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Abstract

The aim of this work is to better understand and quantify the influence of training
hyper-parameters on Convolutional Neural Networks (CNN) test accuracy using Sensitiv-
ity Analysis (SA). The results of the SA will produce a general ranking of influence that will
be able to inform the reduction of the parameter search space during Hyper-Parameter
Optimisation (HPO) in an effort to increase the efficiency of the process without compro-
mising model performance. Additionally, a novel metric, Accuracy Gain, was developed
to better estimate tuning efficiency and facilitate the comparison of parameter group per-
formance.

The methodology of this research can be summarised in three parts. Firstly, the cre-
ation of a framework for SA of Deep Learning (DL) models, SADL, which perform two state
of the art SA methods, Sobol Indices and Morris Method, on CNN hyper-parameters. The
resulting sensitivity measures indicating hyper-parameter influence produce a ranking
that informs which parameters should be targeted during HPO. Bayesian Optimisation
was performed for parameter groups of various influence, and the accuracy gain metric
calculated for each to quantify tuning efficiency. Finally, these results were applied to a
real world scenario in a case study on the classification of colo-rectal cancer images.

They key findings of this work were the development of a robust framework of SA ap-
plied to DL and that it is possible to provide empirically based guidance on which param-
eters to optimise. The SA highlighted batch size, learning rate decay and learning rate de-
cay step as most influential, where batch size was significantly more influential than other
hyper-parameters. Conversely, learning rate did not achieve the influence rank expected

based on the literature. Tuning a subset of influential parameters was more efficient than
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tuning all parameters, which was confirmed in the case study where tuning the top three
parameters was quicker and achieved higher accuracy than not only all training param-
eters but was also a significant improvement on the parameters explored in the original
work.

The implications of this work for practitioners are that they can use this information to
guide hyper-parameter tuning efforts, reducing the parameter search space to work within
time and resource constraints without compromising model accuracy. Ultimately, these
results facilitate the efficient development of optimal DL models. Furthermore, this work
provides a framework and clear methodology that future work in this area can follow. Fu-
ture directions of this work would focus on expanding the scope with additional model

architectures, training datasets, hyper-parameters and performance metrics.

Keywords: Sensitivity Analysis, Sobol Indices, Morris Method, Deep Learning, Hyper-parameter
tuning, Ranking hyper-parameters, Bayesian Optimisation, Convolutional Neural Networks,

Framework
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Chapter 1

Introduction

The advent of high-performance computing has facilitated the growth observed in the
fields of Machine Learning (ML) and Deep Learning (DL) with Neural Networks (NN) grow-
ing in size and complexity to solve a vast array of problems. A major challenge facing prac-
titioners in these fields surround the efficiency of Hyper-Parameter Optimisation (HPO),
atime and resource consuming process to find optimal settings for model parameters.

Although there are resources which explain hyper-parameters and the importance of
the role they play within the network, there is no definitive ranking of those parameters
from most to least influential that practitioners can use to guide them through the HPO
process. This research aims to use Sensitivity Analysis (SA) to understand and rank hyper-
parameter influence on DL model accuracy and show that the HPO process can be more
efficient when concentrated on the most influential parameters.

This chapter will provide an introduction to this work by firstly providing some back-
ground and context, stating the aims, objectives and research questions and presenting

the solution developed.

1.1 Background

DL models are being applied in all manner of industries from healthcare to security to
agriculture. Once a model has been optimised for the designated purpose they can be
extremely efficient, however getting to that point is a time consuming process. Hyper-

parameter selection is a significant part of model optimisation. A popular approach is to
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tune based on expert knowledge, manual tuning, which often results in a workable, sub-
optimal solution (4). This is the most time efficient approach as it is a decision made by the
practitioner, however if any tuning algorithm were to be employed, such as Bayesian Opti-
misation, then this becomes time consuming. Furthermore, there seems to be little action
that can be taken to make this more efficient without compromising the performance of
the model. This is supported by the No Free Lunch theorem, that no general-purpose op-
timisation strategy is possible (5), suggesting that HPO can only be optimised for the spe-
cific situation it is being used in, and there can be no general guidance that could improve
HPO of NNs.

The hyper-parameters of NNs themselves are the parameters which cannot be modi-
fied once training has begun, as such HPO can be considered the final step of model de-
sign, where the parameters effect model structure, and the first step of model training,
where the parameters effect learning speed and model accuracy (4). The automation of
this process simply trades the human effort expended in manual tuning for computational
resources and effort, which can be extensive if the parameter search space is large. How-
ever, for models to perform optimally and achieve high accuracies this task is unavoidable,
clearly indicating a need for research in this area.

Sensitivity Analysis has seen much success in its application in many industries, sim-
ilar to the use of DL models. Despite its success, SA is often overlooked or not performed
in a way to maximise the quality of the findings (6). A decade long review of SA saw that
the majority of SA literature relates to the medical field, followed by chemistry whereas
the adoption in mathematics and computer science remained relatively low during that
time (7). Though SA has been applied to the DL space, it is often to the input data features
or, where applied to the hyper-parameters the methods used leave the results open to the
interpretation and bias of the researcher. Applying the state of the art SA methods, Sobol
Indices (8) and Morris Method (9), would produce reproducible, quantifiable results that
could contribute towards a generalisable understanding of hyper-parameter influence on

DL model.
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1.2 Problem statement

This section highlights the gap in current literature that motivated this study, outlines the

aims and objectives of the work and confirms the scope of the research.

1.2.1 Motivation

The consistent growth of DL problems and solutions is increasing pressure on HPO ap-
proaches, creating a potential bottleneck in the process of creating high-performing mod-
els (10). The lack of scalability of current methods means that additional levels of com-
plexity and dimensionality will only worsen this tuning bottleneck. A reduction of the
search space could reduce the resources and time required for tuning or target the tuning
more specifically to increase the likelihood of finding an optimal solution. There is little
guidance for this reduction of parameter search space outside of the concept of manually
choosing which parameters to apply automated HPO to based on expert knowledge. If a
parameter ranking existed which quantified the influence of each parameter on model ac-
curacy, this could clearly show practitioners the value of directing their tuning in a specific
direction.

Current applications of SA applied to DL focus on the input space and reducing dimen-
sionality akin to PCA (11, 12, 13, 14). Where there are works that look at the model hyper-
parameters the methods used are less formalised, looking at the average accuracy (15), in-
ference from plots which cannot account for parameter groups (16, 17) or the focus of the
SA was so context specific the findings were not easily generalisable to other applications.
In terms of influential parameters, the most common existing guidance is to prioritise the
learning rate when tuning (18). As a result, there is limited understanding of parameter
influence on model performance and inadequate guidance on reducing the parameter
search space for HPO. DL practitioners, especially beginners, find themselves ill-equipped
to complete efficient HPO that results in a high-performing model in this ever-changing,

complex ML landscape.

1.2.2 Aims and objectives

The aim of this work concentrates on producing a general ranking of Convolutional Neural

Network (CNN) training hyper-parameters via SA that could inform HPO search spaces to
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improve tuning efficiency. The Research Objectives (RO) identified to achieve that aim are

listed below:

RO1: Create a framework to facilitate the calculation of sensitivity measures for the

hyper-parameters of DL models which can be used for future work.

RO2: Rank the influence of a hyper-parameter on model performance, taking into

consideration two state of the art sensitivity measures.

RO3: Discover relationships between parameter influence and network architecture

or input data.

RO4: Demonstrate any potential of reducing the hyper-parameter search space to

influential parameters for HPO.

RO5: Produce measure of hyper-parameter tuning efficiency that considers compu-

tation time and model accuracy to facilitate comparisons.

RO6: Measure hyper-parameter tuning performance of influential parameter groups

versus other parameter groups.

RO7: Apply findings in case study to demonstrate real world scenarios and validate

results.

RO8: Provide guidance and a robust methodology to machine learning and deep
learning practitioners in choosing what hyper-parameters to tune and the applica-

tion of SA to DL.

1.2.3 Research Questions

This work aims to answer the following Research Questions (RQ):

RQ1: Isit possible to quantify and rank the influence of a hyper-parameter on model

performance using SA?

RQ2: Are there any relationships between parameter influence and network archi-

tecture or input data?

RQ3: Is it possible to make HPO more efficient, without compromising model accu-

racy, by reducing the parameter search space to the most influential parameter?

RQ4: Can these theories be successfully applied to a real world scenario?
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1.2.4 Scope

Due to time and resource constraints the scope of this work, which has the potential to be
extremely broad, had to be narrowed so that it could be completed in time but still pro-
duce results that are generaliseable. Of the DL model possibilities, the CNN architecture
was chosen as itis popular in the literature and widely adopted. Similar reasoning was be-
hind the decision to concentrate on image classification data, Bayesian Optimisation HPO
method and Sobol Indices and Morris Method approaches to SA. The hyper-parameter
scope was reduced to the training parameters as state of the art model architectures would
be used. The final decision was to explore hyper-parameter influence on model test accu-
racy, rather than another performance metric, as this gives the best indication of model

accuracy and generalisability.

1.3 Solution
The solution and experimentation designed to answer the above research questions and
fulfil the aim of this work is broken down into three distinct areas:

1. SA of CNN hyper-parameters

2. Rank informed Bayesian Optimisation

3. Case Study

1.3.1 SA of CNN hyper-parameters

The solution to apply SA to CNN hyper-parameters centres on the creation of a frame-
work for SA of DL models, SADL. This includes sampling of the parameter space, compil-
ing and building the architecture, training, recording the parameter settings and model
performance and calculating the sensitivity measures for both Sobol Indices and the Mor-
ris method. Finally, both measures are combined to produce a generalised ranking across

several CNN architectures and image classification datasets.

1.3.2 Rank Informed Bayesian Optimisation

The second element of the solution takes the resulting ranking from the SADL framework

and uses it to inform parameter groups for tuning. Bayesian optimisation is conducted on
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influential parameter groups and compared to the performance of tuning all training pa-
rameters. A novel metric, Accuracy Gain, was developed to quantify the tuning efficiency

and facilitate the comparison between parameter groups.

1.3.3 Case Study

The final stage of the solution applies the findings from part one and two to a real world
scenario. A study will be replicated, using the same dataset and model architecture and
tuning will be conducted on the parameters reported in the original paper, all parameters
and influential parameter groups. The tuning efficiency of these groups will be compared
to determined whether the influential parameter groups improve on the results reported

in the original work. This is done to increase the robustness and validity of any findings.

1.4 Summary of contributions and achievements

The chronological contributions and achievements of this thesis are as follows:
1. Creation of the SADL framework for the application of SA to CNN hyper-parameters.

2. Successful use of the SADL framework to quantify hyper-parameter influence on

CNN accuracy.

3. Production of generalised rank of hyper-parameter influence on CNN accuracy and

publication of early results in the IEEE conference (ICTAI) (19).
4. Novel measure, Accuracy Gain, which quantifies tuning efficiency.
5. Guidance on which hyper-parameters to tune for practitioners.
6. Theoretical framework for conducting experimentation of SA applied to DL.

Firstly, the SADL framework successfully quantified hyper-parameter influence pro-
ducing a generalised ranking for CNN hyper-parameters, the early results of which were
published in the IEEE International Conference on Tools of Artificial Intelligence (ICTAI) (19).
Batch size, learningrate decay and learning rate decay step proved highly influential whereas

learning rate did not live up to the reputation of its importance conveyed in the literature.
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Anovel measure, Accuracy Gain, was developed to quantify tuning efficiency and showed
that HPO conducted on influential parameter groups was more efficient, saving time with-
out compromising accuracy. This was confirmed by the case study where the influential
parameter group outperformed the parameters reported in the original work whilst also
completing HPO in less time.

These results challenge the No Free Lunch theory, as they show a general way for im-
proving HPO for CNN architectures. The implication here is that practitioners can make
an informed decision on reducing the parameter space to the most influential parameters,
knowing that this should be the most efficient approach to producing a high performing
CNN model.

Finally, a general contribution is a robust approach and framework for conducting fu-

ture work exploring SA applied to DL.

1.5 Organisation of the report

The next chapter of this thesis will present a literature review of relevant recent works,
followed by an in depth presentation of the methodology. The next three chapters will
present the three areas of the solution developed, the SA of CNN hyper-parameters, rank
informed Bayesian Optimisation and the application of the findings in a case study. The

results of these three areas are then discussed, culminating in the conclusion of this thesis.



Chapter 2

Literature Review

Sensitivity Analysis (SA) has the potential to shine a newlight on Deep Learning (DL) mod-
els, offering a new perspective which could aid in DL explainability.

SA has a long history in areas such as environmental modelling and yet it is only now
making its debut in areas such as Machine Learning (ML) (20). By definition, SA allows
for better understanding of uncertainty in a systems outputs in terms of uncertainty in
the system inputs (21). Various SA methodologies exist that allow for the quantification of
input influence on a system with potential that is yet to be fully realised.

DL is an ever-evolving discipline within ML where continuous challenges are emerg-
ing at a rapid pace. Major challenges facing DL practitioners and researchers include the
computational power and resources required, the 'black box’ nature of DL networks, de-
sign complexity and the high computational cost associated with hyper-parameter tun-
ing (22).

Hyper-parameter tuning is a resource intensive process, the cost of which is growing
alongside the size of the DL models and datasets. The more complex the DL task the longer
the tuning process will be. This presents a major challenge to DL practitioners as tuning is
an essential step to maximising model performance and currently there is little guidance
on increasing the efficiency of this vital process.

This chapter explores the potential of SA applied to the hyper-parameter space of DL
models. A systematic review of the use of SA in machine learning was conducted and areas

of improvement identified. Finally, potential applications are explored.
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2.1 Sensitivity Analysis

SA has been a technique that has been applied in various sectors for decades and can be
defined as an analysis of the uncertainty in a systems output and the relation to the uncer-
tainty in the systems inputs (21). This basic premise of SA is represented in Fig. 2.1. For a
given system or model, the SA method constructs a set of inputs from a given parameter
space and then uses the outputs that the system generates from each input to quantify the
influence of inputs on those outputs. Box (I11) in Fig. 2.1 represents the importance as-
signed to each input through SA. Despite its history, SA has only recently gained visibility
and status as an essential tool in areas such as environmental modelling and is making its
debut in areas such as machine learning (20).

Two popular approaches to SA are variance-based methodologies, such as Sobol In-
dices, and screening-based methodologies, such as the Morris or Elementary Effects Method.
Variance-based SA quantifies the uncertainty in a systems inputs and outputs as prob-
ability distributions and decomposes the variance in the output and attributes it to the
inputs (8). On the other hand, screening-based SA methods rely on the sampling of input
values to identify contribution to output and tend to require less computational resource
compared to variance-based methods (9).

A recent review of the current state of SA from the perspectives of various researchers
identified machine learning and DL as an area of growth for SA (1). They identified three

areas of compatibility where SA and DL could be conjoined;

1. Feature Selection
2. Model Interpretability

3. Machine learning powered SA

The second area identified, model interpretability, suggests not only considering the
effect of the features in the input data butalso takinginto consideration the structure of the
network and taking a data-driven, "process-informed" approach to parameter settings.
Exploring this in relation to its potential in a hyper-parameter tuning context is the aim of

our work.
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I Sensitivity Analysis Methodology

Xp —> System — Vn

Figure 2.1: A high-level SA workflow. Box (I) represents an SA methodology that
generates system inputs based on defined search space, xj, ..., x, and receives
outputs yy,. Box (II) represents the system being analysed. Box (III) represents
an outcome of SA. The influence of each input on the output is quantified. (Af-
ter Razavi (1))

2.1.1 Local vs Global

There are two main themes within Sensitivity Analysis (SA); Local (LSA) and Global (GSA).
The various SA methods fall within these categories which are used to highlight the pa-
rameters encompassed in the analysis.

LSA most commonly refers to one-at-a-time (OAT) methods (23) where a single param-
eter is chosen for exploration. A set of possible values for the chosen parameter is created
and they are ’local’ in that they come from a neighbourhood of potential, realistic values.
Analysis is completed by iteratively running the model, varying the value given to the cho-
sen parameter and noting the effect on the output. LSA offers an understanding of the
importance of a single parameter, lending insight into the effects of specific points of the
model. Generally, derivative based sensitivity measures and the first-order sensitivity in-
dex are considered to be LSA. LSA has its advantages; it is often quicker to compute and
easier to implement than GSA. However, due to its nature, the results are heavily affected
by the area of exploration in the feature space and this must be considered in their inter-
pretation.

On the other hand, GSA methods are computed based on a sample of representative
locations from the parameter’s entire distribution (24). This provides a more general in-
sight into model sensitivity and includes popular methods such as variance based SA and
screening (23). To determine a more general sensitivity measure which can be considered

global, the influence of a parameter is averaged on its own distribution and the distribu-
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tions of all input parameters (25). A key aspect of GSA is its ability to quantify the im-
portance of inputs (26) which allows modellers to rank and analyse them quantitatively.
The most common global sensitivity measure is Sobol’s total-sensitivity index. This is
a variance-based method, which are generally considered to be the most sophisticated
methods available (27). Global methods of SA are less vulnerable to type 2 errors, unlike
LSA, as more of the parameter space is explored thereby reducing the potential for criti-
cal parameters or combinations thereof to be omitted from the analysis. A disadvantage
of this approach is the computational cost associated with it. However, unlike traditional
hyper-parameter tuning the insights gleaned from this analysis will provide a more general
insight to parameter importance which can be applied repeatedly as opposed to expensive

HPO applicable to a single, specific problem.

2.1.2 Sensitivity Analysis Methodologies
First-Order Indices and Total Effects

The output of a model, y, can be written as:

y=f(xn) 2.1)
by

S = —22 2.2

! (6xi) (x) @2

In equation 2.1 x,, are the input parameters to the model where n=1,..,k neNand ks
the maximum number of input parameters. SAis traditionally applied to the input space of
amodel however in this thesis the hyper-parameter space will be considered. A sensitivity
measure, S;, is used to enumerate the effect of an individual parameter, x;, on the model’s
output, y, and can be represented as a simple derivative where x}, is a specific base point,
from which the effect of x; on y can be calculated (27). It is recommended, however, by the
Intergovernmental Panel for Climate Change that a normalised version of this measure is

more appropriate (21):
S = (0x,0y)

;= 2.3
(0y6x;) 2.3)

where o, the standard deviation of x; or y, is used as a normalising factor. Calculating the

sensitivity measure in this way ensures that x; is normalised to one which provides a more
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consistent ranking of parameters and allows for the direct comparison of S; for different
values of x;. Despite the additional consistency the normalised derivative measure offers,
it can only give an indication of the influence of the parameter in question at the specific
point where it was analysed. This cannot be generalised to indicate a parameters general
effect on the model, this task requires a more thorough measure.

Our model was defined as y = f(x,), and so a model’s variance can be written as V (y).
When a parameter, x, is fixed to a value, x;, then the conditional variance can be written
as:

Vi (VIX; = X7) (2.4)

which gives the variance taken over all potential values, except x;, which is represented as
Vy~i. This gives an indication of the relative importance of x; to the overall variance, V(y).
However, this measure is completely dependent on the position of x;, a problem shared
with the derivative based measure, and does not always yield a value of less than the total
variance, V(y), and so the contribution remains unclear. To overcome this the average of

all potential values for x; provides a more sensible measure:
Eyi (Vi (¥1x4)) (2.5)

So that E is the expected values of x. Using this measure the conditional variance will al-

ways be less than V(y) because:
V(¥) = Exi(Vi~i (y1X:)) + Vii (Ex~i (¥1x:)) (2.6)

Therefore, it is possible to determine the contribution of a parameter to the variance in the
model output. Vy;(Ex-;(ylx;)) is known as the first-order effect of x; on y and is formally

known in the literature as the first-order sensitivity index:

_ Vi (Ex~i (¥1x:))

Si= 2.7
V(y) &

Calculating the fraction of the total variance that the first-order effect represents produces
a number between zero and one which quantifies the importance of x;. The higher the
value of S; the more the parameter under observation contributes to the model output.

Unfortunately, in most cases, this measure is still too simplistic. Models have more than
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one hyper-parameter and the interactions of these hyper-parameters can often play a part
in the outcome, however this is not reflected in the first-order sensitivity index. Addition-
ally, to continue to calculate the sensitivity in this way for a high number of indexes would
be incur a high algorithmic cost. To completely understand the sensitivity of a model then
all terms would need to be computed; a long and arduous process considering there are
higher orders of interactions that would need to be calculated for most models. To avoid
the exponential complexity of computing indexes beyond for all interactions, a separate
measure can be used to understand a parameters total influence, aptly named the total
effects:
Vi (Ex~i (¥1%x~i))

STi=1-—7-—+——- (2.8)
V)

where Vy; (Ex~; (y1xx~;)) represents the first order effects of x.;, representing everything but
x;. Removing this from the total possible effects, 1, leaves the value that can be attributed

to the total effects of x;.

FAST

The Fourier Amplitude Sensitivity Test (FAST) was created by Cukier et al as a variance-
based method for SA(28). They developed this methodology to better understand the sen-
sitivity of a models output to the uncertainty in the input parameters. The aim was to
propose a technique that was more time efficient than OAT, brute force methods. Model
outputs undergo Fourier analysis where the Fourier coefficients represent the output av-
erage over all input variations, where each parameter is assigned a frequency, w. The sam-
pling approach used in FAST is similar to trajectory based search in that a search curve is
constructed. In the literature, the main criticisms of FAST, despite its efficiency(27), is its
difficulty to encode and that higher-order indices are not able to be calculated, basing the
sensitivity on first-order effects only(21). However, in this methods partial variance mea-
sure, S’ ., we see the inspiration of what will become one of the most popular measures

for SA: Sobol’s Indices.

Sobol Indices

Sobol’s Indices are variance-based sensitivity measures and provide global insight into the
sensitivity of a model. Variance-based measures are considered to be state of the artin the

literature as they are model independent, consider parameter interactions whilst repre-
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senting the global search space(21). The main flaw with this methodology is the compu-
tational cost associated with calculating the variance-based sensitivity measures in addi-
tion to the cost of anumber of model simulations. Sobol’s Indices are the first-order effects
(Si), equation 2.7, and the total-effects (ST;), equation 2.8, explained earlier in this thesis.
By considering the decomposition of variance in a models output as an ANOVA (Analysis
of Variance) decomposition(8) Sobol aimed to rank parameters based on their effect on
the variance of the output of a model.

To compute Sobol’s Indices using a Monte Carlo method the following approach(29)

can be taken:

Algorithm 1 Sobol’s Indices Monte Carlo Approach

A<— RandomSample(n)
B — RandomSample(n)
fo—EstimatedMean(A, B)
fori=1,..,ndo
Ci = (B, .., Bi_1,Ai,Bis1, .., Bi)
ya=f(A)
V5= f(B)

ye; = f(C)
L Ya'yci_fo
L7 Yarya—fo £
_1_ YBYc;—Jo
STi =1 YaYa—fo
end for
return (S;,ST;)

where 7 is the number of samples and the estimated mean of (4, B), fy, is calculated as:

1 A .
fo= =2 vk 2.9)
njzl

where K is a placeholder for either A, B or C; depending on which calculation is taking
place. A and B are matrices comprising of n randomly selected points from the sample
space. C; is a matrix formed from B except for the i’ column which comes from A. The
model output is then computed for each of the matrices; A, B and C;, which is then used

along with the mean, fj, to calculate the sensitivity measures.

Morris Method

The Morris Method (9) or Elementary Effects (EE) method applies local SA across the fea-
ture space, Q, to create a global measure and is considered to be a screening method. The

aim is to determine the effect of input parameters to a model whether they be negligible,
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linear and additive, nonlinear or involved in interactions with other parameters (21). The
input space can be considered to be a grid of p-levels with r, the number of model inputs,

dimensions. Knowing this, the EE for a given input, x;, can be calculated as:

EEl' — y(xly---; Xi-1,Xi +A&--) xn) _y(xly---yxn)

(2.10)

where A is the step-size chosen from (ﬁ,..., 1- ﬁ). The distribution of EE is denoted
as EE; ~ F; and is obtained through the random sampling of x values from Q. A useful
example given in Sensitivity Analysis a global primer (21), visualises Q where n =2,p =4
and A = % As dictated in the example, there are two parameters being analysed, x; and
Xz, with 4 levels, p, and the intervals are %, as given by the value of A. This example is
easily visualised as it is 2-dimensional, when r is large then the dimensionality of Q also
increases. There are two sensitivity measures associated with the EE method: pand o. The
measure u represents the overall influence of a parameter, whereas the measure o provides
a degree ofindependence. Both sensitivity measures, u and o, range between 0 and 1 with
a higher value of u signifying a higher level of sensitivity to the parameter. A higher value
of o indicates that the influence of the parameter is independent of other parameters. To
compute the sensitivity measures for x; then EE can be defined as;

y(xl+l) _ y(xl)

A (2.11)

EE](x)) =

where j is the trajectory of parameter space exploration and [ is the sample point. Having

calculated the EE for each trajectory the sensitivity measures are calculated as;

1 r .
pi=—3 EE] (2.12)
j=1
1 &
oi= —12(EE{—p)2 (2.13)
r— j=1

where EELJ is the relative EE for the parameter whose sensitivity is being calculated, i, along

trajectory, j, for a given number of samples, r.
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Modified Morris

Campolongo et al proposed a modification to the traditional Morris Method where an ad-
ditional sensitivity measure was introduced (30). The aim was to allow the EE method
to handle groups of parameters, producing a total sensitivity measure, and combatting
Type 2 errors, which the p measure is prone to. The proposed modified measure, u*, is
the mean of the distribution of absolute values, |EE§1 (x)| ~ G;. The absolute EE for a group,

u = (x;1,xi2), is calculated as;

|pEdu) < W=Vl = ol (2.14)
So the measure u* can be written as:
1< i
pi ==Y |EE]] (2.15)
ria

This method was tested against variance-based measures in Campolongo’s paper as they
are considered to be state of the art in terms of SA methodologies. Comparisons were made
through obtaining p* and ST; for some models and then comparing the ranking of param-
eters determined by the separate methodologies measures which determined that p* was
an effective substitute for ST;. This is promising in terms of efficiency as computing u*
does not change the time complexity of the method and can be computed alongside the
original EE sensitivity measures. Variance-based measures are known to be computation-
ally expensive, especially with larger models and therefore having a substitute measure for

total sensitivity that is possible to calculate more efficiently is an advantage.

Regional Sensitivity Analysis

The purpose of Regional Sensitivity Analysis (RSA) (31) is to identify regions in the input
space which correspond to particular values in the output. From this it is possible to pro-
duce a mapping, for example parameters with these values produce outputs above a cer-
tain threshold, which can be used to better understand model behaviour. An advantage
of RSA is that it can be applied to non-numerical outputs, widening its range of potential

applications (2).
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Correlation and Regression Sensitivity Analysis

The basis of these methods of SA derive from statistical analysis of the input and output to
amodel or system. In the literature they are often used in conjunction with one another.

Correlation-based SA makes use of existing statistical measure of correlation such as
the Pearson correlation coefficient and Spearman rank correlation coefficient. Further-
more, this form of SA is usually assessed visually through the use of charts such as scatter
plots which provide a visual indication of the influence of parameters based on the shape
produced and can aid in the identification of complex relationships. As a result, produc-
ing scatter plots to understand any correlations is usually taken as an initial step in any
SA (32).

Onthe other hand, Regression-based SA takes a probabilistic approach (33) to describe
the relationships between parameters and presents a simple method of global SA. The
method consists of regressing the output parameters with respect to a set of input pa-
rameter forming a regression model. The estimated outputs of the regression model are
described in terms of linear combination of the input parameters producing a sensitivity

measure in the form of the standardised regression coefficient (34).

2.1.3 Sensitivity Analysis Settings

The "setting" of the SA is the formal definition of the SA objective, the reason behind in-
vestigating the parameters. Having a clear idea of the goal of the SA is key to avoiding in-
conclusive results. The definition of a "setting" in terms of SA is given by Saltelli et al. (21)

as "a way of framing the sensitivity analysis quest” and there are three popular settings:
1. Ranking (Factor Prioritisation)
2. Screening (Factor Fixing)

3. Factor Mapping

The first setting proposed by Saltelli et al. was Factor Prioritisation, or "ranking" as it will
be referred to in this thesis to simplify models. This setting identifies which parameters
can be fixed to an arbitrary value within a range without affecting the output. This offers
the opportunity to reduce the parameter space to the influential parameters only.

The third setting was Factor Mapping, referred to as simply "mapping" in this thesis.

This setting concentrates on a particular region of the output which could be defined by
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Sensitivity Analysis Setting
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Figure 2.2: SA methods in relation to Sensitivity Analysis Settings they are as-
sociated with and highlighting whether they are local or global methods. For
more information on the SA methods see Section 2.1.2 . (After Pianosi (2))

some threshold. This threshold is often used to define a desirable and undesirable out-
come by which the various model outputs can be grouped. A mapping is created between
parameter values and outputs which makes it possible to see what values of the param-
eter lead to a desirable output. This setting is usually applied to influential parameters
identified by earlier settings.

To understand where the SA methods described in Section 2.1.2 fall within the larger
context of SA settings Fig 2.2 was created, a more complex version can be found in Pianosi’s
paper (2). As shown in Fig 2.2, all of the SA methods explored address the ranking setting,
whereas half also overlap with either screening or the mapping setting. Furthermore, the
majority of the SA methods were global. SA settings will colour the application of SA to
DL hyper-parameter tuning as they describe the motivation of the SA and the results vary

based on the setting chosen.

2.1.4 Current Applications of Sensitivity Analysis

SAhasbeen applied in several fields in Science, Technology, Engineering and Mathematics
(STEM). The varied use of models in STEM make it the perfect application area for SA.
The importance of SA is demonstrated in the field of Biomedical Sciences where math-

ematical models are frequently used for hypothesis testing of biological systems. There are
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software packages that have been built to conduct SA on biomedical data such as Dakota (35)
which was created to apply SA on immunology data. SA methodologies have been applied
to parameters identified as causing cancer and showed that cell division and mutation rate
caused the most variance in model output suggesting the most affect on the cancer being
analysed (36). The SA findings were supported by physiological evidence, reflecting the
power of SA in the Biomedical field.

Within the Engineering discipline of STEM, SA is often applied to building systems.
An extensive review of SA in building performance analysis was conducted in 2019 which
identified several applications of SA including building design, building evaluation and
model calibration (37). Similar to DL models, the challenges associated with building per-
formance analysis surrounded increasing complexity, the "curse of dimensionality" which
made it difficult for practitioners to calibrate and work with the models to produce intel-
ligent building specifications. SA was adopted in this area as it combats these challenges
by enabling model simplification.

Environmental modelling is a key application area of SA in the literature, with a long
history of utilising SA to better inform modellers. Complex models are used within this
subject to produce simulations of various environmental scenarios. Similarly to the build-
ing performance analysis models, calibration is a key aspect of the environmental models
where SA is applied to provide insights into the influence of uncertain parameters on a
performance metric (2).

The growing popularity of SA has led to the development of software tools to facilitate
the application of SA. An overview of these tools was compiled by Douglas-Smith et al. (38)
where they highlighted SA applications frameworks organised by the programming lan-
guage they were developed in. The three packages that implemented the most varied SA
methods were SimLab (Matlab), R sensitivity (R), and SALib (Python). All three packages
have implementations of the Morris Method, Sobol Indices and FAST. As these three lan-
guages are also popular in ML and DL methods these SA packages present usable options

to DL practitioners to conduct SA.
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2.2 Deep Learning

As aresult of the advent of high-performance computing DL has grown in popularity. The
success of DL can be attributed in part to their ability to process large amounts of data
with high dimensionality (39) and their potential to be applied to any domain (40). DL has
evolved into a complex field with several areas of research contained within it. Prominent
areas of exploration are DL architecture, popular approaches being Feed-forward Neu-
ral Networks (FNN) and Convolutional Neural Network (CNN), hyper-parameter tuning

methodologies and the hyper-parameters themselves.

2.2.1 Deep Learning Network Architectures
Feed-Forward Neural Networks

The FNN is “the quintessential deep learning model” (18). The premise of the FNN is that
itis composed of layers of neurons and the output of a layer becomes the input to the next
layer. The prime example of a FNN is a Multi Layer Perceptron (MLP) or simple Deep Neu-
ral Network (DNN). FNN'’s presented many advantages over traditional machine learning
methods such as their ability to adapt to the problem without user interference and their
ability to cope with non-linearity in the input data. However, training times were high and
the black-box nature of FNNs were clear disadvantages of the models (41). They also of-
fered an improvement over statistical models as they made no assumptions regarding data
distributions and required no hypothesis to test (42). The recent improvements to FNNs

compared to earlier attempts can be attributed to two factors (18):
1. Larger datasets available for training, aiding model generalisation.
2. Greater computational resources, allowing for larger models.

The applications of FNNs are vast with many industries adopting them to solve complex
problems including science, finance and security (42). Medicine has adopted FNNs in sev-
eral areas such as cancer recognition (43, 44, 45, 46), medical signal processing (47, 48),
heart disease diagnosis (49, 50) and modeling depression (51). The potential of FNNs in
the medical field is well documented, and with the progress within DL and computational

resources constantly developing the applications of deep learning are also diversifying.
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Figure 2.3: Pictorial examples of the three features utilised in CNNs: Sparse
Connectivity, Parameter Sharing and Equivariant Representations.

Convolutional Neural Networks

A more complex example of an FNN is a Convolutional Neural Network (CNN) which op-
erates similarly to a human visual processing system (40). As a result CNN architectures
are popular in a sub-field of DL, Computer Vision. CNNs handle variance in input training
examples better than FNNs, which would require additional training to recognise images
that only vary slightly such as handwritten numbers (52). There are three features of CNNs

that make them an improvement compared to the FNN architectures (18):

1. Sparse Interactions.
2. Parameter Sharing.

3. Equivariant Representations.

CNNs do not comply to the traditional fully connected architecture of typical FNNs.
This is an improvement as it reduces the memory requirements to store the model and
increases the efficiency of the model by reducing the number of operations needed. Pa-
rameter sharing also reduced the memory requirements of a CNN architecture compared
to an FNN by learning one set of parameters rather than separate parameter sets at each
location in the network. Another benefit of parameter sharing is that the layers become
equivarient to translation, meaning changes in the output are consistent with those in the
input. Examples of these features are visualised in Fig.2.3.

Atimeline of developmentsin CNN architecture is shown in Table 2.2.1, starting in 1989
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Table 2.1: Influential CNN Architecture Timeline

1989 ConvNet

1998 LeNet (53)

2012 AlexNet (54)

2014 GoogleNet (55), VGG (56)
2015 ResNet (58)

2016 DenseNet (61)

2018 Channel Boosted CNN (59)

with the original CNN architecture ConvNet. Almost a decade later LeCun et al. developed
LeNet (53), a basic CNN which consists of seven layers. Ahead of its time, LeNet was lim-
ited by the computational resources available and so the potential of these DL approaches
were not fully appreciated. Despite the existence of these early architectures CNNs are
considered to have truly taken off in 2012 with the AlexNet architecture (54). AlexNet made
history achieving state of the art accuracy compared to traditional ML approaches on the
ImageNet dataset in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
This demonstration of CNN potential can be considered the advent of the interest in DL,
leading to more rapid developments. In 2014, the top two architectures that competed in
ILSVRC were GoogleNet (55) and VGG (56). GoogleNet was built with the aim to conserve
computational resources, and, despite being deeper than earlier architectures, was com-
prised of fewer parameters reducing its complexity (57). Runner up to GoogleNet, VGG
demonstrated the importance of network depth in classification accuracy of CNN archi-
tectures. The 2015 winner of ILSRVC was ResNet (58), an ultra-deep network that over-
came the vanishing gradient problem (57). As suggested by its name, DenseNet consists
of densely connected CNN layers increasing the efficiency of feature reuse resulting in a
reduction of network parameters (57). 2018 saw the introduction of the Channel Boosted
CNN (59) which aimed to exploit transfer learning capabilities of CNNs and their chan-
nel dimensions. This architecture specifically targeted churn data which is an increasing
issue in many sectors as a result of big data (60).

The popularity of these architectures suggested they would be a good application area
of SA as better understanding how hyper-parameters effect the performance of this archi-
tecture type would benefit a high-proportion of DL practitioners across a variety of appli-

cation areas.
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Figure 2.4: High-Level representation of LSTM architecture. (Based on Udacity
Deep Learning video tutorial created by Luis Serrano)

Recurrent Neural Networks

Another popular DL architecture is the Recurrent Neural Network (RNN). A limitation of
both FNN and CNN architecture is the lack of persistence in the learning process. When
humans learn, it is a continuous process that is coloured by various personal experiences.
When humans approach tasks we do not reset our brains and start from scratch. The RNN
architecture is designed with this concept in mind, attempting to replicate a more human
learning process by implementing a system that allows operations over time (57). There
are two popular RNN architectures: the Long Short Term Memory (LSTM) and the Gated
Recurrent Unit (GRU).

Introduced in 1997, LSTMs are a gradient-based approach to DL over extended time
intervals (62). The problem with conventional RNNs is that they are affected by the van-
ishing gradient problem which is addressed in the LSTM architecture by allowing constant
error flow. Gate units are employed to protect the contents of the memory cells and net-
work units from perturbations, be they irrelevant inputs or irrelevant memory contents. A
high level representation of this concept is shown in Fig. 2.4.

The GRU architecture was proposed in 2014 by Cho et al. (63) as an approach for ma-
chine translation tasks. As shown in Fig. 2.5, GRU networks are similar to LSTMs, how-

ever they do not have separate memory cells. A comparison of traditional RNN, LSTM

1
- *

Working Memory—;> Update Gate —— Combine Gate —H

New Working
Memory
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\
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Figure 2.5: High-Level representation of GRU architecture. (Based on Udacity
Deep Learning video tutorial created by Luis Serrano)
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and GRU performance showed a clear advantage of gating units over traditional recurrent
units whereas the dataset would influence whether the LSTM or GRU would have better

performance (64).

Deep Learning Hyper-parameters

There are hyper-parameters associated with machine learning whose reputations precede
them. Activation functions are generally considered to be the mostimportant hyper-parameter
as they allow models to solve more complex, non-linear problems (65). The impact of
choosing the optimal activation function can have a significant impact on model perfor-
mance. When comparing five activation functions on two MLP’s, a 10-layer and a 40-layer,
the accuracy ranged between 30%-95% and 19%-99% highlighting the influence of the ac-
tivation function (66).

The importance of learning rate is also well documented. Too big a learning rate can
be responsible for poor generalisation and an unthorough exploration of the error land-
scape (67). Additionally, the positive correlation between learning rate and a models abil-
ity to generalise was found to be statistically significant (68) further supporting the impor-
tance of the learning rate in training DL models. Bengio states in their book Deep Learn-
ing (18) that the learning rate significantly affects model performance, making it difficult
to set as the setting chosen can be the difference between the success and failure of the
model. These hyper-parameters live large in the literature and are, generally, the main
targets of hyper-parameter tuning.

An ANOVA analysis of how hyper-parameters effect the accuracy of residual neural net-
works concurred that learning rate was amongst the most important parameters. How-
ever, it also showed that for a certain range of learning rate values there was little effect
on the model suggesting that there may be other factors at play (69). Weight decay and
momentum were also highlighted by the ANOVA analysis further illustrating that other
parameters may be playing more of a role in deep learning models’ ability to learn. Im-
plementing a structured analysis of parameter influence would highlight whether some
parameters are potentially being overlooked during tuning in favour of activation func-
tion and learning rate as they are perceived to be the most influential.

SAisusedin thisresearch to better understand the influence of specific hyper-parameters,

producing rankings of the most sensitive to the least sensitive hyper-parameter. Thus,
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presenting the opportunity to use this ranking to inform practitioners to tune the hyper-

parameters that models are most sensitive to, conserving resources.

2.2.2 Hyper-Parameter Tuning

Hyper-parameter tuning or Hyper-Parameter Optimization (HPO) is a critical step in the
machine learning process and research into HPO approaches for DL is increasing in popu-
larity (4). As model size and complexity grows ever larger, the need for more efficient HPO
that finds optimal parameter settings is demanding the attention of researchers. There
are three popular approaches to HPO in the literature; grid search, random search and

Bayesian optimisation (70).

Manual Search

There are various techniques that have been applied to HPO. The simplest approach being
manual search which consists of the practitioner manually setting the parameter values.
Despite the ease of manual search, it does have many drawbacks. The first being that it
relies completely on the expertise of the practitioner which, in the case of an expert, could
result in good results but probably not the best that could be achieved. Additionally, it
would be difficult to reproduce the results. Furthermore, the increasing complexity of DL

problems can create difficulty in interpreting the hyper-parameters.

Grid Search

Grid search is a technique that is widely used as it is quick to implement and allows repro-
ducible results as it systematically explores the parameter space. However, this systematic
approach is responsible for the disadvantages of grid search. It is inefficient at search pa-
rameter spaces with high dimensionality and the rigidity of the approach can result in the
explorations of parameter values that are unimportant. Grid search is a victim of the curse

of dimensionality, the more parameters there are to search the less efficient the method.

Random Search

Random search offers an improvement on grid search as it is more efficient (71). As the
name suggests, this method implements a random search over the parameter space. The

same issue surrounding computational resource persists with random search, as the search
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space increases in size the resources required to assess the parameter values increases.
Paradoxically, the efficiency curve of random search shows that the larger the search space
the better the results and so there is a trade-off between the probability of finding optimal
settings and the efficiency of the tuning process. The introduction of random search also
highlighted that only a subset of hyper-parameters actually affect model performance and
that the efficiency of the method can be increased by removing the non-influential param-

eters from the search space (72).

Bayesian Optimisation

Bayesian optimisation aims to find a global optimum solution and an advantage of this
approach is that the search space is influenced based on the results of earlier trials (4). A
probabilistic model is used to determine the values that are explored for the hyper-parameter
settings. As a result, Bayesian optimisation is more computationally efficient than grid
search and random search as it requires less trials to find the optimum. Unfortunately, the

resource consumption of this method is also greater than that of grid and random search.

Addressing Hyper-parameter Tuning Challenges

Falkner (73) put forward a criteria for HPO methods stating that they should perform well
atall times, find the optimal settings, make effective use of parallel resources and deal with
different hyper-parameter set. Additionally, they state that methods should be robust and
flexible allowing for the various challenges presented by sub-fields in machine learning.
The first two criteria present a "catch 22" for the methodologies put forward in the litera-
ture as they are naturally opposing of each other. The tuning can either be performance
conscious and potentially not find optimal solutions or the tuning can continue until an
optimal solution is reached at the expense of performance.

To combat this, rather than change the HPO method, understanding the impact of spe-
cific hyper-parameters on the accuracy of a model could help reduce search space of a
method such as Bayesian optimisation and thus improving the performance. Hutter made
the point that a reliance on HPO methodologies, such as Bayesian optimisation, can hin-
der insight to the important of individual hyper-parameters and their interactions as they
cannot determine their effect on model performance (74). Furthermore, as HPO meth-

ods are trial and error per case there is no way to gather information on the importance of
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hyper-parameters beyond that specific configuration (75).

2.3 Sensitivity Analysis in Deep Learning

A summary of works from the last two decades, sorted chronologically, is presented in Ta-
ble 2.2 highlighting the SA methodology, DL application and DL parameter space. Four
trends were identified in the related works; number of publications by year, SA method-
ologies used, the DL architectures adopted and the parameter spaces explored. These four
trends are highlighted in Fig. 2.6. Chart a in Fig. 2.6 shows the increase in work applying
SA to DL, with published works in this area more than doubling in 2021 compared to 2017.
Chart b highlights the various methodologies reported in these works as SA.

The most commonly adopted methods are calculating the Partial Derivatives (PaD) or
taking inferences from plots. There are instances of more complex variance-based mea-
sures being calculated and some novel SA methodologies being proposed. The state of the
art sensitivity methods Sobol Indices and Morris are used in one instance.

The most widely used architecture explored in the literature, as shown in Chart c of
Fig. 2.6, was a simple Deep Neural Network (DNN), followed by the CNN architecture. This
is to be expected, as discussed in Section 2.2 CNNs are one of the most popular architec-
tures in DL and are widely adopted in various sectors. The final trend explored, shown in
Chart d, was the parameter space the SA was applied to in the context of DL.

For the majority, SA was applied to the input space, being used to reduce dimensional-

Table 2.2: Summary of related works SA methodologies, application of SA and
parameter space explored. The first row in the table highlights the areas ex-

plored in this thesis.
Paper SA Methodology Application Parameter Space
Gullmar 2022 (11) Plots CNN Input Space
Taylor 2021 (19) Sobol Indices and Morris Method DNN & CNN(x3) Network Training
Moussa 2021 (12) Variance DRNN Input Space
Davis 2021 (76) Variance Transformer Network Architectue
Pizarroso 2021 (13) PaD DNN Input Space
Nagasato 2021 (77)  Nash-Sutcliffe Estimation of Accuracy CNN Network
Novello 2021 (78) Hilbert-Schmidt Independence Criterion NN Network
Shu 2019 (79) Perturbation method CNN(x2) Network Architecture
Dudek 2019 (17) Plot model loss vs model input FNN Network Architecture
Zhang 2019 (80) Noise SA test prioritisation CNN Input Space
Ithapu 2017 (16) Gradient plots NN Network Architecture
Samek 2017 (81) PaD and plots CNN & SVM Input Space
Zhang 2015 (15) Average accuracy CNN Network
Gevrey 2006 (82) PaD DNN Input Space

Hunter 2000 (14) Model performance vs missing data DNN Input Space
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ity in a way akin to principal component analysis and to gain insight into which parame-
ters in the input space most influence model performance. There were three categories of
model related parameters explored; Network Training parameters, Network Architecture
parameters or a combination of both, represented simply as Network in Chart d. The least
explored parameter space was network training parameters.

Having given a general overview of the literature as it relates to DL and SA, we now
explore the recent works in more detail. The latest work considered was published in
2022 and explored how SA could be applied to the semantic segmentation of medical im-
ages (11). SA was applied to the performance of a CNN architecture and the parameters
being observed were related to the augmentation applied to the input images. Heat maps
were produced and referred to as Sensitivity maps as they illustrated the affect of the vari-
ous changes to the input data on their chosen measure of performance, the Dice Similarity
Coefficient. This simple method of SA was sufficient to discuss the relationship between
the input data and the models segmentation performance. However, these plots are open
to interpretation of the practitioner and may not reflect the interactions of the parameters
being studied.

In (19) a framework, SADL, was created, which applied two state of the art SA meth-
ods, Sobol and Morris, to various DL architectures on 3 image classification datasets. The
aim was to use SA to produce a general ranking of DL training hyper-parameters that can
inform practitioners when conducting hyper-parameter tuning. By using formal SA mea-
sures, it allowed comparisons to be drawn across architectures, datasets and with any fu-
ture work. The next stages will be to apply the ranking and evaluate the effect on the tuning
process.

It was previously established in Section 2.1 that SA is utilised in the engineering sec-
tor, specifically in building. It is also true that the application of DL methodologies is also
becoming popular. To save time in testing specific material properties, a Deep Residual
Neural Network (DRNN), based on ResNet, was proposed and the input data was pre-
processed with variance based SA (12). The first-order sensitivity measure multiplied by a
normalising factor was used to analyse which input parameters were most influential on
the accuracy of the DRNN. This a very context specific example of the application of SA
to DL input parameters which highlights the potential for more general knowledge to be

gained.
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Transformer architectures are also subject to the hyper-parameter tuning process and
can be affected by perturbations in parameter values. The idea of 'sensitivity’ in the form
of variance was adopted to measure the extent a transformer architecture is affected by
random perturbations of its parameters. Furthermore, the observations made related to
'sensitivity’ inspired a new transformer architecture, boasting increased stability in the
face of parameter perturbations (76). In this case, 'sensitivity’ is used in place of ’stabil-
ity’, and where the usual SA approaches sample the parameter space in a structured way
this work is more interested in the robustness of the model against random perturbations.
Despite naming the metric 'sensitivity), it could be argued that this work conducts Robust-
ness Analysis (RA) rather than formal SA. Having said this, formal SA is still applicable here
and could be conducted on the new, robust transformer to better understand the effect of
the input parameters or to influence network parameter tuning.

A novel metric, Noise SA Test Prioritisation (NSATP), was proposed to take a SA ap-
proach to model sensitivity to adversarial examples of input data (80). The early CNN ar-
chitecture, LeNet, was used along with four image classification datasets. The aim was to
produce a ranking of input examples based on their noise sensitivity which could lead to
the development of more robust DNNs. The aim is similar to that in the previous work (76),
however there is a clear link made here with the Ranking SA setting, demonstrating how SA
can be applied to increasing model robustness through the analysis of adversarial input
data.

Explainable Artificial Intelligence (Al) is a field of study aiming to crack the black-box
nature of ML and DL models to better understand what contributes to their final outputs.
Two methods, SA and Layer-wise Relevance Propagation (LRP), were adopted with the aim
of explaining the predictions of various ML models in terms of their input parameters (81).
Perturbation analysis was conducted on three scenarios to compare the two methodolo-
gies: CNN on and image classification task, a CNN on a text classification task and an SVM
on an object detection task. Local SA in the form of the derivatives was calculated to pro-
duce a sensitivity measure which was supplemented by heat-maps for the image classi-
fication experiment to identify influential pixels in the input data. LRP explains model
output through decomposition and assigns inputs relevance scores to quantify the contri-
bution of each input towards the output. The explanation of LRP is very similar to the state

of the art variance-based SA methodologies which were developed based on the ANOVA
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decomposition. The conclusion found that the heat-maps based on the LRP were more
informative than those based on the SA, which would be expected as the measure of SA
employed was much simpler. A more comparable method for LRP would be the Sobol’s
Indices. This work does, however, highlight that SA has the potential to be applied to bet-
ter understand the inner-workings of the black-box DL models.

Simpler methods, such as calculating PaD, and analysing the input space encompass
several works in the literature. The application of PaD to the input space is a common ap-
proach across application areas, be it the input to a Multi-Layer-Perceptron (82) or envi-
ronmental simulation (83). Traditionally, SA is conducted on numerical data which is used
to calculate derivatives. To overcome this, rather than calculate the derivatives Hunter (14)
introduced missing data and inferred influence based on the deterioration in model per-
formance, a simple yet effective example of SA. Some CNN hyper-parameters are categori-
cal and, therefore, face the same issue that Hunter encountered. Introducing missing data
in our work was not an option as the network required parameter values to operate and it
would be beneficial to have insight into the most influential values of a parameter. The ap-
proach taken in our case was to one-hot encode the categorical values, representing them
numerically to calculate the sensitivity measures.

A study of the influence of varying network structure was conducted where the lack of
guidance surrounding hyper-parameter tuning for DL prompted Ithapu et al. (16) to take
aloose SA approach. Inference based on the relationship between network architecture,
hyper-parameter convergence and input data statistics was used as an indication of sensi-
tivity. The main drawback of this work is that no comparable measure was produced that
could be used in future work. A comparison of CNN performance on sentence classifica-
tion tasks was conducted to understand hyper-parameter influence (15). Once again, the
main drawback is the lack of a measure that can be used to compare against other work
across architectures and tasks. By comparison, using the SADL framework this analysis of
CNN performance on image classification task produces recognised SA measures.

Four tasks were considered by Shu (79); outlier detection, SA of network architecture,
SA of test and training sets and vulnerable region detection. They proposed a method of
SA, perturbation manifold, and applied it to two networks ResNet50 and DenseNet on two
datasets MNIST and CIFAR10. The experiments conducted explore the network’s sensi-

tivity to layer-wise perturbations and seem to be exploring the robustness of the architec-
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Figure 2.6: Trends in the SA DL related works over the last two decades. More
specifics on the works included can be found in Table 2.2.

tures. By comparison, our work explores the sensitivity of specific training hyper-parameters
of five network architectures on three image classification datasets to offer more gener-

aliseable insights.

2.4 Potential Applications of Sensitivity Analysis in Deep
Learning

The need for Sensitivity Analysis (SA) was summarised by Furbinger in 1966 (84):

“Sensitivity Analysis for modellers? Would you go to an orthopaedist who didn’t

use X-ray?”

With DL growing in complexity and being applied to serious problems surrounding dis-
ease detection, building stability and more, that have the potential to affect lives it begs

the question: are we doing everything we can to understand and build the most efficient
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and accurate models possible? And, if SA in modelling can be compared to the necessity
of x-ray to orthopaedists, should we be utilising SA in ML and DL as standard practise?

French proposed eight contexts for the use of SA(24):
1. To build and explore models
2. To explore science and models relationships
3. To determine influential inputs
4. To develop efficient algorithms
5. To design experiments
6. To guide decision making
7. To build consensus
8. To gain understanding

and several of these could also be applied to DL, once again highlighting the compatibility
between SA and DL methods. Potential applications of SA to DL will be described in re-
lation to a subset of the contexts mentioned above, linking back to the main focus of this

work in hyper-parameter tuning.

To Build and Explore Models

DL Models of complex behaviours are often complex themselves, and this in part con-
tributes to the black-box nature of DL models and drives the explainable Al community
to explore their inner workings. One area of potential exploration surrounds the relation-
ship between model hyper-parameters and model outputs, specifically the relationship
between model parameters and accurate model outputs. Furthermore, whether these re-
lationships are model specific, application specific or whether there are more general links
between specific parameters and model accuracy. Conducting exploration into the gen-
eral influence of DL hyper-parameters could impact how future models are built depend-
ing on the relationships that are observed. For instance, if hyper-parameter influence is
found to be architecture specific then when developing improvements on CNN architec-
tures, for example, researchers can concentrate on optimising the related influential pa-

rameters. If the influence is found to be application related, affected more by the nature of
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the input data, then that would guide researchers when developing models for computer
vision or object detection or natural language processing. Any general findings would ben-
efitall DL practitioners and could fill a gap in hyper-parameter tuning advice which is cur-

rently lacking.

To Determine Influential Inputs

This context focuses the work on the inputs that matter. In terms of DL hyper-parameter
tuning, this would be the influential parameters. Better understanding of the parameters
also reduces the potential that the model outputis a product of imprecise parameters (24).
The product ofimprecise parameters in the tuning process could be taking additional time
and resources to find optimal settings because non-influential parameters were being ex-
plored unnecessarily. Bayesian optimisation embodies this context as it searches for the
optimal parameter values, pursuing areas of exploration based on previous trials to re-
duce the number of iterations needed. A SA informed approach to Bayesian optimisation
would reduce the parameter search space to influential parameters only, increasing the
efficiency of the search. Furthermore, SA can provide reassurance to practitioners that re-
moving a subset of parameters from the tuning scope would not have detrimental affects
on model performance. Additionally, SA presents the opportunity and evidence to ad-
just approaches and ideas that are favoured a priori. The importance of the learning rate
hyper-parameter is well documented in the literature, with influential DL practitioners
recommending to only tune the learning rate if you had to pick one parameter to tune (18).
However, through the application of SA methods to DL model training parameters, learn-
ing rate was ranked as having low influence compared to batch size and learning rate de-
cay (19). This finding presents the possibility that SA can lead to new insights and under-

standing of the importance of popular hyper-parameters.

To Develop Efficient Algorithms

Despite the current advancements and growth in both computational power and resources,
efficiency is still a key metric that DL practitioners aim to maximise. SA itself is a com-
putationally expensive process, especially when applied to complex models. However, a
robust analysis of DL hyper-parameters using SA would produce general knowledge that

can be adopted by practitioners to maximise the efficiency of the hyper-parameter tun-
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ing process. Additionally, the application of SA to DL architectural parameters could aid
in removing redundant features, making the models shallower or narrower without com-
promising the performance. Simply put, SA can help practitioners find the least complex,

most efficient version of a model that will still achieve high accuracy.

To Design Experiments

One of the most important elements of experimental design surrounds the fundamen-
tal choice of which points to collect data at, which are most informative and can reduce
uncertainty (24). SA methodologies take very systematic approaches to sampling often
employing Latin Hyper-Cube or Monte-Carlo sampling to produce the most representa-
tive analysis of parameter influence. Too often DL practitioners have to choose to tune
more parameters less thoroughly due to computational or time restrictions and the lack
of available guidance that sufficiently reassures them in their choices of which parameters
should be explored further. By reducing the depth of tuning of the parameter’s values in
favour of breadth of model parameters under investigation, practitioners are potentially
missing optimal solutions. As previously discussed SA would be useful here to reduce the
parameter set that is considered for tuning. Alternatively, if practitioners wish to explore a
larger parameter set, SA mapping could highlight which ranges of values for each param-
eter are most influential. This would allow the tuning process to explore that range more
thoroughly and increasing the possibility of finding optimal values for more parameters

whilst being mindful of external constraints.

To Guide Decision Making

When considering decision making, reassurance, robustness and future direction come
to mind. The use of SA to reassure practitioners has been discussed at length in the con-
texts above. In terms of robustness, the insights provided by SA can lead to an awareness
of which hyper-parameters the model would be robust against perturbations or variance
in and could highlight any risks to model performance that modellers can then take steps
to address. The emphasis in this paper has been placed on the potential SA presents to the
hyper-parameter tuning process of DL models and how the information gleaned can aid
practitioners in choosing future direction within that process. Not only understanding the

influence of hyper-parameters, but quantifying and ranking it, provides clear information
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on which parameters effect model accuracy and the relationships that parameter influ-
ence has with DL factors such as task/application or architecture. These results could in-
fluence decisions regarding which subsets of parameters to focus on when tuning or which
ranges in each parameter space should be explored, all with the aim of reducing time or

complexity whilst retaining high performance.

To Gain Understanding

Each of the contexts put forward by French share a common goal: to build understand-
ing (24). In this case, the application of SA to DL hyper-parameters would produce quan-
titative results reflecting influence on model performance that will inform practitioners.
This information will lead to better understanding of the inner workings of DL models in
regards to parameter importance and their contribution to the decision making process
that is contained within the black-box. The various charts associated with SA can be used
to communicate these insights to a wider community that may not have expert knowl-
edge of DL models but is steadily growing thanks to the countless DL libraries which is
making ML more accessible. The wide-spread adoption of DL only strengthens the need
for general, reassuring advice that can be put into practice and help people understand

the influencing factors in their work.

2.5 Conclusions

SA provides a lens which offers a view inside the black-box of DL models. Despite this po-
tential and inherent compatibility, there are few examples of formal SA methodologies be-
ing applied to the hyper-parameters of DL models themselves, with the majority of works
concentrating on the model input data. This chapter contributed a thorough review of
SA methodologies, DL practices, SA applications to DL and finished with suggestions and
recommendation on how SA should be applied to DL model hyper-parameters. By high-
lighting the benefits to efficiency and insights into explainability SA could offer DL practi-

tioners, we hope to encourage the adoption of SA within the ML community.



CHAPTER 2. LITERATURE REVIEW 36

2.6 Summary

Sensitivity Analysis (SA) has the potential to be applied to Deep Learning (DL) the results
of which could improve the explainability of DL models. DL hyper-parameters are key to
model performance however there is little understanding of the extent of their influence
on model output. An extensive review of SA and DL was conducted to better understand
their compatibility and explore how SA and DL have been previously connected in the lit-
erature. This culminated in recommendations on how SA can be used in a DL context to
better inform practitioners regarding DL hyper-parameter tuning. SA can aid practitioners
in increasing the efficiency of the hyper-parameter tuning process by providing informa-
tion that will reduce the parameter search space. The results of the review suggest that DL
is a domain that would benefit from the application of SA as it can offer insight into DL
model explainability.

The key points of this review are summarised as follows:

1. Despite the popularity and success of formal Sensitivity Analysis techniques in some
STEM sectors, there has been little adoption of Sensitivity Analysis in the Machine

Learning community, specifically in its application to Deep Learning.

2. Efficient use of time and computational resources is becoming increasingly chal-
lenging as Deep Learning models and datasets grow in size and complexity. Model
hyper-parameter tuning, finding their optimal values, is a key step in improving model
performance, the increasing cost of which is placing practitioners in an impossi-
ble position. Applying Sensitivity Analysis to the hyper-parameters and quantifying
their importance to model performance can aid and reassure practitioners in their
reduction of the parameter set, allowing them to improve efficiency without com-

promising performance.

3. Explainability is a major focus of DL research, aiming to better understand the mod-
els which are currently considered to be black-boxes. Sensitivity Analysis presents
an opportunity to better understand the contribution DL model hyper-parameters

make to the decision process.
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Methodology

The experimentation carried out explored hyper-parameter tuning from the novel angle
of using SA to reduce the parameter search space by establishing generally influential pa-
rameters. These influential hyper-parameters should be prioritised when tuning and can
reduce the search time without compromising model performance. The data required to
compute the sensitivity measures was collected by systematically changing the value of a
single parameter whilst controlling the rest and using the resulting model accuracy to cal-
culate the sensitivity measures. Two measures from state of the art SA methods contribute
to a general ranking of hyper-parameters. SA is used successfully in other areas and indus-
tries, as discussed in Chapter 2, to quantify importance of parameters. Additionally, within
machinelearning SA has been used to reduce input data features. This history makes these
methods well prepared for this application. To increase the validity and reliability of the
resulting parameter ranking, which is explored further in tuning experiments, SA is con-
ducted on a variety of CNN architectures and image classification data-sets.

The aim of this work has three key focus areas, which have shared and distinct method-
ology:
1. SA of CNN Hyper-parameters
2. Rank Informed Hyper-parameter Tuning

3. Case Study

This chapter, therefore, can be split into three sections, shown in Fig. 3.1. This work be-

gan with the development of a framework which facilitated the calculation of sensitivity
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measures for DL CNN models, SADL, which will be discussed first. The second set of ex-
periments built on the results from the framework and explored how the resulting ranking

could be used to inform hyper-parameter tuning. Finally, the culmination of this work

tested the results in a case study.

1. SA of CNN Hyper-parameters
\

2. Rank Informed Hyper-parameter Tuning
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A
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Figure 3.1: Thesis focus areas, a graphical overview of the methodology.
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3.1 SA of CNN Hyper-parameters

The first phase of work encompasses the development of a framework that facilitates the
calculation of sensitivity measures for DL models. These measures can be used to deter-
mine the influence of hyper-parameters and produce a general ranking. Additionally, any
relationships between hyper-parameter influence and model architecture or dataset can
beidentified. This section was planned to target the work aim to better understand param-
eter influence on model performance and will contribute a formalised, quantified rank of

CNN hyper-parameters.

3.1.1 Sensitivity Analysis Framework for Deep Learning Development
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Figure 3.2: Sensitivity Analysis Deep Learning Framework (SADL) overview.

The Sensitivity Analysis Deep Learning Framework (SADL) was developed to produce
the sensitivity measures of two state of the art SA methods, Sobol and Morris, for the train-
inghyper-parameters of CNN models. The framework can be broken down into four stages;
inputs, training, SA calculation and rank generation. A high-level interpretation of the
framework is shown in Fig. 3.2 and early results were published in the International Con-

ference of Tools of Artificial Intelligence (ICTAI)(19).

3.1.2 Framework Inputs

Asshownin Fig. 3.3, there are three inputs to SADL: a sample set of hyper-parameter ranges,
model architecture and training dataset. The sample set, discussed further in Section 3.1.3,
consisted of the values for each hyper-parameter. A sample was generated for each hyper-

parameter under investigation where the values of that parameter were varied and the oth-
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Figure 3.3: Sensitivity Analysis Deep Learning Framework (SADL) inputs.

ers remained consistent. Five model architectures were explored, and three image classi-
fication datasets. For each set of experiments the architecture and dataset had to be set to

calculate the sensitivity measures of the hyper-parameters for each combination.

3.1.3 Hyper-parameter Sample Set Generation
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Figure 3.4: Sensitivity Analysis Deep Learning Framework (SADL) sampling.

In the literature, SA approaches have an associated sampling method to produce the
required sample set shown in Fig.3.4. In Morris’ case, a trajectory-based sampling method-
ology is used and in Sobols’ a Monte Carlo approach is taken (21). If SA was to be con-
ducted on the basis of simple, random sampling then there is no guarantee that the sam-
ple used did not contain clusters of points or areas of the domain space that were under-
represented. Employing a stratified sampling approach reduces these issues by slicing the
sample space into regions from which points are chosen for exploration. This results in a
well-proportioned sample. Informative SA is completely reliant on the number and dis-
tribution of sample points available for analysis which is why more detailed approaches

to sampling are applied.
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Rather than implementing two separate sampling methods, one sample was created
and used to calculate all sensitivity measures. Latin Hyper-cube Sampling (LHS) is associ-
ated with SA in the literature and provides a more structured approach than random sam-
pling by offering a higher probability of covering the whole sample space (85). By combin-
ing desirable factors from stratified and random sampling techniques, LHS has the addi-
tional benefit of simple implementation, making it an ideal method for large models (86).
A sample of 100 variations was created for each hyper-parameter being explored. Morris’
method does not require a certain size of sample whereas Sobol requires a larger sample to
provide a more correct measure of influence. This need for a large sample size increases
the computational cost of the method and so 100 was chosen as it provides the balance
between a sufficiently large sample and resource usage. A sample less than 100 would not
produce robust sensitivity measures and samples more than 100 do not increase the ro-

bustness of the measures sufficiently to justify the cost (87).

3.1.4 Hyper-Parameters

Seven core training parameters were included in the scope of this work that are listed in
Table 3.1. The default values for the parameters and their ranges were decided based on
recommendations in the literature. Learning rate was highlighted in many works as being
a significant hyper-parameter which should be prioritised for tuning (18). This influences
the hyper-parameter direction in this work as the set had to include learning rate, the pa-
rameter reported as one of the most important. By concentrating on training parameters
in these experiments the architectures could remain consistent and therefore, introduced
less resource constraints than experimenting with network depth and width would have.
Keeping the scope of hyper-parameters as training only also presents opportunities for
future work to explore architectural parameters and draw comparisons.

Table 3.1: Deep Learning Hyper-parameters descriptions, symbols, ranges and
default values used for SA experimentation.

Parameter Description Range Default Value
Optimiser List of gradient descent (GD) algorithms. Category* Adam
Learning rate (a) Initial GD step controller. [1x1077,0.5] 0.001
Momentum (f) Acceleration factor for GD. [0, 0.99] 0.6

Learning rate decay (@gecay) Reduction rate of (). [0, 1] 0.9

Learning rate decay step (a4-sep) Number of epochs between Learning Rate Decay.  [1,100] 10

Batch size Size of training subset for GD update. Category* 32

Epochs Number of training cycles. [5, 1000] 100

Note: Category* indicate that there are two hyper-parameters with categorical ranges (88): (i) optimiser, Adam, SGD, RMSprop,

ADAdelta, ADAgrad and ADAmax; and (ii) batch size, 1, 32, 64 and 128.
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3.1.5 Model Architecture
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Figure 3.5: Sensitivity Analysis Deep Learning Framework (SADL) model archi-
tecture.

Model Descriptions

A single architecture is explored at a time using the framework as shown in Fig.3.5. ADNN,
and four state of the art CNN architectures were investigated in this study: ResNet18 (58),
AlexNet (54), VGG16 (56) and GoogleNet (55). Including the DNN allowed for initial in-
sight into the application of SA to DL hyper-parameters that could be applied to CNNs.
The state of the art CNNs: ResNet18, Alexnet, VGG16 and GoogleNet are represented in
Fig. 3.6. This shows that the chosen architectures vary in depth and complexity. Using
CNN’s with a variety of compositions in the experiments allowed for relationships between
hyper-parameter influence and model architecture features to come to light.

The DNN architecture was comprised of a three layer network with 64 units, based on a
MLP which is a general recommendation to practitioners starting out in DL and machine
learning. This architecture was chosen to show the influence of hyper-parameters on a
small, simple network. Additionally, due to the shallower architecture, training the DNN'’s
was quicker, allowing for the development of the framework (19).

The winner of ILSVRC 2012, AlexNet is a CNN which consists of 8 layers and 60 million
trainable parameters. The development of AlexNet influenced several aspects of DL model
design. With the advantage of increasing training speeds, Alexnet popularised the use of
ReLU over Tanh. Furthermore, overlapping pooling layers were introduced through this
architecture, decreasing the training error and the potential for over fitting. On the other
hand, dropoutis required to decrease the risk of over-fitting caused by the high number of

trainable parameters resulting in an increase in training time required. As the shallowest
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Figure 3.6: Architectural diagrams of the state of the art models: AlexNet (top),
ResNet18 (middle-1),GoogleNet (middle-2) and VGG16 (bottom).

CNN architecture being considered, the network depth may present issues when learning
features.

ResNet18 was chosen as ResNet architectures offer low training complexity and depth
whilst achieving a low error rate. Winning ILSVRC in 2015, ResNet achieved the largest in-
crease in accuracy since AlexNet (89) in 2012. The residual learning concept is the major
contribution and advantage of ResNet. Simply put, it improves model accuracy by focus-
ing on learning new features whilst also speeding up the training process.

GoogleNet achieved best accuracy in ILSVRC in 2014. Resource conservation was the
main focus of this architecture, a clear advantage when considering the current DL chal-
lenges surrounding computational resources. Comprised of 22 layers without pooling,
GoogleNet is the deepest of the CNN models assessed. The constant resource usage al-
lowed the analysis of this size of model on a single GPU however, it was the slowest to
train.

Runner up to GoogleNet at ILSVRC 2014, VGG16 is a popular architecture for image
classification tasks. VGG16 replaces the large kernel sizes in the AlexNet architecture with
consecutive 3x3 kernels producing a more discerning decision function. This did have the
side effect of slow training and producing large weights resulting in high memory utilisa-

tion.
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Model Implementation

All models were implemented in the Python programming language, version 3.7, using the
Keras (88) package for deep learning. Each architecture implementation follows how the
model was presented in the original papers to ensure the state-of-art characteristics that
set them apart as high-performing CNNs are present. The DNN architecture followed a
simple specification following recommendations for beginners in DL and machine learn-
ing so that these groups of practitioners are represented in this work. Furthermore, the
simplicity of the DNN resulted in a very quick training time which facilitated the devel-
opment of the SADL framework. This allowed us to test the framework quickly, apply sev-
eral iterations of training, compute sensitivity measures and make necessary adjustments
whereas the larger models could take hours/days to train, which would have caused seri-
ous delays in the framework development process. Utilising the DNN model during frame-
work development overcame the hurdles of training time introduced with larger, deeper
architectures. For each dataset used in the experiments the first layers of the architectures

had to be adapted to the shape of the input data.

CCN Justification

As reported in the literature, the CNN architecture is the most adopted DL approach (90).
The popularity of the CNN can be explained by its applicability to a wide variety of super-
vised learning problems such as image classification, natural language process and object
detection. As a result there has been thorough research into optimising CNN architec-
tures, producing several state of the art models that practitioners and researchers can use
in their work such as ResNet, GoogleNet, AlexNet and VGG16. Understanding the influ-
ence of hyper-parameters on CNN architectures presents the most potential in terms of
useful impact. Presenting a ranking of CNN hyper-parameters that can aid in model opti-

misation would have a wider-reaching benefit compared to less popular architectures.

3.1.6 Training Data
Data Description

Input data to the CNN models were also a key element of the framework, shown in Fig.3.7.

MNIST, MNIST-Fashion and CIFAR-10 are the three image classification datasets used in
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Figure 3.7: Sensitivity Analysis Deep Learning Framework (SADL) datasets.

these experiments, examples of which are shown in Fig. 3.8. One of the most popular
benchmark dataset for deep learning is MNIST which consists of 28x28 grey-scale images.
Ten classes of handwritten digits present a relatively simple task for DL networks. MNIST
is splitinto 60,000 training and 10,000 test images. To measure dataset complexity a cumu-
lative spectral gradient (CSG) measure gives an indication based on its overall separability.
MNIST has low levels of complexity, with a CSG of 0.11 reported in the original paper (91).

The second dataset chosen, MNIST-Fashion (92), shares many features with MNIST
including image size, format and test/training split. The images themselves are of fashion
products and thus present a new level of complexity as there are additional features that a
network must learn in order to accurately classify an image. Following the methodology in
the paper by Frederic Branchaud-Charron (91) the CSG of MNIST-Fashion was calculated
tobe 0.51.

The most complex and challenging of the datasets is CIFAR-10, comprising of larger,
coloured images, 32x32, and more varied 10 classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck. As a result, this dataset has higher dimensionality which re-
quires more time to train. CIFAR-10 was calculated to have CSG of 3.8, confirming that it
is much more complex that MNIST and MNIST-Fashion.

The varying complexity in the chosen datasets presents the opportunity to analyse
the effect of dataset complexity on the influence of network hyper-parameters. Experi-
menting with a range of datasets aims to identify any relationships that may exist between
hyper-parameter influence and dataset complexity. Example samples from each dataset

are shown in Fig.3.8.



CHAPTER 3. METHODOLOGY 46

0

10
20

20

o

0

10 v
20

20

0

Figure 3.8: Examples from each dataset; MNIST (row 1), MNIST Fashion (row
2) and CIFAR-10 (row 3).

Data Preparation

The preparation of the datasets consisted of three steps:
1. Split data into train and test sets
2. Normalise and re-shape data
3. Encode class data

The first step was separate the training data from the test data that would be used
for validation. Both the MNIST and MNIST-Fashion dataset had a split of 60,000 training
images and 10,000 test images whereas CIFAR-10 consists of 50,000 training images and
10,000 test images.

The second step in the data preparation was to normalise the images. Rather than take
ajust-in-time approach, allimages were normalised and stored in this format prior to their
input to the networks. The aim was to convert the pixels in the images from having a range
of 0-255to 0-1. An additional step in the process includes centring the image, which shifts
the pixel distribution so that 0 is in the middle.

The final step was to one-hot-encode the class data. This step is more relevant to the
MNIST-Fashion and CIFAR-10 datasets as the class labels are categorical and need to be

converted to numerical data for use within the networks. One-hot-encoding works by as-
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signing a numerical value to each unique categorical value which is used to represent that

value throughout the training and validation of the network.

Justification for choosing image classification

Image classification is a classic machine learning task where images are assigned pre-
defined categories based on learned features and is a fundamental problem within the
wider field of computer vision (93). As a result is a popular problem that is tackled in re-
search with various facets to explore. Furthermore, the complexity and size of image data
canresult in time and resource constraints in the tuning and training process where addi-
tional efficiency would be a benefit.

The three image classification datasets were chosen as they are widely used in research
which aids the validity and generalisability of this work. Furthermore, they are readily
available aiding in the reproducability of this work. Finally, they represent varying task
complexity whilst still being small enough that the work could be completed within the
proposed time-frame as the development process required re-training models repeatedly
the time constraints introduced by larger image datasets would have caused considerable
delays. Additionally, these datasets were small enough to be processed and stored with
general hardware making them applicable to the general DL practitioners that this work

aims to inform and aid.

3.1.7 Model Training
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Figure 3.9: Sensitivity Analysis Deep Learning Framework (SADL) training.

For each sample point of hyper-parameter values in the sample set, the chosen model
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was built with random weight initialisation and compiled with the parameter settings out-
lined in the sample. Once the model was set-up for that iteration, it was trained. Early
stopping was implemented concentrating on the accuracy achieved, with the highest ac-
curacy recorded alongside the value of the varied parameter. This was repeated for each
combination of architecture (n=5) and dataset (n=3) 100 times for each hyper-parameter
(n=7) resulting in 100 x 7 x 5 x 3 = 10,500 iterations to feed into the calculation of the sensi-

tivity measures. This process is outlined at a high level in Fig.3.9.

3.1.8 SA Calculation
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Figure 3.10: Sensitivity Analysis Deep Learning Framework (SADL) sensitivity
measure calculations.

One aim of these experiments was to understand and quantify the influence of hyper-
parameters on model performance. This could be defined in several ways such as mini-
mal loss, high accuracy or training times to name a few. Within the scope of work, model
performance in this instance is defined as the accuracy achieved specifically the test ac-
curacy. This is a key element within the SA measure calculations. Two state of the art SA
methods, Sobol and Morris, were implemented as part of SADL which are discussed in
depth in Section 3.1.9 as shown in Fig.3.10. Two factors are required to calculate the mea-
sures: the model input and the model output. In this case the model input is a sample set
of varied hyper-parameters values and the outputs are the corresponding test accuracies.
These are used for both methods to produce sensitivity measures which quantify the in-
fluence of each hyper-parameter for each combination of model architecture and image
classification dataset.

SA has been designed to be implemented on numerical data, however there are some

model hyper-parameters that are represented categorically. Both the optimiser and batch
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size parameters have categorical input values and therefore the framework had to be adapted
to conduct SA for categorical data. Previous works had handled this by removing the cate-
gorical options and conducting the SA on the absence of a value (14). This approach how-
ever, does not allow for further insights into which values of the parameter were most in-
fluential. To retain the potential of understanding categorical influence one-hot-encoding
was employed. This made it possible to represent the parameter values numerically for
the SA calculation whilst also being able to reverse the encoding and understand which

parameter values were most influential.

3.1.9 Sensitivity Analysis

The aim of SA is to understand the outputs of a model in terms of its inputs and the most
popular methodologies are Sobol Indices and Morris Method. In this context, model in-
puts are the hyper-parameters and model output is the accuracy achieved. Both methods

were calculated separately, as shown in Fig.3.11 and Fig.3.12.
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Figure 3.11: Sensitivity Analysis Deep Learning Framework (SADL) Morris
Method.

The Morris Method (9) or Elementary Effects (EE) applies local SA across a feature space,
to create a global measure and is classed as a screening method. The aim is to determine
the effect of input parameters to a model whether they be negligible, linear and additive,
nonlinear or involved in interactions with other parameters (21). The measures produced
are p and o where p quantifies the overall influence of a parameter and o represents the in-
dependence of the attributed influence. The measures values range between 0 and 1 with

a higher value indicating the model is more sensitive to the parameter.
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Modified Morris

Campolongo et al proposed a modification to the traditional Morris Method introducing
an additional sensitivity measure u* (30). Unlike the original measures, u* was able to han-
dle groups of parameters, and could be considered a total sensitivity measure, combatting
Type 2 errors that the original ¢ measure was prone to. This method was tested against
variance-based measures in Campolongo’s paper comparing p* against the measure pro-
duced from Sobol’s Indices for some models. They determined that u* was an effective
substitute for ST;. This is promising in terms of efficiency as computing p* requires no
additional time and can be computed alongside the original EE sensitivity measures with

no additional cost.
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Figure 3.12: Sensitivity Analysis Deep Learning Framework (SADL) Sobol In-
dices.

Sobol’s Indices is a variance-based SA methodology which are considered to be state
of the art in the literature. The strengths of variance-based approaches are that they are
model independent and consider parameter interactions whilst representing the global
search space(21). On the other hand, the computational cost associated with calculating
the variance-based sensitivity measures is high and is in addition to the cost of anumber of
model simulations. Two measures are produced by the Sobol Indices method (8), the first-
order effects, S;, and total-effects, ST;. These measures can be thought of as a percentage
of the variance in model output caused by the input being analysed and, as such, range
between 0 and 1. The higher the value of S; the more the variance in output is attributed to
that parameter whereas ST; attributes the variance to the parameter under consideration

and its interactions.
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SA Implementation

The SA methods were implemented in the python programminglanguage. There are pack-
ages where various SA methods have been implemented such as SALib (94) which is also
in python. The choice to code a separate implementation rather than utilise a package for
the SA was based on efficiency. SADL includes two SA methods and to reduce computa-
tion time both are calculated from the same inputs and outputs of a single sample. This
was not possible to do with the package implementation as they are built to create a sam-
ple for each run of the method and there are differing default sampling approaches which
is dependent on the SA chosen. As a result, code was written to implement both Sobol
Indices and Morris Method within the SADL framework. Both sets of produced SA mea-
sures were also normalised using min-max normalisation and implementations of these
methods can be found in Appendix A for reference.

The Morris method implementation was broken down to four functions:
1. Calculate the elementary effects
2. Get the increased values
3. Get the decreased values
4. Produce sensitivity measures
Sobol Indices was implemented in 3 stages:
1. Calculate S;
2. Calculate ST;
3. Produce sensitivity measures

The final stage for both methods was to normalise the produced measures.

3.1.10 Hyper-parameter Rank Generation

The initial measures produced through the SA can be interpreted as rankings for each in-
dividual combination of architecture and dataset. Two SA methods were considered as

they can emphasise different areas of influence and, as a result, produce differing overall
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Figure 3.13: Sensitivity Analysis Deep Learning Framework (SADL) hyper-
parameter rank generation.

rankings. Therefore, at this point in the process, from the measures produce (n=2), archi-
tectures (n=5) and datasets (n=3), there are 2 x 5 x 3 = 30 rankings to take into consideration
to produce an overall, generalised picture of hyper-parameter influence.

Each hyper-parameter was ranked based on their influence on model accuracy. Their
rank was determined based on the sensitivity measures produced by both SA methods,
Morris and Sobol, equally. The sensitivity measures p* and ST; are utilised to understand
the influence of each parameter. These were chosen over the other measures produced
via SA as they are more robust measures and are considered to be the best in the literature.
Both scores have a range of 0-1, the higher the score the more influential the parameter. A
high score in both measures indicates that both methods are in agreement, validating the
ranking further. When both measures do not agree the parameters scores distance from a
perfect score (1,1) is used to distinguish its rank amongst the other hyper-parameters. As
both methodologies take different data into consideration to produce the measures they
can place emphasis on different parameters which is why the combination of both SA ap-
proaches was used to produce a generalised ranking, as shown in Fig. 3.13. This rank-
ing took into consideration both SA methods by computing the Euclidean distance from
the highest possible measure value, 1 for u* and 1 for ST;, to the values each parameter

achieved. The smaller the distance the higher the parameter was ranked.

3.1.11 Experimental Design

Seven DL hyper-parameters were varied for one DNN and four CNN architectures, ex-
panding on the architectures previously explored (19), on three image classification datasets.

Table 3.1 gives an overview these hyper-parameters and their optimal ranges (95). SA ex-
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periments were conducted on a V100 GPU and had a sample set of size 100 variations
per hyper-parameter. The Keras (88) python library was used for model implementation.
The measures were normalised using the min-max method to preserve the rank of hyper-
parameters.

The Wilcoxon Signed Rank statistical test was employed to compare the rank score
achieved by each hyper-parameter to the others to determine whether a hyper-parameter
scored significantly higher than the other parameters. The p-value threshold used was
0.05. The Wilcoxon test was chosen as it is a non-parametric test and is, therefore, more

appropriate for for the results than the student-t test.

3.1.12 Limitations

The limitations of this methodology, Section 3.1, is related to numbers: the number of
architectures, datasets, hyper-parameters and SA methods. It could be argued that the
conclusions drawn from this work would be more robust if more had be been explored
however, the major constraints of this work were time and computational resources. The
nature of these experiments, repeatedly training DL models, is time consuming and with-
out the computational resources to distribute these processes the scope of work had to be
tailored. As aresult the DL architectures chosen were all popular in literature and varied in
composition. The datasets chosen were small, so as not to introduce more issues in terms
oftime and resources, but varied in complexity and are three of the most well known image
classification datasets. The focus of hyper-parameters was concentrated on the training
parameters that are introduced at model compilation as keeping architectural parameters
in scope would have increased computation time and required more resources for vary-
ing the depth and width of the architectures. The model architectures chosen were stat-
of-the-art so that their architectural hyper-parameter settings would already be optimal.
In terms of SA methods, more could have been included in the framework to contribute
to the rank however usually only one SA method would be used and so by computing the
two most popular SA methods and taking into account both in the final ranking this work
is taking a more holistic approach to SA. The two SA methods chosen are the accumulation

of the methods that came before them and are the most widely adopted in literature.
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3.2 Rank Informed Hyper-parameter Tuning
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Figure 3.14: Rank Informed Hyper-parameter tuning overview.

54

The second phase of experimentation, summarised in Fig. 3.14, takes the hyper-parameter

ranking produced in phase one with SA and usesitto inform the process of hyper-parameter

tuning, HPO. A novel measure, accuracy gain, was created to measure HPO efficiency in

terms of tuning time and accuracy achieved and is introduced in more detail in Section 3.2.4.

Accuracy gain was considered in relation to dataset complexity, CSG. This facilitates the

comparison of tuning efficiency of a variety of parameter groupings to better understand

if reducing the HPO search space to influential parameters could reduce time spent on

optimisation without compromising accuracy. Furthermore, relationships between tun-

ing efficiency and model architecture or dataset complexity can be identified which could

help practitioners make decisions regarding HPO.

3.2.1 Parameter Grouping
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Figure 3.15: Rank Informed Hyper-parameter tuning parameter grouping.

CSG

Five groupings of parameters were identified for exploration; all 7 parameters explored
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by SA (see Table 3.1), the top ranked (batch size), the second ranked (learning rate decay),
the top two parameters (batch size and learning rate decay) and the top three parameter
(batch size, learning rate decay and learning rate decay step) identified through the SA of
CNNs. Defining these groups is the first part of setting the scope of exploration, as shown
in Fig. 3.15

The all parameters group represents the traditional approach to hyper-parameter tun-
ing, where the hyper-parameter space is explored in it’s entirety. The results of tuning this
group will serve as a baseline of performance (time to tune and test accuracy) that the per-
formance of the ranked groups can be compared against. This will then give an indication
of whether the performance of the ranked groups is better than tuning all parameters or
whether it is faster and less accurate and therefore something practitioners can decide to
compromise on for tuning speed.

Four SA influence ranked groups were chosen to explore whether there are optimal
groupings of the top ranked parameters that should be considered for tuning. Combi-
nations and subsets of the top three ranked parameters were targeted to tune for perfor-

mance comparison.

3.2.2 Model Architectures and Training Datatsets
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Figure 3.16: Rank Informed Hyper-parameter tuning model architectures and
datasets.

Building on the methodology described in Sections 3.1.5 and 3.1.6 the five architec-
tures: DNN, ResNet18, AlexNet, VGG16 and GoogleNet, and the three datasets: MNIST,
MNIST Fashion and CIFAR10 continue into the ranked hyper-parameter tuning phase, as

shown in Fig. 3.16.
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3.2.3 Bayesian Optimisation

Bayesian Optimisation is considered to be the state of the art in hyper-parameter tuning
literature and is used to optimise "expensive "black-box" functions" (96) such as neural

networks and DL models. This is why this method was chosen, as shown in Fig. 3.17.
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Figure 3.17: Rank Informed Hyper-parameter tuning Bayesian optimisation.

Theory of Bayesian Optimisation

The core principal of Bayesian optimisation is reflected in the following equation which
states that the posterior probability P(y|x,) of a model y, given data x;, is proportional the

likelihood P(x,|y) of observing x,, given model y multiplied by the probability of P(y) (72):

P(ylxp) < P(xn|y)P(y) 3.1

The combination of the distribution of the model P(y) and the data x, is used to ob-
tain the posterior of the function which can then be used to discover where that function
is maximised given some criteria. This criteria, u, is often referred to as the acquisition
function and is used to determine the next sample point by aiming to maximise u.

This feeds into the Bayesian optimisation framework which consists of two parts: a
probabilistic model and aloss function (97). The probabilistic model reflects the behaviour
of the unknown objective function whilst the loss function is the target of the optimisation,
either to maximise or minimise depending on its nature.

Akey advantage of Bayesian optimisation over other HPO methods is thatitis designed
to be sample efficient. By employing adaptive sampling strategies Bayesian optimisation

can reduce the number of evaluation functions required to find an optimal solution (96).
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Bayesian Optimisation Implementation

In this work, the implementation of Bayesian optimisation from the python library hyper-
opt (98) was used. The approach chosen was the Tree-structure Parzen Estimator (TPE)
and was set up to minimise the loss during training. The choices made were to reflect
common practice so that the results produced would be useful to a wide-ranging audi-
ence.

The hyperopt library provides a framework for implementing hyper-parameter tuning
allowing for definition of configuration space and evaluation function, creating a formal
approach to the optimisation of DL models. Furthermore, hyperopt was developed with

the hyper-parameters of DL models in mind, especially CNNs.

Justification for choosing Bayesian Optimisation

As the state of the art HPO Bayesian Optimisation was chosen as the tuning method as it
is considered to be a rigorous approach for the optimisation of DL models (96). Within
the application of machine learning and hyper-parameter tuning, Bayesian optimisation
has received positive attention in literature over traditional cross-validation methods (97).
This approach to HPO suits the scope of this work as it is more successful where there is low
to moderate dimensionality (97). By working within a moderate hyper-parameter search
space of seven training parameters Bayesian optimisation can perform optimally, though

in the context of DL the effect of dimensionality is lessened (97).

3.2.4 Important Measures

To evaluate model performance and understanding the influence of the highest ranked
parameters four key measures are considered: dataset complexity (CSG), test accuracy,

time and a novel metric accuracy gain ().

CSG

Cumulative Spectral Gradient (CSG) is a measure which quantifies the complexity of a
dataset based on the overall separability of classes (91). Following the methodology laid
outin (91) we calculated 20 CSG values for each dataset to produce a range of complexity

for MNIST, MNIST-Fashion and CIFAR10. These ranges facilitate the demonstration of the
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Figure 3.18: Rank Informed Hyper-parameter tuning CSG calculation.

relationship between dataset complexity, CSG, and the accuracy gain, 9, of the different
parameter groups.

As explained in (91) the ability of a DL model to generalise cannot be based on architec-
ture and parameters alone, the input data also plays a role in this and being able to quan-
tify the complexity can give an early indication of model performance. The CSG measure
was tailored for image classification data and CNN architectures where other comparable
c-measures which were designed for raw, linearly-separable data. Furthermore, the CSG
metric was designed with performance in mind and has a quicker calculation time and as

aresult is an important measure to be considered as shown in Fig. 3.18.
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Figure 3.19: Rank Informed Hyper-parameter tuning test accuracy.

When evaluating a DL model, accuracy is a key metric that can indicate the success of
training. However, the term accuracy is much broader than it may initially seem and, as

a result, may not provide a clear picture of model performance. Exploring accuracy with
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more granularity reveals differences in training accuracy vs test accuracy. A strength of
DL, which contributes to its popularity and adoption, is the ability to generalise to unseen
problems and data and a models generalisability is more accurately reflected by test ac-
curacy (99). This occurs because models can adjust their weights to the training data so
rigorously that the model achieves very high training accuracy because it has learnt the
dataset and therefore cannot perform to the same level on validation data, commonly re-
ferred to as over-fitting in the literature. Concentrating on the test accuracy achieved by
the model, as shown in Fig. 3.19, gives a better indication on the generalisablability of the
model once trained. Ensuring that a model can perform effectively on unseen data is a

crucial part of training that needs to be prioritised.

Time
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Figure 3.20: Rank Informed Hyper-parameter tuning training time.

Computational cost is an important topic within DL and an element of this cost is the
time it takes to train a model. Time constraints can dictate the scope of HPO, training
length and as a result the accuracy of the model. Simply, time can be estimated as the
real-time implementation of training which, practically, is the most useful to a DL practi-
tioner trying to estimate the cost of work. As model complexity increase, execution time
alsoincreases (100) and so understanding the influence of reducing HPO to influential pa-
rameters only on run times would be beneficial. So that the time is easily interpretable it

will be measured in seconds/minutes/hours, as shown in Fig. 3.20.
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Figure 3.21: Rank Informed Hyper-parameter tuning accuracy gain ().

Novel Measure: Accuracy Gain

To quantify the effect a parameters tuning has on model accuracy we developed a measure
which conveys the average accuracy gained per unit of time, Accuracy Gain (), shown in

Fig. 3.21 and defined as;
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where a represents a list of accuracies obtained from Bayesian optimisation trials and t
represents a list of timings for those trials. In equation 3.2.4 dividing the top of the fraction
by the smallest time value acts as a scaling factor, allowing the measure to be computed
and subsequently compared for varying units of time. Doing this allows the comparison
of problems which require days vs hours of training so that the resulting measure is not bi-
ased to simple/quicker problems. This measure Ay quantifies the efficiency of optimising
aset of parameters and can be used to make comparisons between the different groupings
of parameters for the different combinations of architectures and datasets. Through this
measure it is possible to see whether tuning a specific group of parameters is more time
and accuracy efficient than others. Knowing this can help practitioners decide which pa-
rameters to tune based on the time and computational constraints they may have.

The rune Jera (101, 102, 103), ©, was chosen to denote Accuracy Gain as it's mean-
ing surrounds the idea of time and cycles, traditionally related to the harvest. Accuracy
Gain, 9, as a metric relays the accuracy that can be achieved given time much like what

resources a harvest can yield given a set cycle of time and so © was chosen.

3.2.5 Producing an Optimal Setting

By conducting Bayesian optimisation optimal values for each hyper-parameter value is
recommended that should be used for training and the model going forward as shown in

Fig. 3.22.
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Figure 3.22: Rank Informed Hyper-parameter tuning optimal settings recom-
mendation.

3.2.6 Experimental Design

Five groups of parameters were explored over five DL architectures and three image clas-
sification datasets of varying complexities. One hundred trials of Bayesian optimisation
were carried out for each combination of parameter group, architecture and dataset and
the Bayesian optimisation was implemented using the popular hyperopt pythonlibrary (98).
A combination of a v100 GPU and a distribution of roughly 50 lab machines with Genie
VIG830S, Precision T1700 and EU1009695;2110114 were used to run the experiments. The
50 lab machines were split into arbitrary groups of 10 and the 100 Bayesian optimisation
trials were distributed across the machines in an arbitrary group for that set of trials. The
choice to use a variation of hardware was made to reflect the various set-ups that are re-
alistic for DL practitioners whom we aim to aid through this work. The results showed no
significant difference in time between 100 trials run on the v100 or 100 trials distributed
across the lab machines.

The Wilcoxon statistical test will be employed here to compare the test accuracies and
times achieved by the various parameter groups. This will highlight if a groups perfor-

mance is significantly better than another. The threshold for the p-value was 0.05.

3.2.7 Limitations

As mentioned above one of the potential limitations was using multiple hardware setups
asit could be argued that the results produced are not comparable however there was little
to no difference in the GPU results when compared to the distributed set-up approach.

The lab machines were not individually compared to the GPU to combat this.
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3.3 Case Study

The final phase of experimentation, depicted in Fig. 3.23, takes the outputs from phases
one and two and applies it to a real world scenario. The purpose of conducting a case
study is to verify the results from the first and second section of methodology and observe
whether the results stand and whether SA identified influential parameter groups would
improve tuning efficiency outside of the experimental framework created in this thesis. In

short, to get an indication of whether the results of this thesis would generalise to other

problems.
Model
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Figure 3.23: Case Study overview.

3.3.1 Application Area

The use of DL in medicine is growing, and medical imaging in particular is exploring the
potential of CNNs (104). To better explore how machine learning and DL in particular can
be applied and benefit medical imaging, initiatives such as OpenNeuro (105), BioBankUK (106)
and The Cancer Imaging Archive (107) have been developed to further research efforts in
this area.

Following this vein, the target paper of this case study focuses on the detection of col-
orectal cancer (108). DL models were trained to classify images as either being benign or
malignant and demonstrated reliable, reproducible results that support the benefit of em-

ploying DL techniques to medical learning tasks.

3.3.2 Model and Dataset

In the instance of the case study, the model architecture and training data, referred to in

Fig.3.24, were dictated by the paper being replicated.
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Figure 3.24: Case Study model architecture and dataset.

Model Architecture

The paper (108) focuses on ResNet architectures, specifically ResNet18 and ResNet50. There
is overlap here with the work in this thesis where ResNet18 was also explored and so ResNet18
was chosen for the case study as the outputs of SA ranking and the ranked Bayesian opti-

misation will be directly applicable to this architecture.

Dataset

The dataset used (108) was the Warwick-QU dataset of colorectal cancer images, shown in
Fig. 3.25, which was used as part of the Gland Segmentation Challenge Contest (GlaS) (109)
in 2015. This dataset consists of 165 images in .bmp format with a 37:48 training split and
37:43 test split (benign:malignant). The images included were collected from University
hospitals across Coventry and Warwick in the UK. There is no personal data included, only
the images themselves and their classification so there is no need for ethical review of this

case study.

Dataset Preparation

The preparation of the dataset followed (108). The images and labels were organised into
test and train and converted into grey-scale. Contrast-Limited Adaptive Histogram Equal-
isation (CLAHE) was applied to improve the contrast in the grey-scale version of the im-
ages. Finally, the images were resized to be consistent with one another. Three train test
splits were explored (108): 60%:40%, 75%:25% and 80%:20%. The highest accuracy was

reported with the 80%:20% train test and so this was chosen for the case study.
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Figure 3.25: Case Study dataset examples.

3.3.3 Parameter Grouping
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Figure 3.26: Case Study parameter groupings.

The parameter groups need adjusting to reflect those from the paper, as shown in Fig. 3.26
and Table 3.2. The first group of parameters explored were those highlighted in the target
work (108), henceforth referred to as the paper parameters. The optimiser used was SGD
and the parameters that were tuned were the learning rate and momentum. The loss func-
tion used in the paper was binary cross entropy. To keep this as close to the original settings
the default optimiser for this group is set to SGD, the loss used was binary cross-entropy.
The parameters subjected to tuning are learning rate and momentum.

To determine the top two groups of influential parameters to tune the CSG of the dataset
will be calculated and compared against the results of the previous chapters for ResNet18.
This highlighted batch size only and top three influential parameters (batch size, learning
rate decay and learning rate decay step) as having the best potential for the complexity of

the data set and architecture combination.
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Table 3.2: Case study parameter group definition summary.

Groups Parameters

Paper Learning rate, momentum

Top Batch size

Top Three Batch size, learning rate decay, learning rate decay step

All Batch size, learning rate decay, learning rate decay step, optimiser, momentum, learning rate, epochs

The final group includes all hyper-parameters from the original scope of this work.

3.3.4 Hyper-parameter Tuning

As explained in further detail in Section 3.2.3, the hyperopt library was used to conduct
Bayesian optimisation on the above parameter groups. For each parameter group 100 tri-
als of HPO were completed and the test accuracy, and time of each trial was recorded for

evaluation, as shown in Fig. 3.27.
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Figure 3.27: Rank Informed Hyper-parameter tuning CSG calculation.

3.3.5 Case Study Evaluation

The evaluation of the case study consisted of producing the test accuracy, recording the
time to conduct the tuning and computing the Accuracy Gain ©, as shown in Fig. 3.28.
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Figure 3.28: Rank Informed Hyper-parameter tuning CSG calculation.



CHAPTER 3. METHODOLOGY 67
Test Accuracy

The test accuracy was recorded as the main measure of model success and is a commonly
used metric (110). Test accuracy indicates model performance on validation data that was
not used in the training of the model. This not only shows how accurate the model is but,
unlike training accuracy;, it also shows that the models performance is less likely to be be-
cause it has learned the training examples. As a result, test accuracy as a metric better

reflects that the model has learned the problem rather than the training examples.

Precision, Recall and F1-Measure

Classification problem results can be evaluated in the form of a confusion matrix which
sorts the predictions made by the model into four categories: True Positive, False Positive,
False Negative and True Negative, shown in Fig. 3.29. This can then be used to evaluate the
precision and recall of the model which can provide more insight to model performance
than test accuracy alone.

Precision, also know as the Positive Predictive Value (PPV), is considered to be a mea-
sure of quality. This allows the model to be evaluated in terms of how well it predicts a
specific class by representing the percentage of correctly classified positive samples (110).

Recall, also referred to as sensitivity, is considered to be a measure of quantity. This
measure evaluates the model in terms of how many times it recognised a specific class.

F1-measure combines both precision and recall and is the harmonic mean of both of

these measures, emphasising the importance of both (3). If either precision or recall is low
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Figure 3.29: Accuracy measures for classification problems. PPV: Positive Pre-
dicted Value. NPV: Negative Predicted Value. (After Dinga (3))
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then the F1-measure will be and so both need to be high in order for a model to achieve a

high F1 score. The higher the F1 score the better the model performance.

Time

As previously, the HPO trials were measured in real-time (seconds/minutes/hours) so as to
evaluate the time to complete in a way that DL practitioners would find relatable. Though
clock-cycles may facilitate comparisons of the hyper-parameter groups more thoroughly
the aim here is to quantify the time saving, if any, to the practitioner and so seconds, min-

utes and hours of computation time were used for evaluation.

Accuracy Gain

The novel metric, Accuracy Gain S was used to evaluate the efficiency of the influential
parameter groups against those laid out in the original work. The higher the Accuracy

Gain, the more efficient the HPO of the parameter group.

CSG

Dataset complexity, CSG, was calculated to choose the top two parameter groups that
should be most efficient in terms of Accuracy Gain © as early results suggested the com-
plexity of the input data effected which parameter groups were most efficient (effected Ac-
curacy Gain ©). This can also be used to make direct comparison against the results of the

case study and the previous works with the various datasets from previous experiments.

3.3.6 Experimental Design

The case study experiments were completed using Google Colaboratory (Google Colab)
cloud solution. The associated GPU that was allocated as part of the cloud service was
the Tesla P100-PCIE-16GB. For these experiments there was 12GB-16GB of RAM available.
This service has been widely adopted allowing for general access to high-performance
computing that many ML practitioners will now be able to utilise. Google Colab is also a
simpler, more cost-effective option (111) compared to purchasing and setting up the hard-
ware directly. 100 trials of HPO were complete for each parameter group identified: paper,

top, top three and all.
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The Wilcoxon statistical test will be used to identify parameter groups that performed
significantly better than others in terms of test accuracy, time, precision, recall and F1-

measure. The threshold observed for the p-value will be 0.05.

3.3.7 Limitations

The case study was limited by and to the information available in the original paper. This
study was chosen as it provided details on dataset pre-processing and HPO however it did
not share the final settings chosen for the other parameters and so these had to be as-
sumed. Furthermore, there were no specifics regarding image sizes to follow and so this
may have differed from the original work. These potential deviations from the original
study could explain any differences observed in model performance. To mitigate this lim-
itation the original experiment with the described HPO was replicated and the results pro-

duced were used to compare against the influential parameter results.

3.4 Summary

The methodology of this work was split into three distinct sections, the results of which
were designed to feed into the next. The initial stage, SA of CNN Hyper-parameters, out-
lined a novel framework, SADL, to enable SA be conducted for the hyper-parameters of
CNN models where the image classification dataset and model architecture were change-
able. The aim of this was to produce a general ranking of popular DL training hyper-
parameter influence on CNN model accuracy. The second stage, Rank Informed Hyper-
parameter Tuning, introduced a novel metric - Accuracy Gain © to evaluate HPO effi-
ciency, and conducted tuning on various parameter groups to compare tuning perfor-
mance of all parameters against that of the most influential parameters. Finally, the re-
sults of the first two stages of work were applied to a real world case study to better under-
stand the significance of SA of CNN hyper-parameters on HPO efficiency. Calculating the
Accuracy Gain for the SA identified influential parameters for a new architecture/dataset
combination, with the aim to compare the efficiency and final test accuracy against that
reported in the chosen paper aims to show whether the results from earlier in this thesis

stand and are generalisable.



Chapter 4

Sensitivity Analysis of

Convolutional Neural Networks

This chapter begins with the implementation of the SADL framework and any deviations
from the methodology set out in Chapter 3, Section 3.1. This is followed by a presentation
of this chapters results and a discussion. This is then summarised into a conclusion at the

end of the chapter which feeds into the next avenue of exploration.

4.1 Implementation

The implementation of the SADL framework followed the methodology laid out in Chap-

ter 3, Section 3.1.

4.1.1 Software Re-usability

The modular design and implementation of the SADL framework allows for it’s re-use to
conduct SA for other CNN architectures and image datasets. With minimal modification it
could also be adapted to alternative architectures and tasks. This would also allow for the
addition of other SA and sampling methods to the framework in the future. SADL was im-
plemented with the Keras python library in mind and therefore can not be used for models

created using alternative libraries such as PyTorch.

70
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4.1.2 Sensitivity Analysis

The code for the implementation of the Morris method and Sobol’s Indices was influenced
by the SAlib python library (94, 112). Where the SAlib library implements specific sampling
methods for each SA method, the SADL framework uses one sample and one set of inputs
and outputs to calculate both sets SA measures. SADL was implemented this way to reduce
computation time by not duplicating the sampling and training trials for the various SA

methods.

4.1.3 Resource Constraints

There were elements of running the experiments that did not run as smoothly as antic-
ipated as a result of resource constraints. The SADL framework training loop was pro-
grammed to take the hyper-parameter settings for each trial, compile, build and train the
model and record the achieved accuracy 100 times for each parameter. The total number
of trials for each model architecture and dataset combination was 700 (7 parameters) and
these 700 trials were designed to be completed iteratively in one run of the framework.
A memory leak in the Keras fit function and the memory intensive nature of the experi-
ments resulted in Out Of Memory (OOM) errors which disrupted experiments. To combat
this the code was optimised as much as possible to reduce the use of memory for variables
and conserve it for the training loops. Additionally, the input and output of each trial was
written to file so that if an OOM occurred the experiment could be continued from the

point where it was interrupted with minimal loss of data.

4.1.4 Agile Development

An Agile approach was taken to the development of the SADL framework. The Agile method
of software development promotes speed and adaptability (113), repeating the software
design life-cycle iteratively and bringing the resulting outputs of these "sprints" of work to-
gether into a final product. As SADL was designed to be modular, developing it in this way
was complimentary to the nature of the desired output. Each module was designed, im-
plemented and tested in turn: sampling, model architectures, training data pre-processing,
SA methods, model fit/train and capturing the outputs. The final iteration brought the

modules together and integration testing was completed to ensure that the various parts
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of the framework were compatible and passing data correctly. An advantage of taking this
approach was the ability to adapt to change when necessary. The issues introduced by
resource constraints would not have been as easy to mitigate if a waterfall approach had
been taken to implement the framework as the testing that uncovered the issues would
have taken place much later in the development cycle. By approaching this in an Agile
way, when this issue arose, it was relatively simple to adjust aspects of the modules to add
mitigating code. Furthermore, it was possible to prioritise the implementation of the fix

without too much disruption to the project plan.

4.1.5 Informal Testing

Testing of the framework was completed as it was developed. Results were validated us-
ing understanding of the SA methodologies and realistic outputs and results from other
implementations of the methods such as SALib. As the framework was implemented in a
modular way each module was tested and then the integration of the module was tested.
As is common in many solo developed projects many issues were resolved as they arose
rather than as a result of strict testing, with bugs and errors being dealt with organically
as they became apparent. Several versions were developed during the implementation

process improving on flaws to produce a final, robust framework.

4.2 Results

This section presents the results of the SA conducted on the CNN architectures: DNN,
ResNet18, AlexNet, GoogleNet and VGG16, on all three datasets: MNIST, MNIST Fashion
and CIFAR-10. Fig. 4.1 shows the accuracy of the models for each value of the parame-
ters trialled to show how the variance in the parameter settings resulted in variance in the
model accuracy. The rows represent the parameters, whereas the columns represent the
datasets and the colours indicate the architecture. The inference from these charts can be
considered a simple form of SA on its own, however they cannot consider the influence of
a parameter in terms of its interactions which is included in the SA measures. The two cat-
egorical parameters, batch size and optimiser, are displayed as point plots where the point
is the mean and the lines are the standard deviation. The numerical parameters are dis-

played as line plots where the central dark line is the mean and shaded area surrounding
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Figure 4.1: Test accuracy mean and standard deviation of hyper-parameter tri-
als at varied values to give early indication of influence. The straighter the line
the less influence the parameter will be expected to have. See Table 3.1 for
hyper-parameter details.
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architecture. Top-right corner of the plot indicate high rank. See Table 3.1 for
hyper-parameter details.

it represents the standard deviation. Fig. 4.2 shows the SA measures that were produced,
u* and ST;. Each measure, ranging between 0-1, indicates high influence with a higher
score. The columns represent the datasets and the rows represent model architectures.
The x-axis is the Sobol measure and y-axis is the Morris measure. Scores in the top-right
quadrant of the chart shows that both measures have ranked the parameter as having high
influence and ifit falls into the bottom-left both measures agree that parameter has low in-
fluence. If the parameter falls into either the top-left or bottom-right quadrants this shows
that the two methods have not agreed on the ranking of the parameter. This chart is used

as an early indicator of importance before the final ranking is produced.
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4.2.1 Sensitivity Analysis

The initial results, shown in Fig. 4.1, gives an early indication of the influence of each pa-
rameter on the accuracy of a model before the SA measures are calculated. For each ar-
chitecture, indicated by the coloured lines, on each dataset, represented by the columns,
model accuracy is shown for each variation in parameter values. The rows in the chart are
the different parameters. The more variation seen in the lines that represent the architec-
tures the more influence the parameter can be said to have. This is observed consistently
for batch size, row 1 in Fig. 4.1, and learning rate decay, row 2 in Fig. 4.1, across architec-
tures and datasets. Conversely, there is much less variation observed for learning rate, row
5 Fig. 4.1, particularly for the GoogleNet, DNN and ResNet18 architectures. There is some
variation observed for VGG16 and AlexNet, moreso for the MNIST dataset. Momentum,
row 6 Fig. 4.1, has the least variation of all parameters across all architectures and datasets
indicating low influence.

DNN SA results are shown in Fig. 4.2 row one. Batch size was clearly ranked as most
influential on the CIFAR-10 dataset as it is located in the extreme top-right of the chart. It
is also ranked highly influential on the MNIST and MNIST Fashion datasets by the Morris
measure. Optimiser is also influential for the DNN on the MNIST and CIFAR datasets. The
lower ranked parameters consist of number of epochs, which is consistently in the bottom
left quadrant of the charts and learning rate is also ranked low for the MNIST Fashion and
CIFAR-10 datasets contradicting the importance placed on tuning the learning rate in DL
and hyper-parameter tuning literature.

As seen in the DNN results, CIFAR-10 has a clear most influential hyper-parameter for
the ResNet18 architecture: Learning Rate Decay. Fig. 4.2, row two, shows that the learn-
ing rate itself was ranked amongst the least influential parameters. This result highlights
the possibility that the parameters effecting learning rate are more influential than the ini-
tial learning rate itself despite the emphasis placed on learning rate in the literature. Mo-
mentum is also generally ranked highly for ResNet18 supporting the notion that factors
affecting learning rate are more influential.

The results of AlexNet are shown in Fig. 4.2, row three. Batch size is ranked most in-
fluential on the MNIST and MNIST Fashion datasets and is ranked second for CIFAR-10
suggesting a generally high influence on AlexNet’s test accuracy. Batch size extends to

other architectures, ranking most influential for multiple datasets for the DNN architec-
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ture. This suggests a potential correlation between optimal batch size and good test ac-
curacy, independent of CNN architecture or dataset. Conversely to observations of the
previous architectures, learning rate decay is ranked lowest for MNIST Fashion despite it’s
influence on AlexNet for the other datasets and in previous experiments. This presents the
possibility that the complexity of the dataset can effect the influence of parameter. Once
again, learning rate’s influence is low, contrary to expectations set by the literature. Num-
ber of epochs is also consistently ranked as having low influence.

The GoogleNet results share a common most influential hyper-parameter, learning
rate decay, across all datasets. There is also agreement on this by both Morris and Sobol,
indicated by its position in the top-rightmost quadrant in Fig. 4.2, row four. Learning rate
decay has also been ranked as influential in previous experiments which suggests a poten-
tially generally influential parameter. As observed consistently, learning rate is amongst
the lowest ranked hyper-parameters.

VGG16 on the MNIST datatset is most influenced by batch size. It is the most influen-
tial parameter by far as shown in Fig. 4.2, row five, as all other parameters are grouped in
the bottom left corner of the chart. The second most influential parameter for the MNIST
dataset is learning rate decay which is the most influential parameter for the MNIST Fash-
ion dataset. The most influential parameter on VGG16 for the CIFAR dataset was the op-
timiser. Learning rate is amongst the lowest ranked hyper-parameters once again for all
experiments.

These results were analysed to identify patterns of influence of the hyper-parameters.
Firstly, a generalised score was calculated for each parameter which determined the final

ranking, shown in Table 4.1.

4.2.2 Ranking

Table 4.1 summarises the final rank of hyper-parameter influence taking into considera-
tion the results of both SA methodologies. Results highlighted in bold represent the most
influential parameter for that combination of architecture and dataset. The final column
takes an average of parameter scores and represents the final ranking produced. Batch
size was ranked as most influential overall, having the lowest average distance from per-
fect SA scores, followed closely by learning rate decay. The Wilcoxon Signed Ranks test

confirmed that the ranking of batch size was significantly higher than all other parame-
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Table 4.1: SA Euclidean distance from best score, (1,1), to actual score, (u*,ST;).
High influence indicated by smaller distance.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter M MF C M MF C M ME C M MF C M MF C  Average
Batch Size 0.90 075 0.17 133 1.00 092 0.00 0.41 0.76 0.00 095 1.10 1.06 0.54 0.75 0.71
Learning Rate Decay 1.14 140 046 098 098 0.08 094 117 0.47 1.04 051 117 0.00 0.23 0.44 0.73
Learning Rate Decay Steps  0.96 1.09 0.69 0.98 127 1.00 1.10 079 112 120 0.90 0.9 120 1.03 0.75 0.98
Optimiser 0.84 128 041 106 105 120 1.19 096 113 133 112 060 123 133 098 1.05
Learning Rate 1.00 129 053 100 105 098 089 106 1.08 123 115 114 130 141 126 1.09
Momentum 1.04 085 0.74 052 1.00 1.16 1.15 099 137 1.09 141 119 141 115 134 1.10
Epochs 1.25 123 043 103 099 117 116 112 135 112 117 1.07 137 137 1.00 1.12

Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.

ters apart from learning rate decay, which was ranked second, with a p-value threshold
of 0.05, as shown in Table 4.2. Batch size was ranked highest on the shallower networks,
DNN and AlexNet, whereas learning rate decay was ranked highest on deeper networks,
ResNet18 and GoogleNet. In the middle, VGG16 was highly influenced by both top ranking
parameters depending on the dataset.

As observed in the SA results, learning rate was ranked amongst the least influential
parameters, and is third-least influential overall. Momentum is also ranked as having lit-
tle influence, which is expected due to the lack of variation shown in Fig. 4.1, however
does rank highest in one instance which could be attributed to its interactions which are
not reflected in Fig. 4.1 and redeems it from being the least influential parameter overall.

Number of epochs is the least influential parameter, ranking last overall.

4.3 CNN Sensitivity and Patterns of Influence

The mostinfluential parameter across all architectures and datasets was batch size as shown
in Table 4.1. As batch size effects stochastic gradient descent learning algorithms that
are widely used in DL (95) this could explain the sensitivity CNNs showed to this param-
eter. For example, the impact of optimal batch size was demonstrated when ResNet50

Table 4.2: Results of the Wilcoxon Signed Ranks test: p-values for each pair of

parameters to demonstrate whether the Euclidean distance rank (and thus in-

fluence) of one hyper-parameter is significantly different from that of another

hyper-parameter across the datasets and model architectures explore. P-value
threshold is 0.05.

Batch Size Learning Rate Decay Learning Rate Decay Step Optimiser LearningRate Momentum Epochs

Batch Size - 0.88866 0.03 0.0198 0.00318 0.01108 0.00452
Learning Rate Decay 0.88866 - 0.11642 0.06876 0.0536 0.0536 0.02144
Learning Rate Decay Step  0.03 0.11642 - 0.17384 0.11184 0.17384 0.03572
Optimiser 0.0198 0.06876 0.17384 - 0.37886 0.56868 0.267
Learning Rate 0.00318 0.0536 0.11184 0.37886 - 0.71138 0.6672
Momentum 0.01108 0.0536 0.17384 0.56868 0.71138

- 0.77948
Epochs 0.00452 0.02144 0.03572 0.267 0.6672 0.77948 -
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was trained on ImageNet with 76% accuracy by only increasing the batch size (114). It
was also observed that batch size plays a more important role than CNN depth and it was
concluded that batch size tuning should be prioritised over network architecture param-
eters (77). The importance of batch size to CNN performance reported in the literature is
supported by the SA conducted, where it was ranked either most or second most influen-
tial in the majority of experiments and was considered to be the most generally influential
on CNN accuracy. The results of comparing the achieved distances by each parameter to
best score using the Wilcoxon Signed Ranks statistical test, reported in Table 4.2, showed
that batch size was significantly close than all other parameters but learning rate decay,
confirming that the ranking had correctly determined the most influential parameter. The
p-values ranged from 0.00453 — 0.03, meeting the 0.05 threshold to reject the hypothesis
that the scores achieved were the same. This suggests that batch size should be prioritised
when conducting hyper-parameter tuning on CNN architectures.

Learningrate decay ranked second most influential overall, as shown in Table 4.1. Learn-
ingrate decayis believed to aid inlearning complex patterns (115) and it was observed that
it'sinfluence was greater the more complex the architecture of the CNN and the more com-
plex the dataset. Learning rate decay is employed to aid models in avoiding local minima
when training (115), which enables them to achieve greater accuracy which was observed
in the SA results. The CNNs were sensitive to learning rate decay as certain values would
allow them to perform much better than others, accounting for its overall rank. It’s posi-
tion in second place can be explained by the varying levels of influence it had depending
on the level of complexity present. It was generally less influential on the simpler DNN
whereas it was highly influential on the largest architecture GoogleNet. Furthermore, the
additional complexity presented by the CIFAR-10 dataset saw learning rate decay have ad-
ditional influence on ResNet-18, which was not as noticeable for the simpler MNIST and
MNIST-Fashion datasets.

Learning rate was third least influential, contrary to it's importance reported in the lit-
erature. The low levels of influence of learning rate was a pattern across datasets and ar-
chitectures suggesting CNNs are not particularly sensitive to the initial learning rate. This
would suggest a more effective approach would be to start with a larger learning rate and
adjust it with an optimal learning rate decay. Following this advice has the potential to

yield better CNN test accuracy and reduces the number of parameters to subject to hyper-
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parameter tuning.

Batch size was ranked higher on the shallower models explored, DNN and AlexNet,
whereas the influence of learning rate decay was greater on deeper models, ResNet18 and
GoogleNet. The pattern that emerges in relation to this suggests deeper models are more
susceptible to convergence speeds whereas shallower models are more susceptible to the
stochasticity of the learning process.

The margin of separation between the most and the least influential parameters was
greater for more complex datasets. Experiments conducted on CIFAR-10, the most com-
plex dataset, showed that the range between values of SA measures for the most and least
influential parameters was larger compared to the range of SA measures obtained for MNIST
and MNIST Fashion. This result would suggest that for more complex datasets tuning the
most influential parameter alone will improve performance and can preserve resources.

These results can also be applied more generally and can be used to make recommen-
dations for future hyper-parameter tuning attempts for CNN architectures. The results of
the SA suggest that tuning the top ranked parameters would allow practitioners to reduce

the parameter space under consideration without compromising on model performance.

4.4 Conclusions and Next Steps

We applied the SADL framework to state of the art CNN architecture’s training parame-
ters to better understand their influence on model accuracy. The results highlighted batch
size and learning rate decays as being highly influential across datasets and architectures.
Contrary to expectations, the initial learning rate was not considered to be influential and
practitioners would benefit from tuning learning rate related parameters, such as learn-
ing rate decay, rather than the learning rate itself. Parameter influence was also found
to be linked to complexity, that is the more complex and deeper architectures were more
sensitive to convergence speeds and the shallower, simpler models were more sensitive
to the stochasticity in the learning process. Additionally, the dataset complexity affected
the margin of separation between sensitivity measures of the most and least influential
parameters suggesting that tuning the most influential parameter alone will benefit per-
formance more whilst preserving resources. The parameters were ranked in the following

order based on the SA conducted:
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1. Batch Size
2. Learning Rate Decay
3. Learning Rate Decay Steps
4. Optimiser
5. Learning Rate
6. Momentum
7. Epochs

The next steps of this work is to apply these results and to use the ranking outlined
above to conduct hyper-parameter tuning and thus observe the theoretical cost savings in
practice, and understand what ramifications there are, if any, for the model accuracy. This
would then be extended to possible case studies to make direct comparisons against real-
world scenarios to emphasise to practitioners the benefit of adapting the tuning process

to the most influential parameter set.

4.5 Summary

The key findings of the analysis conducted on CNN hyper-parameters would be that the
most influential parameter depends on architecture complexity and the optimal group
of parameters to tune depends on dataset complexity. Regardless of this, batch size and
learning rate decay are both highly influential parameters that should be prioritised when

conducting hyper-parameter tuning.



Chapter 5

Rank Informed Bayesian

Optimisation

Following on from Chapter 4, the ranking of CNN parameters produced via SA will be
used to inform the approach to HPO. Specifically, this chapter explores the efficiency of
Bayesian Optimisation for CNN HPO of various parameter groups of differing influence
on model performance. The aim of this chapter is to understand whether tuning the most
influential parameters is a viable option to reduce computation time without compromis-

ing model accuracy.

5.1 Implementation

5.1.1 Resource Constraints

The resource constraints in this instance also needed mitigation by saving the hyperopt
trial data as a pickle which could be read in to continue the Bayesian optimisation in the
instance an OOM occurred. This did not occur as often where the task was distributed

across several lab machines.

5.1.2 Novel Measure: Accuracy Gain

The aim of this chapter was to gauge the efficiency of the HPO of CNN hyper-parameters

and whether reducing the parameter search space to the parameters with the most influ-
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ence on model accuracy would be more efficient. Efficiency in this case would be reducing
the time required to conduct Bayesian optimisation without compromising model perfor-
mance. To answer this question effectively and provide direct comparisons between the
chosen parameter groups a quantifiable measure of tuning efficiency was required. This

need prompted the development of the Accuracy Gain © measure.

5.2 Results

5.2.1 SAinformed Bayesian Optimisation

Bayesian optimisation was applied to five groups of parameters based on their SADL rank-
ing (19); all parameters, top ranked (batch size), second ranked (learning rate decay), top
two parameters (batch size and learning rate decay) and top three parameter (batch size,
learning rate decay and learning rate decay step) for all architectures and datasets previ-
ously explored. Fig. 5.1 shows the results of the Bayesian optimisation trials conducted.
The rows relate to the model architectures and columns represent the datasets whereas
the colours each reflect a different grouping of parameters. Each data point shows the ac-
curacy the individual trial achieved and the time that trial took in seconds.

Generally, there is a clear difference in the accuracy achieved depending on the dataset
the architecture is being trained on. The CIFAR-10 dataset has much lower accuracy for all
architectures and MNIST-Fashion achieves lower accuracy overall than MNIST.

The first row of Fig. 5.1 shows the results of the Bayesian optimisation on the DNN
architecture. For both MNIST and MNIST-Fasion datasets the trials for batch size only,
the top ranked parameter, generally take the longest but also achieve the best accuracies.
The second best accuracies are achieved by optimising the top three ranked parameters;
batch size, learning rate decay and learning rate decay step. Despite the individual trials
for the "all parameters" group being quick, they also produce trials with the lowest accu-
racy. CIFAR-10 also achieves high accuracies from tuning the batch size only and top three
parameters. It differs in that there are fewer batch size trials that achieve the best accuracy
compared to the points observed for MNIST and MNIST-Fashion.

There is less distinction in the ResNet18 results, however it is possible to see that the
batch size only and top three groups still achieve good accuracy across all datasets. Ad-

ditionally, even though there are trials from all parameters that achieve higher accuracy
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Figure 5.1: The results of 100 trials of Bayesian optimisation on 5 groups of
hyper-parameters. The columns are organised by dataset and the rows rep-
resent the architectures explored. Each colour represent a different group of
parameters. Each data point reports the accuracy and time taken in seconds
for each trial of Bayesian optimisation.

there are much more that achieve lower accuracy by comparison to the smaller groupings
of parameters. The time taken for individual trials is more varied across the datasets and
parameter groupings for the ResNet18 architecture. Across all datasets there is a gap be-
fore the trials start showing that even the quickest trials were longer than the majority of
the DNN trials.

The trial speeds for AlexNet are generally quicker than those observed for ResNet18
and a little slower than the DNN. Across all three datasets there is a clearer distinction
in performance between the group all parameters and the other groupings as there are
clusters of all parameter trials in the lower half of the charts indicating low accuracy for

many trials. Batch size alone and the top three parameter group are the top performing
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Table 5.1: Best Accuracy Achieved in 100 trials of Bayesian Optimisation, high-
est accuracy is highlighted in bold.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter Group M MF C M MF C M MF C M MF C M MF C  Average
All Parameters 095 0.85 032 098 0.84 0.63 099 0.88 055 0.99 0.88 056 0.99 0.87 0.72 0.80
Batch Size Only 098 0.89 042 099 0.88 056 0.98 087 057 0.99 088 059 053 0.89 0.65 0.78
Learning Rate DecayOnly 0.87 0.76 0.28 094 0.80 0.38 095 0.80 039 097 0.78 027 096 0.80 0.40 0.69
Top Two 0.87 0.78 0.47 096 0.84 041 097 0.82 047 098 0.85 038 098 0.84 041 0.72
Top Three 095 0.86 040 098 0.88 055 0.99 0.88 059 0.99 0.90 053 0.99 0.89 0.62 0.80

Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.

groups across the three datasets. Optimising the learning rate decay alone also achieves
good accuracy for MNIST and MFASH and is more prominent than previously observed
for that grouping.

The GoogleNet optimisation, shown in row 4 of Fig. 5.1, follows patterns previously
observed in that the top three parameter group achieves high accuracy. The line of trials
thatis clear for learning rate decay only on MNIST shows that the trial times are consistent
for optimising that parameter. The experiments for all parameters took so long that they
are out of scope of the charts which were limited to 240 seconds for comparisons across
the architectures.

The final architecture, VGG16, shows clusters of all parameter trials in the lower half
of the chart as they achieved lower accuracies in general. Batch Size only and top three
parameters achieve high accuracy across all three datasets. There is an obvious decline in
accuracy where the trial takes more time.

Table 5.1 and Table 5.2 summarise the results in terms of accuracy achieved in each
experiment and the time taken in minutes to perform the 100 trials of Bayesian optimisa-
tion in each instance, respectively. The highest average accuracy was achieved by tuning
all parameters or the group of top three parameters. It is worth noting that in most in-
stances where the highest accuracy was achieved by tuning all parameters it was matched
by tuning a subset, either batch size only or the top three parameters. Furthermore, tuning
batch size alone achieved the second highest average accuracy and produced the best re-
sults in roughly half of the experiments. The group of parameters that reported the worst

Table 5.2: Time Taken in Minutes to perform 100 trials of Bayesian Optimisa-
tion, shortest time taken highlighted in bold.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter Group M MF C M MF C M MF C M MF C M MF C Average
All Parameters 170 159 109 5886 3440 3536 839 494 537 1250 1436 1158 49456 52163 20739 9424
Batch Size Only 464 574 48 2738 2255 654 366 552 497 1189 1674 1421 703 1189 1514 1056
Learning Rate DecayOnly 35 14 29 563 283 195 298 88 330 482 1053 1810 254 189 136 384
Top Two 189 37 49 5312 2058 1522 432 861 691 1480 1717 1311 1112 1228 1276 1285

Top Three 170 163 67 2800 1238 1115 720 614 625 2969 1192 1388 1262 1379 912 1108
Note: Dataset names abbreviated in above table as M for MNIST, MF for MNIST Fashion and C for CIFAR-10.
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Table 5.3: Results of the Wilcoxon Signed Ranks test: p-values for each pair
of hyper-parameter groups to demonstrate whether the time required to tune
a model with one group is significantly different from that required to tune a
model with another hyper-parameter group across the datasets and model ar-
chitectures. P-value threshold is 0.05.

All Parameters Batch Size Only Learning Rate Decay Only Top Two Top Three

All Parameters - 0.06876 0.00318 0.0784 0.06432
Batch Size Only 0.06876 - 0.00148 0.33204 0.8181
Learning Rate Decay Only 0.00318 0.00148 - 0.00214 0.00236
Top Two 0.0784 0.33204 0.00214 - 0.42372
Top Three 0.06432 0.8181 0.00236 0.42372 -

average accuracy was the learning rate decay on its own. Despite achieving the lowest
accuracy, learning rate decay was the quickest of all the groups in completing 100 trials
of Bayesian optimisation with the Wilcoxon Signed Ranks test, reported in Table 5.3, also
showing that it was significantly quicker than all other parameter groups. Table 5.4 shows
the average accuracy and times of the architectures across the three datasets, allowing for
a direct comparison of the two metrics. Despite having the joint highest accuracy, tuning
all of the parameters was the slowest process by far. Tuning the top three ranked param-
eters achieved the same accuracy as all parameters but executed 8.5 times faster and was
the third quickest group overall. Batch size only resulted in the second highest accuracy

and the second quickest tuning time.

5.2.2 Accuracy Gain and Dataset Complexity

To understand the efficiency of optimising each group of parameters the measure ¢ was

computed to quantify average increase in accuracy gained per time unit whilst optimising

each set of parameters, as shown in Fig. 5.2. The first column of Fig. 5.2 considers ¢ in

terms of the datasets studied in the experiments whereas column two considers ¢ in rela-

tion to dataset complexity and gives an indication of which parameter group to optimise
Table 5.4: Best accuracy and time taken in minutes for 100 trials of Bayesian

Optimisation for each dataset and group of hyper-parameters, averaged across
the five architectures. The best accuracy and shortest times are highlighted in

bold.
MNIST MNIST-Fashion CIFAR10 Average
Parameter Group Accuracy Time Accuracy Time Accuracy Time Accuracy Time
All Parameters 0.98 11520 0.86 11538 0.56 5214 0.80 9424
Batch Size Only 0.90 1092 0.88 1249 0.56 827 0.78 1056
Learning Rate Decay Only 0.94 327 0.79 325 0.34 500 0.69 384
Top Two 0.95 1705 0.83 1180 0.39 970 0.72 1285

Top Three 0.98 1584 0.88 917 0.54 821 0.80 1108
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given a CSG value.

The larger the value of ¢ the bigger the average increase in accuracy per unit of stan-
dardised time. Generally ¢ for all parameter optimisation is low compared to the other
groupings across architectures and datasets. Additionally, the efficiency of optimising all
parameters islower on the more complex CIFAR-10 dataset compared to MNIST and MNIST-
Fashion and is generally lower than the other groups of parameters. By contrast, optimis-
ing Batch size only, the top ranked parameter, has generally high values of ¢ across the
state of the art architectures. Batch size achieves a low ¢ for the DNN architecture how-
ever when taking into consideration its performance shown in Fig. 5.1 the batch size tri-
als accuracy stays consistently high and so there was little accuracy to be gained. The ¢
achieved by learning rate decay was higher on the simpler datasets, MNIST and MNIST-
Fashion, compared to CIFAR10 and it was generally higher for the GoogleNet architecture.

Comparing the ¢ against the CSG value, as shown in the second column of Fig. 5.2,
highlights which groupings of parameters were most effective per architecture for varying
data complexity. The top three grouping has high ¢ across several architectures for CSG’s
in the MNIST-Fashion range and it generally has the second largest ¢ for CSG’s within the
CIFAR10 range. Batch size only performs best within the CIFAR10 range of data complex-
ity and generally outperforms the other groupings on the more complex dataset. As pre-
viously observed, tuning all parameters is the least efficient across most architectures and

CSG ranges which is supported by having the longest time to tune.

5.3 Discussion

Bayesian optimisation was conducted on five groupings of parameters based on SA rank,
produced with the SADL framework (19), across all architectures and datasets. The re-
sults showed that tuning subsets of influential parameters would reduce the time taken
to conduct Bayesian optimisation without compromising the accuracy achieved by the
CNN. Furthermore, a connection was made between the efficiency of the Bayesian op-
timisation and complexity of the dataset which could aid practitioners in deciding which
parameter group to tune based on the data they are using. When prioritising accuracy and
speed tuning the batch size alone or the top three SA ranked parameters: batch size, learn-

ing rate decay and learning rate decay step, will result in the best accuracy in the shortest
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Figure 5.2: The left hand side shows the accuracy gain, ¢, of tuning the differ-
ent groups of parameters, grouped by dataset where the rows are the different
architectures explored. The higher the ¢ the more efficient the tuning of that

group was. The right hand charts compare ¢ to dataset complexity, CSG. The
highlight portions are the CSG ranges for the datasets explored. This shows the
change in  based on CSG value.

times. If speeding the tuning process is the priority and there is room to compromise on
the overall accuracy achieved, then tuning learning rate decay alone was significantly the
quickest, completing 100 trials of Bayesian optimisation 24.5 times faster than tuning all
the parameters. However, this did result in the lowest average accuracy, 0.69. As learning
rate decay affects the convergence speed of a neural network it makes sense that tuning
this parameter would increase the speed of the tuning process.

It has been demonstrated previously that increasing the batch size has more impact
on model performance than other hyper-parameters (114). This is reflected in the SA in-
fluenced Bayesian optimisation where batch size achieved second highest accuracy and
the second quickest tuning time, suggesting that concentrating tuning efforts on batch
size alone would be an effective and efficient approach. Furthermore, the comparison
of accuracy gain, ¢, against dataset complexity, CSG, showed that tuning the batch size
alone worked well on the complex datasets, making this approach well-suited to current
research trends in DL. When working with the simpler datasets the combination of the
top three SA ranked hyper-parameters showed good accuracy gain and also achieved joint

highest accuracy. Tuning this group of parameters was only slightly slower than tuning the



CHAPTER 5. RANK INFORMED BAYESIAN OPTIMISATION 88

batch size alone and would be also be a good option to improve HPO in practise.

The second column in Fig. 5.2 was created to demonstrate the relationship between ¢
and CSG values. Additionally, practitioners could use this chart to inform them on which
group of parameters would be most efficient to tune based on the complexity of the dataset
they are using. By calculating the CSG value for their dataset they could then, on the chart
related to the architecture most similar to what they are using, see which group had the
highest ©.

The main aim of this work was to aid practitioners and so all practical decisions made
aimed to mimic the general practices and, therefore, produce results that could be of ben-
efitto the DL community. The architectures and datasets chosen are state of the art and are
commonly used. The hyper-parameters explored are all generally thought to be influen-
tial and candidates for tuning. Bayesian optimisation was chosen as it is considered to be
the most popular and best method for HPO. These decisions are all strengths of this work.
To improve in future, additional datasets and architectures could be explored to further
generalise the results and further demonstrate the relationship between hyper-parameter

tuning efficiency and dataset complexity.

5.4 Conclusions

As DL grows in popularity and model architectures and datasets grow in size and com-
plexity the cost of HPO is also increasing, forcing practitioners to make compromises that
could potentially affect model performance. SA methodology was utilised to identify the
most influential CNN training hyper-parameters which we used to inform or implemen-
tation of Bayesian optimisation. We compared the accuracy achieved and the time taken
to conduct Bayesian optimisation of five varying groups of hyper-parameters: all parame-
ters, top ranked (batch size), second ranked (learning rate decay), top two (batch size and
learning rate decay) and top three (batch size, learning rate decay and learning rate de-
cay step), on 5 DL architectures and 3 state of the art image classification datasets. This
allowed exploration of whether the efficiency of HPO could be increased by reducing the
parameter search space to the SA identified influential parameters without compromising
on model accuracy.

Tuning the batch size alone or the top three parameters often matched or beat the ac-
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curacy achieved by tuning all parameters in the individual experiments with tuning the top
three having the highest average accuracy alongside tuning all parameters. This showed
that tuning a subset of most influential parameters could achieve the same performance
as tuning all the training parameters. Furthermore, tuning the subsets of parameters was
much quicker in every instance than tuning all parameters supporting our hypothesis that
SA informed Bayesian optimisation is more efficient than conventional approaches and
can still achieve the same results in terms of model performance.

In addition, a connection was observed between dataset complexity and the most ef-
ficient hyper-parameter group to tune. Batch size alone was effective on the more com-
plex datasets, especially for the shallower architectures, whereas the top three group per-
formed well on the simpler architectures. Fig. 5.2 was produced to allow practitioners to
determine the best group to tune for their own work based on the CSG complexity of their
dataset. The right hand side of the chart can be used to see which group has the best ac-
curacy gain ¢ for a given CSG between 0 and 4 for commonly used CNN architectures.

The next steps will be to apply the knowledge from this chapter to a case study to see

how this advice performs in a real-world scenario.

5.5 Summary

The key take-aways from this chapter are (1) that SA informed Bayesian optimisation can
reduce HPO time without compromising model performance, (2) tuning the batch size
alone or tuning the batch size, learning rate and learning rate decay will produce a well
performing model in less time than tuning all parameters and (3) that the complexity of
the dataset influences which parameter group would result in the most efficient Bayesian

optimisation implementation.



Chapter 6

Case Study: Classification of

Colo-rectal Cancer

This Chapter applies the findings from both Chapter 4 and 5 to a real world problem. Im-
age classification tasks and CNN architectures are being applied more and more to medi-
calimaging problems and it could be argued that efficiency and accuracy are key elements

in the medical sector making this a natural choice for a case study.

6.1 Case Study Justification

The case study was modelled on a paper where ResNet18 was used to identify whether
colo-rectal scans showed benign or malignant cancerous cells (108). This specific case
was chosen as the architecture used was also explored in this thesis and therefore a direct
comparison could be drawn between the results of the case study and that of previous
chapters. The dataset used in this paper, Warwick-QU, was openly available and, despite
being of a medical nature, required no ethical approval for use as there is no personal or
private data attributed to the images. Finally, there was specific mentions of the HPO that
had been conducted as part of the work that could be replicated in the case study to make

a direct comparison on tuning efficiency against the influential parameter groups.
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6.2 Implementation

The implementation of the case study had to be amended slightly to what had been done
in previous chapters due to resource constraints and conducting the experiments on the
Google Colab platform. Furthermore, some initial issues in the early implementation of

the case study led to delays in seeing results.

6.2.1 Data Pre-processing

The initial result of case study showed poor accuracy with the influential groups of pa-
rameters not showing any improvement over the other various groups. Investigations into
these results showed that the models were choosing the same class every time despite an
almost equal test training split in the dataset. This was traced back to the pre-processing
of the images where the resizing was obscuring the learn-able features. The resizing was
changed to the original image size which allowed for more successful training and the re-

sults were more inline with the expectations set by previous chapter results.

6.2.2 Resource Constraints

Having to increase the image size so that the model could learn the features resulted in
OOM with larger batch sizes. To compensate for this the default batch size and batch size
range were adjusted. Whereas, in previous experiments, the default batch size was 32 and
the range included [1,16,32,64,128] these had to be reduced for the case study. As shown
below, in Table 6.1, the batch size range was adjusted to [1,2,4,8,16] and the default batch

size was changed to 4. The parameter groups are repeated below in Table 6.2 for readers

ease.
Table 6.1: Deep Learning Hyper-parameters descriptions, symbols, ranges and
default values used for SA experimentation.
Parameter Description Range Default Value
Optimiser List of gradient descent (GD) algorithms. Category* Adam
Learning rate (a) Initial GD step controller. [1x1077,0.5] 0.001
Momentum (f) Acceleration factor for GD. [0, 0.99] 0.6
Learning rate decay (@gecay) Reduction rate of (a). [0, 1] 0.9
Learning rate decay step (ag-srep) Number of epochs between Learning Rate Decay.  [1,100] 10
Batch size Size of training subset for GD update. Category* 4
Epochs Number of training cycles. [5, 1000] 100
Note: Category* indicate that there are two hyper-parameters with categorical ranges (88): (i) optimiser, Adam, SGD, RMSprop,

ADAdelta, ADAgrad and ADAmax; and (ii) batch size, 1, 2, 4, 8 and 16.
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Table 6.2: Case study parameter group definition summary.

Groups Parameters

Paper Learning rate, momentum

Top Batch size

Top Three Batch size, learning rate decay, learning rate decay step

All Batch size, learning rate decay, learning rate decay step, optimiser, momentum, learning rate, epochs

6.2.3 Google Colab Platform

To use the code that had been implemented on the V100 GPU and distributed across the
lab machines in previous chapters some adjustment had to be made to run the code on
the Google Colab platform. Setting up the environment was slightly different, rather than
using a virtual environment to capture the packages and libraries they were installed di-
rectly to the colab notebook environment. Additionally, the install of these packages was
not always as easy inside the colab environment.

The code that handled file writing to store the experimental results had to be adapted
to interface with google drive rather than a native file system. As part of this the drive had
to be mounted in the notebook environment at the start of each session to ensure the files
could be read in and written to.

The final adaptation required was to the early stopping conditions. It was observed
in the initial runs that the models were only being trained for 2 epochs in each iteration.
Where the same code on the V100 GPU and lab machines ran for varied numbers of epochs
depending on the accuracy for the given early stopping condition which was not the case
in the colab environment. To combat this the early stopping patience was increased to 10
to force additional training epochs and this resulted in a more normal, expected, varied

number of training epochs for each iteration of training.

6.2.4 Data Formatting

In this chapter, numbers are reported at a more granular level of decimal place compared
to previous chapters as there areless numbers to report on and so the formatting and space
allows for this. In previous chapters, the number of data points to report meant that they

were restricted to two decimal places for the tables to be legible.
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Table 6.3: Case study test accuracy statistics for each parameter group over 100
trials of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2
for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.727273 0.333333 0.517576 0.080023 -0.102857
Top 0.787879 0.333333 0.567273 0.089081 -0.192065
Top Three 0.848485 0.272727 0.555455 0.090611 0.160176
All 0.666667 0.363636 0.521212 0.054377 -0.415363

6.3 Results

This section introduces the results of the case study. The tables below show the evaluation
metrics, as outlined in Chapter 3 Section 3.3.5. The Wilcoxon Signed Ranks statistical test
was employed to infer statistical significance of the results presented.

Table 6.3 shows the test accuracy achieved by the model after the completion of HPO
on the various parameter groups. The larger the values of test-accuracy the more suc-
cessful the HPO. The best test accuracy, 0.85, was achieved by tuning the top three most
influential parameters followed by tuning the top parameter, 0.79. The best mean of test
accuracy, 0.57, was achieved by the tuning the top most influential parameter, followed
by tuning the top three parameters, 0.56. The most successful parameter groups in terms
of test accuracy were the two groups of influential parameters, both of which were signif-
icant improvements on the parameters used in the paper (p-value of 0.00012 for the top
group and 0.00634 for top three) and all parameters (p-value of 0.00012 for the top group
and 0.00714 for top three). The worst max accuracy, 0.67, was achieved by tuning all of the
parameters despite having the highest minimum accuracy. The accuracy difference be-
tween the most successful tuning group, top three, and least successful tuning group, all
parameters, was 0.18. Furthermore, both influential groups of parameters out performed

Table 6.4: Case study time (minutes) statistics for each parameter group over

100 trials of Bayesian optimisation. Best scores highlighted in bold. See Ta-
ble 6.2 for parameter group definitions.

Parameters Total Max Min Mean STD SKEW
Paper 494.875390 12.464958 1.367984 4.948754 2.242040 0.916645
Top 287.714088 4.720817 0.899762 2.877141 0.705626 0.138161

Top Three 253.805812  5.280454 1.225763 2.538058 0.725696 0.838812
All 208.164265  5.461838 0.977971 2.081643 0.772509 1.292786
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Table 6.5: Case study precision statistics for each parameter group over 100
trials of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2
for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.741935 0.209677 0.477897 0.130789 -0.241649
Top 0.810345 0.227273 0.570077 0.134622 -0.213328
Top Three 0.891304 0.166667 0.528708 0.180086 -0.103043
All 0.781250 0.227273 0.411869 0.165940 0.567739

the parameters tuned in the original paper. The top most influential parameter out per-
formed the paper parameters by 0.06 and the top three most influential parameters out
performed the paper parameters by 0.12. The second key performance metric for evalu-
ating the HPO is time, as shown in Table 6.4. The less time taken on tuning the better. The
group that completed tuning in the least amount of time was the all parameters group,
which also achieved the worst accuracy. The second quickest group to tune was the top
three parameters, which also achieved the highest accuracy and was significantly quicker
than paper parameters which was the slowest parameter group to tune.

The precision metric indicates the percentage of correctly classified benign samples.
Similar to the test accuracy results, the top three parameter group achieved the highest
precision, 0.89, and the top parameter group achieved the best mean precision, 0.57. The
worst max precision was achieved by the paper parameter group, 0.74, and the lowest
mean precision was achieved by the all parameter group, 0.41. The precision results are
reported in Table 6.5. The Wilcoxon test confirmed that both groups of influential param-
eters had significantly higher precision than tuning the all parameters group, as shown in
Table 6.8.

The best maximum recall, the ratio of correctly classified benign samples to total be-

Table 6.6: Case study recall statistics for each parameter group over 100 trials

of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2 for
parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.722222 0.338889 0.507556 0.079176  0.060406
Top 0.777778 0.338889 0.552333 0.090069 0.021346

Top Three  0.833333 0.300000 0.533833 0.089602  0.606803
All 0.650000 0.350000 0.504556 0.048543 -0.118792
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Table 6.7: Case study F1-Measure statistics for each parameter group over 100
trials of Bayesian optimisation. See Table 6.2 for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.723206 0.282609 0.465634 0.103585 0.251877
Top 0.780627 0.312500 0.522224 0.107313 0.123240
Top Three 0.839024 0.214286 0.480197 0.119663 0.486358
All 0.645854 0.312500 0.405662 0.081312 1.005450

nign samples identified, was achieved by the top three parameter group, 0.83, and the best
mean recall was achieved by the top parameter group, 0.55. Unlike the precision metric,
the lowest max recall was achieved by the all parameter group,0.65, however it did also
achieved the lowest mean average, 0.50, as it did with the precision metric. The recall re-
sults are shown in Table 6.6. Similarly to precision, the Wilcoxon test confirmed that both
groups of influential parameters had significantly higher recall than tuning the all param-
eters group, as shown in Table 6.8.

The F1-measure represents the harmonic mean between precision and recall and there-
foreitis unsurprising that the best maximum F1 score was achieved by the top three group,
0.84, and the best mean F1 score was achieved by the top parameter group, 0.52, both sig-
nifanctly higher than the all parameter group. As shown in Table 6.7 the all parameters
group produced the worst maximum F1 score and the worst mean F1 score, 0.65 and 0.41
respectively.

Understanding the relationship between trial time and accuracy achieved whilst tun-
ingaspecific parameter group can give an early indication of HPO efficiency for that group.
Fig. 6.1 shows the time taken and accuracy achieved for every HPO trial for each parame-
ter group. This chart clearly shows the parameter group with the worst accuracy overall is
the all parameters group, however all trials were also completed in a relatively short time.
The paper parameter group has the widest time distribution with the more trials taking a
longer time than any other group. The accuracies achieved by the paper parameters group
ishigher than all parameters but not more than either the top parameter group or top three
parameter group. Both the top parameter group and top three parameter group have very
similar relationships between time and test accuracy with short trial times a large accu-
racy range. As shown previously in Table 6.3 the highest accuracy overall is achieved by

the top three parameter group.
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Similarly, Fig. 6.2 shows the relationship between time and recall for the HPO trials.

There is no clear pattern for the paper parameter results with a wide breadth of time and

recalls. The all parameters group data-points cluster tightly with short trial times and rel-

atively low recall. As with the test accuracy, both the top parameter group and top three
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parameter group complete trials quickly and achieve the highest recall.

The precision scores are shown alongside trials times in Fig. 6.3. The patterns observed
with test accuracy, precision and recall continue where the top parameter group and top
three parameter group achieve the highest precision and the paper parameters have broad
results in terms of time and precision. However, with all parameters the precision is much
more distributed than previously observed.

The F1-measure also follows the patterns seen with the previous measures, as shown
in Fig. 6.4. The paper parameters resulted in the largest range in time per trial and the all
parameters group had the smallest range in F1. Both the top parameter group and top
three parameter achieve the highest F1 measures whilst still having low times per trial.

Precision is plotted against recall in Fig. 6.5. The larger the Area Under the Curve (AUC)
the higher the precision and recall for the given parameter group. The AUC values for each
parameter group were calculated using both the Trapezoidal and Simpson method and re-
ported in Table 6.9. The top parameter group had the largest AUC value in both instances,
282.19 and 282.24, followed by the top three parameter group, 262.25 and 262.29. The all
parameter group had the smallest AUC values, 203.35 and 203.23.

The accuracy gain of each parameter group is shown in Fig. 6.6. The top three param-
eter group had the highest accuracy gain, followed by all parameters, the top parameter
group and finally the paper parameter group. Fig. 6.7 shows the accuracy gain of a subset
of the parameter groups from the case study dataset against the results from the previous
datasets. Like the other three datasets, one of the influential parameter groups had the

highest accuracy gain, in this case it was the top three parameter group. Unlike the other
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Figure 6.6: Accuracy gain for the parameter groups explored. See Table 6.1 for
hyper-parameter details.

datasets, the all parameter had slightly higher accuracy gain than the top parameter group.
The addition of the case study dataset, Warwick, to the dataset complexity half of the chart
showed that for CSG values close to one the top three parameter group achieves the best
accuracy gain.

Table 6.9: Area Under Curve (AUC) for the Precision-Recall curves in Fig. 6.5.
See Table 6.2 for parameter group definitions.

Parameters AUC (Trapezoidal) AUC (Simpson)
Paper 236.5048769669257 236.46321337166304
Top 282.196266328103 282.23803690655836
Top Three 262.25444953444287 262.288812827399976
All 203.35484054697164 203.22761734967608
Dataset Dataset Complexity barameter Groups
< 03 All
T Top
% 0.2 Top Three
g Dataset CSG Range
§ 0.1 MNIST
MFASH
0.0 CIFAR
MNIST MFASH CIFAR WARWICK 0 1 2 3 4 WARWICK

Dataset CSG'

Figure 6.7: Accuracy gain for the parameter groups explored. See Table 6.1 for
hyper-parameter details.
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6.4 Discussion

The aim of the case study was to apply the theories from the previous two chapters of work
to areal world scenario and see if the findings are supported in practice. The key finding of
the results showed that applying HPO to a group of influential parameters is more efficient
than tuning all parameters.

The top two highest test accuracies achieved were by the two influential parameter
groups, Top three and top only, which were significantly higher than that achieved by the
paper parameters. The difference between the lowest accuracy achieved by the all param-
eter group, 0.67, and best accuracy achieved by the top three parameter group, 0.85, shows
that applying the tuning effort to the more influential parameters can produce a more ac-
curate model. This supports the hypothesis that the SA identified parameters have more
of an effect on model accuracy. In terms of time, the all parameters HPO did complete in
less time, 208 minutes, compare to the top three groups, 254 minutes. An additional 46
minutes of tuning for the top three parameter group vastly improved the maximum test
accuracy of the model, improving even on the accuracy achieved by the paper parameters
in this case study, 0.73, and matched that reported in the original paper (108).

The precision, recall and F1 measures also supported that the model performance was
improved when the HPO concentrated on the influential parameters identified by SA, with
all three values being significant improvements on the all parameters group. The AUC of
the precision recall curves showed that both the influential parameter groups had better
precision and recall, 282 for the top parameter group and 262 for the top three parameter
group compared to 236 for the paper parameters and 203 for the all parameter group. This
suggests that even outside of their influence on the test accuracy these influential param-
eters contribute to an overall successful model. This continues the pattern that the tuning
of influential parameter groups improves model performance.

The accuracy gain metric showed that tuning the top three parameter group was the
most efficient. An unexpected result was that the all parameter group was slightly more ef-
ficient that the top parameter group. Batch size massively influences training time, addi-
tionally the nature of the dataset with medical being quite complex can play a contributing
factor (116). The slower training time of the top parameter group may have meant it was
a less efficient parameter group to tune however, due to the increased accuracy achieved

compared to the all parameter group, it could be argued that the trade off in the additional
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time for the better accuracy would be worth it. When comparing the accuracy gain of the
parameter groups on the case study dataset against the datasets from the previous chap-
ters this is the only dataset where the all parameter does not have the lowest accuracy gain.
Despite this, it is clear that performance of a model where the influential parameters are
tuned is more successful than the all parameter group.

The results of case study support the conclusions of the previous chapters: that tuning
the SA ranked influential parameters is more efficient than tuning all training parameters.
The practical implications of this case study is that it confirmed that theoretical results of

this work are applicable in real world scenarios.

6.5 Conclusions

The evidence is clear: the SA rank informed Bayesian Optimisation can reduce HPO time
without compromising model performance when applied to real world scenarios. For this
case study the top three parameter group was the most efficient and achieved significantly
higher test accuracy than the non-influential parameter groups whilst being within an
hour of the fastest tuning time, and was significantly faster than the parameters tuned in
the original paper.

This study did support the hypothesis that tuning a subset of the most influential pa-
rameters would benefit practitioners by producing successful models in a more efficient
way. However, it did not show that one could accurately determine the parameter group
to tune based on dataset complexity as was expected from the results of Chapter 5. This
aspect will need additional work to be carried out on more datasets to better understand
the part dataset complexity has to play.

The implication of this case study is that there is potential to make hyper-tuning more
efficient through the use of SA in real world scenarios where tuning time and model accu-

racy are key performance indicators for practitioners.

6.6 Summary

To summarise, the case study results showed that the SA ranked hyper-parameters can be
tuned more efficiently, achieving good model performance and saving tuning time com-

pared to larger parameter groups. It also serves to show that the framework explored and
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developed in this work is applicable in real world scenarios and should be considered in

future works.



Chapter 7

Discussion and Analysis

This chapter aims to collate the findings from the previous three chapters work where they
can be discussed and analysed in tandem, to produce fully rounded interpretations of the
results and the significance of the findings for this work as a whole. Furthermore, any lim-
itations can be discussed here completely and recommendations can be put forward. To
better facilitate the discussion, this chapter will begin by restating the problem targeted

and the aims and objectives.

7.1 Restating the Problem

This work targeted an area very popular in research: hyper-parameter tuning of DL mod-
els (4, 70, 73, 74, 75). Rather than explore the tuning algorithms themselves, this work ap-
proached this problem from a different vantage point, the hyper-parameter themselves.
The question posed: is it possible to identify which parameters are most influential to
model performance? and, thereby, increase tuning efficiency by concentrating efforts on
that subset of influential hyper-parameters?

This question was very broad and due to time constraints associated with the com-
pletion of a PhD, the scope of work was concentrated to the training parameters of CNNs
specifically. This allowed for the demonstration of the validity of this research direction,
potentially strong initial results to support/challenge the hypothesis and several areas for

future work.

103



CHAPTER 7. DISCUSSION AND ANALYSIS 104
7.1.1 Restating the Aims & Objectives

The aim of this work was to produce a general ranking of CNN training hyper-parameters
via SA that could inform HPO search spaces, and improve tuning efficiency. The Research

Objectives (RO) identified to achieve that aim were:

¢ RO1: Create a framework to facilitate the calculation of sensitivity measures for the

hyper-parameters of DL models which can be used for future work.

¢ RO2: Rank the influence of a hyper-parameter on model performance, taking into

consideration two state of the art sensitivity measures.

* RO3: Discover relationships between parameter influence and network architecture

or input data.

¢ RO4: Demonstrate any potential of reducing the hyper-parameter search space to

influential parameters for HPO.

¢ RO5: Produce measure of hyper-parameter tuning efficiency that considers compu-

tation time and model accuracy to facilitate comparisons.

¢ RO6: Measure hyper-parameter tuning performance of influential parameter groups

versus other parameter groups.

e RO7: Apply findings in case study to demonstrate real world scenarios and validate

results.

e RO8: Provide guidance and a robust methodology to machine learning and deep
learning practitioners in choosing what hyper-parameters to tune and the applica-

tion of SA to DL.

7.1.2 Achievement of Aims & Objectives

Overall, the aim and objectives set out were completed allowing the problem question to
be answered.

RO1

The SADL framework (19) was created to calculate the Sobol Indices and Elementary Ef-

fects of CNN hyper-parameters. The creation of the framework in itself is a successful
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contribution that will facilitate the future directions of research in this area as a robust

methodology for the application of SA to DL.

RO2

The sensitivity measures from both SA methods implemented as part of the SADL frame-
work were used to produce a final measure of influence, contributing to a general ranking

where both measures were considered.

RO3

From the results it was not possible to conclude whether general patterns existed and so,
to meet objective 3, additional work would be required to observe whether some of the

emerging relationships and patterns hold true.

RO4

The potential of reducing the hyper-parameter search space to SA identified influential
parameters was proven in Chapter 9 and 6. The SA informed Bayesian Optimisation con-
ducted showed that tuning parameter groups consisting of influential parameters was more
efficient than tuning all parameters, reducing tuning time without compromising model
test accuracy. This was also confirmed and validated in the case study where tuning the
influential parameters for an additional 40 minutes increased the test accuracy achieved

by 18%.

RO5

The Accuracy Gain © metric was created to quantify tuning efficiency and was used as a
measure when comparing the tuning of hyper-parameter groups.

RO6

Accuracy Gain was used to measure tuning efficiency, facilitating the comparison of groups

of various parameters.
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RO7

Applying the results of the framework and SA informed Bayesian Optimisation to a case
study further validated the observations made, demonstrated the potential of reducing the
hyper-parameter search space and facilitated recommendations that can provide guid-

ance to DL practitioners.

RO8

The final results showed that three parameters: batch size, learning rate decay and learn-
ing rate decay step were most influential on CNN test accuracy and tuning this combina-
tion was most efficient. This can guide practitioners in how they approach tuning in the
future. Furthermore, the SADL framework developed presents a robust methodology that
can be replicated and adapted to continue the exploration and experimentation of SA ap-
plied to DL. This could be exploring further DL architectures, different hyper-parameter
types or utilising the framework to inform specific attempts at hyper-parameter tuning.
The SADL framework represents the major contribution of this work and the results it facil-
itated presented in this thesis show the potential to be had in researching the application

of SA to DL.

7.2 Interpretations

To interpret the results across the three chapters, all key findings will be stated, the hy-

pothesis discussed and any patterns explored.

7.2.1 Key findings

This sections presents the key findings of this work in chronological order.

Robust Framework

The methodology presented in this thesis is, in itself, a key finding and contribution. Out-
lined in Chapter 3, the SADL framework can be followed to conduct future work exploring
the hyper-parameters of DL models using SA. The elements required to conduct experi-

mentation of this nature is explained in detail, presenting a robust framework that can be
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copied exactly or adjusted to other DL architectures. The modular design of the frame-
work was designed with future adjustments in mind allowing the various elements to be
implemented to best suit the architecture and input dataset or to specifcally explore the
architectural parameters rather than the training. By nature, it is also buildable, where ad-
ditional modules for further SA methodology would be able to be added in future to facil-
itate further work. A replicable framework, such as SADL, presents opportunity for future

work in this area to be produced more quickly.

Parameter Influence

The first major finding came in the form of the influence ranking where batch size, learn-
ing rate decay and learning rate decay were identified as the top three most influential
training parameters on CNN architectures, in that order. Over five CNN architectures and
three image classification datasets, these hyper-parameters were identified as being in-
fluential on model performance with batch size scoring significantly higher than all other
parameters but learning rate decay.

Some studies have emphasised the importance of batch size in the past, where an op-
timal batch size was linked to increase in model accuracy (114). In the past smaller batch
sizes were used due to the memory limitations of computational hardware, however due to
newer processors, memory capacities and parallelisation larger batch sizes are being used.
However, larger batch sizes have been associated with poorer generalisation (117, 118)
which could also explain the significant influence of batch size on test accuracy. If a larger
batch size results in a model with a poorer ability to generalise, the performance on un-
seen, test data would be worse than if that batch size was smaller and the models general-
isability was better. The SA rank was computed specifically on a hyper-parameters influ-
ence on test accuracy and so it is expected that batch size is ranked highly in this. Shallue
etal. (119) took this a step further, concluding that some models can adapt better to larger
batch sizes than others and that it is the model architecture rather than the dataset that
influences the optimal batch size. In subsequent work (120), they also showed that stan-
dard optimisers work across batch sizes and can match the performance of newer optim-
siers, suggesting that the optimiser itself may not play as instrumental a role. This is all
supported in the SA ranking where optimiser has little influence and batch size is ranked

significantly most influential overall. Shallue’s conclusion that network architecture is an
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important factor in determining optimal batch size was also found to be true via SA where
shallower models were more influenced by the batch size.

Learning rate decay was ranked second most influential via SA. This parameter has
been observed to improve the generalisation and optimisation of a model (121). This can
be attributed to the qualities of this parameter helping models avoid local minima but
You (121) suggests it is more than that, they pose that a large initial learning rate minimises
the models ability to learn noisy data and decaying it assists with learning more complex
patterns (121). This idea is supported by the SA as learning rate decay was ranked higher
on the more complex models and for the more complex datasets.

Following the importance oflearning rate decay, the learning rate decay step was ranked
third mostinfluential. As this sets the rate at which the learning rate decays it was expected
that an optimal step would be required to see the full benefit of an optimal decay rate.

As discussed in Chapter 2, Section 2.2.1, the learning rate has a reputation for being an
important hyper-parameter, where some go so far as to suggest the success of the model
hinge on an optimal learning rate setting (18). However, the SA concluded that the learn-
ingrate itself did not show high influence on model performance, placing more emphasis
on related setting such as learning rate decay and learning rate decay step. Reasons as to
learning rates lack of quantifiable influence is discussed later in Section 7.2.3, dedicated

to unexpected results.

Tuning Efficiency

When looking at the tuning efficiency of different parameter groups it was proven that tun-
ing the influential parameter groups was more efficient than tuning all training parame-
ters, this was also found to be true when applied in a case study. This means that tuning
this group could reduce training time without compromising accuracy or achieve higher
accuracy without requiring significantly more training time.

The initial experiments found the top parameter, batch size, to be most efficient fol-
lowed by the top three parameters, batch size, learning rate decay and learning rate decay
step. In thereal world scenario, the top three parameter group was the most efficient group
overall.

The top three parameter group performance could be explained by breaking down it’s

components. Batch size and learning rate decay’s qualities, when optimised, can in theory
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cancel out the disadvantages of the other creating a very complimentary group of param-
eters to optimise. A large batch size makes it harder for a model to generalise whereas
learning rate decay improves a models ability to learn complex patterns and generalise.
Learning rate decay increases convergence speeds, when tuning it alone it was signifi-
cantly quicker than the other groups but couldn’t match their accuracy, whereas a smaller
batch size increase training times. To optimise the learning rate decay completely, the
learning rate decay step also needs to be optimal. So, by combining all three of these highly
influential parameters into a group and concentrating tuning efforts on them, as shown,
the result is reduced tuning times with high model performance. This also explains why
the top three group outperforms batch size alone in some instances as the differing batch
sizes can negatively affect training time, increasing the tuning time and therefore reducing

the overall tuning efficiency measure by our novel metric, Accuracy Gain .

Patterns & Relationships

The key pattern observed surrounded parameter influence and complexity, be it in archi-
tecture or dataset. Where the level of complexity increased, generally, learning rate de-
cay was ranked as having more influence, whereas batch size was more influential where
there was less complexity. Complexity can be present in architectures where they are deep-
er/wider with additional layers and nodes that need to be adjusted when learning. In
datasets, the complexity was quantified using the CSG metric which looked at class sepa-
rability in the dataset features. As discussed above, a feature of learning rate decay is that
it aids models in learning more complex patterns whilst reducing the impact of noise in

the dataset which explains this observation in influence and ranking.

7.2.2 Hypothesis

The hypothesis put forward in this work was that tuning the influential parameters could
increase the tuning efficiency by improving model performance, reducing tuning time or
a combination of both of these things.

The key findings from the three chapters of work support this hypothesis as the influ-
ential parameter groups were more efficient to tune than all parameters, in most cases
achieving better accuracy and requiring less tuning time. In the case study, the top three

influential parameter group achieved the same accuracy reported in the original paper,
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85%, and was within an hour tuning time of the all parameter group which was 18% less
accurate, a justifiable trade off. Tuning the top three parameter group was almost twice as
fast as tuning the parameters reported in the original paper suggesting that if the authors
had tuned the batch size, learning rate decay and learning rate decay step rather than the
momentum and the learning rate the same model accuracy could have been achieved in

half the time. This is a clear demonstration that the results support the hypothesis.

7.2.3 Unexpected Results

Despite clear prominence in the literature, the learning rate was ranked as having rela-
tively low influence on model performance. This result was completely unexpected due
to the reputation and precedents set in other works where the learning rate is amongst the,
if not the first, hyper-parameters most commonly chosen for tuning efforts. As this study
concentrated on testing accuracy predominantly, and the SA itself was calculated based
on a parameters influence on a models test accuracy there is a possibility that learning
rate has more impact on other performance measures such as time, precision, recall or
the training rather than test accuracy. Furthermore, the architectures chosen in this study
were tried and tested, known for their award winning performance and potentially learn-
ing rate has more scope for influence where the architectures are sub-optimal. Another
aspect that could have hindered the influence of the learning rate was it’s relationship with
batch size. As the batch size increases, the range of optimal learning rates decrease (117).
The default batch size was set to 32 which is not very big but maybe the range of usable
learning rates would have increased if a default of 16 had been chosen, giving learning
rate more opportunity to prove it’s influence. Conversely, 32 is a commonly used batch
size, hence being chosen as the default in this case, and so there would still be an expec-
tation for learning rate to be as influential as reported elsewhere.

Another unexpected, though explainable result, was that in some instances the most
influential parameter, batch size, was less efficient to tune than the all parameter group.
Specifically, in the case study batch size achieved a © of roughly 0.08 whereas the all pa-
rameter group achieved a © of roughly 0.09. As mentioned above, some values of batch
size can drastically affect training times and as a result, for the case study, the tuning pro-
cesswas longer for batch size by roughly an hour and a half, which for a 12% increase in ac-

curacy seems reasonable. It was this 12% increase in accuracy for batch size compared to
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the all parameter group that created the expectation that the batch size parameter would
prove to be more tuning efficient, however the time difference meant that the all parame-
ter group was scored as being slightly more efficient. In cases like this, it could be argued
that the increase in accuracy is worth the trade off in tuning time.

Finally, the initial results of the rank informed tuning suggested that dataset complexity
and accuracy gain were linked with the potential that the CSG value of the dataset could
aid practitioners in deciding which influential parameter group to tune. However, the case
study did not follow this pattern showing that more data is needed to fully understand this

relationship.

7.3 Implications & Significance of the findings

7.3.1 Contextualising Results

Chapter 2, Section 2.3 presented a review of works from the last two decades that explored
SAinrelation to DL. Where more simplistic measures such as PaD or chart interpretations
were adopted to understand the influence in other works the formal, quantification of pa-
rameter influence presented in this thesis sets this work apart. The main perceived ad-
vantage of approaching the SA of DL hyper-parameters more formally, compared to some
reports in the literature, was to be able to analyse trends and patterns more thoroughly
and to produce results that had more scope for generalisation and reproduceability than
those more open to interpretation used in the literature. The potential added benefit of
approaching the SA in this way was proven where the SA measures were compared across
architectures and datasets to produce a generalised rank, where the topmost influential
parameters were proved to positively impact tuning efficiency.

Furthermore, several works in the literature where SA and DL were combined were ap-
plication specific, raising the question whether the findings could be applied in other sce-
narios or whether general conclusions could be drawn. Designing the experiments with
generic, popular image datasets and several state of the art architectures the SA ranking
and subsequent rank informed tuning made it possible to draw wider conclusions from
the results that were then applied successfully in the case study.

Rather than produce a novel metric for SA, as was done in some works (80), the choice

to use known measures was purposeful so that the methods were tried, tested and repro-
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ducible adding an additional layer of validity to the results and conclusions drawn from
them.

A gap identified in the literature by other researchers surrounded the lack of guidance
for ML and DL practitioners in hyper-parameter tuning. SA was identified in those in-
stances as having the potential to provide some insights into what elements of the DL
process are influential, be it architecture, input data or hyper-parameters (16). The key
findings of this work directly address this gap in knowledge, cutting through the confusion
surrounding parameter influence and importance and clearly quantifying the influence of
various training parameters on CNN test accuracy that practitioners can take into consid-
eration when concentrating tuning efforts in future work. Additionally, a key observation
was the lack of literature exploring the application of SA to DL hyper-parameters. Provid-
ing a framework, SADL, that can facilitate future work in this area will help grow this body

of knowledge.

7.3.2 Confirming and Challenging Theories

These results challenge the theories surrounding the importance of learning rate in DL
model performance. These findings may differ to the expectations set in the literature as
this study set out to quantify influence whereas previous interpretations of learning rate
were instinctual and may have placed the emphasis on learning rate when in actual fact
the learning rate decay or, more likely, the batch size was contributing more and being
overlooked.

The SADL framework, which is the backbone of this work, shows that SA can identify
influential CNN hyper-parameters, and these parameters can be tuned more efficiently
has been confirmed via experimentation and in a case study. The ranking produced also
supported the literature that placed the emphasis on batch size importance.

To some extent, these results also challenged the idea that tuning hyper-parameters
is unique to the combination of architecture and task, as the most influential parameters
were shown to be generally influential. The optimal settings of those parameters may dif-
ferbased on the architecture task pairing but concentrating tuning efforts on an influential
subset of parameters was shown to yield higher tuning efficiency, producing competitive
test accuracy alongside a time saving.

The No Free Lunch theory (68) was also partially challenged by these results, as they
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showed that HPO could be generally improved by reducing the parameter search space
to influential parameters. Though this may not make the lunch completely "free", it does

contribute a hefty discount.

7.3.3 Impact of Findings

The concept that CNNs can be trained efficiently by concentrating efforts on batch size,
learning rate decay and learning rate decay step could have a significant impact for DL and
ML practitioners, especially those with less experience to draw on. There is no guarantee
that with unlimited time and resources a more optimal solution could be found exploring
a wider set of parameters. However, where there are time and resource constraints con-
centrating on these three influential parameters gives a modeller a greater guarantee of
success than if they were to tune the less influential parameters or even all of the training
parameters.

This work has also contributed a measure of efficiency, S that can be applied to fu-
ture tuning efforts which could be calculated for a smaller set of trials to indicate which
direction could yield the best accuracy gain over time.

Ultimately, this work has shown the applicability of SA to understanding the influence
of a CNN tuning hyper-parameters on the model’s test accuracy. This provides some in-
sight into what is influencing the learning process that occurs within the neural network
black box and could influence directions of future work. Furthermore, the importance
of these influential parameters was highlighted in their impact on tuning efficiency, vali-
dated in a case study, and confirming that this avenue of exploration has even more poten-
tial. Finally, the SADL framework that was created and presented in this thesis facilitates
the future work in this area, an area this thesis has shown to have many avenues of poten-

tial.

7.3.4 Proposed Solutions

These results could create scope for change in DL practitioners behaviours and practices

that could lead to gains in accuracy and time saving.
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Behavioural Changes

The biggest behavioural shift that could come of these results is the attitudes of DL prac-
titioners to learning rate. Rather than assuming the learning rate is influential and con-
centrating optimising efforts in that direction, these results clearly suggest other hyper-
parameters should be prioritised such as batch size.

Another change would be to consider the complexity level of the network architecture
and dataset when choosing which hyper-parameters to include in the optimisation search
space. Using a measure such as CSG or looking at the numbers of nodes and layers to un-
derstand which parameter may be more influential in this instance could benefit practi-
tioners in the long run during HPO.

A behaviour or mindset that dominates in the SA literature is the concept that SA can-
not provide insights without clear scope of what is being analysed. This is also true in the
design of neural networks and the preparation of datasets. A shift in behaviour would be
to also apply this to making decisions around tuning efficiency needs could help practi-
tioners plan and use SA and © to decide how to proceed with tuning. Questions that could
be asked to help with this include whether this is a problem where test accuracy could be
compromised to increase the speed of the tuning and training process? whether there are
additional resource constraints that may impact the tuning efficiency that need to be mit-

igated by adjusting the parameter space? etc.

Conventional Practices

From this, a proposal for a future conventional DL practice would be to tune the batch
size as priority when working with CNNs and image datasets. Batch size was ranked most
influential, and though in some instances it was not the most efficient the increased test
accuracy was worth the additional tuning time. Where resource and time constraints are
present tuning the batch size, learning rate decay and learning rate decay step should be
prioritised to benefit from the improved efficiency.

Another suggestion would be to take early measures of accuracy gain when tuning to
narrow the pool of parameter groups to explore. This could save the practitioners time in
the long run by pursuing the more efficient groups of parameters to tune.

A concept popular in the SA literature was the widespread adoption and application

of SA across industries. As this work has proven, SA is very much applicable in DL and
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ML, whilst also highlighting it’s potential to the wider areas encompassed in computa-
tional sciences. The hope is that this work encourages practitioners to adopt some form
of SA into conventional DL and ML practices and apply it, where possible, to some of the
fields most burning questions such as getting insights into the black box that are neural
networks. Furthermore, this thesis provides a framework to make this possible. Practi-
tioners could use the SADL model presented in this work to facilitate the adoption of SA

into common practice when evaluating DL model hyper-parameters.

7.4 Limitations

These results can not show with certainty that these findings can be generalised across dif-
ferent architecture types popular in DL such as RNNs, GANSs or transformers. Though the
evidenceis clear for CNN architectures, additional experiments would have to be designed
to replicate this work for other network architectures to explore parameter influence and
their impact on tuning.

A conclusion made in Chapter 5 explored the possibility that calculating the CSG of
a dataset could help practitioners choose the most efficient parameter group for tuning.
This was drawn from three datasets which, in itself, is a limitation dictated by resource and
time constraints. Though it showed merit, and still shows promise, the case study dataset
did not follow the pattern as expected. To improve on this aspect, completing the rank
informed HPO on additional datasets would strengthen or disprove this. Currently, there
is insufficient data to confirm or deny this theory following the case study.

Astouched on above and explored in Chapter 3, the number of architectures and datasets
was limited by resource and time constraints. The nature of the experiments made them
resource intensive and time consuming and within the time period allocated to complete
this work there had to be an arbitrary cut off point to meet this deadline. To mitigate the
impact of this the architectures and datasets chosen were representative of those popular
in the literature and were varied enough to draw generalised conclusions across CNN ar-
chitectures and image classification datasets. To further strengthen the results additional
CNN architectures and image datasets could be included in a future phase of work.

Similarly, another improvement would be to apply these findings to CNN architectures

performing an alternative task such as object detection or natural language processing.
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This would add further evidence to whether the parameter influence is related more to
network architecture or the task it is being applied to.

Finally, the scope of parameters explored was limited to the training parameters which
isinsightful for those adopting tried and tested architectures. An analysis of these parame-
ters alongside architectural parameters where the architecture is sub-optimal could high-

light these parameters in an alternate light.

7.5 Summary

The key findings presented in this work were as follows:

* The SADL framework is a robust methodology that can be followed and adapted for

future work applying SA to DL.

e Itis possible to provide empirically based guidance on which parameters should be

optimised.

» Batchsize, learning rate decay and learning rate decays step are highly influential on
CNN architecture performance, witch batch sizes ranking being significantly higher

than other parameters.
* Learning rate did not achieve the influence expected.
¢ HPO can be made more efficient by tuning a group of influential parameters.

¢ The design of this work builds on that explored in the literature whilst also combat-

ting some of the limitations highlighted in those works.

* Though time and resource constraints limited this work in some aspects, the results

are robust and can be built upon in future work.



Chapter 8

Conclusions and Future Work

This chapter will conclude the thesis by summarising the key findings, relating them to
the aims and objectives of this work whilst discussing their value. A summary of the limi-

tations will also be included and directions of future work will be recommended.

8.1 Conclusions

The aim of this investigation was to understand, and quantify through SA, the influence
of training hyper-parameters on CNN architectures. Furthermore, how this ranking could
contribute to increasing the efficiency of HPO for DL practitioners. The results showed
that applying tuning efforts to influential parameters could increase HPO efficiency, sav-
ing time without compromising model performance. Batch size, learning rate decay and
learning rate decay step were highlighted as the most influential parameters where batch
size was measured as being significantly more influential than all other parameters apart
from learning rate decay. Unexpectedly, learning rate did not score highly suggesting low
influence in direct contradiction with the expectations set in the literature. Batch size and
the combination of tuning all three influential parameters were highly efficient during
tuning, outperforming all parameters and in the case study specifically, tuning the influen-
tial parameter groups also outperformed the parameters chosen for tuning in the original
work.

Whilst working on this research a conference paper was published in the IEEE Inter-

national Conference of Tools of Artificial Intelligence. In this paper the initial findings of
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applying SA to CNN hyper-parameters was presented (19). This paper formed the basis of
Chapter 3.1 in this thesis and is available in its entirety in Appendix A.

This work was able to address the research problem by developing and making the con-
tribution of SADL, a novel framework for conducting SA of CNN hyper-parameters, pro-
ducing a generalised ranking and using this to inform the implementation of Bayesian Op-
timisation. This robust methodology can be followed when conducting future work on this
topic. The findings were also confirmed in their application to a case study, validating the
results further. A novel metric, Accuracy Gain, was also developed to better quantify HPO
efficiency so that the parameter groups could be more easily compared and contrasted in
terms of their affect on tuning efficiency. Taking a modular approach to solving this re-
search problem allowed the results to be built upon in a way that validated the previous
step. The first area of work applied SA to hyper-parameters and produced a ranking, the
second took that ranking and confirmed that tuning influential parameters was more effi-
cient than tuning non-influential parameters and this was all confirmed in the third area
of work - the case study.

The design of this study addressed a clear gap in the literature of SA applied to DL.
Specifically using a form of SA that quantifies influence in a way that is reproducible, less
open to interpretation of the researcher and can be compared across works makes the re-
sults of this study more robust. Furthermore, combining this into a framework allows oth-
ers to also use this methodology going forward. Where less formal metrics such as PaD or
interpreting charts were popular in related works, the use of Sobol Indices and the Morris
method addresses some of the limitations of those studies.

The results of this work challenge the theory that the learning rate is the most impor-
tant hyper-parameter, proving that finding optimal values for batch size, learning rate de-
cay and learning rate decay step can improve model performance. Conversely, this work
supports the theory that reducing the parameter search space will reduce tuning time.
Combining that theory with reducing the search space to the influential parameters al-
lows for tuning time to be reduced without compromising model performance.

These findings can be directly applied in real world scenarios, as proven by the case
study, by DL practitioners. The first step would be to consider tuning the batch size, learn-
ing rate decay and learning rate decay step only before exploring other parameters. An

alternative option, would be to tune the top three influential parameters identified here,
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batch size alone and another group of parameters for a shorter amount of time and cal-
culate the accuracy gain of each group. This can allow practitioners to decide to tune the
group with the best accuracy gain for additional trials to find optimal settings.

The main limitations of this study were related to time and resource constraints. The
fixed time-frame of PhD meant choosing an informed, arbitrary cut-off point for the num-
ber of models, datasets and hyper-parameters explored so that it could be completed in
time. Also contributing to this was the lack of computational resources available with-
ing the department and the nature of this work being resource intensive meant that some
larger, more complicated datasets and architectures could not be included in the scope of
this work. Though this work has clearly shown the merit of the application of SA to CNN
hyper-parameters and how it can be applied to HPO to increase efficiency, the influence
ranking is specific to model test accuracy. To generalise these findings across additional
metrics additional experiments would need to be conducted where other parameters such
as learning rate may have more influence than was observed in this study. This does not
take away from the results presented here as the scope of this work concentrated specif-
ically on test accuracy and showed how test accuracy improvements can be made by op-
timising the influential parameters. Having said this, to further generalise these findings
to other types of data, DL architectures or performance metric future work will have to be
carried out. On this note, an additional contribution of this work is a clear methodology

that can be followed in the exploration of the future directions highlighted below.

8.2 Future work

Some areas of future work are directly linked to the limitations highlighted above, address-
ing additional questions raised or applying SA to DL models from an alternative angle. Ex-
tending the scope of architectures, datasets and hyper-parameters would be the natural
continuation of this work. Firstly, extending the CNN architectures and image datasets,
then adding alternative tasks such as object detection and natural language processing
and seeing whether the conclusions for CNN hyper-parameters is true for all. Additionally,
exploring the architectural parameters of CNNs and their impact for the full range of tasks
to see the impact they have on general parameter influence. The second phase would ex-

plore a greater range of network architectures. The combination of the results from these
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future directions could provide a definitive ranking of parameter influence, identifying re-
lationships between architectures, datasets and influence that can aid future DL practi-
tioners.

As explored in Chapter 2, Section 2.4 French proposed eight contexts for the use of

SA(24):
1. To build and explore models
2. To explore science and models relationships
3. To determine influential inputs
4. To develop efficient algorithms
5. To design experiments
6. To guide decision making
7. To build consensus
8. To gain understanding

This work and the natural progression of it detailed above specifically target number 1,
build and explore models, and 3, determining influential inputs. To some extent the re-
sults also apply to number 6 where they have the potential to guide future decisions sur-
rounding HPO. The SADL framework and methodology can be used to conduct the future
work.

The application of SA to network architectures in DL, as mentioned above, would be
a future work that targeted number 4, developing efficient algorithms. Broadening the
scope of future work, considering the behavioural changes suggested above and targeting
the concept of developing efficient algorithms, SA could also be applied to other learning
algorithms that are being employed in the field of DL and ML such as randomised learning
or evolutionary algorithms.

A key area of future work surrounds the final point, gain understanding. The inner
workings of DL models, dubbed black-boxes, is a "hot topic" in research where SA could
play an important role. Already through this work, and with the future directions high-

lighted above, SA has quantified hyper-parameter influence, showing which parameters
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within a network contribute most to the final model output. The granularity of this ex-
ploration could be increased, conducting the SA on the hyper-parameter values them-
selves, almost replacing the need for separate tuning, where specific hyper-parameter val-

ues could be highlighted as more influential than others.

8.3 Summary

A robust framework to facilitate the exploration of SA and DL was created and SA was suc-
cessfully applied to the hyper-parameters of CNN DL models, resulting in a ranking that
informed HPO parameter space to clearly show increased efficiency in tuning. These find-
ings were all confirmed and validated in their application in a case study. Batch size, learn-
ingrate decay and learning rate decay step were the top three most influential parameters
on CNN architecture identified via SA. Tuning batch size alone or the top three parameters
together was proven most efficient to tune with a novel metric, accuracy gain. Time and
resource constraints meant that the scope of this work was limited to CNN architectures
and image classification datasets as training parameters were analysed based on their af-
fect on model test accuracy. Future work, utilising the novel framework developed in this
thesis, would look to expand this scope, exploring various architecture types, DL tasks,
parameters and performance metrics with the aim of generalising the results further and

exploring any relationships and patterns that may exist.



Chapter 9

Reflection

Please note: this reflection will be written in first person as it expresses the thoughts, feel-
ings and experiences of the author.

This experience has been unlike any other, it has also been unlike anything I expected.
There have been many unforeseeable challenges to overcome, such as changes in super-
vision, lack of computational resources available and completing this work during the
COVID-19 pandemic. COVID-19 impacted so many experiences that usually come part
and parcel with completing a PhD, I had no access to alab for the majority of my degree, no
in person meetings with other PhD students or my supervisors for the majority of my de-
gree and no opportunities to present my work in person internally or at conferences. This
naturally led to additional challenges, overcoming feelings of loneliness, feeling without
support, struggling to prioritise PhD work whilst supporting vulnerable family members
and whilst the world seemingly came to a halt. This was a major hurdle that I had to over-
come in order to produce this thesis.

As mentioned briefly above, there were additional challenges related to my supervi-
sion that also impacted my progress at times. My initial supervisor left the department,
and then my second supervisor left the department. My replacement supervisor had too
much work to support me and so a year in I made the difficult decision to change super-
visor, who ultimately decided to take their work in a different direction 6 months before I
aimed to submit, resulting in my fourth and final supervisor. This particular hurdle had
me questioning whether completing this work was possible at times and I am proud that

I was able to persevere in the face of so much adversity.
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Over the course of the last three years I have developed so many skills and acquired so
much knowledge. My abilities to design experiments, write critically and present findings
are all skills I have learned during my research degree. More specifically, I have improved
my coding skills and my understanding of neural networks, hyper-parameters and ma-
chine learning.

If I could do this project again, I would have changed supervisors sooner to minimise
the impact on me and my work. I would also try to deal with my feelings of impostor syn-
drome earlier on, as I feel I would have presented my work for conferences earlier if I had
more belief in myself and the contributions I was capable of.

Specifically with the design of my work, I would have adopted the google collab plat-
form from the beginning as the GPU in the department was retired before I could complete
my experiments. I hadn't originally planned to complete any work on this platform but I
had to adjust the case study.

When I planned my work, I originally thought that I would repeat my methodology
for an object detection task, natural language processing task and Recurrent Neural Net-
work (RNN) model architecture. It became apparent, however that this scope of work was
unattainable in the time available and so I concentrated on CNNs specifically and the im-
age classification datasets as I knew those other avenues of experimentation could be clear
directions for future work.

In conclusion, if I was starting this area of study again I would have requested a change
of supervision earlier in the process in order to gain the support and focus I needed. As
this directly affected my self-confidence and well-being which resulted in me unneces-
sarily challenging my capabilities and performance. However, this experience enabled
me to develop my communication skills, critical thinking etc and it also highlighted my
strengths and weaknesses. I worked with a number of diverse supervisors with contrast-
ing styles, character and expectations which was extremely challenging at the time but has
enabled me to develop my resilience and capabilities in communication and research. A
highlight of my studies was presenting my work at an international conference, ICTAI, and
gaining recognition of my work was highly motivational. I have learned that research is a
complex area which expands and develops and so my initial objectives were not realis-
tic and perhaps over ambitious due to time and resources. This learning experience has

enable me to plan future work with more clarity and efficiency which results in positive
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outcomes for myself and my colleagues. I have matured and developed skills in teaching,
presenting and writing during the course of my studies and despite the challenges I have

faced I am grateful for this experience and the resiliency I have developed as a result.
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Appendix A

Code Implementation

| def get_increased_values(y, up, lo):

23

def

#adding false values in positon to make it back to the right shape after
caculating the difference (trj,ss,param)
up = np.pad(up, ((0, 0), (1, 0), (0, 0)), ’constant’) #first ss position

lo = np.pad(lo, ((0, 0), (0, 1), (0, 0)), ’constant’) #last ss position

#matrix operation, y has shape ik, up+lo has shape ikj, output result with
shape 1ij

#product of y and (up+low) + sum of all axis - haddamard product sum of
elementwise multiplication

result = np.einsum(’ik,ikj->ij’, y, up + lo)

return result.T

get_decreased_values(y, up, lo):

up np.pad(up, ((0, 0), (0, 1), (0, 0)), ’constant’)#last ss position

lo = np.pad(lo, ((0, 0), (1, 0), (0, 0)), ’constant’)#first position

result = np.einsum(’ik,ikj->ij’, y, up + lo)

return result.T

#Elementary Effects

def EE(x, y , param, trajectory,problemtype,ss): #sample, output, trj,

categorical/numerical, samplesize used aka levels

138
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y = y #list of accuracies of each run
EE = []
if problemtype == ’categorical’:

#need something here to onehot encode x for use in the calculations

labelencoder = LabelEncoder ()

x = labelencoder.fit_transform(x)
if problemtype == ’numerical’:

X=X
p = ss

Q.
1]

p/(2x(p-1))

#EE calculation

x = np.reshape(x,[trajectory, ss,1]) #1 is the number of parameters and I’
m doing it OAT

x_dif = np.subtract(x[:, 1:, :1, x[:, 0:-1, :]) #everything after the fist

sample - everything but the last sample
#Binary of whether the difference is postive of negative
up = (x_dif > 0)

lo = (x_dif < 0)

y = np.reshape(y,[trajectory, ss])#0Output Vector of shape levels and

trajectories

result_up = get_increased_values(y, up, lo)

result_lo get_decreased_values(y, up, lo)

ee = np.subtract(result_up, result_lo)

np.divide (ee, d, out=ee)

return (ee)

def morrisSA(ee):

mu = np.mean(ee)

mustar = np.mean(np.absolute(ee))
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sigma = np.std(ee)

return mu, mustar, sigma

Listing A.1: Morris Method implementation

def Si(¥Yxi, Y):
splitYxi = []
expectedY = []
nSplits = 3
#should be the average of the variance of the output for each fixed value?
#split Yxi into chunks
for i in range (0, len(Yxi)):

splitYxi.append(Yxi[i:i + nSplits])

#calculate expected value of y given xi
for i in split¥xi:
Eyofxi = sum(i)/len(i)

expectedY.append (Eyofxi)

#calculate variance in expected value of Y from the different splits
varE = np.var (expectedY, dtype=np.float64)

#print (varE)

#Calculate variance of y
varY = np.var(Y, dtype=np.float64)

#print (varY)

#Calculate and return Si

Si = varE/varY

return Si

def STi(Yxi, Y):
splitYnotxi = []
expectedY = []

nSplits = 3

#all output except of Xi

Ynotxi = [x for x in Y if x not in Yxi]
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#split Y"xi into chunks
for i in range (0, len(Ynotxi)):

splitYnotxi.append(Ynotxi[i:i + nSplits])

#calculate expected value of y given not xi
for i in splitYnotxi:
Eyofxi = sum(i)/len(i)

expectedY.append (Eyofxi)

#calculate variance in expected value of Y from the different splits

varE = np.var (expectedY, dtype=np.float64)

#print (varE)
#Calculate variance of y
varY = np.var(Y, dtype=np.float64)

#print (varY)

#Calculate and return Si

STi = 1 - varE/varY

return STi

#Method to return Sobol Indices

141

def SobolSA(modelinput ,modeloutput ,outputchoice): #input = list of parameters,

output = results dataframe

Y = modeloutput [outputchoice].tolist ()

Y = [item for sublist in Y for item in sublist] #flatten list from list of

lists

sobolresults = []

for param in modelinput:

YXI = modeloutput.loc[modeloutput[’Parameter’] == param[1],

outputchoice]
YXI = [item for sublist in YXI for item in sublist]
sobolresults.append((param[1], Si(YXI,Y), STi(YXI,Y)))

return sobolresults

Listing A.2: Sobol Indices implementation

#minmax normalising

MNIST _morris[’Mu*_Norm’] = ((MNIST_morris[’Mux*’]-MNIST_morris[’Mux*x’].min())/(
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MNIST_morris[’Mu*’].max () -MNIST_morris[’Mux’].min()))

3 MNIST_morris[’Mu_Norm’] = ((MNIST_morris[’Mu’]-MNIST _morris[’Mu’].min())/(

N~

MNIST_morris[’Mu’].max () -MNIST_morris[’Mu’].min()))

MNIST _morris[’Sigma_Norm’] = ((MNIST_morris[’Sigma’]-MNIST_morris[’Sigma’].min
())/(MNIST morris[’Sigma’].max()-MNIST _morris[’Sigma’].min()))

MNIST_SA[’Si_Norm’] = ((MNIST_SA[’Si’]-MNIST_SA[’Si’].min())/(MNIST_SA[’>Si’].
max () -MNIST_SA[’Si’].min()))

MNIST_SA[’STi_Norm’] = ((MNIST_SA[’STi’]-MNIST_SA[’STi’].min())/(MNIST_SA[’STi

’] .max () -MNIST_SA[’STi’].min()))

Listing A.3: Normalising Sensitivity Measures

\usepackage{allrunes}

s {\Large \textarc{jl}}

Listing A.4: Using the Jera symbol for Accuracy Gain in LaTeX



Appendix B

Published Work

My paper Sensitivity Analysis for Deep Learning: Ranking Hyper-parameter Influence (19)
was published in 2021 and includes early results that contributed to Chapter 4. I produced
the paper in it’s entirety and completed the experiments. My co-authors provided feed-

back on results and early drafts of the paper and offered suggestions for improvements.
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The published article which was filed at the end of this thesis has been redacted for
copyright reasons. The article can be found at the following reference:

R. Taylor, V. Ojha, I. Martino and G. Nicosia, "Sensitivity Analysis for Deep Learning:
Ranking Hyper-parameter Influence," 2021 IEEE 33rd International Conference on
Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 2021, pp. 512-516,
doi: 10.1109/ICTAI52525.2021.00083.
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