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Abstract

The aim of this work is to better understand and quantify the influence of training

hyper-parameters on Convolutional Neural Networks (CNN) test accuracy using Sensitiv-

ity Analysis (SA). The results of the SAwill produce a general ranking of influence that will

be able to inform the reduction of the parameter search space during Hyper-Parameter

Optimisation (HPO) in an effort to increase the efficiency of the process without compro-

mising model performance. Additionally, a novel metric, Accuracy Gain, was developed

to better estimate tuning efficiency and facilitate the comparison of parameter group per-

formance.

The methodology of this research can be summarised in three parts. Firstly, the cre-

ation of a framework for SAofDeepLearning (DL)models, SADL,whichperform two state

of the art SAmethods, Sobol Indices andMorris Method, on CNN hyper-parameters. The

resulting sensitivity measures indicating hyper-parameter influence produce a ranking

that informs which parameters should be targeted during HPO. Bayesian Optimisation

was performed for parameter groups of various influence, and the accuracy gain metric

calculated for each to quantify tuning efficiency. Finally, these results were applied to a

real world scenario in a case study on the classification of colo-rectal cancer images.

They key findings of this work were the development of a robust framework of SA ap-

plied to DL and that it is possible to provide empirically based guidance onwhich param-

eters to optimise. The SA highlighted batch size, learning rate decay and learning rate de-

cay step asmost influential, where batch sizewas significantlymore influential than other

hyper-parameters. Conversely, learning rate did not achieve the influence rank expected

based on the literature. Tuning a subset of influential parameters wasmore efficient than
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tuning all parameters, which was confirmed in the case study where tuning the top three

parameters was quicker and achieved higher accuracy than not only all training param-

eters but was also a significant improvement on the parameters explored in the original

work.

The implications of this work for practitioners are that they can use this information to

guidehyper-parameter tuningefforts, reducing theparameter searchspace toworkwithin

time and resource constraints without compromising model accuracy. Ultimately, these

results facilitate the efficient development of optimal DLmodels. Furthermore, this work

provides a framework and clear methodology that future work in this area can follow. Fu-

ture directions of this work would focus on expanding the scope with additional model

architectures, training datasets, hyper-parameters and performancemetrics.

Keywords: SensitivityAnalysis, Sobol Indices,MorrisMethod,DeepLearning,Hyper-parameter

tuning,Rankinghyper-parameters, BayesianOptimisation,ConvolutionalNeuralNetworks,

Framework
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Chapter 1

Introduction

The advent of high-performance computing has facilitated the growth observed in the

fieldsofMachineLearning (ML)andDeepLearning (DL)withNeuralNetworks (NN)grow-

ing in size and complexity to solve a vast array of problems. Amajor challenge facing prac-

titioners in these fields surround the efficiency of Hyper-Parameter Optimisation (HPO),

a time and resource consuming process to find optimal settings for model parameters.

Although there are resources which explain hyper-parameters and the importance of

the role they play within the network, there is no definitive ranking of those parameters

from most to least influential that practitioners can use to guide them through the HPO

process. This research aims to use Sensitivity Analysis (SA) to understand and rank hyper-

parameter influence on DL model accuracy and show that the HPO process can be more

efficient when concentrated on themost influential parameters.

This chapter will provide an introduction to this work by firstly providing some back-

ground and context, stating the aims, objectives and research questions and presenting

the solution developed.

1.1 Background

DL models are being applied in all manner of industries from healthcare to security to

agriculture. Once a model has been optimised for the designated purpose they can be

extremely efficient, however getting to that point is a time consuming process. Hyper-

parameter selection is a significant part of model optimisation. A popular approach is to

1
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tune based on expert knowledge, manual tuning, which often results in a workable, sub-

optimal solution (4). This is themost timeefficient approachas it is a decisionmadeby the

practitioner, however if any tuning algorithmwere to be employed, such as BayesianOpti-

misation, then this becomes time consuming. Furthermore, there seems to be little action

that can be taken to make this more efficient without compromising the performance of

themodel. This is supported by the No Free Lunch theorem, that no general-purpose op-

timisation strategy is possible (5), suggesting that HPO can only be optimised for the spe-

cific situation it is being used in, and there can be no general guidance that could improve

HPO of NNs.

The hyper-parameters of NNs themselves are the parameters which cannot be modi-

fied once training has begun, as such HPO can be considered the final step of model de-

sign, where the parameters effect model structure, and the first step of model training,

where the parameters effect learning speed and model accuracy (4). The automation of

thisprocess simply trades thehumaneffort expended inmanual tuning for computational

resources and effort, which can be extensive if the parameter search space is large. How-

ever, formodels toperformoptimally andachievehighaccuracies this task is unavoidable,

clearly indicating a need for research in this area.

Sensitivity Analysis has seen much success in its application in many industries, sim-

ilar to the use of DL models. Despite its success, SA is often overlooked or not performed

in a way to maximise the quality of the findings (6). A decade long review of SA saw that

the majority of SA literature relates to the medical field, followed by chemistry whereas

the adoption in mathematics and computer science remained relatively low during that

time (7). Though SA has been applied to the DL space, it is often to the input data features

or, where applied to the hyper-parameters themethods used leave the results open to the

interpretation and bias of the researcher. Applying the state of the art SA methods, Sobol

Indices (8) and Morris Method (9), would produce reproducible, quantifiable results that

could contribute towards a generalisable understanding of hyper-parameter influence on

DLmodel.
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1.2 Problem statement

This section highlights the gap in current literature that motivated this study, outlines the

aims and objectives of the work and confirms the scope of the research.

1.2.1 Motivation

The consistent growth of DL problems and solutions is increasing pressure on HPO ap-

proaches, creating apotential bottleneck in theprocess of creating high-performingmod-

els (10). The lack of scalability of current methods means that additional levels of com-

plexity and dimensionality will only worsen this tuning bottleneck. A reduction of the

search space could reduce the resources and time required for tuning or target the tuning

more specifically to increase the likelihood of finding an optimal solution. There is little

guidance for this reduction of parameter search space outside of the concept of manually

choosing which parameters to apply automated HPO to based on expert knowledge. If a

parameter ranking existedwhichquantified the influence of eachparameter onmodel ac-

curacy, this could clearly showpractitioners the value of directing their tuning in a specific

direction.

Current applications of SAapplied toDL focuson the input space and reducingdimen-

sionality akin to PCA (11, 12, 13, 14). Where there are works that look at the model hyper-

parameters themethods used are less formalised, looking at the average accuracy (15), in-

ference from plots which cannot account for parameter groups (16, 17) or the focus of the

SAwas so context specific the findings were not easily generalisable to other applications.

In terms of influential parameters, themost common existing guidance is to prioritise the

learning rate when tuning (18). As a result, there is limited understanding of parameter

influence on model performance and inadequate guidance on reducing the parameter

search space forHPO.DLpractitioners, especially beginners, find themselves ill-equipped

to complete efficient HPO that results in a high-performing model in this ever-changing,

complexML landscape.

1.2.2 Aims and objectives

Theaimof thiswork concentrates onproducingageneral rankingofConvolutionalNeural

Network (CNN) training hyper-parameters via SA that could informHPO search spaces to
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improve tuning efficiency. The ResearchObjectives (RO) identified to achieve that aim are

listed below:

• RO1: Create a framework to facilitate the calculation of sensitivity measures for the

hyper-parameters of DLmodels which can be used for future work.

• RO2: Rank the influence of a hyper-parameter on model performance, taking into

consideration two state of the art sensitivity measures.

• RO3: Discover relationships between parameter influence and network architecture

or input data.

• RO4: Demonstrate any potential of reducing the hyper-parameter search space to

influential parameters for HPO.

• RO5: Producemeasure of hyper-parameter tuning efficiency that considers compu-

tation time andmodel accuracy to facilitate comparisons.

• RO6: Measurehyper-parameter tuningperformanceof influential parameter groups

versus other parameter groups.

• RO7: Apply findings in case study to demonstrate real world scenarios and validate

results.

• RO8: Provide guidance and a robust methodology to machine learning and deep

learning practitioners in choosing what hyper-parameters to tune and the applica-

tion of SA to DL.

1.2.3 Research Questions

This work aims to answer the following Research Questions (RQ):

• RQ1: Is it possible to quantify and rank the influence of a hyper-parameter onmodel

performance using SA?

• RQ2: Are there any relationships between parameter influence and network archi-

tecture or input data?

• RQ3: Is it possible tomake HPOmore efficient, without compromisingmodel accu-

racy, by reducing the parameter search space to themost influential parameter?

• RQ4: Can these theories be successfully applied to a real world scenario?
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1.2.4 Scope

Due to time and resource constraints the scope of this work, which has the potential to be

extremely broad, had to be narrowed so that it could be completed in time but still pro-

duce results that are generaliseable. Of the DL model possibilities, the CNN architecture

was chosen as it is popular in the literature andwidely adopted. Similar reasoningwas be-

hind thedecision to concentrate on image classificationdata, BayesianOptimisationHPO

method and Sobol Indices and Morris Method approaches to SA. The hyper-parameter

scopewas reduced to the trainingparameters as state of the artmodel architectureswould

be used. The final decisionwas to explore hyper-parameter influence onmodel test accu-

racy, rather than another performance metric, as this gives the best indication of model

accuracy and generalisability.

1.3 Solution

The solution and experimentation designed to answer the above research questions and

fulfil the aim of this work is broken down into three distinct areas:

1. SA of CNN hyper-parameters

2. Rank informed Bayesian Optimisation

3. Case Study

1.3.1 SA of CNN hyper-parameters

The solution to apply SA to CNN hyper-parameters centres on the creation of a frame-

work for SA of DLmodels, SADL. This includes sampling of the parameter space, compil-

ing and building the architecture, training, recording the parameter settings and model

performance and calculating the sensitivitymeasures for both Sobol Indices and theMor-

ris method. Finally, bothmeasures are combined to produce a generalised ranking across

several CNN architectures and image classification datasets.

1.3.2 Rank Informed Bayesian Optimisation

The second element of the solution takes the resulting ranking from the SADL framework

and uses it to informparameter groups for tuning. Bayesian optimisation is conducted on
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influential parameter groups and compared to the performance of tuning all training pa-

rameters. A novel metric, Accuracy Gain, was developed to quantify the tuning efficiency

and facilitate the comparison between parameter groups.

1.3.3 Case Study

The final stage of the solution applies the findings from part one and two to a real world

scenario. A study will be replicated, using the same dataset and model architecture and

tuning will be conducted on the parameters reported in the original paper, all parameters

and influential parameter groups. The tuning efficiency of these groups will be compared

to determined whether the influential parameter groups improve on the results reported

in the original work. This is done to increase the robustness and validity of any findings.

1.4 Summary of contributions and achievements

The chronological contributions and achievements of this thesis are as follows:

1. Creation of the SADL framework for the application of SA toCNNhyper-parameters.

2. Successful use of the SADL framework to quantify hyper-parameter influence on

CNN accuracy.

3. Production of generalised rank of hyper-parameter influence on CNN accuracy and

publication of early results in the IEEE conference (ICTAI) (19).

4. Novel measure, Accuracy Gain, which quantifies tuning efficiency.

5. Guidance on which hyper-parameters to tune for practitioners.

6. Theoretical framework for conducting experimentation of SA applied to DL.

Firstly, the SADL framework successfully quantified hyper-parameter influence pro-

ducing a generalised ranking for CNN hyper-parameters, the early results of which were

published in the IEEE InternationalConferenceonToolsofArtificial Intelligence (ICTAI) (19).

Batchsize, learning ratedecayand learning ratedecaystepprovedhighly influentialwhereas

learning rate did not live up to the reputation of its importance conveyed in the literature.
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Anovelmeasure, AccuracyGain,wasdeveloped toquantify tuningefficiencyandshowed

thatHPOconductedon influential parameter groupswasmoreefficient, saving timewith-

out compromising accuracy. This was confirmed by the case study where the influential

parameter group outperformed the parameters reported in the original work whilst also

completing HPO in less time.

These results challenge the No Free Lunch theory, as they show a general way for im-

proving HPO for CNN architectures. The implication here is that practitioners can make

an informeddecisionon reducing theparameter space to themost influential parameters,

knowing that this should be the most efficient approach to producing a high performing

CNNmodel.

Finally, a general contribution is a robust approach and framework for conducting fu-

ture work exploring SA applied to DL.

1.5 Organisation of the report

The next chapter of this thesis will present a literature review of relevant recent works,

followed by an in depth presentation of the methodology. The next three chapters will

present the three areas of the solution developed, the SA of CNN hyper-parameters, rank

informed Bayesian Optimisation and the application of the findings in a case study. The

results of these three areas are thendiscussed, culminating in the conclusionof this thesis.



Chapter 2

Literature Review

SensitivityAnalysis (SA) has thepotential to shine anew light onDeepLearning (DL)mod-

els, offering a new perspective which could aid in DL explainability.

SA has a long history in areas such as environmental modelling and yet it is only now

making its debut in areas such as Machine Learning (ML) (20). By definition, SA allows

for better understanding of uncertainty in a systems outputs in terms of uncertainty in

the system inputs (21). Various SAmethodologies exist that allow for the quantification of

input influence on a systemwith potential that is yet to be fully realised.

DL is an ever-evolving discipline within ML where continuous challenges are emerg-

ing at a rapid pace. Major challenges facing DL practitioners and researchers include the

computational power and resources required, the ’black box’ nature of DL networks, de-

sign complexity and the high computational cost associated with hyper-parameter tun-

ing (22).

Hyper-parameter tuning is a resource intensive process, the cost of which is growing

alongside the sizeof theDLmodels anddatasets. Themore complex theDL task the longer

the tuning process will be. This presents amajor challenge toDL practitioners as tuning is

an essential step to maximising model performance and currently there is little guidance

on increasing the efficiency of this vital process.

This chapter explores the potential of SA applied to the hyper-parameter space of DL

models. A systematic reviewof theuse of SA inmachine learningwas conducted andareas

of improvement identified. Finally, potential applications are explored.

8
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2.1 Sensitivity Analysis

SA has been a technique that has been applied in various sectors for decades and can be

defined as an analysis of the uncertainty in a systems output and the relation to the uncer-

tainty in the systems inputs (21). This basic premise of SA is represented in Fig. 2.1. For a

given system or model, the SA method constructs a set of inputs from a given parameter

space and then uses the outputs that the systemgenerates fromeach input to quantify the

influence of inputs on those outputs. Box (I I I ) in Fig. 2.1 represents the importance as-

signed to each input through SA. Despite its history, SA has only recently gained visibility

and status as an essential tool in areas such as environmentalmodelling and ismaking its

debut in areas such asmachine learning (20).

Two popular approaches to SA are variance-based methodologies, such as Sobol In-

dices, andscreening-basedmethodologies, suchas theMorrisorElementaryEffectsMethod.

Variance-based SA quantifies the uncertainty in a systems inputs and outputs as prob-

ability distributions and decomposes the variance in the output and attributes it to the

inputs (8). On the other hand, screening-based SAmethods rely on the sampling of input

values to identify contribution to output and tend to require less computational resource

compared to variance-basedmethods (9).

A recent review of the current state of SA from the perspectives of various researchers

identified machine learning and DL as an area of growth for SA (1). They identified three

areas of compatibility where SA and DL could be conjoined;

1. Feature Selection

2. Model Interpretability

3. Machine learning powered SA

The second area identified, model interpretability, suggests not only considering the

effectof the features in the inputdatabutalso taking intoconsideration thestructureof the

network and taking a data-driven, "process-informed" approach to parameter settings.

Exploring this in relation to its potential in a hyper-parameter tuning context is the aim of

our work.
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Figure 2.1: Ahigh-level SAworkflow. Box (I) represents anSAmethodology that
generates system inputs based on defined search space, x1, ..., xn and receives
outputs yn . Box (II) represents the system being analysed. Box (III) represents
an outcome of SA. The influence of each input on the output is quantified. (Af-
ter Razavi (1))

2.1.1 Local vs Global

There are twomain themeswithin Sensitivity Analysis (SA); Local (LSA) andGlobal (GSA).

The various SA methods fall within these categories which are used to highlight the pa-

rameters encompassed in the analysis.

LSAmost commonly refers toone-at-a-time (OAT)methods (23)where a singleparam-

eter is chosen for exploration. A set of possible values for the chosen parameter is created

and they are ’local’ in that they come from a neighbourhood of potential, realistic values.

Analysis is completed by iteratively running themodel, varying the value given to the cho-

sen parameter and noting the effect on the output. LSA offers an understanding of the

importance of a single parameter, lending insight into the effects of specific points of the

model. Generally, derivative based sensitivity measures and the first-order sensitivity in-

dex are considered to be LSA. LSA has its advantages; it is often quicker to compute and

easier to implement than GSA. However, due to its nature, the results are heavily affected

by the area of exploration in the feature space and this must be considered in their inter-

pretation.

On the other hand, GSA methods are computed based on a sample of representative

locations from the parameter’s entire distribution (24). This provides a more general in-

sight intomodel sensitivity and includes popularmethods such as variance based SA and

screening (23). To determine amore general sensitivitymeasure which can be considered

global, the influence of a parameter is averaged on its own distribution and the distribu-
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tions of all input parameters (25). A key aspect of GSA is its ability to quantify the im-

portance of inputs (26) which allows modellers to rank and analyse them quantitatively.

The most common global sensitivity measure is Sobol’s total-sensitivity index. This is

a variance-based method, which are generally considered to be the most sophisticated

methods available (27). Global methods of SA are less vulnerable to type 2 errors, unlike

LSA, as more of the parameter space is explored thereby reducing the potential for criti-

cal parameters or combinations thereof to be omitted from the analysis. A disadvantage

of this approach is the computational cost associated with it. However, unlike traditional

hyper-parameter tuning the insights gleaned fromthis analysiswill provideamoregeneral

insight toparameter importancewhichcanbeapplied repeatedly asopposed toexpensive

HPO applicable to a single, specific problem.

2.1.2 Sensitivity Analysis Methodologies

First-Order Indices and Total Effects

The output of a model, y, can be written as:

y = f (xn) (2.1)

Si = (δy)

(δxi ) (x∗
n )

(2.2)

In equation 2.1 xn are the input parameters to the model where n = 1, ...,k n ∈N and k is

themaximumnumberof inputparameters. SA is traditionallyapplied to the input spaceof

amodel however in this thesis the hyper-parameter spacewill be considered. A sensitivity

measure, Si , is used to enumerate the effect of an individual parameter, xi , on themodel’s

output, y , and can be represented as a simple derivative where x∗
n is a specific base point,

fromwhich the effect of xi on y canbe calculated (27). It is recommended, however, by the

Intergovernmental Panel for Climate Change that a normalised version of this measure is

more appropriate (21):

Si =
(σxi δy)

(σyδxi )
(2.3)

where σ, the standard deviation of xi or y , is used as a normalising factor. Calculating the

sensitivitymeasure in this way ensures that xi is normalised to onewhich provides amore
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consistent ranking of parameters and allows for the direct comparison of Si for different

values of xi . Despite the additional consistency the normalised derivativemeasure offers,

it can only give an indication of the influence of the parameter in question at the specific

point where it was analysed. This cannot be generalised to indicate a parameters general

effect on themodel, this task requires amore thoroughmeasure.

Our model was defined as y = f (xn), and so a model’s variance can be written as V (y).

When a parameter, x, is fixed to a value, x∗
i , then the conditional variance can be written

as:

Vx∼i (V |Xi = x∗
i ) (2.4)

which gives the variance taken over all potential values, except xi , which is represented as

Vx∼i . This gives an indication of the relative importance of xi to the overall variance, V (y).

However, this measure is completely dependent on the position of xi , a problem shared

with the derivative basedmeasure, and does not always yield a value of less than the total

variance, V (y), and so the contribution remains unclear. To overcome this the average of

all potential values for xi provides amore sensible measure:

Exi (Vx∼i (y |xi )) (2.5)

So that E is the expected values of x. Using this measure the conditional variance will al-

ways be less than V (y) because:

V (y) = Exi (Vx∼i (y |xi ))+Vxi (Ex∼i (y |xi )) (2.6)

Therefore, it is possible to determine the contributionof a parameter to the variance in the

model output. Vxi (Ex∼i (y |xi )) is known as the first-order effect of xi on y and is formally

known in the literature as the first-order sensitivity index:

Si = Vxi (Ex∼i (y |xi ))

V (y)
(2.7)

Calculating the fraction of the total variance that the first-order effect represents produces

a number between zero and one which quantifies the importance of xi . The higher the

value of Si the more the parameter under observation contributes to the model output.

Unfortunately, in most cases, this measure is still too simplistic. Models have more than
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onehyper-parameter and the interactions of these hyper-parameters canoftenplay apart

in the outcome, however this is not reflected in the first-order sensitivity index. Addition-

ally, to continue to calculate the sensitivity in this way for a high number of indexes would

be incur a high algorithmic cost. To completely understand the sensitivity of amodel then

all terms would need to be computed; a long and arduous process considering there are

higher orders of interactions that would need to be calculated for most models. To avoid

the exponential complexity of computing indexes beyond for all interactions, a separate

measure can be used to understand a parameters total influence, aptly named the total

effects:

STi = 1− Vxi (Ex∼i (y |xx∼i ))

V (y)
(2.8)

whereVxi (Ex∼i (y |xx∼i )) represents the first order effects of x∼i , representing everything but

xi . Removing this from the total possible effects, 1, leaves the value that can be attributed

to the total effects of xi .

FAST

The Fourier Amplitude Sensitivity Test (FAST) was created by Cukier et al as a variance-

basedmethod for SA(28). They developed thismethodology to better understand the sen-

sitivity of a models output to the uncertainty in the input parameters. The aim was to

propose a technique that was more time efficient than OAT, brute force methods. Model

outputs undergo Fourier analysis where the Fourier coefficients represent the output av-

erage over all input variations, where eachparameter is assigned a frequency,w . The sam-

pling approach used in FAST is similar to trajectory based search in that a search curve is

constructed. In the literature, the main criticisms of FAST, despite its efficiency(27), is its

difficulty to encode and that higher-order indices are not able to be calculated, basing the

sensitivity on first-order effects only(21). However, in this methods partial variance mea-

sure, S∗
wi , we see the inspiration of what will become one of the most popular measures

for SA: Sobol’s Indices.

Sobol Indices

Sobol’s Indices are variance-based sensitivitymeasures andprovide global insight into the

sensitivity of amodel. Variance-basedmeasures are considered to be state of the art in the

literature as they are model independent, consider parameter interactions whilst repre-
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senting the global search space(21). The main flaw with this methodology is the compu-

tational cost associated with calculating the variance-based sensitivity measures in addi-

tion to the cost of anumberofmodel simulations. Sobol’s Indices are thefirst-order effects

(Si ), equation 2.7, and the total-effects (STi ), equation 2.8, explained earlier in this thesis.

By considering the decomposition of variance in a models output as an ANOVA (Analysis

of Variance) decomposition(8) Sobol aimed to rank parameters based on their effect on

the variance of the output of a model.

To compute Sobol’s Indices using a Monte Carlo method the following approach(29)

can be taken:

Algorithm 1 Sobol’s Indices Monte Carlo Approach
A ← RandomSample(n)
B ← RandomSample(n)
f0 ← E sti mated Mean(A,B)
for i = 1, ...,n do

Ci = (B1, ...,Bi−1, Ai ,Bi+1, ...,Bk )
y A = f (A)
yB = f (B)
yCi = f (Ci )

Si = ya ·yci − f0

ya ·ya− f0

STi = 1− yB ·yci − f0

ya ·ya− f0

end for
return (Si ,STi )

where n is the number of samples and the estimatedmean of (A,B), f0, is calculated as:

f0 = 1

n

n∑
j=1

y i
K (2.9)

where K is a placeholder for either A, B or Ci depending on which calculation is taking

place. A and B are matrices comprising of n randomly selected points from the sample

space. Ci is a matrix formed from B except for the i th column which comes from A. The

model output is then computed for each of the matrices; A, B and Ci , which is then used

along with themean, f0, to calculate the sensitivity measures.

Morris Method

TheMorris Method (9) or Elementary Effects (EE) method applies local SA across the fea-

ture space,Ω, to create a global measure and is considered to be a screeningmethod. The

aim is to determine the effect of input parameters to a model whether they be negligible,
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linear and additive, nonlinear or involved in interactions with other parameters (21). The

input space can be considered to be a grid of p-levels with n, the number ofmodel inputs,

dimensions. Knowing this, the EE for a given input, xi , can be calculated as:

EEi = y(x1, ..., xi−1, xi +∆, ..., xn)− y(x1, ..., xn)

∆
(2.10)

where ∆ is the step-size chosen from ( 1
p−1 , ...,1− 1

p−1 ). The distribution of EE is denoted

as EEi ∼ Fi and is obtained through the random sampling of x values from Ω. A useful

example given in Sensitivity Analysis a global primer (21), visualises Ω where n = 2, p = 4

and ∆ = 2
3 . As dictated in the example, there are two parameters being analysed, x1 and

x2, with 4 levels, p, and the intervals are 2
3 , as given by the value of ∆. This example is

easily visualised as it is 2-dimensional, when n is large then the dimensionality of Ω also

increases. There are two sensitivitymeasures associatedwith theEEmethod: µ andσ. The

measureµ represents theoverall influenceof aparameter,whereas themeasureσprovides

a degree of independence. Both sensitivitymeasures, µ andσ, range between 0 and 1with

a higher value of µ signifying a higher level of sensitivity to the parameter. A higher value

of σ indicates that the influence of the parameter is independent of other parameters. To

compute the sensitivity measures for xi then EE can be defined as;

EE j
i (x l ) = y(x l+1)− y(x l )

∆
(2.11)

where j is the trajectory of parameter space exploration and l is the sample point. Having

calculated the EE for each trajectory the sensitivity measures are calculated as;

µi = 1

r

r∑
j=1

EE j
i (2.12)

σi =
√√√√ 1

r −1

r∑
j=1

(EE j
i −µ)2 (2.13)

whereEE j
i is the relativeEE for theparameterwhose sensitivity is beingcalculated, i , along

trajectory, j , for a given number of samples, r .
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ModifiedMorris

Campolongo et al proposed amodification to the traditionalMorrisMethodwhere an ad-

ditional sensitivity measure was introduced (30). The aim was to allow the EE method

to handle groups of parameters, producing a total sensitivity measure, and combatting

Type 2 errors, which the µ measure is prone to. The proposed modified measure, µ∗, is

themean of the distribution of absolute values, |EE d
i (x)| ∼Gi . The absolute EE for a group,

u = (xi 1, xi 2), is calculated as;

|EE du (x)| = |y(x)− y(x)|
∆

(2.14)

So themeasure µ∗ can be written as:

µ∗
i = 1

r

r∑
j=1

|EE j
i | (2.15)

This method was tested against variance-based measures in Campolongo’s paper as they

areconsidered tobestateof theart in termsofSAmethodologies. Comparisonsweremade

through obtainingµ∗ and STi for somemodels and then comparing the ranking of param-

eters determined by the separatemethodologiesmeasures which determined that µ∗ was

an effective substitute for STi . This is promising in terms of efficiency as computing µ∗

does not change the time complexity of the method and can be computed alongside the

original EE sensitivitymeasures. Variance-basedmeasures are known to be computation-

ally expensive, especiallywith largermodels and therefore having a substitutemeasure for

total sensitivity that is possible to calculate more efficiently is an advantage.

Regional Sensitivity Analysis

The purpose of Regional Sensitivity Analysis (RSA) (31) is to identify regions in the input

space which correspond to particular values in the output. From this it is possible to pro-

duce a mapping, for example parameters with these values produce outputs above a cer-

tain threshold, which can be used to better understand model behaviour. An advantage

of RSA is that it can be applied to non-numerical outputs, widening its range of potential

applications (2).
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Correlation and Regression Sensitivity Analysis

The basis of thesemethods of SA derive from statistical analysis of the input and output to

amodel or system. In the literature they are often used in conjunction with one another.

Correlation-based SA makes use of existing statistical measure of correlation such as

the Pearson correlation coefficient and Spearman rank correlation coefficient. Further-

more, this form of SA is usually assessed visually through the use of charts such as scatter

plots which provide a visual indication of the influence of parameters based on the shape

produced and can aid in the identification of complex relationships. As a result, produc-

ing scatter plots to understand any correlations is usually taken as an initial step in any

SA (32).

On theotherhand, Regression-basedSA takes aprobabilistic approach (33) todescribe

the relationships between parameters and presents a simple method of global SA. The

method consists of regressing the output parameters with respect to a set of input pa-

rameter forming a regression model. The estimated outputs of the regression model are

described in terms of linear combination of the input parameters producing a sensitivity

measure in the form of the standardised regression coefficient (34).

2.1.3 Sensitivity Analysis Settings

The "setting" of the SA is the formal definition of the SA objective, the reason behind in-

vestigating the parameters. Having a clear idea of the goal of the SA is key to avoiding in-

conclusive results. The definition of a "setting" in terms of SA is given by Saltelli et al. (21)

as "a way of framing the sensitivity analysis quest" and there are three popular settings:

1. Ranking (Factor Prioritisation)

2. Screening (Factor Fixing)

3. Factor Mapping

The first setting proposed by Saltelli et al. was Factor Prioritisation, or "ranking" as it will

be referred to in this thesis to simplify models. This setting identifies which parameters

can be fixed to an arbitrary value within a range without affecting the output. This offers

the opportunity to reduce the parameter space to the influential parameters only.

The third setting was Factor Mapping, referred to as simply "mapping" in this thesis.

This setting concentrates on a particular region of the output which could be defined by
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Figure 2.2: SA methods in relation to Sensitivity Analysis Settings they are as-
sociated with and highlighting whether they are local or global methods. For
more information on the SAmethods see Section 2.1.2 . (After Pianosi (2))

some threshold. This threshold is often used to define a desirable and undesirable out-

come bywhich the variousmodel outputs can be grouped. Amapping is created between

parameter values and outputs which makes it possible to see what values of the param-

eter lead to a desirable output. This setting is usually applied to influential parameters

identified by earlier settings.

To understand where the SA methods described in Section 2.1.2 fall within the larger

contextof SAsettingsFig2.2wascreated, amorecomplexversioncanbe found inPianosi’s

paper (2). As shown in Fig 2.2, all of the SAmethods explored address the ranking setting,

whereas half also overlap with either screening or the mapping setting. Furthermore, the

majority of the SA methods were global. SA settings will colour the application of SA to

DL hyper-parameter tuning as they describe themotivation of the SA and the results vary

based on the setting chosen.

2.1.4 Current Applications of Sensitivity Analysis

SAhasbeenapplied inseveralfields inScience, Technology, EngineeringandMathematics

(STEM). The varied use of models in STEMmake it the perfect application area for SA.

The importance of SA is demonstrated in the field of Biomedical Scienceswheremath-

ematicalmodels are frequentlyused forhypothesis testingofbiological systems. There are



CHAPTER 2. LITERATURE REVIEW 19

softwarepackages thathavebeenbuilt toconductSAonbiomedicaldata suchasDakota (35)

whichwas created to apply SA on immunology data. SAmethodologies have been applied

toparameters identifiedas causing cancer and showed that cell divisionandmutation rate

caused themost variance inmodel output suggesting themost affect on the cancer being

analysed (36). The SA findings were supported by physiological evidence, reflecting the

power of SA in the Biomedical field.

Within the Engineering discipline of STEM, SA is often applied to building systems.

An extensive review of SA in building performance analysis was conducted in 2019 which

identified several applications of SA including building design, building evaluation and

model calibration (37). Similar toDLmodels, the challenges associatedwith building per-

formanceanalysis surrounded increasingcomplexity, the "curseofdimensionality"which

made it difficult for practitioners to calibrate and work with the models to produce intel-

ligent building specifications. SA was adopted in this area as it combats these challenges

by enablingmodel simplification.

Environmental modelling is a key application area of SA in the literature, with a long

history of utilising SA to better inform modellers. Complex models are used within this

subject to produce simulations of various environmental scenarios. Similarly to the build-

ing performance analysismodels, calibration is a key aspect of the environmentalmodels

where SA is applied to provide insights into the influence of uncertain parameters on a

performancemetric (2).

The growing popularity of SA has led to the development of software tools to facilitate

the applicationof SA. Anoverviewof these toolswas compiledbyDouglas-Smith et al. (38)

where they highlighted SA applications frameworks organised by the programming lan-

guage they were developed in. The three packages that implemented the most varied SA

methods were SimLab (Matlab), R sensitivity (R), and SALib (Python). All three packages

have implementations of the Morris Method, Sobol Indices and FAST. As these three lan-

guages are also popular inML andDLmethods these SA packages present usable options

to DL practitioners to conduct SA.
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2.2 Deep Learning

As a result of the advent of high-performance computingDL has grown in popularity. The

success of DL can be attributed in part to their ability to process large amounts of data

with high dimensionality (39) and their potential to be applied to any domain (40). DL has

evolved into a complex field with several areas of research containedwithin it. Prominent

areas of exploration are DL architecture, popular approaches being Feed-forward Neu-

ral Networks (FNN) and Convolutional Neural Network (CNN), hyper-parameter tuning

methodologies and the hyper-parameters themselves.

2.2.1 Deep Learning Network Architectures

Feed-Forward Neural Networks

The FNN is “the quintessential deep learningmodel” (18). The premise of the FNN is that

it is composed of layers of neurons and the output of a layer becomes the input to the next

layer. The prime example of a FNN is aMulti Layer Perceptron (MLP) or simpleDeepNeu-

ral Network (DNN). FNN’s presentedmany advantages over traditional machine learning

methods such as their ability to adapt to the problem without user interference and their

ability to copewith non-linearity in the input data. However, training timeswere high and

the black-box nature of FNNs were clear disadvantages of the models (41). They also of-

feredan improvementover statisticalmodels as theymadenoassumptions regardingdata

distributions and required no hypothesis to test (42). The recent improvements to FNNs

compared to earlier attempts can be attributed to two factors (18):

1. Larger datasets available for training, aidingmodel generalisation.

2. Greater computational resources, allowing for larger models.

The applications of FNNs are vast with many industries adopting them to solve complex

problems including science, finance and security (42). Medicinehas adoptedFNNs in sev-

eral areas such as cancer recognition (43, 44, 45, 46), medical signal processing (47, 48),

heart disease diagnosis (49, 50) and modeling depression (51). The potential of FNNs in

themedical field is well documented, andwith the progresswithinDL and computational

resources constantly developing the applications of deep learning are also diversifying.
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Figure 2.3: Pictorial examples of the three features utilised in CNNs: Sparse
Connectivity, Parameter Sharing and Equivariant Representations.

Convolutional Neural Networks

Amore complex example of an FNN is a Convolutional Neural Network (CNN) which op-

erates similarly to a human visual processing system (40). As a result CNN architectures

are popular in a sub-field ofDL, Computer Vision. CNNshandle variance in input training

examples better than FNNs, which would require additional training to recognise images

that only vary slightly such as handwrittennumbers (52). There are three features of CNNs

that make them an improvement compared to the FNN architectures (18):

1. Sparse Interactions.

2. Parameter Sharing.

3. Equivariant Representations.

CNNs do not comply to the traditional fully connected architecture of typical FNNs.

This is an improvement as it reduces the memory requirements to store the model and

increases the efficiency of the model by reducing the number of operations needed. Pa-

rameter sharing also reduced thememory requirements of a CNN architecture compared

to an FNN by learning one set of parameters rather than separate parameter sets at each

location in the network. Another benefit of parameter sharing is that the layers become

equivarient to translation,meaning changes in the output are consistent with those in the

input. Examples of these features are visualised in Fig.2.3.

A timelineofdevelopments inCNNarchitecture is shown inTable2.2.1, starting in1989
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Table 2.1: Influential CNN Architecture Timeline

1989 • ConvNet
1998 • LeNet (53)
2012 • AlexNet (54)
2014 • GoogleNet (55), VGG (56)
2015 • ResNet (58)
2016 • DenseNet (61)
2018 • Channel Boosted CNN (59)

with the original CNNarchitectureConvNet. Almost a decade later LeCunet al. developed

LeNet (53), a basic CNN which consists of seven layers. Ahead of its time, LeNet was lim-

ited by the computational resources available and so the potential of theseDL approaches

were not fully appreciated. Despite the existence of these early architectures CNNs are

considered tohave truly takenoff in2012with theAlexNet architecture (54). AlexNetmade

history achieving state of the art accuracy compared to traditional ML approaches on the

ImageNet dataset in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

This demonstration of CNN potential can be considered the advent of the interest in DL,

leading to more rapid developments. In 2014, the top two architectures that competed in

ILSVRCwere GoogleNet (55) and VGG (56). GoogleNet was built with the aim to conserve

computational resources, and, despite being deeper than earlier architectures, was com-

prised of fewer parameters reducing its complexity (57). Runner up to GoogleNet, VGG

demonstrated the importance of network depth in classification accuracy of CNN archi-

tectures. The 2015 winner of ILSRVC was ResNet (58), an ultra-deep network that over-

came the vanishing gradient problem (57). As suggested by its name, DenseNet consists

of densely connected CNN layers increasing the efficiency of feature reuse resulting in a

reduction of network parameters (57). 2018 saw the introduction of the Channel Boosted

CNN (59) which aimed to exploit transfer learning capabilities of CNNs and their chan-

nel dimensions. This architecture specifically targeted churn data which is an increasing

issue inmany sectors as a result of big data (60).

The popularity of these architectures suggested they would be a good application area

of SA as better understanding howhyper-parameters effect the performance of this archi-

tecture type would benefit a high-proportion of DL practitioners across a variety of appli-

cation areas.
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Figure 2.4: High-Level representation of LSTMarchitecture. (Based onUdacity
Deep Learning video tutorial created by Luis Serrano)

Recurrent Neural Networks

Another popular DL architecture is the Recurrent Neural Network (RNN). A limitation of

both FNN and CNN architecture is the lack of persistence in the learning process. When

humans learn, it is a continuous process that is coloured by various personal experiences.

When humans approach taskswe do not reset our brains and start from scratch. The RNN

architecture is designedwith this concept inmind, attempting to replicate amore human

learning process by implementing a system that allows operations over time (57). There

are two popular RNN architectures: the Long Short TermMemory (LSTM) and the Gated

Recurrent Unit (GRU).

Introduced in 1997, LSTMs are a gradient-based approach to DL over extended time

intervals (62). The problem with conventional RNNs is that they are affected by the van-

ishing gradient problemwhich is addressed in theLSTMarchitectureby allowing constant

error flow. Gate units are employed to protect the contents of the memory cells and net-

work units fromperturbations, be they irrelevant inputs or irrelevantmemory contents. A

high level representation of this concept is shown in Fig. 2.4.

The GRU architecture was proposed in 2014 by Cho et al. (63) as an approach for ma-

chine translation tasks. As shown in Fig. 2.5, GRU networks are similar to LSTMs, how-

ever they do not have separate memory cells. A comparison of traditional RNN, LSTM

Update Gate Combine GateWorking Memory New Working 
Memory

Event

Figure 2.5: High-Level representation of GRU architecture. (Based on Udacity
Deep Learning video tutorial created by Luis Serrano)
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andGRUperformance showed a clear advantage of gating units over traditional recurrent

units whereas the dataset would influence whether the LSTM or GRU would have better

performance (64).

Deep Learning Hyper-parameters

There arehyper-parameters associatedwithmachine learningwhose reputationsprecede

them. Activation functionsaregenerally considered tobe themost importanthyper-parameter

as they allow models to solve more complex, non-linear problems (65). The impact of

choosing the optimal activation function can have a significant impact on model perfor-

mance. When comparing five activation functions on twoMLP’s, a 10-layer and a 40-layer,

the accuracy ranged between 30%-95% and 19%-99%highlighting the influence of the ac-

tivation function (66).

The importance of learning rate is also well documented. Too big a learning rate can

be responsible for poor generalisation and an unthorough exploration of the error land-

scape (67). Additionally, the positive correlation between learning rate and amodels abil-

ity to generalisewas found to be statistically significant (68) further supporting the impor-

tance of the learning rate in training DL models. Bengio states in their book Deep Learn-

ing (18) that the learning rate significantly affects model performance, making it difficult

to set as the setting chosen can be the difference between the success and failure of the

model. These hyper-parameters live large in the literature and are, generally, the main

targets of hyper-parameter tuning.

AnANOVAanalysis of howhyper-parameters effect theaccuracyof residualneural net-

works concurred that learning rate was amongst the most important parameters. How-

ever, it also showed that for a certain range of learning rate values there was little effect

on the model suggesting that there may be other factors at play (69). Weight decay and

momentum were also highlighted by the ANOVA analysis further illustrating that other

parameters may be playing more of a role in deep learning models’ ability to learn. Im-

plementing a structured analysis of parameter influence would highlight whether some

parameters are potentially being overlooked during tuning in favour of activation func-

tion and learning rate as they are perceived to be themost influential.

SA isused in this research tobetterunderstand the influenceof specifichyper-parameters,

producing rankings of the most sensitive to the least sensitive hyper-parameter. Thus,
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presenting the opportunity to use this ranking to inform practitioners to tune the hyper-

parameters that models are most sensitive to, conserving resources.

2.2.2 Hyper-Parameter Tuning

Hyper-parameter tuning or Hyper-Parameter Optimization (HPO) is a critical step in the

machine learningprocess and research intoHPOapproaches forDL is increasing inpopu-

larity (4). Asmodel size and complexity grows ever larger, the need formore efficient HPO

that finds optimal parameter settings is demanding the attention of researchers. There

are three popular approaches to HPO in the literature; grid search, random search and

Bayesian optimisation (70).

Manual Search

There are various techniques that havebeenapplied toHPO.The simplest approachbeing

manual search which consists of the practitioner manually setting the parameter values.

Despite the ease of manual search, it does have many drawbacks. The first being that it

relies completely on the expertise of the practitioner which, in the case of an expert, could

result in good results but probably not the best that could be achieved. Additionally, it

would be difficult to reproduce the results. Furthermore, the increasing complexity of DL

problems can create difficulty in interpreting the hyper-parameters.

Grid Search

Grid search is a technique that is widely used as it is quick to implement and allows repro-

ducible results as it systematically explores the parameter space. However, this systematic

approach is responsible for the disadvantages of grid search. It is inefficient at search pa-

rameter spaces with high dimensionality and the rigidity of the approach can result in the

explorations of parameter values that are unimportant. Grid search is a victimof the curse

of dimensionality, themore parameters there are to search the less efficient themethod.

Random Search

Random search offers an improvement on grid search as it is more efficient (71). As the

name suggests, this method implements a random search over the parameter space. The

same issuesurroundingcomputational resourcepersistswith randomsearch, as thesearch
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space increases in size the resources required to assess the parameter values increases.

Paradoxically, the efficiency curve of randomsearch shows that the larger the search space

the better the results and so there is a trade-off between the probability of finding optimal

settings and the efficiency of the tuning process. The introduction of random search also

highlighted that only a subset of hyper-parameters actually affectmodel performance and

that the efficiencyof themethodcanbe increasedby removing thenon-influential param-

eters from the search space (72).

Bayesian Optimisation

Bayesian optimisation aims to find a global optimum solution and an advantage of this

approach is that the search space is influenced based on the results of earlier trials (4). A

probabilisticmodel isused todetermine thevalues thatareexplored for thehyper-parameter

settings. As a result, Bayesian optimisation is more computationally efficient than grid

search and random search as it requires less trials to find the optimum. Unfortunately, the

resource consumption of this method is also greater than that of grid and random search.

Addressing Hyper-parameter Tuning Challenges

Falkner (73) put forward a criteria for HPOmethods stating that they should performwell

at all times, find theoptimal settings,make effectiveuseof parallel resources anddealwith

different hyper-parameter set. Additionally, they state thatmethods should be robust and

flexible allowing for the various challenges presented by sub-fields in machine learning.

The first two criteria present a "catch 22" for the methodologies put forward in the litera-

ture as they are naturally opposing of each other. The tuning can either be performance

conscious and potentially not find optimal solutions or the tuning can continue until an

optimal solution is reached at the expense of performance.

To combat this, rather thanchange theHPOmethod, understanding the impact of spe-

cific hyper-parameters on the accuracy of a model could help reduce search space of a

method suchasBayesianoptimisationand thus improving theperformance. Huttermade

the point that a reliance on HPOmethodologies, such as Bayesian optimisation, can hin-

der insight to the important of individual hyper-parameters and their interactions as they

cannot determine their effect on model performance (74). Furthermore, as HPO meth-

ods are trial and error per case there is noway to gather information on the importance of
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hyper-parameters beyond that specific configuration (75).

2.3 Sensitivity Analysis in Deep Learning

A summary of works from the last two decades, sorted chronologically, is presented in Ta-

ble 2.2 highlighting the SA methodology, DL application and DL parameter space. Four

trends were identified in the related works; number of publications by year, SA method-

ologies used, theDLarchitectures adopted and theparameter spaces explored. These four

trends are highlighted in Fig. 2.6. Chart a in Fig. 2.6 shows the increase in work applying

SA toDL,with publishedworks in this areamore than doubling in 2021 compared to 2017.

Chart b highlights the variousmethodologies reported in these works as SA.

Themost commonly adoptedmethods are calculating the Partial Derivatives (PaD) or

taking inferences from plots. There are instances of more complex variance-based mea-

sures being calculated and somenovel SAmethodologies being proposed. The state of the

art sensitivity methods Sobol Indices andMorris are used in one instance.

The most widely used architecture explored in the literature, as shown in Chart c of

Fig. 2.6, was a simpleDeepNeuralNetwork (DNN), followedby theCNNarchitecture. This

is to be expected, as discussed in Section 2.2 CNNs are one of the most popular architec-

tures in DL and are widely adopted in various sectors. The final trend explored, shown in

Chart d, was the parameter space the SA was applied to in the context of DL.

For themajority, SAwas applied to the input space, being used to reduce dimensional-

Table 2.2: Summary of related works SAmethodologies, application of SA and
parameter space explored. The first row in the table highlights the areas ex-
plored in this thesis.

Paper SAMethodology Application Parameter Space
Gullmar 2022 (11) Plots CNN Input Space
Taylor 2021 (19) Sobol Indices andMorris Method DNN&CNN(x3) Network Training
Moussa 2021 (12) Variance DRNN Input Space
Davis 2021 (76) Variance Transformer Network Architectue
Pizarroso 2021 (13) PaD DNN Input Space
Nagasato 2021 (77) Nash-Sutcliffe Estimation of Accuracy CNN Network
Novello 2021 (78) Hilbert-Schmidt Independence Criterion NN Network
Shu 2019 (79) Perturbationmethod CNN(x2) Network Architecture
Dudek 2019 (17) Plot model loss vs model input FNN Network Architecture
Zhang 2019 (80) Noise SA test prioritisation CNN Input Space
Ithapu 2017 (16) Gradient plots NN Network Architecture
Samek 2017 (81) PaD and plots CNN& SVM Input Space
Zhang 2015 (15) Average accuracy CNN Network
Gevrey 2006 (82) PaD DNN Input Space
Hunter 2000 (14) Model performance vs missing data DNN Input Space
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ity in a way akin to principal component analysis and to gain insight into which parame-

ters in the input spacemost influencemodel performance. There were three categories of

model related parameters explored; Network Training parameters, Network Architecture

parameters or a combination of both, represented simply asNetwork in Chart d. The least

explored parameter space was network training parameters.

Having given a general overview of the literature as it relates to DL and SA, we now

explore the recent works in more detail. The latest work considered was published in

2022 and explored how SA could be applied to the semantic segmentation of medical im-

ages (11). SA was applied to the performance of a CNN architecture and the parameters

being observed were related to the augmentation applied to the input images. Heatmaps

were produced and referred to as Sensitivitymaps as they illustrated the affect of the vari-

ous changes to the input data on their chosenmeasureof performance, theDice Similarity

Coefficient. This simple method of SA was sufficient to discuss the relationship between

the input data and themodels segmentation performance. However, these plots are open

to interpretation of the practitioner andmay not reflect the interactions of the parameters

being studied.

In (19) a framework, SADL, was created, which applied two state of the art SA meth-

ods, Sobol andMorris, to various DL architectures on 3 image classification datasets. The

aim was to use SA to produce a general ranking of DL training hyper-parameters that can

inform practitioners when conducting hyper-parameter tuning. By using formal SAmea-

sures, it allowed comparisons to be drawn across architectures, datasets and with any fu-

turework. Thenext stageswill be to apply the rankingandevaluate the effect on the tuning

process.

It was previously established in Section 2.1 that SA is utilised in the engineering sec-

tor, specifically in building. It is also true that the application of DLmethodologies is also

becoming popular. To save time in testing specific material properties, a Deep Residual

Neural Network (DRNN), based on ResNet, was proposed and the input data was pre-

processedwith variance based SA (12). The first-order sensitivitymeasuremultiplied by a

normalising factor was used to analyse which input parameters were most influential on

the accuracy of the DRNN. This a very context specific example of the application of SA

to DL input parameters which highlights the potential for more general knowledge to be

gained.
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Transformer architectures are also subject to the hyper-parameter tuning process and

can be affected by perturbations in parameter values. The idea of ’sensitivity’ in the form

of variance was adopted to measure the extent a transformer architecture is affected by

random perturbations of its parameters. Furthermore, the observations made related to

’sensitivity’ inspired a new transformer architecture, boasting increased stability in the

face of parameter perturbations (76). In this case, ’sensitivity’ is used in place of ’stabil-

ity’, and where the usual SA approaches sample the parameter space in a structured way

thiswork ismore interested in the robustness of themodel against randomperturbations.

Despite naming themetric ’sensitivity’, it could be argued that this work conducts Robust-

ness Analysis (RA) rather than formal SA.Having said this, formal SA is still applicable here

and could be conducted on the new, robust transformer to better understand the effect of

the input parameters or to influence network parameter tuning.

A novel metric, Noise SA Test Prioritisation (NSATP), was proposed to take a SA ap-

proach to model sensitivity to adversarial examples of input data (80). The early CNN ar-

chitecture, LeNet, was used along with four image classification datasets. The aim was to

produce a ranking of input examples based on their noise sensitivity which could lead to

thedevelopmentofmore robustDNNs. Theaim is similar to that in thepreviouswork (76),

however there is a clear linkmadeherewith theRanking SA setting, demonstratinghowSA

can be applied to increasing model robustness through the analysis of adversarial input

data.

Explainable Artificial Intelligence (AI) is a field of study aiming to crack the black-box

nature ofML andDLmodels to better understand what contributes to their final outputs.

Twomethods, SAandLayer-wiseRelevancePropagation (LRP),were adoptedwith the aim

of explaining thepredictions of variousMLmodels in termsof their input parameters (81).

Perturbation analysis was conducted on three scenarios to compare the two methodolo-

gies: CNNon and image classification task, a CNNon a text classification task and an SVM

on an object detection task. Local SA in the form of the derivatives was calculated to pro-

duce a sensitivity measure which was supplemented by heat-maps for the image classi-

fication experiment to identify influential pixels in the input data. LRP explains model

output throughdecomposition and assigns inputs relevance scores to quantify the contri-

butionof each input towards the output. The explanationof LRP is very similar to the state

of the art variance-based SA methodologies which were developed based on the ANOVA
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decomposition. The conclusion found that the heat-maps based on the LRP were more

informative than those based on the SA, which would be expected as the measure of SA

employed was much simpler. A more comparable method for LRP would be the Sobol’s

Indices. This work does, however, highlight that SA has the potential to be applied to bet-

ter understand the inner-workings of the black-box DLmodels.

Simpler methods, such as calculating PaD, and analysing the input space encompass

several works in the literature. The application of PaD to the input space is a common ap-

proach across application areas, be it the input to a Multi-Layer-Perceptron (82) or envi-

ronmental simulation (83). Traditionally, SA is conductedonnumerical datawhich is used

to calculatederivatives. Toovercome this, rather thancalculate thederivativesHunter (14)

introduced missing data and inferred influence based on the deterioration in model per-

formance, a simple yet effective exampleof SA. SomeCNNhyper-parameters are categori-

cal and, therefore, face the same issue thatHunter encountered. Introducingmissing data

in our work was not an option as the network required parameter values to operate and it

wouldbebeneficial to have insight into themost influential values of a parameter. The ap-

proach taken in our casewas to one-hot encode the categorical values, representing them

numerically to calculate the sensitivity measures.

A study of the influence of varying network structure was conducted where the lack of

guidance surrounding hyper-parameter tuning for DL prompted Ithapu et al. (16) to take

a loose SA approach. Inference based on the relationship between network architecture,

hyper-parameter convergence and input data statisticswas used as an indication of sensi-

tivity. Themain drawback of this work is that no comparable measure was produced that

could be used in future work. A comparison of CNN performance on sentence classifica-

tion tasks was conducted to understand hyper-parameter influence (15). Once again, the

main drawback is the lack of a measure that can be used to compare against other work

across architectures and tasks. By comparison, using the SADL framework this analysis of

CNN performance on image classification task produces recognised SAmeasures.

Four tasks were considered by Shu (79); outlier detection, SA of network architecture,

SA of test and training sets and vulnerable region detection. They proposed a method of

SA, perturbationmanifold, and applied it to twonetworks ResNet50 andDenseNet on two

datasets MNIST and CIFAR10. The experiments conducted explore the network’s sensi-

tivity to layer-wise perturbations and seem to be exploring the robustness of the architec-
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tures. Bycomparison, ourworkexplores thesensitivityof specific traininghyper-parameters

of five network architectures on three image classification datasets to offer more gener-

aliseable insights.

2.4 Potential Applications of Sensitivity Analysis in Deep

Learning

The need for Sensitivity Analysis (SA) was summarised by Furbinger in 1966 (84):

“SensitivityAnalysis formodellers? Wouldyougo toanorthopaedistwhodidn’t

use X-ray?”

With DL growing in complexity and being applied to serious problems surrounding dis-

ease detection, building stability and more, that have the potential to affect lives it begs

the question: are we doing everything we can to understand and build the most efficient
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and accurate models possible? And, if SA in modelling can be compared to the necessity

of x-ray to orthopaedists, should we be utilising SA inML and DL as standard practise?

French proposed eight contexts for the use of SA(24):

1. To build and explore models

2. To explore science andmodels relationships

3. To determine influential inputs

4. To develop efficient algorithms

5. To design experiments

6. To guide decisionmaking

7. To build consensus

8. To gain understanding

and several of these could also be applied toDL, once again highlighting the compatibility

between SA and DL methods. Potential applications of SA to DL will be described in re-

lation to a subset of the contexts mentioned above, linking back to the main focus of this

work in hyper-parameter tuning.

To Build and ExploreModels

DL Models of complex behaviours are often complex themselves, and this in part con-

tributes to the black-box nature of DL models and drives the explainable AI community

to explore their inner workings. One area of potential exploration surrounds the relation-

ship between model hyper-parameters and model outputs, specifically the relationship

betweenmodel parameters and accurate model outputs. Furthermore, whether these re-

lationships aremodel specific, application specificorwhether there aremoregeneral links

between specific parameters and model accuracy. Conducting exploration into the gen-

eral influence of DL hyper-parameters could impact how futuremodels are built depend-

ing on the relationships that are observed. For instance, if hyper-parameter influence is

found to be architecture specific then when developing improvements on CNN architec-

tures, for example, researchers can concentrate on optimising the related influential pa-

rameters. If the influence is found to be application related, affectedmore by the nature of
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the input data, then that would guide researchers when developing models for computer

visionorobjectdetectionornatural languageprocessing. Anygeneralfindingswouldben-

efit all DLpractitioners and could fill a gap in hyper-parameter tuning advicewhich is cur-

rently lacking.

To Determine Influential Inputs

This context focuses the work on the inputs that matter. In terms of DL hyper-parameter

tuning, this would be the influential parameters. Better understanding of the parameters

also reduces thepotential that themodel output is a product of imprecise parameters (24).

Theproductof impreciseparameters in the tuningprocess couldbe takingadditional time

and resources to find optimal settings because non-influential parameters were being ex-

plored unnecessarily. Bayesian optimisation embodies this context as it searches for the

optimal parameter values, pursuing areas of exploration based on previous trials to re-

duce the number of iterations needed. A SA informed approach to Bayesian optimisation

would reduce the parameter search space to influential parameters only, increasing the

efficiency of the search. Furthermore, SA can provide reassurance to practitioners that re-

moving a subset of parameters from the tuning scope would not have detrimental affects

on model performance. Additionally, SA presents the opportunity and evidence to ad-

just approaches and ideas that are favoured a priori. The importance of the learning rate

hyper-parameter is well documented in the literature, with influential DL practitioners

recommending toonly tune the learning rate if youhad topick oneparameter to tune (18).

However, through the application of SAmethods to DLmodel training parameters, learn-

ing rate was ranked as having low influence compared to batch size and learning rate de-

cay (19). This finding presents the possibility that SA can lead to new insights and under-

standing of the importance of popular hyper-parameters.

To Develop Efficient Algorithms

Despite thecurrentadvancementsandgrowth inbothcomputationalpowerandresources,

efficiency is still a key metric that DL practitioners aim to maximise. SA itself is a com-

putationally expensive process, especially when applied to complex models. However, a

robust analysis of DL hyper-parameters using SA would produce general knowledge that

can be adopted by practitioners to maximise the efficiency of the hyper-parameter tun-
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ing process. Additionally, the application of SA to DL architectural parameters could aid

in removing redundant features, making the models shallower or narrower without com-

promising the performance. Simply put, SA can help practitioners find the least complex,

most efficient version of a model that will still achieve high accuracy.

To Design Experiments

One of the most important elements of experimental design surrounds the fundamen-

tal choice of which points to collect data at, which are most informative and can reduce

uncertainty (24). SA methodologies take very systematic approaches to sampling often

employing Latin Hyper-Cube or Monte-Carlo sampling to produce the most representa-

tive analysis of parameter influence. Too often DL practitioners have to choose to tune

more parameters less thoroughly due to computational or time restrictions and the lack

of available guidance that sufficiently reassures them in their choices ofwhichparameters

should be explored further. By reducing the depth of tuning of the parameter’s values in

favour of breadth of model parameters under investigation, practitioners are potentially

missing optimal solutions. As previously discussed SA would be useful here to reduce the

parameter set that is considered for tuning. Alternatively, if practitioners wish to explore a

larger parameter set, SAmapping could highlight which ranges of values for each param-

eter are most influential. This would allow the tuning process to explore that range more

thoroughly and increasing the possibility of finding optimal values for more parameters

whilst beingmindful of external constraints.

To Guide DecisionMaking

When considering decision making, reassurance, robustness and future direction come

to mind. The use of SA to reassure practitioners has been discussed at length in the con-

texts above. In terms of robustness, the insights provided by SA can lead to an awareness

of which hyper-parameters the model would be robust against perturbations or variance

in and could highlight any risks tomodel performance thatmodellers can then take steps

to address. The emphasis in this paper has been placed on the potential SA presents to the

hyper-parameter tuning process of DL models and how the information gleaned can aid

practitioners in choosing future directionwithin that process. Not only understanding the

influence of hyper-parameters, but quantifying and ranking it, provides clear information
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on which parameters effect model accuracy and the relationships that parameter influ-

ence has with DL factors such as task/application or architecture. These results could in-

fluencedecisions regardingwhich subsetsofparameters to focusonwhen tuningorwhich

ranges in each parameter space should be explored, all with the aim of reducing time or

complexity whilst retaining high performance.

To Gain Understanding

Each of the contexts put forward by French share a common goal: to build understand-

ing (24). In this case, the application of SA to DL hyper-parameters would produce quan-

titative results reflecting influence on model performance that will inform practitioners.

This information will lead to better understanding of the inner workings of DL models in

regards to parameter importance and their contribution to the decision making process

that is contained within the black-box. The various charts associated with SA can be used

to communicate these insights to a wider community that may not have expert knowl-

edge of DL models but is steadily growing thanks to the countless DL libraries which is

making ML more accessible. The wide-spread adoption of DL only strengthens the need

for general, reassuring advice that can be put into practice and help people understand

the influencing factors in their work.

2.5 Conclusions

SA provides a lens which offers a view inside the black-box of DLmodels. Despite this po-

tential and inherent compatibility, there are few examples of formal SAmethodologies be-

ing applied to the hyper-parameters of DLmodels themselves, with themajority of works

concentrating on the model input data. This chapter contributed a thorough review of

SAmethodologies, DL practices, SA applications to DL and finished with suggestions and

recommendation on how SA should be applied to DL model hyper-parameters. By high-

lighting the benefits to efficiency and insights into explainability SA could offer DL practi-

tioners, we hope to encourage the adoption of SA within theML community.
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2.6 Summary

Sensitivity Analysis (SA) has the potential to be applied to Deep Learning (DL) the results

of which could improve the explainability of DL models. DL hyper-parameters are key to

model performance however there is little understanding of the extent of their influence

on model output. An extensive review of SA and DL was conducted to better understand

their compatibility and explore how SA andDL have been previously connected in the lit-

erature. This culminated in recommendations on how SA can be used in a DL context to

better informpractitioners regardingDLhyper-parameter tuning. SAcanaidpractitioners

in increasing the efficiency of the hyper-parameter tuning process by providing informa-

tion that will reduce the parameter search space. The results of the review suggest that DL

is a domain that would benefit from the application of SA as it can offer insight into DL

model explainability.

The key points of this review are summarised as follows:

1. Despite thepopularity and success of formal Sensitivity Analysis techniques in some

STEM sectors, there has been little adoption of Sensitivity Analysis in the Machine

Learning community, specifically in its application to Deep Learning.

2. Efficient use of time and computational resources is becoming increasingly chal-

lenging as Deep Learning models and datasets grow in size and complexity. Model

hyper-parameter tuning, finding theiroptimal values, is akeystep in improvingmodel

performance, the increasing cost of which is placing practitioners in an impossi-

ble position. Applying Sensitivity Analysis to the hyper-parameters and quantifying

their importance to model performance can aid and reassure practitioners in their

reduction of the parameter set, allowing them to improve efficiency without com-

promising performance.

3. Explainability is amajor focus of DL research, aiming to better understand themod-

els which are currently considered to be black-boxes. Sensitivity Analysis presents

an opportunity to better understand the contribution DL model hyper-parameters

make to the decision process.



Chapter 3

Methodology

The experimentation carried out explored hyper-parameter tuning from the novel angle

of using SA to reduce the parameter search space by establishing generally influential pa-

rameters. These influential hyper-parameters should be prioritised when tuning and can

reduce the search time without compromising model performance. The data required to

compute the sensitivity measures was collected by systematically changing the value of a

single parameter whilst controlling the rest and using the resultingmodel accuracy to cal-

culate the sensitivitymeasures. Twomeasures from state of the art SAmethods contribute

to a general ranking of hyper-parameters. SA is used successfully in other areas and indus-

tries, asdiscussed inChapter 2, toquantify importanceofparameters. Additionally,within

machine learningSAhasbeenused to reduce inputdata features. Thishistorymakes these

methods well prepared for this application. To increase the validity and reliability of the

resulting parameter ranking, which is explored further in tuning experiments, SA is con-

ducted on a variety of CNN architectures and image classification data-sets.

The aimof thisworkhas three key focus areas, whichhave shared anddistinctmethod-

ology:

1. SA of CNNHyper-parameters

2. Rank Informed Hyper-parameter Tuning

3. Case Study

This chapter, therefore, can be split into three sections, shown in Fig. 3.1. This work be-

gan with the development of a framework which facilitated the calculation of sensitivity

37



CHAPTER 3. METHODOLOGY 38

measures for DL CNNmodels, SADL, which will be discussed first. The second set of ex-

periments built on the results from the framework and explored how the resulting ranking

could be used to inform hyper-parameter tuning. Finally, the culmination of this work

tested the results in a case study.
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Figure 3.1: Thesis focus areas, a graphical overview of themethodology.
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3.1 SA of CNNHyper-parameters

The first phase of work encompasses the development of a framework that facilitates the

calculation of sensitivity measures for DL models. These measures can be used to deter-

mine the influence of hyper-parameters and produce a general ranking. Additionally, any

relationships between hyper-parameter influence and model architecture or dataset can

be identified. This sectionwasplanned to target theworkaimtobetterunderstandparam-

eter influence onmodel performance andwill contribute a formalised, quantified rank of

CNN hyper-parameters.

3.1.1 Sensitivity Analysis Framework for Deep Learning Development
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Figure 3.2: Sensitivity Analysis Deep Learning Framework (SADL) overview.

The Sensitivity Analysis Deep Learning Framework (SADL) was developed to produce

the sensitivitymeasures of two state of the art SAmethods, Sobol andMorris, for the train-

inghyper-parametersofCNNmodels. The frameworkcanbebrokendown into four stages;

inputs, training, SA calculation and rank generation. A high-level interpretation of the

framework is shown in Fig. 3.2 and early results were published in the International Con-

ference of Tools of Artificial Intelligence (ICTAI)(19).

3.1.2 Framework Inputs

Asshown inFig. 3.3, thereare three inputs toSADL:a sample setofhyper-parameter ranges,

modelarchitectureand trainingdataset. Thesample set, discussed further inSection3.1.3,

consisted of the values for each hyper-parameter. A samplewas generated for each hyper-

parameterunder investigationwhere thevaluesof thatparameterwerevariedand theoth-
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Figure 3.3: Sensitivity Analysis Deep Learning Framework (SADL) inputs.

ers remained consistent. Five model architectures were explored, and three image classi-

fication datasets. For each set of experiments the architecture and dataset had to be set to

calculate the sensitivity measures of the hyper-parameters for each combination.

3.1.3 Hyper-parameter Sample Set Generation
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Figure 3.4: Sensitivity Analysis Deep Learning Framework (SADL) sampling.

In the literature, SA approaches have an associated sampling method to produce the

requiredsample set shown inFig.3.4. InMorris’ case, a trajectory-basedsamplingmethod-

ology is used and in Sobols’ a Monte Carlo approach is taken (21). If SA was to be con-

ducted on the basis of simple, random sampling then there is no guarantee that the sam-

ple used did not contain clusters of points or areas of the domain space that were under-

represented. Employing a stratified sampling approach reduces these issues by slicing the

sample space into regions from which points are chosen for exploration. This results in a

well-proportioned sample. Informative SA is completely reliant on the number and dis-

tribution of sample points available for analysis which is why more detailed approaches

to sampling are applied.
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Rather than implementing two separate sampling methods, one sample was created

and used to calculate all sensitivitymeasures. LatinHyper-cube Sampling (LHS) is associ-

atedwith SA in the literature and provides amore structured approach than random sam-

pling by offering a higher probability of covering thewhole sample space (85). By combin-

ing desirable factors from stratified and random sampling techniques, LHS has the addi-

tional benefit of simple implementation, making it an ideal method for largemodels (86).

A sample of 100 variations was created for each hyper-parameter being explored. Morris’

methoddoesnot require a certain size of samplewhereas Sobol requires a larger sample to

provide a more correct measure of influence. This need for a large sample size increases

the computational cost of the method and so 100 was chosen as it provides the balance

between a sufficiently large sample and resource usage. A sample less than 100 would not

produce robust sensitivity measures and samples more than 100 do not increase the ro-

bustness of themeasures sufficiently to justify the cost (87).

3.1.4 Hyper-Parameters

Seven core training parameters were included in the scope of this work that are listed in

Table 3.1. The default values for the parameters and their ranges were decided based on

recommendations in the literature. Learning rate was highlighted inmanyworks as being

a significant hyper-parameter which should be prioritised for tuning (18). This influences

the hyper-parameter direction in this work as the set had to include learning rate, the pa-

rameter reported as one of the most important. By concentrating on training parameters

in these experiments the architectures could remain consistent and therefore, introduced

less resource constraints than experimenting with network depth and width would have.

Keeping the scope of hyper-parameters as training only also presents opportunities for

future work to explore architectural parameters and draw comparisons.

Table 3.1: DeepLearningHyper-parameters descriptions, symbols, ranges and
default values used for SA experimentation.

Parameter Description Range Default Value
Optimiser List of gradient descent (GD) algorithms. Category∗ Adam
Learning rate (α) Initial GD step controller. [1x10−7, 0.5] 0.001
Momentum (β) Acceleration factor for GD. [0, 0.99] 0.6
Learning rate decay (αdecay ) Reduction rate of (α). [0, 1] 0.9
Learning rate decay step (αd−step) Number of epochs between Learning Rate Decay. [1,100] 10
Batch size Size of training subset for GD update. Category∗ 32
Epochs Number of training cycles. [5, 1000] 100
Note: Category∗ indicate that there are two hyper-parameters with categorical ranges (88): (i) optimiser, Adam, SGD, RMSprop,
ADAdelta, ADAgrad and ADAmax; and (ii) batch size, 1, 32, 64 and 128.
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3.1.5 Model Architecture
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Figure 3.5: Sensitivity AnalysisDeepLearningFramework (SADL)model archi-
tecture.

Model Descriptions

A single architecture is explored at a timeusing the framework as shown in Fig.3.5. ADNN,

and four state of the art CNN architectures were investigated in this study: ResNet18 (58),

AlexNet (54), VGG16 (56) and GoogleNet (55). Including the DNN allowed for initial in-

sight into the application of SA to DL hyper-parameters that could be applied to CNNs.

The state of the art CNNs: ResNet18, Alexnet, VGG16 and GoogleNet are represented in

Fig. 3.6. This shows that the chosen architectures vary in depth and complexity. Using

CNN’swithavarietyof compositions in theexperimentsallowed for relationshipsbetween

hyper-parameter influence andmodel architecture features to come to light.

TheDNNarchitecturewas comprisedof a three layer networkwith 64units, basedona

MLP which is a general recommendation to practitioners starting out in DL andmachine

learning. This architecture was chosen to show the influence of hyper-parameters on a

small, simple network. Additionally, due to the shallower architecture, training the DNN’s

was quicker, allowing for the development of the framework (19).

The winner of ILSVRC 2012, AlexNet is a CNNwhich consists of 8 layers and 60million

trainableparameters. ThedevelopmentofAlexNet influencedseveral aspectsofDLmodel

design. With the advantage of increasing training speeds, Alexnet popularised the use of

ReLU over Tanh. Furthermore, overlapping pooling layers were introduced through this

architecture, decreasing the training error and the potential for over fitting. On the other

hand, dropout is required to decrease the risk of over-fitting caused by the high number of

trainable parameters resulting in an increase in training time required. As the shallowest
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Figure 3.6: Architectural diagrams of the state of the art models: AlexNet (top),
ResNet18 (middle-1),GoogleNet (middle-2) and VGG16 (bottom).

CNNarchitecture being considered, the network depthmay present issues when learning

features.

ResNet18 was chosen as ResNet architectures offer low training complexity and depth

whilst achieving a low error rate. Winning ILSVRC in 2015, ResNet achieved the largest in-

crease in accuracy since AlexNet (89) in 2012. The residual learning concept is the major

contribution and advantage of ResNet. Simply put, it improves model accuracy by focus-

ing on learning new features whilst also speeding up the training process.

GoogleNet achieved best accuracy in ILSVRC in 2014. Resource conservation was the

main focus of this architecture, a clear advantage when considering the current DL chal-

lenges surrounding computational resources. Comprised of 22 layers without pooling,

GoogleNet is the deepest of the CNN models assessed. The constant resource usage al-

lowed the analysis of this size of model on a single GPU however, it was the slowest to

train.

Runner up to GoogleNet at ILSVRC 2014, VGG16 is a popular architecture for image

classification tasks. VGG16 replaces the large kernel sizes in the AlexNet architecture with

consecutive 3x3 kernels producing amore discerning decision function. This did have the

side effect of slow training and producing large weights resulting in high memory utilisa-

tion.
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Model Implementation

Allmodelswere implemented in thePythonprogramming language, version3.7, using the

Keras (88) package for deep learning. Each architecture implementation follows how the

model was presented in the original papers to ensure the state-of-art characteristics that

set them apart as high-performing CNNs are present. The DNN architecture followed a

simple specification following recommendations for beginners in DL andmachine learn-

ing so that these groups of practitioners are represented in this work. Furthermore, the

simplicity of the DNN resulted in a very quick training time which facilitated the devel-

opment of the SADL framework. This allowed us to test the framework quickly, apply sev-

eral iterations of training, compute sensitivitymeasures andmake necessary adjustments

whereas the larger models could take hours/days to train, which would have caused seri-

ousdelays in the frameworkdevelopmentprocess. Utilising theDNNmodelduring frame-

work development overcame the hurdles of training time introduced with larger, deeper

architectures. For each dataset used in the experiments the first layers of the architectures

had to be adapted to the shape of the input data.

CCN Justification

As reported in the literature, the CNN architecture is themost adopted DL approach (90).

The popularity of the CNN can be explained by its applicability to a wide variety of super-

vised learning problems such as image classification, natural language process and object

detection. As a result there has been thorough research into optimising CNN architec-

tures, producing several state of the art models that practitioners and researchers can use

in their work such as ResNet, GoogleNet, AlexNet and VGG16. Understanding the influ-

ence of hyper-parameters on CNN architectures presents the most potential in terms of

useful impact. Presenting a ranking of CNNhyper-parameters that can aid inmodel opti-

misation would have a wider-reaching benefit compared to less popular architectures.

3.1.6 Training Data

Data Description

Input data to the CNNmodels were also a key element of the framework, shown in Fig.3.7.

MNIST, MNIST-Fashion and CIFAR-10 are the three image classification datasets used in
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Figure 3.7: Sensitivity Analysis Deep Learning Framework (SADL) datasets.

these experiments, examples of which are shown in Fig. 3.8. One of the most popular

benchmark dataset for deep learning isMNISTwhich consists of 28x28 grey-scale images.

Ten classes of handwritten digits present a relatively simple task for DL networks. MNIST

is split into 60,000 trainingand10,000 test images. Tomeasuredataset complexity a cumu-

lative spectral gradient (CSG)measure gives an indicationbasedon its overall separability.

MNIST has low levels of complexity, with a CSG of 0.11 reported in the original paper (91).

The second dataset chosen, MNIST-Fashion (92), shares many features with MNIST

including image size, format and test/training split. The images themselves are of fashion

products and thus present a new level of complexity as there are additional features that a

networkmust learn in order to accurately classify an image. Following themethodology in

the paper by Frederic Branchaud-Charron (91) the CSG ofMNIST-Fashionwas calculated

to be 0.51.

The most complex and challenging of the datasets is CIFAR-10, comprising of larger,

coloured images, 32x32, andmore varied 10 classes: airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, truck. As a result, this dataset has higher dimensionality which re-

quires more time to train. CIFAR-10 was calculated to have CSG of 3.8, confirming that it

is muchmore complex that MNIST andMNIST-Fashion.

The varying complexity in the chosen datasets presents the opportunity to analyse

the effect of dataset complexity on the influence of network hyper-parameters. Experi-

mentingwith a range of datasets aims to identify any relationships thatmay exist between

hyper-parameter influence and dataset complexity. Example samples from each dataset

are shown in Fig.3.8.
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Figure 3.8: Examples from each dataset; MNIST (row 1), MNIST Fashion (row
2) and CIFAR-10 (row 3).

Data Preparation

The preparation of the datasets consisted of three steps:

1. Split data into train and test sets

2. Normalise and re-shape data

3. Encode class data

The first step was separate the training data from the test data that would be used

for validation. Both the MNIST and MNIST-Fashion dataset had a split of 60,000 training

images and 10,000 test images whereas CIFAR-10 consists of 50,000 training images and

10,000 test images.

The second step in the data preparationwas to normalise the images. Rather than take

a just-in-timeapproach, all imageswerenormalisedandstored in this formatprior to their

input to the networks. The aimwas to convert the pixels in the images fromhaving a range

of 0-255 to 0-1. An additional step in the process includes centring the image, which shifts

the pixel distribution so that 0 is in themiddle.

The final step was to one-hot-encode the class data. This step is more relevant to the

MNIST-Fashion and CIFAR-10 datasets as the class labels are categorical and need to be

converted to numerical data for use within the networks. One-hot-encoding works by as-
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signing a numerical value to each unique categorical valuewhich is used to represent that

value throughout the training and validation of the network.

Justification for choosing image classification

Image classification is a classic machine learning task where images are assigned pre-

defined categories based on learned features and is a fundamental problem within the

wider field of computer vision (93). As a result is a popular problem that is tackled in re-

search with various facets to explore. Furthermore, the complexity and size of image data

can result in time and resource constraints in the tuning and training process where addi-

tional efficiency would be a benefit.

The three image classification datasetswere chosen as they arewidely used in research

which aids the validity and generalisability of this work. Furthermore, they are readily

available aiding in the reproducability of this work. Finally, they represent varying task

complexity whilst still being small enough that the work could be completed within the

proposed time-frame as the development process required re-trainingmodels repeatedly

the time constraints introduced by larger image datasets would have caused considerable

delays. Additionally, these datasets were small enough to be processed and stored with

general hardware making them applicable to the general DL practitioners that this work

aims to inform and aid.

3.1.7 Model Training

Figure 3.9: Sensitivity Analysis Deep Learning Framework (SADL) training.

For each sample point of hyper-parameter values in the sample set, the chosenmodel
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wasbuiltwith randomweight initialisation and compiledwith theparameter settings out-

lined in the sample. Once the model was set-up for that iteration, it was trained. Early

stopping was implemented concentrating on the accuracy achieved, with the highest ac-

curacy recorded alongside the value of the varied parameter. This was repeated for each

combination of architecture (n=5) and dataset (n=3) 100 times for each hyper-parameter

(n=7) resulting in 100×7×5×3 = 10,500 iterations to feed into the calculation of the sensi-

tivity measures. This process is outlined at a high level in Fig.3.9.

3.1.8 SA Calculation

Sample Set
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Compile 
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Hyper-Parameter 
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Data

Figure 3.10: Sensitivity Analysis Deep Learning Framework (SADL) sensitivity
measure calculations.

One aim of these experiments was to understand and quantify the influence of hyper-

parameters on model performance. This could be defined in several ways such as mini-

mal loss, high accuracy or training times to name a few. Within the scope of work, model

performance in this instance is defined as the accuracy achieved specifically the test ac-

curacy. This is a key element within the SA measure calculations. Two state of the art SA

methods, Sobol and Morris, were implemented as part of SADL which are discussed in

depth in Section 3.1.9 as shown in Fig.3.10. Two factors are required to calculate themea-

sures: themodel input and themodel output. In this case themodel input is a sample set

of varied hyper-parameters values and the outputs are the corresponding test accuracies.

These are used for both methods to produce sensitivity measures which quantify the in-

fluence of each hyper-parameter for each combination of model architecture and image

classification dataset.

SA has been designed to be implemented on numerical data, however there are some

model hyper-parameters that are represented categorically. Both the optimiser and batch



CHAPTER 3. METHODOLOGY 49

sizeparametershavecategorical inputvaluesand therefore the frameworkhad tobeadapted

to conduct SA for categorical data. Previousworks had handled this by removing the cate-

gorical options and conducting the SA on the absence of a value (14). This approach how-

ever, does not allow for further insights into which values of the parameter were most in-

fluential. To retain thepotential ofunderstandingcategorical influenceone-hot-encoding

was employed. This made it possible to represent the parameter values numerically for

the SA calculation whilst also being able to reverse the encoding and understand which

parameter values weremost influential.

3.1.9 Sensitivity Analysis

The aim of SA is to understand the outputs of a model in terms of its inputs and the most

popular methodologies are Sobol Indices and Morris Method. In this context, model in-

puts are the hyper-parameters andmodel output is the accuracy achieved. Bothmethods

were calculated separately, as shown in Fig.3.11 and Fig.3.12.

Morris Method or Elementary Effects
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Figure 3.11: Sensitivity Analysis Deep Learning Framework (SADL) Morris
Method.

TheMorrisMethod (9)orElementaryEffects (EE)applies local SAacrossa feature space,

to create a global measure and is classed as a screening method. The aim is to determine

the effect of input parameters to a model whether they be negligible, linear and additive,

nonlinear or involved in interactions with other parameters (21). Themeasures produced

areµ andσwhereµquantifies the overall influenceof a parameter andσ represents the in-

dependence of the attributed influence. Themeasures values range between 0 and 1 with

a higher value indicating themodel is more sensitive to the parameter.
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ModifiedMorris

Campolongo et al proposed a modification to the traditional Morris Method introducing

anadditional sensitivitymeasureµ∗ (30). Unlike theoriginalmeasures,µ∗wasable tohan-

dle groups of parameters, and could be considered a total sensitivitymeasure, combatting

Type 2 errors that the original µ measure was prone to. This method was tested against

variance-basedmeasures in Campolongo’s paper comparing µ∗ against themeasure pro-

duced from Sobol’s Indices for some models. They determined that µ∗ was an effective

substitute for STi . This is promising in terms of efficiency as computing µ∗ requires no

additional time and can be computed alongside the original EE sensitivity measures with

no additional cost.

Sobol’s Indices
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Figure 3.12: Sensitivity Analysis Deep Learning Framework (SADL) Sobol In-
dices.

Sobol’s Indices is a variance-based SA methodology which are considered to be state

of the art in the literature. The strengths of variance-based approaches are that they are

model independent and consider parameter interactions whilst representing the global

search space(21). On the other hand, the computational cost associated with calculating

thevariance-based sensitivitymeasures ishighand is inaddition to thecostof anumberof

model simulations. Twomeasures are producedby the Sobol Indicesmethod (8), the first-

order effects, Si , and total-effects, STi . These measures can be thought of as a percentage

of the variance in model output caused by the input being analysed and, as such, range

between 0 and 1. The higher the value of Si themore the variance in output is attributed to

that parameter whereas STi attributes the variance to the parameter under consideration

and its interactions.
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SA Implementation

TheSAmethodswere implemented in thepythonprogramming language. Therearepack-

ages where various SA methods have been implemented such as SALib (94) which is also

in python. The choice to code a separate implementation rather than utilise a package for

the SA was based on efficiency. SADL includes two SA methods and to reduce computa-

tion time both are calculated from the same inputs and outputs of a single sample. This

was not possible to do with the package implementation as they are built to create a sam-

ple for each run of themethod and there are differing default sampling approaches which

is dependent on the SA chosen. As a result, code was written to implement both Sobol

Indices and Morris Method within the SADL framework. Both sets of produced SA mea-

sures were also normalised using min-max normalisation and implementations of these

methods can be found in Appendix A for reference.

TheMorris method implementation was broken down to four functions:

1. Calculate the elementary effects

2. Get the increased values

3. Get the decreased values

4. Produce sensitivity measures

Sobol Indices was implemented in 3 stages:

1. Calculate Si

2. Calculate STi

3. Produce sensitivity measures

The final stage for bothmethods was to normalise the producedmeasures.

3.1.10 Hyper-parameter Rank Generation

The initial measures produced through the SA can be interpreted as rankings for each in-

dividual combination of architecture and dataset. Two SA methods were considered as

they can emphasise different areas of influence and, as a result, produce differing overall
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Figure 3.13: Sensitivity Analysis Deep Learning Framework (SADL) hyper-
parameter rank generation.

rankings. Therefore, at this point in the process, from themeasures produce (n=2), archi-

tectures (n=5) anddatasets (n=3), there are 2×5×3 = 30 rankings to take into consideration

to produce an overall, generalised picture of hyper-parameter influence.

Each hyper-parameter was ranked based on their influence onmodel accuracy. Their

rank was determined based on the sensitivity measures produced by both SA methods,

Morris and Sobol, equally. The sensitivity measures µ∗ and STi are utilised to understand

the influence of each parameter. These were chosen over the other measures produced

via SA as they aremore robustmeasures and are considered to be the best in the literature.

Both scores have a range of 0–1, the higher the score themore influential the parameter. A

high score in bothmeasures indicates that bothmethods are in agreement, validating the

ranking further. When bothmeasures do not agree the parameters scores distance from a

perfect score (1,1) is used to distinguish its rank amongst the other hyper-parameters. As

both methodologies take different data into consideration to produce the measures they

can place emphasis on different parameters which is why the combination of both SA ap-

proaches was used to produce a generalised ranking, as shown in Fig. 3.13. This rank-

ing took into consideration both SA methods by computing the Euclidean distance from

the highest possible measure value, 1 for µ∗ and 1 for STi , to the values each parameter

achieved. The smaller the distance the higher the parameter was ranked.

3.1.11 Experimental Design

Seven DL hyper-parameters were varied for one DNN and four CNN architectures, ex-

pandingon thearchitecturespreviouslyexplored (19), on three imageclassificationdatasets.

Table 3.1 gives an overview these hyper-parameters and their optimal ranges (95). SA ex-
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periments were conducted on a V100 GPU and had a sample set of size 100 variations

per hyper-parameter. The Keras (88) python library was used for model implementation.

Themeasures were normalised using themin-maxmethod to preserve the rank of hyper-

parameters.

The Wilcoxon Signed Rank statistical test was employed to compare the rank score

achieved by each hyper-parameter to the others to determinewhether a hyper-parameter

scored significantly higher than the other parameters. The p-value threshold used was

0.05. The Wilcoxon test was chosen as it is a non-parametric test and is, therefore, more

appropriate for for the results than the student-t test.

3.1.12 Limitations

The limitations of this methodology, Section 3.1, is related to numbers: the number of

architectures, datasets, hyper-parameters and SA methods. It could be argued that the

conclusions drawn from this work would be more robust if more had be been explored

however, the major constraints of this work were time and computational resources. The

nature of these experiments, repeatedly training DLmodels, is time consuming andwith-

out the computational resources to distribute these processes the scope of work had to be

tailored. As a result theDLarchitectures chosenwere all popular in literature and varied in

composition. The datasets chosenwere small, so as not to introducemore issues in terms

of timeand resources, but varied in complexity andare threeof themostwell known image

classification datasets. The focus of hyper-parameters was concentrated on the training

parameters that are introduced atmodel compilation as keeping architectural parameters

in scope would have increased computation time and required more resources for vary-

ing the depth and width of the architectures. The model architectures chosen were stat-

of-the-art so that their architectural hyper-parameter settings would already be optimal.

In terms of SA methods, more could have been included in the framework to contribute

to the rank however usually only one SAmethod would be used and so by computing the

twomost popular SAmethods and taking into account both in the final ranking this work

is taking amoreholistic approach toSA. The twoSAmethods chosenare the accumulation

of themethods that came before them and are themost widely adopted in literature.
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3.2 Rank InformedHyper-parameter Tuning
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Figure 3.14: Rank Informed Hyper-parameter tuning overview.

Thesecondphaseofexperimentation, summarised inFig. 3.14, takes thehyper-parameter

rankingproduced inphaseonewithSAanduses it to informtheprocessofhyper-parameter

tuning, HPO. A novel measure, accuracy gain, was created to measure HPO efficiency in

termsof tuning timeandaccuracyachievedand is introduced inmoredetail inSection3.2.4.

Accuracy gain was considered in relation to dataset complexity, CSG. This facilitates the

comparison of tuning efficiency of a variety of parameter groupings to better understand

if reducing the HPO search space to influential parameters could reduce time spent on

optimisation without compromising accuracy. Furthermore, relationships between tun-

ing efficiency andmodel architecture or dataset complexity can be identifiedwhich could

help practitioners make decisions regarding HPO.

3.2.1 Parameter Grouping
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Figure 3.15: Rank Informed Hyper-parameter tuning parameter grouping.

Five groupings of parameterswere identified for exploration; all 7 parameters explored
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by SA (see Table 3.1), the top ranked (batch size), the second ranked (learning rate decay),

the top two parameters (batch size and learning rate decay) and the top three parameter

(batch size, learning rate decay and learning rate decay step) identified through the SA of

CNNs. Defining these groups is the first part of setting the scope of exploration, as shown

in Fig. 3.15

The all parameters group represents the traditional approach to hyper-parameter tun-

ing, where the hyper-parameter space is explored in it’s entirety. The results of tuning this

groupwill serve as a baseline of performance (time to tune and test accuracy) that the per-

formance of the ranked groups can be compared against. This will then give an indication

of whether the performance of the ranked groups is better than tuning all parameters or

whether it is faster and less accurate and therefore something practitioners can decide to

compromise on for tuning speed.

Four SA influence ranked groups were chosen to explore whether there are optimal

groupings of the top ranked parameters that should be considered for tuning. Combi-

nations and subsets of the top three ranked parameters were targeted to tune for perfor-

mance comparison.

3.2.2 Model Architectures and Training Datatsets
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Figure 3.16: Rank Informed Hyper-parameter tuning model architectures and
datasets.

Building on the methodology described in Sections 3.1.5 and 3.1.6 the five architec-

tures: DNN, ResNet18, AlexNet, VGG16 and GoogleNet, and the three datasets: MNIST,

MNIST Fashion and CIFAR10 continue into the ranked hyper-parameter tuning phase, as

shown in Fig. 3.16.
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3.2.3 Bayesian Optimisation

Bayesian Optimisation is considered to be the state of the art in hyper-parameter tuning

literature and is used to optimise "expensive "black-box" functions" (96) such as neural

networks and DLmodels. This is why this method was chosen, as shown in Fig. 3.17.
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Figure 3.17: Rank Informed Hyper-parameter tuning Bayesian optimisation.

Theory of Bayesian Optimisation

The core principal of Bayesian optimisation is reflected in the following equation which

states that the posterior probability P (y |xn) of amodel y , given data xn is proportional the

likelihood P (xn |y) of observing xn givenmodel y multiplied by the probability of P (y) (72):

P (y |xn) ∝ P (xn |y)P (y) (3.1)

The combination of the distribution of the model P (y) and the data xn is used to ob-

tain the posterior of the function which can then be used to discover where that function

is maximised given some criteria. This criteria, u, is often referred to as the acquisition

function and is used to determine the next sample point by aiming tomaximise u.

This feeds into the Bayesian optimisation framework which consists of two parts: a

probabilisticmodelanda loss function (97). Theprobabilisticmodel reflects thebehaviour

of theunknownobjective functionwhilst the loss function is the target of theoptimisation,

either tomaximise or minimise depending on its nature.

A key advantageofBayesianoptimisationover otherHPOmethods is that it is designed

to be sample efficient. By employing adaptive sampling strategies Bayesian optimisation

can reduce the number of evaluation functions required to find an optimal solution (96).
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Bayesian Optimisation Implementation

In this work, the implementation of Bayesian optimisation from the python library hyper-

opt (98) was used. The approach chosen was the Tree-structure Parzen Estimator (TPE)

and was set up to minimise the loss during training. The choices made were to reflect

common practice so that the results produced would be useful to a wide-ranging audi-

ence.

The hyperopt library provides a framework for implementing hyper-parameter tuning

allowing for definition of configuration space and evaluation function, creating a formal

approach to the optimisation of DL models. Furthermore, hyperopt was developed with

the hyper-parameters of DLmodels inmind, especially CNNs.

Justification for choosing Bayesian Optimisation

As the state of the art HPO Bayesian Optimisation was chosen as the tuning method as it

is considered to be a rigorous approach for the optimisation of DL models (96). Within

the application of machine learning and hyper-parameter tuning, Bayesian optimisation

has receivedpositive attention in literature over traditional cross-validationmethods (97).

This approach toHPOsuits the scopeof thisworkas it ismore successfulwhere there is low

to moderate dimensionality (97). By working within a moderate hyper-parameter search

space of seven training parameters Bayesian optimisation can perform optimally, though

in the context of DL the effect of dimensionality is lessened (97).

3.2.4 Important Measures

To evaluate model performance and understanding the influence of the highest ranked

parameters four key measures are considered: dataset complexity (CSG), test accuracy,

time and a novel metric accuracy gain (j).

CSG

Cumulative Spectral Gradient (CSG) is a measure which quantifies the complexity of a

dataset based on the overall separability of classes (91). Following the methodology laid

out in (91) we calculated 20 CSG values for each dataset to produce a range of complexity

forMNIST,MNIST-Fashion andCIFAR10. These ranges facilitate the demonstration of the
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Figure 3.18: Rank Informed Hyper-parameter tuning CSG calculation.

relationship between dataset complexity, CSG, and the accuracy gain,j, of the different

parameter groups.

As explained in (91) the ability of aDLmodel to generalise cannotbebasedonarchitec-

ture and parameters alone, the input data also plays a role in this and being able to quan-

tify the complexity can give an early indication of model performance. The CSGmeasure

was tailored for image classification data and CNN architectures where other comparable

c-measures which were designed for raw, linearly-separable data. Furthermore, the CSG

metric was designedwith performance inmind and has a quicker calculation time and as

a result is an important measure to be considered as shown in Fig. 3.18.
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Figure 3.19: Rank Informed Hyper-parameter tuning test accuracy.

When evaluating a DLmodel, accuracy is a key metric that can indicate the success of

training. However, the term accuracy is much broader than it may initially seem and, as

a result, may not provide a clear picture of model performance. Exploring accuracy with
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more granularity reveals differences in training accuracy vs test accuracy. A strength of

DL, which contributes to its popularity and adoption, is the ability to generalise to unseen

problems and data and a models generalisability is more accurately reflected by test ac-

curacy (99). This occurs because models can adjust their weights to the training data so

rigorously that the model achieves very high training accuracy because it has learnt the

dataset and therefore cannot perform to the same level on validation data, commonly re-

ferred to as over-fitting in the literature. Concentrating on the test accuracy achieved by

themodel, as shown in Fig. 3.19, gives a better indication on the generalisablability of the

model once trained. Ensuring that a model can perform effectively on unseen data is a

crucial part of training that needs to be prioritised.
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Figure 3.20: Rank Informed Hyper-parameter tuning training time.

Computational cost is an important topic within DL and an element of this cost is the

time it takes to train a model. Time constraints can dictate the scope of HPO, training

length and as a result the accuracy of the model. Simply, time can be estimated as the

real-time implementation of training which, practically, is the most useful to a DL practi-

tioner trying to estimate the cost of work. As model complexity increase, execution time

also increases (100) and sounderstanding the influence of reducingHPO to influential pa-

rameters only on run times would be beneficial. So that the time is easily interpretable it

will bemeasured in seconds/minutes/hours, as shown in Fig. 3.20.
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Figure 3.21: Rank Informed Hyper-parameter tuning accuracy gain (j).

Novel Measure: Accuracy Gain

Toquantify the effect aparameters tuninghasonmodel accuracywedevelopedameasure

which conveys the average accuracy gained per unit of time, Accuracy Gain (j), shown in

Fig. 3.21 and defined as;
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A = ai −mi n(a) (3.2)

T = τi

mi n(τ)
(3.3)

ATi = A× 1

T
(3.4)

j=
∑n

j=1
(a j −mi n(a))mi n(τ)

τ j

n
=

∑n
j=1 AT j

n
(3.5)

where a represents a list of accuracies obtained from Bayesian optimisation trials and τ

represents a list of timings for those trials. In equation 3.2.4 dividing the top of the fraction

by the smallest time value acts as a scaling factor, allowing the measure to be computed

and subsequently compared for varying units of time. Doing this allows the comparison

of problemswhich require days vs hours of training so that the resultingmeasure is not bi-

ased to simple/quicker problems. Thismeasure AT quantifies the efficiency of optimising

a set of parameters and canbeused tomake comparisonsbetween thedifferent groupings

of parameters for the different combinations of architectures and datasets. Through this

measure it is possible to see whether tuning a specific group of parameters is more time

and accuracy efficient than others. Knowing this can help practitioners decide which pa-

rameters to tune based on the time and computational constraints theymay have.

The rune Jera (101, 102, 103), j, was chosen to denote Accuracy Gain as it’s mean-

ing surrounds the idea of time and cycles, traditionally related to the harvest. Accuracy

Gain,j, as a metric relays the accuracy that can be achieved given time much like what

resources a harvest can yield given a set cycle of time and sojwas chosen.

3.2.5 Producing an Optimal Setting

By conducting Bayesian optimisation optimal values for each hyper-parameter value is

recommended that should be used for training and the model going forward as shown in

Fig. 3.22.
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Figure 3.22: Rank Informed Hyper-parameter tuning optimal settings recom-
mendation.

3.2.6 Experimental Design

Five groups of parameters were explored over five DL architectures and three image clas-

sification datasets of varying complexities. One hundred trials of Bayesian optimisation

were carried out for each combination of parameter group, architecture and dataset and

theBayesianoptimisationwas implementedusing thepopularhyperoptpython library (98).

A combination of a v100 GPU and a distribution of roughly 50 lab machines with Genie

VIG830S, Precision T1700 andEU1009695;2110114were used to run the experiments. The

50 lab machines were split into arbitrary groups of 10 and the 100 Bayesian optimisation

trials were distributed across the machines in an arbitrary group for that set of trials. The

choice to use a variation of hardware was made to reflect the various set-ups that are re-

alistic for DL practitioners whomwe aim to aid through this work. The results showed no

significant difference in time between 100 trials run on the v100 or 100 trials distributed

across the labmachines.

TheWilcoxon statistical test will be employed here to compare the test accuracies and

times achieved by the various parameter groups. This will highlight if a groups perfor-

mance is significantly better than another. The threshold for the p-value was 0.05.

3.2.7 Limitations

As mentioned above one of the potential limitations was using multiple hardware setups

as it couldbe argued that the results produced arenot comparable however therewas little

to no difference in the GPU results when compared to the distributed set-up approach.

The labmachines were not individually compared to the GPU to combat this.
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3.3 Case Study

The final phase of experimentation, depicted in Fig. 3.23, takes the outputs from phases

one and two and applies it to a real world scenario. The purpose of conducting a case

study is to verify the results from the first and second section ofmethodology and observe

whether the results stand and whether SA identified influential parameter groups would

improve tuning efficiency outside of the experimental framework created in this thesis. In

short, to get an indication of whether the results of this thesis would generalise to other

problems.
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Figure 3.23: Case Study overview.

3.3.1 Application Area

The use of DL in medicine is growing, and medical imaging in particular is exploring the

potential of CNNs (104). To better explore howmachine learning andDL in particular can

beappliedandbenefitmedical imaging, initiatives suchasOpenNeuro (105), BioBankUK(106)

and The Cancer Imaging Archive (107) have been developed to further research efforts in

this area.

Following this vein, the target paper of this case study focuses on the detection of col-

orectal cancer (108). DL models were trained to classify images as either being benign or

malignant anddemonstrated reliable, reproducible results that support the benefit of em-

ploying DL techniques tomedical learning tasks.

3.3.2 Model and Dataset

In the instance of the case study, the model architecture and training data, referred to in

Fig.3.24, were dictated by the paper being replicated.
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Figure 3.24: Case Studymodel architecture and dataset.

Model Architecture

Thepaper (108) focusesonResNetarchitectures, specificallyResNet18andResNet50. There

isoverlapherewith thework in this thesiswhereResNet18wasalsoexploredandsoResNet18

was chosen for the case study as the outputs of SA ranking and the ranked Bayesian opti-

misation will be directly applicable to this architecture.

Dataset

The dataset used (108) was theWarwick-QUdataset of colorectal cancer images, shown in

Fig. 3.25,whichwasusedaspartof theGlandSegmentationChallengeContest (GlaS) (109)

in 2015. This dataset consists of 165 images in .bmp format with a 37:48 training split and

37:43 test split (benign:malignant). The images included were collected from University

hospitals acrossCoventry andWarwick in theUK. There is nopersonal data included, only

the images themselves and their classification so there is no need for ethical review of this

case study.

Dataset Preparation

The preparation of the dataset followed (108). The images and labels were organised into

test and train and converted into grey-scale. Contrast-Limited AdaptiveHistogramEqual-

isation (CLAHE) was applied to improve the contrast in the grey-scale version of the im-

ages. Finally, the images were resized to be consistent with one another. Three train test

splits were explored (108): 60%:40%, 75%:25% and 80%:20%. The highest accuracy was

reported with the 80%:20% train test and so this was chosen for the case study.
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Figure 3.25: Case Study dataset examples.

3.3.3 Parameter Grouping
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Figure 3.26: Case Study parameter groupings.

Theparametergroupsneedadjusting to reflect those fromthepaper, as shown inFig. 3.26

and Table 3.2. The first group of parameters explored were those highlighted in the target

work (108), henceforth referred to as the paper parameters. The optimiser used was SGD

and theparameters thatwere tunedwere the learning rate andmomentum. The loss func-

tionused in thepaperwasbinarycrossentropy. Tokeep this as close to theoriginal settings

the default optimiser for this group is set to SGD, the loss used was binary cross-entropy.

The parameters subjected to tuning are learning rate andmomentum.

Todetermine the top twogroupsof influentialparameters to tune theCSGof thedataset

will be calculated and compared against the results of the previous chapters for ResNet18.

This highlighted batch size only and top three influential parameters (batch size, learning

rate decay and learning rate decay step) as having the best potential for the complexity of

the data set and architecture combination.
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Table 3.2: Case study parameter group definition summary.

Groups Parameters
Paper Learning rate, momentum
Top Batch size
Top Three Batch size, learning rate decay, learning rate decay step
All Batch size, learning rate decay, learning rate decay step, optimiser, momentum, learning rate, epochs

The final group includes all hyper-parameters from the original scope of this work.

3.3.4 Hyper-parameter Tuning

As explained in further detail in Section 3.2.3, the hyperopt library was used to conduct

Bayesian optimisation on the above parameter groups. For each parameter group 100 tri-

als of HPO were completed and the test accuracy, and time of each trial was recorded for

evaluation, as shown in Fig. 3.27.
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Figure 3.27: Rank Informed Hyper-parameter tuning CSG calculation.

3.3.5 Case Study Evaluation

The evaluation of the case study consisted of producing the test accuracy, recording the

time to conduct the tuning and computing the Accuracy Gainj, as shown in Fig. 3.28.
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Figure 3.28: Rank Informed Hyper-parameter tuning CSG calculation.
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Test Accuracy

The test accuracy was recorded as themainmeasure ofmodel success and is a commonly

usedmetric (110). Test accuracy indicatesmodel performance on validation data thatwas

not used in the training of themodel. This not only shows how accurate the model is but,

unlike training accuracy, it also shows that themodels performance is less likely to be be-

cause it has learned the training examples. As a result, test accuracy as a metric better

reflects that themodel has learned the problem rather than the training examples.

Precision, Recall and F1-Measure

Classification problem results can be evaluated in the form of a confusion matrix which

sorts the predictionsmade by themodel into four categories: True Positive, False Positive,

FalseNegative andTrueNegative, shown in Fig. 3.29. This can thenbeused to evaluate the

precision and recall of the model which can provide more insight to model performance

than test accuracy alone.

Precision, also know as the Positive Predictive Value (PPV), is considered to be amea-

sure of quality. This allows the model to be evaluated in terms of how well it predicts a

specific class by representing the percentage of correctly classified positive samples (110).

Recall, also referred to as sensitivity, is considered to be a measure of quantity. This

measure evaluates themodel in terms of howmany times it recognised a specific class.

F1-measure combines both precision and recall and is the harmonic mean of both of

thesemeasures, emphasising the importance of both (3). If either precision or recall is low
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Figure 3.29: Accuracy measures for classification problems. PPV: Positive Pre-
dicted Value. NPV: Negative Predicted Value. (After Dinga (3))
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then the F1-measure will be and so both need to be high in order for a model to achieve a

high F1 score. The higher the F1 score the better themodel performance.

Time

Aspreviously, theHPOtrialsweremeasured in real-time (seconds/minutes/hours) soas to

evaluate the time to complete in away that DL practitioners would find relatable. Though

clock-cycles may facilitate comparisons of the hyper-parameter groups more thoroughly

the aim here is to quantify the time saving, if any, to the practitioner and so seconds, min-

utes and hours of computation time were used for evaluation.

Accuracy Gain

The novel metric, Accuracy Gainj, was used to evaluate the efficiency of the influential

parameter groups against those laid out in the original work. The higher the Accuracy

Gain, themore efficient the HPO of the parameter group.

CSG

Dataset complexity, CSG, was calculated to choose the top two parameter groups that

should be most efficient in terms of Accuracy Gainj as early results suggested the com-

plexity of the input data effectedwhichparameter groupsweremost efficient (effectedAc-

curacyGainj). This can also be used tomake direct comparison against the results of the

case study and the previous works with the various datasets from previous experiments.

3.3.6 Experimental Design

The case study experiments were completed using Google Colaboratory (Google Colab)

cloud solution. The associated GPU that was allocated as part of the cloud service was

the Tesla P100-PCIE-16GB. For these experiments therewas 12GB-16GBof RAMavailable.

This service has been widely adopted allowing for general access to high-performance

computing that many ML practitioners will now be able to utilise. Google Colab is also a

simpler,more cost-effectiveoption (111) compared topurchasingand settingup thehard-

ware directly. 100 trials ofHPOwere complete for each parameter group identified: paper,

top, top three and all.
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TheWilcoxon statistical test will be used to identify parameter groups that performed

significantly better than others in terms of test accuracy, time, precision, recall and F1-

measure. The threshold observed for the p-value will be 0.05.

3.3.7 Limitations

The case study was limited by and to the information available in the original paper. This

studywas chosen as it provided details on dataset pre-processing andHPOhowever it did

not share the final settings chosen for the other parameters and so these had to be as-

sumed. Furthermore, there were no specifics regarding image sizes to follow and so this

may have differed from the original work. These potential deviations from the original

study could explain any differences observed inmodel performance. Tomitigate this lim-

itation the original experimentwith the describedHPOwas replicated and the results pro-

duced were used to compare against the influential parameter results.

3.4 Summary

The methodology of this work was split into three distinct sections, the results of which

were designed to feed into the next. The initial stage, SA of CNN Hyper-parameters, out-

lined a novel framework, SADL, to enable SA be conducted for the hyper-parameters of

CNNmodels where the image classification dataset andmodel architecture were change-

able. The aim of this was to produce a general ranking of popular DL training hyper-

parameter influence on CNN model accuracy. The second stage, Rank Informed Hyper-

parameter Tuning, introduced a novel metric - Accuracy Gain j to evaluate HPO effi-

ciency, and conducted tuning on various parameter groups to compare tuning perfor-

mance of all parameters against that of the most influential parameters. Finally, the re-

sults of the first two stages of work were applied to a real world case study to better under-

stand the significance of SA of CNN hyper-parameters on HPO efficiency. Calculating the

Accuracy Gain for the SA identified influential parameters for a new architecture/dataset

combination, with the aim to compare the efficiency and final test accuracy against that

reported in the chosen paper aims to show whether the results from earlier in this thesis

stand and are generalisable.



Chapter 4

Sensitivity Analysis of

Convolutional Neural Networks

This chapter begins with the implementation of the SADL framework and any deviations

from themethodology set out in Chapter 3, Section 3.1. This is followed by a presentation

of this chapters results and a discussion. This is then summarised into a conclusion at the

end of the chapter which feeds into the next avenue of exploration.

4.1 Implementation

The implementation of the SADL framework followed the methodology laid out in Chap-

ter 3, Section 3.1.

4.1.1 Software Re-usability

The modular design and implementation of the SADL framework allows for it’s re-use to

conduct SA for otherCNNarchitectures and imagedatasets. Withminimalmodification it

could also be adapted to alternative architectures and tasks. This would also allow for the

addition of other SA and samplingmethods to the framework in the future. SADLwas im-

plementedwith theKeras python library inmindand therefore cannot beused formodels

created using alternative libraries such as PyTorch.

70



CHAPTER 4. SENSITIVITY ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS 71

4.1.2 Sensitivity Analysis

The code for the implementationof theMorrismethodandSobol’s Indiceswas influenced

by theSAlibpython library (94, 112). Where theSAlib library implements specific sampling

methods for each SAmethod, the SADL framework uses one sample and one set of inputs

andoutputs tocalculateboth sets SAmeasures. SADLwas implemented thisway to reduce

computation time by not duplicating the sampling and training trials for the various SA

methods.

4.1.3 Resource Constraints

There were elements of running the experiments that did not run as smoothly as antic-

ipated as a result of resource constraints. The SADL framework training loop was pro-

grammed to take the hyper-parameter settings for each trial, compile, build and train the

model and record the achieved accuracy 100 times for each parameter. The total number

of trials for eachmodel architecture and dataset combination was 700 (7 parameters) and

these 700 trials were designed to be completed iteratively in one run of the framework.

A memory leak in the Keras fit function and the memory intensive nature of the experi-

ments resulted inOut OfMemory (OOM) errors which disrupted experiments. To combat

this the codewas optimised asmuch as possible to reduce the use ofmemory for variables

and conserve it for the training loops. Additionally, the input and output of each trial was

written to file so that if an OOM occurred the experiment could be continued from the

point where it was interrupted withminimal loss of data.

4.1.4 Agile Development

AnAgileapproachwas taken to thedevelopmentof theSADLframework. TheAgilemethod

of software development promotes speed and adaptability (113), repeating the software

design life-cycle iteratively andbringing the resultingoutputsof these "sprints"ofwork to-

gether into a final product. As SADLwas designed to bemodular, developing it in this way

was complimentary to the nature of the desired output. Each module was designed, im-

plementedand tested in turn: sampling,modelarchitectures, trainingdatapre-processing,

SA methods, model fit/train and capturing the outputs. The final iteration brought the

modules together and integration testing was completed to ensure that the various parts
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of the framework were compatible and passing data correctly. An advantage of taking this

approach was the ability to adapt to change when necessary. The issues introduced by

resource constraints would not have been as easy to mitigate if a waterfall approach had

been taken to implement the framework as the testing that uncovered the issues would

have taken place much later in the development cycle. By approaching this in an Agile

way, when this issue arose, it was relatively simple to adjust aspects of themodules to add

mitigating code. Furthermore, it was possible to prioritise the implementation of the fix

without toomuch disruption to the project plan.

4.1.5 Informal Testing

Testing of the framework was completed as it was developed. Results were validated us-

ing understanding of the SA methodologies and realistic outputs and results from other

implementations of the methods such as SALib. As the framework was implemented in a

modular way each module was tested and then the integration of the module was tested.

As is common in many solo developed projects many issues were resolved as they arose

rather than as a result of strict testing, with bugs and errors being dealt with organically

as they became apparent. Several versions were developed during the implementation

process improving on flaws to produce a final, robust framework.

4.2 Results

This section presents the results of the SA conducted on the CNN architectures: DNN,

ResNet18, AlexNet, GoogleNet and VGG16, on all three datasets: MNIST, MNIST Fashion

and CIFAR-10. Fig. 4.1 shows the accuracy of the models for each value of the parame-

ters trialled to show how the variance in the parameter settings resulted in variance in the

model accuracy. The rows represent the parameters, whereas the columns represent the

datasets and the colours indicate the architecture. The inference from these charts can be

considered a simple form of SA on its own, however they cannot consider the influence of

a parameter in terms of its interactionswhich is included in the SAmeasures. The two cat-

egorical parameters, batch size andoptimiser, are displayed as point plotswhere thepoint

is the mean and the lines are the standard deviation. The numerical parameters are dis-

played as line plots where the central dark line is the mean and shaded area surrounding
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Figure 4.1: Test accuracymean and standard deviation of hyper-parameter tri-
als at varied values to give early indication of influence. The straighter the line
the less influence the parameter will be expected to have. See Table 3.1 for
hyper-parameter details.
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Figure 4.2: STI and µ∗ measures, column indicates dataset and row indicates
architecture. Top-right corner of the plot indicate high rank. See Table 3.1 for
hyper-parameter details.

it represents the standard deviation. Fig. 4.2 shows the SA measures that were produced,

µ∗ and STi . Each measure, ranging between 0-1, indicates high influence with a higher

score. The columns represent the datasets and the rows represent model architectures.

The x-axis is the Sobol measure and y-axis is the Morris measure. Scores in the top-right

quadrant of the chart shows that bothmeasures have ranked theparameter as havinghigh

influenceand if it falls into thebottom-left bothmeasures agree that parameterhas low in-

fluence. If the parameter falls into either the top-left or bottom-right quadrants this shows

that the twomethods have not agreed on the ranking of the parameter. This chart is used

as an early indicator of importance before the final ranking is produced.
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4.2.1 Sensitivity Analysis

The initial results, shown in Fig. 4.1, gives an early indication of the influence of each pa-

rameter on the accuracy of a model before the SA measures are calculated. For each ar-

chitecture, indicated by the coloured lines, on each dataset, represented by the columns,

model accuracy is shown for each variation in parameter values. The rows in the chart are

the different parameters. Themore variation seen in the lines that represent the architec-

tures the more influence the parameter can be said to have. This is observed consistently

for batch size, row 1 in Fig. 4.1, and learning rate decay, row 2 in Fig. 4.1, across architec-

tures anddatasets. Conversely, there ismuch less variation observed for learning rate, row

5 Fig. 4.1, particularly for the GoogleNet, DNN and ResNet18 architectures. There is some

variation observed for VGG16 and AlexNet, moreso for the MNIST dataset. Momentum,

row 6 Fig. 4.1, has the least variation of all parameters across all architectures and datasets

indicating low influence.

DNN SA results are shown in Fig. 4.2 row one. Batch size was clearly ranked as most

influential on the CIFAR-10 dataset as it is located in the extreme top-right of the chart. It

is also ranked highly influential on theMNIST andMNIST Fashion datasets by theMorris

measure. Optimiser is also influential for theDNNon theMNIST andCIFARdatasets. The

lower rankedparameters consist of number of epochs, which is consistently in the bottom

left quadrant of the charts and learning rate is also ranked low for theMNIST Fashion and

CIFAR-10 datasets contradicting the importance placed on tuning the learning rate in DL

and hyper-parameter tuning literature.

As seen in the DNN results, CIFAR-10 has a clear most influential hyper-parameter for

the ResNet18 architecture: Learning Rate Decay. Fig. 4.2, row two, shows that the learn-

ing rate itself was ranked amongst the least influential parameters. This result highlights

the possibility that the parameters effecting learning rate aremore influential than the ini-

tial learning rate itself despite the emphasis placed on learning rate in the literature. Mo-

mentum is also generally ranked highly for ResNet18 supporting the notion that factors

affecting learning rate are more influential.

The results of AlexNet are shown in Fig. 4.2, row three. Batch size is ranked most in-

fluential on the MNIST and MNIST Fashion datasets and is ranked second for CIFAR-10

suggesting a generally high influence on AlexNet’s test accuracy. Batch size extends to

other architectures, ranking most influential for multiple datasets for the DNN architec-
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ture. This suggests a potential correlation between optimal batch size and good test ac-

curacy, independent of CNN architecture or dataset. Conversely to observations of the

previous architectures, learning rate decay is ranked lowest forMNIST Fashion despite it’s

influence onAlexNet for the other datasets and inprevious experiments. This presents the

possibility that the complexity of the dataset can effect the influence of parameter. Once

again, learning rate’s influence is low, contrary to expectations set by the literature. Num-

ber of epochs is also consistently ranked as having low influence.

The GoogleNet results share a common most influential hyper-parameter, learning

rate decay, across all datasets. There is also agreement on this by both Morris and Sobol,

indicated by its position in the top-rightmost quadrant in Fig. 4.2, row four. Learning rate

decayhas also been ranked as influential in previous experimentswhich suggests a poten-

tially generally influential parameter. As observed consistently, learning rate is amongst

the lowest ranked hyper-parameters.

VGG16 on the MNIST datatset is most influenced by batch size. It is the most influen-

tial parameter by far as shown in Fig. 4.2, row five, as all other parameters are grouped in

the bottom left corner of the chart. The secondmost influential parameter for theMNIST

dataset is learning rate decaywhich is themost influential parameter for theMNIST Fash-

ion dataset. The most influential parameter on VGG16 for the CIFAR dataset was the op-

timiser. Learning rate is amongst the lowest ranked hyper-parameters once again for all

experiments.

These results were analysed to identify patterns of influence of the hyper-parameters.

Firstly, a generalised score was calculated for each parameter which determined the final

ranking, shown in Table 4.1.

4.2.2 Ranking

Table 4.1 summarises the final rank of hyper-parameter influence taking into considera-

tion the results of both SAmethodologies. Results highlighted in bold represent the most

influential parameter for that combination of architecture and dataset. The final column

takes an average of parameter scores and represents the final ranking produced. Batch

size was ranked as most influential overall, having the lowest average distance from per-

fect SA scores, followed closely by learning rate decay. The Wilcoxon Signed Ranks test

confirmed that the ranking of batch size was significantly higher than all other parame-
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Table 4.1: SAEuclideandistance frombest score, (1,1), to actual score, (µ∗,STi ).
High influence indicated by smaller distance.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter M MF C M MF C M MF C M MF C M MF C Average
Batch Size 0.90 0.75 0.17 1.33 1.00 0.92 0.00 0.41 0.76 0.00 0.95 1.10 1.06 0.54 0.75 0.71
Learning Rate Decay 1.14 1.40 0.46 0.98 0.98 0.08 0.94 1.17 0.47 1.04 0.51 1.17 0.00 0.23 0.44 0.73
Learning Rate Decay Steps 0.96 1.09 0.69 0.98 1.27 1.00 1.10 0.79 1.12 1.20 0.90 0.69 1.20 1.03 0.75 0.98
Optimiser 0.84 1.28 0.41 1.06 1.05 1.20 1.19 0.96 1.13 1.33 1.12 0.60 1.23 1.33 0.98 1.05
Learning Rate 1.00 1.29 0.53 1.00 1.05 0.98 0.89 1.06 1.08 1.23 1.15 1.14 1.30 1.41 1.26 1.09
Momentum 1.04 0.85 0.74 0.52 1.00 1.16 1.15 0.99 1.37 1.09 1.41 1.19 1.41 1.15 1.34 1.10
Epochs 1.25 1.23 0.43 1.03 0.99 1.17 1.16 1.12 1.35 1.12 1.17 1.07 1.37 1.37 1.00 1.12
Note: Dataset names abbreviated in above table asM forMNIST, MF for MNIST Fashion and C for CIFAR-10.

ters apart from learning rate decay, which was ranked second, with a p-value threshold

of 0.05, as shown in Table 4.2. Batch size was ranked highest on the shallower networks,

DNN and AlexNet, whereas learning rate decay was ranked highest on deeper networks,

ResNet18 andGoogleNet. In themiddle, VGG16washighly influencedbyboth top ranking

parameters depending on the dataset.

As observed in the SA results, learning rate was ranked amongst the least influential

parameters, and is third-least influential overall. Momentum is also ranked as having lit-

tle influence, which is expected due to the lack of variation shown in Fig. 4.1, however

does rank highest in one instance which could be attributed to its interactions which are

not reflected in Fig. 4.1 and redeems it from being the least influential parameter overall.

Number of epochs is the least influential parameter, ranking last overall.

4.3 CNN Sensitivity and Patterns of Influence

Themost influentialparameteracrossall architecturesanddatasetswasbatchsizeas shown

in Table 4.1. As batch size effects stochastic gradient descent learning algorithms that

are widely used in DL (95) this could explain the sensitivity CNNs showed to this param-

eter. For example, the impact of optimal batch size was demonstrated when ResNet50

Table 4.2: Results of the Wilcoxon Signed Ranks test: p-values for each pair of
parameters to demonstrate whether the Euclidean distance rank (and thus in-
fluence) of one hyper-parameter is significantly different from that of another
hyper-parameter across the datasets andmodel architectures explore. P-value
threshold is 0.05.

Batch Size Learning Rate Decay Learning Rate Decay Step Optimiser Learning Rate Momentum Epochs
Batch Size - 0.88866 0.03 0.0198 0.00318 0.01108 0.00452
Learning Rate Decay 0.88866 - 0.11642 0.06876 0.0536 0.0536 0.02144
Learning Rate Decay Step 0.03 0.11642 - 0.17384 0.11184 0.17384 0.03572
Optimiser 0.0198 0.06876 0.17384 - 0.37886 0.56868 0.267
Learning Rate 0.00318 0.0536 0.11184 0.37886 - 0.71138 0.6672
Momentum 0.01108 0.0536 0.17384 0.56868 0.71138 - 0.77948
Epochs 0.00452 0.02144 0.03572 0.267 0.6672 0.77948 -
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was trained on ImageNet with 76% accuracy by only increasing the batch size (114). It

was also observed that batch size plays amore important role than CNN depth and it was

concluded that batch size tuning should be prioritised over network architecture param-

eters (77). The importance of batch size to CNN performance reported in the literature is

supported by the SA conducted, where it was ranked either most or secondmost influen-

tial in themajority of experiments andwas considered to be themost generally influential

on CNN accuracy. The results of comparing the achieved distances by each parameter to

best score using the Wilcoxon Signed Ranks statistical test, reported in Table 4.2, showed

that batch size was significantly close than all other parameters but learning rate decay,

confirming that the rankinghad correctly determined themost influential parameter. The

p-values ranged from 0.00453− 0.03, meeting the 0.05 threshold to reject the hypothesis

that the scores achievedwere the same. This suggests that batch size should be prioritised

when conducting hyper-parameter tuning on CNN architectures.

Learning ratedecay rankedsecondmost influentialoverall, as shown inTable4.1. Learn-

ing ratedecay is believed toaid in learning complexpatterns (115) and itwasobserved that

it’s influencewasgreater themorecomplex thearchitectureof theCNNand themorecom-

plex the dataset. Learning rate decay is employed to aid models in avoiding local minima

when training (115), which enables them to achieve greater accuracy whichwas observed

in the SA results. The CNNs were sensitive to learning rate decay as certain values would

allow them to perform much better than others, accounting for its overall rank. It’s posi-

tion in second place can be explained by the varying levels of influence it had depending

on the level of complexity present. It was generally less influential on the simpler DNN

whereas it was highly influential on the largest architecture GoogleNet. Furthermore, the

additional complexity presentedby theCIFAR-10 dataset saw learning rate decay have ad-

ditional influence on ResNet-18, which was not as noticeable for the simpler MNIST and

MNIST-Fashion datasets.

Learning rate was third least influential, contrary to it’s importance reported in the lit-

erature. The low levels of influence of learning rate was a pattern across datasets and ar-

chitectures suggesting CNNs are not particularly sensitive to the initial learning rate. This

would suggest a more effective approach would be to start with a larger learning rate and

adjust it with an optimal learning rate decay. Following this advice has the potential to

yield better CNN test accuracy and reduces the number of parameters to subject to hyper-
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parameter tuning.

Batch size was ranked higher on the shallower models explored, DNN and AlexNet,

whereas the influence of learning rate decay was greater on deepermodels, ResNet18 and

GoogleNet. The pattern that emerges in relation to this suggests deeper models are more

susceptible to convergence speeds whereas shallowermodels aremore susceptible to the

stochasticity of the learning process.

The margin of separation between the most and the least influential parameters was

greater for more complex datasets. Experiments conducted on CIFAR-10, the most com-

plex dataset, showed that the range between values of SAmeasures for themost and least

influentialparameterswas larger compared to the rangeofSAmeasuresobtained forMNIST

andMNIST Fashion. This result would suggest that for more complex datasets tuning the

most influential parameter alone will improve performance and can preserve resources.

These results can also be appliedmore generally and can be used tomake recommen-

dations for future hyper-parameter tuning attempts for CNN architectures. The results of

the SA suggest that tuning the top ranked parameters would allow practitioners to reduce

the parameter space under considerationwithout compromising onmodel performance.

4.4 Conclusions and Next Steps

We applied the SADL framework to state of the art CNN architecture’s training parame-

ters to better understand their influence onmodel accuracy. The results highlighted batch

size and learning rate decays as being highly influential across datasets and architectures.

Contrary to expectations, the initial learning rate was not considered to be influential and

practitioners would benefit from tuning learning rate related parameters, such as learn-

ing rate decay, rather than the learning rate itself. Parameter influence was also found

to be linked to complexity, that is the more complex and deeper architectures were more

sensitive to convergence speeds and the shallower, simpler models were more sensitive

to the stochasticity in the learning process. Additionally, the dataset complexity affected

the margin of separation between sensitivity measures of the most and least influential

parameters suggesting that tuning the most influential parameter alone will benefit per-

formancemore whilst preserving resources. The parameters were ranked in the following

order based on the SA conducted:
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1. Batch Size

2. Learning Rate Decay

3. Learning Rate Decay Steps

4. Optimiser

5. Learning Rate

6. Momentum

7. Epochs

The next steps of this work is to apply these results and to use the ranking outlined

above to conduct hyper-parameter tuning and thus observe the theoretical cost savings in

practice, and understandwhat ramifications there are, if any, for themodel accuracy. This

would then be extended to possible case studies tomake direct comparisons against real-

world scenarios to emphasise to practitioners the benefit of adapting the tuning process

to themost influential parameter set.

4.5 Summary

The key findings of the analysis conducted on CNN hyper-parameters would be that the

most influential parameter depends on architecture complexity and the optimal group

of parameters to tune depends on dataset complexity. Regardless of this, batch size and

learning rate decay are both highly influential parameters that should be prioritisedwhen

conducting hyper-parameter tuning.



Chapter 5

Rank Informed Bayesian

Optimisation

Following on from Chapter 4, the ranking of CNN parameters produced via SA will be

used to inform the approach to HPO. Specifically, this chapter explores the efficiency of

Bayesian Optimisation for CNN HPO of various parameter groups of differing influence

onmodel performance. The aim of this chapter is to understandwhether tuning themost

influential parameters is a viable option to reduce computation timewithout compromis-

ingmodel accuracy.

5.1 Implementation

5.1.1 Resource Constraints

The resource constraints in this instance also needed mitigation by saving the hyperopt

trial data as a pickle which could be read in to continue the Bayesian optimisation in the

instance an OOM occurred. This did not occur as often where the task was distributed

across several labmachines.

5.1.2 Novel Measure: Accuracy Gain

The aim of this chapter was to gauge the efficiency of the HPO of CNN hyper-parameters

and whether reducing the parameter search space to the parameters with the most influ-
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enceonmodel accuracywouldbemore efficient. Efficiency in this casewouldbe reducing

the time required to conduct Bayesian optimisationwithout compromisingmodel perfor-

mance. To answer this question effectively and provide direct comparisons between the

chosen parameter groups a quantifiable measure of tuning efficiency was required. This

need prompted the development of the Accuracy Gainjmeasure.

5.2 Results

5.2.1 SA informed Bayesian Optimisation

Bayesianoptimisationwas applied tofive groupsof parameters basedon their SADL rank-

ing (19); all parameters, top ranked (batch size), second ranked (learning rate decay), top

two parameters (batch size and learning rate decay) and top three parameter (batch size,

learning rate decay and learning rate decay step) for all architectures and datasets previ-

ously explored. Fig. 5.1 shows the results of the Bayesian optimisation trials conducted.

The rows relate to the model architectures and columns represent the datasets whereas

the colours each reflect a different grouping of parameters. Each data point shows the ac-

curacy the individual trial achieved and the time that trial took in seconds.

Generally, there is a clear difference in the accuracy achieveddepending on thedataset

the architecture is being trained on. TheCIFAR-10 dataset hasmuch lower accuracy for all

architectures andMNIST-Fashion achieves lower accuracy overall thanMNIST.

The first row of Fig. 5.1 shows the results of the Bayesian optimisation on the DNN

architecture. For both MNIST and MNIST-Fasion datasets the trials for batch size only,

the top ranked parameter, generally take the longest but also achieve the best accuracies.

The second best accuracies are achieved by optimising the top three ranked parameters;

batch size, learning rate decay and learning rate decay step. Despite the individual trials

for the "all parameters" group being quick, they also produce trials with the lowest accu-

racy. CIFAR-10 also achieves high accuracies from tuning the batch size only and top three

parameters. It differs in that there are fewer batch size trials that achieve the best accuracy

compared to the points observed for MNIST andMNIST-Fashion.

There is less distinction in the ResNet18 results, however it is possible to see that the

batch size only and top three groups still achieve good accuracy across all datasets. Ad-

ditionally, even though there are trials from all parameters that achieve higher accuracy
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Figure 5.1: The results of 100 trials of Bayesian optimisation on 5 groups of
hyper-parameters. The columns are organised by dataset and the rows rep-
resent the architectures explored. Each colour represent a different group of
parameters. Each data point reports the accuracy and time taken in seconds
for each trial of Bayesian optimisation.

there aremuchmore that achieve lower accuracy by comparison to the smaller groupings

of parameters. The time taken for individual trials is more varied across the datasets and

parameter groupings for the ResNet18 architecture. Across all datasets there is a gap be-

fore the trials start showing that even the quickest trials were longer than the majority of

the DNN trials.

The trial speeds for AlexNet are generally quicker than those observed for ResNet18

and a little slower than the DNN. Across all three datasets there is a clearer distinction

in performance between the group all parameters and the other groupings as there are

clusters of all parameter trials in the lower half of the charts indicating low accuracy for

many trials. Batch size alone and the top three parameter group are the top performing
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Table 5.1: Best Accuracy Achieved in 100 trials of BayesianOptimisation, high-
est accuracy is highlighted in bold.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter Group M MF C M MF C M MF C M MF C M MF C Average
All Parameters 0.95 0.85 0.32 0.98 0.84 0.63 0.99 0.88 0.55 0.99 0.88 0.56 0.99 0.87 0.72 0.80
Batch Size Only 0.98 0.89 0.42 0.99 0.88 0.56 0.98 0.87 0.57 0.99 0.88 0.59 0.53 0.89 0.65 0.78
Learning Rate Decay Only 0.87 0.76 0.28 0.94 0.80 0.38 0.95 0.80 0.39 0.97 0.78 0.27 0.96 0.80 0.40 0.69
Top Two 0.87 0.78 0.47 0.96 0.84 0.41 0.97 0.82 0.47 0.98 0.85 0.38 0.98 0.84 0.41 0.72
Top Three 0.95 0.86 0.40 0.98 0.88 0.55 0.99 0.88 0.59 0.99 0.90 0.53 0.99 0.89 0.62 0.80
Note: Dataset names abbreviated in above table asM forMNIST, MF for MNIST Fashion and C for CIFAR-10.

groups across the three datasets. Optimising the learning rate decay alone also achieves

good accuracy for MNIST and MFASH and is more prominent than previously observed

for that grouping.

The GoogleNet optimisation, shown in row 4 of Fig. 5.1, follows patterns previously

observed in that the top three parameter group achieves high accuracy. The line of trials

that is clear for learning rate decay only onMNIST shows that the trial times are consistent

for optimising that parameter. The experiments for all parameters took so long that they

are out of scope of the charts which were limited to 240 seconds for comparisons across

the architectures.

The final architecture, VGG16, shows clusters of all parameter trials in the lower half

of the chart as they achieved lower accuracies in general. Batch Size only and top three

parameters achieve high accuracy across all three datasets. There is an obvious decline in

accuracy where the trial takes more time.

Table 5.1 and Table 5.2 summarise the results in terms of accuracy achieved in each

experiment and the time taken inminutes to perform the 100 trials of Bayesian optimisa-

tion in each instance, respectively. The highest average accuracy was achieved by tuning

all parameters or the group of top three parameters. It is worth noting that in most in-

stances where the highest accuracywas achieved by tuning all parameters it wasmatched

by tuning a subset, either batch size only or the top threeparameters. Furthermore, tuning

batch size alone achieved the second highest average accuracy and produced the best re-

sults in roughly half of the experiments. The group of parameters that reported the worst

Table 5.2: Time Taken in Minutes to perform 100 trials of Bayesian Optimisa-
tion, shortest time taken highlighted in bold.

DNN ResNet18 AlexNet VGG16 GOOGLENET
Parameter Group M MF C M MF C M MF C M MF C M MF C Average
All Parameters 170 159 109 5886 3440 3536 839 494 537 1250 1436 1158 49456 52163 20739 9424
Batch Size Only 464 574 48 2738 2255 654 366 552 497 1189 1674 1421 703 1189 1514 1056
Learning Rate Decay Only 35 14 29 563 283 195 298 88 330 482 1053 1810 254 189 136 384
Top Two 189 37 49 5312 2058 1522 432 861 691 1480 1717 1311 1112 1228 1276 1285
Top Three 170 163 67 2800 1238 1115 720 614 625 2969 1192 1388 1262 1379 912 1108
Note: Dataset names abbreviated in above table asM forMNIST, MF for MNIST Fashion and C for CIFAR-10.
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Table 5.3: Results of the Wilcoxon Signed Ranks test: p-values for each pair
of hyper-parameter groups to demonstrate whether the time required to tune
a model with one group is significantly different from that required to tune a
model with another hyper-parameter group across the datasets andmodel ar-
chitectures. P-value threshold is 0.05.

All Parameters Batch Size Only Learning Rate Decay Only Top Two Top Three
All Parameters - 0.06876 0.00318 0.0784 0.06432
Batch Size Only 0.06876 - 0.00148 0.33204 0.8181
Learning Rate Decay Only 0.00318 0.00148 - 0.00214 0.00236
Top Two 0.0784 0.33204 0.00214 - 0.42372
Top Three 0.06432 0.8181 0.00236 0.42372 -

average accuracy was the learning rate decay on its own. Despite achieving the lowest

accuracy, learning rate decay was the quickest of all the groups in completing 100 trials

of Bayesian optimisation with the Wilcoxon Signed Ranks test, reported in Table 5.3, also

showing that it was significantly quicker than all other parameter groups. Table 5.4 shows

the average accuracy and times of the architectures across the three datasets, allowing for

a direct comparison of the twometrics. Despite having the joint highest accuracy, tuning

all of the parameters was the slowest process by far. Tuning the top three ranked param-

eters achieved the same accuracy as all parameters but executed 8.5 times faster and was

the third quickest group overall. Batch size only resulted in the second highest accuracy

and the second quickest tuning time.

5.2.2 Accuracy Gain and Dataset Complexity

To understand the efficiency of optimising each group of parameters the measure j was

computed to quantify average increase in accuracy gained per time unit whilst optimising

each set of parameters, as shown in Fig. 5.2. The first column of Fig. 5.2 considers j in

terms of the datasets studied in the experiments whereas column two considersj in rela-

tion to dataset complexity and gives an indication of which parameter group to optimise

Table 5.4: Best accuracy and time taken in minutes for 100 trials of Bayesian
Optimisation for eachdataset andgroupofhyper-parameters, averagedacross
the five architectures. The best accuracy and shortest times are highlighted in
bold.

MNIST MNIST-Fashion CIFAR10 Average
Parameter Group Accuracy Time Accuracy Time Accuracy Time Accuracy Time
All Parameters 0.98 11520 0.86 11538 0.56 5214 0.80 9424
Batch Size Only 0.90 1092 0.88 1249 0.56 827 0.78 1056
Learning Rate Decay Only 0.94 327 0.79 325 0.34 500 0.69 384
Top Two 0.95 1705 0.83 1180 0.39 970 0.72 1285
Top Three 0.98 1584 0.88 917 0.54 821 0.80 1108
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given a CSG value.

The larger the value of j the bigger the average increase in accuracy per unit of stan-

dardised time. Generally j for all parameter optimisation is low compared to the other

groupings across architectures and datasets. Additionally, the efficiency of optimising all

parameters is loweron themorecomplexCIFAR-10dataset compared toMNISTandMNIST-

Fashion and is generally lower than the other groups of parameters. By contrast, optimis-

ing Batch size only, the top ranked parameter, has generally high values of j across the

state of the art architectures. Batch size achieves a low j for the DNN architecture how-

ever when taking into consideration its performance shown in Fig. 5.1 the batch size tri-

als accuracy stays consistently high and so there was little accuracy to be gained. The j

achieved by learning rate decay was higher on the simpler datasets, MNIST and MNIST-

Fashion, compared toCIFAR10 and it was generally higher for theGoogleNet architecture.

Comparing the j against the CSG value, as shown in the second column of Fig. 5.2,

highlights which groupings of parameters weremost effective per architecture for varying

data complexity. The top three grouping has highj across several architectures for CSG’s

in theMNIST-Fashion range and it generally has the second largestj for CSG’s within the

CIFAR10 range. Batch size only performs best within the CIFAR10 range of data complex-

ity and generally outperforms the other groupings on the more complex dataset. As pre-

viously observed, tuning all parameters is the least efficient acrossmost architectures and

CSG ranges which is supported by having the longest time to tune.

5.3 Discussion

Bayesian optimisation was conducted on five groupings of parameters based on SA rank,

produced with the SADL framework (19), across all architectures and datasets. The re-

sults showed that tuning subsets of influential parameters would reduce the time taken

to conduct Bayesian optimisation without compromising the accuracy achieved by the

CNN. Furthermore, a connection was made between the efficiency of the Bayesian op-

timisation and complexity of the dataset which could aid practitioners in deciding which

parameter group to tune based on the data they are using. Whenprioritising accuracy and

speed tuning the batch size alone or the top three SA rankedparameters: batch size, learn-

ing rate decay and learning rate decay step, will result in the best accuracy in the shortest
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Figure 5.2: The left hand side shows the accuracy gain,j, of tuning the differ-
ent groups of parameters, grouped by dataset where the rows are the different
architectures explored. The higher thej the more efficient the tuning of that
group was. The right hand charts comparej to dataset complexity, CSG. The
highlight portions are theCSG ranges for the datasets explored. This shows the
change inj based on CSG value.

times. If speeding the tuning process is the priority and there is room to compromise on

the overall accuracy achieved, then tuning learning rate decay alone was significantly the

quickest, completing 100 trials of Bayesian optimisation 24.5 times faster than tuning all

the parameters. However, this did result in the lowest average accuracy, 0.69. As learning

rate decay affects the convergence speed of a neural network it makes sense that tuning

this parameter would increase the speed of the tuning process.

It has been demonstrated previously that increasing the batch size has more impact

on model performance than other hyper-parameters (114). This is reflected in the SA in-

fluenced Bayesian optimisation where batch size achieved second highest accuracy and

the second quickest tuning time, suggesting that concentrating tuning efforts on batch

size alone would be an effective and efficient approach. Furthermore, the comparison

of accuracy gain, j, against dataset complexity, CSG, showed that tuning the batch size

alone worked well on the complex datasets, making this approach well-suited to current

research trends in DL. When working with the simpler datasets the combination of the

top three SA rankedhyper-parameters showed good accuracy gain and also achieved joint

highest accuracy. Tuning this groupof parameterswas only slightly slower than tuning the
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batch size alone and would be also be a good option to improve HPO in practise.

The second column in Fig. 5.2 was created to demonstrate the relationship betweenj

and CSG values. Additionally, practitioners could use this chart to inform them on which

groupofparameterswouldbemost efficient to tunebasedon thecomplexityof thedataset

they are using. By calculating the CSG value for their dataset they could then, on the chart

related to the architecture most similar to what they are using, see which group had the

highestj.

Themain aim of this work was to aid practitioners and so all practical decisions made

aimed tomimic the general practices and, therefore, produce results that could be of ben-

efit to theDLcommunity. Thearchitectures anddatasets chosenare stateof theart andare

commonly used. The hyper-parameters explored are all generally thought to be influen-

tial and candidates for tuning. Bayesian optimisation was chosen as it is considered to be

themost popular and bestmethod for HPO. These decisions are all strengths of this work.

To improve in future, additional datasets and architectures could be explored to further

generalise the results and further demonstrate the relationship between hyper-parameter

tuning efficiency and dataset complexity.

5.4 Conclusions

As DL grows in popularity and model architectures and datasets grow in size and com-

plexity the cost of HPO is also increasing, forcing practitioners tomake compromises that

could potentially affect model performance. SA methodology was utilised to identify the

most influential CNN training hyper-parameters which we used to inform or implemen-

tation of Bayesian optimisation. We compared the accuracy achieved and the time taken

to conduct Bayesian optimisation of five varying groups of hyper-parameters: all parame-

ters, top ranked (batch size), second ranked (learning rate decay), top two (batch size and

learning rate decay) and top three (batch size, learning rate decay and learning rate de-

cay step), on 5 DL architectures and 3 state of the art image classification datasets. This

allowed exploration of whether the efficiency of HPO could be increased by reducing the

parameter search space to the SA identified influential parameterswithout compromising

onmodel accuracy.

Tuning the batch size alone or the top three parameters oftenmatched or beat the ac-
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curacyachievedby tuningallparameters in the individual experimentswith tuning the top

three having the highest average accuracy alongside tuning all parameters. This showed

that tuning a subset of most influential parameters could achieve the same performance

as tuning all the training parameters. Furthermore, tuning the subsets of parameters was

muchquicker in every instance than tuning all parameters supporting ourhypothesis that

SA informed Bayesian optimisation is more efficient than conventional approaches and

can still achieve the same results in terms of model performance.

In addition, a connection was observed between dataset complexity and the most ef-

ficient hyper-parameter group to tune. Batch size alone was effective on the more com-

plex datasets, especially for the shallower architectures, whereas the top three group per-

formed well on the simpler architectures. Fig. 5.2 was produced to allow practitioners to

determine the best group to tune for their ownwork based on the CSG complexity of their

dataset. The right hand side of the chart can be used to see which group has the best ac-

curacy gainj for a given CSG between 0 and 4 for commonly used CNN architectures.

The next steps will be to apply the knowledge from this chapter to a case study to see

how this advice performs in a real-world scenario.

5.5 Summary

The key take-aways from this chapter are (1) that SA informed Bayesian optimisation can

reduce HPO time without compromising model performance, (2) tuning the batch size

alone or tuning the batch size, learning rate and learning rate decay will produce a well

performing model in less time than tuning all parameters and (3) that the complexity of

the dataset influences which parameter groupwould result in themost efficient Bayesian

optimisation implementation.



Chapter 6

Case Study: Classification of

Colo-rectal Cancer

This Chapter applies the findings from both Chapter 4 and 5 to a real world problem. Im-

age classification tasks and CNN architectures are being appliedmore andmore tomedi-

cal imagingproblems and it couldbe argued that efficiency andaccuracy are key elements

in themedical sector making this a natural choice for a case study.

6.1 Case Study Justification

The case study was modelled on a paper where ResNet18 was used to identify whether

colo-rectal scans showed benign or malignant cancerous cells (108). This specific case

was chosen as the architecture used was also explored in this thesis and therefore a direct

comparison could be drawn between the results of the case study and that of previous

chapters. The dataset used in this paper, Warwick-QU, was openly available and, despite

being of a medical nature, required no ethical approval for use as there is no personal or

private data attributed to the images. Finally, there was specificmentions of the HPO that

had been conducted as part of the work that could be replicated in the case study tomake

a direct comparison on tuning efficiency against the influential parameter groups.

90
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6.2 Implementation

The implementation of the case study had to be amended slightly to what had been done

in previous chapters due to resource constraints and conducting the experiments on the

Google Colab platform. Furthermore, some initial issues in the early implementation of

the case study led to delays in seeing results.

6.2.1 Data Pre-processing

The initial result of case study showed poor accuracy with the influential groups of pa-

rameters not showing any improvement over the other various groups. Investigations into

these results showed that the models were choosing the same class every time despite an

almost equal test training split in the dataset. This was traced back to the pre-processing

of the images where the resizing was obscuring the learn-able features. The resizing was

changed to the original image size which allowed for more successful training and the re-

sults weremore inline with the expectations set by previous chapter results.

6.2.2 Resource Constraints

Having to increase the image size so that the model could learn the features resulted in

OOMwith larger batch sizes. To compensate for this the default batch size and batch size

range were adjusted. Whereas, in previous experiments, the default batch size was 32 and

the range included [1,16,32,64,128] these had to be reduced for the case study. As shown

below, in Table 6.1, the batch size range was adjusted to [1,2,4,8,16] and the default batch

size was changed to 4. The parameter groups are repeated below in Table 6.2 for readers

ease.

Table 6.1: DeepLearningHyper-parameters descriptions, symbols, ranges and
default values used for SA experimentation.

Parameter Description Range Default Value
Optimiser List of gradient descent (GD) algorithms. Category∗ Adam
Learning rate (α) Initial GD step controller. [1x10−7, 0.5] 0.001
Momentum (β) Acceleration factor for GD. [0, 0.99] 0.6
Learning rate decay (αdecay ) Reduction rate of (α). [0, 1] 0.9
Learning rate decay step (αd−step) Number of epochs between Learning Rate Decay. [1,100] 10
Batch size Size of training subset for GD update. Category∗ 4
Epochs Number of training cycles. [5, 1000] 100
Note: Category∗ indicate that there are two hyper-parameters with categorical ranges (88): (i) optimiser, Adam, SGD, RMSprop,
ADAdelta, ADAgrad and ADAmax; and (ii) batch size, 1, 2, 4, 8 and 16.
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Table 6.2: Case study parameter group definition summary.

Groups Parameters
Paper Learning rate, momentum
Top Batch size
Top Three Batch size, learning rate decay, learning rate decay step
All Batch size, learning rate decay, learning rate decay step, optimiser, momentum, learning rate, epochs

6.2.3 Google Colab Platform

To use the code that had been implemented on the V100 GPU and distributed across the

lab machines in previous chapters some adjustment had to be made to run the code on

the Google Colab platform. Setting up the environment was slightly different, rather than

using a virtual environment to capture the packages and libraries they were installed di-

rectly to the colab notebook environment. Additionally, the install of these packages was

not always as easy inside the colab environment.

The code that handled file writing to store the experimental results had to be adapted

to interface with google drive rather than a native file system. As part of this the drive had

to bemounted in the notebook environment at the start of each session to ensure the files

could be read in and written to.

The final adaptation required was to the early stopping conditions. It was observed

in the initial runs that the models were only being trained for 2 epochs in each iteration.

Where the samecodeon theV100GPUand labmachines ran for variednumbersof epochs

depending on the accuracy for the given early stopping condition which was not the case

in the colab environment. To combat this the early stopping patience was increased to 10

to force additional training epochs and this resulted in a more normal, expected, varied

number of training epochs for each iteration of training.

6.2.4 Data Formatting

In this chapter, numbers are reported at amore granular level of decimal place compared

topreviouschapters as thereare lessnumbers to reportonandso the formattingandspace

allows for this. In previous chapters, the number of data points to report meant that they

were restricted to two decimal places for the tables to be legible.
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Table 6.3: Case study test accuracy statistics for each parameter groupover 100
trials of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2
for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.727273 0.333333 0.517576 0.080023 -0.102857
Top 0.787879 0.333333 0.567273 0.089081 -0.192065
Top Three 0.848485 0.272727 0.555455 0.090611 0.160176
All 0.666667 0.363636 0.521212 0.054377 -0.415363

6.3 Results

This section introduces the results of the case study. The tables below show the evaluation

metrics, as outlined in Chapter 3 Section 3.3.5. TheWilcoxon Signed Ranks statistical test

was employed to infer statistical significance of the results presented.

Table 6.3 shows the test accuracy achieved by the model after the completion of HPO

on the various parameter groups. The larger the values of test-accuracy the more suc-

cessful the HPO. The best test accuracy, 0.85, was achieved by tuning the top three most

influential parameters followed by tuning the top parameter, 0.79. The best mean of test

accuracy, 0.57, was achieved by the tuning the top most influential parameter, followed

by tuning the top three parameters, 0.56. Themost successful parameter groups in terms

of test accuracy were the two groups of influential parameters, both of which were signif-

icant improvements on the parameters used in the paper (p-value of 0.00012 for the top

group and 0.00634 for top three) and all parameters (p-value of 0.00012 for the top group

and 0.00714 for top three). Theworstmax accuracy, 0.67, was achieved by tuning all of the

parameters despite having the highest minimum accuracy. The accuracy difference be-

tween the most successful tuning group, top three, and least successful tuning group, all

parameters, was 0.18. Furthermore, both influential groups of parameters out performed

Table 6.4: Case study time (minutes) statistics for each parameter group over
100 trials of Bayesian optimisation. Best scores highlighted in bold. See Ta-
ble 6.2 for parameter group definitions.

Parameters Total Max Min Mean STD SKEW
Paper 494.875390 12.464958 1.367984 4.948754 2.242040 0.916645
Top 287.714088 4.720817 0.899762 2.877141 0.705626 0.138161
Top Three 253.805812 5.280454 1.225763 2.538058 0.725696 0.838812
All 208.164265 5.461838 0.977971 2.081643 0.772509 1.292786
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Table 6.5: Case study precision statistics for each parameter group over 100
trials of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2
for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.741935 0.209677 0.477897 0.130789 -0.241649
Top 0.810345 0.227273 0.570077 0.134622 -0.213328
Top Three 0.891304 0.166667 0.528708 0.180086 -0.103043
All 0.781250 0.227273 0.411869 0.165940 0.567739

the parameters tuned in the original paper. The top most influential parameter out per-

formed the paper parameters by 0.06 and the top three most influential parameters out

performed the paper parameters by 0.12. The second key performance metric for evalu-

ating the HPO is time, as shown in Table 6.4. The less time taken on tuning the better. The

group that completed tuning in the least amount of time was the all parameters group,

which also achieved the worst accuracy. The second quickest group to tune was the top

three parameters, which also achieved the highest accuracy and was significantly quicker

than paper parameters which was the slowest parameter group to tune.

The precision metric indicates the percentage of correctly classified benign samples.

Similar to the test accuracy results, the top three parameter group achieved the highest

precision, 0.89, and the top parameter group achieved the best mean precision, 0.57. The

worst max precision was achieved by the paper parameter group, 0.74, and the lowest

mean precision was achieved by the all parameter group, 0.41. The precision results are

reported in Table 6.5. TheWilcoxon test confirmed that both groups of influential param-

eters had significantly higher precision than tuning the all parameters group, as shown in

Table 6.8.

The best maximum recall, the ratio of correctly classified benign samples to total be-

Table 6.6: Case study recall statistics for each parameter group over 100 trials
of Bayesian optimisation. Best scores highlighted in bold. See Table 6.2 for
parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.722222 0.338889 0.507556 0.079176 0.060406
Top 0.777778 0.338889 0.552333 0.090069 0.021346
Top Three 0.833333 0.300000 0.533833 0.089602 0.606803
All 0.650000 0.350000 0.504556 0.048543 -0.118792
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Table 6.7: Case study F1-Measure statistics for each parameter group over 100
trials of Bayesian optimisation. See Table 6.2 for parameter group definitions.

Parameters Max Min Mean STD SKEW
Paper 0.723206 0.282609 0.465634 0.103585 0.251877
Top 0.780627 0.312500 0.522224 0.107313 0.123240
Top Three 0.839024 0.214286 0.480197 0.119663 0.486358
All 0.645854 0.312500 0.405662 0.081312 1.005450

nign samples identified, was achievedby the top three parameter group, 0.83, and thebest

mean recall was achieved by the top parameter group, 0.55. Unlike the precision metric,

the lowest max recall was achieved by the all parameter group,0.65, however it did also

achieved the lowest mean average, 0.50, as it did with the precision metric. The recall re-

sults are shown in Table 6.6. Similarly to precision, theWilcoxon test confirmed that both

groups of influential parameters had significantly higher recall than tuning the all param-

eters group, as shown in Table 6.8.

TheF1-measure represents theharmonicmeanbetweenprecisionandrecall and there-

fore it is unsurprising that thebestmaximumF1scorewasachievedby the top threegroup,

0.84, and the bestmean F1 score was achieved by the top parameter group, 0.52, both sig-

nifanctly higher than the all parameter group. As shown in Table 6.7 the all parameters

group produced the worst maximum F1 score and the worst mean F1 score, 0.65 and 0.41

respectively.

Understanding the relationship between trial time and accuracy achieved whilst tun-

ingaspecificparametergroupcangiveanearly indicationofHPOefficiency for thatgroup.

Fig. 6.1 shows the time taken and accuracy achieved for every HPO trial for each parame-

ter group. This chart clearly shows the parameter group with the worst accuracy overall is

the all parameters group, however all trials were also completed in a relatively short time.

The paper parameter group has the widest time distribution with the more trials taking a

longer time thananyother group. The accuracies achievedby thepaper parameters group

ishigher thanall parametersbutnotmore thaneither the topparameter groupor top three

parameter group. Both the top parameter group and top three parameter group have very

similar relationships between time and test accuracy with short trial times a large accu-

racy range. As shown previously in Table 6.3 the highest accuracy overall is achieved by

the top three parameter group.
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Figure 6.1: Test accu-
racy achieved and time
taken to complete each
hyper-parameter tuning
trial. See Table 6.1 for
hyper-parameter details.
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Figure 6.2: Recall achieved
and time taken to
complete each hyper-
parameter tuning trial.
See Table 6.1 for hyper-
parameter details.

Similarly, Fig. 6.2 shows the relationship between time and recall for the HPO trials.

There is no clear pattern for the paper parameter results with a wide breadth of time and

recalls. The all parameters group data-points cluster tightly with short trial times and rel-

atively low recall. As with the test accuracy, both the top parameter group and top three
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Figure 6.3: Precision
achieved and time taken
to complete each hyper-
parameter tuning trial.
See Table 6.1 for hyper-
parameter details.
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Figure 6.4: F1 achieved
and time taken to
complete each hyper-
parameter tuning trial.
See Table 6.1 for hyper-
parameter details.
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Figure 6.5: Precision and Recall of HPO trials.

parameter group complete trials quickly and achieve the highest recall.

Theprecision scores are shownalongside trials times in Fig. 6.3. Thepatterns observed

with test accuracy, precision and recall continue where the top parameter group and top

threeparameter groupachieve thehighestprecisionand thepaperparametershavebroad

results in terms of time and precision. However, with all parameters the precision ismuch

more distributed than previously observed.

The F1-measure also follows the patterns seen with the previous measures, as shown

in Fig. 6.4. The paper parameters resulted in the largest range in time per trial and the all

parameters group had the smallest range in F1. Both the top parameter group and top

three parameter achieve the highest F1measures whilst still having low times per trial.

Precision is plotted against recall in Fig. 6.5. The larger the AreaUnder theCurve (AUC)

the higher the precision and recall for the givenparameter group. TheAUCvalues for each

parameter groupwere calculatedusingboth theTrapezoidal andSimpsonmethodand re-

ported in Table 6.9. The top parameter group had the largest AUC value in both instances,

282.19 and 282.24, followed by the top three parameter group, 262.25 and 262.29. The all

parameter group had the smallest AUC values, 203.35 and 203.23.

The accuracy gain of each parameter group is shown in Fig. 6.6. The top three param-

eter group had the highest accuracy gain, followed by all parameters, the top parameter

group and finally the paper parameter group. Fig. 6.7 shows the accuracy gain of a subset

of the parameter groups from the case study dataset against the results from the previous

datasets. Like the other three datasets, one of the influential parameter groups had the

highest accuracy gain, in this case it was the top three parameter group. Unlike the other



CHAPTER 6. CASE STUDY: CLASSIFICATIONOF COLO-RECTAL CANCER 99

paper top three all
Hyper-parameter group

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ac
cu

ra
cy

 G
ai

n

Figure 6.6: Accuracy gain for the parameter groups explored. See Table 6.1 for
hyper-parameter details.

datasets, theall parameterhad slightlyhigher accuracygain than the topparameter group.

The addition of the case study dataset,Warwick, to the dataset complexity half of the chart

showed that for CSG values close to one the top three parameter group achieves the best

accuracy gain.

Table 6.9: Area Under Curve (AUC) for the Precision-Recall curves in Fig. 6.5.
See Table 6.2 for parameter group definitions.

Parameters AUC (Trapezoidal) AUC (Simpson)
Paper 236.5048769669257 236.46321337166304
Top 282.196266328103 282.23803690655836
Top Three 262.25444953444287 262.288812827399976
All 203.35484054697164 203.22761734967608
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Figure 6.7: Accuracy gain for the parameter groups explored. See Table 6.1 for
hyper-parameter details.
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6.4 Discussion

The aimof the case studywas to apply the theories from theprevious two chapters ofwork

to a realworld scenario and see if the findings are supported inpractice. The keyfinding of

the results showed that applyingHPO to a groupof influential parameters ismore efficient

than tuning all parameters.

The top two highest test accuracies achieved were by the two influential parameter

groups, Top three and top only, which were significantly higher than that achieved by the

paper parameters. The difference between the lowest accuracy achieved by the all param-

eter group, 0.67, andbest accuracy achievedby the top threeparameter group, 0.85, shows

that applying the tuning effort to themore influential parameters can produce amore ac-

curate model. This supports the hypothesis that the SA identified parameters have more

of an effect on model accuracy. In terms of time, the all parameters HPO did complete in

less time, 208 minutes, compare to the top three groups, 254 minutes. An additional 46

minutes of tuning for the top three parameter group vastly improved the maximum test

accuracy of themodel, improving even on the accuracy achieved by the paper parameters

in this case study, 0.73, andmatched that reported in the original paper (108).

The precision, recall and F1measures also supported that themodel performancewas

improvedwhen theHPOconcentratedon the influential parameters identifiedbySA,with

all three values being significant improvements on the all parameters group. The AUC of

the precision recall curves showed that both the influential parameter groups had better

precision and recall, 282 for the top parameter group and 262 for the top three parameter

group compared to 236 for the paper parameters and 203 for the all parameter group. This

suggests that even outside of their influence on the test accuracy these influential param-

eters contribute to an overall successfulmodel. This continues the pattern that the tuning

of influential parameter groups improves model performance.

The accuracy gain metric showed that tuning the top three parameter group was the

most efficient. Anunexpected resultwas that the all parameter groupwas slightlymore ef-

ficient that the top parameter group. Batch size massively influences training time, addi-

tionally thenatureof thedatasetwithmedical beingquite complex canplay a contributing

factor (116). The slower training time of the top parameter group may have meant it was

a less efficient parameter group to tune however, due to the increased accuracy achieved

compared to the all parameter group, it could be argued that the trade off in the additional
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time for the better accuracy would be worth it. When comparing the accuracy gain of the

parameter groups on the case study dataset against the datasets from the previous chap-

ters this is theonly datasetwhere the all parameter doesnot have the lowest accuracy gain.

Despite this, it is clear that performance of a model where the influential parameters are

tuned is more successful than the all parameter group.

The results of case study support the conclusions of the previous chapters: that tuning

the SA ranked influential parameters ismore efficient than tuning all training parameters.

The practical implications of this case study is that it confirmed that theoretical results of

this work are applicable in real world scenarios.

6.5 Conclusions

The evidence is clear: the SA rank informed Bayesian Optimisation can reduce HPO time

without compromisingmodel performancewhen applied to real world scenarios. For this

case study the top threeparameter groupwas themost efficient andachieved significantly

higher test accuracy than the non-influential parameter groups whilst being within an

hour of the fastest tuning time, and was significantly faster than the parameters tuned in

the original paper.

This study did support the hypothesis that tuning a subset of the most influential pa-

rameters would benefit practitioners by producing successful models in a more efficient

way. However, it did not show that one could accurately determine the parameter group

to tune based on dataset complexity as was expected from the results of Chapter 5. This

aspect will need additional work to be carried out on more datasets to better understand

the part dataset complexity has to play.

The implication of this case study is that there is potential tomake hyper-tuningmore

efficient through the use of SA in real world scenarios where tuning time andmodel accu-

racy are key performance indicators for practitioners.

6.6 Summary

To summarise, the case study results showed that the SA ranked hyper-parameters can be

tuned more efficiently, achieving good model performance and saving tuning time com-

pared to larger parameter groups. It also serves to show that the framework explored and
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developed in this work is applicable in real world scenarios and should be considered in

future works.



Chapter 7

Discussion and Analysis

This chapter aims to collate thefindings from theprevious three chaptersworkwhere they

can be discussed and analysed in tandem, to produce fully rounded interpretations of the

results and the significance of the findings for this work as awhole. Furthermore, any lim-

itations can be discussed here completely and recommendations can be put forward. To

better facilitate the discussion, this chapter will begin by restating the problem targeted

and the aims and objectives.

7.1 Restating the Problem

This work targeted an area very popular in research: hyper-parameter tuning of DLmod-

els (4, 70, 73, 74, 75). Rather than explore the tuning algorithms themselves, this work ap-

proached this problem from a different vantage point, the hyper-parameter themselves.

The question posed: is it possible to identify which parameters are most influential to

model performance? and, thereby, increase tuning efficiency by concentrating efforts on

that subset of influential hyper-parameters?

This question was very broad and due to time constraints associated with the com-

pletion of a PhD, the scope of work was concentrated to the training parameters of CNNs

specifically. This allowed for the demonstration of the validity of this research direction,

potentially strong initial results to support/challenge the hypothesis and several areas for

future work.

103
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7.1.1 Restating the Aims &Objectives

The aim of this work was to produce a general ranking of CNN training hyper-parameters

via SA that could informHPO search spaces, and improve tuning efficiency. The Research

Objectives (RO) identified to achieve that aimwere:

• RO1: Create a framework to facilitate the calculation of sensitivity measures for the

hyper-parameters of DLmodels which can be used for future work.

• RO2: Rank the influence of a hyper-parameter on model performance, taking into

consideration two state of the art sensitivity measures.

• RO3: Discover relationships between parameter influence and network architecture

or input data.

• RO4: Demonstrate any potential of reducing the hyper-parameter search space to

influential parameters for HPO.

• RO5: Producemeasure of hyper-parameter tuning efficiency that considers compu-

tation time andmodel accuracy to facilitate comparisons.

• RO6: Measurehyper-parameter tuningperformanceof influential parameter groups

versus other parameter groups.

• RO7: Apply findings in case study to demonstrate real world scenarios and validate

results.

• RO8: Provide guidance and a robust methodology to machine learning and deep

learning practitioners in choosing what hyper-parameters to tune and the applica-

tion of SA to DL.

7.1.2 Achievement of Aims &Objectives

Overall, the aim and objectives set out were completed allowing the problem question to

be answered.

RO1

The SADL framework (19) was created to calculate the Sobol Indices and Elementary Ef-

fects of CNN hyper-parameters. The creation of the framework in itself is a successful
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contribution that will facilitate the future directions of research in this area as a robust

methodology for the application of SA to DL.

RO2

The sensitivity measures from both SAmethods implemented as part of the SADL frame-

work were used to produce a finalmeasure of influence, contributing to a general ranking

where bothmeasures were considered.

RO3

From the results it was not possible to conclude whether general patterns existed and so,

to meet objective 3, additional work would be required to observe whether some of the

emerging relationships and patterns hold true.

RO4

The potential of reducing the hyper-parameter search space to SA identified influential

parameters was proven in Chapter 9 and 6. The SA informed Bayesian Optimisation con-

ductedshowedthat tuningparametergroupsconsistingof influentialparameterswasmore

efficient than tuning all parameters, reducing tuning time without compromising model

test accuracy. This was also confirmed and validated in the case study where tuning the

influential parameters for an additional 40 minutes increased the test accuracy achieved

by 18%.

RO5

The Accuracy Gainjmetric was created to quantify tuning efficiency and was used as a

measure when comparing the tuning of hyper-parameter groups.

RO6

AccuracyGainwasused tomeasure tuningefficiency, facilitating thecomparisonofgroups

of various parameters.
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RO7

Applying the results of the framework and SA informed Bayesian Optimisation to a case

study further validated theobservationsmade, demonstrated thepotential of reducing the

hyper-parameter search space and facilitated recommendations that can provide guid-

ance to DL practitioners.

RO8

The final results showed that three parameters: batch size, learning rate decay and learn-

ing rate decay step were most influential on CNN test accuracy and tuning this combina-

tion was most efficient. This can guide practitioners in how they approach tuning in the

future. Furthermore, the SADL framework developed presents a robustmethodology that

can be replicated and adapted to continue the exploration and experimentation of SA ap-

plied to DL. This could be exploring further DL architectures, different hyper-parameter

types or utilising the framework to inform specific attempts at hyper-parameter tuning.

TheSADL framework represents themajor contributionof thisworkand the results it facil-

itated presented in this thesis show the potential to be had in researching the application

of SA to DL.

7.2 Interpretations

To interpret the results across the three chapters, all key findings will be stated, the hy-

pothesis discussed and any patterns explored.

7.2.1 Key findings

This sections presents the key findings of this work in chronological order.

Robust Framework

Themethodology presented in this thesis is, in itself, a key finding and contribution. Out-

lined in Chapter 3, the SADL framework can be followed to conduct future work exploring

the hyper-parameters of DL models using SA. The elements required to conduct experi-

mentation of this nature is explained in detail, presenting a robust framework that can be
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copied exactly or adjusted to other DL architectures. The modular design of the frame-

work was designed with future adjustments in mind allowing the various elements to be

implemented to best suit the architecture and input dataset or to specifcally explore the

architectural parameters rather than the training. By nature, it is also buildable, where ad-

ditional modules for further SAmethodology would be able to be added in future to facil-

itate further work. A replicable framework, such as SADL, presents opportunity for future

work in this area to be producedmore quickly.

Parameter Influence

The first major finding came in the form of the influence ranking where batch size, learn-

ing rate decay and learning rate decay were identified as the top three most influential

training parameters on CNN architectures, in that order. Over five CNN architectures and

three image classification datasets, these hyper-parameters were identified as being in-

fluential onmodel performance with batch size scoring significantly higher than all other

parameters but learning rate decay.

Some studies have emphasised the importance of batch size in the past, where an op-

timal batch size was linked to increase in model accuracy (114). In the past smaller batch

sizeswereuseddue to thememory limitationsof computationalhardware, howeverdue to

newerprocessors,memorycapacities andparallelisation largerbatch sizes arebeingused.

However, larger batch sizes have been associated with poorer generalisation (117, 118)

which could also explain the significant influence of batch size on test accuracy. If a larger

batch size results in a model with a poorer ability to generalise, the performance on un-

seen, test data would beworse than if that batch size was smaller and themodels general-

isability was better. The SA rank was computed specifically on a hyper-parameters influ-

ence on test accuracy and so it is expected that batch size is ranked highly in this. Shallue

et al. (119) took this a step further, concluding that somemodels can adapt better to larger

batch sizes than others and that it is the model architecture rather than the dataset that

influences the optimal batch size. In subsequent work (120), they also showed that stan-

dard optimisers work across batch sizes and canmatch the performance of newer optim-

siers, suggesting that the optimiser itself may not play as instrumental a role. This is all

supported in the SA ranking where optimiser has little influence and batch size is ranked

significantly most influential overall. Shallue’s conclusion that network architecture is an
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important factor in determining optimal batch sizewas also found to be true via SAwhere

shallower models weremore influenced by the batch size.

Learning rate decay was ranked second most influential via SA. This parameter has

been observed to improve the generalisation and optimisation of a model (121). This can

be attributed to the qualities of this parameter helping models avoid local minima but

You (121) suggests it ismore than that, theypose that a large initial learning rateminimises

the models ability to learn noisy data and decaying it assists with learning more complex

patterns (121). This idea is supported by the SA as learning rate decay was ranked higher

on themore complexmodels and for themore complex datasets.

Following the importanceof learning ratedecay, the learning ratedecaystepwas ranked

thirdmost influential. As this sets the rate atwhich the learning ratedecays itwas expected

that an optimal step would be required to see the full benefit of an optimal decay rate.

As discussed in Chapter 2, Section 2.2.1, the learning rate has a reputation for being an

important hyper-parameter, where some go so far as to suggest the success of the model

hinge on an optimal learning rate setting (18). However, the SA concluded that the learn-

ing rate itself did not show high influence onmodel performance, placingmore emphasis

on related setting such as learning rate decay and learning rate decay step. Reasons as to

learning rates lack of quantifiable influence is discussed later in Section 7.2.3, dedicated

to unexpected results.

Tuning Efficiency

When lookingat the tuningefficiencyofdifferentparameter groups itwasproven that tun-

ing the influential parameter groups was more efficient than tuning all training parame-

ters, this was also found to be true when applied in a case study. This means that tuning

this group could reduce training time without compromising accuracy or achieve higher

accuracy without requiring significantly more training time.

The initial experiments found the top parameter, batch size, to be most efficient fol-

lowed by the top three parameters, batch size, learning rate decay and learning rate decay

step. In the realworld scenario, the top threeparameter groupwas themost efficient group

overall.

The top three parameter group performance could be explained by breaking down it’s

components. Batch size and learning rate decay’s qualities, whenoptimised, can in theory
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cancel out the disadvantages of the other creating a very complimentary group of param-

eters to optimise. A large batch size makes it harder for a model to generalise whereas

learning rate decay improves a models ability to learn complex patterns and generalise.

Learning rate decay increases convergence speeds, when tuning it alone it was signifi-

cantly quicker than the other groups but couldn’tmatch their accuracy, whereas a smaller

batch size increase training times. To optimise the learning rate decay completely, the

learning ratedecay stepalsoneeds tobeoptimal. So, by combiningall threeof thesehighly

influential parameters into a group and concentrating tuning efforts on them, as shown,

the result is reduced tuning times with high model performance. This also explains why

the top three group outperforms batch size alone in some instances as the differing batch

sizes cannegatively affect training time, increasing the tuning timeand therefore reducing

the overall tuning efficiencymeasure by our novel metric, Accuracy Gainj.

Patterns & Relationships

The key pattern observed surrounded parameter influence and complexity, be it in archi-

tecture or dataset. Where the level of complexity increased, generally, learning rate de-

cay was ranked as having more influence, whereas batch size was more influential where

therewas less complexity. Complexity canbepresent inarchitectureswhere theyaredeep-

er/wider with additional layers and nodes that need to be adjusted when learning. In

datasets, the complexity was quantified using the CSGmetric which looked at class sepa-

rability in the dataset features. As discussed above, a feature of learning rate decay is that

it aids models in learning more complex patterns whilst reducing the impact of noise in

the dataset which explains this observation in influence and ranking.

7.2.2 Hypothesis

The hypothesis put forward in this work was that tuning the influential parameters could

increase the tuning efficiency by improving model performance, reducing tuning time or

a combination of both of these things.

The key findings from the three chapters of work support this hypothesis as the influ-

ential parameter groups were more efficient to tune than all parameters, in most cases

achieving better accuracy and requiring less tuning time. In the case study, the top three

influential parameter group achieved the same accuracy reported in the original paper,
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85%, and was within an hour tuning time of the all parameter group which was 18% less

accurate, a justifiable trade off. Tuning the top three parameter groupwas almost twice as

fast as tuning the parameters reported in the original paper suggesting that if the authors

had tuned the batch size, learning rate decay and learning rate decay step rather than the

momentum and the learning rate the same model accuracy could have been achieved in

half the time. This is a clear demonstration that the results support the hypothesis.

7.2.3 Unexpected Results

Despite clear prominence in the literature, the learning rate was ranked as having rela-

tively low influence on model performance. This result was completely unexpected due

to the reputation andprecedents set in otherworkswhere the learning rate is amongst the,

if not the first, hyper-parameters most commonly chosen for tuning efforts. As this study

concentrated on testing accuracy predominantly, and the SA itself was calculated based

on a parameters influence on a models test accuracy there is a possibility that learning

rate has more impact on other performance measures such as time, precision, recall or

the training rather than test accuracy. Furthermore, the architectures chosen in this study

were tried and tested, known for their award winning performance and potentially learn-

ing rate has more scope for influence where the architectures are sub-optimal. Another

aspect that couldhavehindered the influenceof the learning ratewas it’s relationshipwith

batch size. As the batch size increases, the range of optimal learning rates decrease (117).

The default batch size was set to 32 which is not very big but maybe the range of usable

learning rates would have increased if a default of 16 had been chosen, giving learning

rate more opportunity to prove it’s influence. Conversely, 32 is a commonly used batch

size, hence being chosen as the default in this case, and so there would still be an expec-

tation for learning rate to be as influential as reported elsewhere.

Another unexpected, though explainable result, was that in some instances the most

influential parameter, batch size, was less efficient to tune than the all parameter group.

Specifically, in the case study batch size achieved aj of roughly 0.08 whereas the all pa-

rameter group achieved aj of roughly 0.09. As mentioned above, some values of batch

size can drastically affect training times and as a result, for the case study, the tuning pro-

cesswas longer for batch size by roughly anhour andahalf, which for a 12% increase in ac-

curacy seems reasonable. It was this 12% increase in accuracy for batch size compared to
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the all parameter group that created the expectation that the batch size parameter would

prove to bemore tuning efficient, however the time differencemeant that the all parame-

ter group was scored as being slightly more efficient. In cases like this, it could be argued

that the increase in accuracy is worth the trade off in tuning time.

Finally, the initial resultsof the rank informed tuning suggested thatdataset complexity

and accuracy gain were linked with the potential that the CSG value of the dataset could

aidpractitioners indecidingwhich influential parameter group to tune. However, the case

study did not follow this pattern showing thatmore data is needed to fully understand this

relationship.

7.3 Implications & Significance of the findings

7.3.1 Contextualising Results

Chapter 2, Section 2.3 presented a review ofworks from the last two decades that explored

SA in relation toDL.Wheremore simplisticmeasures such as PaDor chart interpretations

were adopted to understand the influence in otherworks the formal, quantification of pa-

rameter influence presented in this thesis sets this work apart. The main perceived ad-

vantage of approaching the SA of DL hyper-parametersmore formally, compared to some

reports in the literature, was to be able to analyse trends and patterns more thoroughly

and to produce results that had more scope for generalisation and reproduceability than

those more open to interpretation used in the literature. The potential added benefit of

approaching the SA in this way was provenwhere the SAmeasures were compared across

architectures and datasets to produce a generalised rank, where the topmost influential

parameters were proved to positively impact tuning efficiency.

Furthermore, several works in the literaturewhere SA andDLwere combinedwere ap-

plication specific, raising the questionwhether the findings could be applied in other sce-

narios or whether general conclusions could be drawn. Designing the experiments with

generic, popular image datasets and several state of the art architectures the SA ranking

and subsequent rank informed tuning made it possible to draw wider conclusions from

the results that were then applied successfully in the case study.

Rather than produce a novel metric for SA, as was done in someworks (80), the choice

to use knownmeasures was purposeful so that the methods were tried, tested and repro-
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ducible adding an additional layer of validity to the results and conclusions drawn from

them.

A gap identified in the literature by other researchers surrounded the lack of guidance

for ML and DL practitioners in hyper-parameter tuning. SA was identified in those in-

stances as having the potential to provide some insights into what elements of the DL

process are influential, be it architecture, input data or hyper-parameters (16). The key

findings of thiswork directly address this gap in knowledge, cutting through the confusion

surroundingparameter influence and importance andclearly quantifying the influenceof

various training parameters on CNN test accuracy that practitioners can take into consid-

eration when concentrating tuning efforts in future work. Additionally, a key observation

was the lack of literature exploring the application of SA to DL hyper-parameters. Provid-

ing a framework, SADL, that can facilitate future work in this area will help grow this body

of knowledge.

7.3.2 Confirming and Challenging Theories

These results challenge the theories surrounding the importance of learning rate in DL

model performance. These findings may differ to the expectations set in the literature as

this study set out to quantify influence whereas previous interpretations of learning rate

were instinctual and may have placed the emphasis on learning rate when in actual fact

the learning rate decay or, more likely, the batch size was contributing more and being

overlooked.

The SADL framework, which is the backbone of this work, shows that SA can identify

influential CNN hyper-parameters, and these parameters can be tuned more efficiently

has been confirmed via experimentation and in a case study. The ranking produced also

supported the literature that placed the emphasis on batch size importance.

To some extent, these results also challenged the idea that tuning hyper-parameters

is unique to the combination of architecture and task, as the most influential parameters

were shown to be generally influential. The optimal settings of those parametersmay dif-

ferbasedon thearchitecture taskpairingbut concentrating tuningeffortsonan influential

subset of parameters was shown to yield higher tuning efficiency, producing competitive

test accuracy alongside a time saving.

The No Free Lunch theory (68) was also partially challenged by these results, as they
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showed that HPO could be generally improved by reducing the parameter search space

to influential parameters. Though this may not make the lunch completely "free", it does

contribute a hefty discount.

7.3.3 Impact of Findings

The concept that CNNs can be trained efficiently by concentrating efforts on batch size,

learning ratedecay and learning ratedecay step couldhavea significant impact forDLand

ML practitioners, especially those with less experience to draw on. There is no guarantee

that with unlimited time and resources amore optimal solution could be found exploring

a wider set of parameters. However, where there are time and resource constraints con-

centrating on these three influential parameters gives a modeller a greater guarantee of

success than if they were to tune the less influential parameters or even all of the training

parameters.

This work has also contributed a measure of efficiency, j, that can be applied to fu-

ture tuning efforts which could be calculated for a smaller set of trials to indicate which

direction could yield the best accuracy gain over time.

Ultimately, this work has shown the applicability of SA to understanding the influence

of a CNN tuning hyper-parameters on the model’s test accuracy. This provides some in-

sight into what is influencing the learning process that occurs within the neural network

black box and could influence directions of future work. Furthermore, the importance

of these influential parameters was highlighted in their impact on tuning efficiency, vali-

dated in a case study, andconfirming that this avenueof explorationhas evenmorepoten-

tial. Finally, the SADL framework that was created and presented in this thesis facilitates

the future work in this area, an area this thesis has shown to havemany avenues of poten-

tial.

7.3.4 Proposed Solutions

These results could create scope for change in DL practitioners behaviours and practices

that could lead to gains in accuracy and time saving.
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Behavioural Changes

The biggest behavioural shift that could come of these results is the attitudes of DL prac-

titioners to learning rate. Rather than assuming the learning rate is influential and con-

centrating optimising efforts in that direction, these results clearly suggest other hyper-

parameters should be prioritised such as batch size.

Another change would be to consider the complexity level of the network architecture

anddatasetwhen choosingwhichhyper-parameters to include in theoptimisation search

space. Using ameasure such as CSG or looking at the numbers of nodes and layers to un-

derstand which parameter may be more influential in this instance could benefit practi-

tioners in the long run during HPO.

A behaviour or mindset that dominates in the SA literature is the concept that SA can-

not provide insights without clear scope of what is being analysed. This is also true in the

design of neural networks and the preparation of datasets. A shift in behaviour would be

to also apply this to making decisions around tuning efficiency needs could help practi-

tioners plan anduse SA andj to decide how toproceedwith tuning. Questions that could

be asked to help with this include whether this is a problemwhere test accuracy could be

compromised to increase the speed of the tuning and training process? whether there are

additional resource constraints thatmay impact the tuning efficiency that need to bemit-

igated by adjusting the parameter space? etc.

Conventional Practices

From this, a proposal for a future conventional DL practice would be to tune the batch

size as priority when working with CNNs and image datasets. Batch size was rankedmost

influential, and though in some instances it was not the most efficient the increased test

accuracy was worth the additional tuning time. Where resource and time constraints are

present tuning the batch size, learning rate decay and learning rate decay step should be

prioritised to benefit from the improved efficiency.

Another suggestion would be to take early measures of accuracy gain when tuning to

narrow the pool of parameter groups to explore. This could save the practitioners time in

the long run by pursuing themore efficient groups of parameters to tune.

A concept popular in the SA literature was the widespread adoption and application

of SA across industries. As this work has proven, SA is very much applicable in DL and
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ML, whilst also highlighting it’s potential to the wider areas encompassed in computa-

tional sciences. The hope is that this work encourages practitioners to adopt some form

of SA into conventional DL andML practices and apply it, where possible, to some of the

fields most burning questions such as getting insights into the black box that are neural

networks. Furthermore, this thesis provides a framework to make this possible. Practi-

tioners could use the SADL model presented in this work to facilitate the adoption of SA

into common practice when evaluating DLmodel hyper-parameters.

7.4 Limitations

These results cannot showwith certainty that thesefindings canbe generalised across dif-

ferent architecture types popular in DL such as RNNs, GANs or transformers. Though the

evidence is clear forCNNarchitectures, additional experimentswouldhave tobedesigned

to replicate this work for other network architectures to explore parameter influence and

their impact on tuning.

A conclusion made in Chapter 5 explored the possibility that calculating the CSG of

a dataset could help practitioners choose the most efficient parameter group for tuning.

Thiswasdrawn from threedatasetswhich, in itself, is a limitationdictatedby resource and

time constraints. Though it showedmerit, and still shows promise, the case study dataset

did not follow the pattern as expected. To improve on this aspect, completing the rank

informed HPO on additional datasets would strengthen or disprove this. Currently, there

is insufficient data to confirm or deny this theory following the case study.

As touchedonaboveandexplored inChapter3, thenumberofarchitecturesanddatasets

was limited by resource and time constraints. The nature of the experiments made them

resource intensive and time consuming andwithin the time period allocated to complete

this work there had to be an arbitrary cut off point to meet this deadline. To mitigate the

impact of this the architectures and datasets chosen were representative of those popular

in the literature and were varied enough to draw generalised conclusions across CNN ar-

chitectures and image classification datasets. To further strengthen the results additional

CNN architectures and image datasets could be included in a future phase of work.

Similarly, another improvementwouldbe to apply these findings toCNNarchitectures

performing an alternative task such as object detection or natural language processing.
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This would add further evidence to whether the parameter influence is related more to

network architecture or the task it is being applied to.

Finally, the scope of parameters exploredwas limited to the training parameterswhich

is insightful for those adopting tried and tested architectures. Ananalysis of theseparame-

ters alongside architectural parameters where the architecture is sub-optimal could high-

light these parameters in an alternate light.

7.5 Summary

The key findings presented in this work were as follows:

• The SADL framework is a robust methodology that can be followed and adapted for

future work applying SA to DL.

• It is possible to provide empirically based guidance on which parameters should be

optimised.

• Batch size, learning rate decay and learning rate decays step are highly influential on

CNN architecture performance, witch batch sizes ranking being significantly higher

than other parameters.

• Learning rate did not achieve the influence expected.

• HPO can bemademore efficient by tuning a group of influential parameters.

• The design of this work builds on that explored in the literature whilst also combat-

ting some of the limitations highlighted in those works.

• Though time and resource constraints limited this work in some aspects, the results

are robust and can be built upon in future work.



Chapter 8

Conclusions and FutureWork

This chapter will conclude the thesis by summarising the key findings, relating them to

the aims and objectives of this work whilst discussing their value. A summary of the limi-

tations will also be included and directions of future work will be recommended.

8.1 Conclusions

The aim of this investigation was to understand, and quantify through SA, the influence

of training hyper-parameters onCNNarchitectures. Furthermore, how this ranking could

contribute to increasing the efficiency of HPO for DL practitioners. The results showed

that applying tuning efforts to influential parameters could increase HPO efficiency, sav-

ing time without compromising model performance. Batch size, learning rate decay and

learning rate decay step were highlighted as themost influential parameters where batch

size was measured as being significantly more influential than all other parameters apart

from learning rate decay. Unexpectedly, learning rate did not score highly suggesting low

influence in direct contradictionwith the expectations set in the literature. Batch size and

the combination of tuning all three influential parameters were highly efficient during

tuning, outperformingallparametersand in thecase studyspecifically, tuning the influen-

tial parameter groups also outperformed the parameters chosen for tuning in the original

work.

Whilst working on this research a conference paper was published in the IEEE Inter-

national Conference of Tools of Artificial Intelligence. In this paper the initial findings of

117
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applying SA to CNNhyper-parameters was presented (19). This paper formed the basis of

Chapter 3.1 in this thesis and is available in its entirety in Appendix A.

Thisworkwasable toaddress the researchproblembydevelopingandmaking the con-

tribution of SADL, a novel framework for conducting SA of CNN hyper-parameters, pro-

ducing a generalised ranking andusing this to inform the implementationofBayesianOp-

timisation. This robustmethodologycanbe followedwhenconducting futureworkon this

topic. The findings were also confirmed in their application to a case study, validating the

results further. A novel metric, Accuracy Gain, was also developed to better quantify HPO

efficiency so that the parameter groups could bemore easily compared and contrasted in

terms of their affect on tuning efficiency. Taking a modular approach to solving this re-

search problem allowed the results to be built upon in a way that validated the previous

step. The first area of work applied SA to hyper-parameters and produced a ranking, the

second took that ranking and confirmed that tuning influential parameters wasmore effi-

cient than tuning non-influential parameters and this was all confirmed in the third area

of work - the case study.

The design of this study addressed a clear gap in the literature of SA applied to DL.

Specifically using a form of SA that quantifies influence in a way that is reproducible, less

open to interpretation of the researcher and can be compared across worksmakes the re-

sults of this studymore robust. Furthermore, combining this into a framework allows oth-

ers to also use this methodology going forward. Where less formal metrics such as PaD or

interpreting charts were popular in related works, the use of Sobol Indices and theMorris

method addresses some of the limitations of those studies.

The results of this work challenge the theory that the learning rate is the most impor-

tant hyper-parameter, proving that finding optimal values for batch size, learning rate de-

cay and learning rate decay step can improve model performance. Conversely, this work

supports the theory that reducing the parameter search space will reduce tuning time.

Combining that theory with reducing the search space to the influential parameters al-

lows for tuning time to be reduced without compromisingmodel performance.

These findings can be directly applied in real world scenarios, as proven by the case

study, byDLpractitioners. The first stepwould be to consider tuning the batch size, learn-

ing rate decay and learning rate decay step only before exploring other parameters. An

alternative option, would be to tune the top three influential parameters identified here,
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batch size alone and another group of parameters for a shorter amount of time and cal-

culate the accuracy gain of each group. This can allow practitioners to decide to tune the

group with the best accuracy gain for additional trials to find optimal settings.

The main limitations of this study were related to time and resource constraints. The

fixed time-frameof PhDmeant choosing an informed, arbitrary cut-offpoint for thenum-

ber of models, datasets and hyper-parameters explored so that it could be completed in

time. Also contributing to this was the lack of computational resources available with-

ing the department and the nature of this work being resource intensivemeant that some

larger, more complicated datasets and architectures could not be included in the scope of

this work. Though this work has clearly shown the merit of the application of SA to CNN

hyper-parameters and how it can be applied to HPO to increase efficiency, the influence

ranking is specific to model test accuracy. To generalise these findings across additional

metrics additional experimentswouldneed tobeconductedwhereotherparameters such

as learning rate may have more influence than was observed in this study. This does not

take away from the results presented here as the scope of this work concentrated specif-

ically on test accuracy and showed how test accuracy improvements can be made by op-

timising the influential parameters. Having said this, to further generalise these findings

to other types of data, DL architectures or performancemetric future work will have to be

carried out. On this note, an additional contribution of this work is a clear methodology

that can be followed in the exploration of the future directions highlighted below.

8.2 Future work

Someareas of futurework aredirectly linked to the limitationshighlighted above, address-

ing additional questions raised or applying SA toDLmodels froman alternative angle. Ex-

tending the scope of architectures, datasets and hyper-parameters would be the natural

continuation of this work. Firstly, extending the CNN architectures and image datasets,

then adding alternative tasks such as object detection and natural language processing

and seeingwhether the conclusions forCNNhyper-parameters is true for all. Additionally,

exploring the architectural parameters of CNNs and their impact for the full range of tasks

to see the impact they have on general parameter influence. The second phase would ex-

plore a greater range of network architectures. The combination of the results from these
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future directions could provide a definitive ranking of parameter influence, identifying re-

lationships between architectures, datasets and influence that can aid future DL practi-

tioners.

As explored in Chapter 2, Section 2.4 French proposed eight contexts for the use of

SA(24):

1. To build and explore models

2. To explore science andmodels relationships

3. To determine influential inputs

4. To develop efficient algorithms

5. To design experiments

6. To guide decisionmaking

7. To build consensus

8. To gain understanding

This work and the natural progression of it detailed above specifically target number 1,

build and explore models, and 3, determining influential inputs. To some extent the re-

sults also apply to number 6 where they have the potential to guide future decisions sur-

roundingHPO. The SADL framework andmethodology can be used to conduct the future

work.

The application of SA to network architectures in DL, as mentioned above, would be

a future work that targeted number 4, developing efficient algorithms. Broadening the

scope of future work, considering the behavioural changes suggested above and targeting

the concept of developing efficient algorithms, SA could also be applied to other learning

algorithms that are being employed in thefield ofDLandML such as randomised learning

or evolutionary algorithms.

A key area of future work surrounds the final point, gain understanding. The inner

workings of DL models, dubbed black-boxes, is a "hot topic" in research where SA could

play an important role. Already through this work, and with the future directions high-

lighted above, SA has quantified hyper-parameter influence, showing which parameters
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within a network contribute most to the final model output. The granularity of this ex-

ploration could be increased, conducting the SA on the hyper-parameter values them-

selves, almost replacing theneed for separate tuning, where specific hyper-parameter val-

ues could be highlighted as more influential than others.

8.3 Summary

A robust framework to facilitate the exploration of SA andDLwas created and SAwas suc-

cessfully applied to the hyper-parameters of CNN DL models, resulting in a ranking that

informedHPOparameter space to clearly show increased efficiency in tuning. These find-

ingswere all confirmedandvalidated in their application in a case study. Batch size, learn-

ing rate decay and learning rate decay stepwere the top threemost influential parameters

onCNNarchitecture identified via SA. Tuningbatch size aloneor the top three parameters

together was proven most efficient to tune with a novel metric, accuracy gain. Time and

resource constraints meant that the scope of this work was limited to CNN architectures

and image classification datasets as training parameters were analysed based on their af-

fect onmodel test accuracy. Future work, utilising the novel framework developed in this

thesis, would look to expand this scope, exploring various architecture types, DL tasks,

parameters and performance metrics with the aim of generalising the results further and

exploring any relationships and patterns that may exist.



Chapter 9

Reflection

Please note: this reflection will be written in first person as it expresses the thoughts, feel-

ings and experiences of the author.

This experience has been unlike any other, it has also been unlike anything I expected.

There have been many unforeseeable challenges to overcome, such as changes in super-

vision, lack of computational resources available and completing this work during the

COVID-19 pandemic. COVID-19 impacted so many experiences that usually come part

andparcelwith completing aPhD, I hadnoaccess to a lab for themajority ofmydegree, no

in personmeetings with other PhD students or my supervisors for the majority of my de-

gree and no opportunities to presentmywork in person internally or at conferences. This

naturally led to additional challenges, overcoming feelings of loneliness, feeling without

support, struggling to prioritise PhD work whilst supporting vulnerable family members

and whilst the world seemingly came to a halt. This was amajor hurdle that I had to over-

come in order to produce this thesis.

As mentioned briefly above, there were additional challenges related to my supervi-

sion that also impacted my progress at times. My initial supervisor left the department,

and then my second supervisor left the department. My replacement supervisor had too

much work to support me and so a year in I made the difficult decision to change super-

visor, who ultimately decided to take their work in a different direction 6 months before I

aimed to submit, resulting in my fourth and final supervisor. This particular hurdle had

me questioning whether completing this work was possible at times and I am proud that

I was able to persevere in the face of somuch adversity.
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Over the course of the last three years I have developed somany skills and acquired so

much knowledge. My abilities to design experiments, write critically and present findings

are all skills I have learned during my research degree. More specifically, I have improved

my coding skills and my understanding of neural networks, hyper-parameters and ma-

chine learning.

If I could do this project again, I would have changed supervisors sooner to minimise

the impact onme andmy work. I would also try to deal withmy feelings of impostor syn-

drome earlier on, as I feel I would have presentedmy work for conferences earlier if I had

more belief in myself and the contributions I was capable of.

Specifically with the design of my work, I would have adopted the google collab plat-

form fromthebeginningas theGPU in thedepartmentwas retiredbefore I could complete

my experiments. I hadn’t originally planned to complete any work on this platform but I

had to adjust the case study.

When I planned my work, I originally thought that I would repeat my methodology

for an object detection task, natural language processing task and Recurrent Neural Net-

work (RNN)model architecture. It became apparent, however that this scope of work was

unattainable in the time available and so I concentrated on CNNs specifically and the im-

ageclassificationdatasets as I knew thoseother avenuesof experimentationcouldbeclear

directions for future work.

In conclusion, if I was starting this area of study again I would have requested a change

of supervision earlier in the process in order to gain the support and focus I needed. As

this directly affected my self-confidence and well-being which resulted in me unneces-

sarily challenging my capabilities and performance. However, this experience enabled

me to develop my communication skills, critical thinking etc and it also highlighted my

strengths and weaknesses. I worked with a number of diverse supervisors with contrast-

ing styles, character and expectationswhichwas extremely challenging at the timebut has

enabled me to develop my resilience and capabilities in communication and research. A

highlight ofmy studieswaspresentingmywork at an international conference, ICTAI, and

gaining recognition of my work was highly motivational. I have learned that research is a

complex area which expands and develops and so my initial objectives were not realis-

tic and perhaps over ambitious due to time and resources. This learning experience has

enable me to plan future work with more clarity and efficiency which results in positive
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outcomes for myself andmy colleagues. I havematured and developed skills in teaching,

presenting and writing during the course of my studies and despite the challenges I have

faced I am grateful for this experience and the resiliency I have developed as a result.
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Appendix A

Code Implementation

1 def get_increased_values(y, up, lo):

2

3 #adding false values in positon to make it back to the right shape after

caculating the difference (trj ,ss,param)

4 up = np.pad(up, ((0, 0), (1, 0), (0, 0)), ’constant ’) #first ss position

5 lo = np.pad(lo, ((0, 0), (0, 1), (0, 0)), ’constant ’) #last ss position

6

7 #matrix operation , y has shape ik , up+lo has shape ikj , output result with

shape ij

8 #product of y and (up+low) + sum of all axis - haddamard product sum of

elementwise multiplication

9 result = np.einsum(’ik ,ikj ->ij’, y, up + lo)

10

11 return result.T

12

13 def get_decreased_values(y, up, lo):

14

15 up = np.pad(up, ((0, 0), (0, 1), (0, 0)), ’constant ’)#last ss position

16 lo = np.pad(lo, ((0, 0), (1, 0), (0, 0)), ’constant ’)#first position

17

18 result = np.einsum(’ik ,ikj ->ij’, y, up + lo)

19

20 return result.T

21

22 #Elementary Effects

23 def EE(x, y , param , trajectory ,problemtype ,ss): #sample , output , trj ,

categorical/numerical , samplesize used aka levels
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24

25 y = y #list of accuracies of each run

26 EE = []

27

28 if problemtype == ’categorical ’:

29 #need something here to onehot encode x for use in the calculations

30 labelencoder = LabelEncoder ()

31 x = labelencoder.fit_transform(x)

32

33 if problemtype == ’numerical ’:

34 x=x

35

36 p = ss

37 d = p/(2*(p-1))

38

39 #EE calculation

40

41 x = np.reshape(x,[trajectory , ss ,1]) #1 is the number of parameters and I’

m doing it OAT

42 x_dif = np.subtract(x[:, 1:, :], x[:, 0:-1, :]) #everything after the fist

sample - everything but the last sample

43

44 #Binary of whether the difference is postive of negative

45 up = (x_dif > 0)

46 lo = (x_dif < 0)

47

48 y = np.reshape(y,[trajectory , ss])#Output Vector of shape levels and

trajectories

49

50 result_up = get_increased_values(y, up, lo)

51

52 result_lo = get_decreased_values(y, up, lo)

53

54 ee = np.subtract(result_up , result_lo)

55 np.divide(ee, d, out=ee)

56

57 return(ee)

58

59 def morrisSA(ee):

60 mu = np.mean(ee)

61 mustar = np.mean(np.absolute(ee))
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62 sigma = np.std(ee)

63

64 return mu, mustar , sigma

Listing A.1: Morris Method implementation

1 def Si(Yxi , Y):

2 splitYxi = []

3 expectedY = []

4 nSplits = 3

5 #should be the average of the variance of the output for each fixed value?

6 #split Yxi into chunks

7 for i in range(0, len(Yxi)):

8 splitYxi.append(Yxi[i:i + nSplits ])

9

10 #calculate expected value of y given xi

11 for i in splitYxi:

12 Eyofxi = sum(i)/len(i)

13 expectedY.append(Eyofxi)

14

15 #calculate variance in expected value of Y from the different splits

16 varE = np.var(expectedY , dtype=np.float64)

17 #print(varE)

18

19 #Calculate variance of y

20 varY = np.var(Y, dtype=np.float64)

21 #print(varY)

22

23 #Calculate and return Si

24 Si = varE/varY

25

26 return Si

27

28 def STi(Yxi , Y):

29 splitYnotxi = []

30 expectedY = []

31 nSplits = 3

32

33 #all output except of Xi

34 Ynotxi = [x for x in Y if x not in Yxi]

35
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36 #split Y~xi into chunks

37 for i in range(0, len(Ynotxi)):

38 splitYnotxi.append(Ynotxi[i:i + nSplits ])

39

40 #calculate expected value of y given not xi

41 for i in splitYnotxi:

42 Eyofxi = sum(i)/len(i)

43 expectedY.append(Eyofxi)

44

45 #calculate variance in expected value of Y from the different splits

46 varE = np.var(expectedY , dtype=np.float64)

47 #print(varE)

48

49 #Calculate variance of y

50 varY = np.var(Y, dtype=np.float64)

51 #print(varY)

52

53 #Calculate and return Si

54 STi = 1 - varE/varY

55

56 return STi

57

58 #Method to return Sobol Indices

59 def SobolSA(modelinput ,modeloutput ,outputchoice): #input = list of parameters ,

output = results dataframe

60 Y = modeloutput[outputchoice ]. tolist ()

61 Y = [item for sublist in Y for item in sublist] #flatten list from list of

lists

62 sobolresults = []

63

64 for param in modelinput:

65 YXI = modeloutput.loc[modeloutput[’Parameter ’] == param[1],

outputchoice]

66 YXI = [item for sublist in YXI for item in sublist]

67 sobolresults.append (( param[1], Si(YXI ,Y), STi(YXI ,Y)))

68 return sobolresults

Listing A.2: Sobol Indices implementation

1 #minmax normalising

2 MNIST_morris[’Mu*_Norm’] = (( MNIST_morris[’Mu*’]-MNIST_morris[’Mu*’].min())/(
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MNIST_morris[’Mu*’].max()-MNIST_morris[’Mu*’].min()))

3 MNIST_morris[’Mu_Norm ’] = (( MNIST_morris[’Mu’]-MNIST_morris[’Mu’].min())/(

MNIST_morris[’Mu’].max()-MNIST_morris[’Mu’].min()))

4 MNIST_morris[’Sigma_Norm ’] = (( MNIST_morris[’Sigma’]-MNIST_morris[’Sigma’].min

())/( MNIST_morris[’Sigma’].max()-MNIST_morris[’Sigma’].min()))

5 MNIST_SA[’Si_Norm ’] = (( MNIST_SA[’Si’]-MNIST_SA[’Si’].min())/( MNIST_SA[’Si’].

max()-MNIST_SA[’Si’].min()))

6 MNIST_SA[’STi_Norm ’] = (( MNIST_SA[’STi’]-MNIST_SA[’STi’].min())/( MNIST_SA[’STi

’].max()-MNIST_SA[’STi’].min()))

Listing A.3: Normalising Sensitivity Measures

1 \usepackage{allrunes}

2

3 {\Large \textarc{j}}

Listing A.4: Using the Jera symbol for Accuracy Gain in LaTeX



Appendix B

PublishedWork

Mypaper Sensitivity Analysis forDeepLearning: RankingHyper-parameter Influence (19)

was published in 2021 and includes early results that contributed toChapter 4. I produced

the paper in it’s entirety and completed the experiments. My co-authors provided feed-

back on results and early drafts of the paper and offered suggestions for improvements.
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The published article which was filed at the end of this thesis has been redacted for 
copyright reasons. The article can be found at the following reference:

 R. Taylor, V. Ojha, I. Martino and G. Nicosia, "Sensitivity Analysis for Deep Learning: 
Ranking Hyper-parameter Influence," 2021 IEEE 33rd International Conference on 
Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 2021, pp. 512-516, 
doi: 10.1109/ICTAI52525.2021.00083.
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