to 300k.

Figure 5.7: Complex task. Walls - bright red; obstacles - dark red; start state -
dark green; goal state - bright green; holes - blue

In Figures 5.8 and 5.9 the performance of the vanilla multi-discrete PPO vs the

relational multi-discrete PPO algorithms on the complex task is compared.

125

5.5. EXPERIMENTS AND RESULTS Page 126

Figure 5.8: Complex Task - Episodic length: comparison of relational (red) and
vanilla PPO models (blue) over 10 seeds

Figure 5.9: Complex Task - Episodic returns: comparison of relational (red) and
vanilla PPO models (blue) over 10 seeds

126

5.5. EXPERIMENTS AND RESULTS Page 127

In both plots the relational model learns faster than the vanilla model on aver-

age.

Figure 5.10: Complex Task - Value loss: comparison of relational (red) and vanilla
PPO models (blue) over 10 seeds

Figure 5.10 looks at the averaged value function loss for the two models. The

value or critic loss is a good indication of whether the model converged. Overall

the relational model appears to perform better than the vanilla PPO, with the

relational model converging faster compared to the baseline

5.5.3 The Action Representation

The underlying hypothesis in this chapter is that the relational model influences

the shaping of the action representation in a way that is beneficial to the relational

nature of the actions in this domain. The analysis that follows looks more closely

at whether the model actually promotes the learning of the relational structure and

how this is useful compared to the vanilla model. First, the action representation

was analysed for signs of the relational structure that might be expected in this

domain. Next, the learning dynamics of the network was explored using Singular

Value Decomposition (SVD) (Golub and Reinsch, 1970). Finally, the representa-

127

5.5. EXPERIMENTS AND RESULTS Page 128

Update 300

Update 400

Update 500

Figure 5.11: Heatmaps for Relational PPO (left) vs Vanilla PPO (right) taken
at various policy model updates (300, 400 and 500) show the relational model
has already learnt more structure at update 300 than the vanilla model. Lighter
squares indicate strong affinities between the set of actions.

128

5.5. EXPERIMENTS AND RESULTS Page 129

tions from the relational and vanilla models were assessed for generalisability on a

new complex task.

To assess whether the relational component actually impacts the outcome of the

relational model, the actor’s weights were analysed. The final layer of the actor

or policy network may be analysed to determine how the action representation

evolves during training (Saxe et al., 2013). The layer weights may be analysed to

see if expected structure patterns have developed. Monitoring the development

of this layer over multiple model updates gives some visibility of when patterns

develop over time. The weights from the final layer with dimensions 128× 20 is a

mapping from the previous hidden layer to the action set [ai, aj]. Each of ai and

aj has 10 possible discrete actions. A trained actor should have a representation

for each discrete action represented in these weights.

One way to demonstrate relationships between the action representations is to

use a similarity measure. The cosine similarity of the action representation tensors

is plotted as a heatmap to highlight relationships in an interpretable way. The

heatmap was captured at various updates during training to view the progression

of relational structure learnt by the models. The plots in Figure 5.11 compare

the relational and vanilla model’s latent representation at updates 300, 400 and

500 (by which time both models converge). The figures show that the relational

model discovers useful structure earlier than the vanilla model (around update

300) while the development of similar structure in the vanilla model forms later

(around update 500).

A closer inspection of the heatmaps reveals the relational model displays a

strong preference for the navigation action combinations [Up, Up], [Down, Down],

[Right, Right], [Left, Left] and a very negative response for [Up, Down] and [Right,

Left] actions very early on. These responses make sense, especially [Up, Down]

and [Right, Left], that would otherwise waste valuable learning time. The double

action combinations are particularly strong early on but over time become less so

129

5.5. EXPERIMENTS AND RESULTS Page 130

as other navigation combinations become more useful. As both models converge,

it is clear that the vanilla model does learn the required structures by the end of

the run. This comparison serves to show the performance benefit of the relational

component, viz. the early formation of desirable action structures by the actor

network.

5.5.3.1 Learning Dynamics

The emergence of early relational structure can also be observed through an anal-

ysis of the learning dynamics of the network using SVD as per Saxe et al. (2013).

This method involves accumulating the network weights and performing SVD over

the cumulative weights, producing a set of orthogonal vectors that represents disen-

tangling a deep and wide neural network into multiple deep narrow linear networks

(Saxe et al., 2013) and a matrix of singular values (Σ), as shown in Equation 5.4.

The singular values, or modes, are reflective of the key concepts learned by the

network during training. If the weights are collected for each training update, the

modes can be plotted to show the progression of learning concepts over time.

W T ot = UΣ(t)V T (5.4)

This approach is applied to the actor network, where the weight matrices are

accumulated during training with final dimensions 121×20, split into two 121×10

matrices, one matrix per action in the multi-discrete tuple. SVD is applied and

Figure 5.12 plots the singular values for both the relational (left) and vanilla models

(right). The plots for the relational model show the development of 10 singular

values or modes, illustrated in different colours. The modes develop at different

rates and converge, flattening off from around update 400. In the vanilla model, a

similar separation of the modes is observed but convergence is less developed, with

less flattening off towards the end of training. The plots show that the relational

model learns earlier and stabilises faster than the vanilla model. Unfortunately it

130

5.5. EXPERIMENTS AND RESULTS Page 131

is not possible to gauge which actions develop first from this method, as Saxe et al.

(2013) demonstrate in their work, for example, would navigation-related actions

be learnt first, followed by door-related actions? This type of analysis is left for

future work.

Figure 5.12: Singular values plotted for action representations over training period.
X-axis is the update number, Y-axis is the singular value or mode

While the return and value plots for the vanilla model (Figures 5.9, 5.10) indi-

cate that the network has converged, the SVD plots provide further insight into

whether it really has. The difference between the relational and vanilla SVD plots

suggests that the relational model has learnt the representation but the vanilla

model has not, as it is only just starting to stabilise. The next set of tests aim to

determine if this is the case.

131

5.5. EXPERIMENTS AND RESULTS Page 132

5.5.3.2 Generalisation test

Both models were tested on a new particularly complex task to determine if the

representations learnt by the models were developed enough to generalise well.

The final layer of weights from each model was extracted and ported to a new

vanilla model. After being initialised with each model’s weights the new model

was trained on the complex task to determine if the “injected” representation pro-

vided any advantage and improved convergence. The plots in Figure 5.13 show

that the original vanilla (dark blue) and relational (deep red) models fail to solve

this task from scratch. The light blue and violet plots are from the new vanilla

and relational models, respectively, retrofitted with the transferred representa-

tions. The retrofitted relational transfer (violet) plot is the only successful plot,

showing almost zero-shot transfer in the episodic return. The retrofitted vanilla

transfer plot (light blue) does not show similar performance. In this experiment,

the representation learned by the relational model performs better than the rep-

resentation from the vanilla model.

Figure 5.13: Testing the generalisability of the trained representation on a new
complex task. Dark blue (vanilla) and red (relational) are the from-scratch runs
training over the new task. Light blue (vanilla) and violet (relational) are the runs
using the transferred representation.

A second complex task was designed to be sufficiently different from the pre-

vious tasks to test that the network is not simply benefiting from familiarity of

state dynamics. The results in Figure 5.14 show once again that the relational

representation is more successful at generalising to the new task and converging.

132

5.6. CONCLUSIONS Page 133

Figure 5.14: The vanilla plot (green - based on the representation from the vanilla
model) does not perform well while the relational (brown - based on the represen-
tation from the relationally-trained model) performs well and converges

The results indicate that there is a benefit to using the relational representation

versus the vanilla representation in terms of generalising to new domains.

5.6 Conclusions

This chapter introduced a novel self-supervised relational auxiliary module that

shapes action representations by optimising a relational loss trained alongside the

multi-discrete online PPO algorithm. A range of simulated tasks from a multi-

discrete grid-world environment was used to test the effectiveness of the proposed

online relational model. Results showed that the relational module improved the

performance of the algorithm compared with a baseline. Analysis to determine

if the multi-discrete, concurrent action model learnt a relational representation

was performed utilising heatmaps of the action space, showing the emergence of

structured representations. Furthermore, training dynamics analysis revealed that

the relational model converged faster than the baseline version of the algorithm.

Generalisation tests demonstrated successful transfer of learned representations to

new tasks. The results indicate that the self-supervised auxiliary relational module

could provide an advantage to agents in a multi-discrete action space that supports

relationships.

While the relational model shows promise, it is limited by the noisy self-

supervised signal used. Ideally the model needs to be “smarter”, able to distinguish

133

5.6. CONCLUSIONS Page 134

trends and patterns without being directed on how to achieve this. The next chap-

ter looks at attention mechanisms, and the Transformer model in particular, as an

architecture that can handle massively complex processes and decision making.

134

Chapter 6

Action Structure in Decision

Transformers

6.1 Introduction

In a multi-discrete action space, the agent must learn to select multiple discrete

actions per timestep. Methods for solving environments with multi-discrete action

spaces often convert multi-discrete actions to a single action representation, seldom

looking for relationships between the individual discrete actions. In environments

such as Minecraft, Starcraft II and Vizdoom with multi-discrete actions spaces,

relationships between actions exist and could be exploited to more closely model

human behaviour. Human players are much more likely to select individual actions

based on which action combinations make sense in the current state. This chapter

is motivated by the desire to model expert behaviour using a model capable of

extracting and utilising relational action insights when addressing environments

with multi-discrete action spaces.

Transformers by Vaswani et al. (2017) are very effective at modelling sequential

data due to extensive use of the self-attention mechanism (Bahdanau et al., 2014)

and the residual backbone (Elhage et al., 2021). These features give Transform-

135

6.1. INTRODUCTION Page 136

ers the ability to extract relational information between positions in sequential

data. At the time of this dissertation Transformer-based models are still a very

active area of research (Wikipedia contributors, 2023b; Han et al., 2023) having

revolutionised the field of LLMs, exhibiting expert behaviour at translation, se-

mantic understanding and generative tasks. More generally LLMs are an example

of foundation models, i.e. machine learning models trained on vast quantities of

data, often using self-supervised learning methods, making them adaptable for

disparate tasks. The success achieved by Transformers in language has led to sim-

ilar attempts in vision (Dosovitskiy et al., 2021) and in RL, where Transformers

have been used in multiple contexts from modelling the value or policy functions

(Agarwal et al., 2023; Li et al., 2023a) or contributing to the task in another way

(Zambaldi et al., 2018). Subsequently Transformers were applied to offline RL

(Chen et al., 2021; Janner et al., 2021) and used to model offline sequential tra-

jectory data in a self-supervised manner. Offline RL (Levine et al., 2020) is a

branch of RL that extracts behavioural policies from offline data without having

further interaction with the environment and is more closely aligned with super-

vised learning than other RL approaches. Transformers were applied to offline RL

largely because of its ability to model long term dependencies in sequential data,

as demonstrated by LLMs. This ability to derive relationships from sequential

data makes the offline RL Transformer an interesting framework for the relational

action problem. While both the Decision Transformer (Chen et al., 2021) and

the Trajectory Transformer (Janner et al., 2021) are offline RL approaches that

learn agent behaviour from both optimal and sub-optimal offline data, the Decision

Transformer was selected for this chapter. The reasons are twofold: first, it follows

a model-free RL approach that is less complicated to adapt than the Trajectory

Transformer’s model-based approach and, second, it has been more extensively

adopted by the RL research community with findings that this dissertation could

leverage.

136

6.1. INTRODUCTION Page 137

Much of the literature relating to Decision Transformers tends to focus on meth-

ods for prompting (Xu et al., 2022; Jiang et al., 2023), masking (Carroll et al.,

2022; Wu et al., 2023a; Liu et al., 2022) and in-context learning (Jia et al., 2023;

Laskin et al., 2023) for RL. Prompts are like hints and in LLMs prompts are used

to communicate with a trained model to steer or guide its behaviour towards a

desired outcome without updating the model weights, i.e. in-context. The prompt

can be regarded as an instrument for extracting pre-existing knowledge from the

LLM. In the Decision Transformer the return-to-go, the calculated expected re-

turn at a given state, is used as a simple scalar prompt but as prompting is the

key to drawing out behaviour, multi-step prompts (Xu et al., 2022; Laskin et al.,

2023) and in-context learning are highly desirable avenues of research relating to

Decision Transformers. An example of a multi-step prompt could be a selection of

images from the desired task, such an egg, an egg-cup, an egg in the egg-cup. The

information is usually sufficient to characterise the task, like a signature. Trajec-

tory stitching (Emmons et al., 2022; Brandfonbrener et al., 2022) is another key

area of research effort, referring to the ability to generate trajectories by stitching

from optimal, sub-optimal and multi-task data. Masking (Carroll et al., 2022; Wu

et al., 2023a; Liu et al., 2022) trains a model by first masking some elements then

training the model to predict the missing elements, resulting in the model more

closely matching the dataset and therefore features more enhanced generation ca-

pabilities.

Research in RL-style foundation models is fairly new as of the time of this dis-

sertation however, with only a few papers that look at environments with complex

state and action spaces that might require non-standard tokenisation of trajec-

tory data. A tokeniser converts input data, potentially multimodal data of vary-

ing dimensions, into a tensor of uniform dimension, in preparation for training a

Transformer-style model. In the Decision Transformer tokenisation is at the mode

level, with one token per mode per timestep, such that a multi-discrete action

137

6.1. INTRODUCTION Page 138

would typically be represented by a single token. It is not uncommon for the to-

keniser to be a neural network that compresses higher dimensional data into an

embedded feature representation. Mathieu et al. (2023); Wang et al. (2023); Reed

et al. (2022); Jiang et al. (2023) work with complex environments with multimodal

trajectories or complex state or action spaces. Mathieu et al. (2023) generate ac-

tions auto-regressively in the AlphaStar model where the action space itself is

multimodal. Wang et al. (2023) take an entirely different approach to actions by

using a skill library for MineCraft. The library turns skills (collections of actions

that can perform a task) into Application Programming Interface (API) calls, a

construct used in application development. Abstracting away the action detail al-

lows for high level planning and control and makes sense in real-world foundation

models, of which Gato by Reed et al. (2022) is another example. In the Gato

approach, discrete and continuous actions, images, text and other modalities are

tokenised individually, then combined, with the focus more on how to combine

multimodal data in real-world scenarios. Finally, in VIMA, Jiang et al. (2023)

expand multimodal data in a robotic environment, including visual goals, visual

constraints, one-shot demonstrations and textual grounding inputs, for the pur-

pose of more effective prompting. VIMA uses object detection to monitor and learn

relations between objects that it tracks over trajectories. The modalities in these

works are novel and complex however the focus is on the multimodal prompting

of the robot arm and not the specific treatment of the action space.

Prior work has demonstrated the potential complexities in the state-action

space of environments trained using Transformer models but also reveal there

is no established way to manage inputs and modalities at this time. In this chap-

ter, an offline RL sequential modeller known as the Decision Transformer (Chen

et al., 2021) is trained on a multi-discrete action space in the ViZDoom environ-

ment (Kempka et al., 2016). Transformers (Vaswani et al., 2017) are very effective

at learning relationships between tokens, traditionally between words in language

138

6.1. INTRODUCTION Page 139

modelling (Brown et al., 2020; Devlin et al., 2019). The hypothesis is that Deci-

sion Transformers would therefore be capable of modelling relationships between

individual discrete action tokens in multi-discrete action spaces. The proposed

approach considers techniques for exploiting the relational capability of a Trans-

former, while training over offline RL data, to extract relational information from

the action space.

Multi-discrete actions are tokenised to encourage state-action and action-action

relationships prior to being processed by the Transformer. This is achieved by first

decomposing multi-discrete actions, then tokenising actions with states, resulting

in multiple action tokens per multi-discrete action. The approach is referred to

as Multi-State Action Tokenisation (M-SAT) for the duration of the chapter. The

expanded tokenisation is compared with a Decision Transformer trained using the

more typical single action token, on the ViZDoom (Kempka et al., 2016) multi-

discrete action scenario, Deadly Corridor. The application of tokenisation con-

figurations for multi-discrete action spaces, for the purpose of increasing action

awareness, is novel as far as the author is aware. Model performance is compared

by evaluating the robustness of each model and how well it solves the ViZDoom

scenario. When comparing the overall training performance of the models results

show that the increased tokenisation of M-SAT performs consistently better com-

pared with the single token model and the methods used for ablation. The models

are further interrogated at the attention head level. Analysis of the attention

heads to assess whether the additional action tokens are actually used and how

often, using mechanistic interpretation (Elhage et al., 2021) techniques, reveals

that the attention heads do focus on the additional tokens, however the Trans-

former is a complex model to interpret so it is difficult to establish a concrete

causal link with the performance improvements observed. Nevertheless the results

demonstrate that M-SAT generally performs better than the single-action token

Transformer and suggests the attention mechanism of the Transformer is able to

139

6.2. PRELIMINARIES Page 140

establish more connections as a result of the additional tokenisation. The injec-

tion of state-action information in particular demonstrates that the Transformer

benefits from additional relational information.

The specific contributions include:

• novel tokenisation of multi-discrete actions (M-SAT), highlighting both action-

action and state-action relationships in a Decision Transformer model to

improve the visibility of these relationships to the attention mechanism

• creation of more mixing opportunities to leverage Transformer relational

abilities

• demonstration of the M-SAT approach in a ViZDoom multi-discrete envi-

ronment

• use of mechanistic interpretation methods to interrogate the internal work-

ings of the M-SAT Decision Transformer approach.

• ablation experiments performed including removing position encodings, re-

moving state-action relationships and adding more position encoding for

actions

The remainder of the chapter is organised as follows. Section 6.2 provides

some background material for the Decision Transformer and is followed by Section

6.3 with related literature. Section 6.4 presents the proposed M-SAT approach,

i.e. multi-token modification to the Decision Transformer and comparative ap-

proaches and includes implementation details. Section 6.5 presents details of the

experiments and results. Section 6.6 is devoted to conclusions.

6.2 Preliminaries

This section describes the application of GPT Transformer models to RL, learning

from multimodal, offline, RL trajectory data to generate decisions (actions), viz.

140

6.2. PRELIMINARIES Page 141

the Decision Transformer (DT) (Chen et al., 2021). Refer to section 2.10 for details

of the Transformer model.

6.2.1 Decision Transformers

The Decision Transformer (Chen et al., 2021) is a Transformer adapted to train

over offline trajectory data generated by an RL algorithm such as PPO or DQN,

rather than textual data. It is an offline RL method trained entirely on pre-

generated, often expert data, without any further interaction with the environment

during training. Sometimes the data is collected from human or other sources.

However the data is generated, this is all the offline RL algorithm has access to

during training which means it is unable to receive corrections or feedback from the

environment, unlike in online RL. The premise behind the Decision Transformer

is that typical RL trajectory data is sequential data, similar to textual sequences

in language modelling, and therefore a Transformer should be able to model this

data.

The adaptations required to make the Decision Transformer effective as an

RL agent are described. The word and sentence structure in language models

is equated to the timestep and trajectory in RL trajectory data. The RL tra-

jectory is defined as τ = {(s0, a0, r0, d0), ..., (st, at, rt, dt), ..., (sT , aT , rT , dT)} with

T timesteps of state, action, reward and done-flag tuples, covering one or more

episodes. The Decision Transformer uses the return-to-go (RTG) in preference to

the every step reward, rt. The return-to-go (RTG) is the expected sum of future

rewards from a given state-action pair. It is calculated for each trajectory step,

accumulating the returns from that step forward, to the end of the trajectory or

window of evaluation. The trajectory used by the Decision Transformer is adjusted

to τ = {(s0, a0, r̂0),, (sT , aT , r̂T)} where r̂t is the RTG and the done flags are

subsumed by the RTG.

The equivalent to the “word” in RL is the multimodal timestep data compris-

141

6.2. PRELIMINARIES Page 142

ing the state, action, reward and done flag for each step. The multiple modes

typically require individual tokenisation for each mode with the tokeniser chosen

to match the type of data, for example, if the state is a pixelated image then

a CNN tokeniser is used; discrete actions and RTGs would be mapped using an

embedding matrix or an MLP. After tokenisation each mode is represented by

a fixed length vector of uniform dimension known as the model dimension. The

timestep represents the position in the sequence and is encoded and added to

each of the embedded modes to provide positional information; this effectively

stamps all modes (i.e. state, action and RTG) in the timestep with the same time

or position (illustrated in Figure 6.1). The injection of the sequential positional

information is a factor that indirectly contributes to the parallelisability of the

Transformer. The attention mechanism’s ability to process all tokens in a context

simultaneously makes the Transformer parallelisable, however pure attention does

not consider the positions of tokens. By encoding the positional information into

the data, the parallelisability of Transformer models is enabled, while retaining

positional awareness.

The Decision Transformer is a return-conditioned, decoder based Transformer

model (GPT model) that takes trajectory data as input and generates actions,

mimicking an RL agent. The GPT model is adapted in a few ways to suit RL

trajectories, viz. word tokens are replaced by multimodal trajectory tokens of

states, actions and RTG. The RTG is derived from trajectory data and used as

the prompt. During inference, the model receives an initial RTG prompt and

an initial environment state from which it generates the next action to send to

the environment. The generated action is appended to the sequence of RTG and

state and the process repeats, generating the context for the next call to the

Transformer, where the RTG prompt is reduced by the environment reward on

every step and the next state is obtained from the environment. The output of the

Decision Transformer is a set of logits for every token in the context. Actions are

142

6.2. PRELIMINARIES Page 143

generated from the mode prior to the action in the trajectory, namely the state

logits. Logits for the other modes are currently not used in the standard Decision

Transformer configuration. The state logits are also used to generate the action

predictions for the calculation of the training loss, as illustrated on the top left of

Figure 6.1, while the top right section illustrates the action generation process. In

the multi-discrete action scenario, the state logits will be split into the multiple

segments, one per action. Each segment supports a distribution, from which the

associated action is sampled. Combining the actions generated from each segment

produces the multi-discrete action.

Figure 6.1: Flow of data through the Decision Transformer (Chen et al., 2021),
from trajectory steps (timestep, RTG, state, action) to either a loss calculated
during training OR to action generation. The position encoding is added to each
of state, action and RTG tokens. The state logits are used to generate actions,
which are next in the sequence. The feint grey lines indicate the transformation of
tokens to logits in the context. The use of the state logits when generating actions
or the training loss is also indicated.

143

6.3. RELATED WORK Page 144

6.2.1.1 Prompting

The main idea behind prompting is to extract knowledge already learnt from a

trained Transformer in the most effective way, by setting an appropriate context.

In language, this would mean phrasing the query to be very specific to the desired

task. Prompting is used to extract behaviour from a trained model without up-

dating the weights of the model and is viewed as an empirical science. In RL, a

prompt refers to either a single or multiple steps of context provided to a Trans-

former model that triggers the model to respond in a particular way, i.e. in the

direction of the prompt. Prompting is also known as conditioning, and the De-

cision Transformer is a return-conditioned model, using the RTG calculated from

episodic trajectory rewards as the prompt. In the Decision Transformer, the scalar

RTG represents the desired task. The prompt can be dynamic or static: in the

Decision Transformer the RTG is a single, static prompt provided at the start of

evaluation and is not recalculated after the generation step, however it is updated

with the step reward obtained from the environment. In dynamic prompting (Xu

et al., 2022; Jia et al., 2023) the prompt is multiple steps and may be updated or re-

calculated on every step (i.e. dynamically). For dynamic prompting to be possible,

the prompt generating model also needs to be trained alongside the Transformer

as unlike in language, there is no user provided prompt.

6.3 Related Work

The Decision Transformer (Chen et al., 2021) uses concepts from language mod-

elling in the RL domain to train a GPT-style Transformer (Brown et al., 2020) to

model and generate RL behaviour from trajectory data. The Decision Transformer

therefore inherits causal, generative features that, when applied to trajectory data,

models the data and generates RL behaviour. The Decision Transformer is very

closely aligned with the GPT Language Model (Brown et al., 2020), more so than

144

6.3. RELATED WORK Page 145

the Trajectory Transformer (Janner et al., 2021), that was published around the

same time. The Trajectory Transformer uses the Transformer to learn a model of

trajectory data and then uses the model for planning; this follows a model-based

RL approach. By comparison, the Decision Transformer adopts a model-free RL

approach using expert data, and is more comparable with imitation learning (Brys

et al., 2015) techniques such as behaviour cloning, an offline RL method (Levine

et al., 2020) where the agent learns how to behave using supervised learning con-

cepts over expert data.

At the time of this dissertation one of the few papers that attempts to solve

environments with complex state and action spaces is Alphastar by (Mathieu et al.,

2023). The StarCraft II environment’s states and actions are multimodal and are

tokenised with either an MLP, residual CNN or Transformers (used as tokenisers).

Actions are sampled auto-regressively, so each sampled action is embedded and

then used to sample the next action. This work provides useful details on the

complexities of adapting the Transformer for such a complex environment however

no special tokenisation is performed on the input actions.

6.3.1 Prompting and In-context learning (ICL)

The prompt represents a task, which is less obvious in the Decision Transformer’s

scalar RTG than the multiple steps of goal state prompting in PromptDT (Xu

et al., 2022) or Chain of Thought (CoT) (Jia et al., 2023). These works are vari-

ants of the Decision Transformer, training a dynamic prompting model alongside

the Decision Transformer that can generate a prompt on each step during action

generation. The multi-step prompts in PromptDT are trained from a subset of

expert trajectories, effectively summarising tasks the agent will be exposed to. In

CoT the prompt is a plan, a set of subgoals that are associated with solving the

task. This paper is a step towards In-Context Learning (ICL) (as opposed to in-

145

6.3. RELATED WORK Page 146

weight learning), i.e. gradient-free learning that takes place in the context passed

to a Transformer model, where instead of inferring tasks from a short prompt, the

model infers the task from the context. Laskin et al. (2023) attempt to show that

the Decision Transformer model can learn how to be a trainer by training over

contexts that are long enough to demonstrate the mechanism of some algorithm

(for example, Actor Critic (AC), DQN, Upper Confidence Bounds (UCB) (Auer,

2000)). The trained model is then passed a new task with the expectation that it

will solve the task by applying this learned algorithm, without any further train-

ing. The model does not receive a prompt as such, and the task that is inferred is

a whole algorithm. A key aspect of training this model is that extra long contexts

are required, including trajectories up to four episodes long, to provide visibility

of and encapsulate the whole learning process that the agent needs, to learn the

algorithm. Effectively the model learns to mimic an RL algorithm so in theory it

should be able to solve an RL task by applying the algorithm. This approach is

viewed as an algorithm distillation method, typically trained over expert data.

6.3.2 Other aspects of Decision Transformers

ICL is a desirable feature in Transformer-based models but it requires the abil-

ity to extrapolate from available knowledge and perform sub-optimal trajectory

stitching. While the authors suggest that the Decision Transformer (Chen et al.,

2021) is able to extrapolate and stitch trajectories using the RTG as a prompt,

Brandfonbrener et al. (2022) performed a detailed study showing that stitching

is not possible in the original Decision Transformer model. Wu et al. (2023b)

proposed a variant called Elastic Decision Transformer to facilitate stitching, us-

ing histories with varying lengths. This remains, however, a complex problem for

Decision Transformers to solve.

Emmons et al. (2022), in “RvS: What Is Essential for Offline RL via Super-

vised Learning”, perform a systematic study of RL via Supervised Learning (RvS)

146

6.3. RELATED WORK Page 147

investigating whether a supervised MLP could model RL data as effectively as

a TD-algorithm (Tsitsiklis and Van Roy, 1997) or a Decision Transformer (Chen

et al., 2021), and if so, what expertise of data or conditioning was required. Con-

ditioning is also known as prompting in Transformer terminology and the paper

compares the scalar reward-based prompt with a goal-state prompt. Emmons

et al. (2022) find that goal-state conditioning performs better in some environ-

ments, noteably multi-task, goal-conditioned environments such as Four-Room

Gridworlds (Chevalier-Boisvert et al., 2023), Pusher (Sawyer robot) (Nair et al.,

2018), AntMaze (Fu et al., 2020), etc., while RTG conditioning performs better in

locomotion-based environments like Half Cheetah, Hopper and Walker (Fu et al.,

2020) that do not have specific task goals such as retrieving a key or opening a

door.

Generalisation is challenging in RL and Lee et al. (2022) assess whether it is

possible to train a generalist agent from diverse experience across multiple games,

even if not to expert capabilities. Both online and offline RL models, including

the Decision Transformer (Chen et al., 2021), BC (Levine et al., 2020) and offline

TD methods were compared and the Decision Transformer showed the best overall

performance and scalability, supplemented with additional expert guidance from a

discriminator-like predictor trained on expert data. A key finding was that the De-

cision Transformer performed well on expert and non-expert data, outperforming

BC on expert data which is a highly desirable quality.

Kazemnejad et al. (2023) show position encoding is not necessary and even

restrictive at times in the standard Transformer language model however this has

not as yet been demonstrated to be the case for the Decision Transformer. It may

be the case that the multimodal nature of trajectory data benefits from some form

of position encoding, as seen in the Gato model (Reed et al., 2022) that features

multiple modes and uses extra levels of positional encoding. These aspects of

Decision Transformers are less studied as of the time of this dissertation.

147

6.3. RELATED WORK Page 148

An interesting finding by Lee-Thorp et al. (2022) highlights the importance of

the tokens in Transformer models. Their FNET model successfully replaces the

attention mechanism with Fourier mixing, demonstrating that a key purpose of

the dot product in the attention mechanism is to facilitate the mixing of token

information. This has implications for preparing data for Transformers, specifically

for the creation of more information mixing opportunities.

The Perceiver paper (Jaegle et al., 2021) hypothesised that special tokenisers

were unnecessary to process multimodal inputs. Instead, Perceiver uses an atten-

tion bottleneck to process inputs with explicit position and modality information

as these are deemed essential to conveying the relevant structure of the data to the

Transformer, using cross-attention. The bottleneck features have a reduced model

dimension dmodel that restricts the capacity of the Transformer architecturally; this

is circumvented by iteratively processing over the inputs. The purpose is to keep

the Transformer architecture as generic as possible but highlights the importance

of retaining position and modality information from the input data.

To summarise, to successfully use Decision Transformers to model RL processes

requires environments that facilitate task generation sufficient for generalisation,

careful choice of the conditioning mechanism based on the nature of the task and

an architecture that induces stitching from optimal and non-optimal data. When

multimodal data is involved, the model benefits from knowledge of supplemental

structure and other characteristics of the data.

148

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 149

6.4 Proposed Approach: Multi-State-Action To-

kenisation (M-SAT) in Decision Transform-

ers

In this section Multi-State-Action Tokenisation (M-SAT) is presented, a proposed

approach for dealing with multi-discrete actions using Decision Transformers in an

offline RL context, to facilitate the formation and exploitation of discrete action-

action and state-action relationships. This is achieved by increasing access to

the action information in the trajectory using tokenisation techniques. Further

methods are proposed to assess the impact of increasing the action contributions,

including ablative studies and techniques from mechanistic interpretation (Elhage

et al., 2021), a new field focused on the internal mechanisms and explanability of

Transformers, to determine the effectivity of the proposed methods.

This section first describes the sequential modelling framework the chapter is

based on, followed by the tokenisation approach and motivation in more detail.

The environment, model and data collection are explained next, followed by meth-

ods of analysis and ablations.

6.4.1 Sequence Modelling using Decision Transformers

In this chapter an offline RL approach using sequential modelling is adopted, where

RL trajectory data is modelled as a sequence using the Decision Transformer from

Chen et al. (2021). The Decision Transformer receives a context of trajectory data

and uses this prompt to generate the next action. The trajectory, τ is represented

as: {(s0, a0, r̂0), ..(st, at, r̂t).., (sT , aT , r̂T)} where t is the timestep and r̂t is the

return-to-go or RTG.

Each element of the trajectory is pre-processed into tokens of the same dimension

for the Transformer, with a post-processed batch of dimensions batch size×context

149

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 150

length×model dimension, where batch size, model dimension and context length

are hyperparameters.

The RTG is calculated as per the original Decision Transformer (Chen et al.,

2021) and there are no deviations from the training or action generation mecha-

nism.

A minor modification is applied to the trajectory, τ to cater for multi-discrete

actions as follows:

{(s0, a0, r̂0), ..(st, at, r̂t).., (sT , aT , r̂T)}

where at is a vector of discrete actions at timestep t.

6.4.2 M-SAT Approach and Motivation

A change to the way multi-discrete actions are pre-processed by the Decision Trans-

former is proposed. Multi-discrete actions are expanded to generate multiple action

tokens per timestep, instead of the more typical single action token per timestep.

Figure 6.2 demonstrates the tokenisation of multi-discrete actions to a single to-

ken, compared with the multiple tokens proposed in this chapter, illustrated in

Figure 6.3.

In M-SAT a novel action tokeniser is presented that

• individually tokenises the discrete actions in each multi-discrete action

• concatenates each discrete action with the preceding state before encoding

The tokenisation process effectively imprints each individual action within the

multi-discrete action with the preceding state features. This is analogous to the

mechanism of positional encoding, where each token is tagged with its correspond-

ing timestep. The motivation of the token expansion is to increase the visibility of

actions in the attention heads to make more efficient use of the attention blocks

150

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 151

Figure 6.2: Tokenisation of the RTG, state and multi-discrete action in the stan-
dard Decision Transformer model to the model dimension. The timestep is encoded
and added to each token as the position encoding.

Figure 6.3: Tokenisation of the RTG, state and multi-discrete actions in the M-
SAT Decision Transformer, with the proposed multi-token actions .

151

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 152

in the Decision Transformer. In M-SAT the attention heads of the Transformer

will see multiple action tokens per timestep as part of the context, meaning the

heads can formulate relationships between the individual actions, and between

individual actions and the state and RTG tokens. The state-action associations

are used to convey structural hints or suggestions to the attention blocks, such

as particular relationships of interest. The intuition is the attention heads should

have maximum visibility of all information (structural and relational) that could

foster the development of relationships between actions, a desirable outcome in

many scenarios (Moodley et al., 2019; Chitnis et al., 2020; Zambaldi et al., 2018;

Jain et al., 2022).

Figure 6.4: Sample state from the ViZDoom Deadly Corridor environment

For example, in ViZDoom’s Deadly Corridor scenario (see Figure 6.5), given a

state with a monster to the right of the agent, as in Figure 6.4 and a multi-discrete

action [Right, Forward, No-Op, Attack], each discrete action will be associated

with this state. A desired outcome is that the attention heads form an association

with the appearance of the monster and the attack action, and with the position of

the monster and the navigation or manoeuvring actions. State-action information

allows the attention heads to form more granular relationships in the state-action

space and this association is made possible with the additional tokenisation of the

multi-discrete action. Transformer attention blocks learn relationships between se-

152

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 153

quential tokens in a context. Similarly, in the Decision Transformer, relationships

between timesteps are learned and also between state, action and return-to-go to-

kens. The causal nature of the Decision Transformer means current timesteps refer

to historical tokens or context to learn which tokens to focus on when generating

a new action. As previously generated actions form part of the context when gen-

erating new actions, this process is auto-regressive. In the M-SAT approach the

Transformer has a more detailed view of multi-discrete actions, with past actions

more directly informing future actions. It is proposed that the increased action vis-

ibility allows the attention heads to learn relationships between individual discrete

actions and to benefit from any action level structure available.

In RL, a common approach adopted in multi-discrete action spaces (Kanervisto

et al., 2020) is to treat the multi-discrete action as a single action and not as

separate discrete actions that can interact and have relationships. There are en-

vironments where relationships between actions exist (Fan et al., 2022; Kempka

et al., 2016; Vinyals et al., 2017; Jain et al., 2022; Chitnis et al., 2020) and could

be exploited to produce more intuitive and performant agents. While Decision

Transformers have been used on environments with multi-discrete actions, the

few examples observed to date have not focused on the action space in particular

(Mathieu et al., 2023; Reed et al., 2022). Applying Decision Transformers to the

action relationship problem is of interest for several reasons: firstly, the attention

mechanism could focus on individual actions in the proposed M-SAT approach, fa-

cilitating the development of interactions and relations between individual actions;

secondly, in this setup, beneficial state-action associations could also be detected

by the attention mechanism and exploited at the individual action level.

6.4.3 Tokenisation and action generation

The role of the tokeniser in the Decision Transformer is to encode the trajectory

elements, i.e. states, actions and RTGs, into a vector of fixed dimension known

153

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 154

as the model dimension dmodel. Decision Transformer tokens are multimodal in-

cluding a set of state, action and RTG tokens, compared with tokens in natural

language sequences that are all word tokens. The tokeniser used for each of the

states, actions and RTGs depends on the nature of each mode, for instance a CNN

would tokenise images while an MLP would be used to tokenise the discrete and

continuous values typically associated with actions and RTGs. The output of each

tokeniser has the model dimension, dmodel. Individual tokenisation (as illustrated

in Figure 6.3) of each discrete action in the multi-discrete action is proposed, that

splits the multi-discrete action into the same number of action tokens. In the

proposed approach, first a multi-discrete action with N discrete action elements

is split into N one-hot encoded vectors representing each discrete action element;

second, each one-hot encoded action is concatenated with the preceding state’s

feature vector, then tokenised using an MLP to generate N action tokens of di-

mension dmodel for N discrete actions. The pseudo-code for this process is provided

below.

154

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 155

Pseudo-code for M-SAT action tokenisation

Inputs: States with dimension (B, T, nchannels, height, width),

Actions with dimension (B, T, nactions)

Where nactions is the number of elements in the multi-discrete action,

B is the batch size and T is the context length

dmodel is the model dimension

daction is the dimension of the multi-discrete action

(nchannels, height, width) are the dimensions of the state images

(Refer to Table 6.2)

Method: Action Tokenisation

1. Tokenise state through CNN to get state tokens (B, T, dmodel)

2. One-hot encode the actions individually such that the new action

dimensions are (B, T, nactions, daction) and each individual action has

effective dimension (B, T, daction)

3. Concatenate the state token (B, T, dmodel) to each one-hot encoded

action (B, T, daction); the resultant dimension is

(B, T, dmodel + daction)

4. Tokenise the concatenated state-action batch through the

State-Action embedding MLP to get action tokens of dimension

(B, T, nactions, dmodel)

Despite the additional action tokens, the action generation process is unmodi-

fied. The M-SAT process only affects the processing of the input data into tokens

and has not changed how actions are generated or how the loss is calculated.

Multi-discrete actions are generated by sampling from categorical distributions

155

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 156

supported by the state logits, as per Figure 6.1.

6.4.4 Implementation Details

A brief overview of the environment, including the action and state spaces is pro-

vided in section 6.4.4.1, followed by the setup and implementation details related

to the Decision Transformer in section 6.4.4.2. The generation of offline data is

non-trivial as sufficient volumes of suitable quality data are required; the processes

designed for offline data generation are outlined in section 6.4.4.3.

6.4.4.1 Environment

The ViZDoom environment (Kempka et al., 2016) was designed for use in machine

learning modelling initiatives including RL. The environment is configurable, with

multiple scenarios with varying layouts, action spaces and reward functions pos-

sible. The ViZDoom Deadly Corridor (DC) scenario has a multi-discrete action

space and is used in this chapter. The task involves the agent walking down a

corridor, populated by attacking adversarial entities, to reach the goal, a green

vest, at the end.

Figure 6.5: Simple map outline of ViZDoom’s Deadly Corridor scenario showing
the locations of the agent, enemies and the goal.

Rewards in ViZDoom A per step reward is calculated, based on the current

coordinate of the agent, with the agent starting at coordinate 0, and the end of the

tunnel is coordinate 1300. If the agent reaches the goal, it receives an additional

+1000 reward (on top of the “x-coordinate” reward). There is no specific incentive

156

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 157

Table 6.1: ViZDoom Deadly-Corridor multi-discrete action space

a0: No-Op Left Right
a1: No-Op Forward Backward
a2: No-Op Strafe Left Strafe Right
a3: No-Op Attack -

for attacking monsters, however there is a death penalty of -100 if the agent dies.

Finally, there is a time limit of 2100 timesteps to reach the end of the corridor

before the episode terminates.

The Health Gathering Supreme (HGS) has a discrete action space so while it

is not the main focus of this chapter it is occasionally used to provide context and

act as a comparative scenario. In HGS the agent collects healthpacks to survive for

2100 timesteps. Rewards are immediate, +1 for living on every step, -100 death

penalty; there is no direct reward for the collection of healthpacks.

Multi-discrete actions in ViZDoom - Deadly Corridor Multi-discrete ac-

tions are vectors of discrete actions, requiring the agent to select multiple discrete

actions per timestep:

a = (a1, a2, ..., an) where ai ∈ {0, 1, ..., Ni} for i = 1, 2, ..., n

(refer to section 2.2.2 for a reminder of discrete vs multi-discrete actions).

In Deadly Corridor the multi-discrete action space has 4 possible discrete actions

to select on each timestep, described in Table 6.1.

The multi-discrete action has the form: a = [a0t, a1t, a2t, a3t] where t is the

timestep and a0 - a3 are selected from the appropriate row in Table 6.1. For ex-

ample, an action with Left, Forward, No-Op and No-Op is represented as [1, 1, 0, 0].

States in ViZDoom The ViZDoom environment provides a state with two

components, viz. an image (dimensions 3× 72× 128) and an environment feature

vector with the agent’s health. In this work, only the image was used as the

157

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 158

state when training the Decision Transformer. Some commonly used image pre-

processing techniques derived by Mnih et al. (2013) for pixel-based image states in

Atari were applied to the ViZDoom images, including resizing and frame skipping.

A frame skip of 4 was adopted as per Kempka et al. (2016) who demonstrated

that higher skip-rates learnt faster in general but suffered with poor fine-grained

control. Also in keeping with Kempka et al. (2016), colour images were used rather

than the gray-scaling often performed on Atari images.

6.4.4.2 Decision Transformer Related Setup and Implementation

A few aspects pertaining to the Decision Transformer are discussed below, includ-

ing the context length and further details related to tokenisation. This is followed

by a training flow for the Decision Transformer customised with the M-SAT im-

plementation.

Context Length The context length is the number of timesteps the Decision

Transformer sees during training, resulting in an input batch dimension of [batch

size×context length×token dimension]. The context length is a hyperparameter

that is optimised to suit the task, for instance in HGS the optimal context was

between 40-50 while for DC a minimum context of 60 was adopted. In HGS rewards

are obtained directly on every step compared with DC where the rewards can be

sparse. Chen et al. (2021) comment that the context length can be important for

enabling credit assignment and mention that the Key-to-Door environment was

more complex, requiring a context of at least the length of a full episode. Similarly,

Laskin et al. (2023) found that in-context learning in RL was more likely when the

context length covered a full episode, adding that the context often needed to span

at least 2-4 times the episode length. These findings indicated that it is crucial to

determine an effective context length for DC due to the sparsity of rewards and

the maze-like nature of the task, i.e. the Transformer needed to see the attainment

158

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 159

of the goal at the end of the trajectory within the context. Based on these findings

a context length of 60 was selected after analysing the offline trajectory data and

ensuring sufficient episode trajectories were available where the agent reached the

end of the corridor and obtained a reward.

Tokenisation In the Decision Transformer the tokens are multimodal, with se-

quential trajectories of timesteps comprised of return-to-go (RTG), state and ac-

tion tokens. A single timestep contains a sequence of the RTG token, state token

and action token encoded with the timestep, as illustrated in Figure 6.3.

A separate tokeniser is used for each mode to match the mode data. Specifi-

cally, image-based ViZDoom states are processed by a 3-layer CNN producing a

token vector of dimension 128. Similarly, the continuous-valued RTG is processed

by an MLP generating a vector of 128. In the original Decision Transformer specifi-

cation discrete actions were processed by an MLP to produce a single token vector

of dimension 128. Multi-discrete actions can similarly be processed through an

MLP to produce a single action token vector of dimension 128. This configuration

of tokeniser for multi-discrete actions, that converts N-discrete actions to a single

embedded token, will be referred to as the Baseline and referenced in the experi-

ments in section 6.5. In the proposed state-action M-SAT approach, multi-discrete

actions with N dimensions are processed with the preceding state by an MLP to

produce N tokens of dimension 128, one token per discrete action.

Finally, a few points are clarified:

• the model dimension, dmodel is 128, so each token has a dimension of 128 but

the tokens have different modalities. It is not the case that a single token

comprises a concatenation of RTG, state and action with a dimension of

3×128.

• the context length is doubled to accommodate the extra tokens introduced

by the M-SAT approach such that a trajectory with 10 timesteps that would

159

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 160

normally have a context length of 30 (3 modes × 10 timesteps) is now ex-

panded to a context length of 60 (6 modes × 10 timesteps), allowing for the

three additional action modes.

• for completeness it should be noted that during inference when the Trans-

former is generating the next action, the final timestep is composed of the

RTG followed by the state token only.

Training the Decision Transformer The model used by the Decision Trans-

former is the GPT model by Radford et al. (2018). The code is largely vanilla

except for modifications by Chen et al. (2021) to the tokenisation to cater for the

multiple modalities of RTG, states and actions. This dissertation performed fur-

ther modifications, specifically to the action tokenisation, to support the methods

outlined in the Approach (section 6.4). A brief overview of the data generation,

training flow and inference processes for the Decision Transformer is provided be-

low with customisations highlighted.

1. Generate trajectory data (custom): generates at least 1 million timesteps,

stored as individual files for states, actions, rewards and done flags. Section

6.4.4.3 provides more details of this process.

2. Training Flow: The code is divided into a few modules, viz. a runner pro-

cess that controls the entire training flow, the data generation module that

prepares the training data, the GPT model that defines the architecture and

finally the trainer that manages training and evaluation of the model. A few

details of the main processes is provided below:

• Data generation: the runner reads the trajectory data and generates

the training dataset (custom); this method parses the above-mentioned

trajectory data, collating episodic data into state, action, done flag,

160

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 161

RTG and timestep arrays to support and interface with the dataloader

code provided by Chen et al. (2021).

• Trainer: the runner creates the trainer and the model objects and calls

the trainer. The trainer initialises the dataloader and feeds batches of

data to the model to obtain the logits (training and inference mode)

and loss (training mode). The model is updated by the optimiser and

the process repeats for the requested number of epochs.

• GPT Model: The model is largely the original code from Chen et al.

(2021) with minor modifications to support different action tokeniser

networks (custom) that are plugged into the model. The M-SAT ap-

proach affects the way tokens are composed in the context; instead of

adding a single action token, multiple action tokens are inserted into

the context. This modification is self-contained within the GPT model

and is largely transparent to the rest of the process.

• Evaluation: The model is evaluated after each epoch. Unlike training,

that has no contact with the environment and relies entirely on offline

data, evaluation (custom) interacts with the environment to assess the

agent’s performance. This process is managed by the trainer.

3. Inference or generation:

• The initial prompt is composed of a desired RTG; the initial state from

the environment is also provided at this time. The RTG is manually

derived from an analysis of the training data reward distributions. An

optimal to semi-optimal RTG is used for evaluations.

• The model receives the prompt and returns logits that are converted

into a categorical distribution from which the action is sampled. In the

multi-discrete action scenario, this process is repeated for each discrete

action.

161

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 162

• The action is passed to the environment and the next state, reward

and done flag are received from the environment and appended to the

context to form the next prompt. The RTG for the next prompt is

the previous RTG less the environment reward. The model receives the

new prompt and the cycle continues.

Details of the key hyperparameters for the Decision Transformer are provided

below: (The best model performance for both the single-action-token and multi-

action-token models was achieved using the following hyperparameters)

Decision Transformer Hyperparameters for training:

env = Deadly Corridor

layers = 8

heads = 8

number of timesteps of training data = 500k

epochs = 5

embed dropout = 0.1

residual dropout = 0.1

attention dropout = 0.3

batch size = 128 or 64

learning rate = 0.005

warmup = 2000

context length = 60

eval target = 29

6.4.4.3 Data Generation

The volume and nature of offline data required to train the Decision Transformer

are important factors as considerable data is required. In the experiments that

162

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 163

follow expert offline data was generated using a PPO algorithm and used to train

the Decision Transformer.

The Asynchronous-PPO (APPO) (Petrenko et al., 2020) was used to generate

offline data for training the Decision Transformer. The APPO algorithm uses a

combination of parallelisation of training components, including multiple instances

of the environment and multiple workers for rollouts and inference, as illustrated

in Figure 6.6. Queues are used to reduce the waiting time for workers, resulting in

high speed training and data generation. Furthermore the APPO implementation

in the Sample Factory (SF) library provides wrappers for several ViZDoom scenar-

ios including DC, with hyperparameters for training the scenarios to convergence

(expert performance). For the DC scenario the APPO agent was trained for 200

million frames until reward evaluations stabilised (optimal or close to optimal),

after which approximately 1 million frames of data was collected. The training

curves for APPO are provided in Figures 6.7, 6.8 and 6.9.

Trajectory data from SF comprised states (colour images), actions, rewards

and done flags and required some manipulation before it was useable as an offline

dataset. When generating data for the Decision Transformer it is important to

maintain the sequential structure of the data. The dataset generation process is

very closely modelled on the original code provided by Chen et al. (2021), described

below. First whole episodes were extracted from the trajectory files, producing sep-

arate, sequentially matched arrays for states, actions, done indices, timesteps and

RTGs. Sequentially matched means trajectories for an episode could be compiled

by reading steps across the data files and down the files to generate an episode.

The done indices signal the end of each episode. The timesteps files indicates the

position of the episode within the larger array of 1 million datapoints. The RTG is

calculated for each step of the episode at this time, using information in these files.

The timesteps and RTG are generated specifically for the Decision Transformer.

163

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 164

Figure 6.6: Sample Factory architecture overview - Source: (Petrenko et al., 2020)

The custom dataloader reads the source arrays and generates batches based on

the batch size and context length. In keeping with the Atari approach from Chen

et al. (2021) there is no padding of contexts. The data is a continuous stream of

trajectories, and segments of context length are extracted from this stream (at a

randomly generated index) to compose batches of dimension batch size×context

length.

The box below provides the key hyperparameters required for generating the

offline data in SF. The data was generated on a server with 40 CPU cores, 200GB

RAM and an Nvidia GPU (RTX A5000 with 24GB RAM). These specifications

were used to design the hyperparameters and achieve optimal performance from

the APPO algorithm, as recommended by SF.

164

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 165

Relevant command line arguments to replicate data collection

in Sample Factory:

env=doom-deadly-corridor

num-workers=80

num-envs-per-worker=8

batch-size=4096

train-for-env-steps=200000000

with-wandb=True

rollout=128

use-rnn=True

6.4.5 Methods of Analysis

A few comparative methods are outlined followed by ablative and analysis ap-

proaches adopted.

The key idea of the M-SAT approach is to increase the amount of token in-

formation the Decision Transformer has access to in multi-discrete environments

by expanding out multi-discrete actions to multiple tokens. If action relationships

and structure are the aim, the position of the tokens could provide further relevant

information to the attention mechanism. In this vein, the first comparative meth-

ods consider the impact of position encoding by first removing position encoding

to allow greater mixing of action tokens and, second, by adding more positional

information at the action level. The next method determines if the state-action

information is actually useful and removes states when tokenising the actions.

165

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 166

Figure 6.7: APPO Training curves for Deadly Corridor training - length (Sample
Factory)

Figure 6.8: APPO Training curves for Deadly Corridor training - reward (Sample
Factory)

Figure 6.9: APPO Training curves for Deadly Corridor training - loss (Sample
Factory)

166

6.4. PROPOSED APPROACH: MULTI-STATE-ACTION TOKENISATION
(M-SAT) IN DECISION TRANSFORMERS Page 167

6.4.5.1 Position Encoding

Positional Encoding (PE) is how the Transformer is informed about the sequencing

or position of a token. In the Decision Transformer, position encoding is applied at

two levels: first, an encoding of the timestep within the training context is applied

such that each set of state, RTG and action tokens are encoded with the same

timestep position information; second, a global encoding is applied that captures

the global timestep position of the datapoint in the global dataset.

No PE: To further facilitate the development of relationships between tokens,

the removal of all position encoding is proposed. The position encoding effectively

ties the state, actions and rewards together and might therefore impact the visi-

bility of the newly proposed action tokens. Kazemnejad et al. (2023) performed a

detailed study of the effects of positional encoding on increasing context lengths

in LLMs and found that when position encoding was entirely removed, the net-

work learned a form of relative encoding to replace it. Following a similar vein

to Kazemnejad et al. (2023), position encodings were removed from the Decision

Transformer in this method to allow for more mixing opportunities between all

tokens, facilitating intra-timestep interaction.

Action PE vs state-action: In M-SAT, states are pre-pended to discrete ac-

tions before tokenisation in a method reminiscent of position encoding, where

tokens in a single trajectory step are all tagged with the same timestep encod-

ing. The question arises, would simply adding a different form of action position

encoding be sufficient; is the state information specifically necessary?

Two ablative methods were derived from this question:

• No-State-Action (MAT): this method is a variant of the M-SAT method

without the state-action tokenisation; it retains the multiple action tokens

but takes the one-hot encoded discrete action only as input to the MLP. The

167

6.5. EXPERIMENTS AND RESULTS Page 168

multi-discrete nature of the action token space is maintained. The purpose

is to determine if the state-action association is providing useful information

to the attention heads. This method will be referred to as Multiple Action

Tokens (MAT) for the duration of this chapter. Figure 6.10 illustrates the

tokenisation of the MAT model in more detail.

Figure 6.10: Tokenisation of the RTG, state and multi-discrete actions to the
Decision Transformer model dimension, with the proposed multi-token action for
MAT. Notice the actions are not encoded with the state, as in M-SAT (Figure 6.3)

• Action-PE: this method was inspired by the Perceiver (Jaegle et al., 2021)

paper that used an attention bottleneck to extract features for position and

modality because it was essential to convey the relevant structure of the data

to the Transformer. Similarly, this method acknowledges the importance of

position information in the modes by introducing additional position encod-

ing specific to the action tokens. This method is applied to the MAT method

above, with multiple action tokens but no state-action associations. Instead

a Fourier transform based calculation is used.

6.5 Experiments and Results

Experiments were designed to address several key questions:

168

6.5. EXPERIMENTS AND RESULTS Page 169

Table 6.2: ViZDoom Deadly-Corridor 11-dim multi-discrete action where N is
NoOp, L Left, R Right, SL Strafe Left, SR Strafe Right, F Forward, B Backward,
A Attack

0 1 2 3 4 5 6 7 8 9 10
N L R N F B N SL SR N A

• Does a Decision Transformer trained with multiple action tokens outperform

single action tokens in a multi-discrete action scenario? (sections 6.5.2 and

6.5.4 versus section 6.5.1)

• In the multiple action token configuration, does reinforcing state-action re-

lationships aid the attention mechanism? (section 6.5.4)

• Does the multi-token model benefit more from more generic position encod-

ing than from state information? (section 6.5.5)

• Does removing all position encoding improve the multi-token model by in-

creasing information mixing? (section 6.5.3)

6.5.1 Baseline Method

The baseline approach is a Decision Transformer modified to handle multi-discrete

actions by tokenising them to a single action token of embedding dimension 128.

The action is first one-hot encoded into an 11-dimension vector according to Table

6.2, then passed through an MLP.

The Deadly-Corridor scenario is trained with the standard Decision Transformer

model provided by Chen et al. (2021) with minimal modifications to replace the

action tokeniser as described in section 6.4.4.

169

6.5. EXPERIMENTS AND RESULTS Page 170

Table 6.3: Table of Results: Baseline (single action token) and M-SAT are com-
pared over 100 evaluation runs and multiple seeds. A version of M-SAT with-
out state-action associations (MAT) tests how effective multiple-action tokens are
without any reference to the state during action tokenisation. Two Position En-
coding (PE) variants are included: first, PE is removed (No PE) and second,
additional action PE is added (Action PE).

Model Type Ave Eval Rewards No PE
Baseline 10.22± 3.2 3.60± 1.5
M-SAT 14.88± 0.44 16.17± 0.33
MAT 12.28± 3.1 4.68± 2.79

Action PE 8.0± 2.77 -

6.5.2 Decision Transformer trained with Multi-Action To-

kens (M-SAT)

In this method, 4-dimensional multi-discrete actions are tokenised into 4 separate

tokens of 128 dimensions, one per discrete action. The actions use a shared em-

bedding network (a 2 layer MLP) as a tokeniser, converting a 1× 4 multi-discrete

action vector into a 1 × 4 × 128 set of action tokens. This has the effect of dou-

bling the size of the training batch, adding an extra three tokens per timestep,

converting a context with 30 timesteps to a context of 180 = 30× 6 (RTG, state,

action1, action2, action3, action4). The standard Decision Transformer training

process was modified to perform the additional tokenisation inside the model to

cater for the change to context length.

Furthermore, in M-SAT, the tokeniser MLP takes as input the preceding state

concatenated with the discrete action when generating the action tokens (Figure

6.3). The state is first embedded with its own tokeniser, generating a feature

vector of dimension dmodel = 128 that is concatenated with each discrete action

associated with the timestep.

170

6.5. EXPERIMENTS AND RESULTS Page 171

6.5.3 No Position Encoding

In this experiment M-SAT (section 6.5.2) was modified to remove all position en-

coding to determine if this resulted in improved information mixing opportunities

in the attention mechanism, given the increased number of action tokens. For

completeness, the experiment is also performed on the baseline or single action

token (section 6.5.1) and the MAT model (section 6.5.4).

6.5.4 No State-Action (MAT)

This method is a variant of the M-SAT method that retains the multiple action

tokens but removes the state-action associations (Figure 6.10). The tokeniser

MLP takes only the discrete action as input when generating the action tokens,

generating a feature vector of dimension dmodel = 128. In this configuration, both

PE and no PE are considered.

6.5.5 Action PE

This is a second contrastive experiment related to position encoding, adding extra

positional information to the action tokens. Position vectors were generated for

each discrete action using Fast Fourier Transforms (FFT), as per FNET (Lee-

Thorp et al., 2022) and Perceiver (Jaegle et al., 2021). This experiment was applied

to the MAT variant, to determine the importance of the state-action association

to M-SAT during tokenisation.

6.5.6 Discussion and Analysis

Results from Table 6.3 show that M-SAT out-performs the baseline model, aver-

aged over 100 evaluation runs and multiple seeds. The MAT model also performs

better than the baseline model, indicating that purely expanding the multi-discrete

action into multiple tokens improves performance. The motivation for increasing

171

6.5. EXPERIMENTS AND RESULTS Page 172

the number of action tokens in M-SAT was to defer the problem of extracting

structure and developing relationships in the multi-discrete action space to the

attention mechanism, that specialises in this sort of task. The hypothesis was

that the additional tokens would increase the amount of information available for

mixing, resulting in better communication within the attention layers. The re-

sults suggest that the increased information available via the extra action tokens

does improve the performance of the Decision Transformer. This is likely because

the attention mechanism determines action importance instead of the tokenising

MLP. In M-SAT, the individual discrete actions are first encoded by an MLP

but are received by the attention heads as individual tokens; the attention heads

learn relationships at the token level and can form state-action, action-action or

RTG-action relations with the action tokens. In the baseline model, the single

action tokenising MLP must determine how to encode the relationship between

the actions when generating the action token; the attention heads have much less

information to formulate relationships from, by comparison. The results suggest

deferring complex processing, such as relationships, to the attention heads rather

than the tokenisers. M-SAT features cross-modal interactions, making better use

of the attention mechanism with good results.

The state-action associations are only possible because of the multi-action to-

kenisation but results show that the state-action model M-SAT is an improvement

over the MAT model, suggesting that the attention heads have detected and used

additional structure found in the state-action tokens. The variance of the M-SAT

model is also less than the other models, indicating a higher level of stability across

seeds.

Table 6.3 also displays the results for the position encoding (PE) variants,

including the additional Action PE and the No PE models. The Action PE exper-

iment was meant as a comparison to the state-action association used in M-SAT.

Both Action PE and M-SAT may be viewed as supplying some form of action

172

6.5. EXPERIMENTS AND RESULTS Page 173

structure to a base multiple action token model (MAT). In the former, the in-

dividual discrete actions are supplemented with FFT positional encodings while

in the latter, state-related encodings are provided. The state-action scenario (M-

SAT) outperforms the Action PE model quite considerably, suggesting that the

nature of the supplemental information provided to the Transformer is important.

Finally, the removal of all position encoding from both the baseline and M-SAT

models are compared resulting in vastly differing outcomes. The baseline model

performs much worse when position encoding is removed, while M-SAT performs

better, actually improving on the performance of the M-SAT model and displaying

an even smaller variance across seeds. A possible hypothesis for why M-SAT per-

forms better without any position encoding is that the state information supplied

during the encoding or tokenisation of actions serves as a sufficient replacement for

position encoding. The position encoding would normally maintain the sequence

for the Transformer; in M-SAT perhaps the state information, whose features en-

code aspects of the scene, contains sequential information too. This result suggests

the findings of Kazemnejad et al. (2023) in LLMs might be extended to Decision

Transformers and warrants further study.

6.5.6.1 Raw attention and Attention Flow

This section looks more closely at the models for indicators that demonstrate that

the additional tokens are actively contributing to the development of the M-SAT

model. Specifically the attention scores and value contributions of individual to-

kens are considered for each attention head and layer. There are eight layers with

eight attention heads each and it is not immediately obvious how to analyse the

attention mechanism and combine data across the heads and across layers. A few

different methods are listed below, but the main idea in this section is to present

a summarised view of the attention contribution or participation of each token in

the evaluation run.

173

6.5. EXPERIMENTS AND RESULTS Page 174

Figure 6.11: Baseline model: Each plot is the value contributed by each token,
summarised by layer. The value is averaged across all attention heads, then aver-
aged across the last dimension. The x-axis is the timestep for an evaluation run
and the y-axis is the averaged value. The value is separated by token type with a
different colour for states, RTGs and actions.

174

6.5. EXPERIMENTS AND RESULTS Page 175

Figure 6.12: Multiple Action Tokens (MAT) model - no State Action:
Each plot is the value contributed by each token, summarised by layer. The value
is averaged across all attention heads, then averaged across the last dimension.
The x-axis is the timestep for an evaluation run and the y-axis is the averaged
value. The value is separated by token type with a different colour for states,
RTGs and actions.

175

6.5. EXPERIMENTS AND RESULTS Page 176

Figure 6.13: M-SAT model: Each plot is the value contributed by each token,
summarised by layer. The value is averaged across all attention heads, then aver-
aged across the last dimension. The x-axis is the timestep for an evaluation run
and the y-axis is the averaged value. The value is separated by token type with a
different colour for states, RTGs and actions.

176

6.5. EXPERIMENTS AND RESULTS Page 177

The first set of plots in Figures 6.11, 6.12 and 6.13 summarises the attention

values by layer. The heads are fused by taking the average across all heads; for

attention values this results in a matrix of batch size × context length × model

dimension. To produce the plots the final dimension was averaged in each case.

The result provides an averaged view of the value associated with each token

(state, RTG, actions) by layer. The plots are obtained by generating an evalu-

ation run from a trained model in the Deadly Corridor ViZDoom environment,

then extracting the relevant attention scores and values from each attention head

using hooks, a concept in PyTorch for interrogating models. The x-axis represents

each timestep in the evaluation run and each datapoint represents the attention

value associated with that particular point, for instance states are illustrated in

red, RTGs in blue and actions depend on the model type. What type of plot is

expected? Key areas of the corridor where an enemy is encountered should have

higher value and attention scores than other areas; otherwise timesteps closer to

the end should provide more information than earlier timesteps, in general. The

averaged view hides the details of the heads but provides some idea of the trends

in each layer. For the M-SAT model (Figure 6.13), layers 0,1,3,4,5,7 show later to-

kens have more value than earlier tokens. Layers 6 and 2 are more complex; these

layers may be removing information rather than actively hindering the attention

mechanism. This pattern is also visible for the baseline and MAT models. M-SAT

plots have less variance than the other two models, with MAT showing the most

variance and a clear separation of the RTG from the state and action tokens.

A summary over all layers is provided in Figure 6.14 for each model, reflecting

the averaged value contributions and also the averaged attention scores per token.

The baseline and M-SAT models show similar trends for the value contributions,

with later tokens contributing more value than earlier. M-SAT displays a very

concise plot implying all tokens have a similar contribution save for a set of state

tokens at particular timesteps. The peak states correspond with periods of enemy

177

6.5. EXPERIMENTS AND RESULTS Page 178

attack implying these states contribute more strongly to the final outcome. The

attention scores for M-SAT are more varied across the types of token, showing

contributions from all four actions that becomes more pronounced in the latter

half of the trajectory, with each action type fluctuating independently at each

timestep. The independence of the action tokens is much more pronounced in

the MAT plots (middle row), with the baseline model also showing strong action

activity.

Figure 6.14: The first row of plots is the baseline, the middle row is MAT and the
last row is M-SAT. Each plot is summary over all layers of the value on the Left
and the attention scores on the Right. The x-axis is the timestep for an evaluation
run and the y-axis is the averaged value (Left) or attention score (Right).

178

6.5. EXPERIMENTS AND RESULTS Page 179

Averaging the raw attention over heads and layers is a crude measure. The

query-key dot product measures the attention score between tokens; the score is

used to weight the value of the current token and the weighted value becomes

the input to the next layer, where the process repeats. This implies that when

summarising the influence of a token, the attention layers should be multiplied

across layers rather than averaged and the residual connections also have an im-

pact on this process. Attention flow and attention rollout (Abnar and Zuidema,

2020), adjusts the raw attention weights for tokens to take into account the effect

of each attention layer on the token and the residual connections. Abnar and

Zuidema (2020) were able to demonstrate that both attention flow and attention

rollout measures correlate with tokens of importance, derived by performing token

ablations, while raw attention weights were unable to establish a similar link. At-

tention rollout was applied as an alternate measure to the raw attention measures

plotted above. Attention rollout was chosen because it was easier to implement

than attention flow, but provided similar information.

Figure 6.15 displays the attention rollout for each model. The attention heads

are fused using averaging and a discard ratio of 0.9 was used as per Gildenblat

(2020).

The difference that stands out the most between the three attention rollout

plots is the state tokens. In the baseline, there are fewer high impact state tokens

compared with M-SAT and a much larger percentage of high impact action and

RTG tokens. Given the nature of the environment, i.e. fairly sparse rewards, it

is conceivable that the state tokens would contribute more strongly to the agent’s

behaviour, with the other modalities providing support. Given, instead, the high

percentage of attention on actions by the baseline mode, it is possible that the

baseline model has memorised the environment and not solved it, reciting actions

from memory. The MAT model is more in line with expectations, with more high

impact states displayed, however there is very little action contribution visible, im-

179

6.5. EXPERIMENTS AND RESULTS Page 180

Figure 6.15: Each plot displays the attention rollout (Abnar and Zuidema, 2020)
for each model: baseline (Top), MAT (Middle) and M-SAT (Bottom). The rollout
is calculated by fusing attention heads using the mean. The x-axis is the timestep
for an evaluation run and the y-axis is the attention rollout value.

180

6.5. EXPERIMENTS AND RESULTS Page 181

plying that merely increasing the number of action tokens is insufficient. Finally

the M-SAT model once again displays high impacting states but also more contri-

bution from the individual action tokens. Close inspection of the action activity

shows definite activity in a number of timesteps suggesting the action tokens are

making individual contributions.

6.5.6.2 Interpreting the Transformer

Transformers are complicated to analyse from an explanability point of view.

Nevertheless the growing field of Mechanistic Interpretation (Elhage et al., 2021;

Bricken et al., 2023; Sharma et al., 2023) has been making progress towards the un-

derstanding of LLMs. The same is not yet true for Decision Transformers but some

techniques that may be applied towards understanding the behaviour of Trans-

formers more generally are applied below. First, embeddings learnt for the ob-

servations or states are analysed using EigenCAM (Bany Muhammad and Yeasin,

2021), a non-gradient based method that highlights the activated portions of the

image focused on by the Transformer during inference. Next the attention heads

are interrogated and states from empirical analyses are used to identify particular

heads that seem to align with a task.

EigenCAM EigenCAM (Bany Muhammad and Yeasin, 2021) is a visual ex-

plainability approach used to analyse representations learned during training. Of-

ten these methods are applied to visual representations derived from convolutional

neural networks with image inputs. EigenCAM works by calculating the principle

components of the representation. These are then superimposed on the original

image to highlight the areas most activated or focused on during inference. Eigen-

CAM was applied to states from evaluation runs to determine if the representations

learnt aligned with the task. Figure 6.16 displays several key states involving en-

emy attacks in Deadly Corridor alongside the same images with EigenCAM images

181

6.5. EXPERIMENTS AND RESULTS Page 182

superimposed over them. The activations align with expectations in these cases,

highlighting the location of the enemy in both the M-SAT and baseline models,

with a few exceptions at the end of the corridor when the agent is approaching

the goal. This is illustrated in Figure 6.17 where there are hints once again that

the baseline model has memorised actions. Towards the end of the corridor Eigen-

CAM shows that the baseline model has lost its focus on the goal but in the final

timesteps still manages to complete the episode by strafing (walking sideways) and

thus obtaining the reward. Compare this with M-SAT in Figure 6.18 where the

model maintains focus on the goal while moving towards it.

Figure 6.16: Original images (top row) and EigenCAM images (bottom row) sam-
ples displaying the model’s focus when enemy is located in the image.

Figure 6.17: Original images (top row) and EigenCAM images (bottom row) for
the baseline model at the end of the corridor, where the agent loses track of the
goal but somehow achieves the goal

182

6.5. EXPERIMENTS AND RESULTS Page 183

Figure 6.18: Original images (top row) and EigenCAM images (bottom row) for
the M-SAT model at the end of the corridor, where the agent keeps track of the
goal until it is reached

Attention heatmaps This section uses tools that visualise the attention head

patterns in each layer to assess whether the Transformer model benefits from

the multi-token action configuration of the MAT model. While it is not possible

to directly compare the single vs multi-token Transformer models, it is possible

to illustrate that the individual action tokens are used by the attention heads.

CircuitsViz (Cooney, 2022) is a utility provided to visualise the attention between

tokens in a sequence of text when passed through a trained Large Language Model

(LLM) Transformer model in inference mode. CircuitsViz requires as input the

sequence of text parsed and the attention pattern from each layer. The attention

pattern may be retrieved using PyTorch (Paszke et al., 2019) hooks or other tools

provided for this purpose such as Transformerlens (Nanda and Bloom, 2022) or

Torchlens (Taylor and Kriegeskorte, 2023).

Evaluation runs for the Deadly Corridor ViZDoom scenario were stored and

passed through a fully trained Decision Transformer model and the attention pat-

tern was extracted using Torchlens (Taylor and Kriegeskorte, 2023). A sample

CircuitsViz output is provided in Figures 6.19 and 6.20 for attention heads from a

single-action token model. The attention heads are displayed in the upper section

and the sequence of tokens in the lower section in Figure 6.19. Hovering over a

token highlights the influence it has, as captured in the screenshot in Figure 6.20

183

6.5. EXPERIMENTS AND RESULTS Page 184

or the influencers, as in Figure 6.19. Figure 6.20 also demonstrates how the tokens

are displayed for a multi-token model where each action has format aij where i is

the action index from 1-4 and j is the trajectory timestep. For convenience only

the sections displaying the highlighted tokens are shown.

Figure 6.19: Sample CircuitsViz output showing each of 8 attention heads in the
upper section and all tokens in the sequence in the lower section. All timesteps
have 3 modes, for example timestep 0 has 3 tokens, viz. r0-RTG, s0-state and
a0-action. In the Figure the token a19 is selected resulting in several states
(s8,s13,s14,s15,s16,s17) highlighted according to the amount of attention con-
tributed to the action by the head (where each head is denoted by a different
colour). The intensity of the highlighted tokens convey the amount of influence
other tokens in the sequence have on each other.

Figure 6.20: Switching the focus from Destination to source and selecting RTG r1
shows the influence r1 has on other tokens. Note in this example the tokens are
from a multi-token action model where, for example, the action for timestep 0 is
represented by [a10, a20, a30, a40] and timestep 20 is [a120, a220, a320, a420]

Some sample results are presented next that highlight that the attention heads

acknowledge the individual actions in the multi-token action Decision Transformer

model. Figure 6.21 exhibits the attention from two heads, layer 1 head 0 and layer

184

6.5. EXPERIMENTS AND RESULTS Page 185

3 head 0. These segments show that these heads view state s21 as important by

allowing it to influence both states and actions that follow. Figure 6.22 shows state

s21 to be firing upon an enemy. The heatmaps imply that some information from

this state is transmitted to future states and also to three action tokens, notably

the a4 (attack action position) tokens for timesteps 31, 32. States 32 and 33 show

the impact of those actions, with the enemy coming into range again and the

agent firing. The empirical data suggests the firing state s21 influences the firing

action a4 directly in at least two attention heads, implying the multi-token action

representation allows for a granular level of influence that the single-token action

representation will not be able to experience or reveal. This pattern is repeated in

several heads but the figure displays a sample to demonstrate the concept.

Figure 6.21: The top snippet is from Attention layer 1, head 0 and the bottom
snippet from layer 2, head 0 - both show the influence of state s21 on future tokens,
including individual action tokens. Refer to Figure 6.22 to view a sample of the
associated states from this evaluation trajectory.

Other interesting patterns observed in the attention head heatmaps are de-

scribed below. Figure 6.23 illustrates another common pattern with a strong focus

on certain key states. States s5 (adversary detection), s21 (attack) (also in Figure

6.21, s25 (post-attack) are key states to successfully attack and advance towards

the goal state. The focus on key states is a repeated pattern amongst the heads,

implying there is some redundancy in what specialisations the heads develop.

185

6.5. EXPERIMENTS AND RESULTS Page 186

Figure 6.22: states from ViZDoom dataset, supporting attention heatmap snippets
(Figure 6.21) from left to right, top to bottom: S1, S2, S5, S7, S16, S21, S31, S32,
S33, S35, S40, S44

Some heads focus on the RTG and actions instead of the states, examples of

which are available in Figure 6.24. The heads either focus on RTG at the start of

the trajectory (L2H7, L5H7) or at the end (L1H0, L3H0, L6H4). The strong focus

on the RTG at the end of the sequence may make sense in this sparsely rewarded

environment as the goal state is approached from states s40 to s44. In L3H0 the

fallen enemy and the goal are in view (s40) and the attention head fixates on this

state until the end of the corridor with RTGs referring back to s40. L5H7 displays

early RTG influence but this wanes mid-trajectory. Nevertheless this is a pattern

observed for multiple heads implying that RTG activity is high at the start and

end of the trajectory. Finally, L6H4 shows a mixture of actions and RTGs that

focus on the state s24, which has an enemy in the scene. The next action (in s25)

is an attack and several of the following highlighted tokens are also attack-relevant

scenes, implying that attack-specific information is being conveyed to these tokens.

The attention map visualisations illustrate that the additional action tokens

are actively attended to by the attention heads, especially the attack action that

receives information from related states.

186

6.5. EXPERIMENTS AND RESULTS Page 187

Figure 6.23: Top to bottom: L3H0, L7H5, L7H7

Training and loss analysis Training the Decision Transformer for the Deadly-

Corridor scenario proved more complicated than scenarios with a single discrete ac-

tion per timestep and plentiful reward information, like Health Gathering Supreme.

The relatively sparse rewards and extra actions in Deadly Corridor made tuning

the hyperparameters and training more challenging. The learning rate schedule

proved to be the most important factor for achieving model convergence. Once

the model was trained and evaluation improved significantly, symptoms of over-

fitting were encountered with evaluation runs displaying high initial scores that

gradually worsened with each epoch. Dropout rates were increased to compensate

for this and control over-fitting. There are three levels of dropout applied to the

Transformer model, implying that over-fitting is a known feature of this type of

model, including embedding, residual and attention dropout. Dropout rates were

187

6.5. EXPERIMENTS AND RESULTS Page 188

Figure 6.24: Left, top to bottom: L1H0, L3H0, L2H7, L5H7. Right, top to bottom: L6H4,
L6H4

tuned, particularly the attention regularisation from the standard dropout rate

of 0.1 to 0.3 (i.e. 30%). This improved evaluation scores when the batch size

was increased to 128, and the drop off in performance by epoch was stabilised. It

is postulated that other mechanisms for increasing regularisation that have been

used recently in Decision Transformers with good effect (Liu et al., 2022; Wu et al.,

2023a) would be useful, including masking. The model that performed best and

continued to improve over epochs across multiple seeds was the M-SAT model.

The state-action tokenisation stabilised the model significantly compared with the

baseline and MAT models.

The loss plots display phases consistent with Transformer training curves as

per (Olsson et al., 2022), including two steep drops (Figure 6.25), followed by a

gradual decay.

Drop zone: there are two distinct drops in the loss curves as shown in Figure

6.25. It turns out that the learning rate schedule impacts the nature of the drop in

the loss curve. The smaller the learning-rate related hyperparameter, viz. warmup

(refer to Table 6.4.4.2), the steeper the learning rate schedule and the steeper the

loss curve. Runs from the previous learning rate schedule have a gentler slope (see

Figure 6.25, light green and violet plots). The steep learning rate schedule showed

188

6.6. CONCLUSIONS Page 189

a dramatic improvement in performance, suggesting that a steep initial learning

rate may be key to achieving the desired phase changes that are associated with in-

context and induction learning as per Olsson et al. (2022), features of Transformers

that are associated with generalisation. In order to succeed in Deadly Corridor, the

agent requires two essential skills: navigation of the corridor and counter-attack.

Without these skills, the agent would be terminated, so it is highly likely these

skills are learnt early and result in the phase change visible in Figure 6.25.

Figure 6.25: Transformer loss curve
showing the initial drop corresponding to
early learning rate increase

6.6 Conclusions

In this chapter, Decision Transformers were applied to the relational action prob-

lem in multi-discrete action spaces. The hypothesis was that expanding the multi-

discrete action to multiple action tokens would make individual actions more visible

to the attention mechanism of the Decision Transformer, leading to action-action

and state-action relationships emerging, providing more information mixing op-

portunities to leverage the Transformer’s relational abilities. Experiments were

conducted using the multi-discrete ViZDoom Deadly Corridor scenario. A com-

189

6.6. CONCLUSIONS Page 190

parison of results with a baseline single action token model and ablative methods

demonstrated that multiple action token models performed better overall, with

the proposed M-SAT method outperforming other approaches. A further benefit

of the multi-token models was the improved interpretability opportunities; with

all actions exposed, attention heads were analysed at the individual action level.

190

Chapter 7

Conclusion and Future Work

Reinforcement learning agents must often select multiple discrete actions per timestep

in environments with multi-discrete action spaces. Relationships often exist be-

tween these individual actions that can be utilised to improve agent performance.

However, RL algorithms typically treat multi-discrete actions as single actions,

missing opportunities to leverage relational insights.

The research in this thesis focuses on approaches in RL for exploiting action

relationships in multi-discrete action spaces in online, offline and multi-task con-

texts. Methods were proposed and evaluated for each context to satisfy the original

objectives outlined in Chapter 1, including

• learning and transferring task-agnostic, context-free action structure to en-

hance exploration in a multi-task, multi-discrete scenario

• the development of a method to support relational learning in an online

multi-discrete RL algorithm

• an exploration of effective methods for managing relational structure in

multi-discrete action spaces in an offline attention-based RL algorithm

A summary of each chapter is provided below, outlining the methods used, anal-

yses performed and future research directions.

191

Page 192

In Chapter 4 a multi-task approach (CASC) was designed to address the chal-

lenge of using relational structure in action spaces to improve exploration. The

approach first extracted task-agnostic action structure in the form of clusters from

data generated by a diverse range of tasks. Spectral clustering was used to ex-

tract relational structure in the action space. This relational structure was then

transferred to a new agent, improving training performance for new, unseen tasks.

The proposed approach was compared with other methods in the same multi-task,

multi-action context, including action elimination and random clustering ablations.

The clustering approach was competitive, showing much better performance than

the baseline and random clustering ablations.

Chapter 5 addressed the challenge of adapting model-free online algorithms to

capture action dependencies during training. An online auxiliary module for PPO

was developed to reinforce beneficial action relationships and shape action rep-

resentations by optimising a relational loss alongside PPO, demonstrating faster

convergence over vanilla PPO. A self-supervised signal derived from training data

determined which relationships to reinforce. Training dynamics techniques were

used to analyse the emergence of structured representations and demonstrated

that the relational module contributed to the earlier convergence.

Finally in Chapter 6 an offline RL approach utilising a Decision Transformer

was applied to the relational action problem. Multi-discrete actions were expanded

to multiple action tokens to facilitate the formation of relationships and support

enhanced token mixing opportunities. The proposed model, M-SAT, outperformed

the single action token baseline model. The state-action tokenisation proposed suc-

cessfully provided more nuanced information to the Decision Transformer than no

information or generic position encoding information. The multi-token approach

192

7.1. FUTURE WORK Page 193

improved the interpretability of the model. The use of attention rollout (Abnar

and Zuidema, 2020) and attention head visualisation indicated that the attention

heads made use of the individual action tokens when making decisions. This chap-

ter demonstrated that applying different methods of tokenisation to multi-discrete

action spaces processed by a Decision Transformer improved overall performance.

7.1 Future Work

Some future works, following the above chapters, are discussed below:

Multi-task transfer of action structure in multi-discrete ac-

tion spaces

• A disadvantage of the proposed approach in Chapter 4, CASC, was the need

for a pre-training phase that meant relationships were not learnt online. A

potential avenue of research would be to make the existing algorithm more

online, either by adopting an online clustering algorithm or by clustering

intermittently during training. In the former case, modern data streaming

applications have resulted in the adaptation of clustering algorithms for on-

line, streaming scenarios (Yoo et al., 2016). The data generated by the RL

agent could be envisioned as a stream, allowing the implementation of an

online spectral clustering algorithm. The latter scenario, running spectral

clustering every N runs, is potentially more easily implemented. Applying

dynamically changing structure, however, to an RL agent during training

would probably be destabilising. Some constraints might be necessary to

influence either how much the structure was allowed to change, based on

a clustering metric, or how much to use this structure during early stage

training.

• Another area that would benefit from future work is the data collection

193

7.1. FUTURE WORK Page 194

phase. CASC is dependent on having good state-action space coverage. Tra-

ditional count-based bonus methods are used to improve coverage, providing

a signal that diminishes over time as more of the space is explored. Merging

CASC with a count-based method could help improve coverage efficiency

and improve performance of the proposed approach generally.

Relational Representations in Multi-Discrete Action Spaces

• The general design of the relational module adopted in Chapter 5 was a

relational reinforcing objective in the multi-discrete action space. It was

supported by a derived signal indicating which relationships to reinforce.

A positive signal was based on a positive transition and vice versa and the

filter selected only successful transitions as the auxiliary signal. The negative

signal was ignored and a more contrastive learning approach is proposed

for future work. Contrastive learning (Chen et al., 2020) models both the

similarity and dissimilarity of data points through an objective function.

At a high level this would work by pushing similar actions closer together

while pushing dissimilar actions apart. The inspiration for this approach was

derived from skipgrams with noise contrastive estimation (NCE) Mikolov

et al. (2013), that works by pushing a central word closer to other words in a

window of words, while simultaneously pushing the central word away from

words not in the window (noise). This could improve the performance of the

current relational module proposed in Chapter 5.

• The interpretability of this model could be expanded, especially relating to

the dynamics plots in Figure 5.12 that demonstrate the earlier convergence

of the relational model compared with the baseline. Following the work by

Saxe et al. (2013) it would be interesting to understand which action rela-

tionships formed first and what part of the architecture facilitated this, for

example, would navigation-related actions be learnt first, followed by door-

194

7.1. FUTURE WORK Page 195

related actions? How does the availability of bottleneck states impact the

relationships that are learnt first? This type of analysis would be interesting

and provide better insight into how relational models learn online.

Action Structure in Decision Transformers

• The M-SAT approach as proposed in Chapter 6 increases the size of the

context length by the number of discrete actions in a multi-discrete action,

using a naive decomposition of actions. This will have an impact on the

amount of compute required to train the model especially for multi-discrete

action spaces with a large number of individual actions. Future work should

consider reducing the number of action tokens by grouping actions and gen-

erating a token per group. Groups could be determined by clustering ac-

tions manually or similar unsupervised methods using the available training

data. The M-SAT method demonstrates that structural information may be

injected into Decision Transformer models successfully during tokenisation.

Given this, it is envisaged that the grouping of actions can maintain the ben-

efits from the increased number of tokens without degrading performance.

• Generalisation of transformer-style models requires environments where a

diversity of tasks can generate data for training. In Chapter 6, the focus

was on providing additional structural information to the transformer to

foster the formation of state-action and action-action relationships. The

generalisation of this approach is left for future work. It is envisaged that

a procedurally generated environment would be more suitable for this type

of work, such as ProcGen (Cobbe et al., 2020) but it is likely that more

computational resources would be required.

• The interpretation of the shape of the training loss plots is proposed as future

work, with a focus on plotting the loss by token as performed by Olsson et al.

195

7.1. FUTURE WORK Page 196

(2022) to determine which tokens result in the initial steep drop in the loss.

It is hypothesised that tokens in the vicinity of enemy attacks lead to the

initial steep drops in training loss, possibly as a result of penalties when the

agent is unsuccessful and is terminated. This analysis, and others in the area

of interpretation, is left for future work.

The approaches proposed in this dissertation could be applied to many multi-

discrete, real-world scenarios such as high level planning and robotic tasks. In

general there are potential applications in transportation, language and recom-

mendation systems too where enhancing learning in these structured action spaces

can lead to more efficient and intuitive solutions.

In summary, this thesis has explored techniques to enable reinforcement learn-

ing agents to extract and utilise relational structure in multi-discrete action spaces

across online, offline, and multi-task settings. The overarching goal was to improve

sample efficiency, task performance, and generalisability by increasing the visibil-

ity of individual actions and providing algorithms with the capacity to exploit

any relationships discovered. Overall, the thesis provided promising evidence that

tailored mechanisms to expose and exploit relational attributes can enhance sam-

ple efficiency and generalisation. Multi-tokenisation and auxiliary modules are

two techniques that warrant further exploration for leveraging structure in multi-

discrete action spaces.

While challenges remain in validating and interpreting learned relationships,

this research direction appears positive. Future work could expand evaluation to

more complex domains and pursue methods of interpretation to better understand

what concepts algorithms encode regarding action interactions. By improving al-

gorithmic support for leveraging structure inherent in multi-discrete actions, RL

systems may emerge that more efficiently solve tasks requiring coordinated be-

haviour.

196

Bibliography

S. Abnar and W. Zuidema. Quantifying attention flow in transformers. In

D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics,

pages 4190–4197, Online, July 2020. Association for Computational Linguis-

tics. doi: 10.18653/v1/2020.acl-main.385. URL https://aclanthology.org/

2020.acl-main.385.

J. Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization.

In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning

Research, pages 22–31. PMLR, 06–11 Aug 2017. URL https://proceedings.

mlr.press/v70/achiam17a.html.

A. F. Agarap. Deep learning using rectified linear units (relu). CoRR,

abs/1803.08375, 2018. URL http://arxiv.org/abs/1803.08375.

P. Agarwal, A. A. Rahman, P.-L. St-Charles, S. J. D. Prince, and S. E. Kahou.

Transformers in reinforcement learning: A survey. July 2023. URL https:

//arxiv.org/abs/2307.05979.

A. Alekh, J. Nan, M. K. Sham, and W. Sun. Reinforcement Learning: Theory

and Algorithms. Jan. 2022.

197

https://aclanthology.org/2020.acl-main.385
https://aclanthology.org/2020.acl-main.385
https://proceedings.mlr.press/v70/achiam17a.html
https://proceedings.mlr.press/v70/achiam17a.html
http://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2307.05979
https://arxiv.org/abs/2307.05979

BIBLIOGRAPHY Page 198

S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. A survey of

exploration methods in reinforcement learning. arXiv preprint:2109.00157, 2021.

J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning

with policy sketches. In D. Precup and Y. W. Teh, editors, Proceedings of the

34th International Conference on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 166–175. PMLR, 06–11 Aug 2017. URL

https://proceedings.mlr.press/v70/andreas17a.html.

M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier,

L. Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem.

What matters for on-policy deep actor-critic methods? a large-scale study. In

International Conference on Learning Representations, 2021. URL https://

openreview.net/forum?id=nIAxjsniDzg.

P. Auer. Using upper confidence bounds for online learning. In Proceedings 41st

Annual Symposium on Foundations of Computer Science, pages 270–279, 2000.

doi: 10.1109/SFCS.2000.892116.

P.-L. Bacon. Incremental skills discovery based on the bottleneck concept.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate, 2014. URL http://arxiv.org/abs/1409.0473.

cite arxiv:1409.0473Comment: Accepted at ICLR 2015 as oral presentation.

M. Bain and C. Sammut. A framework for behavioural cloning. In Machine

Intelligence 15, 1995. URL https://api.semanticscholar.org/CorpusID:

10738655.

C. Bamford and A. Ovalle. Generalising discrete action spaces with conditional

action trees. 2021 IEEE Conference on Games (CoG), pages 1–8, 2021. URL

https://api.semanticscholar.org/CorpusID:233240936.

198

https://proceedings.mlr.press/v70/andreas17a.html
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
http://arxiv.org/abs/1409.0473
https://api.semanticscholar.org/CorpusID:10738655
https://api.semanticscholar.org/CorpusID:10738655
https://api.semanticscholar.org/CorpusID:233240936

BIBLIOGRAPHY Page 199

M. Bany Muhammad and M. Yeasin. Eigen-cam: Visual explanations for deep

convolutional neural networks. SN Comput. Sci., 2(1), jan 2021. doi: 10.1007/

s42979-021-00449-3. URL https://doi.org/10.1007/s42979-021-00449-3.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van

Hasselt, and D. Silver. Successor features for transfer in reinforce-

ment learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.,

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/350db081a661525235354dd3e19b8c05-Paper.pdf.

A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. Toyama,

J. Hunt, S. Mourad, D. Silver, and D. Precup. The option keyboard: Combin-

ing skills in reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems 32, pages 13031–13041. Curran Associates, Inc.,

2019.

D. Barrett, F. Hill, A. Santoro, A. Morcos, and T. Lillicrap. Measuring abstract

reasoning in neural networks. In J. Dy and A. Krause, editors, Proceedings of the

35th International Conference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 511–520. PMLR, 10–15 Jul 2018. URL

https://proceedings.mlr.press/v80/barrett18a.html.

P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, and k. kavukcuoglu. In-

teraction networks for learning about objects, relations and physics. In D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc.,

2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/

file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf.

199

https://doi.org/10.1007/s42979-021-00449-3
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/350db081a661525235354dd3e19b8c05-Paper.pdf
https://proceedings.mlr.press/v80/barrett18a.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf

BIBLIOGRAPHY Page 200

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zam-

baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Çaglar

Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R.

Allen, C. Nash, V. Langston, C. Dyer, N. M. O. Heess, D. Wierstra, P. Kohli,

M. M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases,

deep learning, and graph networks. ArXiv, abs/1806.01261, 2018.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.

Unifying Count-Based exploration and intrinsic motivation. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 1471–1479. Curran Asso-

ciates, Inc., 2016.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning

environment: An evaluation platform for general agents. In Proceedings of the

24th International Conference on Artificial Intelligence, IJCAI’15, pages 4148–

4152. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/

citation.cfm?id=2832747.2832830.

R. Bellman. The theory of dynamic programming. Bull. Amer. Math. Soc., 60

(6):503–515, 11 1954. URL https://projecteuclid.org:443/euclid.bams/

1183519147.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, 1 edition, 2007. ISBN 0387310738.

D. Brandfonbrener, A. Bietti, J. Buckman, R. Laroche, and J. Bruna. When does

return-conditioned supervised learning work for offline reinforcement learning?

In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural

Information Processing Systems, 2022. URL https://openreview.net/forum?

id=XByg4kotW5.

200

http://dl.acm.org/citation.cfm?id=2832747.2832830
http://dl.acm.org/citation.cfm?id=2832747.2832830
https://projecteuclid.org:443/euclid.bams/1183519147
https://projecteuclid.org:443/euclid.bams/1183519147
https://openreview.net/forum?id=XByg4kotW5
https://openreview.net/forum?id=XByg4kotW5

BIBLIOGRAPHY Page 201

T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner,

C. Anil, C. Denison, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer,

T. Maxwell, N. Joseph, Z. Hatfield-Dodds, A. Tamkin, K. Nguyen, B. McLean,

J. E. Burke, T. Hume, S. Carter, T. Henighan, and C. Olah. Towards monose-

manticity: Decomposing language models with dictionary learning. Transformer

Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-

features/index.html.

N. Brown and T. Sandholm. Superhuman ai for multiplayer poker. Science, 365:885

– 890, 2019. URL https://api.semanticscholar.org/CorpusID:195892791.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-

Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.

Language models are few-shot learners. In H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information

Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.,

2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/

file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and

A. Nowé. Reinforcement learning from demonstration through shaping. In

International Joint Conference on Artificial Intelligence, 2015. URL https:

//api.semanticscholar.org/CorpusID:1557568.

M. Carroll, O. Paradise, J. Lin, R. Georgescu, M. Sun, D. Bignell, S. Milani,

K. Hofmann, M. Hausknecht, A. Dragan, and S. Devlin. Uni[MASK]: Unified

inference in sequential decision problems. In A. H. Oh, A. Agarwal, D. Belgrave,

201

https://api.semanticscholar.org/CorpusID:195892791
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:1557568
https://api.semanticscholar.org/CorpusID:1557568

BIBLIOGRAPHY Page 202

and K. Cho, editors, Advances in Neural Information Processing Systems, 2022.

URL https://openreview.net/forum?id=GisHNaleWiA.

Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. Thomas. Learn-

ing action representations for reinforcement learning. In K. Chaudhuri and

R. Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 941–950, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL

http://proceedings.mlr.press/v97/chandak19a.html.

Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. D. Ratliff,

and D. Fox. Closing the sim-to-real loop: Adapting simulation randomiza-

tion with real world experience. 2019 International Conference on Robotics

and Automation (ICRA), pages 8973–8979, 2018. URL https://api.

semanticscholar.org/CorpusID:53046511.

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,

A. Srinivas, and I. Mordatch. Decision transformer: Reinforcement learn-

ing via sequence modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin,

P. Liang, and J. W. Vaughan, editors, Advances in Neural Information

Processing Systems, volume 34, pages 15084–15097. Curran Associates, Inc.,

2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/

file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for

contrastive learning of visual representations. In H. D. III and A. Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR,

13–18 Jul 2020. URL https://proceedings.mlr.press/v119/chen20j.html.

Y. Chen, Y. Chen, Y. Yang, Y. Li, J. Yin, and C. Fan. Learning action-transferable

202

https://openreview.net/forum?id=GisHNaleWiA
http://proceedings.mlr.press/v97/chandak19a.html
https://api.semanticscholar.org/CorpusID:53046511
https://api.semanticscholar.org/CorpusID:53046511
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.mlr.press/v119/chen20j.html

BIBLIOGRAPHY Page 203

policy with action embedding. CoRR, abs/1909.02291, 2019. URL http://

arxiv.org/abs/1909.02291.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-

derson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain,

X. Liu, and H. Shah. Wide & deep learning for recommender systems. In

Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,

DLRS 2016, page 7–10, New York, NY, USA, 2016. Association for Comput-

ing Machinery. ISBN 9781450347952. doi: 10.1145/2988450.2988454. URL

https://doi.org/10.1145/2988450.2988454.

M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou,

S. Pal, P. S. Castro, and J. Terry. Minigrid & miniworld: Modular & cus-

tomizable reinforcement learning environments for goal-oriented tasks. CoRR,

abs/2306.13831, 2023.

M. Chi, P. J. Feltovich, and R. Glaser. Categorization and representation of physics

problems by experts and novices. Cogn. Sci., 1981.

R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Intrinsic motiva-

tion for encouraging synergistic behavior. In International Conference on

Learning Representations, 2020. URL https://openreview.net/forum?id=

SJleNCNtDH.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural genera-

tion to benchmark reinforcement learning. In H. D. III and A. Singh, editors,

Proceedings of the 37th International Conference on Machine Learning, volume

119 of Proceedings of Machine Learning Research, pages 2048–2056. PMLR, 13–

18 Jul 2020. URL https://proceedings.mlr.press/v119/cobbe20a.html.

A. Cooney. Circuitsviz, 2022. URL https://github.com/alan-cooney/

CircuitsVis.

203

http://arxiv.org/abs/1909.02291
http://arxiv.org/abs/1909.02291
https://doi.org/10.1145/2988450.2988454
https://openreview.net/forum?id=SJleNCNtDH
https://openreview.net/forum?id=SJleNCNtDH
https://proceedings.mlr.press/v119/cobbe20a.html
https://github.com/alan-cooney/CircuitsVis
https://github.com/alan-cooney/CircuitsVis

BIBLIOGRAPHY Page 204

T. L. Dean, R. Givan, and K.-E. Kim. Solving stochastic planning problems

with large state and action spaces. In International Conference on Artificial

Intelligence Planning Systems, 1998. URL https://api.semanticscholar.

org/CorpusID:2029722.

O. Delalleau, M. Peter, E. Alonso, and A. Logut. Discrete and continuous action

representation for practical RL in video games. CoRR, abs/1912.11077, 2019.

URL http://arxiv.org/abs/1912.11077.

H. Deng, Q. Ren, H. Zhang, and Q. Zhang. DISCOVERING AND EXPLAIN-

ING THE REPRESENTATION BOTTLENECK OF DNNS. In International

Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=iRCUlgmdfHJ.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In J. Burstein, C. Do-

ran, and T. Solorio, editors, Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.

An image is worth 16x16 words: Transformers for image recognition at scale.

In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=YicbFdNTTy.

Y. Du and K. Narasimhan. Task-agnostic dynamics priors for deep reinforcement

learning. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings

204

https://api.semanticscholar.org/CorpusID:2029722
https://api.semanticscholar.org/CorpusID:2029722
http://arxiv.org/abs/1912.11077
https://openreview.net/forum?id=iRCUlgmdfHJ
https://openreview.net/forum?id=iRCUlgmdfHJ
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

BIBLIOGRAPHY Page 205

of Machine Learning Research, pages 1696–1705. PMLR, 09–15 Jun 2019. URL

https://proceedings.mlr.press/v97/du19e.html.

G. Dulac-Arnold, R. Evans, P. Sunehag, and B. Coppin. Reinforcement learning

in large discrete action spaces. CoRR, abs/1512.07679, 2015. URL http://

arxiv.org/abs/1512.07679.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a

new approach for hard-exploration problems. Nature, 590:580––586, 2021. URL

https://doi.org/10.1038/s41586-020-03157-9.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, and others. A mathe-

matical framework for transformer circuits. Transformer Circuits Thread, 2021.

S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. Rvs: What is essen-

tial for offline RL via supervised learning? In International Conference on

Learning Representations, 2022. URL https://openreview.net/forum?id=

S874XAIpkR-.

E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping con-

ditions for reinforcement learning. In Proceedings of the 20th International

Conference on Machine Learning (ICML-03), pages 162–169, 2003.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need:

Learning skills without a reward function. In ICLR, 2019, 2019. URL

https://openreview.net/pdf?id=SJx63jRqFm.

B. Eysenbach, S. Chaudhari, S. Asawa, S. Levine, and R. Salakhutdinov. Off-

dynamics reinforcement learning: Training for transfer with domain classifiers.

In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=eqBwg3AcIAK.

205

https://proceedings.mlr.press/v97/du19e.html
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
https://doi.org/10.1038/s41586-020-03157-9
https://openreview.net/forum?id=S874XAIpkR-
https://openreview.net/forum?id=S874XAIpkR-
https://openreview.net/pdf?id=SJx63jRqFm
https://openreview.net/forum?id=eqBwg3AcIAK
https://openreview.net/forum?id=eqBwg3AcIAK

BIBLIOGRAPHY Page 206

M. F. A. R. D. T. (FAIR), A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty,

D. Fried, A. Goff, J. Gray, H. Hu, A. P. Jacob, M. Komeili, K. Konath, M. Kwon,

A. Lerer, M. Lewis, A. H. Miller, S. Mitts, A. Renduchintala, S. Roller, D. Rowe,

W. Shi, J. Spisak, A. Wei, D. Wu, H. Zhang, and M. Zijlstra. Human-level play

in the game of <i>diplomacy</i> by combining language models with strategic

reasoning. Science, 378(6624):1067–1074, 2022. doi: 10.1126/science.ade9097.

URL https://www.science.org/doi/abs/10.1126/science.ade9097.

L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A.

Huang, Y. Zhu, and A. Anandkumar. Minedojo: Building open-ended embodied

agents with internet-scale knowledge. In Thirty-sixth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track, 2022. URL

https://openreview.net/forum?id=rc8o_j8I8PX.

M. Fatemi, T. W. Killian, J. Subramanian, and M. Ghassemi. Medical dead-ends

and learning to identify high-risk states and treatments. CoRR, abs/2110.04186,

2021. URL https://arxiv.org/abs/2110.04186.

L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006.

doi: 10.1109/TPAMI.2006.79.

C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel,

and D. Wierstra. Pathnet: Evolution channels gradient descent in super neural

networks. CoRR, abs/1701.08734, 2017. URL http://arxiv.org/abs/1701.

08734.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adapta-

tion of deep networks. In ICML, 2017.

J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson. Learning to

communicate with deep multi-agent reinforcement learning. In D. Lee,

206

https://www.science.org/doi/abs/10.1126/science.ade9097
https://openreview.net/forum?id=rc8o_j8I8PX
https://arxiv.org/abs/2110.04186
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734

BIBLIOGRAPHY Page 207

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc.,

2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/

file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An

introduction to deep reinforcement learning, 2018. URL http://arxiv.org/

abs/1811.12560. cite arxiv:1811.12560.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for

deep data-driven reinforcement learning. CoRR, abs/2004.07219, 2020. URL

https://arxiv.org/abs/2004.07219.

Y. Ganin, T. Kulkarni, I. Babuschkin, S. M. A. Eslami, and O. Vinyals. Syn-

thesizing programs for images using reinforced adversarial learning. In ICML,

2018.

M. Garnelo, K. Arulkumaran, and M. Shanahan. Towards deep symbolic rein-

forcement learning. CoRR, abs/1609.05518, 2016. URL http://arxiv.org/

abs/1609.05518.

J. Gildenblat. Exploring explainability for vision transform-

ers, 2020. URL https://jacobgil.github.io/deeplearning/

vision-transformer-explainability.

G. H. Golub and C. Reinsch. Singular value decomposition and least squares

solutions. Numerische Mathematik, 14(5):403–420, 1970. ISSN 0945-3245. doi:

10.1007/BF02163027. URL https://doi.org/10.1007/BF02163027.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in

207

https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
https://arxiv.org/abs/2004.07219
http://arxiv.org/abs/1609.05518
http://arxiv.org/abs/1609.05518
https://jacobgil.github.io/deeplearning/vision-transformer-explainability
https://jacobgil.github.io/deeplearning/vision-transformer-explainability
https://doi.org/10.1007/BF02163027

BIBLIOGRAPHY Page 208

Neural Information Processing Systems, volume 27. Curran Associates, Inc.,

2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/

file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive computation

and machine learning. MIT Press, 2016. ISBN 9780262035613. URL https:

//books.google.co.in/books?id=Np9SDQAAQBAJ.

A. Goyal, R. Islam, D. Strouse, Z. Ahmed, H. Larochelle, M. Botvinick, S. Levine,

and Y. Bengio. Transfer and exploration via the information bottleneck. In

International Conference on Learning Representations, 2019. URL https://

openreview.net/forum?id=rJg8yhAqKm.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time

atari game play using offline monte-carlo tree search planning. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances

in Neural Information Processing Systems, volume 27. Curran Associates, Inc.,

2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/

file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf.

W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mo-

hanty, D. P. Liebana, R. Salakhutdinov, N. Topin, et al. The MineRL compe-

tition on sample efficient reinforcement learning using human priors. NeurIPS

Competition Track, 2019.

K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu,

Y. Xu, Z. Yang, Y. Zhang, and D. Tao. A survey on vision transformer. IEEE

Transactions on Pattern Analysis amp; Machine Intelligence, 45(01):87–110, jan

2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3152247.

J. Harb, P.-L. Bacon, M. Klissarov, and D. Precup. When waiting is not

an option: Learning options with a deliberation cost. In Proceedings

208

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=rJg8yhAqKm
https://proceedings.neurips.cc/paper_files/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf

BIBLIOGRAPHY Page 209

of the Thirty-Second AAAI Conference on Artificial Intelligence and

Thirtieth Innovative Applications of Artificial Intelligence Conference and

Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,

AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

J. Harmer, L. Gisslén, J. del Val, H. Holst, J. Bergdahl, T. Olsson, K. Sjöö, and

M. Nordin. Imitation learning with concurrent actions in 3d games. In 2018

IEEE Conference on Computational Intelligence and Games (CIG), page 1–8.

IEEE Press, 2018. doi: 10.1109/CIG.2018.8490398. URL https://doi.org/

10.1109/CIG.2018.8490398.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-

tion. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

P. Hernandez-Leal, B. Kartal, and M. E. Taylor. Tu-

torial 4: auxiliary tasks in deep reinforcement learn-

ing. URL https://www.borealisai.com/research-blogs/

tutorial-4-auxiliary-tasks-deep-reinforcement-learning/.

P. Hernandez-Leal, B. Kartal, and M. E. Taylor. Agent modeling as auxiliary

task for deep reinforcement learning. In Proceedings of the Fifteenth AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment, AI-

IDE’19. AAAI Press, 2019. ISBN 978-1-57735-819-0.

I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel, M. Botvinick,

C. Blundell, and A. Lerchner. DARLA: Improving zero-shot transfer in rein-

forcement learning. In D. Precup and Y. W. Teh, editors, Proceedings of the

34th International Conference on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 1480–1490. PMLR, 06–11 Aug 2017. URL

https://proceedings.mlr.press/v70/higgins17a.html.

209

https://doi.org/10.1109/CIG.2018.8490398
https://doi.org/10.1109/CIG.2018.8490398
https://www.borealisai.com/research-blogs/tutorial-4-auxiliary-tasks-deep-reinforcement-learning/
https://www.borealisai.com/research-blogs/tutorial-4-auxiliary-tasks-deep-reinforcement-learning/
https://proceedings.mlr.press/v70/higgins17a.html

BIBLIOGRAPHY Page 210

I. Higgins, D. Amos, D. Pfau, S. Racanière, L. Matthey, D. J. Rezende, and

A. Lerchner. Towards a definition of disentangled representations. CoRR,

abs/1812.02230, 2018. URL http://arxiv.org/abs/1812.02230.

F. Hill, A. Santoro, D. Barrett, A. Morcos, and T. Lillicrap. Learning to

make analogies by contrasting abstract relational structure. In International

Conference on Learning Representations, 2019. URL https://openreview.

net/forum?id=SylLYsCcFm.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural

network. CoRR, abs/1503.02531, 2015. URL http://dblp.uni-trier.de/db/

journals/corr/corr1503.html#HintonVD15.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,

9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

R. Houthooft, X. Chen, X. Chen, Y. Duan, J. Schulman, F. De Turck, and

P. Abbeel. Vime: Variational information maximizing exploration. In D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc.,

2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/

file/abd815286ba1007abfbb8415b83ae2cf-Paper.pdf.

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko. Learning to rea-

son: End-to-end module networks for visual question answering. In 2017

IEEE International Conference on Computer Vision (ICCV), pages 804–813,

Los Alamitos, CA, USA, oct 2017. IEEE Computer Society. doi: 10.1109/ICCV.

2017.93. URL https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.

93.

S. Huang and S. Ontan’on. A closer look at invalid action masking in pol-

210

http://arxiv.org/abs/1812.02230
https://openreview.net/forum?id=SylLYsCcFm
https://openreview.net/forum?id=SylLYsCcFm
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
https://proceedings.neurips.cc/paper_files/paper/2016/file/abd815286ba1007abfbb8415b83ae2cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/abd815286ba1007abfbb8415b83ae2cf-Paper.pdf
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.93
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.93

BIBLIOGRAPHY Page 211

icy gradient algorithms. ArXiv, abs/2006.14171, 2020. URL https://api.

semanticscholar.org/CorpusID:220055586.

S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G.

AraÃºjo. Cleanrl: High-quality single-file implementations of deep reinforcement

learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

URL http://jmlr.org/papers/v23/21-1342.html.

A. Irpan. Deep reinforcement learning doesn’t work yet. https://www.

alexirpan.com/2018/02/14/rl-hard.html, 2018.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.

In International Conference on Learning Representations, 2017. URL https:

//openreview.net/forum?id=SJ6yPD5xg.

A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira.

Perceiver: General perception with iterative attention. In M. Meila and

T. Zhang, editors, Proceedings of the 38th International Conference on Machine

Learning, volume 139 of Proceedings of Machine Learning Research, pages 4651–

4664. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/

jaegle21a.html.

A. Jain, N. Kosaka, K. Kim, and J. J. Lim. Know your action set: Learning action

relations for reinforcement learning. ICLR, 2022.

M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big

sequence modeling problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin,

P. Liang, and J. W. Vaughan, editors, Advances in Neural Information

Processing Systems, volume 34, pages 1273–1286. Curran Associates, Inc.,

2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/

file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

211

https://api.semanticscholar.org/CorpusID:220055586
https://api.semanticscholar.org/CorpusID:220055586
http://jmlr.org/papers/v23/21-1342.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
https://proceedings.mlr.press/v139/jaegle21a.html
https://proceedings.mlr.press/v139/jaegle21a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf

BIBLIOGRAPHY Page 212

Z. Jia, F. Liu, V. Thumuluri, L. Chen, Z. Huang, and H. Su. Chain-of-thought

predictive control. In Workshop on Reincarnating Reinforcement Learning at

ICLR 2023, 2023. URL https://openreview.net/forum?id=TIV7eEY8qY.

Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anand-

kumar, Y. Zhu, and L. Fan. Vima: Robot manipulation with multimodal

prompts. In Proceedings of the 40th International Conference on Machine

Learning, ICML’23. JMLR.org, 2023.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and act-

ing in partially observable stochastic domains. Artificial Intelligence, 101(1):

99–134, 1998. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)

00023-X. URL https://www.sciencedirect.com/science/article/pii/

S000437029800023X.

A. Kanervisto, C. V. Scheller, and V. Hautamäki. Action space shaping in deep

reinforcement learning. 2020 IEEE Conference on Games (CoG), pages 479–486,

2020. URL https://api.semanticscholar.org/CorpusID:214775114.

A. Kazemnejad, I. Padhi, K. N. Ramamurthy, P. Das, and S. Reddy. The im-

pact of positional encoding on length generalization in transformers. ArXiv,

abs/2305.19466, 2023. URL https://api.semanticscholar.org/CorpusID:

258987259.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom: A

doom-based ai research platform for visual reinforcement learning. 2016 IEEE

Conference on Computational Intelligence and Games (CIG), pages 1–8, 2016.

URL https://api.semanticscholar.org/CorpusID:430714.

G. Kerg, S. Mittal, D. Rolnick, Y. Bengio, B. A. Richards, and G. Lajoie. Inductive

biases for relational tasks. In ICLR2022 Workshop on the Elements of Reasoning:

212

https://openreview.net/forum?id=TIV7eEY8qY
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://api.semanticscholar.org/CorpusID:214775114
https://api.semanticscholar.org/CorpusID:258987259
https://api.semanticscholar.org/CorpusID:258987259
https://api.semanticscholar.org/CorpusID:430714

BIBLIOGRAPHY Page 213

Objects, Structure and Causality, 2022. URL https://openreview.net/

forum?id=BSgxIBuI5lq.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd

International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of zero-shot

generalisation in deep reinforcement learning. jair, 76:201–264, Jan. 2023.

V. Konda and J. Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and

K. Müller, editors, Advances in Neural Information Processing Systems, vol-

ume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_

files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

E. Kreyszig. Advanced Engineering Mathematics. John Wiley, Hoboken, NJ,

ninth edition, 2006. ISBN 0471488852 0471728977 9780471728979 0471726443

9780471726449 0471726451 9780471726456 047172646X 9780471726463

9780471488859.

V. Kuleshov and D. Precup. Algorithms for multi-armed bandit problems. CoRR,

abs/1402.6028, 2014. URL http://arxiv.org/abs/1402.6028.

T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman. Deep successor

reinforcement learning. ArXiv, abs/1606.02396, 2016. URL https://api.

semanticscholar.org/CorpusID:11965834.

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy

q-learning via bootstrapping error reduction. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 32. Curran Associates, Inc.,

2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/

file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

213

https://openreview.net/forum?id=BSgxIBuI5lq
https://openreview.net/forum?id=BSgxIBuI5lq
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
http://arxiv.org/abs/1402.6028
https://api.semanticscholar.org/CorpusID:11965834
https://api.semanticscholar.org/CorpusID:11965834
https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf

BIBLIOGRAPHY Page 214

P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement

learning: A survey. Inf. Fusion, 85(C):1–22, sep 2022a. ISSN 1566-2535. doi: 10.

1016/j.inffus.2022.03.003. URL https://doi.org/10.1016/j.inffus.2022.

03.003.

P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforce-

ment learning: A survey. Information Fusion, 85:1–22, 2022b. ISSN 1566-

2535. doi: https://doi.org/10.1016/j.inffus.2022.03.003. URL https://www.

sciencedirect.com/science/article/pii/S1566253522000288.

A. K. Lampinen, N. Roy, I. Dasgupta, S. C. Chan, A. Tam, J. Mcclelland, C. Yan,

A. Santoro, N. C. Rabinowitz, J. Wang, and F. Hill. Tell me why! Explanations

support learning relational and causal structure. In K. Chaudhuri, S. Jegelka,

L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th

International Conference on Machine Learning, volume 162 of Proceedings of

Machine Learning Research, pages 11868–11890. PMLR, 2022.

S. Lange, T. Gabel, and M. Riedmiller. Batch Reinforcement Learning, pages

45–73. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-

27645-3. doi: 10.1007/978-3-642-27645-3_2. URL https://doi.org/10.1007/

978-3-642-27645-3_2.

M. Laskin, L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, D. Strouse,

S. S. Hansen, A. Filos, E. Brooks, maxime gazeau, H. Sahni, S. Singh, and

V. Mnih. In-context reinforcement learning with algorithm distillation. In The

Eleventh International Conference on Learning Representations, 2023. URL

https://openreview.net/forum?id=hy0a5MMPUv.

K.-H. Lee, O. Nachum, S. Yang, L. Lee, C. D. Freeman, S. Guadarrama, I. Fis-

cher, W. Xu, E. Jang, H. Michalewski, and I. Mordatch. Multi-game de-

cision transformers. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,

214

https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://doi.org/10.1007/978-3-642-27645-3_2
https://doi.org/10.1007/978-3-642-27645-3_2
https://openreview.net/forum?id=hy0a5MMPUv

BIBLIOGRAPHY Page 215

editors, Advances in Neural Information Processing Systems, 2022. URL

https://openreview.net/forum?id=0gouO5saq6K.

J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon. FNet: Mixing to-

kens with Fourier transforms. In M. Carpuat, M.-C. de Marneffe, and I. V.

Meza Ruiz, editors, Proceedings of the 2022 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 4296–4313, Seattle, United States, July 2022. Association

for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.319. URL

https://aclanthology.org/2022.naacl-main.319.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tuto-

rial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

URL https://arxiv.org/abs/2005.01643.

W. Li, H. Luo, Z. Lin, C. Zhang, Z. Lu, and D. Ye. A survey on transformers

in reinforcement learning. Transactions on Machine Learning Research, 2023a.

ISSN 2835-8856. URL https://openreview.net/forum?id=r30yuDPvf2. Sur-

vey Certification.

W. Li, B. Wang, S. Yang, and H. Zha. Diverse policy optimization for struc-

tured action space. In Proceedings of the 2023 International Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’23, page 819–828, Rich-

land, SC, 2023b. International Foundation for Autonomous Agents and Multia-

gent Systems. ISBN 9781450394321.

F. Liu, H. Liu, A. Grover, and P. Abbeel. Masked autoencoding for scalable

and generalizable decision making. In S. Koyejo, S. Mohamed, A. Agarwal,

D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information

Processing Systems, volume 35, pages 12608–12618. Curran Associates, Inc.,

215

https://openreview.net/forum?id=0gouO5saq6K
https://aclanthology.org/2022.naacl-main.319
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=r30yuDPvf2

BIBLIOGRAPHY Page 216

2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/

file/51fda94414996902ddaaa35561b97294-Paper-Conference.pdf.

J. Luo, C. Paduraru, O. Voicu, Y. Chervonyi, S. A. Munns, J. Z. Li, C. Qian,

P. Dutta, J. Q. Davis, N. Wu, X. Yang, C.-M. Chang, T. Li, R. Rose, M. Fan,

H. Nakhost, T. Liu, B. Kirkman, F. Altamura, L. Cline, P. Tonker, J. P. Gouker,

D. Udén, W. B. Bryan, J. Law, D. Fatiha, N. Satra, J. Rothenberg, M. A. Car-

lin, S. Tallapaka, S. Witherspoon, D. Parish, P. Dolan, C. Zhao, and D. J.

Mankowitz. Controlling commercial cooling systems using reinforcement learn-

ing. ArXiv, abs/2211.07357, 2022. URL https://api.semanticscholar.org/

CorpusID:253510192.

U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):

395–416, Dec. 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL

http://dx.doi.org/10.1007/s11222-007-9033-z.

M. C. Machado, M. G. Bellemare, and M. Bowling. A laplacian framework

for option discovery in reinforcement learning. In Proceedings of the 34th

International Conference on Machine Learning - Volume 70, ICML’17, page

2295–2304. JMLR.org, 2017.

W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parame-

terized actions. Proceedings of the AAAI Conference on Artificial Intelligence,

30(1), Feb. 2016. doi: 10.1609/aaai.v30i1.10226. URL https://ojs.aaai.org/

index.php/AAAI/article/view/10226.

M. Mathieu, S. Ozair, S. Srinivasan, C. Gulcehre, S. Zhang, R. Jiang, T. Le Paine,

R. Powell, K. Żołna, J. Schrittwieser, D. Choi, P. Georgiev, D. Toyama,

A. Huang, R. Ring, I. Babuschkin, T. Ewalds, M. Bordbar, S. Henderson, S. G.

Colmenarejo, A. van den Oord, W. M. Czarnecki, N. de Freitas, and O. Vinyals.

AlphaStar unplugged: Large-Scale offline reinforcement learning. Aug. 2023.

216

https://proceedings.neurips.cc/paper_files/paper/2022/file/51fda94414996902ddaaa35561b97294-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/51fda94414996902ddaaa35561b97294-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:253510192
https://api.semanticscholar.org/CorpusID:253510192
http://dx.doi.org/10.1007/s11222-007-9033-z
https://ojs.aaai.org/index.php/AAAI/article/view/10226
https://ojs.aaai.org/index.php/AAAI/article/view/10226

BIBLIOGRAPHY Page 217

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013. URL http://

dblp.uni-trier.de/db/journals/corr/corr1301.html/abs-1301-3781.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. J. Jiang, E. M. Songhori, S. Wang,

Y. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong, K. Srini-

vasa, W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho, R. Carpen-

ter, and J. Dean. Chip placement with deep reinforcement learning. CoRR,

abs/2004.10746, 2020. URL https://arxiv.org/abs/2004.10746.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and

D. Hassabis. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, Feb. 2015.

P. Moodley, B. Rosman, and X. Hong. Understanding structure of concurrent

actions. In International Conference on Innovative Techniques and Applications

of Artificial Intelligence, pages 78–90. Springer, 2019.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual

reinforcement learning with imagined goals. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances

in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,

2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/

file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf.

217

http://dblp.uni-trier.de/db/journals/corr/corr1301.html/abs-1301-3781
http://dblp.uni-trier.de/db/journals/corr/corr1301.html/abs-1301-3781
https://arxiv.org/abs/2004.10746
http://arxiv.org/abs/1312.5602
https://proceedings.neurips.cc/paper_files/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7ec69dd44416c46745f6edd947b470cd-Paper.pdf

BIBLIOGRAPHY Page 218

N. Nanda and J. Bloom. Transformerlens, 2022. URL https://github.com/

neelnanda-io/TransformerLens.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analy-

sis and an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahra-

mani, editors, Advances in Neural Information Processing Systems 14,

pages 849–856. MIT Press, 2002. URL http://papers.nips.cc/paper/

2092-on-spectral-clustering-analysis-and-an-algorithm.pdf.

T. Ni, B. Eysenbach, S. Levine, and R. Salakhutdinov. Recurrent model-free RL

is a strong baseline for many POMDPs, 2022. URL https://openreview.net/

forum?id=E0zOKxQsZhN.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan,

B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli,

Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt,

K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and

C. Olah. In-context learning and induction heads. Transformer Circuits Thread,

2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-

heads/index.html.

M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-

shot learning with semantic output codes. In Y. Bengio, D. Schuur-

mans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in

Neural Information Processing Systems, volume 22. Curran Associates, Inc.,

2009. URL https://proceedings.neurips.cc/paper_files/paper/2009/

file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf.

S. Parisi, V. Dean, D. Pathak, and A. Gupta. Interesting object, curious agent:

Learning task-agnostic exploration. In A. Beygelzimer, Y. Dauphin, P. Liang,

218

https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf
https://openreview.net/forum?id=E0zOKxQsZhN
https://openreview.net/forum?id=E0zOKxQsZhN
https://proceedings.neurips.cc/paper_files/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf

BIBLIOGRAPHY Page 219

and J. W. Vaughan, editors, Advances in Neural Information Processing

Systems, 2021. URL https://openreview.net/forum?id=knKJgksd7kA.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala. PyTorch: An imperative style, High-Performance deep learning

library. Dec. 2019.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration

by self-supervised prediction. In D. Precup and Y. W. Teh, editors, Proceedings

of the 34th International Conference on Machine Learning, volume 70 of

Proceedings of Machine Learning Research, pages 2778–2787. PMLR, 06–11

Aug 2017. URL https://proceedings.mlr.press/v70/pathak17a.html.

A. Patterson, S. Neumann, M. White, and A. White. Empirical design in rein-

forcement learning. Apr. 2023.

J. Pazis and R. Parr. Generalized value functions for large action sets.

In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), pages 1185–1192, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

A. Petrenko, Z. Huang, T. Kumar, G. S. Sukhatme, and V. Koltun. Sample

factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous

reinforcement learning. In Proceedings of the 37th International Conference

on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119

219

https://openreview.net/forum?id=knKJgksd7kA
https://proceedings.mlr.press/v70/pathak17a.html

BIBLIOGRAPHY Page 220

of Proceedings of Machine Learning Research, pages 7652–7662. PMLR, 2020.

URL http://proceedings.mlr.press/v119/petrenko20a.html.

M. Popel and O. Bojar. Training tips for the transformer model. CoRR,

abs/1804.00247, 2018. URL http://arxiv.org/abs/1804.00247.

D. Precup. Temporal abstraction in reinforcement learning. 2000. URL https:

//scholarworks.umass.edu/dissertations/AAI9978540.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.

Language models are unsupervised multitask learners. 2018. URL

https://d4mucfpksywv.cloudfront.net/better-language-models/

language-models.pdf.

A. Raghu, M. Komorowski, I. Ahmed, L. A. Celi, P. Szolovits, and M. Ghassemi.

Deep reinforcement learning for sepsis treatment. CoRR, abs/1711.09602, 2017.

URL http://arxiv.org/abs/1711.09602.

R. Raileanu and T. Rocktäschel. Ride: Rewarding impact-driven exploration

for procedurally-generated environments. In International Conference on

Learning Representations, 2020. URL https://openreview.net/forum?id=

rkg-TJBFPB.

J. Randlov. Learning Macro-Actions in reinforcement learning. In M. J. Kearns,

S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing

Systems 11, pages 1045–1051. MIT Press, 1999.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron,

M. Giménez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce,

A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals, M. Bor-

dbar, and N. de Freitas. A generalist agent. Transactions on Machine Learning

Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=

1ikK0kHjvj. Featured Certification, Outstanding Certification.

220

http://proceedings.mlr.press/v119/petrenko20a.html
http://arxiv.org/abs/1804.00247
https://scholarworks.umass.edu/dissertations/AAI9978540
https://scholarworks.umass.edu/dissertations/AAI9978540
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1711.09602
https://openreview.net/forum?id=rkg-TJBFPB
https://openreview.net/forum?id=rkg-TJBFPB
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj

BIBLIOGRAPHY Page 221

D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Re-

inforcement learning with sparse rewards using guidance from offline demon-

stration. International Conference on Learning Representations (ICLR). URL

https://par.nsf.gov/biblio/10327543.

C. Robert and G. Casella. A short history of markov chain monte carlo: Subjec-

tive recollections from incomplete data. Statistical Science, 26(1), Feb. 2011.

ISSN 0883-4237. doi: 10.1214/10-sts351. URL http://dx.doi.org/10.1214/

10-STS351.

B. Rosman and S. Ramamoorthy. What good are actions? accelerating learn-

ing using learned action priors. In 2012 IEEE International Conference on

Development and Learning and Epigenetic Robotics (ICDL), pages 1–6, Nov.

2012.

B. Rosman and S. Ramamoorthy. Action priors for learning domain invariances.

IEEE Trans. Auton. Ment. Dev., 7(2):107–118, June 2015.

S. Russell. Learning agents for uncertain environments (extended abstract). In

Proceedings of the Eleventh Annual Conference on Computational Learning

Theory, COLT’ 98, page 101–103, New York, NY, USA, 1998. Association for

Computing Machinery. ISBN 1581130570. doi: 10.1145/279943.279964. URL

https://doi.org/10.1145/279943.279964.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, 3 edition, 2010.

A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive neural networks.

CoRR, abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

T. Salimans and R. Chen. Learning montezuma’s revenge from a single demon-

stration. Dec. 2018.

221

https://par.nsf.gov/biblio/10327543
http://dx.doi.org/10.1214/10-STS351
http://dx.doi.org/10.1214/10-STS351
https://doi.org/10.1145/279943.279964
http://arxiv.org/abs/1606.04671

BIBLIOGRAPHY Page 222

B. Sallans and G. E. Hinton. Reinforcement learning with factored states and

actions. J. Mach. Learn. Res., 5(Aug):1063–1088, 2004.

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller,

R. Hadsell, and P. Battaglia. Graph networks as learnable physics engines

for inference and control. In J. Dy and A. Krause, editors, Proceedings of the

35th International Conference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 4470–4479, Stockholmsmassan, Stockholm

Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/

sanchez-gonzalez18a.html.

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,

P. Battaglia, and T. Lillicrap. A simple neural network module for re-

lational reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.,

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf.

B. Sart-Tilman. Tree-based batch mode reinforcement learning. https://www.

jmlr.org/papers/volume6/ernst05a/ernst05a.pdf, 2005. Accessed: 2021-7-

10.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks. CoRR, abs/1312.6120,

2013. URL https://api.semanticscholar.org/CorpusID:17272965.

S. Schaal. Learning from demonstration. In M. Mozer, M. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing Systems, volume 9. MIT

Press, 1996. URL https://proceedings.neurips.cc/paper_files/paper/

1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf.

222

http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html
http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e6acf4b0f69f6f6e60e9a815938aa1ff-Paper.pdf
https://www.jmlr.org/papers/volume6/ernst05a/ernst05a.pdf
https://www.jmlr.org/papers/volume6/ernst05a/ernst05a.pdf
https://api.semanticscholar.org/CorpusID:17272965
https://proceedings.neurips.cc/paper_files/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/68d13cf26c4b4f4f932e3eff990093ba-Paper.pdf

BIBLIOGRAPHY Page 223

S. Schaal. Is imitation learning the route to humanoid robots? Trends in

Cognitive Sciences, 3(6):233–242, 1999. ISSN 1364-6613. doi: https://doi.

org/10.1016/S1364-6613(99)01327-3. URL https://www.sciencedirect.com/

science/article/pii/S1364661399013273.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approx-

imators. In F. Bach and D. Blei, editors, Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 1312–1320, Lille, France, 2015a. PMLR.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approx-

imators. In F. Bach and D. Blei, editors, Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 1312–1320, Lille, France, 07–09 Jul 2015b. PMLR. URL

https://proceedings.mlr.press/v37/schaul15.html.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.

Nov. 2015c.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.

org/abs/1707.06347.

M. Shanahan, K. Nikiforou, A. Creswell, C. Kaplanis, D. Barrett, and M. Garnelo.

An explicitly relational neural network architecture. In Proceedings of the 37th

International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

M. Sharma, M. Tong, T. Korbak, D. Duvenaud, A. Askell, S. R. Bowman,

N. Cheng, E. Durmus, Z. Hatfield-Dodds, S. R. Johnston, S. Kravec, T. Maxwell,

S. McCandlish, K. Ndousse, O. Rausch, N. Schiefer, D. Yan, M. Zhang, and

E. Perez. Towards understanding sycophancy in language models, 2023.

223

https://www.sciencedirect.com/science/article/pii/S1364661399013273
https://www.sciencedirect.com/science/article/pii/S1364661399013273
https://proceedings.mlr.press/v37/schaul15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

BIBLIOGRAPHY Page 224

S. Sharma, A. Suresh, R. Ramesh, and B. Ravindran. Learning to factor policies

and action-value functions: Factored action space representations for deep re-

inforcement learning. CoRR, abs/1705.07269, 2017. URL http://arxiv.org/

abs/1705.07269.

E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell. Loss is its own reward:

Self-supervision for reinforcement learning. CoRR, abs/1612.07307, 2016. URL

http://arxiv.org/abs/1612.07307.

A. A. Sherstov and P. Stone. Improving action selection in MDP’s via knowledge

transfer. AAAI, 2005.

D. Silver. Lectures on reinforcement learning. url: https://www.davidsilver.

uk/teaching/, 2015.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. De-

terministic policy gradient algorithms. In E. P. Xing and T. Jebara, editors,

Proceedings of the 31st International Conference on Machine Learning, vol-

ume 32 of Proceedings of Machine Learning Research, pages 387–395, Bejing,

China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/

silver14.html.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,

L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the

game of go without human knowledge. Nature, 550:354–, Oct. 2017. URL

http://dx.doi.org/10.1038/nature24270.

S. P. Singh. Transfer of learning by composing solutions of elemental sequential

tasks. Machine Learning, 8(3):323–339, May 1992. ISSN 1573-0565. doi: 10.

1007/BF00992700. URL https://doi.org/10.1007/BF00992700.

224

http://arxiv.org/abs/1705.07269
http://arxiv.org/abs/1705.07269
http://arxiv.org/abs/1612.07307
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1007/BF00992700

BIBLIOGRAPHY Page 225

S. C. Suddarth and Y. L. Kergosien. Rule-injection hints as a means of improving

network performance and learning time. In Neural Networks, Lecture notes in

computer science, pages 120–129. Springer Berlin Heidelberg, Berlin, Heidelberg,

1990.

R. S. Sutton. Generalization in reinforcement learning: Successful examples us-

ing sparse coarse coding. In D. Touretzky, M. Mozer, and M. Hasselmo, ed-

itors, Advances in Neural Information Processing Systems, volume 8. MIT

Press, 1995. URL https://proceedings.neurips.cc/paper_files/paper/

1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive

computation and machine learning. MIT Press, 1998a. ISBN 978-0-262-19398-6.

URL https://www.worldcat.org/oclc/37293240.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998b. URL http://www.cs.ualberta.ca/~sutton/book/the-book.

html.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods

for reinforcement learning with function approximation. In S. Solla, T. Leen,

and K. Müller, editors, Advances in Neural Information Processing Systems,

volume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_

files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan, J. Schulman,

F. DeTurck, and P. Abbeel. #exploration: A study of Count-Based exploration

for deep reinforcement learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 2753–2762. Curran Associates, Inc.,

2017.

225

https://proceedings.neurips.cc/paper_files/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
https://www.worldcat.org/oclc/37293240
http://www.cs.ualberta.ca/~sutton/book/the-book.html
http://www.cs.ualberta.ca/~sutton/book/the-book.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

BIBLIOGRAPHY Page 226

J. Taylor and N. Kriegeskorte. Extracting and visualizing hidden activations and

computational graphs of PyTorch models with TorchLens. Scientific Reports,

13(1):14375, 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-40807-0. URL

https://doi.org/10.1038/s41598-023-40807-0.

G. Tennenholtz and S. Mannor. The natural language of actions. In K. Chaudhuri

and R. Salakhutdinov, editors, Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 6196–6205, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL

http://proceedings.mlr.press/v97/tennenholtz19a.html.

S. Thrun and A. Schwartz. Finding structure in reinforcement learning. In

G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural

Information Processing Systems 7, pages 385–392. MIT Press, 1995.

J. N. Tsitsiklis and B. Van Roy. Analysis of Temporal-Diffference learning with

function approximation. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,

Advances in Neural Information Processing Systems 9, pages 1075–1081. MIT

Press, 1997.

E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain con-

fusion: Maximizing for domain invariance. CoRR, abs/1412.3474, 2014. URL

http://arxiv.org/abs/1412.3474.

O. University. Oxford English Dictionary. (2016) reference, v. 3. Online. Oxford

University, 2016. URL http://www.oed.com/view/Entry/160845.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.

Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30. Curran As-

226

https://doi.org/10.1038/s41598-023-40807-0
http://proceedings.mlr.press/v97/tennenholtz19a.html
http://arxiv.org/abs/1412.3474
http://www.oed.com/view/Entry/160845

BIBLIOGRAPHY Page 227

sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/

paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,

T. Rothorl, T. Lampe, and M. A. Riedmiller. Leveraging demonstrations for

deep reinforcement learning on robotics problems with sparse rewards. CoRR,

abs/1707.08817, 2017. URL http://arxiv.org/abs/1707.08817.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph

attention networks. In International Conference on Learning Representations,

2018. URL https://openreview.net/forum?id=rJXMpikCZ.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,

A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney,

S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. P. Lilli-

crap, K. Calderone, P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp,

and R. Tsing. Starcraft II: A new challenge for reinforcement learning. CoRR,

abs/1708.04782, 2017. URL http://arxiv.org/abs/1708.04782.

N. Vithayathil Varghese and Q. H. Mahmoud. A survey of multi-task deep re-

inforcement learning. Electronics, 9(9), 2020. ISSN 2079-9292. doi: 10.3390/

electronics9091363. URL https://www.mdpi.com/2079-9292/9/9/1363.

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anand-

kumar. Voyager: An open-ended embodied agent with large language models.

May 2023.

H. Wang and Y. Yu. Exploring multi-action relationship in reinforcement learning.

In Pacific Rim International Conference on Artificial Intelligence, pages 574–587.

Springer, 2016.

J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos,

227

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1707.08817
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1708.04782
https://www.mdpi.com/2079-9292/9/9/1363

BIBLIOGRAPHY Page 228

C. Blundell, D. Kumaran, and M. M. Botvinick. Learning to reinforcement learn.

CoRR, abs/1611.05763, 2016. URL http://arxiv.org/abs/1611.05763.

T. W. Webb, Z. Dulberg, S. M. Frankland, A. A. Petrov, R. C. O’Reilly, and J. D.

Cohen. Learning representations that support extrapolation. In Proceedings of

the 37th International Conference on Machine Learning, ICML’20. JMLR.org,

2020.

T. W. Webb, I. Sinha, and J. Cohen. Emergent symbols through binding in

external memory. In International Conference on Learning Representations,

2021. URL https://openreview.net/forum?id=LSFCEb3GYU7.

Wikipedia contributors. Chatgpt — Wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1180697478, 2023a.

[Online; accessed 19-October-2023].

Wikipedia contributors. Gpt-4 — Wikipedia, the free encyclopedia,

2023b. URL https://en.wikipedia.org/w/index.php?title=GPT-4&oldid=

1192821203. [Online; accessed 1-January-2024].

D. Wingate, N. D. Goodman, D. M. Roy, L. P. Kaelbling, and J. B. Tenenbaum.

Bayesian policy search with policy priors. In Proceedings of the Twenty-Second

International Joint Conference on Artificial Intelligence - Volume Volume Two,

IJCAI’11, page 1565–1570. AAAI Press, 2011. ISBN 9781577355144.

P. Wu, A. Majumdar, K. Stone, Y. Lin, I. Mordatch, P. Abbeel, and A. Ra-

jeswaran. Masked trajectory models for prediction, representation, and con-

trol. In Proceedings of the 40th International Conference on Machine Learning,

ICML’23. JMLR.org, 2023a.

Y.-H. Wu, X. Wang, and M. Hamaya. Elastic decision transformer. ArXiv,

abs/2307.02484, 2023b. URL https://api.semanticscholar.org/CorpusID:

259342857.

228

http://arxiv.org/abs/1611.05763
https://openreview.net/forum?id=LSFCEb3GYU7
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1180697478
https://en.wikipedia.org/w/index.php?title=ChatGPT&oldid=1180697478
https://en.wikipedia.org/w/index.php?title=GPT-4&oldid=1192821203
https://en.wikipedia.org/w/index.php?title=GPT-4&oldid=1192821203
https://api.semanticscholar.org/CorpusID:259342857
https://api.semanticscholar.org/CorpusID:259342857

BIBLIOGRAPHY Page 229

K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka. How

neural networks extrapolate: From feedforward to graph neural networks. In

International Conference on Learning Representations, 2021. URL https://

openreview.net/forum?id=UH-cmocLJC.

M. Xu, Y. Shen, S. Zhang, Y. Lu, D. Zhao, J. Tenenbaum, and C. Gan. Prompt-

ing decision transformer for Few-Shot policy generalization. In K. Chaudhuri,

S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings

of the 39th International Conference on Machine Learning, volume 162 of

Proceedings of Machine Learning Research, pages 24631–24645. PMLR, 2022.

S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans. Foundation

models for decision making: Problems, methods, and opportunities. ArXiv,

abs/2303.04129, 2023. URL https://api.semanticscholar.org/CorpusID:

257378587.

S. Yoo, H. Huang, and S. P. Kasiviswanathan. Streaming spectral clustering. In

2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages

637–648, 2016. doi: 10.1109/ICDE.2016.7498277.

C. Yu, J. Liu, and S. Nemati. Reinforcement learning in healthcare: A survey.

CoRR, abs/1908.08796, 2019. URL http://arxiv.org/abs/1908.08796.

X. Yuan, M. Côté, A. Sordoni, R. Laroche, R. T. des Combes, M. J. Hausknecht,

and A. Trischler. Counting to explore and generalize in text-based games. CoRR,

abs/1806.11525, 2018. URL http://arxiv.org/abs/1806.11525.

T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor. Learn what

not to learn: Action elimination with deep reinforcement learning. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems 31, pages 3562–

3573. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/

229

https://openreview.net/forum?id=UH-cmocLJC
https://openreview.net/forum?id=UH-cmocLJC
https://api.semanticscholar.org/CorpusID:257378587
https://api.semanticscholar.org/CorpusID:257378587
http://arxiv.org/abs/1908.08796
http://arxiv.org/abs/1806.11525
http://papers.nips.cc/paper/7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.pdf

BIBLIOGRAPHY Page 230

7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.

pdf.

V. F. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls,

D. P. Reichert, T. P. Lillicrap, E. Lockhart, M. Shanahan, V. Langston,

R. Pascanu, M. M. Botvinick, O. Vinyals, and P. W. Battaglia. Relational

deep reinforcement learning. ArXiv, abs/1806.01830, 2018. URL https:

//api.semanticscholar.org/CorpusID:46939951.

M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. A survey of imitation learn-

ing: Algorithms, recent developments, and challenges. ArXiv, abs/2309.02473,

2023. URL https://api.semanticscholar.org/CorpusID:261557281.

Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions

on Knowledge and Data Engineering, 34(12):5586–5609, 2022. doi: 10.1109/

TKDE.2021.3070203.

B. Zheng, S. Verma, J. Zhou, I. W. Tsang, and F. Chen. Imitation learning:

Progress, taxonomies and challenges. IEEE Trans Neural Netw Learn Syst, PP,

Oct. 2022.

Z. Zhu, K. Lin, A. K. Jain, and J. Zhou. Transfer learning in deep reinforce-

ment learning: A survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(11):13344–13362, 2023. doi: 10.1109/TPAMI.2023.3292075.

L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson. Fast context

adaptation via meta-learning. In K. Chaudhuri and R. Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, vol-

ume 97 of Proceedings of Machine Learning Research, pages 7693–7702. PMLR,

09–15 Jun 2019. URL https://proceedings.mlr.press/v97/zintgraf19a.

html.

230

http://papers.nips.cc/paper/7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/7615-learn-what-not-to-learn-action-elimination-with-deep-reinforcement-learning.pdf
https://api.semanticscholar.org/CorpusID:46939951
https://api.semanticscholar.org/CorpusID:46939951
https://api.semanticscholar.org/CorpusID:261557281
https://proceedings.mlr.press/v97/zintgraf19a.html
https://proceedings.mlr.press/v97/zintgraf19a.html

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Thesis organisation
	Summary

	Preliminaries
	Introduction
	The RL framework
	Partially Observed Environments
	Action Spaces
	Model-Free and Model-Based RL
	Model-Free RL

	Introducing the Q-value function:
	Temporal Difference (TD)
	Exploration
	Value Based algorithms

	Neural Networks, Deep Learning and function approximators
	Deep Q-Network (DQN)

	Policy Gradient algorithms
	Proximal Policy Optimization (PPO)

	Transfer
	Multi-Task RL and Meta-RL
	Learning from Demonstrations and Distillation

	Auxiliary Tasks
	Offline RL
	Imitation Learning (IL)
	Transformers
	Summary

	Literature Review
	Transfer
	Transfer of prior knowledge
	Exploration Methods
	Multi-Task RL

	Structure in Action Spaces
	Structure from Factorization and Decomposition
	Options
	Multi-Discrete Action Spaces

	Action Relations in Reinforcement Learning
	Summary

	Multi-task transfer of action structure in multi-discrete action spaces
	Introduction
	Related Work
	Spectral Clustering
	Proposed Approach: Concurrent Action structure using clustering (CASC)
	Approach and Motivation
	Extracting task-agnostic structure in a multi-task setting
	Using spectral clustering to exploit relationships between actions
	Transferring action structure to enhance exploration
	Action elimination in a multi-discrete action setting
	Discussion
	Implementation Details
	Environment
	Task Setup
	Training the RL algorithm

	Experiments and Results
	Concurrent Action structure using clustering - CASC
	Action Elimination
	Random clusters
	Discussion

	Conclusions

	Relational Representations in Multi-Discrete Action Spaces
	Introduction
	Related Work
	Multi-discrete and large action spaces
	Action Relations

	Multi-discrete Proximal Policy Optimisation
	Proposed relational auxiliary module
	Self-supervised signal
	The relational auxiliary objective
	Discussion
	Implementation Details
	Environment
	Actions
	RL Algorithm

	Experiments and Results
	Relational Auxiliary Task Setup
	Results - Relational Model Performance
	Easy and Intermediate Tasks
	Hard/Complex Task

	The Action Representation
	Learning Dynamics
	Generalisation test

	Conclusions

	Action Structure in Decision Transformers
	Introduction
	Preliminaries
	Decision Transformers
	Prompting

	Related Work
	Prompting and In-context learning (ICL)
	Other aspects of Decision Transformers

	Proposed Approach: Multi-State-Action Tokenisation (M-SAT) in Decision Transformers
	Sequence Modelling using Decision Transformers
	M-SAT Approach and Motivation
	Tokenisation and action generation
	Implementation Details
	Environment
	Decision Transformer Related Setup and Implementation
	Data Generation

	Methods of Analysis
	Position Encoding

	Experiments and Results
	Baseline Method
	Decision Transformer trained with Multi-Action Tokens (M-SAT)
	No Position Encoding
	No State-Action (MAT)
	Action PE
	Discussion and Analysis
	Raw attention and Attention Flow
	Interpreting the Transformer

	Conclusions

	Conclusion and Future Work
	Future Work

