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Supplementary Figures 
 

 
Figure S1 Overview of the Poll4pop model, which was parameterised and validated for four bee guilds in the UK by Gardner 
et al. (2020): ground-nesting bumblebees, tree-nesting bumblebees, ground-nesting solitary bees and cavity-nesting solitary 
bees. The model predicts bee abundance across a given landscape by simulating the processes of central-place foraging, 
population growth and female dispersal. This is seasonally-resolved and can be simulated across multiple years, although 
only one year is simulated within the NSGA-II algorithm in our experiments. The NSGA-II fitness functions use the output 
visitation rate rasters for spring and summer to calculate a fitness score for bees and to modify crop yields when calculating 
the fitness score for farm income (see Fig.S5). 

 

 

 

Figure S2 Landcover proportions of the original 10x10 km SK86 grid square used as reference landscape in our optimisation 
experiments. A) shows the proportions of each landcover within the optimised region, which included all fields (n=303) 
within a 2 km buffer of the centre of the grid square which originally contained either arable crop or improved permanent 
grassland. B) shows the proportions of each landcover across the whole grid square. 
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Figure S3 Landscape initialisation process.  

 
 
 
 

 
 

Figure S4 Visualisation of the derivation of Equation 1.  
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Figure S5 Visualisation of how the fitness function calculates scores for each objective, using the output 10x10 km rasters 
with 25 m pixel resolution. Totals are therefore calculated as the sum of 160000 pixel values for each raster. The derivations 
for the visitation-dependent adjustments to OSR and FB yield are given below.   
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Figure S6 The crossover process, which occurs for each field if a specified crossover probability (default value = 0.7) is met. 
Landcovers in the table are ranked by an average of Poll4pop-defined nesting and floral scores for each guild of bee. If the 
crossover probability is met for a field, the landcover in the child field is selected from those ranked in-between the two 
parent landcovers on this scale. If the two parent landcovers are next to each other on the scale, one is selected at random 
from them both. If both parent landcovers are the same, the child landcover will also be the same. 

 

 

 

Figure S7 Summary of the crossover and mutation process. Landcovers in the lefthand table are ranked by an average of 
Poll4pop-defined nesting and floral scores for each guild of bee. Note the landcover configuration of Child 1 is based on 
Parent 1, and only gains characteristics of Parent 2 during when the crossover probability for a field is met. If the mutation 
probability for a field in the child landscape is met (default value = 0.2), a new landcover is randomly assigned to that field. 
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Figure S8 To ensure the choice of population size and generations parameters was sensible, preliminary investigations were 
executed in which multi-objective optimisations with different combinations of population size and maximum number of 
generations were run. 1 repeat was executed for each combination of population size and number of generations. For each 
objective, fitness scores of the Pareto rank 1 landscapes for each generation were plotted. Visual inspection was used to 
compare the curves for each repeat (higher maximum scores are more desirable). Ideally, the gradient of the curve should 
flatten towards the end of the optimisation as a global optimum is reached, however trade-offs between different 
objectives can alter this shape. 
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Figure S9 A) Normalised objective fitness scores for final landscapes of multi-objective optimisations including only bees. B) 
Normalised objective fitness scores for final landscapes of multi-objective optimisations including bees and the farmer. For 
A) and B), the fitness of individual landscapes within the final population is normalised so that the fittest landscape for each 
objective in the multi-objective optimisation will have a value of 1, and the least fit a value of 0. Each line represents one 
landscape. Higher density of crossed lines between objectives therefore represents increased conflict between the needs of 
those actors. See Table S3 for sample sizes. 
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Figure S10 Evolution of mean fitness score for each objective in each generation, separated by the type of optimisation 
being carried out. Mean is taken from all rank 1 landscapes in each generation for multi-objective optimisations and rank 1-
3 landscapes in each generation for single-objective optimisations, for all replicate runs. Shaded areas represent standard 
error on the mean fitness of included landscapes in each generation (negligible in some cases). Number of repeats denoted 
in Table S3. Y axes units are omitted because they differ between bee objectives (GNB/ TNB/ GNS units = visitation rate) and 
the farmer objective (landscape income in GBP). 
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Supplementary Tables 
 

Table S1 Mean of foraging kernels of bee guilds used in the optimisation process, as defined by the Poll4pop model 
(Gardner et al., 2020). 

Guild Foraging distance (m) 

Ground-nesting bumblebees 530 

Tree-nesting bumblebees 530 

Ground-nesting solitary bees 191 

 

 

Table S2 Values and of origins of subjective NSGA2R algorithm parameters, as used in all optimisation experiments. 

Parameter Value Justification 
Population size 50 Validated during preliminary parameter trials to check for 

convergence (Fig.S7). 
Tournament size 5 Slight increase of default (2) to increase efficiency. 

Generations 100 Validated during preliminary parameter trials to check for 
convergence (Fig.S7). 

Crossover probability 0.7 Default value.  

Mutation probability 0.2 Default value. 

 

 

Table S3 Number of completed optimisations and final population landscapes analysed for each objective (i.e ‘end-user’ of 
the optimised landscape) and radius. Objective abbreviations stand for: ground-nesting bumblebees (GNB), tree-nesting 
bumblebees (TNB), ground-nesting solitary bees (GNS). Only Pareto rank 1 landscapes were taken from the final population 
of multi-objective optimisations, and rank 1-3 landscapes taken from single-objective optimisations because these can only 
have one landscape at each rank by definition.  

Objective(s) Radius (m) Number of optimisations Number of Highly-Ranked 
Landscapes Analysed 

GNB 2000 15 45 

TNB 2000 25 75 

GNS 2000 23 72 

Farmer 2000 25 75 

GNS + TNB + GNS 2000 25 461 

GNS + TNB + GNS + Farmer 2000 25 1250 
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Adapting the NSGA-II algorithm for single-objective optimisations 
The NSGA-II algorithm, which typically deals with multi-objective optimisations, was adapted to 
conduct single-objective optimisations by simply specifying the same objective twice in the 
algorithm arguments. Therefore, two equal fitness scores are output by the fitness function of the 
algorithm for each landscape in each generation. This changes the way individuals are ranked 
because if one solution has a higher score than another then it automatically has Pareto dominance. 
Therefore, for example, each generation of a single-objective optimisation with a population of 50 
landscapes would have 50 separate Pareto ranks. This contrasts to multi-objective optimisations 
where there would be many landscapes within the same rank. However, the overall optimisation 
process is not affected by this distinction and the algorithm will still produce a final population of 50 
optimised landscapes. 
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Adjusting pollinator-dependent crop yield according to visitation rate 
 
Equation S1 (broad/field beans): 

𝑎 = 	0.592𝑉	

 
Equation S2 (oilseed rape):  

𝑎 = (1 − 𝑒!") ∙ 𝑒!#.#%&'	

 
Where: 
𝑎 = yield adjustment value of crop in specified pixel (tonnes per ha) 
𝑉= total visitation rate of GNB, TNB and GNS to specified pixel (visits) 
 
From Equations S1 and S2, Equation 1 is derived as follows: 
 

𝑎 = 𝑚𝑉 
 
Where 𝑚	is a constant with units (tonnes per ha per visit). 
 
In this equation the intercept is assumed to be 0, however we know this not to be true as 
the crops will produce some yield regardless of visitation. Therefore, the intercept value will 
be the yield produced with no visitation to the crop, meaning:  
 

𝑌 = 𝑎 + 𝑐 
 
Where:  
 𝑌 = crop yield (tonnes per ha) 
 𝑎 = yield adjustment value of the crop (tonnes per ha) 
 𝑐 = crop yield with no visitation (tonnes per ha) 
 

∴ 𝑌 = 𝑚𝑉 + 𝑐 
∴ 𝑐 = 𝑌 −𝑚𝑉 

 
As we know the national mean crop yield (𝑌#) and predicted visitation rates for the real-life 
landscape (𝑉#):  

𝑐 = 𝑌# − 	𝑚𝑉# 
∴ 𝑌 = 𝑚𝑉 + 𝑌# − 	𝑚𝑉# 
∴ 𝑌 = 𝑌# +𝑚𝑉 − 	𝑚𝑉# 
∴ 𝑌 = 𝑌# + (𝑎 −	𝑎#) 

 
(Equation 1) 


