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Abstract We synthesize knowledge from numerical weather prediction, inverse theory, and statistics to
address the problem of estimating a high‐dimensional covariance matrix from a small number of samples.
This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth
science. We create several new adaptive methods for high‐dimensional covariance estimation, but one
method, which we call Noise‐Informed Covariance Estimation (NICE), stands out because it has three
important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees
symmetric positive semi‐definite covariance estimates; and (c) NICE is largely tuning‐free. We illustrate
the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data
assimilation, inversion of geophysical field data, and training of feed‐forward neural networks with time‐
averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that
NICE may indeed be a viable option for high‐dimensional covariance estimation in many Earth science
problems.

Plain Language Summary Models of physical processes must be fitted to real‐world data before
they are useful for prediction. In some cases, the most practical way to fit models to data is to run a set—or
ensemble—of simulations with different physics or initial conditions. One then uses the covariances among the
inputs and outputs to modify the simulations so that they fit the data better. To reduce noise in the covariances,
one ideally uses an ensemble size that is larger than the number of unknown variables, but this becomes
impractical when the number of unknowns is large. To improve the performance of this fitting process when the
ensemble size is small, one can discount covariances between variables that are likely due to noise. We
introduce several methods of covariance estimation that determine the degree to which covariances are
discounted based on expected levels of noise. All new methods perform well on a series of Earth science–
inspired problems, but we highlight one method that preserves a key property of covariance matrices at a low
computational cost.

1. Introduction
We consider the problem of estimating the covariance matrix P of an nx‐dimensional random variable x, based on
a set of ne ≪ nx independent samples xi, i = 1, …, ne. Estimating a covariance matrix from scarce samples is a
fundamental challenge in science, engineering, statistics, and in the sub‐fields of machine learning and artificial
intelligence (Wainwright, 2019). Our interest in covariance estimation is motivated by the problem of fitting
models of Earth processes to data. As an example, consider numerical weather prediction (NWP), where the xi

represent an ensemble of global weather forecasts. The dimension nx corresponds to the number of unknowns in a
global atmospheric model, and it is on the order of 108. The number of forecasts (the ensemble size ne) is small
because each forecast requires a simulation of Earth's atmosphere, which is expensive. A commonly used
ensemble size in NWP is on the order of 102—six orders of magnitude smaller than the number of unknowns. A
common approach to update the forecast with atmospheric data is the ensemble Kalman filter (EnKF, Evensen,
1994, 2009). The EnKF updates rely on the covariance matrix associated with the ensemble, but the empirical
covariance matrix

P̂ =
1

ne − 1
∑

ne

i=1
(xi − μ̂) (xi − μ̂)T , μ̂ =

1
ne
∑

ne

i=1
xi, (1)
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is generally inaccurate if ne ≪ nx (Bickel & Levina, 2008; Wainwright, 2019). Various strategies for improving
the accuracy of the empirical estimate have been developed over the years, and we review the relevant literature
below. The prevailing method of covariance estimation in NWP is called localization (Houtekamer & Mitch-
ell, 1998, 2001; Ott et al., 2004). Localization enforces on the empirical covariance matrix the assumption that
covariances decay with spatial distance (although the terminology has also been used in other contexts and to refer
to covariance corrections that are not spatial, see, e.g., Morzfeld et al., 2019). To execute the localization, one
defines an nx × nx, symmetric PSD localization matrix L, which encodes the spatial decay pattern of correlations
(Gaspari & Cohn, 1999; Gilpin et al., 2023). One then obtains the localized covariance estimator

P̂loc = L ◦ P̂, (2)

where the open circle denotes the Hadamard (element‐wise) product. Localization has proven successful for
estimating high‐dimensional covariance matrices from a small set of samples in NWP and, for that reason,
localization is a standard component in operational weather forecasting systems (Bannister, 2017; Hamill
et al., 2009). We present a new covariance estimation method that is more broadly applicable than classical
localization because it does not require a priori assumptions about the correlation structure (e.g., the spatial decay
in covariance localization). We call our method Noise‐Informed Covariance Estimation (NICE). NICE replaces
assumptions about the correlation structure with the assumption that small to medium correlations are likely
caused by sampling error and, therefore, should be damped or deleted. This assumption is not universally true (it
is easy to come up with counter examples), but it is rooted in rigorous sampling error theory (Anderson, 2012;
Flowerdew, 2015; Lee, 2021b; Ménétrier et al., 2015; Morzfeld & Hodyss, 2023). NICE achieves three main
objectives:

1. Adaptivity. NICE ensures that differences between sampled and corrected correlations are within an expected
noise level. The noise level is determined by the sample size and the distribution of empirical correlations so
that the entire covariance estimation process is adaptive and largely tuning‐free.

2. Positive semi‐definiteness. NICE guarantees a symmetric PSD covariance estimator. Symmetry and positive
semi‐definiteness are defining properties of covariance matrices, but some competing methods do not guar-
antee PSD estimates.

3. Computational efficiency. NICE is computationally efficient and easy to implement because it avoids solving
optimization problems over PSD matrices.

We put NICE to the test in a variety of problems with different and unknown correlation structures: (a) estimation
of covariance matrices from Gaussian samples; (b) cycling data assimilation (DA) problems with ensemble
Kalman filters (Evensen, 2009); (c) inversion of geophysical data with regularized ensemble Kalman inversion
(EKI, Chada et al., 2020); and (d) training of a feed‐forward neural network with EKI (Cleary et al., 2021; Iglesias
et al., 2013; Kovachki & Stuart, 2019). Various error metrics are used to evaluate performance in these problems.
Across all examples and all error metrics, we find that NICE works out‐of‐the‐box with minimal tuning. Esti-
mated noise levels can also be used to make other covariance estimation methods adaptive and largely tuning‐free.
We introduce new adaptive versions of Power law corrections (PLC) (Ad.‐PLC, see Lee (2021b) and Sec-
tion 3.4.1), adaptive (spatial) localization (Ad.‐Loc., Section 3.4.2), adaptive soft‐thresholding (Ad.‐ST, see
Wainwright (2019) and Section 3.4.3) and adaptive sparse covariance estimation (ASCE, see Xue et al. (2012)
and Section 3.4.4). All new methods fall under the umbrella of NICE because all of them leverage an under-
standing of noise in empirical correlations. However, some do not guarantee a PSD estimator and others are more
computationally involved. The specific method we refer to as NICE is the only method that satisfies all three of
our objectives: adaptivity, PSD guarantees and computational efficiency.

It is important to be specific about the terms “high‐dimensional” and about computational efficiency. In this
paper, we focus on covariance estimation methods that construct the entire covariance matrix. As such, the
methods are limited in their use to matrices of dimension 104 × 104 or smaller. Higher‐dimensional problems, for
example, of the extreme size of NWP (108 or more unknowns), require that we perform computations without
constructing the whole covariance matrix. The methods we describe here could potentially be adapted to such
problems, but these adaptations are beyond the scope of this paper. The computational efficiency of covariance
estimation depends on the algorithms used. We focus on algorithms that perform simple element‐wise operations
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on the empirical covariance matrix. Many methods in the statistical literature, however, perform covariance
estimation by solving optimization problems over PSD matrices, which is computationally expensive.

The rest of this paper is organized as follows. Section 2 reviews background materials. We first explain why
covariance estimation from a small number of samples is important in Earth science, specifically in EnKF and in
EKI. We further emphasize the importance of PSD covariance estimates in the context of EnKF or EKI. We then
review covariance localization in NWP and several covariance estimation methods from the statistical literature.
Finally, we briefly describe Morozov's discrepancy principle, a classical concept in inverse theory. The
discrepancy principle is the tool we use to make covariance estimation methods adaptive. Section 3 describes our
new methodology (NICE), and other new adaptive covariance estimation methods. We apply NICE and a large
number of competing methods (new and old) in a wide variety of problems in Section 4, before ending the paper
with a summary and conclusions in Section 5.

2. Background
2.1. Ensemble Kalman Filters and Their Localization

The goal of ensemble Kalman filtering (EnKF) is to use data to update a forecast generated by a computational
model. An important example is NWP, where the forecast describes atmospheric states in the form of ne vectors
xi, i = 1, …, ne, each of dimension nx. The vectors xi are referred to as “ensemble members.” Typically, the
ensemble size ne is smaller than the dimension of the ensemble members (ne ≪ nx). The reason is that each
ensemble member is the result of a simulation with a computationally expensive atmospheric model, so that ne

must be small, or else the computations are infeasible. In NWP, ne is usually a few hundred, and nx is in the
billions.

The forecast is updated by an observation (data), which is an ny‐dimensional vector y, where, often but not always,
ne ≪ ny ≪ nx. For ease of presentation, we assume that the observation is a linear function of the forecasted
variables so that

y = Hx + ε, (3)

whereH is an ny × nx matrix and ε is a Gaussian random variable with mean zero and covariance matrixR, which
we write as ε ∼N(0,R) The assumption of a linear observation is commonly violated; nevertheless, we
demonstrate in our numerical experiments that the intuition and conclusions from the linear analysis extend to the
nonlinear case.

Ensemble Kalman filtering (EnKF) is a catch‐all term for a whole suite of methods that merge the observation and
the forecast within a Bayesian framework. The update step of a stochastic EnKF (Burgers et al., 1998; Even-
sen, 1994, 2009) is

xa
i = xi + K̂(y − (Hxi + εi)), (4)

where ɛi is a sample drawn from N(0,R). The Kalman gain K̂ is computed from the ensemble as

K̂ = P̂HT (HP̂HT + R)− 1, (5)

where P̂ is the empirical covariance in (1). The Kalman gain defines how to update each ensemble member in
view of the observation. Since the Kalman gain depends critically on the forecast covariance P̂, the EnKF update
is only useful if the covariance estimate is accurate, which usually requires that ne is larger than nx (although the
situation can be more complex, e.g., with ne directly depending on the number of observations and their inde-
pendence (Agapiou et al., 2017; Al Ghattas & Sanz‐Alonso, 2022; Chorin & Morzfeld, 2013; Hodyss &
Morzfeld, 2023)).

Localization is a technique that enables the use of EnKF when ne ≪ nx. A common version of localization in the
EnKF is to use Hadamard products as in Equation 2 and to define the localization matrix by the Gaspari–Cohn
covariance function (Gaspari & Cohn, 1999) or its anisotropic extensions (Gilpin et al., 2023). The localization
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matrix implements a spatial decay of correlation and the rate of decay can be controlled via a length scale.
Different methods for adaptively selecting this length scale, or localizing in a flow‐dependent manner to account
for temporal variations in the correlation structure, have been proposed (Anderson, 2012; Bishop &
Hodyss, 2007, 2009a, 2009b, 2011; Chevrotiére & Harlim, 2017; Luk et al., 2024; Zhen & Zhang, 2014).

Other implementations of the EnKF include the ensemble adjustment Kalman filter (EAKF) (Anderson, 2001)
and ensemble transform filters (ETKF) (Ott et al., 2004; Tippett et al., 2003). Localization in an EAKF is achieved
by working directly with the Kalman gain, reducing the effects of an observation on elements of the Kalman gain
that are far from the observation (Hodyss &Morzfeld, 2023; Morzfeld &Hodyss, 2023). Localization in an ETKF
is implemented by performing a “local” analysis, so that each grid point is updated by a set of nearby observations
(domain localization). Variational/hybrid DA algorithms combine a classical minimization (variational) approach
(Talagrand & Courtier, 1987) with an ensemble to approximate uncertainties (Buehner et al., 2013; Hamill &
Snyder, 2000; Kuhl et al., 2013; Lorenc, 2003; Poterjoy & Zhang, 2015; Zhang et al., 2009). Hybrid DA also
requires localization, which is usually applied using Hadamard products, but without explicitly forming the
covariance matrix (Buehner, 2005). Multi‐scale extensions of localization are available for hybrid DA and/or
EnKFs (Buehner, 2012; Buehner & Shlyaeva, 2015; Harty et al., 2021; Lorenc, 2017; Miyoshi & Kondo, 2013).

Finally, we note that all conventional localization methods require tuning. The tuning process usually amounts to
picking a length scale that defines the localization and then running a cycling EnKF over a set of training ob-
servations. This process is repeated with various length scales until one encounters a length scale that leads to an
acceptable error metric.

2.2. Ensemble Kalman Inversion

The goal in EKI (Iglesias et al., 2013) is to minimize the cost function

J(x) =
⃦
⃦R− 1/2( y − G(x))

⃦
⃦2
2, (6)

where vertical bars denote the two‐norm (i.e., ‖b‖2 =
̅̅̅̅̅̅̅̅
bTb

√
), y are data, x are unknown model parameters, and

G( ⋅ ) is a nonlinear model that maps the model parameters to the data; the symmetric positive definite matrix R
defines expected errors in the data, represented by a mean‐zero Gaussian random variable with covariance matrix
R; R− 1/2 is the inverse of a matrix square root of R = R1/2(R1/2)

T .

EKI performs the optimization by iteratively updating an ensemble as follows. The ensemble at iteration k are the
ne vectors xk

i and we define ne corresponding vectors gk
i = G(xk

i ) . Each ensemble member is updated according to

xk+1
i = xk

i + Ĉ
k
xg( Ĉ

k
gg + R)

− 1
(y − (gk

i + ηi)), (7)

where Ĉk
gg is the covariance matrix associated with the vectors gk

i , Ĉ
k
xg is the covariance between the vectors xk

i and
gk

i and where ηi is a draw from the Gaussian with mean zero and covariance matrix R. More specifically, if we
define the matrices (ensemble perturbations).

Xk =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅
ne − 1

√ (xn
1 − x̄

k xk
2 − x̄

k ⋯ xk
ne
− x̄k), x̄k =

1
ne
∑

ne

j=1
xk

j , (8)

Gk =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅
ne − 1

√ (gn
1 − ḡ

k gk
2 − ḡ

k ⋯ gk
ne
− ḡk

), ḡk =
1
ne
∑

ne

j=1
gk

j , (9)

then the covariances are

Ĉk
xg = X

k ⊗Gk, (10)

Ĉk
gg = G

k ⊗Gk, (11)
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where the symbol ⊗ denotes the outer product A ⊗ B = ABT, where A and B are vectors or matrices of

compatible sizes. Note that the EKI update Equation 7 is equivalent to an EnKF update in (4) because Ĉk
xg = P̂H

T

and Ĉk
gg = HP̂H

T when G(x) = Hx is linear. The theory around EKI tells us that the iteration (7) converges, in the
sense that the ensemble collapses onto the minimizer of the cost function, under typical assumptions (Chada &
Tong, 2022; Schillings & Stuart, 2017, 2018). As with EnKF, there are several variants of EKI (Huang
et al., 2022; Lee, 2021a).

Convergence of the EKI iteration requires that the covariance estimates Ĉk
xg and Ĉk

gg are sufficiently accurate,
which usually means that the ensemble size is large. Localization can be used within an EKI to keep the ensemble
size small (Al Ghattas & Sanz‐Alonso, 2022; Lee, 2021b; Tong & Morzfeld, 2023).

EKI has found application in climate sciences (Bieli et al., 2022; Cleary et al., 2021; Dunbar et al., 2022;
Schneider et al., 2021), and Julia code for it is available (Dunbar et al., 2022). In a climate science context, model
parameters appear in sub‐gridscale closures of climate models (e.g., physical constants or weights of neural
networks (NN)). A promising approach to optimizing sub‐gridscale closures is to formulate the cost function
based on the misfit between modeled and observed climate statistics (Schneider et al., 2024). In this scenario,
derivatives of the cost function with respect to the model parameters are difficult or impossible to compute,
making derivative‐free optimization via EKI attractive.

Ensemble algorithms that are related to EKI, and which in fact pre‐date EKI, are known as iterative ensemble
Kalman filters/smoothers (Bocquet, 2016; Bocquet & Sakov, 2014; Chen &Oliver, 2010, 2013, 2017; Emerick &
Reynolds, 2011; Hodyss, Bishop, & Morzfeld, 2016; Luo et al., 2018) or multiple DA (Emerick & Rey-
nolds, 2013). These methods are popular in reservoir modeling, but also find applications in atmospheric sciences.
A recent, mathematical overview of how some of the methods are related is given by Chada et al. (2021) and an
NWP‐focused overview is provided by Hodyss, Bishop, and Morzfeld (2016).

2.3. Positive Semi‐Definite Covariance Estimators

A fundamental property of covariance matrices is that they are symmetric PSD (Horn & Johnson, 1991). The
practical relevance of PSD estimates of P̂ is apparent in the EnKF, where the Kalman gain (Equation 5) requires
that the matrix

HP̂HT + R, (12)

is well‐conditioned. Since the observation error covariance matrixR is usually positive definite, a PSD estimate P̂
guarantees that Equation 12 is positive definite, invertible and well‐conditioned. One can run into numerical
trouble if P̂ is not PSD, because the matrix in Equation 12 may be singular or ill‐conditioned. Localization via
Hadamard products, as used in NWP, guarantees a PSD covariance estimate by the Schur product theorem when
the localization matrix L is PSD (Schur, 1911).

In general, however, the PSD constraint is not easy to satisfy during covariance estimation, and many covariance
estimation methods do not guarantee a PSD estimate (Khare et al., 2019; Xue et al., 2012). When we review
covariance estimation methods, we comment on their PSD guarantees.

2.4. Beyond Localization

It has long been recognized that the assumption of a spatial decay of correlation, which is at the core of locali-
zation, is not universally applicable. Adaptive localization methods (Anderson, 2012; Bishop & Hodyss, 2007,
2009a, 2009b; Lee, 2021b) are well established in Earth science, and recent theoretical works (Flowerdew, 2015;
Ménétrier et al., 2015; Morzfeld & Hodyss, 2023) address this issue as well.

Covariance estimation is also a fundamental problem in statistics. Theoretical aspects of localization in NWP, for
example, are described by Furrer and Bengtsson (2007) and Bickel and Levina (2008), and a review of various
covariance estimation methods is provided by Pourahmadi (2011). The textbook by Wainwright (2019) em-
phasizes the difficulty of estimating a covariance matrix when the ensemble size is small. As representatives of
the many statistical techniques that have been created over the years, we consider a soft‐thresholding method
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(Wainwright, 2019), the graphical Lasso (G‐Lasso, Friedman et al., 2007), convex sparse Cholesky selection
(CSCS, Khare et al., 2019), and sparse covariance estimation (Xue et al., 2012).

2.4.1. Prior Optimal Localization

The idea of optimal localization is to find a Hadamard product estimator, defined by the matrix L, that minimizes
the cost function

FPOLO(L) =
⃦
⃦〈L ◦ P̂ − Pne→∞〉

⃦
⃦
Fro, (13)

where Pne→∞ is the “true” covariance matrix one would obtain from an infinite ensemble and where the brackets
〈⋅〉 denote an expected value over ensemble draws (Flowerdew, 2015; Ménétrier et al., 2015; Morzfeld &
Hodyss, 2023); ‖⋅‖Fro is the Frobenius norm, that is, the square root of the sum of the squares of all elements of a
matrix. Under Gaussian assumptions, one can solve this optimization analytically to obtain

[L]ij =
ρ2ij (ne − 1)
1 + ρ2

ij ne
, (14)

which we refer to as prior optimal localization (POLO). Here, ρij is the true correlation between the variables with
indices i and j. While POLO does not rely on a spatial decay of correlations, it assumes that the correlations are
known. POLO is, therefore, not a viable algorithm but it can be used as a benchmark for practical algorithms.
Empirical localization functions are closely related to optimal localization and are implemented based on the idea
of learning a localization matrix from training/simulation data (Anderson & Lei, 2013).

POLO does not guarantee a PSD estimator. To see why, consider a theorem in linear algebra: If one applies a
function element‐wise to a PSDmatrix whose elements are in (0, 1), the only functions that always preserve semi‐
definiteness have a power series representation with non‐negative coefficients (Guillot & Rajaratnam, 2015;
Schoenberg, 1942). The POLOmatrix in Equation 14 does not satisfy this theorem and, hence, the matrix L is not
guaranteed to be PSD, which in turn implies that the POLO covariance estimator is not guaranteed to be PSD.
Indeed, we routinely observe non‐PSD POLO estimates in the numerical examples in Section 4.

2.4.2. Sampling Error Corrections and Power Law Corrections

Anderson (2012) introduces the terminology and methodology of sampling error correction (SEC). SEC con-
structs covariance corrections quite similarly to POLO, but the SEC corrections are based on numerical exper-
iments with “training data” and groups of ensembles, so that the correction depends on the sample correlation,
rather than on the true correlation (compare Figure 1b of this paper with Figure 1 of Anderson (2012)).

Figure 1. (a) Standard deviation of ensemble correlation as a function of correlation (adapted from Figure 1 of Lee (2021b)). (b) POLO inspired correction factor, shown
as a function of correlation for different ensemble sizes. (c) Power law correction factor, as proposed by Lee (2021b), shown as a function of correlation for different
choices of the exponent β.
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Lee (2021b) subsequently noticed that the corrections may be efficiently approximated by a power law. Spe-
cifically, let ρ̂ be the empirical estimate of the ensemble correlations and define the PLC estimator of the cor-
relations by

ρ̂PLC = L(β) ◦ ρ̂, (15)

where the elements of the matrix L(β) are given by

[L(β)]ij = |[ ρ̂]ij|
β, (16)

that is, we raise the absolute values of the empirical correlations element‐wise to the power β. The exponent β is a
tunable parameter. Once we have selected a suitable β, we obtain the covariance estimator

P̂PLC = V̂ ρ̂PLCV̂, (17)

where V̂ is a n × n diagonal matrix whose diagonal elements are the ensemble standard deviations. For the rest of
this paper, we refer to this algorithm as “power law corrections” (PLC).

PLC does not guarantee a PSD covariance estimator: one can apply the same theorems and logic as outlined above
when discussing the PSD property in the context of POLO. The PLC correlation estimate, however, is PSD if the
exponent is “large enough.” To understand why, we derive lower bounds for the eigenvalues of L(β) using
Gershgorin's circle theorem. The theorem implies that an eigenvalue, λ, of L(β) satisfies the inequalities

1 − Zi ≤ λ ≤ 1 + Zi, (18)

where Zi is the sum of the absolute values of the off‐diagonal elements of a row (or column) of L(β):

Zi =∑
i≠j
|ρ̂ij|

β. (19)

If we pick the exponent β to guarantee that Zi ≤ 1 for all i (all rows of L(β)), then Gershgorin's theorem implies
positive semi‐definiteness of the matrixL(β) and, via the Schur product theorem, positive semi‐definiteness of the
PLC estimator. In our examples, and with our adaptive strategy for choosing the exponent β (see Section 3.4.1),
we never ran into trouble with definiteness of the estimators, but we cannot guarantee that this is generally the
case.

Covariance estimation using powers of ensemble correlations is also at the core of a method called ECO‐RAP
(ensemble correlations raised to a power, Bishop & Hodyss 2009a, 2009b, 2007). In ECO‐RAP, only positive,
even exponents are considered, which ensures that the ECO‐RAP estimator is PSD, and that ECO‐RAP,
embedded within an ensemble transform approach, is scalable to high‐dimensional problems.

2.4.3. Soft‐Thresholding

The idea of thresholding is to set small covariances to zero. This can be achieved by applying the soft‐thresholding
function

Tλ(s) = {
s − λ sign(s) if |s| > λ

0 otherwise
, (20)

element‐wise to the sampling covariance matrix, so that the soft‐thresholding covariance estimate is

[P̂ST]ij = Tλ([P̂]ij). (21)
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Here, λ is a positive scalar. Soft‐thresholding has favorable asymptotic properties (Wainwright, 2019) and is
computationally simple to implement, but the soft‐thresholding covariance estimator is not always PSD (Khare
et al., 2019). The parameter λ is usually determined via a tuning process. In Section 3.4.3, we describe how to find
this parameter adaptively.

2.4.4. Sparse Covariance Estimation

Xue et al. (2012) note that soft‐thresholding corresponds to the minimizer of the cost function

FSoft Thres.(P) =
1
2
‖P − P̂‖2Fro + λ∑

j≠k
|Pjk|, (22)

where P̂ is the empirical covariance matrix. The authors then describe an algorithm to minimize the cost function
(22) subject to the constraint that P ≥ ϵI (i.e., the matrix P − ϵI is PSD), where I is the identity matrix and where
ϵ > 0 is a nuisance parameter that can be set to a small number (10− 5 is suggested). The constraint guarantees that
the covariance estimator is symmetric positive definite. Moreover, the estimator is sparse because large off‐
diagonal elements are penalized and the 1‐norm drives small covariances to zero. This means that this tech-
nique, which we call sparse covariance estimation, is most applicable in situations where one expects that most
covariances should be zero. We note that sparse covariance estimation requires tuning to find an appropriate
regularization strength λ. In Section 3.4.4, we explain how to find the regularization strength adaptively.

2.4.5. Graphical Lasso

Soft‐thresholding and sparse covariance estimation find sparse estimates of the covariance matrix, that is, the
underlying assumption is that the majority of the covariances are equal to zero. One can also search for a
covariance matrix whose inverse is sparse. The inverse of the covariance matrix is called the precision matrix,
Θ = P− 1. The graphical Lasso (G‐Lasso, Friedman et al., 2007) finds an estimator of the precision matrix Θ by
minimizing the cost function

FG‐Lasso(Θ) = tr( P̂Θ) − log det(Θ) + λ∑
j,k
|Θjk|, (23)

over all PSDmatricesΘ. Here, P̂ is the empirical covariance matrix and λ is a regularization strength, so that large
λ promote sparsity of the precision matrix estimate. Note that minimizing Equation 23 over all PSD matrices
guarantees that the precision matrix estimate is PSD, which in turn guarantees that the covariance matrix estimate
is PSD. On the other hand, a sparse precision matrix does not, in general, guarantee a sparse covariance matrix, so
the underlying assumptions of the G‐Lasso and sparse covariance estimation or soft‐thresholding are quite
different (Bickel & Lindner, 2012; Morzfeld et al., 2019). The G‐Lasso can be computationally expensive
because (a) the optimization problem Equation 23 is non‐trivial; (b) the method requires tuning to find an
appropriate λ.

2.4.6. Convex Sparse Cholesky Selection

Khare et al. (2019) describe a method called CSCS, which works with the triangular Cholesky factor A of the
precision matrix Θ = ATA. Specifically, the goal is to find a sparse Cholesky factor by minimizing the cost
function

FCSCS(A) = tr(ATAP̂) − 2 log det(A) + λ ∑
1≤ j < i

|Aij|, (24)

where λ > 0. Due to the Cholesky factorization, the CSCS method guarantees that the resulting estimators of the
precision or covariance matrices are PSD.
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2.5. Morozov's Discrepancy Principle

Morozov's discrepancy principle is a technique to adjust regularization parameters in inverse problems
(Anzengruber & Ramlau, 2009; Morozov, 1984). Suppose that we are interested in solving the inverse problem
whose cost function is

Fα(x) =
1
2
‖ y − f (x)‖22 +

α
2
‖x‖22 , (25)

where y are the data, x is a vector of unknowns, f(⋅) is a nonlinear function (forward model) and α is a regula-
rization parameter. Solving the inverse problems amounts to minimizing the cost function. We denote the solution
of the inverse problem for a given α as x∗

α. The discrepancy principle determines the regularization parameter to be
the largest value of α such that

‖ y − f (x∗
α)‖2 ≤ S, (26)

where the scalar S describes the “noise level” in the problem. For example, if the errors in the data are described by
Gaussian noise, then S is derived from the variances of that noise. Application of Morozov's discrepancy principle
in practice requires that we solve a sequence of inverse problems, parameterized by α, to find the regularization
parameter that leads to a solution that is compatible with the assumed noise level. These ideas can also be used to
obtain “regularized” covariance estimates, as we will explain below.

3. New Methods for Noise‐Informed Covariance Estimation
Our goal is to design a Hadamard product estimator as in Equation 2, which means that we must build a correction
matrix L. Our design must go beyond assuming a spatial decay of correlations, because this assumption is not
reasonable in many cases. The design must also adapt itself to diverse situations in order to minimize tuning. We
focus on correcting correlations, and we estimate variances directly from the ensemble. This is common in NWP
(Gharamti et al., 2019; Hodyss, Campbell, & Whitaker, 2016; Whitaker & Hamill, 2012) and perhaps intuitive
because correlations are naturally scaled to the interval [− 1, 1].

3.1. Motivation: Damp Small Correlations More Heavily Than Larger Ones

We base the design of our new method on a basic fact about estimating correlations: estimating small correlations
is notoriously difficult, and estimating large correlations is, by comparison, easy. One way to understand this fact
is to generate ensembles of bivariate Gaussian random variables with varying degrees of correlation and then
compute the ensemble correlation. Repeating this process many times allows us to compute the standard deviation
in the correlation estimate as a proxy for the error we should expect in the correlation estimate (Anderson, 2012;
Lee, 2021b). The average standard deviation (averaged over independent ensemble draws) as a function of the
“true” correlation is shown in Figure 1a, for several ensemble sizes.

We note that the standard deviation, or expected error, in the correlation estimate is large if the “true” correlation
is small. This means that small correlations are usually not trustworthy, unless the ensemble size is huge.
Consequently, it is natural to damp small correlations because it is nearly impossible to distinguish “true” small
correlations from sampling error. Large correlations, on the other hand, are usually trustworthy, even if the
ensemble size is small. In fact a correlation equal to one should always be trusted—the standard deviation goes to
zero as the correlation goes to one. This simple numerical experiment thus tells us that a reasonable correlation
correction should damp small correlations more heavily than large correlations. The larger error in estimating
small correlations is a known feature of the sampling distribution of the correlation coefficient between Gaussian
random variables (Flowerdew, 2015).

POLO reiterates the idea that one can usually “trust” large correlations and that small correlations should be
damped. To see why, note that if we re‐scale the POLO correction Equation 14 so that correlations equal to one
are uncorrected, we obtain
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[L]ij =
(ne + 1)ρ2ij
1 + ρ2ij ne

. (27)

This re‐scaled correction factor is shown as a function of correlation in Figure 1b, and we see that it mimics the
ideas described just above. At any ensemble size, small correlations are subject to a stronger correction than large
ones.

Power law corrections (Lee, 2021b) and “ensemble correlation raised to a power” (ECO‐RAP, Bishop &
Hodyss 2009a, 2009b, 2007) are also based on the simple fact that one should damp small correlations more
severely than larger ones. This is illustrated in Figure 1c, where we show PLC correction factors (|ρ|β) for a few
choices of β. Moreover, PLC nicely resembles the SEC of Anderson (2012) (compare Figures 1b and 1c with
Figure 1 of Anderson (2012)).

3.2. Noise‐Informed Covariance Estimation

Our new covariance estimator is based on the simple idea that small correlations should be reduced more heavily
than large correlations, which we implement by adapting ideas from PLC. Additionally, we make use of an
understanding of sampling error (noise) in empirical correlations to make the method adaptive. The use of un-
certainties leads to the name of the method, “noise‐informed covariance estimation” (NICE).

NICE requires some a priori work that will be used to define the noise level within the correlation estimates.
Following the ideas described in Figure 1a, we use (offline) numerical experiments to determine a standard
deviation associated with a “grid” of empirical correlations (using bivariate Gaussian random variables, see
Section 3.1). We then form a lookup table so that we can assign a standard deviation to any empirical correlation
via interpolation.

After the offline work, the first actual step of NICE is to compute the n empirical ensemble standard deviations,
and the n(n − 1)/2 empirical ensemble correlations, which we compile in a symmetric n × n correlation matrix ρ̂
(with ones on the diagonal). The sum total noise level, which we call Sρ, is defined as follows. Using the lookup
table, we can assign a standard deviation σρij

to each correlation ρ̂ij in the matrix ρ̂, with the understanding that the
standard deviation is zero if the correlation is one. The noise level Sρ is a sum of all noises in the empirical
estimate of the correlations:

Sρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
n

i=1
∑

n

j=1
(σρij

)
2

√
√
√

. (28)

In the second step, we use Morozov's discrepancy principle, applied to the estimation of correlation matrices. The
“data” are the empirical estimates of the correlations ρ̂, and the preliminary correlation estimate is

ρ̂γ = ρ̂◦γ ◦ ρ̂, (29)

where γ is a positive, even integer. The elements of the matrix ρ̂◦γ are [ ρ̂◦γ]ij = ( [ ρ̂]ij)
γ, that is, we raise the

empirical correlations element‐wise to an even, positive power γ. Morozov's discrepancy principle suggests to
pick γ such that

⃦
⃦ ρ̂ − ρ̂γ

⃦
⃦
Fro ≤ δSρ, (30)

where the scalar δ is a tunable factor which we usually set to be equal to one (see numerical examples in Section 4,
for cross‐covariances in EKI we set δ = 0.5). Specifically, we pick the smallest even, positive integer γ* that
violates the discrepancy principle so that

⃦
⃦ ρ̂ − ρ̂γ∗

⃦
⃦
Fro ≥ δSρ, (31)
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This procedure determines an exponent γ* that leads to a correlation matrix estimate that is PSD (γ* is positive and
even) and too strongly regularized according to the discrepancy principle.

The third and final step linearly interpolates between a correction matrix that is too strong (power γ*) and a
correction with a smaller even integer (power γ* − 2), which is ostensibly “too weak”:

L(α) = α ρ̂◦γ∗
+ (1 − α) ρ̂◦(γ

∗ − 2). (32)

The associated correlation estimate is

ρ̂α = L(α) ◦ ρ̂. (33)

The discrepancy principle then determines the interpolation factor α. Specifically, we find α* to be the largest
α ∈ [0, 1] such that

⃦
⃦ ρ̂ − ρ̂α∗

⃦
⃦
Fro ≤ δSρ, (34)

that is, we determine the largest PSD correction that satisfies the discrepancy principle. The resulting, corrected
correlation estimate is

ρ̂nice = L(α∗) ◦ ρ̂, (35)

which in turn leads to the covariance estimate

P̂nice = V̂ ρ̂niceV̂, (36)

where V̂ is a n × n diagonal matrix whose diagonal elements are the ensemble standard deviations.

We can summarize NICE in the following steps.

1. Compute the empirical correlations ρ̂ and empirical standard deviations.
2. Determine the noise level Sρ via a lookup table and Equation 28.
3. Determine the smallest positive, even integer γ* that violates the discrepancy principle (Equation 31).
4. Determine the largest interpolation factor α* that satisfies the discrepancy principle (Equation 34).
5. Perform the element‐wise correction of the correlation matrix in Equation 35.
6. Use the corrected correlation matrix along with the empirical variances to compute the covariance estimate via

Equation 36

The effects of NICE are illustrated in Figure 2, where it is applied to estimate a 100 × 100 covariance matrix, used
by Bishop et al. (2017) to study localization in the context of satellite DA (compare our Figure 2a to Figure 2 in
Bishop et al. (2017)).

We show the true covariance in Figure 2a, the empirical estimate in Figure 2b, and the NICE estimator in
Figure 2c. All approximations use the same ensemble of size ne = 20. The empirical estimate is noisy (large off‐

Figure 2. (a) The true covariance matrix. (b) Empirical estimate of the covariance matrix. (c) Noise‐Informed Covariance Estimation approximation of the covariance
matrix (Section 3.2). (d) Partially Adaptive Noise‐Informed Covariance approximation of the covariance matrix (Section 3.3). All estimation methods use ne = 20
samples. The colormap is red for − 1, white for 0 and blue for 1.
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diagonal elements represent spurious covariances) and NICE improves on the empirical estimate by damping
small correlations.

3.2.1. Implementation Details and Positive Semi‐Definiteness

Step 1 limits the applicability of NICE in extremely high dimensions because we assume that all empirical
correlations can be computed. As is, NICE can be applied to problems with thousands of unknowns (which we
demonstrate in numerical experiments), but it may be computationally expensive if the dimension is 105 or larger.
When used in EnKF or EKI, one may be able to push these limitations further if the number of observations is
relatively small (see Section 4.3), or if NICE is incorporated within an ensemble transform framework (as in
ECORAP, Bishop & Hodyss, 2009a, 2009b), or serial filters (Anderson, 2001), or hybrid DA.

Step 2 is trivial, unless the dimension is huge (see comments above about Step 1). For Step 3, we first try γ= 2 and
check the discrepancy principle. If it is violated, we have found γ* and move to Step 3. If not, we try γ = 4 and so
on. In the examples below, a correction with γ* = 6 (or less) was always sufficient, meaning that we need about
three (or less) simple iterations to determine γ*. Moreover, note that if γ* = 2 is selected, then step four in-
terpolates between the element‐wise power two and the power zero (no correction). For Step 4, we try a small α
and gradually increase it (line search) until we violate the discrepancy principle, which then defines the “optimal”
α* to be the previous α we just tried. Alternatively, a root‐finding algorithm (e.g., the bisection method) could be
used.

We note that instead of a lookup table, one can also directly estimate the noise level Sρ in (28) using the Fisher
transformation. The distribution of the sample correlation coefficient ρ̂ij between normally distributed variables is
such that, when the Fisher transformation is taken,

zij = arctanh( ρ̂ij) =
1
2
log(

1 + ρ̂ij

1 − ρ̂ij
), (37)

we have that for ne > 3,

zij ∼
approx.N(arctanh(ρij),

1
ne − 3

), (38)

where ρij is the true correlation (see, e.g., Flowerdew, 2015). Thus, we can estimate the standard deviation of ρ̂ij as
follows. Taking ρ̂ij as an estimate of ρij, we draw m samples zij from the above Gaussian distribution, but replacing
arctanh(ρij) with arctanh( ρ̂ij) in the mean. Second, we apply the inverse Fisher transformation tanh(zij) to each of
the samples and compute their standard deviation. This strategy of computing the noise level in the correlations is
attractive because it is (a) easy; and (b) it avoids having to pre‐compute lookup tables. The lookup tables,
however, have a slight edge over the Fisher transformation approach in terms of their online cost.

Finally, the positive semi‐definiteness of the correlation estimator, ρ̂nice, follows from basic facts about Hadamard
products. Specifically, raising the elements of a PSD matrix to an even power preserves definiteness, and the sum
of two PSDmatrices is PSD. The positive semi‐definiteness of the covariance estimator Pnice follows from the fact
that a PSD correlation matrix leads to a PSD covariance matrix.

3.3. Partially Adaptive Noise‐Informed Covariance (PANIC)

In some problems, for example, in NWP, one may be in the situation where details of the correlation structure are
not well‐understood, but one may be quite certain that correlations should decay at far distances. For example,
Bishop and Hodyss (2011) use a “partially adaptive” method which combines an adaptive localization matrix with
a tuned (non‐adaptive) localization matrix that eliminates correlations in the far‐field. If the problem indeed has
this structure (far‐field being uncorrelated), then adding this information should increase the accuracy of the
estimator because small sampling errors in the far‐field accumulate to large errors in high‐dimensions (Hodyss &
Morzfeld, 2023; Morzfeld & Hodyss, 2023).
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One can easily combine these ideas with NICE. Since the resulting method requires some tuning, it is “partially
adaptive” (using the language in Bishop and Hodyss (2011)) and we call the method Partially Adaptive Noise‐
Informed Covariance (PANIC). PANIC amounts to localizing the NICE estimator. Specifically, we use a
localization matrix L(ℓ), that depends on a length scale ℓ, to obtain

ρ̂panic = L(ℓ) ◦ ρ̂nice. (39)

Here, the length scale ℓ is chosen a priori to be “large enough” to be certain that correlations beyond that length
scale are physically implausible. With the correlation estimate we obtain the covariance matrix in the usual
way via

P̂panic = V̂ ρ̂panicV̂, (40)

where V̂ is a n × n diagonal matrix whose diagonal elements are the ensemble standard deviations. Figure 2d
illustrates PANIC and compares it to NICE. We note that the PANIC estimator reduces spurious correlations in
the far field, but in the near field, PANIC and NICE are quite similar by construction. Moreover, the PANIC
estimator is PSD because NICE generates a PSD covariance estimate which is subsequently localized (Schur
product with a PSD localization matrix); both steps preserve symmetry and definiteness.

3.4. Other New Adaptive Covariance Estimation Methods

Within NICE, we combine an understanding of the noise in empirical correlations with Morozov's discrepancy
principle and, for that reason, the method is adaptive and tuning‐free. This idea extends to other covariance
estimation methods as well, and we now describe how to make some existing covariance estimation methods
adaptive.

3.4.1. Adaptive Power Law Correction

PLC requires that one determines the exponent β. In adaptive PLC (Ad.‐PLC), we use the largest (but not
necessarily integer) β that satisfies the discrepancy principle

‖ ρ̂ − L(β) ◦ ρ̂‖Fro ≤ Sρ. (41)

Recall that L(β) is a matrix whose elements are the absolute values of the empirical correlations raised to the
power β: [L(β)]ij = |[ ρ̂]ij|

β. For that reason, Ad.‐PLC does not guarantee positive semi‐definiteness of the
covariance estimator (just as PLC). In our numerical examples, however Ad.‐PLC always leads to PSD
covariance estimators, because the adaptive strategy picks out exponents that are large enough to ensure that the
matrix is PSD (see Section 2.4.2).

3.4.2. Adaptive Localization

In “traditional” localization, we define a localization matrix by a length scale ℓ that controls the decay of cor-
relations. In adaptive localization (Ad.‐Loc), we determine ℓ to be the largest length scale that satisfies the
discrepancy principle

‖ ρ̂ − L(ℓ) ◦ ρ̂‖Fro ≤ Sρ. (42)

In our numerical experiments below we use a simple line search over the length scale ℓ to find an optimal length
scale.

3.4.3. Adaptive Soft‐Thresholding

Soft‐thresholding requires that we determine the thresholding parameter λ in Equation 20. In adaptive soft‐
thresholding (Ad.‐ST), we correct correlations and determine the thresholding parameter λ* to be the largest λ
that satisfies the discrepancy principle
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‖ ρ̂ − ρ̂λ‖Fro ≤ Sρ, (43)

where ρ̂λ is the empirical correlation matrix thresholded with parameter λ, that is,

[ ρ̂λ]ij = Tλ ( [ ρ̂]ij), (44)

where Tλ(⋅) is the soft‐thresholding function in (20). With λ* defined in this way, we obtain the Ad.‐ST covariance
estimator by

PAd.‐ST = V̂ ρ̂(λ∗) V̂, (45)

where V̂ is a diagonal matrix whose diagonal elements are the ensemble standard deviations (as in NICE). Note
that Ad.‐ST, just like soft‐thresholding, does not guarantee a PSD estimate.

3.4.4. Adaptive Sparse Covariance Estimation

The sparse covariance estimation algorithm (Xue et al., 2012), which we briefly describe in Section 2.4, finds a
covariance estimate by minimizing the cost function (Equation 22) subject to the constraint that the estimator
satisfies PASC ≥ ϵI, which guarantees that the covariance estimator is PSD. The optimization problem can be
solved efficiently, but the optimization problem depends on the regularization parameter λ, which defines the
amount of sparsity in the estimate.

Adaptive sparse covariance estimation (ASCE) determines the regularization parameter automatically. As noted
by Xue et al. (2012), sparse covariance estimation and soft‐thresholding are closely related, because sparse
covariance estimation solves the same optimization problem as soft thresholding does, except with an added PSD
constraint. Thus, we first perform adaptive soft‐thresholding to find an optimal λ*, and then perform a single
optimization with this λ* to find a sparse correlation estimator ρ̂ASCE (note that we work exclusively with cor-
relations, not covariances). The ASCE correlation estimator defines the ASCE covariance estimator by

PASCE = V̂ ρ̂ASCEV̂, (46)

where V̂ is, as before, a diagonal matrix whose diagonal elements are the ensemble standard deviations.

4. Numerical Illustrations
We compare NICE to a variety of competing methods, some new and some old. Specifically, we consider the
following 13 methods for covariance estimation. We introduce abbreviations for all methods that will be used in
the numerical illustrations and in the Figures.

New adaptive methods

1. Noise informed covariance estimation (NICE, Section 3.2)
2. Partially adaptive noise informed covariance (PANIC, Section 3.3).
3. Adaptive power law corrections (Ad.‐PLC, Section 3.4.1).
4. Adaptive localization (Ad.‐Loc, Section 3.4.2).
5. Adaptive soft‐thresholding (Ad.‐ST, Section 3.4.3).
6. Adaptive sparse covariance estimation (ASCE, Section 3.4.4).

Methods for comparision

7. The uncorrected, empirical estimate (Ens.) serves as the baseline for the improvement a more sophisticated
covariance estimation can achieve.

8. POLO uses the correction matrix defined in Equation 14 with the “true” correlations (see Section 2.4.1). Using
POLO in this way describes a best‐case scenario, but we remind the reader that POLO is not a practical al-
gorithm because the true correlations are typically unknown (except in some of our synthetic numerical
illustrations).
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9. POLO with ensemble correlations (Ens.‐POLO) uses the correction matrix L in (14), but the correlations ρij

are uncorrected empirical correlations. This is perhaps the simplest method of increasing the accuracy of the
empirical covariance matrix, but we will see that NICE and other methods are superior.

10. Localization (Loc) is implemented via a Gaussian localization whose elements are

[L]ij = exp (− (dij/ℓ)2), (47)

where dij is the distance between grid points i and j and where the length scale ℓ is tuned (see below for
details). This is an example of the commonly used Hadamard product localization in NWP, which relies on the
assumption of a spatial decay of correlation.

11. PLC (Section 2.4.2), with tuned (non‐integer) exponent β.
12. The Graphical Lasso (G‐Lasso, Section 2.4) is implemented in Matlab code that is available on GitHub (we

downloaded the code at https://gist.github.com/samwhitehall/6422598). The code yields the G‐Lasso esti-
mate of the precision matrix and we subsequently compute its inverse to obtain an estimate of the covariance
matrix. We tune the regularization parameter of the G‐Lasso in the same way as we tune localization and PLC.

13. Convex sparse Cholesky selection (CSCS, Khare et al., 2019, see also Section 2.4) gives a Cholesky factor of
the inverse of the covariance matrix. As in the G‐Lasso, we use matrix inversion to find the covariance matrix.
We tune the regularization parameter in CSCS in the same way as we tune localization, PLC or G‐Lasso.

The various covariance estimation techniques and some of their properties are summarized in Table 1. All
techniques, except G‐Lasso, CSCS and ASCE can be used on non‐square correlation matrices (and cross‐
covariance matrices), which will become important in examples with EKI and in the geomagnetic DA example.

We tune the localization (length scale ℓ), PLC (exponent β), G‐Lasso and CSCS (regularization parameter) as
follows. We perform a (large) number of training experiments in which we vary the tunable parameter (line
search). We then compute an average error and declare the parameter that leads to the smallest error as optimal.

Table 1
Summary of Covariance Estimation Methods and Their Properties

Method Adaptivity Assumptions PSD guarantees Computational cost

NICE Yes Small corr. noisy Yes Low

PANIC Yes Small corr. noisy + spatial decay of correlation Yes Low

Ad.‐PLC Yes Small corr. noisy No Low

PLC No Small corr. noisy No Low

Ad.‐Loc Yes Spatial decay of correlation Yes Low

Loc No Spatial decay of correlation Yes Low

Ad.‐ST Yes Small corr. noisy No Low

ASCE Yes Sparse cov. Yes Medium

POLO – Known corr. No Low

Ens.‐POLO – None No Low

Ens. – None Yes Low

G‐Lasso No Sparse inv. cov. Yes High

CSCS No Sparse Cholesky Yes High

Note. In the assumptions column, “small corr. noisy” stands for the assumption that small correlations are noisy and, therefore
reduced; “sparse cov.” stands for the assumption of a sparse covariance matrix; “known corr.” stands for the assumption that
all correlations are known; “sparse inv. cov.” stands for the assumption that the inverse of the covariance matrix is sparse;
“sparse Cholesky” stands for the assumption that a Cholesky factor of the inverse covariance matrix is sparse. We assign a
“low” computational cost if the technique performs simple operations on the elements of a covariance or correlation matrix.
We assign a “high” computational cost if the technique solves optimization problems over (PSD) matrices. The computa-
tional cost is labeled “medium” for ASCE, which does perform an optimization over matrices but does so in a particularly
speedy way (Xue et al., 2012).
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The optimal parameter is used in subsequent experiments. We repeat the tuning for each numerical example
because the optimal tunable parameters are problem‐dependent.

We use all 13 methods in our first set of numerical experiments with simple Gaussians. Subsequently, we do not
use methods that are computationally expensive and that do not yield good results in simple experiments. G‐Lasso
and CSCS, for example, are quite slow and do not perform well on our first set of simple tests. Other methods, for
example, PANIC, may not be applicable in subsequent examples because they presume a spatial decay of cor-
relation. Finally, POLO (with true correlations) can only be used in synthetic scenarios where the correlations are
known a priori, which is only true for our first set of very simple experiments.

4.1. Simple Gaussian Tests

We define a 100 × 100 covariance matrix P and draw ne = 20 ensemble members from the corresponding
Gaussian with mean zero. We then use NICE to estimate the covariance matrix and measure the error in the
estimate by

Error =
⃦
⃦P̂nice − P

⃦
⃦
Fro

‖P‖Fro
. (48)

Since the error is random, we average over ensemble draws, and the average error indicates an error we should
typically expect. We use the same procedure to compute the error of other covariance estimation methods.

We consider four different covariance matrices, illustrated in Figure 3.

1. Gaussian kernel. A covariance matrix P with a Gaussian kernel is defined by the elements

[P]ij = exp(−
1
2
(
dij

ℓ
)

2

),

where the length scale is ℓ= 5 and where dij is a periodic distance between the grid points i and j. Note that this
covariance has the same kernel function as the localization matrix used during classical covariance locali-
zation (Loc).

2. Multi‐scale kernel. A multi‐scale covariance P is defined by the superposition of two covariance matrices with
Gaussian kernels and different length scales:

[P]ij = 0.7 exp(−
1
2
(

dij

ℓ1
)

2

) + 0.3 exp(−
1
2
(

dij

ℓ2
)

2

).

We chose the length scales to be ℓ1 = 2 and ℓ2 = 20 (Flowerdew, 2015; Morzfeld & Hodyss, 2023).

3. Satellite DA covariance. Bishop et al. (2017) consider the covariance matrix

Figure 3. The covariance matrices used in Section 4.1. (a) Gaussian kernel. (b) Multi‐scale kernel. (c) Covariance inspired by
satellite data assimilation. (d) Covariance of two spatial fields (pressure and wind). Color indicates the matrix elements with
blue corresponding to one, white to zero, and red to minus one.
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[P]ij =
̅̅̅̅̅
ij
n2

√

exp(−
1
2
(
i − j
ℓ1

)

2

) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 −
i
n
) (1 −

j
n
)

√

exp(−
1
2
(
i − j
ℓ2

)

2

).

as a toy problem for satellite DA. Following Bishop et al. (2017), we chose the length scales to be ℓ1 = 1 and
ℓ2 = 8. Note that this covariance matrix is “nonstationary” covariance because the elements of P depend on i
and j, not just of i − j.

4. Pressure‐wind covariance. We consider two spatially extended fields u (pressure) and w (wind), related by a
derivative such that w = du/dx. We assume that the pressure variable has a Gaussian covariance kernel with
length scale ℓ= 5 and we construct the covariance of w, as well as the cross covariances between u and w, using
a finite difference operator (see Morzfeld and Hodyss (2023) for more details). We note that if both u and w
have 100 components, the overall dimension of the problem is nx = 200.

We apply all 13 covariance estimation techniques listed above for all but the pressure‐wind covariance, for which
we do not apply G‐Lasso because the code runs very slowly on this 200‐dimensional problem. Note that all four
covariance matrices we consider here have exponentially small correlations in the far field (away from the di-
agonal), so that the use of a localization and PANIC are appropriate. Results are summarized in Figure 4, which
shows the average error (103 trials) for each method and covariance type along with one standard deviation error
bars.

Figure 4. Error (mean and one standard deviation error bars) in covariance matrix estimates for various covariance types with
dimension nx = 100. The ensemble size is ne = 20. (a) Gaussian covariance kernel. (b) Multi‐scale covariance kernel.
(c) Satellite data assimilation covariance matrix. (d) Pressure‐wind covariance matrix. The bar chart is color coded so that the
vanilla method (Ens.) appears in blue, tuning‐free/adaptive methods (Ens.‐POLO, Noise‐Informed Covariance Estimation,
Partially Adaptive Noise‐Informed Covariance, Ad.‐PLC, Ad.‐ST, adaptive sparse covariance estimation, Ad.‐Loc) appear
in green, tuned methods (Power law corrections, convex sparse Cholesky selection, G‐Lasso, Loc) appear in orange, and the
infeasible method (POLO) appears in pink (rightmost bar in each panel).
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The numerical experiments support the following conclusions.

1. For all four covariance types, all covariance estimation techniques are more accurate than the sample
covariance matrix, which always has the largest error.

2. POLO with ensemble correlations (Ens.‐POLO) improves the covariance estimates in all four cases, but not to
the extent of the other methods we tried.

3. NICE, Ad.‐PLC, Ad.‐ST and ASCE lead to similar errors which are in turn comparable to the errors of a finely
tuned PLC. The fact that all four adaptive methods perform as well as a related finely tuned method suggests
that the discrepancy principle and the pre‐computed noise level are robustly applicable to adaptive covariance
estimation.

4. The adaptive localization (Ad.‐Loc) leads to errors almost as small as the errors obtained by a finely tuned
localization (Loc). This reiterates our previous point, that is, that adapting localization/covariance estimation
parameters via a discrepancy principle is a robust idea.

5. The errors of PANIC are slightly smaller than the errors of NICE, which suggests that reducing the (non‐
adaptive) far‐field correlations has a positive effect.

6. Localization (Loc) comes close to the optimal errors obtained by POLO and Loc and POLO lead to the
smallest errors in all four examples.

7. G‐Lasso and CSCS lead to smaller errors than Ens.‐POLO, but the errors are larger than for the new adaptive
methods. G‐Lasso and CSCS also require significantly more computations than the competing methods, and
we conclude that G‐Lasso and CSCS are not competitive in these examples. Recall, however that G‐Lasso and
CSCS are designed to estimate the precision matrix (not the covariance matrix as we do here). CSCS further
targets applications with a natural ordering of the data.

During the trials of our experiments we monitored if a covariance matrix estimate was PSD or not. When the
exponent in PLC was chosen adaptively (Ad.‐PLC) or via tuning, we encountered no negative eigenvalues, while
POLO, Ens. POLO, and Ad.‐ST often produced non‐PSD estimates. This is an interesting result because POLO is
the estimator with the lowest errors and yet it is not always PSD. Our error metric here, however, does not account
for this deficiency, violating the PSD property may cause instability within EnKFs or EKI (see Section 2.3).

When we increase the dimension of the problem, the decrease in errors is more dramatic (Hodyss & Morz-
feld, 2023). Figure 5 summarizes results obtained for problems of dimension n = 1,000.

We note qualitatively the same results as in the n = 100 dimensional example: NICE, Ad.‐PLC, Ad.‐ST and
ASCE are comparable and, even though these methods do not require tuning, they are as good as a tuned PLC.
These four methods, however, do not lead to errors as small as those obtained by localization (tuned or adaptive)
or an optimal correction (POLO).

Finally, note that the correlations decay with distance in all above examples, which is exploited by classical (or
adaptive) localization, but this correlation structure is discovered by the adaptive methods (NICE, Ad.‐PLC, Ad.‐
ST and ASCE). Our first set of simple tests thus suggests that NICE, Ad.‐PLC, Ad.‐ST and ASCE can be viable
options in problems where assumptions about the underlying correlation structure are unavailable or in problems
where one wishes to reduce the tuning costs.

4.2. Cycling Data Assimilation Experiments With the Lorenz ’96 Model

We perform cycling DA experiments with the Lorenz’96 model (L’96, Lorenz, 1996) and an EnKF (stochastic
EnKF implementation, Burgers et al., 1998; Evensen, 2009, 1994). Specifically, we apply, within the EnKF, the
covariance estimation methods NICE, PANIC, Ad.‐PLC, ASCE, PLC, Ad.‐Loc, localization, and a version of
POLO that indicates a best‐case scenario at the expense of requiring a very large ensemble (hence being infeasible
in practice). As is common in DA, we apply the covariance estimation (NICE, etc.) in conjunction with a
covariance inflation. For the inflation, we simply set

P← (1 + κ)P, (49)

where κ > 0 is an inflation parameter (tuned, see below).

The tuning of covariance estimation and/or the inflation is as follows. For the adaptive methods (NICE, Ad.‐PLC,
ASCE and Ad.‐Loc), we only need to tune the inflation parameter κ. For PANIC, we also only tune the inflation

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004417

VISHNY ET AL. 18 of 30

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004417 by T
est, W

iley O
nline L

ibrary on [30/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and set the length scale for the spatial localization to ℓ = 10, which is wide enough to expect that correlations
beyond that length scale are unreasonable. For localization, we tune the length scale jointly with the inflation
parameter κ. Similarly, for PLC we tune the exponent β jointly with the inflation parameter κ. In all cases, the
tuning is done by running 2,000 DA cycles, disregarding the first 200 cycles as “spin‐up,” and recording the
associated, time‐averaged root mean square error (RMSE) for each inflation parameter and, if needed, additional
covariance estimation parameters. The parameters that lead to the smallest time‐averaged RMSE in the training
experiment are subsequently used in another, independent experiment in which we perform 1,000 DA cycles,
disregard the first 100 cycles as spin‐up, and average RMSE after the spin‐up period. Throughout the experi-
ments, we hold the ensemble size constant at ne = 20. The state dimension is n = 40 and we observe every other
variable, that is, the number of observations is equal to 20. All observation error variances are equal to one.
Observations are collected every 0.4 (dimensionless) time units and the time step of the numerical integrator (a
fourth order forward Runge‐Kutta method) is set to Δt = 0.05 (this is the same setup as in Hodyss and
Morzfeld (2023)).

To establish a best‐case scenario, we use an EnKF without inflation or localization/covariance estimation but with
a large ensemble size ne= 500.We further apply POLO to an EnKF with ne= 20 (with tuned inflation), but run, in
parallel, the large ensemble size EnKF (ne = 500) to obtain the correlation information. These latter experiments
can indicate what a near‐optimal localization may achieve (assuming the large ensemble size EnKF reveals the
main features of the “true” correlation).

Figure 5. Same as Figure 4, but with n = 1,000. Error (mean and one standard deviation error bars) in covariance matrix
estimates for various covariance types with dimension n = 1,000. (a) Gaussian covariance kernel. (b) Multi‐scale covariance
kernel. (c) Satellite data assimilation covariance matrix. (d) Pressure‐wind covariance matrix. The bar chart is color coded so
that the vanilla method (Ens.) appears in blue, tuning‐free methods (Ens.‐POLO, Noise‐Informed Covariance Estimation,
Partially Adaptive Noise‐Informed Covariance, Ad.‐PLC, Ad.‐ST, adaptive sparse covariance estimation, Ad.‐Loc) appear
in green, tuned methods (Power law corrections, Loc) appear in orange, and the infeasible method (POLO) appears in pink
(rightmost bars of each panel).
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The results of our numerical experiments are summarized in Figure 6, which
shows the time average of the analysis RMSE of EnKFs with various
covariance estimation/localization techniques.

The results of the cycling DA experiments follow a similar pattern as the
simpler tests with “static” covariances of the previous section.

1. NICE, Ad.‐PLC, ASCE and the tuned PLC lead to nearly identical errors,
and the adaptive localization (Ad.‐Loc) comes fairly close to the tuned
localization (Loc), reiterating that the discrepancy principle is robustly
applicable to adaptive covariance estimation.

2. PANIC reduces the error as compared to NICE, because the assumption of
zero (or near‐zero) correlations in the far‐field is valid for L’96. The
additional error reduction that PANIC achieves over NICE, however, is
minor (as in the previous, non‐cycling examples).

3. Localization leads to smaller errors than NICE, PANIC, Ad.‐PLC or PLC,
but the errors are still larger than what can be achieved with a large
ensemble size or a nearly optimal localization (POLO).

4. POLO based on correlations extracted from a large ensemble leads to
smaller errors than all other techniques, but still cannot reach the low error
achieved by a large ensemble size. This could be due to the Gaussian

assumption underpinning POLO, which is not satisfied in cycling DA experiments with L’96, or it could
indicate more general limitations of correlation‐based covariance corrections.

5. We encountered no negative eigenvalues during the cycling DA experiments with PLC or Ad.‐PLC.

We further note that all covariance estimation methods (NICE, PANIC, Ad.‐PLC, PLC, ASCE, Ad.‐Loc, Loc,
POLO) lead to much smaller errors than a vanilla EnKF without inflation or localization/covariance estimation.
The vanilla EnKF diverges and, therefore, leads to macroscopic error.

Our test with the L’96 model re‐iterates our conclusions based on the simpler experiments of the previous section:
NICE, Ad.‐PLC and ASCE reduce the error in covariance estimates and, therefore, in a cycling EnKF without
making any assumptions about the underlying correlation structure and without tuning (only inflation is tuned for
these methods). The fact that localization leads to smaller errors than NICE, Ad.‐PLC or ASCE stems from the
heavy tuning and, perhaps more importantly, from the fact that the underlying correlation structure here is
consistent with the assumptions of classical localization.

4.3. Cycling Data Assimilation Experiments With a Geomagnetic Proxy Model

We consider cycling DA experiments with an EnKF on a proxy model for geomagnetic DA, described in detail by
Gwirtz et al. (2021). The model consists of a (chaotic) Kuramoto‐Sivashinsky (KS) equation coupled to an in-
duction equation, and describes the spatial and temporal variations of a velocity field coupled, via induction, to a
magnetic field. We consider the model in a 2D configuration on a square and discretize the partial differential
equations by a spectral method (Fourier series), which leads to a state dimension of n= 1,920 Fourier coefficients.
Following Gwirtz et al. (2021), we collect observations of Fourier modes of the magnetic field with wavenumbers
in the x‐ and y‐directions that are less than or equal to three (for a sum total of 48 Fourier coefficients). The time
interval between two consecutive observations is about 7% of the model's e‐folding time. Note that the velocity
field is entirely unobserved. This setup is somewhat indicative of what to expect in a larger numerical dynamo
model for decadal‐scale forecasts of the geomagnetic field (Gwirtz et al., 2021).

We assimilate the spectral observations using a stochastic EnKF with ensemble size ne = 100, essentially
repeating the DA experiment reported in Section 4.2 of Gwirtz et al. (2021). Since we observe Fourier co-
efficients, we have no natural notion of a “spatial” distance, and we therefore resort to NICE and Ad.‐PLC to
correct the covariances within the EnKF. We have tried hard, but failed to find a localization based on a spatial
decay of correlation that reduces errors, see also Gwirtz et al. (2021). Note that the state dimension is large
(nx= 1,920), but the number of observations is small (ny= 48), so that it is natural to estimate the matricesHP̂HT

(48 × 48) and P̂HT (1,920 × 48), rather than the ensemble covariance P̂ (1,920 × 1,920). The results reported
below, however, do not change much if we estimate the ensemble covariance P̂ using the same methods. A more

Figure 6. Time‐averaged analysis root mean square error after spin up along
with one standard deviation error bars in ensemble Kalman filter (EnKF)
with various covariance estimation techniques. The bar chart is color coded
so that tuning‐free methods (Noise‐Informed Covariance Estimation,
Partially Adaptive Noise‐Informed Covariance, Ad.‐PLC, adaptive sparse
covariance estimation, Ad.‐Loc) appear in green, tuned methods (Power law
corrections, Loc) appear in orange, and infeasible methods (POLO and the
large ensemble EnKF) appear in pink (two bars on the right).
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detailed discussion of the differences between these two approaches in the context of localization can be found in
Campbell et al. (2010).

The apparent absence of correlation structure in covariance matrices within an EnKF is described in detail in
Gwirtz et al. (2021) (see, e.g., Figures 5a, 5b, and 10 of Gwirtz et al. (2021)), and is also illustrated in Figure 7,
where we plot correlation matrices associated with PHT and HPHT during one cycle of an EnKF with a large
ensemble size ne = 1,000. It is clear from the figure that correlations are strong throughout the system, but also
that there is no coherent pattern. The lack of discernible correlation patterns makes estimating covariances from a
small ensemble difficult, but, as we will see, NICE and Ad.‐PLC handle this problem well. Moreover, the cor-
relations change from one DA cycle to the next (see Figure 10 in Gwirtz et al. (2021)), but since NICE and Ad.‐
PLC are adaptive, these methods can capture the time‐varying correlation structure within this cycling EnKF.

For our numerical tests, we set the ensemble size to ne = 100 and use NICE and Ad.‐PLC, along with a 6%
covariance inflation of both HPHT and PHT (Gwirtz et al., 2021). For each EnKF, we perform 600 DA cycles,
with the first 300 cycles being discarded as “spin‐up.”

Figure 8 illustrates the results of our numerical experiments for NICE (results for Ad.‐PLC are similar). Panels (a)
and (b) show errors (truth minus a one‐cycle forecast) as a function of the DA cycle for the velocity field and
magnetic field for EnKFs with NICE (green). We note the spin‐up period and the subsequent stable DA phase.
The errors in the figure are normalized by the macroscopic error, which is the error one would expect without any
DA. Panels (c)–(e) illustrate a forecast based on an EnKF using NICE for covariance estimation. Shown is the
vorticity of the velocity field approximately 4.7 e‐folding times after the last assimilation cycle (panel (c)), along
with the NICE‐EnKF forecast (panel (d)) and the difference of the two (panel (e)). It is notable that the EnKF with
a NICE covariance estimation can be used to create forecasts that are accurate on practically relevant time scales.

We compare the performance of an EnKF with a small ensemble size (ne = 100) using NICE and Ad.‐PLC, to an
EnKF with a large ensemble (ne = 1, 000) but without covariance corrections. In this context, it is important to
note that Gwirtz et al. (2021) showed that an EnKF without covariance corrections stabilized on this problem with
an ensemble size of ne = 800. We further consider an EnKF with ne = 100, and with covariance estimation based
on a shrinkage estimator, which decreases the magnitude of all off‐diagonal elements of a covariance matrix. The
shrinkage estimator is taken from Gwirtz et al. (2021), where it was heavily tuned, and was found to be “the best”
covariance estimation method for this problem.

The results of our numerical experiments and relevant results reported in Gwirtz et al. (2021) are summarized in
Table 2, which lists errors in magnetic (observed) and velocity (unobserved) fields.

We note a similar pattern as in our earlier experiments: NICE and Ad.‐PLC are as good or better than a finely
tuned estimator (Shrinkage) and the adaptive covariance estimation methods indeed come quite close to the
performance of an EnKF with a much larger ensemble size. Moreover, both methods succeed in propagating
information from the observed magnetic field to the unobserved velocity field, as indicated by the small errors in
the unobserved velocity field. In this example, NICE leads to smaller errors than Ad.‐PLC (in both fields).

Figure 7. Correlations in a cycling ensemble Kalman filter (EnKF) for the geomagnetic model (large ensemble size). (a) The
48 × 48 correlation matrix associated withHPHT during one cycle (post spin‐up) of an EnKF with ensemble size ne= 1,000.
(b) The correlation matrix associated with PHT, during one cycle (post spin‐up) of an EnKF with ensemble size ne = 1,000.
The correlation matrix associated with PHT is truncated at wave number five so that its size is 240 × 48. To make the figure
easier to read, we transpose the correlation matrix associated with PHT. What is important to note from this figure is that
(i) there are strong correlations across various variables represented in HPHT and PHT; and (ii) the correlations follow no
discernible pattern and, what's worse, large and small correlations switch places across various assimilation cycles (not
shown, but see Gwirtz et al. (2021)). Color indicates the matrix elements with blue corresponding to one, white to zero, and
red to minus one.
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Nonetheless, the fact that both adaptive methods succeed with essentially no tuning on a problem that is much
harder and much more high‐dimensional than the previous test problems is reassuring and speaks to the
robustness of the proposed techniques. Moreover, NICE leads to smaller errors than the best method thus far
reported in the literature (the heavily tuned shrinkage estimator of Gwirtz et al. (2021)).

Finally, we report (again) that even though Ad.‐PLC does not guarantee PSD covariance estimates, all co-
variances (HPHT) that were estimated with this method in this example turned out to be PSD.

4.4. Inversion of Electromagnetic Data

We now apply EKI to a marine electromagnetic (EM) inverse problem. The goal of the inversion is to compute
resistivity as a function of depth from measurements of apparent resistivity and phase, both as a function of
period. The seafloor magnetotelluric (MT) data (10 apparent resistivities along with 10 phases, see Figure 10d)
are collected off‐shore of New Jersey (Blatter et al., 2019; Gustafson et al., 2019). The data are equipped with

error estimates in the form of standard deviations. The MT model uses a
standard recursion relationship (Ward and Hohmann (2012), see also Blatter
et al. (2022a, 2022b)), and is discretized with 60 layers, each 20 m thick,

As is common in geophysical inversion, we use a quadratic regularization,
that is, we minimize the cost function

F(x) =
⃦
⃦
⃦R−

1
2

d (d − M(x))
⃦
⃦
⃦
2

2
+ μ

⃦
⃦
⃦B−

1
2x
⃦
⃦
⃦
2

2
, (50)

where d are the data, x are the unknown resistivities,M is the MT model, Rd

is a diagonal matrix that contains the variances associated with the data on its
diagonal, and where B is a regularization matrix, which we chose to be a

Figure 8. Illustration of covariance estimation within a cycling ensemble Kalman filter for a geomagnetic proxy model.
(a) Normalized error in the unobserved velocity field as a function of assimilation cycle for two covariance estimation
methods (Noise‐Informed Covariance Estimation (NICE) and shrinkage). (b) Normalized error in the partially observed
magnetic field as a function of assimilation cycle for two covariance estimation methods (NICE and shrinkage). (c) Vorticity
of the velocity field. (d) Forecast of the vorticity of the velocity field based on data assimilation with NICE. (e) Forecast error
(difference between panels (c) and (d)).

Table 2
Normalized Errors Scaled by the Respective Macroscopic Errors and
Multiplied by 103 for Three Covariance Estimation Methods and for an
Ensemble Kalman Filter With a Large Ensemble Applied to a Geomagnetic
Proxy Model

Error in mag. field Error in vel. field

Shrinkage (tuned) 1.2 2.0

Ad.‐PLC 1.2 2.5

NICE 1.0 1.8

Large ens. 0.7 1.1
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covariance matrix with a Gaussian kernel and length scale ℓ = 200 m. The regularization parameter μ was ob-
tained via an Occam inversion (Constable et al., 1987). We note that discovering an appropriate regularization
strength μ in EM inversions is an interesting subject in itself, but for the purposes of this numerical demonstration,
it is sufficient to think of μ as being given. A similar EM inverse problem was considered by Tong and Morz-
feld (2023), also in the context of localizing EKI.

To apply EKI to this regularized problem, we recast the cost function as

f (x) =
⃦
⃦
⃦R−

1
2( y − G(x))

⃦
⃦
⃦
2

2
, (51)

where

R− 1
2 =

⎛

⎜
⎜
⎝

R−
1
2

d 0

0
̅̅̅
μ

√
B− 1

2

⎞

⎟
⎟
⎠, y = (

d

0
), G(x) = (

M(x)

x
). (52)

This “trick” is explained in detail in Chada et al. (2020) where the resulting method is called Tikhonov regularized
EKI (TEKI). Note that the EKI framework (see Section 2.2) can now be directly applied, but at the expense that
the “data‐data” correlations in Ĉgg are stacks of an ensemble of model outputs and the ensemble itself.

Recall that the EKI iteration requires that we repeatedly estimate the covariances Ĉgg and Ĉxg from the ensemble.
We correct these covariances using NICE, Ad.‐PLC and ASCE. For all three methods, our numerical experiments
indicate that the tunable parameter δ in the discrepancy principle needs to be decreased when we correct the data‐
to‐unknown covariances Ĉxg. A factor of δ= 0.5 leads to good results, whereas δ= 1 leads to TEKI iterations that
do not reduce the error as low as with δ = 0.5. The reason for reducing δ is that a smaller δ leads to a softer
correction, which is needed because several of the “true” data‐to‐unknown covariances are small, and it is ad-
vantageous to keep them, rather than to remove them, in order to propagate information from the data to the
unknown variables. This effect is illustrated in Figure 9: NICE with a “strong” correction (δ = 1) is adequate for
the data‐data correlations (top row), but inadequate for the cross correlations (bottom row).

Implementing a spatial localization is neither intuitive nor easy in this example, but we tried it nonetheless. First,
we apply a localization to Ĉgg, although this has little physical motivation. We chose a localization matrix with a
Gaussian kernel and a length scale ℓ= 200 m after some initial tries (no careful tuning). Performing a localization
on Ĉxg (60 × 80) is more tricky. We apply no localization to the first 20 columns of Ĉxg, which corresponds to the
covariances computed from the ensemble of model outputs. We apply a Gaussian localization with length scale
ℓ = 200 m to the remaining 60 columns. With this same setup, we can also apply an adaptive localization
(Ad.‐Loc).

We now run TEKIs with various covariance estimation schemes and covariance inflation (see Equation 49). The
inflation depends on the RMSE, defined by

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nd

∑

nd

i=1
(
di − d̂i

σi
)

2
√
√
√
√ , (53)

where di, i= 1,…, nd, are the nd data points, σi are the corresponding observation error standard deviations (given
as part of the MT data set as the diagonal elements of R1/2

d ); d̂ =M(x̂) are model predictions based on the mean
of the TEKI ensemble, x̂. The inflation is κ = 15% when RMSE > 1.2, κ = 10% when 1.1 ≤ RMSE ≤ 1.2, and we
turn the inflation off (κ = 0) when RMSE < 1.1. We did not tune the inflation systematically.

We use TEKIs with ensemble size ne = 30 and 200 iterations. For each TEKI, we perform 100 independent
experiments, each with a different random initial ensemble and then average the results. Our findings are sum-
marized in Figure 10.
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Panel (a) shows the averaged RMSE for each TEKI. Note that an RMSE of approximately one is good because
then the TEKI estimate fits the data to within the assumed error level (standard deviation of the data). First, we
note as before that all covariance estimation methods (NICE, Ad.‐PLC, PLC, ASCE, Ad.‐Loc, Loc) lead to TEKIs
which can achieve an acceptably low RMSE and that the adaptive methods are nearly as good as the tuned
methods or a TEKI with a larger ensemble (ne = 200). Second, we note that the inflation already has a large effect
on the RMSE: An inflated TEKI reaches an RMSE that is lower than a “vanilla” TEKI without any covariance
estimation or inflation.

We further assess the “quality” of our TEKI inversions by comparing the TEKI results to a gradient‐based
optimization (Gauss‐Newton). We measure the difference between the TEKI result and the Gauss‐Newton
result by the error

Ref. Error =
‖res.GN − res.teki‖22

‖res.GN‖22
(54)

where res. refers to the (log) resistivity and the subscript GN refers to the Gauss‐Newton method and subscript
teki refers to a TEKI result. The error with respect to a reference model is shown in Figure 10b. We see that the
reference error behaves very similarly to the RMSE (not surprisingly): The covariance estimation methods all
lead to a small reference error and all methods perform similarly. The inflated TEKI (no additional covariance
estimation) leads to a significantly larger reference error than the other TEKIs, although the RMSE is comparable.
The two errors can be different here because many different models fit the MT data similarly well. The large
reference error indicates that the model obtained with an inflated TEKI is quite different from the reference
model. Thus, the covariance estimation is helpful here to “smooth” the models so that they are similar to the
reference model, obtained by Gauss‐Newton (see also Figure 10c).

Finally, Figures 10c and 10d show a typical result obtained with TEKI and NICE. Panel (c) shows the (log)
resistivity as a function of depth and panel (d) shows the associated fit to the data. For comparison, we also show
the resistivity and data fit we obtain via Gauss‐Newton. The TEKI approximation with NICE is very similar to the
Gauss‐Newton result for depths up to about 600 m, where the data are most informative (small error with respect
to the reference model in Figure 10b) and the fit to the data for TEKI and Gauss‐Newton is nearly identical (small
RMSE in Figure 10a).

Figure 9. Correlation matrices corresponding toCgg (top row) andCxg (bottom row) during one step of a TEKI. Panels (a) and
(e) show estimates of the correlations for a large ensemble size. Panels (b) and (f) show estimates of the correlations for a
small ensemble size. Panels (c) and (g) show the Noise‐Informed Covariance Estimation (NICE) estimator with δ = 0.5.
Panels (d) and (h) show the NICE estimator with δ = 1. In panel (a), green squares highlight areas in which correlations are
weak, which NICE with δ = 1 (panel (d)) dampens, but NICE with δ = 0.5 keeps. In panel (e), a green square highlights an
area in which correlations are present, but which are dampened too strongly by NICE with δ = 1, as in panel (h), whereas
NICE with δ = 0.5 keeps these correlations. Color indicates the matrix elements with blue corresponding to one, white to
zero, and red to minus one.
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4.5. Training Feed‐Forward Neural Networks With Time‐Averaged Data

Our last example is a simplification of a climate sciences problem in which sub‐grid parameterizations of a
climate model are represented by a NN. The training strategy for the neural network is to define a loss function in
terms of time‐averaged data of the climate model and to adjust the weights and biases of the NN to minimize the
loss function. The usual back propagation (gradient descent) cannot be used in this context because the “map”
from the NN weights and biases to the time‐averaged data of the climate model may not be differentiable, or
derivatives may be difficult to obtain (Schneider et al., 2024).

As a “cartoon” for this difficult problem, we consider a modified Lorenz model (mL’96) as a stand‐in for a climate
model and we parameterize the forcing of mL’96 by a simple feed‐forward neural network. Specifically, the
mL’96 model is

dxi

dt
= (xi+1 − xi− 2) xi− 1 − xi + Fi, (55)

where x− 1 = xnx − 1, x0 = xnx
, xnx+1 = x1 (periodicity) and where

Fi = 8 + 6 sin(
4π
nx

i), (56)

is a coordinate‐dependent forcing. Note that the forcing is the only modification we make, and our modification is
inspired by the storm‐track model of Bishop et al. (2017). We choose the state dimension to be nx = 100.

Figure 10. Summary of results for the electromagnetic (EM) inversion. (a) root mean square error (see (53)) of various TEKI
implementations. (b) Error with respect to a reference model, obtained via gradient‐based optimization (see (54)) of various
TEKI implementations. In panels (a) and (b), the bars are averages over results obtained by randomizing the initial TEKI
ensemble and the error bars denote one standard deviation. The bars are color coded so that blue labels a “vanilla” TEKI,
green labels a TEKI with an adaptive covariance estimation, orange labels a TEKI with a tuned covariance estimation, and
pink (furthest to the right) labels a large ensemble result. Panel (c) shows (log) resistivity as a function of depth obtained via
Gauss‐Newton optimization (blue) and TEKI with Noise‐Informed Covariance Estimation (NICE) (green). Panel (d) shows
the EM data and the model output resulting from TEKI with NICE (green) and Gauss‐Newton method (purple). Averages
and standard deviations are computed from 100 independent numerical experiments.
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Figure 11a shows a Hovmöller diagram of the mL’96 model and illustrates the time evolution of all nx = 100
coordinates as a function of time.

Due to the sinusoidal forcing, we can identify regions of chaotic dynamics (larger Fi) and regions with more
predictable characteristics (smaller Fi).

Our goal is to recover the forcing Fi, i = 1, …, nx from time‐averaged data, which are the means and standard
deviations of all nx coordinates over a period of T = 500 time units (2nx = 200 data points). The noise in the data
are independent mean‐zero Gaussians with standard deviations equal to 10% of that of the data points. The neural
network that parameterizes the forcing is a feed‐forward neural net with one input layer, one hidden layer and one
output layer (Goodfellow et al., 2016). The total number of weights and biases in the network is 91, largely due to
the size of the hidden layer, which we adjusted so that the neural network is expressive enough to capture the
sinusoidal forcing.

EKI requires an initial ensemble which we generate using ideas from transfer learning. We draw ne realizations of
a smooth Gaussian process (Gaussian kernel, length scale is ℓ = 5 (Rasmussen &Williams, 2005)) and then train
a NN on each random function draw. Here, we use back‐propagation, as is standard in simple function
approximation tasks, because the NN is differentiable—the time‐averaged data are not. The weights and biases of
the NNs we obtain from training on random smooth functions represent the initial ensemble for our EKIs. This
simple strategy works well for small ensembles (up to ne = 60), but it leads to instabilities with EKIs with larger
ensemble sizes. More sophisticated initialization may make it possible to run EKI with large ne on this problem,
but since our focus is on EKI and small ensemble sizes, we do not pursue initialization of NNs in EKI further.

A typical result we obtain with EKI and NICE is illustrated in Figures 11c–11e, which shows the recovered
forcing (panel (c)) and data fits (panels (d) and (e)). The EKI can train the NN so that the mL’96 model with the

Figure 11. (a) Hovmöller diagram of the mL’96 model, showing the time evolution of all nx coordinates as a function of time.
(b) Average root mean square error (bars) and standard deviations (error bars) of several ensemble Kalman inversion (EKI)
variants, computed over 10 independent experiments, each using a different set of perturbations within the various EKIs. (c)–
(e) Results of a typical EKI inversion with Noise‐Informed Covariance Estimation covariance estimation. (c) Recovered
forcing, parameterized by an neural networks, trained with EKI (purple) and true forcing (orange). (d) Averages of the
nx = 100 mL’96 coordinates (error bars) and EKI‐NN reconstructions (purple). (e) Standard deviations of the
nx = 100 mL’96 coordinates (error bars) and EKI‐NN reconstructions (purple).
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NN parameterization fits the data to within the assumed errors. Moreover, the recovered NN captures the si-
nusoidal variation of the forcing.

We now follow our usual procedure and compare EKIs of various flavors: (a) EKI with NICE; (b) EKI with
ASCE; and (c) EKI with Ad.‐PLC. All EKIs apply covariance estimation to Ĉgg and Ĉxg, and we again adjust the
tuning factor δ to be equal to 0.5 when estimating Ĉxg. The EKIs with NICE, ASCE or Ad.‐PLC further inflate the
covariance matrices with the same strategy as described in Section 4.4. We compare the above EKIs to a vanilla
EKI, as well as to an EKI with inflation.

The results of our comparison are illustrated in Figure 11b, which shows the average RMSE of the various EKIs,
computed over 10 independent experiments, each using different random perturbations during 30 iterations. The
EKIs with NICE, ASCE or Ad.‐PLC use an ensemble size ne= 40 and we compare their performance to EKIs with
or without inflation and ensemble sizes 40 and 60. The results we obtain in this example are in line with our earlier
findings: NICE, ASCE and Ad.‐PLC perform very similarly, reduce the error compared to inflated or vanilla EKIs
and lead to a good fit to the data.Moreover, NICE,ASCEorAd.‐PLC result in similar errors as an inflated EKIwith
a larger ensemble size (ne = 60). In summary, we can apply EKI to train a neural network that parameterizes a
chaotic dynamical system, and covariance estimation methods such as NICE, ASCE or Ad.‐PLC help with the
computational efficiency of the inversion because they enable us to run the EKI with a small ensemble size.

5. Summary and Conclusions
We consider the problem of estimating a covariance matrix from a small number of samples in the context of
Earth science applications. Our focus is on problems in which the correlation structure is unknown, because the
problem of high‐dimensional covariance estimation with a priori assumptions about the correlation structure is
essentially solved (i.e., covariance localization in NWP).

A new method for covariance estimation, called NICE, is built on a single fundamental fact we know about
estimating correlations: Small correlations are notoriously hard to compute, while it is relatively easy to compute
large correlations. We translate this simple idea into an efficient and adaptive covariance estimation method that
guarantees a symmetric PSD covariance estimate.

Adaptivity of NICE is achieved by (a) estimating a noise level for the correlation matrix; and (b) adjusting the
correlation corrections so that the resulting correlation estimate is compatible with the noise level. We also used
these ideas to design a few other adaptive covariance estimation methods: adaptive PLC (Ad.‐PLC), adaptive
localization (Ad.‐Loc), adaptive soft‐thresholding (Ad.‐ST), and ASCE.

We compared our new covariance estimation methods to several other methods on a large set of numerical ex-
periments with correlation structures that are not easy to anticipate or decipher. Our tests include cycling DAwith
a geomagnetic proxy model, geophysical inversion of field data, and the training of a feed‐forward neural network
with time‐averaged data from a chaotic dynamical system. All new covariance estimation methods we created
perform well on this diverse set of numerical tests and are similar in accuracy to related tuned methods, which
speaks for the robustness of our approach to adaptive covariance estimation. NICE, however, has the advantage of
guaranteeing a PSD covariance estimator at a low computational cost.

Data Availability Statement
The code and data used in this manuscript are available at (Vishny et al., 2024).
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