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ABSTRACT

We investigate the ability to discover data assimilation (DA) schemes meant for chaotic dynamics with deep learning. The focus is on learning
the analysis step of sequential DA, from state trajectories and their observations, using a simple residual convolutional neural network, while
assuming the dynamics to be known. Experiments are performed with the Lorenz 96 dynamics, which display spatiotemporal chaos and
for which solid benchmarks for DA performance exist. The accuracy of the states obtained from the learned analysis approaches that of
the best possibly tuned ensemble Kalman filter and is far better than that of variational DA alternatives. Critically, this can be achieved
while propagating even just a single state in the forecast step. We investigate the reason for achieving ensemble filtering accuracy without an
ensemble. We diagnose that the analysis scheme actually identifies key dynamical perturbations, mildly aligned with the unstable subspace,
from the forecast state alone, without any ensemble-based covariances representation. This reveals that the analysis scheme has learned some
multiplicative ergodic theorem associated to the DA process seen as a non-autonomous random dynamical system.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0230837

Data assimilation (DA) estimates the state of dynamical systems
from sparse and noisy observations and is used worldwide in
numerical weather prediction centers. Accurate DA demands the
representation of the time-dependent errors in this state esti-
mate, usually achieved through the propagation of an ensemble
of states. Using deep learning, we discover the update step of
DA applied to chaotic dynamics. We show that a simple con-
volutional neural network (CNN) can learn DA, reaching an
accuracy as good as that of ensemble-based DA. Crucially, the
CNN can achieve this best accuracy with single state forecasts.
This is explained by the CNN’s ability to identify local space pat-
terns from this one state, which are used to assess the errors in
the analysis. This suggests building a new class of efficient deep
learning-based ensemble-free DA algorithms.

I. INTRODUCTION

A. Context and problem

In a simplified but quintessential framework, the goal of data
assimilation (DA) and, in particular, filtering algorithms is to accu-
rately estimate states xt

k ∈ R
Nx , where “t” stands for truth, at equally

spaced times τk for k = 0, . . . , K along a trajectory of a dynamical
system. Hence, they are related by

xt
k+1 = M

(

xt
k

)

, (1a)

where M is the resolvent over τk+1 − τk of known autonomous,
i.e., time-independent, dynamics. Such goal is achieved from the
knowledge of the dynamics M and of observation vectors yk ∈ R

Ny,k

obtained from the non-accessible states xt
k via observation operators
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Hk and perturbed by a white-in-time Gaussian noise εk of mean 0
and covariance matrix Rk,

yk = Hk

(

xt
k

)

+ εk, εk ∼ N(0, Rk). (1b)

Applied to chaotic hence dynamically unstable dynamics, sequen-
tial (in time) algorithms must be used.1,2 They alternate an analysis
step that, from the newly acquired observation vector yk in Eq. (1b)
and the current estimate of the state xf

k, provides an updated opti-
mal estimate of the state xa

k called the analysis. The subsequent state

estimate xf
k+1 stems from the forecast step that relies on Eq. (1a). The

estimates in both steps can either be deterministic or probabilistic,
often leveraging an ensemble in the latter case. Such sequential DA
is widely used in numerical weather prediction (NWP), and in many
areas of climate sciences,2 as a suite of both research and operational
tools.

Classical DA methods are classified into (i) variational meth-
ods, such as 3D-Var and 4D-Var, (ii) ensemble-based statisti-
cal methods, such as the ensemble Kalman filter (EnKF), and
(iii) ensemble variational methods that inherit the assets of the
two previous categories.1 On the one hand, variational methods
account for the nonlinearity of models (dynamical model and obser-
vation operators), leveraging nonlinear optimization techniques.
Ensemble-based methods, on the other hand, can capture the errors
of the day, i.e., time-dependent error statistics, via an ensemble
meant to diagnose sample error statistics. Those are key properties
that drive the performance of these DA methods in mildly nonlin-
ear chaotic models. For low-order, chaotic dynamics such as the
celebrated Lorenz 96 (L96) model,3 the EnKF significantly outper-
forms 3D-Var or a moderately long window 4D-Var in terms of
accuracy owing to its dynamical representation of the errors. This
has been emphasized and illustrated in twin experiments.4 In fact,
current implementations of 4D-Var in NWP centers incorporate a
forecast ensemble so as to capture the errors-of-the-day.5,6 However,
in high-dimensional models, these ensemble-based error statistics
must necessarily be regularized using techniques known as localiza-
tion and possibly inflation.7 With a focus on the time-dependent
error statistics of sequential DA, it has been conjectured8,9 then
proven10–12 that for linear dynamics and when localization is unnec-
essary, the forecast and analysis error covariance matrices of the
EnKF are confined to the unstable-neutral subspace, denoted as U

from now on, of the dynamics. This subspace is spanned by the
covariant Lyapunov vectors associated to non-negative Lyapunov
exponents.13 It is precisely when the ensemble size is smaller than
the dimension of this subspace that localization is required to avoid
divergence of the EnKF. Deviating from linear dynamics turns those
exact results into approximations, for which these findings were
nonetheless numerically confirmed.14–16

This paper focuses on methodological DA and on what can be
discovered from deep learning (DL) techniques to improve state-
of-the-art DA schemes such as those mentioned above. Hence,
we hereby give a brief account on the recent introduction of DL
techniques for DA applied to chaotic dynamics.17

It was first proposed to learn DA analysis through DL from
the data produced by existing DA schemes.18,19 One can alterna-
tively replace the solver of a 4D-Var over a long DA window by
a DL operator that would learn the outcome of the 4D-Var cost

function minimization.20–24 However, the latter approaches do not
consider cycling sequential DA, the focus of the present paper. A
systematic, formal Bayesian view on the use of DL in the criti-
cal components of sequential DA has been proposed25 and called
data assimilation network (DAN). In the present paper, a simplified
variant of this DAN concept is used. As far as ensemble and Kalman-
related DA methods are concerned, it has been proposed to learn
their Kalman gain26,27 or parameters thereof possibly relying on an
auto-differentiable implementation of the (En)KF.28–30 As a step fur-
ther, it was also proposed to learn the full analysis operator using
(self-)supervision.25,31 Finally, bypassing the need for dynamical
models and DA schemes altogether, DL-based end-to-end methods
aim at estimating states of the system from the observations only,32,33

yet so far with a focus on the feasibility of such endeavor.

B. Objectives

In this paper, the forecast model in Eq. (1a) is assumed to be
known so as to avoid intricate interactions when learning the DA
operators and the dynamics simultaneously.

Our objective is to learn the analysis operator of a sequential
DA scheme meant for chaotic dynamics from a long trajectory of
the dynamical system and the associated set of noisy, possibly sparse
observations. Hence, it stands out from past studies that exploited
DL to learn the dynamics, possibly using DA.34–39 The resulting
DL-based analysis operator will be referred to as aθ , while the full
resulting DA scheme will be called DAN.

We will first explain how to learn such analysis operator
from DL. It will then be shown numerically that aθ can surpris-
ingly perform as accurately as a well-optimized EnKF, even without
using an ensemble. This strongly contrasts with common beliefs in
methodological DA. To interpret this result, we will show using
innovative concepts based on a Taylor expansion of the learned
aθ , that aθ directly discovers and utilizes a fine knowledge of the
dynamics, as opposed to agnostic classical DA. The nature of these
dynamical structures learned through aθ will then be discussed and
interpreted.

II. EXPERIMENTAL SETUP

With the goal to learn an analysis operator aθ as a key step
of a filtering DA scheme for chaotic dynamics, we build a twin
experiment within the framework offered by Eq. (1).

A. Analysis operator and its neural network

representation

Let us define a filtering DA scheme, based on an analy-
sis and forecast ensemble. The ith members of the analysis and

forecast ensembles at time τk are noted xa,i
k and xf,i

k , respectively.
By denoting Se = 1, . . . , Ne, the corresponding analysis and fore-

cast ensembles are Ea
k =

{

xa,i
k

}

i∈Se
⊂ E e and Ef

k =
{

xf,i
k

}

i∈Se

⊂ E e,

respectively, where E e = R
Ne×Nx . The initial ensemble Ef

0 is obtained
from perturbing a random state on the attractor of the dynamics.

The analysis step of the DA scheme is given by the (incremen-
tal) analysis operator aθ , which depends on a set of neural network
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FIG. 1. Architecture of the residual convolutional network, where Nb = 2 and
Nsb = 3. convN1 ,N2 ,f is a generic one-dimensional convolutional layer of dimension
N1, with N2 filters of kernel size f . See text for more details.

weights and biases, a vector θ ,

Ea
k = Ef

k + aθ

(

Ef
k, H

ᵀ

k R−1
k δk

)

, (2a)

where δk, the innovation at time τk, is defined by

δk
1= yk − Hk

(

x̄f
k

)

, x̄f
k

1= 1

Ne

∑

i∈Se

xf,i
k . (2b)

Hk is the tangent linear operator of Hk but any arbitrary injective
operator from R

Ny,k to R
Nx could be chosen instead. The DA forecast

step propagates the analysis ensemble, member-wise:

Ef
k+1 = M

(

Ea
k

)

. (3)

We choose aθ to have a simple residual convolutional neural
network (CNN) architecture. A schematic of the CNN architecture
is displayed in Fig. 1. It begins with an initial convolution that takes
Ne + 1 channels as inputs and, with Nf filters, outputs Nf channels.
This initial layer is followed by Nb residual blocks. Each one of these
blocks is a succession of Nsb sub-blocks. Each subblock is made of (i)
a convolutional layer with Nf channels as inputs, which has Nf filters
and a kernel size fv for each of its filter, (ii) a batch normalization
layer, and (iii) an activation function chosen to be mish.40 The CNN
ends with a final convolutional layer that takes Nf channels as inputs
and, with Ne filters, outputs Ne channels. The kernel size of the initial
and final channels is fv. Hence, the internal state of the CNN consists
of Nf copies of the latent space that we simply choose to be isomor-
phic to the state space R

Nx . Furthermore, the encoder and decoder
from state space to latent space and back are chosen to coincide with
the identity. We have also tested a depth-separable architecture for
this residual CNN, with a number of parameters roughly divided
by 3, yielding an accuracy almost as good but longer training times.
Note that the fundamental results reported in this paper are agnostic
to the details of the architecture: this CNN is a mere functional tool
to learn an optimal aθ .

B. Training scheme

Toward efficiently learning an optimal aθ , we consider Nr such
DA runs, based on as many independent concurrent trajectories

of the dynamics and as many sequences of observation vectors.

Hence, the DA runs are specified by Ea,r
k =

{

xa,i,r
k

}

i∈Se
and Ef,r

k for

r = 1, . . . , Nr, and being iterates through Nc cycles, they depend on

θ except for the set of initial conditions Ef,r
0 . In order to learn an

optimal aθ , a loss function is defined,

L (θ) =
Nr

∑

r=1

Nc
∑

k=1

∥

∥xt,r
k − x̄a,r

k (θ)
∥

∥

2
, x̄a,r

k

1= 1

Ne

∑

i∈Se

xa,i,r
k , (4)

where ‖·‖ is the Euclidean norm. Its formulation is based on super-
vised learning, although self-supervised learning31,34,35 could have
been used instead; it is nonetheless more challenging and rather
unrelated to the goals of this paper. This loss matches the analy-
sis ensemble mean trajectory with the true trajectory. The Adam
stochastic gradient descent optimization technique41 is used to min-
imize it. To avoid the risks of exploding gradients, the inefficiency
of vanishing gradients, and huge memory requirements, when com-
puting gradients of Eq. (4), the truncated backpropagation through
time technique42,43 is used; it splits the trajectories in the dataset into
chunks of Niter cycles.

It must be pointed out that a successful sequential DA pro-
cess, when seen as a dynamical system, is stable.44,45 Hence, after
a rough starting phase in the training, the learned aθ should yield
a numerically stable prediction-assimilation dynamical system. In
particular, this is likely to avoid exploding gradients. By contrast,
the task of learning a DL emulator of the dynamics over many con-
secutive time steps often fails because of the unstable nature of the
chaotic dynamics.

The Nr trajectories are dispatched into a training and valida-
tion dataset with a 90%–10% ratio. Overfitting is prevented by an
early stopping of the minimization based on the validation score,
tantamount to regularization.46 Moreover, the testing dataset stems
from an independently generated trajectory, long enough to yield
converged statistics. In the test stage, the DAN scheme is used within
a twin experiment using the trajectories and resulting observations
of the testing dataset. Its performance is assessed from a single scalar
score using the time-averaged root mean square error (aRMSE) of
the analysis against the truth,

aRMSE = 1

K
√

Nx

K
∑

k=1

∥

∥xt
k − x̄a

k

∥

∥ , (5)

which, in a cycled DA context, is a reliable indicator of the overall
performance of the scheme, whatever its purpose.

III. NUMERICAL RESULTS

The aθ operator is trained on the L96 model,3 and the results
will be interpreted and discussed in the context of this model. L96 is
a one-dimensional model defined over a periodic band of latitude of
the Earth atmosphere. Its ordinary differential equations read

dxn

dt
= (xn+1 − xn−2)xn−1 − xn + F, (6)

with xNx = x0, x−1 = xNx−1, x−2 = xNx−2, F = 8, and Nx = 40 in
the basic configuration. The model has a Lyapunov time of 0.60.
It has 13 positive exponents, and being continuous-in-time and
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autonomous, it has one zero Lyapunov exponent. Hence, the dimen-
sion of its unstable-neutral subspace U is Nu = 14.

A. Hyperparameters sensitivity analysis

We first carry out a large set of trainings to assess the sensitivity
of aθ ’s performance to its hyperparameters. We choose Niter = 16,
without any significant gain beyond this value, while the numeri-
cal cost increases due to a deeper backpropagation. We first assume
the model to be fully observed with Hk = Ix, the identity matrix in
R

Nx , and the observations to be affected by a white-in-time unbi-
ased Gaussian noise of covariance matrix Rk = Ix for all time steps.
This configuration is the most widely used to benchmark new DA
schemes with L96. The ensemble size Ne and the number of filter
Nf were selected in a set ranging between 1 and 40. The number Nb

of residual blocks in the CNN and number of subblocks Nsb in each
residual block were both chosen in the set [[1, 6]]. Because L96 has
short-range correlations in space, we choose a kernel size of fv = 5,
even though the CNN receptive field is much larger.

B. First results and robustness

The training dataset size per epoch scales linearly with Nr,
which is chosen to be 218 and further discussed in the supplementary
material. The subsequent test DA runs with the trained aθ are actu-
ally all stable in time, yielding an aRMSE significantly below 1, as
expected if DA has any skill over the mere observations. Unsurpris-
ingly, we found that the larger the hyperparameters Nf, Nb, and Nsb,
the smaller the test aRMSEs of the resulting DANs, but that Nf = 40,
Nb = 5, and Nsb = 5 offer a good compromise for accuracy vs train-
ing cost and CNN size. This will be the reference configuration,
which has about 2 × 105 trainable parameters.

One obvious essential drawback of learning aθ is its
non-universality. Specifically, aθ depends on the observation setup
used in the training dataset. This is a critical research path for end-
to-end DA. Although not the aim of the present paper, we nonethe-
less checked the performance of the trained aθ , with Hk = Ix and
Rk = σ 2

y Ix with σy = 1, in test DA runs with similar observations

but generated with σy taking value in between 0.1 and 3. Yet, in all
test runs, DAN remains robust with slightly degraded aRMSEs for
σy < 1 but aRMSEs at least as good for σy > 1, compared to a well-
tuned EnKF. Well-tuned EnKF always refers here to an EnKF with
an ensemble large enough such that localization is unnecessary and
relying on the EnKF-N47,48 to optimally counteract residual sampling
errors such that inflation is unnecessary.

Testing non-trivial Hk, we also learned a single aθ from obser-
vation networks whose density Ny/Nx is randomly and uniformly
chosen in the interval [0, 1] at each τk and σy = 1. This DAN was
then tested on several DA runs, each one with a constant in time
observation density Ny/Nx taking value in the interval [0.2, 1]. In
this configuration, aθ performs almost as well or better than well-
tuned EnKFs for 0.35 < Ny/Nx < 0.65 and is suboptimal (compared
to the EnKF) but still stable outside of this range. These results
already pleasantly suggest that these DL-based DA schemes may
remain valid well beyond the specifications of observation operators
from which aθ was learned. Plots of these experiments and further
discussion are provided in the supplementary material.

C. One state forecast

Using the reference configuration but with an ensemble size Ne

taking values in the set [[1, 40]], test aRMSEs fluctuate in between
0.19 and 0.20. By contrast, a sizable ensemble is, as we recalled in
Sec. I, one of the key reason for the success of the EnKF. For com-
parison, we checked that 3D-Var yields an aRMSE of 0.40, that the
best linear filter (i.e., a trained aθ without activation function) yields
an aRMSE of 0.384, and that well-tuned EnKFs with Ne = 20 and
Ne = 40 yield aRMSEs of 0.191 and 0.179, respectively. Note that
the reference aθ but with Nf = 100 yields an aRMSE of 0.185, closer
to the best EnKF with Ne = Nx = 40, showing that further improve-
ments are possible even though not the focus of this paper. These key
aRMSE scores are arranged in a table in the supplementary material.

However, the pivotal remark is that a single state forecast,
Ne = 1 in aθ , is as efficient as using a large ensemble. Furthermore,
the need for localization and inflation is completely obviated. We
have checked that this is obtained concurrently to a feature collapse
in aθ ,49 i.e., all channels’ last layer feature maps converge to the same
state. It is likely that a better local minimum of the loss could be
obtained with complex encoder and decoder50 and infusing diversity
in the CNN through Monte Carlo dropouts,31 so as to obtain an aθ

leveraging the ensemble. Nonetheless, the local minimum reached in
our trainings yield an accuracy with Ne = 1 worthy of a well-tuned
EnKF. That is why we shall concentrate in the following on inter-
preting this astonishing result for which we shall use, especially in
Sec. IV, dynamical systems theory.

Therefore, the analysis operator is hereafter learned in the
reference configuration but with Ne = 1.

IV. INTERPRETATION

In this section, we focus on the remarkable finding that a
learned DA method with a single state Ne = 1 forecast achieves per-
formance on par with a well-tuned EnKF. We wish to understand
the reason for this performance by investigating what aθ learns. To
that end, an innovative expansion of aθ in terms of more familiar
DA operators is carried out.

A. Operator expansion of a θ

Toward this goal, we look for a classical Kalman update51,52 that
would be a good match to aθ seen as a mathematical map, at least for
small analysis increments. The first diagnostic is the mean anomaly
generated by aθ , i.e., how much aθ (x, 0) deviates from 0 on average.
It should be small since a vanishing innovation δk should not yield
any state update. Hence, we define the time-dependent normalized
scalar anomalies

bk = 1√
Nx

‖aθ (xk, 0)‖ , (7)

along with the associated mean bias b and the standard deviation s
of bk in time.

Next, expanding with respect to the innovation, the following
functional form for aθ is assumed:

aθ

(

x, HᵀR−1δ
)

≈ K(x) · δ, (8)

owing to the fact that no state update is needed when the innovation
vanishes and only keeping the leading order term in δ. This is an
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Ansatz of aθ where K(x) ∈ R
Nx× Ny is meant to stand as a Kalman

gain surrogate. By contrast, with the propagation of a single state,
classical sequential DA methods would typically resemble 3D-Var,
and the gain would not depend on the forecast state (the first input
variable of aθ ).

Interestingly, we also learned a simplified âθ replacing Eq. (2a)
with Ea

k = Ef
k + âθ

(

H
ᵀ

k R−1
k δk

)

, whereby losing aθ ’s ability to extract

information from Ef
k, similarly to 3D-Var. This yields an aRMSE of

0.382 in test DA runs, unsurprisingly close to 0.40 of our 3D-Var.
Hence, learning an optimal constant-in-time K of an (En)KF,30 a
configuration subsumed by this specific âθ , is significantly subop-
timal in this context.

B. Identifying the operators in this expansion

Once aθ has been obtained from training and considering a
fixed forecast state x at a given time step, a large set of innova-
tions

{

δj

}

j=1,...,Np
are sampled from the observation error statistics:

δj ∼ N(0, R). This yields a set of corresponding incremental updates
{

aj = aθ (x, HᵀR−1δj)
}

j=1,...,Np
. Since Eq. (8) is only an approxima-

tion, K(x) is estimated with the least squares problem

Lx(K) =
Np
∑

j=1

∥

∥aj − ā − K(x) ·
(

δj − δ̄
)∥

∥

2
, (9)

where ā = N−1
p

∑Np

j=1 aj and δ̄ = N−1
p

∑Np

j=1 δj.
Next, assuming R is known, we would like to estimate the

analysis error covariance matrix Pa associated to aθ in the Kalman
gain expansion. It depends on xk and, hence, on τk. Within the
best linear unbiased estimator framework, K is related to Pa through
K = PaHᵀR−1 so that from Eq. (8),

aθ (x, HᵀR−1δ) ≈ PaHᵀR−1δ, (10)

which suggests that an expansion in the second variable ζ ∈ R
Nx of

aθ yields

aθ (x, ζ ) ≈ Pa(x) · ζ . (11)

Hence, Pa can be estimated using Eq. (11) either from a least squares
loss similar to Eq. (11) or from the Jacobian of aθ with respect to ζ

leveraging auto-differentiable DL libraries.

C. What is learned?—Supporting numerical results

At each τk, i.e., over many xk on the forecast model’s attractor,
it is possible to estimate K(xk) and Pa(xk) from the expansion of
aθ . For the sake of simplicity, Hk = Ix and Rk = Ix, in which case
Pa(xk) = K(xk).

The analysis mean bias b and its standard deviation s are first
computed over a long L96 aθ -based DA run. We obtain b ' 5
× 10−3 and s ' 10−3, which are indeed very small compared to the
typical aRMSE of an either DAN or EnKF run, i.e., 0.20, meaning
that the bias of aθ relative to typical updates is roughly 2.5%.

The surrogate Pa, denoted Pa
DAN and estimated from Eq. (11),

is compared to that of a concurrent well-tuned EnKF with Ne = 40,
whose analysis error covariance matrix is Pa

EnKF. Pa
DAN is compared

FIG. 2. Time-averaged eigenspectra of Pa
DAN and P

a
EnKF.

to Pa
EnKF using a normalized Bures–Wasserstein distance,53

dBW(U, V) = 1

Nx

[

Tr

{

U + V − 2
(

V
1
2 UV

1
2

)
1
2

}]

1
2

, (12)

where U and V are two semi-definite symmetric matrices. This met-
ric is expected to smoothly account for the unmatched principal
axes of U and V, but also their associated variances (eigenspectra).
The time-averaged dBW distance between Pa

DAN and Pa
EnKF is 0.013,

whereas it is 0.048 between Pa
DAN and (0.40)2Ix, which approximates

Pa of a well-tuned 3D-Var. The time-averaged eigenspectra of Pa
DAN

and Pa
EnKF are plotted in Fig. 2. They are remarkably close to each

other for the first ten modes. Beyond these modes, the aθ operator
is likely to selectively apply some (multiplicative) inflation, as one
would expect from such stable DA runs.

We further compute the principal angles14 of the vector sub-
spaces generated by the Nu = 14 dominant eigenvalues of Pa

DAN

and Pa
EnKF. They are reported in Fig. 3. Recall that Nu = 14 is the

dimension of the L96 U . The principal angles are intrinsic to the
relative position of these subspaces; they do not depend on any
coordinate system used to parameterize them. This indicates how
close the most unstable directions of Pa

DAN and Pa
EnKF are in state

space. From Fig. 3, we observe that the simplex formed by the EnKF
is on average the most aligned with U .14 The subspace spanned
by the dominant axes of Pa

DAN is also well aligned with U , yet
progressively diverges when incorporating less unstable directions.
For comparison, the principal angles of U with an isotropically
randomly sampled Nu = 14-dimensional subspace are also plotted
in Fig. 3.

D. Main interpretation

These numerical results indicate that aθ defined through
Eq. (2a) depends on the innovation but also on the single forecast
state when Ne = 1. This does not hold for the EnKF incremental
update that only indirectly depends on the forecast state via the
ensemble-based forecast error covariances. Hence, without the need
for an ensemble, aθ extracts from the forecast state critical pieces of
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FIG. 3. Time-averaged principal angles (in degrees) formed by the subspaces
spanned by the Nu = 14 dominant directions of Pa

DAN vs U , Pa
EnKF vs U , Pa

EnKF

vs Pa
DAN, and U vs a randomly sampled Nu = 14-dimensional subspace.

information on the unstable directions, as shown by the principal
angles experiment.

Furthermore, aθ manages to accurately assess the uncertainty
attached to these unstable directions as demonstrated by the spectra
of Pa

DAN. Overall, Pa
DAN with Ne = 1 is on average very close to Pa

EnKF

with Ne = 40, for the dominant axes, and it applies some inflation
onto the less unstable modes as seen by comparing their spectra.47

We conclude that aθ directly learns about the dynamics features,
as opposed to the regression-based, purely statistical, update in the
EnKF.

Essentially, for aθ , critical pieces of information of the forecast
error covariances of the DA run are encoded, and thus exploitable, in
the forecast state alone. From the multiplicative ergodic theorem,54

we know that, in autonomous ergodic dynamical systems such as
M , there exists a mapping between each of the system’s states
and the corresponding Lyapunov covariant vectors. Furthermore,
if the DA run (the forecast and analysis cycle) is considered as an
ergodic dynamical system of its own,44 the same theorem guaran-
tees the existence of a mapping between the forecast state and the
analysis error covariance matrix that aθ guesses. The DA process
is not autonomous because it indirectly depends on the truth tra-
jectory, the observation noise, and the observation operators; but a
generalized variant of the multiplicative ergodic theorem for non-
autonomous random dynamics should be applicable.55–58 Hence, we
conjecture that aθ must learn such mapping, together with how to
process this information and combine it with the innovation.

E. Locality and scalability

Next, we have trained aθ on the L96 model using the reference
configuration with Ne = 1 but with a changing state space dimen-
sion Nx in between 20 and 160. The aRMSEs of well-tuned EnKFs
for the changing Nx and picking Ne = Nx have been computed for
comparison. The test DAN aRMSEs show no significant dependence
on Nx and are all within 5% of the EnKFs. Hence, because the perfor-
mance of aθ with an unchanged architecture and the same number

FIG. 4. Test aRMSEs (blue and yellow full lines) of aθ operators learned from
either L96 models with varying Nx or the Nx = 40 L96 model but applied to vary-
ing Nx L96 models. The dimension Nu of U (gray dashed line) is much steeper
compared to the slowly increasing aRMSE curves.

of parameters is barely affected by increasing Nx, we conjecture that
the learned analysis extracts local pieces of information from the
forecast state.

If true, the aθ operator learned for DA on an Nx = 40 L96
model could be applied directly to an L96 DA run with a different
Nx. Recall that the L96 states exhibit local highs and lows of Rossby-
like waves, whose number scales linearly with Nx. Thus, as long as
the spatial extent of those waves is captured by the receptive field
of the CNN, the same layers of aθ with the same weights and biases
might be able to handle L96 states of distinct dimensionality.

To test this hypothesis, we use the same aθ operator (same
weights and biases) learned as before with Ne = 1 and Nx = 40 but
apply it now to L96 models with Nx ranging from 20 to 160. The
corresponding aRMSEs are reported in Fig. 4, which shows that
these aRMSEs are roughly the same for all Nx (between 0.188 and
0.197). This demonstrates that this transdimensional transfer works
surprisingly well.

This strongly supports the fact that aθ extracts local informa-
tion from the forecast state (of various dimensions in this exper-
iment), relying on its convolution layers. It is, therefore, able to
capture where, in phase-space, the error mass is concentrated. We
hypothesize that these localized error structures are related to the
localization of the dominant covariant Lyapunov vectors.59–61 A
proper mathematical definition of such spatial localization can be
found in these references.

V. CONCLUSIONS

Using the L96 chaotic model, we have demonstrated that a
learned DL-based analysis aθ , key part of a sequential DA (often
referred to as a filtering scheme), can be almost as accurate as the
best possibly tuned EnKF, the benchmark for ensemble filtering
methods in this model. More importantly, this learned DA scheme
does not require any ensemble and can equally well rely on a sin-
gle state forecast. Therefore, aθ appears to be able to retrieve local
patterns, representative of unstable and uncertain modes, from the
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forecast state alone. We believe that this is fundamentally made pos-
sible by some multiplicative ergodic theorem applied to sequential
DA seen as a non-autonomous random dynamical system driven
by time-dependent true dynamics and observation operators and
white-in-time observation errors.

To make sure our conclusions were not entirely bound to the
L96 model, we carried out a large number of similar experiments on
the well-known chaotic Kuramoto–Sivashinski model.62,63 They all
confirm and support these conclusions.

What is achieved by aθ resonates with the parametric EnKF,64,65

which encodes the errors of the day in a couple of dynamical
ancillary fields, preventing the use of an ensemble. Amazingly, our
learned aθ is even more radical and extracts that information from
the state itself.

Taking a step back, we learned from DL that an accurate and
efficient DA analysis operator could capture the dynamical error
without an ensemble, leveraging model-specific information. This
promotes a rethinking of the popular sequential DA schemes for
chaotic dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on the evalu-
ation of the aθ -based DA method, as reported in Sec. III. Specifically,
a table of the key aRMSE scores mentioned in Sec. III is pro-
vided, as well as plots of the aRMSE curves related to the sensitivity
experiments mentioned in Sec. III.
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