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A B S T R A C T

Macrophages are a type of white blood cell that play a significant role in determining the inflammatory
response associated with a wide range of medical conditions. They are highly plastic, having the capacity
to adopt numerous polarisation states or ‘phenotypes’ with disparate pro- or anti-inflammatory roles. Many
previous studies divide macrophages into two categorisations: M1 macrophages are largely pro-inflammatory
in nature, while M2 macrophages are largely restorative. However, there is a growing body of evidence
that the M1 and M2 classifications represent the extremes of a much broader spectrum of phenotypes, and
that intermediate phenotypes can play important roles in the progression or treatment of many medical
conditions. In this article, we present a model of macrophage dynamics that includes a continuous description
of phenotype, and hence incorporates intermediate phenotype configurations. We describe macrophage
phenotype switching via nonlinear convective flux terms that scale with background levels of generic pro-
and anti-inflammatory mediators. Through numerical simulation and bifurcation analysis, we unravel the
model’s resulting dynamics, paying close attention to the system’s multistability and the extent to which
key macrophage–mediator interactions provide bifurcations that act as switches between chronic states and
restoration of health. We show that interactions that promote M1-like phenotypes generally result in a greater
array of stable chronic states, while interactions that promote M2-like phenotypes can promote restoration of
health. Additionally, our model admits oscillatory solutions reminiscent of relapsing–remitting conditions, with
macrophages being largely polarised toward anti-inflammatory activity during remission, but with intermediate
phenotypes playing a role in inflammatory flare-ups. We conclude by reflecting on our observations in the
context of the ongoing pursuance of novel therapeutic interventions.
1. Introduction

Macrophages are highly versatile immune cells that play pivotal
roles in controlling the inflammatory damage that underlies many
medical conditions, including auto-immune disorders such as rheuma-
toid arthritis, cardiovascular diseases, neurodegenerative conditions
(such as Alzheimer’s or Parkinson’s disease), diabetes, and some can-
cers, to name a few. Macrophages’ roles are numerous, and depend
strongly upon their ‘activation state’ or ‘phenotype’, which can change
dynamically in a manner that is dependent upon the inflammatory
environment in which they reside (among many other factors) [1,2].
One of the principal roles of macrophages (in their role as the immune
system’s ‘big eaters’) is to remove unwanted harmful material (includ-
ing apoptotic cells) via phagocytosis, in order to minimise the potential
for further tissue damage [3]. Alongside this, and depending on their
phenotype, macrophages can release either pro- or anti-inflammatory
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cytokines, with the potential to either worsen or repair inflammatory
damage [1,4]. Given that macrophages play such a substantial role
in determining the switch between healthy and chronic outcomes for
patients, and given that macrophage roles are so strongly linked to
the inflammatory environment, understanding the connections between
macrophage phenotype switching and resulting inflammatory dynam-
ics is an important goal, especially in the ongoing search for novel
therapeutic interventions.

Unambiguously categorising distinct macrophage phenotypes (or
polarisation/activation states) is a difficult task, as there is no unique
way to quantify a macrophage’s polarisation. Instead, macrophage
polarisation states are associated with broad categorisations that are
implicated based on levels of expression of certain markers, produc-
tion of certain cytokines, or measures of other cellular functions and
properties [5]. Historically, the most common nomenclature has been
to divide macrophages into two distinct classes labelled ‘‘M1’’ and ‘‘M2’’
https://doi.org/10.1016/j.mbs.2024.109289
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(or similarly ‘‘classically activated’’ and ‘‘alternatively activated’’), with
M1 macrophages being linked to pro-inflammatory responses and M2
macrophages being associated with restorative activity [6–9]. How-
ever, such categorisations are generally contentious and considered
to be overly simplistic descriptions of a much more complex land-
scape of potential polarisation states. For example, in the context of
rheumatoid arthritis, five relevant macrophage subtypes have been
identified in in vitro assays that consider morphological characteristics,
ene expression data related to phenotype markers, and functional
spects including production of Reactive Oxygen Species (ROS) [10].
ncreasingly, studies point to the existence of various intermediate
r ‘‘mixed’’ macrophage phenotypes that exhibit, for example, some
eatures akin to M1 and some features akin to M2; see, e.g. [11–14].

In this sense, we could regard macrophage phenotype as a continuous
variable, parameterising a spectrum of states that lie between the M1
and M2 extremes.

Given the complexity of the macrophage phenotype landscape,
many previous mathematical models that have sought to understand
the dynamics associated with inflammatory conditions have typically
incorporated a small, finite number of macrophage phenotypes. In
some cases, all macrophages are lumped together as a single ‘ho-
mogenised’ population, which commonly interacts with other cell pop-
ulations and/or various pro- or anti-inflammatory mediators to deter-
mine the resulting inflammatory outcome. Previous works that have
taken a homogenisation approach include models of cancers [15,16],
stroke [17] and atherosclerosis [18], as well as models that focus upon
aspects of the inflammatory response that transfer readily between
numerous inflammatory conditions [19–21]. We note, in particular, the
work of [22], which used a dynamical systems analysis to study a series
of models of inflammation in a generic context, in order to understand
which interactions are key in providing bifurcations that underpin
switching between resolving and chronic outcomes. Amongst the au-
thors’ conclusions was the fact that the rate at which macrophages
remove harmful apoptotic cells is a key parameter that drives this
switching of outcomes, and is a target for therapeutic manipulation.
While the models of [22] used a homogenised approach, with all
macrophages assumed restorative, we note that phagocytosis of apop-
totic cells is actually primarily attributed to the M2 phenotype, with the
M1 phenotype largely being regarded as more deleterious. The models
of [22] were later extended to a spatial setting, via partial-differential-
equation (PDE) and agent-based approaches, to elucidate the influence
of immune cell and mediator motility upon inflammatory dynamics
and outcomes [23,24]. Throughout all of these models, macrophage
phenotypes do not feature explicitly, and there is hence a risk that the
models may over-simplify some key phenotype-specific feedbacks (as
described above).

As our understanding of disparate macrophage phenotypes has con-
tinued to advance over recent years, increasingly mathematical models
have gone beyond the homogenisation approach to include two or
more distinct phenotypes. Examples of such models can be found in
contexts including inflammatory bowel disease [25], hepatitis [26,27],
asthma [28], and cancer [29–31], to list just a few. More recently,
in [32], we presented extensions of the models of [22] to include
two populations of macrophages of opposing phenotypes (referred to
as pro- and anti-inflammatory macrophages, but loosely representa-
tive of the M1/M2 categorisation). Taking a systematic approach, we
presented a series of models of increasing complexity, starting with a
model of a homogenised macrophage population, before building to
a two-macrophage-phenotype model, and finally supplementing this
with additional feedbacks from a coexistent population of neutrophils.
Moving from each model to the next, we examined changes in the
bifurcation structures of the models as new feedbacks were added,
in order to understand the role each model interaction has in de-
termining the resulting dynamics and the switch between chronic

and healthy outcomes. Our analysis revealed that incorporating two

2 
distinct macrophage phenotypes resulted in additional oscillatory so-
lutions (reminiscent of inflammatory conditions that exhibit relapsing–
remitting characteristics) not observed in the previous models of [22].
These oscillatory solutions were most evident for large macrophage
populations, for which there is scope for larger disparity between
the numbers of macrophages of each phenotype. Furthermore, rates
of macrophage phenotype switching were shown to impact resulting
outcomes in a largely intuitive manner; high rates of switching toward
the restorative phenotype can eliminate chronic outcomes entirely, and
high rates of switching toward the pro-inflammatory phenotype can
both worsen chronic outcomes and promote further chronic configu-
rations through increased multistability. We note that these findings
are consistent with the fact that active manipulation of macrophage
phenotype is one area of focus in treatment of various inflammatory
conditions [33,34].

While the two-phenotype models of [32] do make progress to-
ward a better understanding of the dynamics underlying inflammatory
conditions, we note that this perspective still represents a degree of
over-simplicity that omits the influence of ‘intermediate’ phenotypes.
We seek to address this here. While some previous models have ex-
plicitly included discrete intermediate or mixed phenotypes (e.g. [29,
30]), models that incorporate a continuum description of macrophage
phenotypes are comparatively sparse. In [35], in order to understand
the roles of heterogeneous macrophage populations upon solid tumour
aggregation, two models are presented and compared: one which takes
a two-phenotype (pro-tumour and anti-tumour) approach, and one
which considers a macrophage population that is structured according
to a continuous phenotype variable. These models were compared
via steady state analysis and numerical simulation; while numerical
simulations were similar between these approaches, the two-phenotype
model was shown to exhibit greater multistability. The interactions
of heterogeneous macrophage populations with tumours have also
been modelled via agent-based approaches, which can include contin-
uous descriptions of polarisation states [36,37]. We note that, to our
knowledge, no authors have to date interrogated a continuum-based
description of macrophage polarisation states via an approach of formal
bifurcation analysis; this approach forms the focus of our work here.

In this article, we develop a new PDE-based extension of the two-
phenotype models of [32] that utilises a continuous description of
macrophage polarisation states that accounts for intermediate phe-
notypes. For simplicity, we restrict attention to the interactions of
macrophages with background inflammatory mediators, and neglect
the roles of other immune cells here. Our model incorporates a spec-
trum of phenotype configurations that ranges between extreme con-
figurations representing fully pro-inflammatory (M1) and fully anti-
inflammatory (M2) phenotypes, and model phenotype switching via
convective flux terms whose magnitudes scale under the influence of
generic populations of pro- and anti-inflammatory mediators, which to-
gether provide a description of the inflammatory environment in which
our macrophage population resides. We analyse our model through
numerical simulation (conducted in Matlab) and dynamical systems
analysis (including via the numerical continuation package XPPAUT,
as described in [38,39]). Supporting Matlab and XPPAUT codes are
provided online1 in order to facilitate re-use of this model in future
inflammation studies that may, for example, include more detailed
descriptions of inflammatory mediators or incorporate other immune
cells. Throughout our analysis, we are interested in the extent to
which key cellular and mediator interactions provide switches between
resolving and chronic outcomes via corresponding bifurcations, and
the extent to which this switching of outcomes is influenced by shifts
in macrophage phenotype. Throughout, we pay close attention to the
extent to which our macrophage population is polarised toward pro- or

1 See github.com/martinrnelson/MacrophageContinuum.

http://github.com/martinrnelson/MacrophageContinuum
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Table 1
Summary of the dependent variables appearing in our model, with corresponding
units.

Variable Meaning Units

𝑚∗ Macrophage density (per tissue volume) cells mm−3

𝑔∗ Anti-inflammatory mediator concentration pg mm−3

𝑐∗ Pro-inflammatory mediator concentration pg mm−3

anti-inflammatory phenotypes, and the corresponding role of interme-
diate phenotypes that do not feature in the previous models of [32].
To conclude, we reflect on our dynamical systems observations in the
context of the ongoing search for therapeutic interventions in a range
of inflammatory conditions.

2. Model

We model macrophages on a continuous spectrum of phenotypes,
classified according to their levels of pro/anti-inflammatory activity.
We denote the number of macrophages by 𝑚∗ (𝑡∗, 𝑝), where 𝑡∗ represents
ime and stars are used to distinguish dimensional variables from their
imensionless counterparts below. The independent variable 𝑝 ∈ [−1, 1]

here parameterises macrophage phenotypes, with 𝑝 = 1 corresponding
to a fully pro-inflammatory phenotype and 𝑝 = −1 corresponding
to a fully anti-inflammatory phenotype. Additionally, we introduce
variables 𝑐∗ (𝑡∗) and 𝑔∗ (𝑡∗) to represent concentrations of generic pro-
and anti-inflammatory mediators present in the tissue of interest; thus,
𝑐∗ and 𝑔∗ together describe the inflammatory landscape in which
macrophages reside. (The dependent variables appearing in our model
are also summarised in Table 1.) We expect macrophages to switch
phenotype dynamically in response to changes in the inflammatory
context, with high levels of inflammation (𝑐∗ high, 𝑔∗ low) driving a
shift toward pro-inflammatory macrophage phenotypes, and low levels
of inflammation promoting a shift to the anti-inflammatory pheno-
types typically found in resident macrophage populations in healthy
tissues [40]. A schematic illustration of the interactions included in our
model is shown in Fig. 1.

We model phenotype switching via two convective fluxes, 𝐪+∗
and 𝐪−∗, which shift macrophages toward pro-inflammatory and anti-
inflammatory phenotypes respectively. We expect pro-inflammatory
mediators, 𝑐∗, to drive macrophages to become more pro-inflammatory,
and expect the strength of the corresponding flux to be largest for fully
anti-inflammatory macrophages (with 𝑝 = −1), with macrophages at
the fully pro-inflammatory end of the phenotype spectrum (𝑝 = 1) not
eing affected at all. Thus, we write
+∗ = 𝛼∗1𝑐

∗ (1 − 𝑝)𝑚∗. (1)

imilarly, anti-inflammatory mediators, 𝑔∗, drive phenotypic switching
n the opposing direction, with the greatest effect on macrophages with
= 1. We write
−∗ = −𝛼∗2𝑔

∗ (1 + 𝑝)𝑚∗. (2)

ere, the parameters 𝛼∗1 and 𝛼∗2 describe the rates of phenotypic switch-
ng in response to environmental cues from mediators. We also note
hat these choices of flux terms constrain macrophages to the domain
∈ [−1, 1], since 𝐪+∗ is zero when 𝑝 = 1 and 𝐪−∗ is zero when 𝑝 = −1.

Following [32], we assume that macrophages proliferate logistically
p to some maximum population size 𝑚∗

𝑚𝑎𝑥 (which we expect to vary
etween tissues), and that the rate of proliferation is enhanced in the
resence of pro-inflammatory mediators (𝑐∗). Additionally, we incorpo-
ate macrophage loss (due to either cell death or migration away from
he tissue of interest) at a constant rate 𝛾∗𝑚. Thus, we have the following

partial differential equation that governs the macrophage population:
𝜕𝑚∗

+ 𝜕 (

𝛼∗𝑐∗ (1 − 𝑝)𝑚∗ − 𝛼∗𝑔∗ (1 + 𝑝)𝑚∗)
𝜕𝑡∗ 𝜕𝑝 1 2

3 
= 𝑘∗
(

𝑐∗ + 𝑐∗𝑇
)

𝑅(𝑝)𝑚∗
𝑇

(

1 −
𝑚∗
𝑇

𝑚∗
𝑚𝑎𝑥

)

− 𝛾∗𝑚𝑚
∗, (3)

in which 𝑘∗𝑐∗𝑇 is the baseline rate of macrophage proliferation in the
absence of pro-inflammatory mediators, 𝑅(𝑝) is a function specifying
which phenotypic configuration newly acquired macrophages reside
in (specified in Section 3 below), and 𝑚∗

𝑇 (𝑡
∗) is the total number of

macrophages present in the system at a given time, given by:

𝑚∗
𝑇
(

𝑡∗
)

= ∫

1

−1
𝑚∗ (𝑡∗, 𝑝

)

d𝑝. (4)

o prescribe mediator dynamics, we take the interactions given in
he models of [32] as a guide, noting that macrophages can produce
oth pro- and anti-inflammatory mediators (in a manner that depends
n their phenotype). Our mediator dynamics are governed by the
ollowing ordinary differential equations:

d𝑔∗

d𝑡∗
= 𝜅∗

𝑔 ∫

1

−1
𝑓1(𝑝)𝑚∗d𝑝 − 𝛾∗𝑔 𝑔

∗, (5)

d𝑐∗
d𝑡∗

= 𝜅∗
𝑐 ∫

1

−1
𝑓2(𝑝)𝑚∗d𝑝 − 𝛿∗𝑐∗𝑔∗ − 𝛾∗𝑐 𝑐

∗, (6)

n which 𝜅∗
𝑔 and 𝜅∗

𝑐 parameterise rates of mediator production, 𝛾∗𝑔
nd 𝛾∗𝑐 parameterise rates of mediator decay, 𝛿∗ represents a miti-
ating effect of anti-inflammatory mediators against pro-inflammatory
ediators, and the functions 𝑓1(𝑝) and 𝑓2(𝑝) describe how the rates

f production of each group of mediators varies as a function of
acrophage phenotype. For simplicity, we assume linear dependences

or the latter, i.e.

1(𝑝) =
1 − 𝑝
2

, 𝑓2(𝑝) =
1 + 𝑝
2

; (7)

that is, macrophages that are in a fully pro-inflammatory configuration
(𝑝 = 1) produce no anti-inflammatory mediators at all and, likewise,
macrophages that are fully anti-inflammatory (𝑝 = −1) produce no
pro-inflammatory mediators.

We solve the system (3)–(7) subject to initial conditions represent-
ing an initially positive population of macrophages and some appropri-
ate mediator concentrations. We therefore prescribe

𝑚 = 𝑚∗
0(𝑝), 𝑐∗ = 𝑐∗0 , 𝑔∗ = 𝑔∗0 at 𝑡∗ = 0. (8)

2.1. Nondimensionalisation

To simplify our analysis below, we nondimensionalise (3)–(8) by
introducing the following scalings:

𝑡∗ = 1
𝛾∗𝑐

𝑡, 𝑔∗ =
𝛾∗𝑐
𝛿∗

𝑔, 𝑐∗ =
𝛾∗𝑐
𝑘∗

𝑐, 𝑚∗ =
𝛾∗2𝑐
𝛿∗𝜅∗

𝑔
𝑚, (9)

which yields the following system of dimensionless equations:
𝜕𝑚
𝜕𝑡

+ 𝜕
𝜕𝑝

(

𝛼1𝑐 (1 − 𝑝)𝑚 − 𝛼2𝑔 (1 + 𝑝)𝑚
)

=
(

𝑐 + 𝑐𝑇
)

𝑅(𝑝)𝑚𝑇

(

1 −
𝑚𝑇
𝑚𝑚𝑎𝑥

)

− 𝛾𝑚𝑚, (10)

d𝑔
d𝑡

= ∫

1

−1
𝑓1(𝑝)𝑚 d𝑝 − 𝛾𝑔𝑔, (11)

d𝑐
d𝑡

= 𝜅𝑐 ∫

1

−1
𝑓2(𝑝)𝑚 d𝑝 − 𝑐𝑔 − 𝑐, (12)

ith

𝑇 (𝑡) = ∫

1

−1
𝑚(𝑡, 𝑝)d𝑝. (13)

n (10)–(12) above, we have introduced the following dimensionless
arameter groupings:

𝑔 =
𝛾∗𝑔
𝛾∗𝑐

, 𝛾𝑚 =
𝛾∗𝑚
𝛾∗𝑐

, 𝜅𝑐 =
𝜅∗
𝑐 𝑘

∗

𝜅∗
𝑔 𝛿∗

, 𝑐𝑇 =
𝑘∗𝑐∗𝑇
𝛾∗𝑐

(14)

𝛼1 =
𝛼∗1
∗ , 𝛼2 =

𝛼∗2
∗ , 𝑚𝑚𝑎𝑥 =

𝛿∗𝜅∗
𝑔𝑚

∗
𝑚𝑎𝑥

∗2
. (15)
𝑘 𝛿 𝛾𝑐
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Fig. 1. Schematic illustration of the interactions included in our model. Arrows indicate production terms or positive fluxes, lines terminated with bars represent loss terms, and
dashed arrows indicate that corresponding macrophage behaviours scale with environmental cues represented by relevant mediator concentrations. Green/red triangles respectively
indicate feedbacks whose strength increases/decreases with the phenotype variable 𝑝.
We solve (10)–(13) subject to the initial conditions:

𝑚 = 𝑚0(𝑝), 𝑐 = 𝑐0, 𝑔 = 𝑔0 at 𝑡 = 0. (16)

2.2. Parameters

A summary of the dimensional parameters appearing in our model
is provided in Table 2. We note that theoretical studies of inflammation,
in general, suffer from difficulties in accurately inferring corresponding
model parameters due to limitations in available experimental data.
This is due to a variety of factors, including a lack of suitable non-
invasive experimental protocols, the fact that parameter values would
be likely to have significant variability between differing inflammatory
conditions and affected tissues, and due to patients with inflammatory
conditions commonly reporting late to medical professionals, limiting
the extent to which the onset of the acute inflammatory phase can
be interrogated. Furthermore, we note that inferring rate parameters,
in particular, would require temporal data that is difficult to obtain
in vivo. In light of these limitations, it is more practical to estimate
the orders of magnitude of corresponding dimensionless parameter
groupings based on our knowledge of which mechanisms dominate.
Our approach is to construct a baseline set of dimensionless parameter
values (given in Table 3) which reflects available knowledge around
dominant mechanisms, and to then analyse the impact of variations
in these parameters via numerical simulation and bifurcation analysis.
Where possible, we configure our baseline parameter choices to be
consistent with those of [32], in order to facilitate comparison of the
PDE model discussed here with related ODE models discussed in [32].

The decay rates of individual mediators are reasonably well doc-
umented, but can vary according to the medical context in question.
For example, the half-lives of the pro-inflammatory cytokines IL–1𝛽,
IL–8 and TNF𝛼 have been indicated to lie in the range 18.2–24min,
while the anti-inflammatory cytokine IL–1RA decays more slowly with
a half-life in the range 4–6h [41]. In our model, this could suggest that
𝛾𝑔 = 𝛾∗𝑔 ∕𝛾

∗
𝑐 ≪ 1. However, some cytokines (e.g. IL–6) can have both

pro- and anti-inflammatory effects [41], suggesting that 𝛾 ∼ 1 in some
𝑔

4 
contexts. Here, following [32], we take 𝛾𝑔 = 0.2 as our default value in
Table 3.

Identifying accurate values for the parameters that govern
macrophage population dynamics is difficult in general, since these
depend upon the scale of the affected tissue. However, the rate of
macrophage loss (𝛾∗𝑚) has been documented (in the context of wound
healing) to lie in the range 0.2–1.41 per day [42,43], indicating that
macrophage loss occurs at a slower rate than decay of pro-inflammatory
mediators; we hence set 𝛾𝑚 = 𝛾∗𝑚∕𝛾

∗
𝑐 < 1 in Table 3. Accurately prescrib-

ing the rate of proliferation/recruitment of the macrophage populations
in isolation is hindered by the fact that macrophage proliferation rates
are known to depend on background levels of inflammatory media-
tors [44]. In (10), we assume that macrophage proliferation rates take
a linear dependence upon pro-inflammatory mediator concentrations
(i.e. of the form 𝑐 + 𝑐𝑇 ) and, under the expectation that proliferation
rates should appreciably increase in the presence of pro-inflammatory
mediators, we expect 𝑐𝑇 to be small in comparison to the scale over
which 𝑐 varies. We therefore set 𝑐𝑇 = 0.01 in Table 3. Likewise, since
the maximal macrophage population size will depend heavily on the
size of the tissue of interest, we follow [32] in choosing 𝑚𝑚𝑎𝑥 = 25 as a
baseline value in Table 3.

We expect macrophage phenotype switching toward the pro-
inflammatory end of the spectrum (𝛼1) to dominate the converse
direction (𝛼2) as many inflammatory conditions are associated with
increased ratios of pro-inflammatory macrophages [45,46]; thus we
expect 𝛼1 ≫ 𝛼2 in general.

The remaining mediator production rate parameter, 𝜅𝑐 , is not read-
ily available from existing literature. Following [32], we choose 𝜅𝑐 =
0.35 as our baseline value; however, we note that our definition of
𝜅𝑐 here varies slightly from that of [32], since its interpretation here
is inherently linked to the manner in which the mediator production
functions 𝑓2(𝑝) and, indirectly, 𝑓1(𝑝) are prescribed. Here, we choose
𝑓1(𝑝) and 𝑓2(𝑝) to be (1) functions, and vary the strength of the
production of mediators via 𝜅𝑐 . Variations of all parameter values
around these baseline values are examined throughout our analyses
below.
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Table 2
Summary of the dimensional parameters appearing in the model, with corresponding units.
Parameter Meaning Units

Macrophage parameters

𝑘∗ Rate of (logistic) growth of macrophage population mm3 pg−1 day−1

𝑐∗𝑇 Pro-inflammatory mediator concentration at which macrophage proliferation is at its minimal rate pg mm−3

𝑚∗
𝑚𝑎𝑥 Maximum size of macrophage population cells mm−3

𝛼∗
1 Rate of macrophage phenotype switching toward pro-inflammatory phenotypes mm3 pg−1 day−1

𝛼∗
2 Rate of macrophage phenotype switching toward anti-inflammatory phenotypes mm3 pg−1 day−1

𝛾∗𝑚 Rate of loss of macrophages (all phenotypes) day−1

Anti-inflammatory mediator parameters

𝜅∗
𝑔 Rate of production by macrophages pg cell−1 day−1

𝛾∗𝑔 Decay rate day−1

Pro-inflammatory mediator parameters

𝜅∗
𝑐 Rate of production by macrophages pg cell−1 day−1

𝛾∗𝑐 Decay rate day−1

𝛿∗ Rate of loss due to mitigating effect of anti-inflammatory mediators mm3 pg−1 day−1
a

𝑚
𝑚

Table 3
Summary of the dimensionless parameters appearing in the model. Parameter values
are estimated as described in Section 2.2.

Parameter Expression Meaning Baseline value

𝜅𝑐 𝑘∗𝜅∗
𝑐 ∕𝛿

∗𝜅∗
𝑔 Rate of production of

pro-inflammatory mediators
0.35

𝛾𝑚 𝛾∗𝑚∕𝛾
∗
𝑐 Decay of macrophages 0.05

𝛾𝑔 𝛾∗𝑔 ∕𝛾
∗
𝑐 Decay of anti-inflammatory

mediators
0.2

𝑐𝑇 𝑘∗𝑐∗𝑇 ∕𝛾
∗
𝑐 Rate of macrophage proliferation

in the absence of 𝑐
0.01

𝑚𝑚𝑎𝑥 𝛿∗𝜅∗
𝑔𝑚

∗
𝑚𝑎𝑥∕𝛾

∗2
𝑐 Maximum macrophage population

size
25

𝛼1 𝛼∗
1∕𝑘

∗ Macrophage phenotype switching
(anti to pro)

1

𝛼2 𝛼∗
2∕𝛿

∗ Macrophage phenotype switching
(pro to anti)

0.01

3. Results

In the following sections, we use a combination of numerical sim-
ulations conducted in Matlab and bifurcation analyses conducted in
XPPAUT to analyse the system (10)–(13). In both cases, the correspond-
ing codes involve a finite difference discretisation in the phenotype
variable 𝑝, which converts our PDE system into a system of ODEs
that can be simulated using standard in-built solvers. More details
of the numerical scheme are given in Appendix. Throughout, we are
interested in whether (for a given set of parameter values) the system
admits a positive steady state that represents chronic inflammation,
returns to a ‘healthy’ steady state in which pro-inflammatory compo-
nents are zero, or provides more complex dynamics such as oscillatory
solutions (which could be likened to inflammatory conditions that
exhibit relapsing–remitting characteristics). We will observe that, often,
the system may exhibit multiple of these potential solutions for a fixed
parameter set, with the switch between outcomes being governed by
initial conditions. We will also draw comparisons of the results of
this PDE model against earlier models that have less detailed descrip-
tions of macrophage phenotypes to elucidate the extent to which our
conclusions may be sensitive to the modelling approach.

3.1. Stability of the zero state

It is trivial to see that the system (10)–(13) has a steady state at
𝑚 = 𝑔 = 𝑐 = 0. Since this steady state contains no pro-inflammatory
components, we regard this configuration as one type of resolved
outcome. In order to determine the stability of this steady state, we
linearise (10)–(13) by introducing the following scalings:

𝑚(𝑡, 𝑝) = 𝜀�̂�(𝑡, 𝑝), 𝑔(𝑡) = 𝜀�̂�(𝑡), 𝑐(𝑡) = 𝜀𝑐(𝑡), (17)
 i

5 
and write

𝑚𝑇 = 𝜀∫

1

−1
�̂�(𝑡, 𝑝) d𝑝 = 𝜀�̂�𝑇 . (18)

At  (𝜀), (10)–(12) reduce to

𝜕�̂�
𝜕𝑡

= 𝑐𝑇𝑅(𝑝)�̂�𝑇 − 𝛾𝑚�̂�, (19)

d�̂�
d𝑡

= ∫

1

−1
𝑓1(𝑝)�̂� d𝑝 − 𝛾𝑔 �̂�, (20)

d𝑐
d𝑡

= 𝜅𝑐 ∫

1

−1
𝑓2(𝑝)�̂� d𝑝 − 𝑐. (21)

For the linear choices of 𝑓1(𝑝) and 𝑓2(𝑝) given in (7), we can simplify
the integrals in (20) and (21) by noting the following (in which we
write 𝑓 (𝑝) in place of 𝑓1(𝑝) or 𝑓2(𝑝) for compactness):

∫

1

−1
𝑓 (𝑝)�̂� d𝑝 = 1

2 ∫

1

−1
(1 ± 𝑝) �̂� d𝑝

= 1
2 ∫

1

−1
�̂� d𝑝 ± 1

2 ∫

1

−1
𝑝�̂� d𝑝

= 1
2
�̂�𝑇 ± 1

2

(

𝑝�̂�𝑇

|

|

|

|

|

1
−1 − ∫

1

−1
�̂�𝑇 d𝑝

)

. (22)

Noting that �̂�𝑇 is independent of 𝑝, the bracketed terms in (22) cancel
nd we have

∫

1

−1
𝑓 (𝑝)�̂� d𝑝 = 1

2
�̂�𝑇 . (23)

Since (23) reveals that (20) and (21) depend only upon �̂�𝑇 , rather than
̂ itself, it is helpful to reformulate (19) in terms of �̂�𝑇 and eliminate
̂ entirely. We note that

d�̂�𝑇
d𝑡

= d
d𝑡 ∫

1

−1
�̂� d𝑝

= ∫

1

−1

𝜕�̂�
𝜕𝑡

d𝑝

= ∫

1

−1
𝑐𝑇𝑅(𝑝)�̂�𝑇 − 𝛾𝑚�̂� d𝑝, (24)

in which the final equality comes from (19). Restricting attention to the
case 𝑅(𝑝) = 1 for ease, (24) then provides

d�̂�𝑇
d𝑡

= 𝑐𝑇 ∫

1

−1
�̂�𝑇 d𝑝 − 𝛾𝑚 ∫

1

−1
�̂� d𝑝 =

(

2𝑐𝑇 − 𝛾𝑚
)

�̂�𝑇 , (25)

in which we have again noted that �̂�𝑇 is independent of 𝑝.
With (25) replacing (19), and with (20) and (21) rewritten accord-
ng to (23), (19)–(21) can be expressed as the following linear system:
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d
d𝑡

⎛

⎜

⎜

⎜

⎝

�̂�𝑇

�̂�

𝑐

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

2𝑐𝑇 − 𝛾𝑚 0 0
1
2 −𝛾𝑔 0
𝜅𝑐
2 0 −1

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉

⎛

⎜

⎜

⎜

⎝

�̂�𝑇

�̂�

𝑐

⎞

⎟

⎟

⎟

⎠

. (26)

ince the Jacobian matrix 𝐉 is triangular, its eigenvalues are given by
ts diagonal entries. For the zero state to be stable, we require all the
igenvalues of 𝐉 have negative real part. Thus, the zero state is stable
rovided that

𝑇 <
𝛾𝑚
2
. (27)

he stability of the zero state is therefore determined by the underlying
rowth/decay dynamics of the macrophage population in the absence
f inflammatory stimuli, with 𝑐𝑇 representing the rate of growth of the
acrophage population in the absence of pro-inflammatory mediators,

nd 𝛾𝑚 being the rate of loss of macrophages as they vacate the tissue
r die.

.2. Solutions for 𝑅(𝑝) = 1

For simplicity, we begin our numerical analysis with consideration
f the case 𝑅(𝑝) = 1, for which all macrophage phenotypes are recruited
niformly. While this is not necessarily a biologically realistic assump-
ion, it provides a useful starting point for our mathematical analysis;
e examine the impact of non-uniform choices of 𝑅(𝑝) in Section 3.3

below.
Fig. 2 illustrates some typical solutions to (10)–(13). Here, we

hold all parameters fixed at the values of Table 3 but vary 𝛾𝑔 to
illustrate the range of permissible solutions. For 𝛾𝑔 = 1 (Fig. 2(a)), the
system attains a steady state configuration in which pro-inflammatory
mediator concentrations are high, anti-inflammatory mediator concen-
trations are low, and macrophages are polarised entirely toward pro-
inflammatory phenotypes. This configuration represents a chronic in-
flammatory outcome. Reducing 𝛾𝑔 to its default value of 0.2 (Fig. 2(b)),
results in higher levels of anti-inflammatory mediators, which stimu-
lates macrophage phenotype switching toward anti-inflammatory phe-
notypes (via the flux term arising from (2)). Here, the system attains
a stable oscillatory configuration (periodic orbit) with macrophages
mostly polarised toward anti-inflammatory activity but also with pe-
riodic surges of more pro-inflammatory phenotypes that prevent the in-
flammation being mitigated against entirely. Levels of pro-
inflammatory mediators are lower than in Fig. 2(a) due to the upscaled
role of the anti-inflammatory mediators and macrophages, but the
solution is nonetheless chronic. In Fig. 2(c), we set 𝛾𝑔 = 0.01 and
observe that, while pro-inflammatory mediator concentrations are ini-
tially sufficiently high to drive macrophages toward pro-inflammatory
phenotypes, rapid accumulation of anti-inflammatory mediators then
reverses the direction of phenotypic switching, moving macrophages
toward anti-inflammatory configurations. Here, pro-inflammatory me-
diator concentrations eventually reach zero and the macrophage pop-
ulation ultimately leaves the tissue entirely as the macrophage decay
term via 𝛾𝑚 outweighs the growth term (𝑐𝑇 ) in (10); the system reaches
the zero state, which is stable for these parameter choices according
to (27). We regard this configuration as a healthy outcome in which
inflammation is resolved entirely.

We note that, in Fig. 2, we have illustrated typical outcomes by
varying one of our model parameters (𝛾𝑔 in this case). Equally, for
some parameters, we could illustrate similar results by holding pa-
rameters fixed and varying our initial conditions, since the model is
bistable for many parameter choices. In order to elucidate how our
model’s solutions depend on each of our parameters more fully, we
perform bifurcation analyses in XPPAUT to track the coordinates of
steady states and oscillatory solutions as a function of each parameter.
(See Appendix for further details of the numerical scheme used; the
6 
Table 4
Abbreviations used in annotations of Figs. 3 and 4.

Abbreviation Description

(Res) Resolution: the only stable solution is the steady state at zero
(Chr) Chronic: the only stable solution is a single chronic steady

state
(B) The model is bistable with both resolving and chronic steady

states permissible
(Multi) The model permits more than two stable steady states, one

of which is the zero state
(Res/Osc) The model converges to either the zero state or an

oscillatory solution
(B/Osc) The model converges to either the zero state, a unique

chronic state or an oscillatory solution
(Chr:2) The model has two stable chronic steady states; the zero

state is unstable

corresponding XPPAUT code is also available online.) Fig. 3 illustrates
bifurcation diagrams for each of our seven model parameters, holding
all unspecified parameters at the values given in Table 3. The vertical
axes in the figures show the pro-inflammatory mediator concentration,
𝑐, which is a proxy for the severity of chronically inflamed states. The
inset figures in the top-right of each panel provide an indication of
the corresponding macrophage phenotypes for each branch; colouring
represents the ‘median’ macrophage phenotype, calculated according
to

𝑝𝑚𝑒𝑑𝑖𝑎𝑛 = min �̂� ∈ [−1, 1] ∶ ∫

�̂�

−1
𝑚 d𝑝 ≥

𝑚𝑇
2

, (28)

with configurations for which 𝑚𝑇 = 0 coloured black. Dark blue or dark
red colourings indicate that the distribution of macrophage phenotypes
is mostly anti-inflammatory or mostly pro-inflammatory, respectively.
In the case of periodic solutions, we colour branches by evaluating
(28) at the points of the orbit at which the pro-inflammatory mediator
concentrations are highest and lowest; the difference in colour between
the upper and lower branches indicates the extent to which the ‘median
phenotype’ shifts during each oscillatory cycle.

For the parameter values of Table 3, the model permits resolution
via convergence to the zero state (as per (27), labelled ‘‘Res’’ in Fig. 3),
or chronic oscillatory outcomes as shown in Fig. 2(b) (labelled ‘‘Osc’’
in Fig. 3). In general, we observe that changes in parameter values
that stimulate macrophage numbers, either directly (𝛾𝑚 smaller, or 𝑐𝑇
larger) or indirectly via pro-inflammatory mediators (𝜅𝑐 larger), can
act to overwhelm oscillations, eliminating them via a Hopf bifurcation
and often giving rise to a chronic steady state. Furthermore, increasing
𝑐𝑇 and/or reducing 𝛾𝑚 can destabilise the zero state via a transcritical
bifurcation corresponding to (27), resulting in a configuration of the
model in which a chronic steady state outcome is guaranteed (de-
marked by ‘‘Chr’’ in Fig. 3). Conversely, increasing 𝛾𝑚 or decreasing 𝑐𝑇
(both of which reduce the size of the macrophage population) results
in a growth of the amplitude of oscillatory solutions, until the periodic
orbit ultimately collides with a neighbouring saddle (with 𝑐 ≃ 0)
and is hence eliminated via a homoclinic bifurcation. For sufficiently
large choices of 𝛾𝑚, in particular, the only permissible solution is
one of resolution, the zero state being the only stable solution here.
Intuitively, we may make converse conclusions regarding stimulation
or repression of anti-inflammatory mediators, in comparison to those
of pro-inflammatory mediators: for 𝛾𝑔 small, we have large numbers
of anti-inflammatory mediators and chronic outcomes are eliminated;
oscillations exist for values of 𝛾𝑔 lying between a Hopf bifurcation and a
homoclinic bifurcation; and moderate to large choices of 𝛾𝑔 (for which
anti-inflammatory mediator contributions are lesser) reveal regions of
bistability or multistability (labelled ‘‘B’’ and ‘‘Multi’’ in Fig. 3) in which
there are two or more stable steady states and the system may attain
either resolved or chronic steady-state outcomes.

The existence of oscillatory solutions requires a reasonably large

macrophage population, oscillations being eliminated entirely for 𝑚𝑚𝑎𝑥



S. Almansour et al. Mathematical Biosciences 377 (2024) 109289 
Fig. 2. Numerical simulations of (10)–(13) subject to initial conditions 𝑐(0) = 𝑔(0) = 0.5 and 𝑚(0, 𝑝) = 10 for (a) 𝛾𝑔 = 1, (b) 𝛾𝑔 = 0.2 and (c) 𝛾𝑔 = 0.01, 𝑅(𝑝) = 1 and all
unspecified parameters as given in Table 3. In each row, we show the pro-inflammatory mediator concentrations (𝑐(𝑡), left), the anti-inflammatory mediator concentrations (𝑔(𝑡),
centre) and the distribution of macrophage phenotypes (𝑚(𝑡, 𝑝), right). In the right-hand panels, the colour-bar represents the number density of each macrophage phenotype, with
anti-inflammatory phenotypes at the base of the figures (𝑝 = −1) and pro-inflammatory phenotypes at the top of the figures (𝑝 = 1). In (a) and (c), the model approaches steady
states with macrophages polarised toward pro- and anti-inflammatory phenotypes respectively, while in (b) the model attains an oscillatory solution that includes a distribution of
intermediate phenotypes but with polarisation biased toward anti-inflammatory activity.
small. This observation is consistent with the findings of corresponding
ODE models given by [32]; see e.g. Figure 6(b) of [32]. Further-
more, we observe that oscillatory solutions generally correspond to
macrophage configurations that comprise primarily anti-inflammatory
and intermediate phenotypes; large numbers of strongly pro- inflam-
matory macrophage phenotypes generally correspond to the existence
of stable chronic steady states. In some sense, we may liken our
observed oscillatory solutions to conditions with relapsing–remitting
characteristics; while a typical periodic orbit includes phases where
the macrophage population is almost entirely polarised at or close to
the anti-inflammatory end of the spectrum (𝑝 = −1), inflammatory
flare-ups arise concordant with surges in the numbers of intermediate
macrophage phenotypes that are more pro-inflammatory in nature (an
example of which is shown in Fig. 3(b)).

The phenotype switching parameters, 𝛼1 and 𝛼2, play a joint role
in controlling many of the above observations. For 𝛼1 fixed at its
default value of Table 3, varying 𝛼2 reveals a window of 𝛼2–values
in which oscillations exist, bounded between two Hopf bifurcations.
(See Fig. 3(d).) For 𝛼2 fixed at its default value, smaller choices of
𝛼 result in a bistable configuration in which the model attains either
1

7 
the zero state or a weakly-inflamed chronic state that is mitigated by
macrophage polarisation toward anti-inflammatory phenotypes. Mean-
while, larger choice of 𝛼1 can give rise to a new chronic state in
which pro-inflammatory mediator concentrations are much higher and
macrophages are primarily polarised toward pro-inflammatory pheno-
types (as shown in Fig. 3(c)). In order to fully understand the joint
effect of these two parameters (and others), it is helpful to track the
coordinates of the bifurcations observed above in two-dimensional
slices of parameter space, as illustrated in Fig. 4.

Fig. 4 illustrates various two-parameter bifurcation diagrams that
reveal a reasonably complex interdependence between our model pa-
rameters, illustrating numerous areas of parameter space in which
model outcomes are distinct. Here, we place particular focus upon the
parameters 𝛾𝑚 (which indirectly controls the size of the macrophage
population and influences the scope for resolution via (27)), 𝛼1 and
𝛼2 (which control phenotype switching), and 𝜅𝑐 and 𝛾𝑔 (which to-
gether govern the scales of supporting inflammatory mediators). While
two-parameter bifurcation diagrams involving other parameter combi-
nations were examined, these are omitted for brevity here since they
did not reveal any additional novel dynamics not otherwise captured in
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Fig. 3. Bifurcation diagrams illustrating solutions of (10)–(13). All unspecified parameters are as in Table 3. Solid/dashed curves represent stable/unstable solutions; black and
red represent steady states and periodic orbits respectively. Inset: the same curves, but instead coloured according to the median macrophage phenotype given by (28). A list of
abbreviations is given in Table 4.
Fig. 4. In Fig. 4(a,b), we expose how the macrophage phenotype switch-
ing parameters (𝛼1 and 𝛼2) act in tandem with the rate of macrophage
decay (𝛾𝑚) to control the location of corresponding bifurcations. From
(27), we know that the zero state (which corresponds to resolution of
inflammation) is destabilised via a transcritical bifurcation at 𝛾𝑚 = 0.02
(for the parameter values of Table 3). This transcritical bifurcation is
8 
shown as blue curves in Fig. 4(a,b). To the left of these curves, 𝛾𝑚
is relatively small and the macrophage population is relatively large,
and the model is relatively sensitive to phenotype switching via 𝛼1 and
𝛼2, which together determine the number of chronic steady states that
exist. For 𝛼1 small or 𝛼2 large, macrophage polarisation is driven pri-
marily toward anti-inflammatory phenotypes and there exists a unique
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Fig. 4. Bifurcation diagrams illustrating bifurcations of (10)–(13) in two-dimensional slices of parameter space. Red curves represent saddle–node bifurcations; black curves represent
Hopf bifurcations; blue curves represent transcritical bifurcations. All unspecified parameters are as given in Table 3. A list of abbreviations is given in Table 4.
w

chronic state corresponding to relatively low-level inflammation. For 𝛼1
arge or 𝛼2 small, macrophage phenotype switching in the direction of
ro-inflammatory phenotypes is stronger and we may obtain a second
hronic steady state corresponding to more severe inflammation (i.e.

with 𝑐 larger). (See, also, Fig. 3(c,d).) For 𝛾𝑚 larger, so that the zero
state is stable, 𝛼1 and 𝛼2 effect a switch in the existence/stability of
chronic steady states, moving the model between configurations of
guaranteed resolution (𝛼1 small or 𝛼2 large) or bistability with both
chronic and resolved outcomes permissible (𝛼1 large or 𝛼2 small). This
oint role of 𝛼1 and 𝛼2 is further elucidated in Fig. 4(c), in which we
rack bifurcations in (𝛼1, 𝛼2)–space. For intermediate values of 𝛾𝑚, 𝛼1
nd 𝛼2, we find Hopf bifurcations that can give rise to oscillations as
hown above in Figs. 2(b) and 3.

In Fig. 4(d), we draw similar conclusions regarding the param-
ters that control the concentrations of the two species of inflam-
atory mediators (i.e. 𝜅𝑐 , which controls the rate of growth of pro-

nflammatory mediators, and 𝛾𝑔 , which controls the rate of decay of
nti-inflammatory mediators population). Intuitively, for 𝜅𝑐 and 𝛾𝑔 both
mall, pro-inflammatory mediator concentrations are small and anti-
nflammatory mediator concentrations are large, and the model attains

configuration in which resolution of inflammation is guaranteed.
hen these parameters are both large, chronic steady states are pro-
oted and the model attains a bistable configuration (noting that the

esolved state at zero is always stable here due to the values of 𝛾 and
𝑚 𝑅

9 
𝑐𝑇 satisfying (27)). Intermediate choices of 𝜅𝑐 and 𝛾𝑔 can give rise to
oscillatory solutions or additional chronic states as we have already
observed in Fig. 3(f,g).

3.3. Varying 𝑅(𝑝)

We, here, investigate the extent to which our choice of recruitment
function 𝑅(𝑝) = 1 above influences the observed dynamics. That is,
we seek to understand the manner in which the existence or stabil-
ity of healthy and chronic outcomes depends upon the polarisation
state of newly recruited macrophages. Here, we take 𝑅(𝑝) to be of a
Gaussian-like shape given by

𝑅(𝑝) = exp
(

−
(𝑝 − 𝜇)2

𝜎2

)

, (29)

where 𝜇 parameterises the ‘mean phenotype’ of newly recruited
macrophages and 𝜎 captures the level of variability in recruited macro
phage phenotypes. In the limit 𝜇 → 1, newly recruited macrophages
are primarily polarised toward pro-inflammatory activity, whereas the
limit 𝜇 → −1 corresponds to recruitment of primarily anti-inflammatory
phenotypes. We note that in the limit 𝜎 → ∞ we have 𝑅(𝑝) → 1, and

e recover the previous case of Section 3.2.
In Fig. 5, we show bifurcation diagrams akin to Fig. 3(a) but with
(𝑝) as given by (29), for a range of 𝜇 and 𝜎 values. Here, we treat
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Fig. 5. Bifurcation diagrams illustrating solutions of (10)–(13) with 𝑅(𝑝) given by (29), for varying choices of 𝜇 and 𝜎. All unspecified parameters are as in Table 3. Solid/dashed
black curves represent stable/unstable steady state solutions. Solid red curves represent stable periodic orbits. (Unstable periodic orbits are omitted in (c) for clarity.).
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the rate of macrophage loss 𝛾𝑚 as our primary bifurcation parameter
and examine how the number and nature of steady states and the
positions of related bifurcations are influenced by changes in 𝑅(𝑝). We
note that, in principle, we could choose any of the seven parameters
analysed in Fig. 3 as our bifurcation parameter here; however, our
rationale for focusing upon 𝛾𝑚 in particular lies in the fact that this
arameter (as a convenient proxy for the size of the macrophage
opulation) has very direct biological interpretation, and has a well-
nderstood role in affecting the stability of the zero-state via (27). In
ig. 3(a), for 𝑅(𝑝) = 1, we observed that the healthy state is stable
or 𝛾𝑚 > 0.02 (as per (27)), and for sufficiently large values of 𝛾𝑚 this

is the only stable configuration. Additionally, two branches of chronic
configurations exist for smaller choices of 𝛾𝑚: a stable branch of low-
level chronic solutions exists for 𝛾𝑚 ≲ 0.043 and is then destabilised
ia a Hopf bifurcation giving rise to low-level oscillations supported
y a primarily anti-inflammatory macrophage population; meanwhile,
second branch of higher-level chronic inflammation (supported by
largely pro-inflammatory macrophage population) exists for values

f 𝛾𝑚 below a corresponding saddle–node bifurcation (at 𝛾𝑚 ≃ 0.033).
s Fig. 5(g–i) show, we recover these results in the limit 𝜎 → ∞. For
10 
∼ (1), the three fundamental branches of solutions above persist,
but may shift in parameter space and/or exhibit stability changes.

Taking the limit 𝜎 → 0, so that the distribution of recruited
acrophage phenotypes becomes increasingly narrow, results in some

mall changes to the location of the transcritical bifurcation that bounds
he stability of the healthy steady state. However, this appears to be
n artefact of having no normalising constant in (29) – a deliberate
hoice here to ensure that 𝑅(𝑝) → 1 as 𝜎 → ∞. As we gradually reduce
, we slightly slow the total rate of recruitment of new macrophages,
nd hence slightly enhance the stability of the healthy state (shifting
he transcritical bifurcation to the left in Fig. 5). This behaviour is
ymmetrical in variations of 𝜇.

Changes to the healthy steady state and its corresponding tran-
scritical bifurcation are relatively slight in comparison to the influ-
ence of 𝑅(𝑝) upon chronic states. Intuitively, polarisation of recruited
macrophages toward pro-inflammatory phenotypes has the effect of
promoting chronic configurations. In the case of the higher-level
chronic state of Fig. 3, the saddle node that provides the upper bound
in 𝛾𝑚 for this branch shifts toward larger 𝛾𝑚–values as 𝜇 → 1, rendering
this state permissible for a broader range of choices of 𝛾𝑚. Additionally,

the limit 𝜇 → 1 can also drive stability changes on the low-level
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Fig. 6. Distributions of macrophage phenotypes, 𝑚(𝑡, 𝑝), for the oscillatory solutions of Fig. 5(d–f), for 𝛾𝑚 = 0.035 (and all unspecified parameters are as given in Table 3), for
initial conditions 𝑐(0) = 𝑔(0) = 0.5 and 𝑚(0, 𝑝) = 10. The colour-bar represents the number density of each macrophage phenotype, with anti-inflammatory phenotypes at the base
of the figures (𝑝 = −1) and pro-inflammatory phenotypes at the top of the figures (𝑝 = 1).
chronic branch, as shown for 𝜎 = 0.5 in Fig. 5(c). Here two additional
(subcritical) Hopf bifurcations are introduced, providing additional
stable steady-state solutions (and unstable periodic orbits, not plotted)
in regions of parameter space in which restoration of the healthy state
was previously guaranteed.

Interrogating the distributions of macrophage phenotypes that un-
derlie the branches of solutions shown in Fig. 5 reveals that steady
state solutions qualitatively recover the two steady state cases shown
in Fig. 2 (a,c) regardless of our choice of 𝑅(𝑝). That is, chronic steady
states involve strong polarisation of macrophages toward the pro-
inflammatory end of the spectrum (similar to Fig. 2(a)), while resolu-
tion is generally preceded by polarisation of the macrophage population
toward anti-inflammatory phenotypes (similar to Fig. 2(c)). However,
oscillatory solutions do exhibit some dependence on the prescription
of 𝑅(𝑝). In Fig. 6, we plot the temporal evolution of the distribution
of macrophage phenotypes corresponding to the oscillations found at
𝛾𝑚 = 0.035 in Fig. 5(d–f). As observed for 𝑅(𝑝) = 1 in Section 3.2, os-
cillatory solutions continue to require a reasonably significant number
of anti-inflammatory macrophages. However, taking 𝜇 → 1, so that re-
cruited macrophages are biased toward pro-inflammatory phenotypes,
can intuitively result in oscillatory solutions that encompass a much
broader range of phenotypes than previously observed. In particular,
the oscillatory solution shown in Fig. 6(c) includes macrophages of
phenotypes spanning the vast majority of the interval 𝑝 ∈ [−1, 1].

In Fig. 7, we track the 𝛾𝑚–coordinates of the bifurcations shown in
Fig. 5 as we vary 𝜎, for 𝜇 = −1 (dashed lines) and 𝜇 = 1 (solid lines).
At the top of the figure, as 𝜎 → ∞, all bifurcation curves converge to
the corresponding 𝛾𝑚–coordinates of the bifurcations in Fig. 3(a). As
we reduce 𝜎, the extent to which the dashed and solid lines diverge
from one-another reflects the extent to which the model is sensitive
to the prescription of 𝑅(𝑝). Shown in blue in Fig. 7, the position of
the transcritical bifurcation that determines the stability of the healthy
zero state has very weak dependence on 𝜎; furthermore, its position is
identical for 𝜇 = −1 and 𝜇 = 1. The healthy state is unstable to the left
of the illustrated blue curve, guaranteeing chronic outcomes here. As
we move from 𝜇 = −1 toward 𝜇 = 1, the saddle–node bifurcation that
bounds the high-level branch of chronic solutions (shown in magenta)
traverses left to right, yielding an expanding region of stable, high-
level chronic solutions as 𝜎 reduces. Meanwhile, for 𝜎 ∼ (1), the
low-level chronic branch expands as 𝜇 → 1 or shrinks as 𝜇 → −1.
As shown in Fig. 3(a), solutions on the low-level chronic branch are
mostly unstable in the limit 𝜎 → ∞; however, for 𝜇 ∼ 1, reducing 𝜎
ultimately results in a pair of new subcritical Hopf bifurcations which
bound a region of additional stable steady states on this low-level
branch. These additional stable states exist below the corresponding
black curve in Fig. 7. These additional Hopf bifurcations collide with
the corresponding saddle–node branch via fold–Hopf bifurcations at the
points labelled ‘‘FH’’ in Fig. 7.
11 
4. Discussion

Macrophages are highly plastic cells with the propensity to po-
larise into a diverse spectrum of phenotypes. Our model, presented
here, has sought to address the fact that many previous mathematical
models of inflammation-related systems take one of two approaches
to describing diverse macrophage populations: either by incorporating
a single homogenised population that averages phenotype-specific in-
teractions; or, by incorporating two distinct and opposing phenotypes,
typically representing e.g. the M1/M2 categorisation nomenclature.
Instead, our model allows for intermediate phenotypes, by placing all
possible macrophage phenotypes on a continuous spectrum according
to their levels of pro/anti-inflammatory activity. Our model incorpo-
rates phenotype switching via nonlinear flux terms that are enhanced
by environmental cues, with high concentrations of pro-inflammatory
mediators driving macrophages to polarise toward pro-inflammatory
phenotypes (synonymous with the M1 classification), and high concen-
trations of anti-inflammatory mediators driving the converse (resulting
in phenotypes associated with tissue resident macrophages and the M2
classification). Through numerical simulation (in Matlab) and bifurca-
tion analysis (in XPPAUT), we have examined the manner in which
the rates of macrophage population growth, phenotype switching, and
mediator interactions affect switches between healthy and chronic
outcomes.

We note that macrophage numbers in tissues can increase due
to both proliferation and recruitment, or a combination of both of
these [47]. In our model, we do not distinguish between these mech-
anisms explicitly; however, we assume that the net effect of these
mechanisms can be modelled via a corresponding logistic growth term
(in (3)) up to a tissue-specific carrying capacity 𝑚∗

𝑚𝑎𝑥. Importantly, our
model incorporates, via the function 𝑅(𝑝), the potential for us to specify
the phenotype-coordinates of macrophages that are newly added to
the tissue of interest. For simplicity and mathematical tractability, we
began our analysis by focusing on the case 𝑅(𝑝) = 1 representing the
idea that all phenotypes are recruited uniformly. While this is unlikely
to be biologically realistic in many settings, this provided a useful
starting point for our analysis, and allowed us to separately examine
the manner in which variations in 𝑅(𝑝) affect the resulting dynamics.

For 𝑅(𝑝) = 1, we observed that the model exhibits three funda-
mental types of solution, as follows. Firstly, the model may attain a
steady state in which all components of the model reach zero. We
regard this as a ‘healthy’ state, since it encompasses no inflammatory
stimuli. This zero state is stable provided that the rate of macrophage
loss (𝛾∗𝑚) sufficiently outweighs the basal rate of macrophage pro-
liferation/recruitment in the absence of pro-inflammatory mediators
(𝑐∗𝑇 ), as per (27). Secondly, the model may attain a chronic steady
state with positive numbers of macrophages and (in particular) pro-
inflammatory mediators. Often, these chronic steady states are sup-
ported by a macrophage population that is mostly polarised toward
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Fig. 7. Bifurcation diagram illustrating how the bifurcations of Fig. 3(a) move as we vary 𝜇 and 𝜎 in (29). As 𝜎 → ∞, we recover the bifurcation coordinates of Fig. 3(a),
or 𝑅(𝑝) = 1. Solid and dashed curves illustrate the positions of bifurcations for 𝜇 = 1 and 𝜇 = −1 respectively. Red and magenta curves represent distinct sets of saddle–node
ifurcations; black curves represent Hopf bifurcations. The blue curve represents the position of the transcritical bifurcation where the zero state changes stability, and is identical
or 𝜇 = ±1. FH = fold-Hopf bifurcation.
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ro-inflammatory phenotypes. Thirdly, the model may converge to-
ard stable oscillatory solutions that are reminiscent of conditions that
xhibit relapsing-remitting characteristics. Throughout our analysis,
scillatory solutions have always been supported by macrophage popu-
ations that are mostly polarised toward anti-inflammatory phenotypes,
ith periods of remission generally corresponding to a macrophage
opulation that almost entirely lies close to 𝑝 = −1, and inflam-
atory flare-ups corresponding to surges in macrophages of more
ro-inflammatory phenotypes (such as in Fig. 2(b)). (This has some
imilarity to conditions such as rheumatoid arthritis, whose oscillatory
imecourses involve a complex dependence upon both M1 and M2
acrophages, as well as intermediate phenotypes [48].) In many areas

f parameter space, two or more of the above solutions co-exist, and the
odel is bistable or multistable, with resulting inflammatory outcomes
ependent upon our choice of initial conditions. In Figs. 3 and 4, we ex-
osed the extent to which the existence/stability of the above solutions
epends upon our model parameters. In particular, we observed that
apid rates of macrophage loss (𝛾∗𝑚) can eliminate chronic outcomes
ntirely (since macrophages are the only pro-inflammatory source in
his model), while rapid macrophage proliferation/recruitment (𝑐∗𝑇 )
romotes chronic outcomes, and that strong rates of macrophage phe-
otype switching toward pro-inflammatory phenotypes (𝛼∗) promotes
1 r

12 
hronic steady-state outcomes, while phenotype switching toward anti-
nflammatory phenotypes (𝛼∗2 ) can promote both resolution and low
evel chronic oscillations (in a manner that is dependent upon the
odel’s remaining parameters).

In Section 3.3, we examined the extent to which the observations
bove are sensitive to our prescription of the phenotype of newly
ecruited macrophages. To do so, we set the corresponding recruitment
unction 𝑅(𝑝) to have a Gaussian-like shape, and examined the effects of
ariation of the mean (𝜇) and standard deviation (𝜎) of this Gaussian. In
he limit 𝜎 → ∞, our analysis recovers the case 𝑅(𝑝) = 1 exactly. For 𝜎 ∼
(1), while the fundamental solutions discussed for 𝑅(𝑝) = 1 above still
ersist, the locations of corresponding bifurcation points shift some-
hat as a function of the recruited macrophage phenotype. Our analysis

evealed that the stability of the healthy (zero) state exhibits very weak
ensitivity to the phenotype of recruited macrophages, and instead
epends more broadly on overall macrophage numbers. This is partially
n artefact of the fact that our prescription of the pro-inflammatory
ediator production function 𝑓2(𝑝) in (7) equips all macrophages with
≠ 1 with at least some pro-inflammatory influence. Chronic solu-

ions, however, exhibit more sensitivity to recruited phenotypes, with
ecruitment weighted toward pro-inflammatory phenotypes (𝜇 → 1)
esulting in the expansion of regions of parameter space that permit
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chronic outcomes and (in some cases) the creation of new chronic
steady state configurations. Meanwhile, biasing macrophage recruit-
ment toward anti-inflammatory phenotypes (𝜇 → −1) largely promotes
esolution of inflammation. We highlight, once again, that the function
(𝑝) here incorporates both proliferation of existing macrophages and

ecruitment of new macrophages from the vasculature. This provides a
otentially complex landscape of newly added macrophage phenotypes,
ith proliferation of existing tissue resident macrophages more likely

o provide macrophages polarised toward anti-inflammatory activity,
nd recruitment of macrophages from the blood stream more likely
o provide macrophages that are pro-inflammatory in nature. In most
iologically relevant cases, we expect the latter of these mechanisms
o dominate, with Fig. 7 illustrating that this can result in a relatively
omplex spectrum of chronic outcomes.

It is helpful to draw comparisons of our PDE model against previ-
us ODE models of similar macrophage interactions in inflammatory
ettings. In particular, we note that our PDE model presented here is
esigned as a natural extension of ‘‘Model 2’’ of [32] to account for
ntermediate macrophage phenotypes. Broadly, we find that many of
ur observations share commonality with those of ‘‘Model 2’’ in [32].
he macro-scale roles of each parameter indicated in Fig. 3 largely
lign with those of the previous ODE model: large rates of macrophage
oss (𝛾𝑚) drive the model toward a healthy zero state, while 𝛾𝑚 small
ields chronic configurations; oscillatory solutions exist for reasonably
arge macrophage populations (𝑚𝑚𝑎𝑥 large); and strong macrophage
olarisation toward pro-inflammatory phenotypes (𝛼1) drives chronic
utcomes with the converse (𝛼2) generally driving resolution. While
hese overarching conclusions result readily from both the ODE and
DE constructions of the model, some intermediate bifurcations do
iffer slightly. For example, one key difference between these models
s that the ODE model exhibits a healthy steady state with positive
nti-inflammatory components (macrophages and mediators), while
he PDE model exhibits just a unique healthy state at zero. In the ODE
odel, the zero state tends to change stability through collision with

he positive healthy state at a transcritical bifurcation, whereas in the
DE model the zero state bifurcates to a solution in which macrophages
re slightly biased toward pro-inflammatory phenotypes (e.g. yellow
onfigurations in Fig. 3). This is an artefact, partly, of our choice of 𝑓2,
hich is non-zero for all 𝑝 ≠ −1, rendering all macrophage phenotypes
ith 𝑝 ≠ −1 slightly pro-inflammatory. We note that it is common for
odels of inflammation to regard a steady state at zero to correspond

o resolution [22,23,26,27,49–51] on the basis that the cell population
eing modelled represents the extent to which cell numbers in a given
issue are elevated above a certain healthy homeostatic baseline. Our
DE model is in line with this perspective; however, we note that a
eformulation of the model in which a baseline population of entirely
nti-inflammatory (tissue resident) macrophages sits at or below 𝑝 =
1, for example, would be a simple task to allow the model to recover

he potential for positive healthy steady states to exist. Furthermore,
e note that our PDE model incorporates a more advanced description
f macrophage proliferation/recruitment than the corresponding ODE
odel of [32] does, which focuses entirely on proliferation of exist-

ng macrophages and a resultant source of entirely anti-inflammatory
acrophages. Through our analysis above, particularly that of Sec-

ion 3.3, we have illustrated that this more-advanced description has
he potential to generate a more diverse range of solutions than is
fforded by the corresponding ODE model. Additionally, a key obser-
ation from the PDE model is that oscillatory solutions are generally
upported by a macrophage population that is largely polarised toward
nti-inflammatory phenotypes. We also observe oscillatory solutions in
he corresponding ODE model (which incorporates two explicit and
pposing phenotypes); however, our PDE model more readily exposes
he extent to which intermediate phenotypes may play a supporting
ole.

Two key observations of this model are that macrophage recruit-

ent that is strongly polarised toward pro-inflammatory phenotypes c

13 
synonymous with the M1 classification) can provide a broadening
pectrum of chronic outcomes (Figs. 5 and 7, for 𝜇 → 1), and that ampli-
ication of macrophage phenotype switching toward anti-inflammatory
henotypes (cf. M2 macrophages) via 𝛼∗2 can promote restoration of
ealth. These conclusions align with corresponding in vitro observa-
ions. For example, elevated numbers of M1 macrophages (versus M2)
re linked to the onset of various inflammation-related conditions,
ncluding diabetes [52], osteoarthritis [53,54], and neurodegenerative
onditions [55]. Moreover, actively manipulating macrophage pheno-
ypes is an area of focus in the treatment of many conditions [33,34].
n rheumatoid arthritis, for example, various macromolecular interven-
ions (as well as disease modifying anti-rheumatic drugs; DMARDs)
ave been identified (in animal tests) to both block M1 activation and
timulate polarisation toward the M2 phenotype. A thorough review
f these is given by [56]. Furthermore, some treatments improve
atient outcomes by explicitly depleting macrophage numbers, in or-
er to downscale the pro-inflammatory feedbacks of (particularly M1)
acrophages [34]. We observe corresponding features in our analysis

f this model; for example, rapid rates of macrophage loss (𝛾𝑚 large)
enerally result in the model reaching a monostable configuration in
hich a healthy outcome is guaranteed (see e.g. Figs. 3(a), 5 and 7).

In constructing our PDE model, we have modelled the complex
ange of macrophage phenotypes on a continuous spectrum of in-
lammatory activity. This has presented novel mathematical insight
nto the role of intermediate phenotypes, in particular. However, we
ote that the biological classification of specific macrophage pheno-
ypes and where they may sit on our inflammatory spectrum is an
xtremely complex task that is hampered not only by the multi-factorial
ature of macrophages’ roles in inflammation, but also by a signifi-
ant lack of experimental data against which to validate mathematical
odels of inflammation in general. In order to construct the model,
e have deployed reasonably speculative choices of fluxes represent-

ng phenotype-switching (𝐪+∗, 𝐪−∗) and terms representing the extent
o which differing phenotypes produce differing levels of pro/anti-
nflammatory mediators (𝑓1(𝑝) and 𝑓2(𝑝), which we assume are linear
n 𝑝 here). Throughout, our approach has been to make the simplest
ossible choices of such terms, while retaining essential biological
ealism. However, we note that our choices of 𝑓1 and 𝑓2, in particular,
re likely to somewhat over-simplify a more complex dependence upon
henotype. Our model elucidates the role that intermediate phenotypes
an play in a complex inflammatory environment, but (as with any
ther mathematical model of inflammation) requires greater avail-
bility of experimental data in order to fully justify some inherent
odelling assumptions. This remains an area for consideration in the

uture, should further experimental data become available. Addition-
lly, a natural extension of the current model could be to additionally
ncorporate other immune cell populations (e.g. neutrophils, as studied
n previous ODE models including [22] and ‘‘Model 3’’ of [32]). Given
he anticipated complexity of the resultant models, we leave this is a
arget for future work.

In closing, we note that mathematical models of inflammatory
ystems such as that presented here have the propensity to identify
he dominant mechanisms in driving the switch between chronic con-
igurations and resolution of inflammatory damage, and hence exhibit
cope to contribute to the identification of novel therapeutic targets.
eing a key regulator of the inflammatory response, it is crucial that
athematical models adopt robust descriptions of relevant macrophage
opulations that include the possibility for intermediate phenotypes.
ith the scientific perspective on potential macrophage phenotypes

ontinuing to rapidly evolve, there is great scope for continued de-
elopment of mathematical models with more finessed descriptions of
olarisation states that, with careful parameterisation, may ultimately

ontribute to the identification of new treatments.



S. Almansour et al.

d
r
C
S
e
P

D

D

t

A

(

A

a
s
X

t

f

𝑚

U
f

p
i
w
b
s
o
a
s
s
t
a
f
g

R

Mathematical Biosciences 377 (2024) 109289 
CRediT authorship contribution statement

Suliman Almansour: Writing – review & editing, Writing – original
raft, Visualization, Software, Investigation, Formal analysis, Data cu-
ation. Joanne L. Dunster: Writing – review & editing, Methodology,
onceptualization. Jonathan J. Crofts: Writing – review & editing,
upervision, Methodology. Martin R. Nelson: Writing – review &
diting, Writing – original draft, Visualization, Supervision, Software,
roject administration, Methodology, Investigation, Conceptualization.

eclaration of competing interest

The authors have no conflict of interest to declare.

ata availability

A repository of supporting codes is available; a link is provided in
he manuscript.

cknowledgment

JLD is gratefully supported by the British Heart Foundation
RG/20/7/34866).

ppendix. Numerical scheme

We solve the system (10)–(13) numerically via a method of lines
pproach, by discretising in the phenotype variable, 𝑝, to obtain a
ystem of ODEs which we solve via in-built ODE solvers in Matlab and
PPAUT.

We discretise in 𝑝 by introducing 𝑁 + 1 equally-spaced meshpoints
𝑝𝑗 given by

𝑝𝑗 = −1 + 𝑗 dp for 𝑗 = 0,… , 𝑁, (A.1)

where dp = 2∕𝑁 is the corresponding meshpoint spacing. Further-
more, we write 𝑚𝑗 (𝑡) ≃ 𝑚(𝑡, 𝑝𝑗 ) to represent the approximation of the
macrophage variable at a given phenotype meshpoint.

We approximate the flux terms in (10) via standard, first-order finite
difference approximations. To ensure numerical stability, we take an
upwinding approach in which we choose forward or backward finite
difference approximations depending on the direction of the flux. Since
the term containing 𝛼1𝑐 represents flux in the positive 𝑝–direction,
we employ a backward difference approximation for the derivative
evaluated on meshpoint 𝑗, writing
𝜕
𝜕𝑝

((1 − 𝑝)𝑚)
|

|

|

|𝑝=𝑝𝑗
= 1

d𝑝
((

1 − 𝑝𝑗
)

𝑚𝑗 −
(

1 − 𝑝𝑗−1
)

𝑚𝑗−1
)

+  (d𝑝) , (A.2)

for all 𝑗 = 1,… , 𝑁 . Conversely, since the term containing 𝛼2𝑔 represents
flux in the negative 𝑝–direction, we employ the following forward
difference approximation:
𝜕
𝜕𝑝

((1 + 𝑝)𝑚)
|

|

|

|𝑝=𝑝𝑗
= 1

d𝑝
((

1 + 𝑝𝑗+1
)

𝑚𝑗+1 −
(

1 + 𝑝𝑗
)

𝑚𝑗
)

+  (d𝑝) , (A.3)

for all 𝑗 = 0,… , 𝑁 − 1. On the boundaries, we adapt (A.2) and (A.3)
o reflect that 𝑚 = 0 for all points outside of the domain 𝑝 ∈ [−1, 1],

writing
𝜕
𝜕𝑝

((1 − 𝑝)𝑚)
|

|

|

|𝑝=𝑝0
= 1

d𝑝
(

1 − 𝑝0
)

𝑚0 +  (d𝑝) , (A.4)

𝜕
𝜕𝑝

((1 + 𝑝)𝑚)
|

|

|

|𝑝=𝑝𝑁
= − 1

d𝑝
(

1 + 𝑝𝑁
)

𝑚𝑁 +  (d𝑝) . (A.5)

We evaluate the integrals in (11) and (12) via trapezium rule, writing

∫

1

−1
𝑓𝑖(𝑝)𝑚 d𝑝 ≃

𝑑𝑝
2

(

𝑓𝑖
(

𝑝0
)

𝑚0 + 𝑓𝑖
(

𝑝𝑁
)

𝑚𝑁 + 2
𝑁−1
∑

𝑗=1
𝑓𝑖

(

𝑝𝑗
)

𝑚𝑗

)

≡ 𝐹𝑖(𝑡),

(A.6)
14 
or 𝑖 = 1, 2. Similarly, we evaluate 𝑚𝑇 (𝑡) according to

𝑇 (𝑡) ≃
𝑑𝑝
2

(

𝑚0 + 𝑚𝑁 + 2
𝑁−1
∑

𝑗=1
𝑚𝑗

)

. (A.7)

nder these approximations, the system (10)–(13) gives rise to the
ollowing system of 𝑁 + 3 ODEs at leading order:
d𝑚0
d𝑡

= −
𝛼1𝑐
d𝑝

((

1 − 𝑝0
)

𝑚0
)

+
𝛼2𝑔
d𝑝

((

1 + 𝑝1
)

𝑚1 −
(

1 + 𝑝0
)

𝑚0
)

+
(

𝑐 + 𝑐𝑇
)

𝑅(𝑝0)𝑚𝑇

(

1 −
𝑚𝑇
𝑚𝑚𝑎𝑥

)

− 𝛾𝑚𝑚0, (A.8)

d𝑚𝑗

d𝑡
= −

𝛼1𝑐
d𝑝

((

1 − 𝑝𝑗
)

𝑚𝑗 −
(

1 − 𝑝𝑗−1
)

𝑚𝑗−1
)

+
𝛼2𝑔
d𝑝

((

1 + 𝑝𝑗+1
)

𝑚𝑗+1 −
(

1 + 𝑝𝑗
)

𝑚𝑗
)

+
(

𝑐 + 𝑐𝑇
)

𝑅(𝑝𝑗 )𝑚𝑇

(

1 −
𝑚𝑇
𝑚𝑚𝑎𝑥

)

− 𝛾𝑚𝑚𝑗 , for 𝑗 = 1,… , 𝑁 − 1, (A.9)
d𝑚𝑁
d𝑡

= −
𝛼1𝑐
d𝑝

((

1 − 𝑝𝑁
)

𝑚𝑁 −
(

1 − 𝑝𝑁−1
)

𝑚𝑁−1
)

+
𝛼2𝑔
d𝑝

(

−
(

1 + 𝑝𝑁
)

𝑚𝑁
)

+
(

𝑐 + 𝑐𝑇
)

𝑅(𝑝𝑁 )𝑚𝑇

(

1 −
𝑚𝑇
𝑚𝑚𝑎𝑥

)

− 𝛾𝑚𝑚𝑁 , (A.10)

d𝑔
d𝑡

= 𝐹1(𝑡) − 𝛾𝑔𝑔, (A.11)

d𝑐
d𝑡

= 𝜅𝑐𝐹2(𝑡) − 𝑐𝑔 − 𝑐, (A.12)

with 𝐹1(𝑡), 𝐹2(𝑡) and 𝑚𝑇 (𝑡) as given in (A.6) and (A.7). Throughout this
aper, numerical simulations and bifurcation analyses are based upon
mplementations of the system (A.8)–(A.12) in Matlab and XPPAUT
ith 𝑁 = 100. In Matlab, this ODE system is solved using the in-
uilt solver ode45. In XPPAUT, we implement the adaptive, implicit
olver CVODE as described in [38]. We also note that implementation
f the ODEs that result from semi-discretisation of a PDE system (such
s (A.8)–(A.10)) is most easily achieved via the use of XPPAUT array
tructures; a useful tutorial that describes implementation of such
ystems is provided by [39]. In both Matlab and XPPAUT, convergence
ests have been performed to ensure that our choice of 𝑁 does not
dversely affect the accuracy of our results; details are omitted here
or brevity. Both Matlab and XPPAUT codes are available online at
ithub.com/martinrnelson/MacrophageContinuum.
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