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Abstract: As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of

Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST)

products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve

SSTs every 10 min from the geostationary satellite Himawari-8. An empirical Sensor Speci�c Error

Statistics (SSES) model, introduced herein, is applied to calculate bias and standard deviation for

the retrieved SSTs. The SST retrieval and compositing method, along with validation results, are

discussed. The monthly statistics for comparisons of Himawari-8 Level 2 Product (L2P) skin SST

against in situ SST quality monitoring (iQuam) in situ SST datasets, adjusted for thermal strati�cation,

showed a mean bias of � 0.2/ � 0.1 K and a standard deviation of 0.4–0.7 K for daytime/night-time

after bias correction, where satellite zenith angles were less than 60� and the quality level was greater

than 2. For ease of use, these native resolution SST data have been composited using a method

introduced herein that retains retrieved measurements, to hourly, 4-hourly and daily SST products,

and projected onto the rectangular IMOS 0.02 degree grid. On average, 4-hourly products cover

� 10%more of the IMOS domain, while one-night composites cover � 25%more of the IMOS domain

than a typical 1 h composite. All available Himawari-8 data have been reprocessed for the September

2015–December 2022 period. The 10 min temporal resolution of the newly developed Himawari-8

SST data enables a daily composite with enhanced spatial coverage, effectively �lling in SST gaps

caused by transient clouds occlusion. Anticipated bene�ts of the new Himawari-8 products include

enhanced data quality for applications like IMOS OceanCurrent and investigations into marine

thermal stress, marine heatwaves, and ocean upwelling in near-coastal regions.

Keywords: sea surface temperature; composite SST; Himawari-8; radiative transfer model; Bayesian

cloud clearing; sensor-speci�c error statistics; validation

1. Introduction

Sea Surface Temperature (SST) plays a vital role in numerical weather prediction,
global climate modelling, and studies of climate change and variability. Satellite-derived
SST measurements bene�t a wide spectrum of operational and research applications, includ-
ing ocean, weather, climate, and seasonal monitoring and forecasting, military operations,
coral bleaching assessment, commercial �sheries and aquaculture, and environmental
management. Geostationary satellites provide continuous observations of SST with �ner
temporal scales compared to polar orbiters, providing an invaluable opportunity for ap-
plications that require monitoring quickly evolving phenomena, such as ocean upwelling,
marine heatwaves, and diurnal warming. This paper describes the new Himawari-8 geo-
stationary satellite SST products from the Bureau of Meteorology (Bureau), which are
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generated using software based on the European Space Agency (ESA) Climate Change
Initiative (CCI) SST version 2 processing code [1].

The Japanese geostationary satellites, Himawari-8 and Himawari-9 [2], offer signi�cant
improvements in frequency, resolution, and precision compared with their predecessors,
the Multi-functional Transport Satellite (MTSAT) series. They are located at 140.7 � E, and ob-
serve the Earth from � 59.5� E to 222� E, and 81� N to 81� S. The optical radiometer, Advanced
Himawari Imager (AHI), onboard Himawari-8/9, provides full disk images every 10 min
with 2 km spatial resolution, as compared to the MTSAT series with a resolution of 4 km
and temporal resolution of 20 min for infrared (IR) frequency data at nadir. It has 16 spectral
bands for visible-infrared wavelengths, and of these, the IR bands centred at 3.9, 8.6, 10.4,
11.2, and 12.4� m are able to sense SSTs. Himawari-8 started providing real-time data on
7 July 2015, while Himawari-9 was on standby. JMA of�cially replaced Himawari-8 with
Himawari-9 on 12 December 2022. At present, several agencies are operationally generat-
ing various Himawari-8/9 SST datasets. These include the Japan Aerospace Exploration
Agency (JAXA) [ 3], the National Oceanic and Atmospheric Administration (NOAA) [ 4],
and the Bureau of Meteorology (Bureau), each using different retrieval algorithms. In
response to user requests for a high-quality, consistent SST product over the Australian
domain, we aim to produce such products from both current and future polar and geosta-
tionary platforms at the Bureau. Our goal here is to enhance our capability of producing
consistent, high quality SST products from the geostationary platform Himawari-8.

The Bureau produces numerous high-resolution satellite-derived SST data products as
a contribution to the Integrated Marine Observing System (IMOS). The Bureau originally
produced Himawari-8 SST products in near real time from 2016, but they were not suf�-
ciently accurate for assimilation into operational ocean models or SST analyses. For those
legacy products (�le version 3, “fv03”), SST was retrieved by regressing against one day
of SST data from VIIRS in 2015. The Geostationary Cloud Algorithm Test-bed (GEOCAT)
cloud mask [5] was used to detect clouds. This cloud product showed major systematic
biases such as a tendency to misclassify boundary layer clouds, cirrus and multilayer
cloud types and was not as accurate as other cloud products (e.g., [6]). There was no bias
model applied to fv03 legacy product, so uncertainty in the observations was not available
for users to decide the quality of data, as required by the International Group for High
Resolution SST (GHRSST) [7].

We therefore looked at using the ESA SST CCI processing code which was developed
at the University of Reading (UoR) to process Advanced Very High Resolution Radiometer
(AVHRR) and Along-Track Scanning Radiometer (ATSR) data to form very accurate satellite-
based time series of SST for the 1981-2016 period [1]. The Bureau is collaborating with the
University of Reading to modify their SST retrieval methods to improve SST retrievals from
Himawari-8 and Himawari-9 geostationary satellites. This paper describes the Bureau's
Level 2 and Level 3 �le version 2 (“fv02”) SST products derived using IR data from the AHI
sensor on Himawari-8, using an adaptation of the ESA CCI SST processing code version 2.

An empirical bias model based on in situ data were developed in the Bureau to de�ne
uncertainty values for every pixel that has valid values for SST, based on the bias model
developed for IMOS AVHRR SSTs [8,9]. Using the new merging method developed at the
Bureau [8,9], Level 3 composite SST products were further developed. Altogether, Level 2
Pre-processed (L2P) for each scene and Level 3 Collated (L3C) products for 1 h, 4 h, and
1-day night SST products in the GHRSST format (GDS 2.0, [7]) are produced every day
with Himawari data. Usually, there are 142 L2P �les, 24 L3C 01 h �les, six L3C 04 h �les
and one night �le per day.

The remainder of the paper is structured as follows: Section 2 describes methods used
to retrieve SST from Himawari-8. A brief description of the RTTOV and Bayesian cloud
clearing methods is given in this section. The data used for the SST retrieval process is
described in Section 3. The SST retrieval process is outlined in Section 4. The Sensor Speci�c
Error Statistics (SSES) bias model applied to the L2P Himawari-8 SST �les is also described
in Section 4, along with compositing methods. Resultant SST products and their validation
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with in situ data are discussed in Section 5. The discussion and conclusions are given in
Section 6.

2. Methods

In collaboration with the University of Reading, the Bureau has developed a method to
retrieve SSTs from Himawari-8 by using the fast radiative transfer model RTTOV v12.3 [ 10]
for simulating top-of-atmosphere radiances from passive visible and infrared channels
of the AHI radiometer on Himawari-8 and a Bayesian approach for detecting clouds to
determine clear sky conditions. The optimal estimation and Bayesian cloud clearing method
originally developed at the University of Reading for AVHRR and A(A)TSR sensors for
SST CCI version 2.1 Climate Data Record [1] were modi�ed so that they could be applied
to the AHI sensor on Himawari-8.

The Himawari SST processor is adapted from the ESA SST CCI processor version
2 [1], which is a physically based method to infer skin Sea Surface Temperature (skin
SST) at around 10� m depth [ 11] from infrared imagery. The two main steps involved
are cloud detection (to identify which parts of the image have suf�ciently clear skies to
estimate SST) and retrieval (the inversion of clear-sky brightness temperatures to infer
information about the surface temperature and atmospheric state). Cloud detection is
undertaken using a Bayesian calculation of the probability of the presence of cloud across
the image [12,13]. SST retrieval is undertaken by optimal estimation [ 14], an inverse method
that provides a value for SST with its uncertainty. Both algorithms are physically based,
and use a fast radiative transfer model (RTTOV12.3) [10] to simulate the expected clear-sky
radiances informed by numerical weather prediction �elds. We used the Bureau's Global
Australian Community Climate and Earth-System Simulator versions APS1, APS2 and
APS3 (ACCESS-G1, ACCESS-G2 and ACCESS-G3) meteorological variables (Section 3) as
the prior information. The components of the processing chain required to implement these
steps are now described in turn.

The Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV) [ 10,15] has
been used for applications such as data assimilation in numerical weather prediction
(NWP) models [ 16] and enabling physical retrievals from satellite data [ 17]. RTTOV uses
an atmospheric pro�le of temperature, humidity, cloud, and surface properties as state
vectors, and simulates radiances for satellite visible, infrared, or microwave nadir scanning
instruments. It is able to compute radiances for all channels and brightness temperatures
(BTs) for thermal channels and re�ectances for solar affected channels.

Detecting clouds is critical in the SST retrieval process as SST retrievals from in-
frared imagery are possible only for clear sky conditions. A physically based, probabilistic
(Bayesian) approach [12] has been used for cloud detection to determine clear sky con-
ditions [ 13,18]. In Bayesian approaches, satellite observations and prior knowledge of
the atmospheric and surface conditions are used to estimate clear-sky probabilities. A
single threshold is applied to these clear-sky probabilities to determine a binary cloud mask
for SST retrieval. The incidence of both missed cloud and false detection of clouds are
signi�cantly less in the Bayesian approach than `threshold'-based traditional approaches
(e.g., [19–22]) to cloud screening [ 18]. In part, this is because prior information employed
in the Bayesian approach is dynamic rather than static, which helps with the generality of
the method to a wide range of atmospheric conditions [12].

Optimal estimation (OE) is a robust and general inverse method widely applied in
remote sensing [23] and data assimilation, and has been used for SST retrievals from IR
satellite channels [14,24]. A forward model that includes a priori information about the
ocean and atmospheric state is utilised to calculate simulated brightness temperature (BT).
The sensitivity of the simulated BTs to the ocean and atmospheric state is also calculated.
The difference between the observations and simulated BTs derived from the Radiative
Transfer Model (RTM) applied to the full prior-state NWP pro�le and the sensitivity
information are further combined to estimate the difference between the prior information
about the state and the actual state, and thus to estimate the actual state. The OE method
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has signi�cant advantages over the traditional regression based retrieval approach as it can
estimate both retrieval uncertainty and sensitivity [25].

3. Data

Himawari-8 AHI Full Disk `Himawari Standard Data' �les, Level 1a data [ 2,26] are
used as the source of Himawari-8 AHI data. The Global Australian Multi-Sensor Sea
Surface Temperature Analysis (GAMSSA, [27,28]) foundation SST is a daily analysis SST
product available on a global 0.25� grid. It is used as the level 4 SST analysis for the
background SST �eld.

The Bureau's Numerical Weather Prediction (NWP) model ACCESS-G1, ACCESS-G2
and ACCESS-G3 [29,30] data were used as input for the RTTOV model. ACCESS-G1 data
were used for 1 September 2015 to 15 March 2016, ACCESS-G2 for 16 March 2016 to 22
July 2019, and ACCESS-G3 for 23 July 2019 to 12 December 2022. The hourly analysis and
forecast meteorological variables—atmospheric temperature pro�le, atmospheric water
vapour pro�le, log surface pressure, sea surface temperature, mean sea level pressure,
sea ice cover, 10 m wind U-component, 10 m wind-V-component, 2 m air temperature,
2 m dew point temperature, skin temperature, speci�c humidity, and cloud speci�c liquid
water content at height of hybrid theta levels (atmosphere _hybrid _height_coordinate) were
provided as atmospheric and surface state data. ACCESS-G1 data are output in 12 h
intervals at 40 km horizontal resolution, ACCESS-G2 data are output in 6 h intervals at
25 km horizontal resolution, while ACCESS-G3 data are output in 6 h intervals at 12 km
spatial resolution, all for 70 model atmospheric levels [30–32].

Fractional sea ice cover (unitless) derived from near real-time UKMO Operational
Sea Surface Temperature and Ice Analysis (OSTIA) Daily 0.05� L4 is used for ice masking.
OSTIA fractional sea ice cover is an optimal interpolation of the operational near real-time
EUMETSAT OSI-SAF SSMIS daily 10 km Level 3 sea ice concentration �elds [33].

4. Principles for SST Estimates
4.1. SST Retrieval Process

The Bayesian cloud detection scheme is so named as it uses Bayes' theorem to express
the probability of clear-sky ( c) given the observations (y) and available prior information
(xa) as

P(cjy, xa) =
P(y jxa, c)P(xajc)P(c)

P(y jxa)P(xa)
, (1)

where the probability terms on the right-hand side may be estimated as detailed in [ 12]. The
observation vector y consists of the satellite observations, and the background state vec-
tor xa includes the prior sea surface temperature, total column water vapour (TCWV),
and windspeed from Bureau's NWP model data. The equation simpli�es assuming
P(xajc) = P(xa) as the NWP data with length scales � 10 to � 100 km cannot resolve
cloud structures at the pixel scales � 1 to � 10 km. The denominator is the sum of the two
possible classes (clear or “not clear”),

P(y jxa) = P(y jxa, c)P(c) + P(y jxa, c̄)P( c̄), (2)

The observation vector y includes both spectral and textural information. The bright-
ness temperatures observed by the �ve thermal channels correspond to �ve elements of
the observation vector for a speci�c pixel. Five of the Himawari channels are used for
the spectral observations: 0.64, 0.86, 3.9, 10.4, and 12.4� m. We denote this subset of the
observation vector as ys, where the s signi�es spectral elements because they represent
samples from the brightness temperature spectrum. We also incorporated texture (multip-
ixel information) measures as elements in the observation vector. Cloudy regions tend to
exhibit greater spatial variability compared to clear-sky regions, making texture measures
informative. The local standard deviation in a 3 � 3 pixel box for the 10.4� m channel
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provides the textural information y t in our case. ys and y t are assumed to be independent,
such that P(y jxa, c) = P(ysjxa, c)P(y t jxa, c).

The clear-sky spectral probability density functions (PDFs) can be estimated from the
RTM output. Simulating top-of-atmosphere radiances on-the-�y for cloudy conditions is
computationally expensive. The textural and cloudy-sky PDFs are therefore evaluated from
pre-generated lookup tables. The clear-sky spectral PDF is

P(ySjxa, c) =
exp

�
� 0.5(y � F(xa)) T(KSaKT + Se) � 1(y � F(xa))

�

(2p )
n
2 jKSaKT + Sej

1
2

, (3)

where F(xa) is the forward model (RTM), the matrix K contains the partial derivatives
of the forward model, and Sa and Se are the error covariance matrices for the prior and
model-observations differences, respectively, and n is the number of spectral elements in
the observation vector. The prior uncertainties assumed for Sa are 1.2 K in SST and 15%
in TCWV.

The empirical PDF lookup tables were built from 281 days of Himawari-8 data using
the operational cloud mask between March and December 2020. The lookup table limits
are shown in Table 1. The infrared PDF tables are dependent on the path length and NWP
SST, while the visible PDF table depends on path length and solar zenith angle.

Table 1. Speci�cations for lookup tables of conditional cloud probability density functions for
Himawari cloud detection. SZA stands for Solar Zenith Angle, and LSD for Local Standard Deviation.

PDF Dimension Lower
Limit

Upper
Limit

Bin
Size

Number
of Bins

Daytime Path Length 1.0 2.4 0.35 4
Spectral PDF 1 SZA 0.0 95 2.5 3.8

0.64� m 0.0 1.0 0.01 100
0.86� m 0.0 1.0 0.01 100

Daytime Path Length 1.0 2.4 0.35 4
Spectral PDF 2 NWP SST 271 304 1.0 33

10.4–12.4� m BT difference � 1 9 0.2 50
10.4� m BT-SST � 20 10 1.0 30

Night-time Path Length 1.0 2.4 0.35 4
Spectral PDF NWP SST 270 305 2.5 14

3.9–10.4� m BT difference � 6 10 0.2 80
10.4–12.4� m BT difference � 1 9 0.2 50
10.4� m BT-NWP SST � 20 10 1.0 30

Textural PDF Day/Night 0 180 90 2
Path Length 1.0 2.4 0.35 4
10.4� m LSD 0 2 0.005 400

Optimal Estimation (OE; [ 23]) retrieves the SST as the prior estimate plus an increment
based on the observed BTs and forward modelled BTs:

x̂ = xa + ( KTS� 1
e K + S� 1

a ) � 1KTS� 1
e (y � F(xa)) , (4)

The matrices calculated for the Bayesian clear-sky spectral PDF can be re-used here
with two minor modi�cations. Firstly, the SST retrieval only uses the three thermal infrared
channels: 3.9 (at night only), 10.4, and 12.4� m. Secondly, the prior SST uncertainty is
increased to 5 K. The choice of prior SST uncertainty is a key determinant of the nature of the
retrieved SST. The uncertainty in prior SST �elds is in most locations and times � 1 K, and
using such a value as the prior SST uncertainty would give a very strong constraint towards
the prior SST, given that the sensor noise and radiative transfer modelling uncertainties
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would be of a comparable magnitude. This choice would be the statistically optimum
“maximum a posteriori” SST that would minimise overall retrieved uncertainty. However,
the error in the prior SST �elds is not well represented by a small uncertainty in all
circumstances. Prior SST errors can be >1 K near SST fronts (where temperature changes
rapidly with distance) and during warm-layer episodes (where temperature changes from
hour to hour under low-wind and high solar insolation conditions). The added value of
Himawari-based SSTs is the ability to track fronts and diurnal warming with high temporal
�delity. To avoid damping of frontal and diurnal variability, the retrieval sensitivity needs
to be kept high [ 14,34]. This is achieved by selecting as the prior SST uncertainty a value that
is more representative of these minority situations. Diurnal warming can, rarely, be as large
as 7 K [35], and therefore a comparable prior SST uncertainty of 5 K is adopted. This choice
makes the retrieval close to a maximum likelihood solution, in which the prior SST in�uence
is kept small at the expense of an acceptable increase in retrieval uncertainty overall.

Each pixel is also assigned a quality level (QL) on the GHRSST scale 0 to 5 using
a similar scheme as SST-CCI [1], where the quality level is determined by the clear-sky
probability, P(c), derived using Bayesian cloud detection, retrieval sensitivity (Sens.), which
is the sensitivity of the retrieval to the real SST, and c2 goodness of �t, i.e., the chi squared of
the deviations of the observed BTs relative to the modelled BTs given the retrieval. Overall,
there is a valid SST range (271.15 K< SST< 323.15 K), where values outside this are set to
bad. The checks for determining quality level are shown in Table 2, with the quality set to
the lowest level (row of table) where a condition is matched.

Table 2. Quality level thresholds used for Himawari L2P products. P(c) is the probability that the
pixel is clear from Bayesian cloud detection; Sens. is the estimated retrieval sensitivity to true changes
in SST;c2 is the channel normalised goodness of �t test for the retrieval. The rules are processed in
order with the lowest level number that is satis�ed being returned.

Level Meaning P(c) Sens c 2 Other

0 No data Invalid data, land

1 Bad data < 0.5 < 0.5 > 3 SST< � 2 � C; SST> 50 � C; Bad NWP

2 Worst quality < 0.8 < 0.9 > 2 Limb pixel (satellite zenith > 60� )

3 Low quality < 0.9 < 0.95 > 1 Twilight (87.5 � < qsol < 92.5� )

4 Acceptable quality Not used for Himawari-8

5 Best quality

4.2. SSES Determination

The International Group for High Resolution SST (GHRSST) has established the
GHRSST Data Speci�cation format (GDS2.0) [7] to facilitate SST data exchange and use.
A key stipulation within GDS 2.0 is the inclusion of Sensor-Speci�c Error Statistics (SSES)
alongside each recorded SST value, encompassing estimates for SST bias and standard
deviation (SD) with respect to drifting buoys and tropical moorings [ 7]. As there was
no speci�c guidance provided on how to calculate SSES, different approaches have been
used to de�ne SSES (e.g., [36–38]). Many earlier approaches to SSES determination used
look-up table-based approaches. These approaches typically included SST deviations from
in situ measurements, binned over the �eld of view (or swath) parameters (such as satellite
view angles, and retrieval quality levels), as well as geographical parameters (such as solar
angles and latitude/longitude). In practice, the number of matches is somewhat restricted,
and inhomogeneous, which demands that a reasonably sized sample is required for binned
statistics to be accurate. Further, we require estimates to exhibit some temporal sensitivity,
which requires the sample period to be short. We follow the spirit of these approaches
with some modi�cations. To improve the sampling robustness (from inhomogeneity of
observations and sample size variability), we add the constraint that SSES should vary in a
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graduated way over the parameter set, making use of an empirically derived linear model.
A trailing thirty-day window of appropriately matched satellite and in situ measurements
is binned over the parameters of interest, and �tted with a general functional form for
bias (� or sses_bias ), standard deviation ( s or sses_standard_deviation ), and count
density (n or sses_count ). This model is re-evaluated every �ve days to account for
episodic behaviour. Note that the approach adopted here is identical to that used for SSES
estimation based on AVHRR SST derived from direct reception polar-orbiting platforms for
the Bureau's long time series product [ 8], and no consideration has been made to address
speci�c issues that might arise in the appropriation (or modi�cation) of this method to full
disk geostationary satellite platforms.

Adjustments are made to correct for known pathological differences between infrared
satellite measurements and in situ buoy measurements and to ensure the appropriateness
and representativeness of matches. We allowed for a spatial mismatch of < 2 km and a
temporal mismatch < 60 min to match collocations between observation and drifting buoys
or tropical moored buoys. Observations from drifting buoys and tropical moored buoys
are typically made at depths 0.2 m and 1 m, respectively, thus a more appropriate bias-free
comparison can be made by subtracting a constant 0.17K from in situ measurements to
compensate for this “cool-skin effect”, as noted in [11,39].

Observations at drifting buoy depths are considerably less representative of sea surface
measurements under the in�uence of diurnal warming and near-surface strati�cation.
Ref. [39] found that during the day, well-mixed ocean conditions are generally supported
when surface wind speeds are between 6 m/s and 20 m/s (where turbulence in the ocean
surface makes the interpretation of ocean depth dif�cult), and at night, surface winds are
between 2 m/s and 20 m/s. These values were used to ensure that in situ measurements
were in well-mixed conditions, and thus exhibit a reasonable correspondence.

Matched observations that show large discrepancies from each other and values that
can not be reasonably expected at that latitude are considered suspect, and removed from
the data set. Discrepancies of4.5s (approximately 2.5–4 K, representing approximately one
measurement if the residuals over typical sample sizes are normally distributed) between
satellite and buoy observations and 4.5s (approximately 5–8 K) between satellite and
expected SST, based on latitudeqlat and time of year t = f 0. . .1g (Equation (5) �tted for hi
with Ordinary Least Squares (OLS)), are removed from the data set.

Tin situ,model= h0 + h1 sin 2p t + h2 cos 2p t + h3 sin2(
p

180
qlat), (5)

In this way, we can retain low quality matches with some degree of representativeness
to expected SSTs.

Our method separates the SSES estimates into a view-dependent anomaly, com-
pounded with a geographically dependent anomaly based on the idea that view-based
anomalies relate to the satellite observation and retrieval system, whereas geographical
anomalies are based on geographically speci�c effects, and these are somewhat separa-
ble. Since the period over which match-ups are considered is desirably small, and we
revise the model by re-evaluating it frequently, we do not account for time variation ex-
plicitly in the model. In terms of count density ( n, m, s or sses_count ), median SST bias
(� or sses_bias ), and standard deviation ( s or sses_standard_deviation ), the model
is thus assumed separable in swath component (nswath, mswath, sswath), and geographical
components (ngeo, mgeo, sgeo) as follows:

sses_count = n = max(nswath � ngeo, 1), (6)

sses_bias = m= mswath+ mgeo, (7)

sses_standard_deviation = s = max(sswath � sgeo, s0), (8)
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A minimum value of standard deviation ( s0) represents the capability of the equip-
ment, and decoupled uncertainty in correspondence to buoy observation. The model
issues additivity in � , log s, and log n—the logarithm was chosen to respect the positive
de�niteness of s and n.

The view or swath component of the SSES model considers dependencies based on the
�rst and second harmonics of the day/night cycle, the interaction between the day/night
cycle and the quality level, and variations across the satellite's �eld of view, expressed in
terms of the three dimensions (qz, qs, and q). Here, qz is the satellite zenith angle at the point
of observation. Angular dependence on the amount of atmosphere between the sensor
and the sea depends on (secqz � 1), which is the standard form used to introduce this
dimension. qs is the sun zenith angle at the point of observation. The �rst two harmonics
of the diurnal cycle are represented by the four terms cosqs, sin qs, cos2 qs and cosqs sin qs

and q is the quality_level , as de�ned in the retrieval.
As de�ned in the retrieval, the geographic component ( ngeo, mgeo, sgeo) adds three

dimensions, the latitude ( qlat), the longitude ( f lon), and the quality_level (q).
We use a polynomial representation of dimensions latitude qlat and longitude f lon that

allows the dimension coupling with the use of cross terms, qlatf lon.
The SSES model is represented as shown in Equations (9)–(14),

log nswath = a0 + a1 cosqs + a2 sin qs + a3 cosqs sin qs + a4(
q
5

� 1) cosqs + a5(
q
5

� 1) sin qs

+ a6 cos2 qs + a7(1 � e� (secqz� 1) )
(9)

mswath = ( b0 + b1(
q
5

� 1) + b2(secqz � 1) + b3 cosqs + b4 sin qs + b5(
q
5

� 1)(secqz � 1)

+ b6(
q
5

� 1) cosqs + b7(
q
5

� 1) sin qs + b8 cosqs sin qs + b9(secqz � 1) cosqs

+ b10(secqz � 1) sin qs + b11(
q
5

� 1)2 + b12(secqz � 1)2 + b13 cos2 qs,

(10)

s2
swath = ( c0 + c1(

q
5

� 1) + c2(secqz � 1) + c3 cosqs + c4 sin qs + c5(
q
5

� 1)(secqz � 1)

+ c6(
q
5

� 1) cosqs + c7(
q
5

� 1) sin qs + c8 cosqs sin qs + c9(secqz � 1) cosqs

+ c10(secqz � 1) sin qs + c11(
q
5

� 1)2 + c12(secqz � 1)2 + c13 cos2 qs,

(11)

log ngeo= a0 + a1qlat + a2f lon + a3q2
lat + a4f 2

lon + a5qlatf lon + a6qlatf
2
lon + a7f 3

lon

+ a8qlatf
3
lon + a9q2

latf
2
lon,

(12)

mgeo= b0 + b1qlat + b2(
q
5

� 1) + b3qlat(
q
5

� 1) + b4q2
lat + b5q2

lat(
q
5

� 1), (13)

log sgeo= g0 + g1qlat + g2(
q
5

� 1) + g3qlat(
q
5

� 1) + g4q2
lat + g5q2

lat(
q
5

� 1), (14)

The parameters f ai , bi , ci , ai , bi , g ig are �tted on binned populations using the Ordi-
nary Least Squares method (OLS). The term(1 � e� (secqz� 1) ) was determined based on
exploratory studies of single variable correlations and the dominance of (secqz � 1) as a
source, together with a more detailed investigation of the functional dependence of the
correlation. Note that the number of parameters determined by this approach, in addition
to showing smooth variation with the �eld of view and geography, is signi�cantly less
than what would be required for a “binning only” approach (in which each bin produces
parameters, independently of each other). It is worth reiterating that with the �ltering
suggested by Equation (5), we can determine parameters based on matches overall quality
levels, q. The assumption of at most quadratic dependence in q is empirically borne out by
direct investigation of the merit of adding higher powered terms. Additionally, it is not
unreasonable to expect that if the deviation between observed and modelled observations
is small and approximately normally distributed with non-zero mean and standard devi-
ation, then the application of q based on linear c2 goodness of �t metrics will result in a
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linear approximation to the bias as a function of q that corrects for the non-zero mean and
standard deviation, with further corrections realized by adding higher powers of q.

Degrees of freedom, n, is an indication of the number of in situ measurements made
under similar view, quality and geographical conditions, based on an empirical model, and
is useful when blending SSTs from multiple sources.

4.3. Compositing of Products

Having SST determinations with high spatial coverage over short time scales is a
desired product property, and meaningful SST timescales tend to be longer compared to the
time between geostationary observations, thus the option for combining measurements that
allow rapidly changing or misclassi�ed clouds, or small regions of poorly retrieved SST,
to be removed from retrievals is a meaningful consideration. To this end, we developed
a simple method for merging SST that does not rely on accurate cloud identi�cation
and attempts at a given location to select from the available observations a retrieval that
best exempli�es the clear sky observation at the stated time. Three time periods are
chosen, which use data from previous full disk ( L2P) retrievals, which are processed at a
temporal resolution of 10 min using two basic algorithms (MERGE and CHOOSE), which
we outline below.

L3C-01hour The MERGE algorithm uses hourly products estimated at time T0. For every
point on the full disk, using up to 7 consecutive current and prior L2P observations,
(from time T0 � T � 10 min, T = f 0. . .6g), by choosing the time point that best
approximates the expected SST at timeT0, assuming that the SST is linearly trending
in the best quality over time.

L3C-04hour The MERGE algorithm also permits four-hourly products that are estimated at
time T0. For every point on the full disk, using �ve consecutive current and prior L3C-
01hour full disk observations, (from time T0 � T � 1 h, T = f 0. . .4g), by choosing
the time point that best approximates the expected SST, assuming linear trending in
the best quality SST over time.

L3C-01day Nightly SST products are estimated using the CHOOSE algorithm, which
selects the latest best quality hourly L3C-01hour SST during the night, before sunrise,
for each point on the full disk.

4.3.1. MERGE Algorithm

The MERGE algorithm works in three main stages, as follows.

PREPARE Determine candidate SST at the target time T0, SSTT0,X , by interpolating f SSTT,Xg.

1. Given a selection of SST retrievals ordered over time T, at location X, f SSTT,X g,
of quality f QT,X g:

(a) Choose an appropriate Land/Ice mask to identify observation locations
that are within scope.

(b) Quality control SST, such that:

• SST is in range, (271 K < SSTT,X < 330 K).
• SST change over consecutive time periods,dT = SSTT,X � SSTT� 1,X ,

is not too large ( � 10 K < dT < 100 K). Note warm-to-cold transi-
tions are signi�cantly greater causes for removal than cold-to-warm
transitions.

(c) Identify the background SST, SSTBGT,X , subject to a constraint on Q:
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SSTBGT,X = median
jX � Yj� 10 pixel

QT,Y � QT,X

SSTT,Y (15)

(d) Interpolate SSTBG in T, using the quality_level as an exponential
weight:

SSTBGT,X
OLS �t!

w= exp(QT,X )
SSTBGT,X, f = aBG,X + bBG,X T (16)

(e) Identify the foreground SST, SSTFGT,X , based on the interpolated back-
ground:

SSTFGT,X = SSTT,X � SSTBGT,X, f (17)

(f) Interpolate SSTFG in T, using the quality_level as an exponential
weight:

SSTFGT,X
OLS �t!

w= exp(QT,X )
SSTFGT,X, f = aFG,X + bFG,X T (18)

2. Determine the prepared SST at the target time, T0, SSTT0,X,p, as approximated
by the nearest observed SST, SSTTobs,X :

Tobs= argmin
T

jSSTT,X � (aBG,X + aFG,X ) � (bBG,X + bFG,X )T0j, (19)

provided it is within the bounds of the data, assuming a �xed trend rate which
is not too large, jbFG,X + bBG,X j < 0.4 K.

3. Determine the quality �eld similarly, QT0,X,p = QTobs,X .
4. If a determination is not possible due to too little data or out of range, SSTT0,X,p

is considered to have no value.

SEED Determine the seed domain SSTT0,X,s, which forms the basis of reliable SSTs by
identifying connected regions of approximately constant SSTT0,X,p, and signi�cant
size. The domain of merged SST is grown from these regions of stability.

1. Segregate the prepared SST,SSTT0,X,p, into connected regions of nearest neigh-
bours, such that if two adjacent values differ by 0.2K or less, they belong to the
same connected region, regardless of assigned quality.

2. Remove connected regions with an area of less than 20 pixels considering them
not large enough to have a con�rmed stable value.

GROW Grow the seed domain SSTT0,X,s, to the �nal merged SST, SSTT0,X

1. Expand the boundary of SSTT0,X,s by replacing unde�ned or removed SST values
by the inverse distance weighted SSTT0,X,s in a 5 pixel radius (using modi�ed
Shepard's method of radius 5 with p = 1 on a Euclidean metric in native pixel
coordinates).

2. Repeat this process 15 times, forming SSTT0,X,g.
3. Consider the observation with the value closest to the determined domain as

before,
Tobs,g = argmin

T

�
�SSTT,X � SSTT0,X,g

�
� (20)

which determines SSTT0,X ,

SSTT0,X = SSTTobs,g,X (21)
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4.3.2. CHOOSE Algorithm

The CHOOSE algorithm is used to merge multiple views over a much longer time
period, with a desire to keep the latest (most recent) best quality result. In the formation of
a merged L3C-1day SST, we apply this algorithm to the time ordered series of component
L3C-1hour SST from the same night period in the �eld of view.

1. Start with an unde�ned set of merged values, with unde�ned quality.
2. If the component SST exists as a night SST, and is of suf�cient quality (greater than

or equal to the current quality), record this as the best choice SST, along with quality
and time.

3. Repeat for all identi�ed components within the temporal range.

Once the merged view has been determined, auxilliary parameters for the appropri-
ately chosen view are added to complete the product.

After composition, these composite products are regridded to the standard IMOS 0.02
degree grid. The IMOS grid spans 70� E to 190� E, 70� S to 20� N [9].

4.4. Validation

SST has been reliably measured in situ for more than 150 years with ships, and
from the 1980s with drifting and moored buoys, tide gauges, wave buoys, Expend-
able Bathymographs (XBTs), Conductivity Temperature Depth (CTD) sensors, and other
shipborne sensors [40]. We validate our satellite-derived SSTs against in situ observa-
tions from drifting buoys and tropical moorings from in situ Quality Monitor (iQuam)
(https://www.star.nesdis.noaa.gov/socd/sst/iquam; [ 41–43], accessed on 6 September
2024). The threshold used to validate a matchup between a satellite observation and in situ
observation is a distance difference is less than 10 km and a time difference is less than 6 h.
Himawari-8 skin SST data were converted to drifting buoy depths by adding 0.17 K [ 39]
before comparing to in situ data, under well-mixed conditions (as described in Section 4.2).
The best match is retained and used for the validation of different satellite SST products.
Further details on the validation method can be found in Section 2.3 of [9].

5. Results
5.1. L2P SST Product

Using the SST retrieval method described in Sections 4.1 and 4.2, L2P SST products
are processed for 2015–2022 every 10 min for Himawari-8. Figure 1a shows skin SST
retrieved with our method for one random 10-minute instance, for all quality levels. The
probability of a pixel being clear derived using the Bayesian approach is shown in Figure 1b.
Figure 1c shows sensitivity of retrieved SST to true SST. Sensitivity values are overall greater
than 95%, except towards the right edge of the disk, where it falls to approximately 70 %.
The quality levels assigned to pixels with valid SST values following the process de�ned
in Table 2 are shown in Figure 1d for the same 10 min instance. Towards the edge of
the Himawari-8 disk, lower quality levels are generally apparent, mainly re�ecting large
satellite zenith angles and low sensitivity values. Probability of a pixel being clear and
quality level drops off during twilight Figure 1b,d.

An empirical model described in Section 4.2 is applied to the retrieved SST �eld to
estimate uncertainty in the observation. Panel (a) of Figure 2 shows calculated sses_bias ,
panel (b) shows sses_standard_deviation and panel (c) sses_count for one 10 min in-
stance L2P SST, based on the model. Large biases are apparent towards the edge of the
disk and cloud boundaries. Typically, bias is less than 0.4 K in the tropical regions, whereas
the standard deviation is about 0.4–0.6 K. Higher values of biases and standard deviation
indicate lower values of quality level (ref Figure 1d).

https://www.star.nesdis.noaa.gov/socd/sst/iquam
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Figure 1. (a) SST, (b) probability of a pixel being clear, ( c) sensitivity, and ( d) assigned quality levels
for one random L2P on 15 December 2020, 20:00:00 UTC, for all quality levels.

Figure 2. (a) sses_bias , (b) sses_standard_deviation , and (c) sses_count for one random L2P on
15th December 2020, 20:00:00 UTC.

5.2. Coverage and Bias for L2P SST
5.2.1. Temporal and Spatial Bias

Figure 3 shows the L2P validation of SST before and after compensation by subtracting
sses_bias , as de�ned by the presented bias model. The �gures represent a full platform
lifetime validation, of the parameters DSST,sDSST,szSST, de�ned as follows.
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DSST =
1
N å

location
SSTsatellite � SSTin situ

(sDSST)2 =
1
N å

location
(SSTsatellite � SSTin situ � DSST)2 (22)

zSST =
1
N å

location

SSTsatellite � SSTin situ

s

(szSST)2 =
1
N å

location

�
SSTsatellite� SSTinsitu

s
� zSST

� 2

Figure 3. Full disk spatial coverage Himawari-8 L2P validation against drifting buoys and tropical
moorings, September 2015–December 2022, showing the impact of bias correction on day (top) and
night ( bottom ) retrievals, DSST. Left—hand panels show variables before bias correction, and right—
hand panels after bias correction have been applied to the SST values. The grey region indicates
pixels with no data.

Figure 3a clearly shows daytime SST biased positive in the mid-latitudes and tropics,
trending warmer closer to the equator. The northern polar latitudes are biased cold, while
the south is mainly unbiased, except at high southern latitudes. At night, the tropics
remain warm, and all of the southern regions are biased cold, with mid-latitudes close to
unbiased. The bias is partially compensated for during the day in the northern hemisphere
but overcompensates in the southern hemisphere. The variability, sDSST, is typically
greater in the southern hemisphere and remains unaffected by the bias model (Figure 4),
which suggests that the bias correction strategy is not interfering with the independence of
measurements. szSST, which is nominally 1 when the sses_standard_deviation is well
chosen, which suggests that while a reasonable estimation is made at night, it is slightly
underestimated in the day, and towards edges of the disk (Figure 5).
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Figure 4. Same as Figure 3, forsDSST.

Figure 5. Same as Figure 3, forszSST.

5.2.2. Annual and Diurnal Bias

Figure 6 shows overall bias per hemisphere as a function of time of year and local
solar time. Typically, there are negative biases during the night, and positive biases before
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sunrise and after sunset in summer, with neutral behaviour dominating the northern
hemisphere summer. There is no evidence of seasonal hemisphere-wide diurnal signature
developing during daytime hours, which is not unexpected, since true diurnal signals
would be limited to relatively small well de�ned geographical regions, and might be
expected to be not present on the hemispheric scale shown. Variability (Figure 7) is
typically larger in the northern winter than in summer, is larger at night, and relatively
lower in the south, which also has a higher consistency compared to the north. szSST
(Figure 8) is typically high during the northern winter, and slightly lower in the day
in both hemispheres. These results demonstrate that the SSES model used has some
shortcomings, which re�ect the inability of the bias model to functionally re�ect the
dependencies to temporal parametrisation, and the representativeness of the match-up
database that determined the model parameters. The overall negative background bias,
with strong positive biases in the vicinity of sunrise/sunset, speaks to the inability to
properly �t the time of day dependencies. There are also clear differences in the match-
up density that drives these models differently between the hemispheres—the northern
hemisphere away from the sunrise/set tends to be relatively neutral compared to the
southern hemisphere. This is a focus of ongoing investigation and improvement.

Figure 6. Annual and diurnal performance of full disk Himawari-8 L2P validation against drifting
buoys and tropical moorings for September 2015–December 2022 for (a) northern and ( b) southern
part of the disk. The colour indicates mean bias, when bias-corrected SST is compared with drifting
buoys and tropical moorings.
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Figure 7. Same as Figure 6. Here, the colour indicates standard deviation, when bias-corrected
SST compared with drifting buoys and tropical moorings for ( a) northern and ( b) southern part of
the disk.

Figure 8. Same as Figure 6. Here, the colour indicateszsses, when bias-corrected SST is compared
with drifting buoys and tropical moorings for ( a) northern and ( b) southern part of the disk.
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5.2.3. Validation of Full Disk L2P SSTs

Figure 9 shows the monthly validation of L2P SSTs for the entire Himawari-8 plat-
form lifetime, September 2015–December 2022, against iQuam drifting buoys and tropical
moorings for QL 3 and above under well mixed conditions. Matchup thresholds used were
< 10 km distance and � 6 h time difference. The blue and green lines denote statistics for the
northern part of the disk for day and night, respectively, and orange and red lines denote
statistics for the southern part of the disk for day and night, respectively. The left-hand side
panels show uncorrected mean bias (upper panel) and standard deviation (lower panel),
while right-hand panels show results for bias-corrected mean and standard deviation. The
bias correction pushes the mean from warmer (0.3/ 0.4 K) to colder ( � 0.08/ 0.01K) for
daytime for south/north part of the disk, showing more variability over north than south.
For night, mean bias is � 0.05K for south and � 0.03K for north, for uncorrected bias
conditions. After bias correction, mean bias is � 0.15K for north and � 0.12K for south
part of the disk. Negative values likely arise due to the bias correction being applied to the
skin and we are correcting for the skin effect using 0.2m depth typical of drifting buoys
data. The standard deviation is between 0.4 K to 0.7 K for both cases, before and after
bias correction. Both the north and south sides of the disk show lower mean and standard
deviation values towards the end years of the lifetime of the platform for both day and
night scenarios.

(a)

(b)

Figure 9. Cont.
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(c)

(d)

Figure 9. Full disk Himawari-8 L2P skin SST validation against drifting buoys and tropical moorings,
30-day running statistics, September 2015–December 2022, (a) uncorrected mean, (b) bias-corrected
mean, (c) uncorrected standard deviation, and ( d) bias-corrected standard deviation, for QL � 3.

5.3. L3C SST Product

Figure 10 shows composite products for different time scenarios. Panel (a) shows SST
data coverage from a 1 h composite, panel (b) shows SST data coverage from a four-hourly
composite and panel (c) shows SST data coverage for composition over one night. The
progression demonstrates clearly areas near moving clouds that are �lled with additional
observations due to spatial and temporal proximity in the merging process over the time
period of the merge. Generally, the data coverage for L3C-1 h within the IMOS domain is
approximately 22%, while L3C-04 h has a coverage of about32%. On average, the night
composite data spans 47% of the IMOS domain.

Figure 10. Composite SSTs for (a) 1 h, (b) 4 h and (c) 1 night on the IMOS domain for 15 December 2020.

The monthly statistics for 1 h and 4 h SST composite products on the IMOS domain
for the period September 2015 to December 2022 are shown in Figures 11 and 12, when
compared with drifting buoys and tropical moorings from iQuam under well mixed
conditions. The upper panels show mean bias and the lower panels show the standard
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deviation for uncorrected and bias-corrected SSTs. The blue line denotes statistics for the
day, and the orange line denotes statistics for the night. With the bias correction, 1 h SST
products show a colder bias of about � 0.13K and standard deviation 0.45K for night
(Figure 11). The four-hourly SST product shows similar results with bias-corrected mean
bias � 0.1K and standard deviation of 0.4K for night (Figure 12). Figure 13 shows statistics
for L3C 1-night SST product when compared with drifting buoys and tropical moorings
from iQuam. Mean is shown in the upper panel, while the standard deviation is shown in
the bottom panel of Figure 13 for QL 3 and above. The brown line in this �gure denotes
statistics calculated with uncorrected SSTs, while the cyan line denotes statistics for bias-
corrected SSTs. On average, the mean bias is about� 0.22K, which is a colder bias than the
mean for uncorrected SSTs (� 0.11K). The standard deviation is about 0.48K for both cases.

(a)

(b)

(c)

Figure 11. Cont.
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(d)

Figure 11. Monthly statistics for validation of 1-hour L3C skin SST against drifting buoys and
tropical moorings for September 2015–December 2022 on the IMOS domain, uncorrected (a) mean
and (c) standard deviation, bias-corrected (b) mean and (d) standard deviation, for QL � 3. Daytime
validations are shown in blue, and night-time validations in orange.

(a)

(b)

(c)

Figure 12. Cont.
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(d)

Figure 12. Same as Figure 11, for L3C-4hour SSTs.

(a)

(b)

Figure 13. Monthly statistics for 1-day Night L3C skin SST validation against drifting buoys and
tropical moorings for September 2015–December 2022 for the IMOS domain (a) mean, (b) standard
deviation, for QL � 3. The brown line denotes uncorrected data, whereas the cyan line corresponds
to bias-corrected data.

The L3C-1hour SST products are available from the National Computational Infras-
tructure (NCI) Thematic Real-time Environmental Distributed Data Services (THREDDS)
server (https://thredds.nci.org.au/thredds/catalog/qm43/ghrsst/v02.0fv02/Continental
/L3C-01hour/ABOM-L3C_GHRSST-SSTskin-AHI_H08/catalog.html, accessed on 6 Septem-
ber 2024) and Australian Ocean Data Network (AODN) (https://thredds.aodn.org.au/thre
dds/catalog/IMOS/SRS/SST/ghrsst/L3C-1h/h08/catalog.html, accessed on 6 September
2024). L3C-04hour SST products are available at NCI (https://thredds.nci.org.au/thredds
/catalog/qm43/ghrsst/v02.0fv02/Continental/L3C-04hour/ABOM-L3C_GHRSST-SSTski
n-AHI_H08/catalog.html, accessed on 6 September 2024) and AODN (https://thredds.ao
dn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3C-4h/catalog.html, accessed on 6
September 2024). Daily L3C-01day night �les are available at NCI (https://thredds.nci.org.
au/thredds/catalog/qm43/ghrsst/v02.0fv02/Continental/L3C-01day/night/ABOM-L3
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C_GHRSST-SSTskin-AHI_H08/catalog.html, accessed on 6 September 2024) and AODN (ht
tps://thredds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3C-1d/ngt/h08/c
atalog.html, accessed on 6 September 2024).

6. Application of Himawari-8 SSTs

The Bureau started producing MultiSensor Level 3 super-collated (L3S) SST products
on the IMOS 0.02 degree grid [7] by compositing available data from AVHRR sensors
on National Oceanic and Atmospheric Administration (NOAA) Polar-orbiting satellites,
NOAA-18 and NOAA-19, MetOpB and the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensors on Suomi National Polar-orbiting Partnership (SNPP) and NOAA-20
satellites in real-time from October 2018 [9]. These SST products were used until May 2024
for coral heat stress monitoring with the Bureau's NextGen ReefTemp system [ 44] , and are
used by IMOS OceanCurrent (https://oceancurrent.aodn.org.au/, accessed on 6 September
2024) to monitor thermal stress and marine heatwaves. To achieve L3S SST products with
fewer spatial data gaps, we composited Himawari-8 night L3C data with the current
polar-orbiter-speci�c operational MultiSensor L3S product using the compositing method
described in [9]. The resultant GeoPolar MultiSensor L3S is produced using all available
data from AVHRR sensors on polar-orbiters MetOp-B and MetOp-C, VIIRS sensors on
Suomi NPP and NOAA-20, and the AHI sensor on Geostationary satellite Himawari-8. The
product is available for every night from 1 September 2015 to 12 December 2022.

Figure 14a shows the SST data coverage from the current MultiSensor L3S SST product,
which is a composition of data from NOAA-18, MetOpB, SNPP and NOAA-20, while
Figure 14b shows SST data coverage from the new GeoPolar MultiSensor L3S SST product
which is a composition of data from Himawari-8, MetOpB, SNPP and NOAA-20 for
15 March 2020. As demonstrated here, the GeoPolar MultiSensor L3S SST product has
better data coverage compared to the current MultiSensor L3S. On average, the GeoPolar
MultiSensor L3S SST product has 20% more data available on the IMOS domain than the
regular MultiSensor L3S SST product.

The GeoPolar MultiSensor L3S SST products are available from the NCI THREDDS
server (https://thredds.nci.org.au/thredds/catalog/qm43/ghrsst/v02.0fv02/Continent
al/L3S-01day/night/catalog.html, accessed on 6 September 2024) and AODN (https://thre
dds.aodn.org.au/thredds/catalog/IMOS/SRS/SST/ghrsst/L3SGM-1d/ngt/catalog.html,
accessed on 6 September 2024). The new GeoPolar MultiSensor L3S daily night product is
expected to provide better input for Reeftemp NextGen and IMOS OceanCurrent, owing to
its better data coverage. With the enhanced spatial data coverage, the GeoPolar MultiSensor
L3S product also will help with better monitoring of thermal stress and marine heatwave
ocean conditions and facilitate the study of ocean temperature trends.

Figure 14. SST data coverage from (a) MultiSensor and ( b) GeoPolar MultiSensor L3S SST product on
the IMOS domain for 15th December 2020.
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7. Discussion and Conclusions

Infrared imagery from the AHI sensor on the Himawari-8 satellite is used to retrieve
skin SST. The method that the University of Reading developed to derive ESA CCI SST
Climate Data Records version 2 from infrared sensors on polar-orbiting satellites was modi-
�ed and used for the geostationary satellite Himawari-8. Radiative transfer model RTTOV
12.3 was used to simulate top-of-atmosphere radiances from brightness temperatures (BTs).
Optimal Estimation was further used to calculate SSTs. Five channels of Himawari-8, 0.64,
0.86, 3.9, 10.4, and 12.4� m are used for spectral observations. The channel3.9� m was used
for only night-time retrievals. The Bureau's NWP model ACCESS-G analysis and forecast
data were used as atmospheric and surface state data. OSTIA L4 ice concentration was
used for ice masking and the GAMSSA SST analysis was used as background SST.

A Bayesian approach was used to determine cloud-free regions in the SST retrieval
process, where satellite observations and prior knowledge of the surface conditions were
used to estimate clear-sky probabilities. The Bayesian approach signi�cantly reduces the
occurrence of both missed cloud and false detection of clouds [18]. However, it might not
work properly in some speci�c situations like observations of regions with low-level fog or
night-time observations of regions covered with sea ice.

The Bayesian method used in this study for cloud detection did not account for the
effect of aerosols. Integrating tropospheric aerosols in the Bayesian cloud detection method
may be helpful with some speci�c SST measurements.

The SSES bias model that the Bureau developed for AVHRR polar orbiters that were
acquired through direct reception was applied to Himawari-8. This is an empirical model
based on match-ups with in situ SST data. Due to the increase in the frequency of match-up
events, a smaller time period was able to be used. A rolling 30-day window was used to
de�ne the model parameters, which were re-evaluated every day. For appropriate and
representative matchups, we used thresholds of 2 km distance and � 6 h time difference
between satellite and in situ observations in well-mixed conditions. Satellite zenith angle,
solar zenith angle and quality level of each satellite observation, and geographic coordinates
(latitude, longitude, and time of the observation) are used to de�ne bias and standard
deviation per pixel. As has been demonstrated, the model has shown some skill in bias
correction, although there needs to be further investigation in areas where the original use
in polar orbiters differs from geostationary use. This includes investigating and accounting
for possible diurnal variability, behaviour around sunrise and sunset, the relationship to
the probability of cloud clearance, and the considerable increase in spatial coverage, all of
which have been shown to exhibit non-zero bias in the existing model.

The monthly statistics for comparisons of Himawari-8 L2P skin SST against iQuam in
situ SST, corrected for the ocean cool-skin under well-mixed conditions, showed mean bias
of 0.3–0.4 K for daytime and � 0.2K for night-time, for the uncorrected bias case. After bias
correction, the mean bias is � 0.04K for daytime and � 0.14K for night-time. A night-time
negative bias is anticipated during high winds, as we are validating skin SST. However,
this effect may have been counteracted by diurnal warming during the daytime under
conditions of high solar insolation and low winds. The standard deviation is between
0.4 and 0.7 K for both uncorrected and bias-corrected cases. Five years (2016–2020) of the
Bureau's IMOS Himawari-8 L2P skin SST data were validated against shipborne radiometer
skin SST measurements obtained from the Infrared SST Autonomous Radiometer (ISAR)
onboard research vesselRV Investigatorin the study of [ 45]. They found the daytime mean
and median biases are both � 0.12 K, with an SD/RSD of 0.47/ 0.31 K, and night-time
mean/median bias of � 0.04/ 0.03K, and an SD/RSD of 0.37/ 0.24K. The negative biases
reported in [45] are consistent with our validation results.

The JAXA operationally retrieved Himawari-8 SST from 10.4, 11.2, and 8.6� m channels
using a quasi-physical SST algorithm and cloud screening based on a Bayesian cloud
detection method. Those JAXA Himawari-8 SSTs on the full disk were compared with
drifting buoys and tropical moorings for June to September 2015 in [3]. They found mean
bias between0.044and � 0.14K during daytime and between � 0.14and � 0.24K during
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night-time and twilight. The standard deviation values were between 0.38and 0.62K
during the day where satellite zenith angles were less than 60� , and more than 0.75K at
night where satellite zenith angles were greater than 60� . When JAXA Himawari-8 skin
SST were compared with ISAR skin SST in the Australian region for 2016 and 2017, a
mean bias of 0.09 K and standard deviation of 0.30 K were reported [ 46]. The study [ 46]
found signi�cant differences between skin and bulk SST measurements of maximum value
2.23 K under conditions of high diurnal warming and demonstrated that Himawari-8
AHI skin SST can accurately measure diurnal warming events. Although [ 45,46] and
undertook similar comparisons for Himawari-8 SST from JAXA and the Bureau against
ISAR, respectively, ref. [46] comparison showed better agreement, which can be attributed
to a more stringent choice for their match-up selection—quality Level 5 satellite retrievals
far from the edge of suspected cloud boundaries. Statistics can be improved by applying a
very harsh cloud mask for the Bureau's SST product but that would affect the data coverage.
Our users, such as �shers, prefer maximum possible data coverage so the trade-off might
not be what we aim for if the coverage is then very low in some regions.

The NOAA Centre for Satellite Applications and Research (STAR) operationally pro-
duced Himawari-8 SST products using NOAA's Advanced Clear-Sky Processor for Oceans
(ACSPO) SST system and monitored product performance against in situ data in the NOAA
SST Quality Monitor (SQUAM, https://www.star.nesdis.noaa.gov/sod/sst/squam, ac-
cessed on 3 September 2024). They produce sub-skin SST using regression algorithms. The
comparison of the NOAA ACSPO Himawari-8 SST product against drifters and tropical
moorings for June to September 2015 showed a bias within � 0.2 K and standard deviation
within 0.46 K [ 4]. A mean bias of 0.18 K with standard deviation of 0.53 K was reported for
the comparison of NOAA ACSPO Himawari-8 SST product with tropical moorings and
buoys in the Australian Great Barrier Reef region for August to October 2015 [ 47]. Contrary
to their positive biases for sub-skin SSTs, our validation results for L2P skin SST show
negative biases similar to JAXA skin SST products.

It is important to note that retrieval error standard deviation can be traded off against
SST sensitivity [1]. The SST sensitivity is the amount of change in retrieved SST for a
given change in the true SST (background SST). Earlier studies have demonstrated that low
sensitivity algorithms can have better standard deviation if they are over-�tted to training
data (e.g., [48]). Our retrieved SST showed higher values of sensitivity in general (ref.
Figure 1c). For QL � 3, at least 95 % sensitivity was achieved in our SST retrieval process.

The data were composited for 1 h, 4 h and daily night scenarios and further all
composite products were projected on the IMOS standard 0.02 degree grid. All Himawari-8
data were reprocessed back to 2015 and made available through the Australian Ocean
Data Network (AODN, https://portal.aodn.org.au, accessed on 3 September 2024) and
National Computational Infrastructure (NCI, [ 49]). All the L3C products were compared
with iQuam in situ SSTs and monthly statistics were presented for the entire platform life,
September 2015–December 2022, after applying a 0.17 K adjustment for the cool-skin and
under well-mixed ocean conditions. The 1 h L3C skin SST showed a bias of � 0.13 K and a
standard deviation of 0.45 K for night. The four-hourly SST showed a mean bias of � 0.1 K
and a standard deviation in excess of 0.4 K. The 1-day night skin SST showed a mean bias of
� 0.22 K and a standard deviation of 0.48 K. The availability of enhanced data coverage with
the addition of Himawari-8 data to existent Level 2 and 3 SST products will help with many
applications such as IMOS OceanCurrent (https://oceancurrent.aodn.org.au/, accessed on
6 September 2024), and investigations into marine thermal stress, marine heatwaves and
ocean upwelling in near-coastal regions.

It is believed there is potential for improvement in these newly developed Himawari-8
SST products. Future work will be focused along two major lines, improvement in SST
retrieval process and development of the geostationary satellite speci�c bias model. The
University of Reading has developed ESA SST CCI version 3 code and processed skin
SSTs from infrared radiometers on polar orbiters (AVHRR, ATSR, SLSTR) to derive Level 2,
Level 3 and Level 4 climate data records [50], which improves the representation of ra-
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diative effects of tropospheric aerosols for cloud detection and SST retrieval, reducing the
previous few-tenth degrees Celsius cold biases associated with desert dust aerosols. We
will be modifying this new version of the code to retrieve skin SSTs from Himawari-8 and
Himawari-9. We will also modify the Bureau's SSES model to better address diurnal dis-
crimination as well as a better representation of the matchup dataset over two hemispheres.
With the newly developed code, we plan to process Himawari-9 in near real time by June
2025 and reprocess the entire skin SST data record from Himawari-8 and Himawari-9.
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