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Abstract 

 

The study of human diseases has evolved from exploring non-causal pathophenotypes to 

discovering aetiological genetic factors through genome-wide association (GWA) studies. 

While GWA studies identify disease-associated genetic variants, they fail to reveal their 

functional implications. The emergence of network biology and molecular interaction mapping 

helped conceptualise disease as a breakdown of the protein-protein interaction (PPI) network 

or the ‘interactome’ due to these genetic variants. The interactome drives cellular processes 

and responds to genetic and environmental changes by leveraging its inherent 

interdependencies. Simultaneously, the focus has shifted from single-target drugs to the 

polypharmacological effects of drugs within the PPI network, inducing therapeutic and non-

therapeutic effects. Despite these conceptual advances, several factors hinder the widespread 

application of interactome analysis in disease genetics and drug discovery. These include the 

lack of an integrated conceptual framework to derive biological and clinical insights from 

genetic data, the lack of context-sensitive interactomes, the failure to integrate computationally 

predicted PPIs to circumvent interactome sparsity, and the absence of methods to study 

correlations across multiple disease interactomes and drug target networks. This thesis 

proposes a two-pronged interactome-based framework to address these limitations. The first 

arm focuses on constructing the disease interactomes of complex and Mendelian disorders 

using both experimentally validated and computationally predicted PPIs, refining them using 

multi-omics datasets, and deriving insights into disease mechanisms using functional 

enrichment analyses, identifying repurposable drugs targeting the interactome using 

comparative analysis of drug-induced and disease-associated transcriptomes, and studying 

their activity in animal models. The second arm employs multivariate data analysis to explore 

relationships of multiple interactomes, revealing biological and clinical themes in cross-

disorder relationships. This framework has demonstrated its potential by providing insights into 

eight disorders, identifying disease subgroups, and refining disease categorization based on 

genetic structures. The methodology yields clinically actionable results, including repurposable 

drugs and insights into drug activity that can inform safety and efficacy evaluations in clinical 

trials. This thesis proposes a comprehensive interactome-based framework to uncover hidden 

patterns in emerging multi-omics disease data and enhance our understanding of disease 

biology and therapeutics.
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Summary 

 

The conceptualisation of human disease and its underlying aetiological factors have evolved 

with advancing technology from the late 1880s to the 2000s. Initially, the points of inquiry into 

aetiological mechanisms were observable non-causal and intermediate cell and tissue-level 

pathophenotypes, but it later shifted towards unobservable preclinical and causal genetic 

factors. In the 1900s, as gene discovery techniques improved, the theories regarding single 

gene perturbations underlying human diseases transformed into a polygenic perspective. This 

new perspective conceptualised diseases as the cumulative result of multiple gene 

perturbations influenced by developmental and environmental factors. The genome-wide 

association (GWA) framework, which emerged in the early 2000s, played the most significant 

role in championing this concept. 

 

The GWA framework helped identify disease-associated genetic variants. However, it failed 

to explain the functional implications of these genetic variants on disease causation and 

accurately model the heritability of human diseases as the additive effect of these variants. 

Network biology concepts and molecular interaction mapping techniques that emerged 

simultaneously with the GWA framework helped address these limitations. Network biology 

concepts proposed that higher-level interactions among the genes carrying the variants could 

explain the missing component of disease heritability. Moreover, it could provide a mechanistic 

framework for understanding disease causation by characterising disease as a network 

phenomenon resulting from perturbations in the interactions of the proteins encoded by 

disease-associated genes – i.e., protein-protein interactions (PPIs) – that regulate cellular 

functions. 

 

Conceptual advances in drug discovery progressed parallel to advancements in disease 

aetiology investigations. It transitioned from the magic bullet era of the early 1900s – where 

treating disease symptoms involved discovering one drug interacting with a single target – to 

the systems therapeutics era. Throughout much of the 20th century, the prevailing magic bullet 

hypothesis resulted in high drug failure rates during clinical trials and led to adverse events in 

marketed drugs due to incomplete assessments of drug activity. The newer systems 

therapeutics approach integrated a more biologically realistic understanding of drugs as 

having multiple effects (the polypharmacological model) with network biology to study their 

multimodal impacts on disease alleviation, i.e., drug-induced perturbations of the PPI network 

elicited either beneficial therapeutic responses or adverse events.  

 

Network biology has significantly advanced our understanding of disease mechanisms and 

drug discovery, leading to numerous studies exploring the organisational principles of proteins 

encoded by disease-associated genes and drug targets in the interactome (the complex 

network of interacting proteins). However, five factors continue to restrict the scope and 

widespread application of network biology principles to examine disease genes and drug 

targets in their network neighbourhoods. These include the lack of an integrated conceptual 

framework incorporating network biology principles to analyse disease interactomes and drug 

target networks (DTNs), their inadequate exploration leading to a scarcity of biologically 

insightful and clinically actionable findings from disease-associated genetic and 



Summary 

13 
 

pharmacological data, underutilisation of computational PPI predictions to complement the 

sparse discovery of the human interactome through experimental methods, limited integration 

of disease-associated multi-omics data at organ, tissue, and cell levels resulting in context-

insensitive interactomes, and the lack of exploration of the higher-level relationships between 

disease interactomes and DTNs, which could potentially elucidate complex patterns of cross-

disorder relationships and drug interactions. 

 

This thesis proposes a two-pronged interactome-based framework to translate disease-

associated genetic data into biological and clinical insights and address these limitations. The 

first arm of the framework introduces a methodology for analysing single disease interactomes. 

This arm involves the compilation of disease-associated genetic data from various sources 

and disease interactome construction using both experimentally verified and computationally 

predicted PPIs, disease interactome validation and refinement using disease-associated multi-

omics datasets, and interactome characterisation using functional and phenotypic enrichment 

and sub-network analyses, leading to the generation of testable biological hypotheses. The 

steps to generate clinical insights include the identification of drug targets within the disease 

interactome and comparative analysis of disease-associated and drug-induced transcriptomes 

to uncover repurposable drugs. Promising candidate drugs are selected and tested in animal 

models, leading to a prioritised list of drugs for clinical testing. This methodology produced 

valuable insights into complex disorders with polygenic architectures, namely, Alzheimer's 

disease (Chapter 2 and Appendix section 14.2), schizophrenia (Chapter 8), hypoplastic left 

heart syndrome (Chapter 3), malignant pleural mesothelioma (Chapter 4), malignant 

peritoneal mesothelioma (Chapter 5), as well as COVID-19 (Chapter 6). Additionally, the 

framework generated valuable results in Mendelian disorders believed to have monogenic 

architectures despite their complex pathophenotypes. The thesis proposed methods to 

uncover the embedding of these disorders in polygenic genetic landscapes. Specifically, this 

approach provided insights into Sedaghatian type spondylometaphyseal dysplasia, a bone 

dysplasia, in Chapter 7. 

 

The second arm of the framework presents a methodology for analysing the interrelationships 

between multiple disease interactomes and DTNs. For disease interactomes, this involves the 

identification of context-specific disease interactomes and comparative disease interactome 

analysis, leading to the discovery of biological themes underlying multiple disorders, as 

demonstrated for five anxiety disorder subtypes in Chapter 9. For DTNs, the methodology 

involves the identification of context-specific DTNs and comparative analysis of DTNs, leading 

to the elucidation of biological themes underlying clinical activity in multiple disorders, as 

demonstrated in the study of drug contraindications in six comorbid disease pairs in Chapter 

10. 

 

Overall, the thesis introduces an analytical pipeline to investigate disease interactomes and 

DTNs, addressing the limitations of current network biology studies and providing valuable 

insights into disease mechanisms and interrelationships. It covers heart diseases, cancers, 

viral infections, skeletal disorders, and neurological and psychiatric disorders, showcasing 

potential applicability to multiple disorders. The methodology extracts disease-disease 

relationships, uncovers subgroups and common biological themes among disorders, and 

refines categorisation of diseases based on their genetic structures. It yields clinically 
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actionable results – such as repurposable drugs and insights into comorbidity effects on drug 

action – that can augment drug safety and efficacy evaluation in the clinical developmental 

pipeline. The interatomic framework integrates diverse disease-associated genetic data and 

allows the extraction of context-specific sub-networks from disease interactomes and DTNs. 

In summary, the comprehensive approach proposed in this thesis can help uncover hidden 

patterns in the genetic architecture of diseases and advance understanding of disease biology 

and drug action. 
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1. Introduction 

 

Understanding the aetiological factors underlying human disease has been a centuries-old 

quest, punctuated by three eras, the Oslerian, classical genetics, and post-genomics. Various 

conceptual and technological advances in human genetics and drug development shaped 

these eras and significantly altered the trajectory of disease research. Specifically, over the 

past 140 years, there has been a gradual shift in the conceptualisation of disease. A 

reductionist monogenic conceptualisation prevailed from the late 1880s to the late 1990s. In 

early 2000s, a holistic polygenic conception of disease arose, which recently evolved into 

characterising disease as an emergent property of a network of genes. The network medicine 

paradigm conceptualises disease as a phenomenon arising from the breakdown of multiple 

functional units in the cell constituted by interacting genes, which, in turn, perturbs the 

physiological state produced by the functional units. The field of network biology aims to 

systematically identify the multiple choke points and paths through which disorders emerge in 

this cellular landscape of interacting genes. These inquiries will inform studies on the systems-

scale effects of drugs and help devise rational therapeutic strategies. To chart the emergence 

of the network medicine paradigm – the central theme of this thesis – it is critical to understand 

the evolution of the relationship between disease determinants and disease manifestation 

during the three eras and the incremental capacity of the concepts and technologies to capture 

the complexity of the disease phenotype. 

 

1.1 A historical perspective on the conceptualisation of human disease and the 

underlying aetiological factors: from Oslerian tradition to network biology 

 

Oslerian, classical genetics, and post-genomic eras transformed our understanding of human 

disease and its aetiology. Sections 1.1.1 to 1.1.4 describe the chronological sequence of 

events in genetics, drug development and network biology that shaped these three major eras 

(Fig. 1). The shortcomings of the conceptual and technological advances and the evolution of 

the disease determinant – phenotype relationships (Fig. 2) in each of these eras led to the 

development of the network medicine paradigm, described in sections 1.1.5 and 1.1.6.  

 

1.1.1 The age of Oslerian formalism: biological reductionism and its effects on the 

understanding of disease processes and therapeutics  

 

Oslerian formalism – named after William Osler, the father of modern medicine – has 

dominated the study of human disease and therapeutics since the late 19th century (Osler and 

McCrae, 1892, Loscalzo and Barabasi, 2011). In this traditional paradigm, clinicians correlated 

the clinical presentation of the disease with the gross anatomic pathology and the 

histopathology of the organ system in which the symptoms manifested. Disease diagnosis 

relied on deducing syndromic patterns based on structured clinical observation and 
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formulating treatment regimens focused singularly on reversing these presumed 

pathophenotypes. The Oslerian paradigm conceptualised a phenomenon as complex as 

human disease in terms of a mechanistic clinicopathological relationship. ‘Higher-level’ 

observed clinical behaviours were thought to be precipitated by specific abnormalities in 

‘lower-level’ tissues and cells (Fig. 2). The reductionist bias in scientific thinking that pervaded 

various disciplines at the time – a tendency to explain the attributes of a complex system as 

the sum of its constituent parts – magnified the influence of this paradigm (Regenmortel, 2004, 

Loscalzo and Barabasi, 2011). This powerful model influenced both the structural organization 

of clinical medicine as a discipline and the guiding philosophy underlying investigations of 

disease mechanisms at the molecular level. It helped formalise and streamline the services of 

the healthcare system and led to the discovery and refinement of cutting-edge medical 

Figure 1: A timeline of the key events that influenced the conceptualisation of human disease and therapeutics. 
The events in the fields of genetics, drug development and network biology have been marked using different colours, 
as shown in the legend. Abbreviations: BioID: Proximity-dependent biotin identification; Co-IP: Co-immunoprecipitation; 
GWAS: Genome-wide association study; PPI: Protein-protein interactions; SNP: Single nucleotide polymorphism; TAP: 
Tandem affinity purification; WES: Whole-exome sequencing; WGS: Whole-genome sequencing; Y2H: Yeast two-
hybrid system. The figure was created in Microsoft PowerPoint.  
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diagnostic procedures and tools (Geyman, 1983). However, the approach had several 

limitations.  

 

Formal medical education and healthcare became categorised into clinical silos specializing 

in ailments affecting roughly ten organ systems (Geyman, 1983). Scientific inquiries into 

disease causation focused on dissecting the pathological processes underlying broad sets of 

intermediate phenotypes, such as fibrosis, thrombosis, inflammation, and necrosis. These 

phenotypes possibly reflected later-stage manifestations unrelated to the actual etiological 

factors (Loscalzo and Barabasi, 2011, Osler and McCrae, 1892). The therapeutic targeting of 

the processes underlying these stages merely led to symptom alleviation (Loscalzo and 

Barabasi, 2011). When shared between etiologically unrelated disorders, these 

pathophenotypes impeded differential diagnosis (Pearn, 2011). Treating observable 

intermediate phenotypes as points of disease inquiry shifted the focus away from critical 

preclinical, albeit unobservable, states possibly regulated by genetic predisposition and 

environmental factors (Loscalzo and Barabasi, 2011). The interaction of genetic and 

environmental factors leads to variable disease susceptibility, onset ages, phenotype 

expressivity and penetrance, disease progression patterns, and prognosis (Loscalzo and 

Barabasi, 2011). These phenomena naturally lead to patient stratification, and the resultant 

patient groups remained routinely unrecognised by the Oslerian healthcare system and did 

not receive personalised diagnosis and treatment (Loscalzo and Barabasi, 2011). Altogether, 

Figure 2: The evolution of the relationship between disease determinants and disease phenotypes. In the 
Oslerian era, cell- and tissue-level pathophenotypes (often end processes of the actual etiological factors) were 
believed to produce clinical presentations of the disease. In the classical genetics era, the focus shifted to a single 
gene or a group of genes that produced the disease phenotype. In the post-genomic era, GWA studies revealed the 
multifactorial and polygenic architectures of human diseases. The network medicine paradigm showed that this 
polygenic architecture was embedded within the human interactome, which when integrated with biological evidence 
from other levels (transcriptome, epigenome and metabolome), resulted in disease phenotypes. The figure was created 
in Microsoft PowerPoint. 
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the scope of Oslerian formalism was too limited to encapsulate the complexity and diversity of 

human disease processes and suggest disease-specific targeted therapies. It did not allow the 

identification of critical factors, such as unique etiological and stochastic environmental factors, 

which influence the susceptibility and preclinical stages of disease development (Loscalzo and 

Barabasi, 2011). 

 

1.1.2 The classical genetics era: the monogenic view of diseases and the advent of 

forward and reverse genetic approaches for interrogating genetic mechanisms  

From the 1940s, etiological genetic factors began to be identified with the emergence of 

modern genetic theory and technologies. However, the notion propounded by Beadle and 

Tatum in 1941 that a simple correlational relationship exists between the genotype and the 

phenotype (Beadle and Tatum, 1941) continued the reductionist trend and characterised 

disorders as having a monogenic aetiology (Fig. 2). Specifically, a perturbation in a single 

gene was thought to produce disease phenotypes. It was only in the 1980-1990s that 

identifying the causative gene was made possible through forward and reverse genetic 

approaches (Fig. 2). Linkage mapping and positional cloning were part of the forward genetics 

approach in which the knowledge of a specific disease phenotype inherited within a family was 

sufficient to elucidate the disease-associated gene (Kruglyak et al., 1996). In parametric 

linkage studies, the linkage intervals within the human genome were tagged using restriction 

fragment length polymorphic markers or single sequence repeats (Kruglyak et al., 1996, 

Botstein et al., 1980, Kruglyak, 1997). These markers helped identify the chromosomal regions 

co-segregating with the inheritance pattern of the disease phenotypes (Kruglyak et al., 1996, 

Botstein et al., 1980, Kruglyak, 1997). Positional cloning and confirmatory mutational studies 

in cell lines and animal models further helped identify the causative genes (Kruglyak et al., 

1996, Botstein et al., 1980, Kruglyak, 1997). Huntington’s disease was associated with 

dynamic mutations in HTT gene located on chromosome 4 using forward genetics (Gusella et 

al., 1983, MacDonald et al., 1993). Genes were selected based on prior knowledge in the 

reverse genetic approach (Orkin, 1986, Zheng et al., 2017), e.g., cellular function, differential 

expression in disease conditions, or the suspected involvement of genes from the same gene 

family in the same disorder. Gene silencing and targeted mutagenesis were used to abrogate 

gene function and functional studies to characterise the phenotypic effects (Orkin, 1986). For 

example, animal models carrying mutations in the FBN gene – involved in extracellular 

microfibril formation – recapitulated the elastic fibre abnormalities seen in patients with 

Marfan’s syndrome (Magenis et al., 1991, Hayward and Brock, 1997, Dietz et al., 1991).  

 

The classical genetic approaches helped discover ~1200 disease-associated genes 

underlying monogenic diseases and traits by the 2000s (Botstein and Risch, 2003). The 

discovery was propelled by the development of gene sequencing methods such as Sanger 

sequencing (Sanger et al., 1977) and the completion of the draft human genome sequence 

(Olsen et al., 2001), both of which allowed finer mapping of the disease-causing alleles in 

genetic loci linked to disease. Meanwhile, burgeoning evidence hinted at a complex interplay 

between an organism’s genotype and phenotype. This interplay was evident even in studies 

before the classical molecular genetics era. Genetically identical makeup in identical 

environments produced variable phenotypes. For example, phenotypic variability was seen in 

the pod sizes of isogenic bean plants bred in controlled environments (Vidal et al., 2011). 
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Additionally, selective transcriptomic and proteomic expression was seen in proximally grown 

and genetically identical bacterial and yeast cells (Vidal et al., 2011). Lastly, remarkable 

differences were noted between identical twins with comparable life histories and exposed to 

the same environment (Vidal et al., 2011). 

 

1.1.3 The post-genomic era: the evolution towards a polygenic view of disease with 

the advent of the genome-wide association approach 

Evidence from forward and reverse approaches and evolutionary models of disease-

associated genes suggested that a polygenic architecture underlay the phenotypic 

heterogeneity seen not only in complex disorders, but also in Mendelian disorders. Mendelian 

disorders such as sickle cell disease with well-characterised monogenic causes (single point 

mutation in the gene coding for haemoglobin subunit beta), presented multiple 

pathophenotypes, outside of its primary manifestation (i.e., polymerization of haemoglobin 

driven by its altered oxygen affinity), namely, haemolytic events, stroke, and acute chest 

syndrome (Vidal et al., 2011). The polygenic architecture was likely made of a large number 

of genes with no prior suspected link to the disease and harbouring rare and common alleles 

(Altshuler et al., 2008). In the case of Mendelian subtypes of common diseases, the genes 

seemed to harbour numerous rare alleles that accounted for only a few disease cases in the 

population and in the more prevalent subtypes of these diseases, relatives of affected 

individuals showed lower disease risk and no definitive underlying causal gene (Altshuler et 

al., 2008). Hence, multiple genes seemed to modulate disease phenotypes in complex ways. 

Purifying selection could have limited the segregation of rare alleles that produce deleterious 

phenotypes (Altshuler et al., 2008). On the other hand, common alleles could have persisted 

at high frequency due to multiple reasons. First, the later onset of some associated phenotypes 

and their lower impact on reproductive fitness (Altshuler et al., 2008). Second, the recent 

expansion of Homo sapiens enabling mildly deleterious alleles to achieve moderate frequency 

(Altshuler et al., 2008). Third, modern living conditions changing the effect of a previously 

advantageous or neutral mutation (Altshuler et al., 2008). Fourth, an allele associated with 

disease risk also conferring a beneficial phenotype (Altshuler et al., 2008).  

 

Breakthroughs in the identification of disease-associated gene variants came in the form of 

new statistical frameworks powered by population genomics, namely, genome-wide 

association (GWA) studies (Klein et al., 2005, Wellcome Trust Case Control Consortium, 

2007) and high-throughput sequencing technologies, including whole-genome sequencing 

(WGS) (Sanger et al., 1977) and whole-exome sequencing (WES) (Ng et al., 2009). In GWA 

studies, the genotypes of individuals with a specific disease in millions of genomic locations 

containing single nucleotide polymorphisms (or SNPs compiled using DNA microarrays) were 

compared with the genotypes of individuals without the disease (Klein et al., 2005, Wellcome 

Trust Case Control Consortium, 2007). Disease-associated allelic variations – likely including 

causal and risk-conferring SNP loci – occur more frequently in the disease cohort than in the 

control cohort. WES and WGS allowed finer SNP mapping than the precompiled DNA 

microarrays. In the WES protocol, the protein-coding regions in the genome, i.e., exomes, 

were sequenced to enable the targeted capture of highly penetrant rare variants (Ng et al., 

2009). In the WGS protocol, all genomic regions, including coding, non-coding and 

mitochondrial regions, are sequenced, increasing the likelihood of identifying disease-
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associated rare variants and common variants not in linkage disequilibrium with the SNPs 

catalogued in DNA microarrays (Sanger et al., 1977).  

 

GWA studies unravelled the polygenic tapestry of complex disorders with common genetic 

variants of reduced effect size and highly penetrant rare variants contributing additively to 

genetic liability (Fig. 2). They provided critical insights into the multifactorial aetiology of 

several disorders, most remarkably demonstrated by gene discovery in neuropsychiatric 

disorders (Demontis et al., 2019, Grove et al., 2019, Stahl et al., 2019, Wray et al., 2018, 

Pardiñas et al., 2018, Mullins et al., 2021, Ripke et al., 2014, Levey et al., 2020, Consortium, 

2013, Lee et al., 2019) and comorbid disorders affecting other organ systems, e.g., congenital 

heart disease (Zaidi and Brueckner, 2017, Egbe et al., 2014, Marino et al., 2012, Homsy et 

al., 2015, Jin et al., 2017, Willsey et al., 2018).  

 

1.1.4 Shortcomings of the genome-wide association framework: roadblocks on the 

path to elucidating the biological themes underlying the polygenic architecture 

of diseases 

GWA studies helped identify a large number of disease-associated variants. However, they 

had several limitations. Firstly, the statistical framework of GWA studies did not help elucidate 

the functional implications and pathological impact of the genetic variants. GWA studies only 

tagged disease-associated SNPs in specific genomic regions. They did not directly implicate 

causal alleles in disease aetiology (Breen et al., 2016, Gallagher and Chen-Plotkin, 2018) or 

provide a framework to deduce the biological context of the variants, e.g., by integrating 

expression, protein, and methylation data. Attempts were made to characterise functional 

variants localising to regulatory regions and believed to impact disease pathogenesis. These 

were largely unsuccessful due to the moderate influence of these variants on the disease 

phenotype and their complex spatiotemporal dynamics, which were intractable by the 

molecular technologies at the time (Gallagher and Chen-Plotkin, 2018). Secondly, the 

contribution of the common variants to disease heritability – the phenotypic variance in a 

population explained by additive genetic factors – was small (Manolio et al., 2009). It was 

possible that many more common and rare variants remained to be captured by microarrays 

and identified as disease-associated in GWA frameworks (Manolio et al., 2009). However, a 

competing possibility was that the current estimates of ‘missing heritability’ were inaccurate, 

since they considered only the simple additive genetic contributions of the variants and 

excluded potentially higher-level interactions between the genes (Maher, 2008), reflecting the 

functional architecture produced by the genome. This plausible hypothesis was arguably the 

first milestone in the road that led to the conceptualisation of disease as a network 

phenomenon resulting from a breakdown of a web of molecular interactions underlying cellular 

functions. Unfortunately, molecular interaction mapping techniques remained insufficiently 

developed at the time. Moreover, sequencing efforts to identify and statistically prioritise 

genetic variants outpaced the efforts to devise integrative mechanistic frameworks to elucidate 

the functional impact of genetic variants (Woodsmith and Stelzl, 2017). 

 

1.1.5 Emergence of network biology: re-conceptualisation of disease as a state 

resulting from perturbed molecular interdependencies within the polygenic 

architecture of diseases 
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In 1999, the Barabási–Albert model proposed that real-world networks resulted from a steady 

process of growth in the number of its components or ‘nodes’ (N) and preferential attachment 

based on the number of pre-existing connections or ‘edges’ (known as degree and denoted 

by k) that each node has with others (Barabási and Albert, 1999). This process gave rise to 

networks in which the number of nodes of a given degree, i.e., the degree distribution, followed 

a power law. The probability that a particular node had k links was given by P(k) ~ k–γ, where 

γ is the degree exponent, and 2 < γ < 3. This degree distribution produced a remarkable 

network structure, in which a large number of small degree nodes had very few edges and a 

small number of high degree nodes known as 'hubs' had many edges (Barabási and Albert, 

1999). In contrast, most of the nodes in the Erdös–Rényi model of a random network had a 

similar number of edges, comparable to the average degree of the network. Since the networks 

produced by the Barabási–Albert model had a heterogeneous structure consisting of nodes 

with a wide range of degrees, they were called scale-free networks (Barabási and Albert, 

1999). An average degree (or scale), as seen for random networks, cannot be used to 

characterise them. Several real-world cellular, technological, and social networks showed this 

scale-free structure, including the cellular protein-protein interaction (PPI) network, the World 

Wide Web and the internet, and the author citation network (Barabási and Albert, 1999, Albert 

and Barabási, 2002). Therefore, it became clear that the interdependencies of the nodes in 

these networks and their organizing principles were not products of random processes. 

Figure 3: Characteristics of the protein-protein interaction (PPI) network. A. PPI networks are scale-free networks 
with a large number of small degree nodes and small number of high degree nodes. B. The few high degree nodes in 
the network called ‘hubs’ hold the network together. ‘Bottlenecks’ are nodes with high betweenness centrality that direct 
the flow of a significant amount of information in the network. Betweenness centrality measures the fraction of shortest 
paths passing through a node. Note that the nodes marked in this network as ‘high degree nodes’ also have high 
betweenness centrality and vice versa. C. Path length is the number of edges between any two nodes. The 
characteristic path length of a network is the average number of edges between all pairs of nodes in the networks, and 
can be used to assess the navigability of the network. D. Groups of nodes involved in the same cellular function are 
called functional modules. E. Groups of nodes in the network that are highly interconnected with one another compared 
to the rest of the nodes in the network, form topological modules. The network diagrams were created using Cytoscape. 
The degree distribution graph was created using the Cytoscape core app NetworkAnalyzer. The figures were 
assembled in Microsoft PowerPoint. 
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Instead, they were higher-level topological manifestations of systematically coordinated 

microscopic processes. These higher-level relationships could provide critical insights into the 

behaviour of the system. Fig. 3 summarises the key characteristics of the scale-free networks, 

illustrated in the context of the PPI network. 

 

The most notable characteristic of real-world networks that emerged from the scale-free 

network structure was that they were highly tolerant of random node failures and yet intolerant 

of (or vulnerable to) the removal of high-degree nodes (Albert and Barabási, 2002). Random 

node failures were more likely to affect the more abundantly present low-degree nodes, which 

do not dictate network topology. On the other hand, removing the high-degree nodes resulted 

in a breakdown of the topological structure, since they acted as scaffolds providing links to 

multiple nodes and shaping the network. Strikingly, the PPI network of yeast proteins 

interconnected via direct physical interactions demonstrated this same feature, i.e., differential 

response to node failure based on topological parameters (Jeong et al., 2001). In mutagenesis 

experiments, yeast cells showed high tolerance to the deletion of a vast number of proteins. 

In line with this, the topological structure of the yeast PPI network remained unaffected when 

randomly selected yeast proteins were removed using computational simulations (Jeong et 

al., 2001). On the other hand, single-gene deletion of ~62% of the proteins, each having more 

than 15 interactions (i.e., hub proteins), was lethal to yeast cells, although these high-degree 

nodes constituted only ~0.7% of the yeast proteins (Jeong et al., 2001). This finding that hub 

proteins were essential for survival led to several other studies (Barabási et al., 2011), which 

collectively showed that such proteins evolved more slowly and regulated more phenotypes 

than lower-degree nodes. 

 

Slowly, it emerged that the PPI network could explain the non-linear relationship between the 

polygenic architecture of diseases revealed by genetic advances leading up to GWA studies 

and the clinicopathological correlations and phenotypic complexity seen during the Oslerian, 

Mendelian, and classical genetic eras. Now, human diseases were conceptualised as 

emergent properties of the cellular PPI network, which uses its inherent interdependences, 

i.e., PPIs, to respond to genetic and environmental perturbations (Fig. 2) (Barabási et al., 

2011, Barabasi and Oltvai, 2004). Since PPIs drive the cellular machinery by facilitating 

biological processes, including signal transduction, formation of cellular structures, and 

enzymatic complexes, they are central to elucidating disease mechanisms. Individually, the 

effect of a disease-associated variant – uncovered through a GWA study – can be studied in 

terms of how it affects the protein structure and function. However, as shown in the study of 

the yeast PPI network (Jeong et al., 2001), proteins do not function in isolation within the 

cellular landscape. Instead, they interact with one another and give rise to complex networks 

with emergent properties. The network medicine paradigm was thus proposed as an 

integrative framework for examining the mechanistic effects of disease-associated genes 

within the context of the human PPI network (Barabási et al., 2011, Barabasi and Oltvai, 2004). 

 

1.1.6 Discovering the human interactome: experimental methods for protein-protein 

interaction mapping and computational algorithms for protein-protein interaction 

prediction 
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Fortunately, in the early 2000s, alongside the re-conceptualisation of diseases as a network 

science problem, molecular interaction mapping techniques such as the yeast two-hybrid 

system, co-immunoprecipitation (Co-IP), several variations of Co-IP such as luminescence-

based mammalian interactome (LUMIER) and dual luminescence-based co-

immunoprecipitation (DULIP), proximity-dependent biotin identification (BioID) and affinity-

purification mass spectrometry (AP–MS) (Blasche and Koegl, 2013, Trepte et al., 2015, Le 

Sage et al., 2016, Dunham et al., 2012) were developed. Co-IP captures interactors (or ‘prey’ 

proteins) based on their biochemical affinity for the protein of interest (i.e., the ‘bait’). BioID, on 

the other hand, is based on addition of biotin tags to prey proteins (Le Sage et al., 2016). 

Biotinylated proteins are then bound by streptavidin, a protein that has a high affinity for biotin. 

The affinity of streptavidin for biotin has been reported to be the strongest non-covalent 

biological interaction known with a dissociation constant (Kd) in the femtomolar range (Sano 

et al., 1998, Stayton et al., 1999, Laitinen et al., 2006). The advantages of biotinylation over 

immunoprecipitation (IP) include the capture of transient interactors (fewer false negatives), 

higher capture specificity (fewer false positives) and greater enrichment of true interactors 

(Branon et al., 2017). In a study that mapped interaction networks at the centrosome−cilium 

interface, for the same 10 baits, >40% of the interactors detected by IP were also detected 

using BioID, with these shared interactions representing only 21% of the interactors identified 

by BioID (Gupta et al., 2015). False-positive PPIs are eliminated, since BioID is performed in 

living cells (before lysis) unlike IP and stringent washes may be used to separate biotinylated 

proteins from non-specific proteins (after lysis). Non-specific interactors detected using IP such 

as tubulin and HSPA9 were not detected in BioID (Branon et al., 2017). Greater enrichment of 

true interactors is observed since the biotin−streptavidin interaction used for capture of 

interactors is extremely strong and stringent washes may be used during purification to 

eliminate non-specific proteins. Interactors of the microprotein modulator of retroviral infection 

(MRI) were enriched 10-fold with ascorbate peroxidase (APEX)-mediated proximity 

biotinylation and only ∼2-fold with IP (APEX is a peroxidase that catalyses proximity-

dependent biotinylation in living cells) (Chu et al., 2017). LUMIER is a Co-IP assay which 

detects PPIs in mammalian cells by quantifying luminescence activity after 

immunoprecipitation (Blasche and Koegl, 2013). DULIP is a second-generation LUMIER 

assay (Trepte et al., 2015). Study with positive PPI reference set composed of high-confidence 

PPIs from the Human Integrated Protein Interaction Reference (HIPPIE) database (HIPPIE 

score ≥0.99) revealed that DULIP can detect known human PPIs with a sensitivity of ~ 79.5% 

(Trepte et al., 2015). Positive PPIs were recovered from hsPRS-v1 (Homo sapiens positive 

reference set) with a success rate of ~ 35% (Trepte et al., 2015). DULIP has been reported to 

detect human PPIs with high sensitivity and specificity, detecting both low and high-affinity 

interactions and the effects of point mutations on interaction strength (Trepte et al., 2015). AP–

MS is a pull-down assay widely used to detect PPIs (Dunham et al., 2012). To counter the 

problem of distinguishing true interactors from non-specific contaminants in AP-MS, improved 

methods have been devised in which samples are quantitatively compared with control assays 

using rigorous statistical controls (Choi et al., 2011, Keilhauer et al., 2015).  

 

Since PPI discovery through experimental techniques is prohibitively expensive, laborious and 

time-consuming, PPI prediction through computational algorithms (Kotlyar et al., 2015, Hopf 

et al., 2014, Emamjomeh et al., 2014a, Garzón et al., 2016, You et al., 2013, Jia et al., 2015, 

Li and Ilie, 2017, Deng et al., 2003, Raja et al., 2013) has been undertaken. Several methods 
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that emerged over the past ten years attempted to identify feature sets co-occurring in PPIs in 

a context-independent manner. In FpClass, the likelihood of an interaction was estimated from 

features that appeared to be unrelated but co-occurred in interacting partners, such as the 

protein domain in the first partner and subcellular localization of the second partner (Kotlyar et 

al., 2015). EV complex, PPIccc and DWIN used new features functionally relevant to PPIs 

such as the co-variance of amino acids, codon usage and variation of gene expression over 

time (Hopf et al., 2014),(Emamjomeh et al., 2014a),(Deng et al., 2003). The algorithm called 

PPInterFinder extracted relational keywords from MEDLINE abstracts to predict PPIs (Raja et 

al., 2013). However, overall, the number of text mining approaches for PPI prediction has 

dwindled over the years. Some of the most commonly used features for PPI prediction include 

information on domains, gene expression, Gene Ontology terms, orthology, evolutionary 

conservation of sequences and network topology. While some methods used an ensemble of 

these evidences such as Pre-PPI, in which a Bayesian approach was adopted to predict PPIs 

from genomic and structural features (Garzón et al., 2016), other methods used only one or 

two features such as iLOOPs, which is purely based on protein architecture (loops and motifs) 

(Planas-Iglesias et al., 2013). In a method based on personalised-recommendation system 

widely used in e-commerce, the problem of the incompleteness or ‘sparsity’ of the 

experimentally determined human interactome was treated in a manner similar to known user-

item pairs being fewer in number than the unknown ones (Luo et al., 2015). Another method 

based on new measures of link prediction such as node graphlets attempted to capture the 

topologically similar deep neighbourhoods of interacting partners (Hulovatyy et al., 2014). PPI 

prediction based on sequence information were also widely used. PCA-EELM and iPPI-Esml 

used pseudo amino acid composition and distribution patterns of amino acids to predict PPIs 

using ensembles of learning machines (You et al., 2013),(Jia et al., 2015). PRISM considered 

sequence conservation in addition to structural similarity to interacting proteins in a template-

based method (Baspinar et al., 2014). Evolutionary profiles were derived from sequences 

represented as kernels in a method called profile-interaction kernel (Hamp and Rost, 2015). 

Another emerging trend is the use of ensembles of learning machines to provide the final PPI 

prediction. Locfuse used an ensemble of learners such as random forest, naïve Bayes, 

multilayer perceptron and radial basis function to obtain the final prediction, also incorporating 

the concept of ‘classifier fusion’ in which every feature space has its own base classifier (Zahiri 

et al., 2014). An ensemble learning method that employed random forest, naïve Bayes, 

support vector machine and multilayer perceptron as base learners was used to predict PPIs 

between human and hepatitis C virus proteins (Emamjomeh et al., 2014b). The entire 

interactomes of Bacillus licheniformis and the human-microbial oral interactome were 

predicted based on the transfer of orthologous data and domain-domain interactions (Coelho 

et al., 2014, Han et al., 2016). An algorithm called SPRINT predicted the human interactome 

using a sequence-based algorithm that assessed the contribution of similar sub-sequences to 

the likelihood of interaction (Li and Ilie, 2017). Only a few of these studies reported 

experimental validation of the predicted PPIs. For example, 137 of the PPIs predicted by 

FpClass were validated using Co-IP, Glutathione S-Transferase pull-down assay and 

Mammalian Membrane Two-hybrid assay (Kotlyar et al., 2015).  

 

Altogether, PPI mapping efforts using experimental methods – including three large-scale 

efforts that employed high-throughput yeast two-hybrid system (Rual et al., 2005, Rolland et 

al., 2014, Luck et al., 2020) – led to the discovery of ~150,000 PPIs in human cells out of the 



Introduction 

25 
 

estimated ~600,000 PPIs (data from Human Protein Reference Database or HPRD (Keshava 

Prasad et al., 2009) and Biological General Repository for Interaction Datasets or BioGRID 

(Stark et al., 2006)). The PPIs predicted using computational algorithms remain unintegrated 

into the global PPI map, due to the lack of experimental validation. Systematic efforts to curate 

PPIs validated in small-scale functional studies and large-scale efforts for interactome 

discovery led to the formation of at least 23 PPI databases, which additionally contained data 

on at least 26 modalities affecting PPIs (see Appendix – Table 1). 

 

1.2 The disease interactome: an integrative framework to examine the disease state 

from multiple angles 

The PPI network had a modular structure, containing several subunits of nodes (or ‘modules’) 

that were highly intra-connected and less inter-connected with other subunits (Fig. 3) 

(Barabási et al., 2011, Barabasi and Oltvai, 2004). The nodes in these topological modules 

often participated in the same cellular function and formed functional modules(Barabási et al., 

2011, Barabasi and Oltvai, 2004). In addition to modules, the network also exhibited the small-

world phenomenon, which meant that any two nodes could be connected through a relatively 

small number of edges (Barabási et al., 2011, Barabasi and Oltvai, 2004). From these, it 

became clear that the effects of perturbations – such as gene mutation, abnormal gene or 

protein expression, and treatment-related and environmental perturbations – could propagate 

in this network, produce disease and influence multiple aspects of disease expression, 

including shared symptomatology, comorbidity, and response to drugs (Barabási et al., 2011, 

Barabasi and Oltvai, 2004). In line with this, studies showed that ~67% of disease-associated 

variants either alter the binding affinities between proteins or abolish/establish PPIs (Laddach 

et al., 2018, Sahni et al., 2015). Other studies showed that genetic variants localizing to the 

protein core may disrupt its tertiary structure and abolish all chances of the protein interacting 

with any of its interaction partners (node removal in the interactome) (Barabási et al., 2011), 

and variants localizing to interaction interfaces may perturb specific interactions (edge 

perturbation in the interactome) (Barabási et al., 2011).  

 

The PPI network or the ‘interactome’ started to be used as a skeletal framework to elucidate 

biologically relevant relationships existing at a higher level among genes harbouring disease-

associated variants, which may not be apparent by examining individual genes (Sakai et al., 

2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a). The most important 

use of the interactome model was in creating integrated landscapes for specific human 

diseases. Heterogeneous disease genetic data spread across independent studies, which 

hitherto remained unconnected, could now be interconnected, as was demonstrated for 

ataxias and autism spectrum disorders (ASDs). Purkinje cell dysfunction and degeneration 

emerged as the common themes underlying the ataxia interactome constructed using 

previously unrelated genes linked to 23 inherited ataxias as starting points (Lim et al., 2006). 

Similarly, despite the clinical heterogeneity of ASDs, the ASD interactome seeded using genes 

harbouring mutations producing (or associated with) syndromic ASD or severe language delay 

showed tight interconnectivity and enrichment for copy number variants seen in ASD patients 

(Sakai et al., 2011). The interactome also converged on common subcellular locations and 

biological functions.  
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Five other factors make the interactome framework better poised to address disease aetiology 

(Fig. 4). Firstly, unlike the GWA framework, the PPI network could be used as a mechanistic 

framework to integrate disease-associated cellular data from disparate sources, such as 

transcriptomic and methylation data. The effect of DNA variation is most proximally reflected 

by the RNA, as per the central dogma of biology (Schadt, 2009). Studies showed that SNP 

genotypes were responsible for more than 50% of the variation in RNA abundance levels, 

supporting this notion (Schadt, 2009). Hybridization-based microarray techniques and RNA-

sequencing technologies developed alongside genome sequencing technologies for disease 

gene discovery (Schadt, 2009). Hence, there was ample opportunity to integrate 

transcriptomic datasets derived from patients, cell lines, and animal models into the PPI 

network. The interactome also served as an integration platform for cross-species data. In this 

manner, vital information on human diseases learned from animal models could be 

incorporated into the disease model. Specifically, interactions experimentally validated or 

predicted based on co-expression patterns and genomic information (as seen in the Search 

Tool for the Retrieval of Interacting Genes/Proteins or the STRING database (Szklarczyk et 

al., 2021)) in other species can be transferred to the human interactome and used to construct 

networks of disease-associated genes. A breast cancer interactome study elegantly 

demonstrated the power of the interactome as an integration platform for various kinds of 

biological datasets and cross-species data (Pujana et al., 2007). The interactome was seeded 

by four tumour suppressor genes, expanded by including genes that showed correlated 

expression in several transcriptional datasets of human tissues and cell lines, and augmented 

using differential expression profiles of breast tumours, cross-species genetic interactions, and 

PPIs. This interactome showed higher connectivity than random networks containing the same 

Figure 4: Major applications of the interactome framework. The five applications of the interactomic framework that 
will help elucidate disease mechanisms are (a) integrating multi-omics datasets, (b) acting as a bypass route for various 
biological levels, (c) explaining the phenotypic complexity of monogenic disorders by charting the neighbourhood 
networks of the causative genes, (d) re-formulating the problem of viral hijack of the host cellular machinery as that of 
host protein interactome perturbation by viral proteins and (e) examining the neighbourhood networks of multiple 
diseases to elucidate higher-order etiological relationships. The figure was created in Microsoft PowerPoint. The 
network diagram was created using Cytoscape. 
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number of nodes and sourced from the same transcriptional datasets, indicating its biological 

cohesion. The interactome also helped identify previously unknown functional links of known 

tumour suppressor genes, such as BRCA1, with genes carrying disease-associated variants 

in independent studies. In another study, a large expression dataset of cancer tissues and cell 

lines was used to identify the regulatory interactions of genes (Ergün et al., 2007). The 

regulatory network was then used to filter the differential expression datasets of two prostate 

cancer states (non-recurrent primary and metastatic states) and identify the genetic mediators 

regulating these states. 

 

Secondly, it was becoming increasingly clear that complex disorders need to be examined 

through the lens of the multiscale networks spanning various levels of biological organization 

and interacting with one another to produce structure, function, and phenotype. Therefore, the 

traditional gene-centric approach was rapidly converging with the systems approach, the effect 

of which most strongly impacted the field of neuroscience, as shown by the linear paradigm of 

biological discovery in psychiatry (Totah, 2016). According to this paradigm, it was essential 

to examine multiple intervening levels for elucidating the effects of variants on behavioural 

phenotypes, i.e., gene expression, protein function, protein activity in multiple cellular 

landscapes converging in local neural circuits, and their interactions in global neuronal wiring. 

This multi-level investigation is often impossible in a single study. However, in small-scale PPI 

studies, interactome analysis was used to bypass various levels of biological discovery, 

normally traversed to elucidate the effect of a variant on a neuropsychiatric phenotype. For 

example, discovering the PPIs of the proteins encoded by the chromosomal region 16p11.2 

(which harbours recurrent aberrations associated with ASD and schizophrenia (SCZ)) led to 

several findings on their involvement in the KCTD13-Cul3-RhoA pathway and the late mid-

foetal brain development seen in the psychiatric disorders (Sharma et al., 2015b). Similarly, a 

SCZ-predisposing mutation was shown to lead to abnormal dopaminergic modulation in a 

circuit of prefrontal cortical interneurons (Choi et al., 2017). PPIs between the immunoglobulin 

superfamily proteins DIP-α and Dpr6/10 have been shown to regulate layer-specific synaptic 

circuitry (Xu et al., 2018a). Altogether, contrary to previous models such as Oslerian formalism, 

the ability of the interactome to serve as an integration model for multiscale disease data made 

it better poised to address real-world phenotypic heterogeneity. An example of a multiscale 

relationship in neuroscience is the correlation between the spatial distribution of brain gene 

expression and functional connectivity between various brain regions (Anderson et al., 2018, 

Richiardi et al., 2015, Wang et al., 2015, Krienen et al., 2016, Patania et al., 2019, Mills et al., 

2018). Specific brain regions or neural circuits strongly drive psychiatric morbidities (as seen 

for anxiety disorders (Whalen et al., 2008, Hattingh et al., 2013)). The correlation between 

gene expression and functional connectivity suggests that these disorders may exhibit 

abnormalities in region-specific transcriptional signatures. However, gene expression linked 

to psychiatric disorders identified in post-mortem human brain tissues and pharmacogenomic 

animal models are from disparate sources and have limited overlap. The interactome model 

can reveal the hidden interdependencies of genes identified in disparate studies and the genes 

expressed in specific brain regions. An interesting example is an ASD study that described an 

interactome module showing statistically significant enrichment for ASD-associated variants 

(Li et al., 2014). This module showed dichotomised expression in the corpus callosum and the 

hippocampus. 
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Thirdly, the interactome model also provides an opportunity to construct a complex 

interactome space for Mendelian disorders and interpret their phenotypic complexity in terms 

of the interdependencies of the causative genes in the interactome. A seminal study 

introduced the random walk with restarts algorithm to help prioritise ‘candidate’ genes 

associated with Mendelian diseases for experimental studies based on their proximity to 

known disease-associated genes in the human interactome (Köhler et al., 2008). Another 

seminal study showed that missense mutations in Mendelian diseases lead to widespread 

perturbations in the interactome, and that different mutations in the same genes could alter 

interaction profiles and produce distinct disease phenotypes (Sahni et al., 2015). 

 

Another attractive utility of the interactome model is in elucidating the host invasion and 

response mechanisms in viral epidemics. When viral proteins bind to proteins in the host cell, 

this effect may spread in the interactome through regulatory and biophysical interactions, 

perturbing other proteins in the PPI network, and affecting viral infection, host immunity, and 

the response to therapeutics. The host could use these complex interactions to restrict viral 

replication in host cells, or the virus could hijack them to allow its perpetuation, as has been 

shown by their preferential targeting of hubs in the human interactome (Calderwood et al., 

2007, Shapira et al., 2009). 

 

Two competing approaches exist to define and categorise mental disorders (Thaxton et al., 

2022). In the first (‘lumping’) approach, disorders are broadly categorised based on shared 

symptom dimensions, as seen in Research Domain Criteria, which suggests a framework to 

investigate mental disorders. In the second (‘splitting’) approach – as seen in the Diagnostic 

and Statistical Manual of Mental Disorders – the symptomatic distinctions are highlighted to 

allow differential diagnosis of disorders and their subtypes. Through the interactome model, 

these approaches can be used as complementary indicators to define the interactomic space 

of a disease based on genetic components underlying the shared and unique aspects of its 

symptoms. Disease-disease relationships have been characterised in a seminal study that 

proposed the concept of the human ‘diseasome’, a web of pathophenotypes linked based on 

shared genes harbouring disease-associated mutations (Goh et al., 2007). Distinct disease 

modules could be delineated from the diseasome. The genes associated with similar disorders 

were more likely to interact with one another and show correlated expression patterns. As in 

the yeast interactome (Jeong et al., 2001), essential genes in the human genome were highly 

likely to encode hub proteins and show expression in a large number of tissues (Goh et al., 

2007). On the other hand, majority of the disease genes were non-essential, and they were 

highly likely to encode non-hub proteins (Goh et al., 2007). Their expression was uncoupled 

from, i.e., not correlated with, the expression of the other genes. Purifying selection will likely 

weed out mutations in essential hub genes critical to survival and development to prevent 

spontaneous abortions and postnatal lethality (Goh et al., 2007). Hence, it is highly likely that 

disease-associated mutations localise to topologically neutral non-hub proteins, ensuring that 

the organism survives up to reproductive years, allowing the mutations to persist in the 

population (Goh et al., 2007). 

 

In summary, for functional interpretation of genetic variants associated with complex disorders, 

it is imperative that we surpass the simplistic view of ‘variants-disrupt-protein function’ and 

place variants in the complex web of PPIs to unravel disease mechanisms. Mapping disease-
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associated variants onto proteins and PPI networks will help pull more disease-associated 

genes into the network and examine communities of proteins involved in biological pathways 

relevant to the disease aetiology. The interactome model allows a more complex 

conceptualisation of human disease. As demonstrated by the multiple studies above, it 

provides a framework to ‘translate’ genetic data into discoveries on disease mechanisms. 

 

1.3 A historical perspective on drug discovery: from the magic bullet hypothesis to the 

network medicine paradigm 

The classical pharmacology and systems therapeutics eras shaped our understanding of 

disease therapeutics and sections 1.3.1 and 1.3.2 describe the chronological sequence of 

events spanning these two eras. Drug discovery driven by classical pharmacology principles 

saw limited success and led to the co-evolution of polypharmacology and the network 

medicine paradigm in the systems therapeutics era. Fig. 1 provides a bird’s eye view of the 

events in drug development and network biology described in these sections; note that the 

figure also depicts the events in disease genetics, described earlier in section 1.1. Fig. 5 

summarises the evolution of the relationship between drug-target interactions and clinical 

manifestations in the classical pharmacology and systems therapeutics eras. 

 

Figure 5: The evolution of the relationship between drug-target interactions and clinical manifestations. Clinical 
investigations in the classical pharmacology era focused on individual drugs believed to act on single cellular targets 
and alleviate disease symptoms. In the systems therapeutics era, a single drug was found to act on multiple targets 
and multiple drugs on a single target, and such ‘promiscuous’ and ‘off-target’ interactions were believed to result in 
adverse events. This multi-drug-multi-target interaction principle or ‘polypharmacology’ was later integrated into the 
network medicine paradigm, and shown to be responsible for both therapeutic and non-therapeutic effects of drugs. 
The figure was created in Microsoft PowerPoint. The network diagram was created using Cytoscape. 
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1.3.1 The classical pharmacology era: drug discovery driven by the magic bullet 

hypothesis and the resulting decline in clinical development success rates 

Coupled with the problem of understanding disease aetiology is the need to devise targeted 

treatment strategies. Therefore, drug discovery followed close at the heels of disease biology, 

as the latter transitioned from the reductionist era of Oslerian formalism to the holistic age of 

network medicine. Traditional drug discovery revolved around the 'magic bullet’ hypothesis 

proposed by Paul Ehrlich in 1907 (Fig. 5) (Strebhardt and Ullrich, 2008). Small molecules or 

biologics that target and modify the function of a specific protein were developed to alleviate 

or prevent disease symptoms. Although several beneficial drugs were developed using this 

approach, particularly antimicrobial and antiviral agents (Strebhardt and Ullrich, 2008), it 

produced unsatisfactory results in complex disorders. For example, drugs such as donepezil, 

rivastigmine, and galantamine, which reversibly inhibit the enzyme acetylcholinesterase by 

forming hydrolysable carbamylated compounds with it, are widely used for alleviation of 

dementia in Alzheimer’s disease (Moss et al., 2017, Greig et al., 2001, Ballard, 2002, Poirier, 

2002, Fukuto, 1990, Morisset et al., 1996). Only a small section of the people treated with 

these drugs experience significant cognitive improvement (Di Santo et al., 2013). Cognitive 

decline in a vast majority of people is delayed by only 6-9 months (Masters et al., 2015). 

Further, the top-ten grossing drugs in the U.S. benefit only 4% to 25% of the patients treated 

with them (Schork, 2015).  

 

The fact that drugs benefit only small subsections of the patient population led the 

pharmaceutical industry to develop ‘blockbuster’ drugs for common diseases (Loscalzo, 2023). 

The reasoning was that a large section of the patient population had to benefit from the drugs, 

for drug development to be economically profitable (Loscalzo, 2023). However, such 

blockbuster drugs did not produce the intended effects. They had low efficacy rates, possibly 

because the patient population was naturally stratified into various groups based on their 

genetic predisposition and responded differently to drugs (Loscalzo, 2023). Additionally, these 

patient subgroups had already been exposed to existing drugs whose interactions with the 

blockbuster drugs remained unexplored (Loscalzo, 2023). Collectively, these failures have led 

to a decline in drug discovery. Despite increasing investments in research and development, 

drugs take longer to be developed, have high attrition rates at various phases of clinical trials, 

and have a much higher cost (Loscalzo, 2023).  

 

The trends revealed by a study that examined the clinical development success rates from 

2006 to 2015 provide some critical insights into the specific challenges faced by the industry 

(Thomas et al., 2016). Firstly, only 9.6% of the drug candidates in phase I clinical trials 

transitioned into phase II, with psychiatric drugs the least likely to make this transition (Thomas 

et al., 2016). The safety of the candidate drug is tested in phase I. Therefore, the high attrition 

rate in this phase could indicate that the information on drug activity examined in the preclinical 

trials was incomplete. The caution exercised by the regulatory bodies in phase I is warranted. 

Serious adverse drug reactions constitute the fourth leading cause of death in the U.S., with 

100,000 deaths per year and about 2 million patients in the U.S. experiencing adverse drug 

reactions per year (Giacomini et al., 2007). Patient fatalities have led to the withdrawal of 19 

drugs from the U.S. market during 1998-2007 (Giacomini et al., 2007). Secondly, drugs 

intended to treat rare diseases and targeting specific biomarkers were more likely to have high 
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approval rates in all the developmental phases (Thomas et al., 2016). On the contrary, drugs 

targeting common diseases were the least likely to advance to phase II (Thomas et al., 2016). 

These results suggested that developing drugs targeting specific patient subgroups identified 

using pharmacogenomics approaches will increase their success rates. Altogether, these 

results highlighted the need to revise the strategies for drug development, with a focus on 

reducing adverse events and increasing drug efficacy by incorporating genomic insights. To 

address these two problems, the conventional ‘one drug for one target for one disease’ 

approach had to be replaced by a more complex approach. 

 

1.3.2 The systems therapeutics era: re-conceptualisation of polypharmacology by the 

network medicine paradigm to explain the multimodal effects of drugs 

Historically, drug design was based on findings from studies that describe genetic and 

pharmacological modulation of specific targets and pathways, which elicit measurable 

changes in pathophenotypes (Chan and Loscalzo, 2012). This framework suggested that side 

effects of specific drugs arose from the unintended manipulation of ‘off-targets’ in other 

pathways, a phenomenon attributed to the concept of polypharmacology, i.e., a drug has 

multiple targets, and a target may bind several ligands (Fig. 5) (Chan and Loscalzo, 2012). In 

conventional drug development, polypharmacology was treated as an undesirable property of 

drugs and drug targets. However, the network medicine paradigm reconceptualised drugs as 

having multimodal effects in the complex cellular landscape of PPIs (Barabási et al., 2011, 

Barabasi and Oltvai, 2004, Yıldırım et al., 2007), thereby re-contextualising polypharmacology 

(as described by (Roth et al., 2004)) as a property critical to modelling the complex phenotypic 

responses to drugs (Fig. 5). Specifically, drugs that target proteins could perturb the PPI 

network to elicit the intended therapeutic response in a disease or an unintended adverse 

event or side effect (Chan and Loscalzo, 2012).  

 

In the network medicine paradigm, the preclinical phase in the drug development pipeline will 

involve the following steps: identification of the disease module within the cellular interactome, 

identification of multiple druggable targets in this module and construction of a drug target 

Figure 6: Integration of the network medicine paradigm into the clinical developmental pipeline. Each 
application of the network medicine paradigm (marked with coloured boxes) will inform phase I-III clinical trials in 
patients. Most repurposed drugs will have passed clinical trials and will be safe for human use. Hence, drug repurposing 
results will inform phase 1, which focuses on drug safety. Additionally, they will inform phase II, which focuses on drug 
efficacy. Analyses integrating the DTN with multi-omics datasets that help elucidate drug mechanisms will inform phase 
I efforts to characterise the therapeutic and non-therapeutic effects of drugs and phase II efforts to assess drug efficacy. 
Integrating the DTNs with patient subgroup-specific data will help identify the pharmacogenomic interactions of the 
drug. This, in turn, will inform phase III, which assesses the effects of drugs in multiple populations. The figure was 
created in Microsoft PowerPoint. 
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network (DTN), refining the list of drugs in this network by assessing their efficacy through 

comparative analysis of drug-induced and disease-associated transcriptomes (as seen in 

‘drug repurposing’, described below), modelling therapeutic and non-therapeutic benefits of 

the drugs by integrating DTNs with multi-omics datasets, and experimental testing in cell lines 

and animal models (Fig. 6). This paradigm redefines adverse events as the consequence of 

PPIs in the network, providing opportunities to mitigate them before the clinical trials. This, in 

turn, will help prioritise drug combinations to reduce or neutralise adverse events and select 

drugs with specific biological profiles less correlated with adverse events, before the clinical 

trials. Network pharmacology studies have provided several key insights into the biological 

correlates of adverse events. Pairs of drugs used for the same disease induce adverse events 

when the network modules of their protein targets overlap with each other and the network of 

disease-associated genes (‘overlapping exposure’) (Cheng et al., 2019). A 2.6-fold greater risk 

of side effects was seen with drugs targeting genes having 5 specific genetic features, 

including non-specific tissue gene expression (Duffy et al., 2020). The findings from this study 

also suggested that side effects arise from drug delivery to multiple tissues (including those 

unrelated to the disease) (Duffy et al., 2020). Network medicine opens up the possibility of 

tailoring drugs for specific patient subgroups, whose characterization should be made possible 

by clinical trials using comprehensive phenotyping strategies (Loscalzo, 2023). The 

interactome can be used as a framework to map the heterogeneous genetic data of the 

subgroups and isolate targetable sub-networks after integration with multi-omics datasets that 

help predict drug efficacy. This step should also be integrated into the preclinical phase of drug 

development (Fig. 6). 

 

The clinical pipeline is yet to incorporate the rational strategies offered by the network medicine 

paradigm to address the issues of adverse events and stratified drugs. On the other hand, a 

concept derived from the paradigm called 'drug repurposing' has been widely adopted in 

preclinical research, and has helped identify several drugs, particularly during the coronavirus 

disease (COVID-19) pandemic (Chen et al., 2021, Zhou et al., 2020, Gysi et al., 2020, Li and 

De Clercq, 2020). Drug repurposing involves identifying drugs approved by regulatory bodies 

such as the Food and Drug Administration (FDA) for treating a specific disease and 

repositioning them for a different disease. Investigational drugs (whose clinical efficacy is 

under investigation) can also be repurposed. Diseases may share druggable proteins, as 

indicated by the interconnectivity of the human interactome and the diseasome (Barabási et 

al., 2011, Barabasi and Oltvai, 2004, Goh et al., 2007). The drugs targeting these proteins 

could be profiled and refined for clinical specificity, and subsequently therapeutically switched 

to treat a condition other than the original indication. The repurposing route, compared to novel 

drug discovery, offers several advantages. Since the drugs identified in this manner are more 

likely to have passed safety trials in preclinical models and early-stage trials, they are less 

likely to fail the subsequent phases of clinical development and more likely to reduce the 

overall time for drug development and lead to the discovery of new pathways and targets 

(Dudley et al., 2011, Athauda et al., 2017, Kinnings et al., 2009, Evans et al., 2005). Multi-

omics datasets measuring drug activity at single-cell resolution and the level of molecular 

interaction perturbations are now becoming available (Srivatsan et al., 2020, Lambert et al., 

2019). Their integration with DTNs will help devise new strategies to identify drugs with low 

attrition rates in clinical trials. 
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Overall, mapping drugs and drug targets to the complex landscapes of disease-associated 

interactomes helped harness the potential of polypharmacology for drug identification. The 

network medicine approach will widen the scope of the conventional clinical development 

pipeline. However, the methods currently available for drug discovery, repurposing, adverse 

event minimization, and personalizing therapeutics, are varied. It is important to standardise 

these methods and test them in several diseases. Research on disease biology through the 

lens of the interactome will also help fine-tune these methods for different categories of 

disorders. 

 

1.4 The current state of network biology: factors limiting its scope in disease 

mechanism elucidation and drug discovery and past attempts to address them 

Subsequent to the discovery of the scale-free nature and the small world property of PPI 

networks, scientists active in the field of network biology primarily focused on advancing four 

key areas: (i) deriving the rules governing the distribution of disease-associated genes and 

drug targets in the human interactome (Barabási et al., 2011, Barabasi and Oltvai, 2004, 

Yıldırım et al., 2007, Cheng et al., 2019), (ii) elucidating the relationship of the PPI network – 

Figure 7: Factors limiting the application of network biology to disease mechanism elucidation and drug 
identification. The five factors limiting the scope of the network medicine paradigm in disease biology and therapeutics 
are: (I) the lack of a standard methodology (II) to derive biological and clinical insights into the disease, (III) based on 
a context-specific disease interactome (IV) augmented with computationally predicted PPIs (to circumvent the sparsity 
of the experimentally validated PPI map), and (V) the lack of a methodology to examine the correlation of this disease 
interactome with other interactomes. The figure was created in Microsoft PowerPoint. The network diagram was 
created using Cytoscape. 
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which contains biophysical interactions between proteins – with other types of cellular 

networks, such as epistatic genetic interactions (Ulitsky and Shamir, 2007, Kelley and Ideker, 

2005) and gene co-expression networks (Paci et al., 2021), which capture biological pathways 

and processes, (iii) producing derivative networks such as the diseasome (Goh et al., 2007) 

that chart higher-level disease-disease relationships based on shared genes and (iv) 

investigating whether the organizational principles of disease-associated genes in the cellular 

networks are also reflected in the interrelationships of the human disease phenotypes (Hidalgo 

et al., 2009); these phenotypic relationships were inferred based on multiple indicators of 

disease comorbidity (such as relative risk and Matthews correlation coefficient) computed 

using the disease history of millions of patients. Large-scale network studies have provided 

crucial insights into these areas: the functional coherence and the higher interconnectivity of 

interactome neighbours in disease modules (Barabási et al., 2011, Barabasi and Oltvai, 2004), 

the various configurations of disease modules and DTNs in the human interactome that 

produce therapeutic benefits and adverse events (Cheng et al., 2019), the high overlap 

between PPIs of proteins encoded by essential genes (including protein complexes) and 

genetic interactions (Costanzo et al., 2016), the localization of ‘switch’ genes – that are inferred 

from gene co-expression profiles to regulate disease transitions – to disease modules in the 

human interactome (Paci et al., 2021), the peripheral localization of most human disease-

associated genes and the separation of related disorders into distinct clusters based on shared 

genes (Goh et al., 2007), and the network patterns underlying the development, progression 

and prognosis of comorbidities (Hidalgo et al., 2009).  

 

The conceptual advances provided by these and similar studies helped identify the 

characteristics of the microscopic processes that drive large-scale molecular and phenotypic 

networks. These processes, when perturbed, contribute to disease development, 

manifestation, progression, therapeutics, and prognosis. However, five factors have since 

limited the scope of network biology (Fig. 7).  

 

First, no single unifying schema exists to examine disorders based on network biology 

principles. The subsets of network biology principles and methods used to analyse disease-

specific genetic data vary between independent research groups across the globe (Sun et al., 

2009, Sharma et al., 2015a, Sharma et al., 2018, Sakai et al., 2011, Lim et al., 2006, 

Ganapathiraju et al., 2016, Malavia et al., 2017a). In this scenario, it is critical to devise a 

specific methodology adoptable by an interdisciplinary team – consisting of biologists, 

bioinformaticians, clinicians, and computer scientists – and applicable across disorders. 

 

Second, due to the lack of a standard methodology, a single disease interactome is not 

sufficiently explored in a single study or a series of related studies, leading to a dearth of 

disease-associated actionable information (Sun et al., 2009, Sharma et al., 2015a, Sharma et 

al., 2018, Sakai et al., 2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a). 

Therefore, it is critical to devise a protocol that uses disease-associated genes as starting 

points and generates (i) biologically insightful results, seeding further scientific investigations, 

and (ii) clinically actionable results, leading to clinical trials and therapeutic interventions. 

 

Third, PPIs predicted by computational algorithms are often not integrated into network 

analyses (Kotlyar et al., 2015, Hopf et al., 2014, Emamjomeh et al., 2014a, Garzón et al., 2016, 
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You et al., 2013, Jia et al., 2015, Li and Ilie, 2017, Deng et al., 2003, Raja et al., 2013).  

Approximately 75% of the PPIs that are estimated to exist remain undiscovered by 

experimental methods, and several disease-associated genes have no known PPIs (Rual et 

al., 2005, Rolland et al., 2014, Luck et al., 2020). Therefore, augmenting the networks of 

experimentally determined PPIs with computationally predicted PPIs could help construct a 

more populated version of the interactome, allow the characterization of under-studied 

proteins through functional associations of their predicted interactors, and facilitate the 

discovery of previously unknown disease mechanisms. 

 

Fourth, the field is witnessing far more attempts at drawing generalizable context-insensitive 

conclusions across all human disorders than examining disorders, disorder subtypes, or 

related subtypes, individually or jointly, in a context-sensitive manner (Goh et al., 2007, 

Hidalgo et al., 2009). Gene specificity at various physiological levels – organs, tissues, and 

cell types – is crucial in determining the pathological consequences of disease-associated 

variants. Therefore, integrating the interactome with multi-omics datasets generated at 

different physiological levels and for specific diseases will help refine and contextualise the 

wiring diagram of the molecular interactions of disease-associated genes.  

 

Fifth, standard methodologies to study the higher-level correlational relationships between the 

interactomes of related disorders or drug targets, although proposed (Goh et al., 2007, Cheng 

et al., 2019), have not been widely adopted. In the former case, it is critical to devise methods 

that help understand the converging points of disease development and the diverging points 

of etiological differentiation and reconsider the norms of disease classification. In the latter 

case, it is critical to devise methods that help understand the complex molecular relationships 

producing favourable or unfavourable drug-drug interactions embedded in the interactome.  

 

1.5 An interactome-based framework to translate disease-associated genetic data into 

biological and clinical insights 

To address these issues, an interactome-based framework to ‘translate’ disease-associated 

genetic data into biological and clinical insights is proposed in this thesis. Detailed workflows 

for this framework can be found in Appendix section 14.2. Its utility is demonstrated in six 

disorder classes, specifically, a neurological disorder (Alzheimer’s disease in Chapter 2 and 

Appendix section 14.2), two neuropsychiatric disorders (anxiety disorders in Chapter 9, and 

schizophrenia or SCZ in Chapter 8), a cardiovascular disorder (hypoplastic left heart 

syndrome in Chapter 3), two cancers (malignant pleural mesothelioma in Chapter 4 and 

malignant peritoneal mesothelioma in Chapter 5), a viral disease (COVID-19 in Chapter 6) 

and one bone dysplasia (sedaghatian type spondylometaphyseal dysplasia in Chapter 7); 

note that in Chapter 10, six comorbid disease pairs belonging to multiple disorder classes 

have been examined. This framework can be used to functionally characterise a single 

interactome (Fig. 8) and compare multiple disease interactomes and DTNs (Fig. 9), with the 

dual aim of elucidating disease mechanisms and identifying clinically actionable 

targets.  Following are the three underlying components of the framework (Fig. 8): 



Introduction 

36 
 

 

A. Compilation of disease-associated genetic data 

B. Mapping of the proteins encoded by these genes onto the human protein interactome 

C. Addition of the drugs interacting with the proteins in the interactome 

A series of methods used for single interactome analysis (Fig. 8) originating in (B) leads to the 

generation of insights into disease mechanisms. Another series of methods stemming from 

(C) yields clinically translatable results. The methods used for the generation of biological and 

clinical insights from multiple interactomes are different (Fig. 9).  

 

Figure 8: The framework to translate disease genetic data into biological and clinical insights using single 
interactome analysis. The various steps in the proposed framework to examine a single interactome seeded by 
disease-associated genetic data have been enumerated. Note that specific codes (shown in green colour) have been 
used to indicate the disorder class and the specific disorder examined in Chapters 2-9; disorder classes: CVD: 
Cardiovascular disorders; NPD: Neuropsychiatric/neurological disorders; Viral: Viral infections; specific disorders: AD: 
Alzheimer’s disease; BD: Bone dysplasias; HLHS: Hypoplastic left heart syndrome; MPeM: Malignant peritoneal 
mesothelioma; MPM: Malignant pleural mesothelioma; SCZ: Schizophrenia; SMDS: Spondylometaphyseal dysplasia, 
Sedaghatian type. The figure was created in Microsoft PowerPoint. 
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Below, a brief description of the single interactome analysis framework (see Fig. 8), as 

implemented across Chapters 2-9, is provided. The sub-sections that follow describe the 

constituent steps of the framework in detail.  

 

1.5.1 The network biology-based framework for examining a single interactome 

Since complex disorders have polygenic architectures, multiple disease-associated genes – 

compiled from disparate sources – were available for disease interactome construction. On 

the contrary, only single (possibly causative) genes were available for monogenic disorders. 

Neither were these genes amenable to functional interpretation, nor could they explain the 

complexity of the disease phenotype. To circumvent this, genes ‘proximal’ to the causative 

gene or the disease phenotypes were extracted. The proteins encoded by the disease-

associated genes were interlinked and their first-order interactors were identified using the 

‘linkage’ method for interactome construction. The biological validity of the resultant disease 

Figure 9: The framework to translate disease genetic data into biological and clinical insights using multiple 
interactome analysis. The various steps in the proposed framework to examine multiple interactomes seeded by 
disease-associated genetic data have been enumerated. Note that specific codes (shown in green colour) have been 
used to indicate the disorder class and the specific disorder examined in Chapter 9 and Chapter 10; disorder classes: 
Multi: Multiple disorders; Anx: Anxiety disorder. The figure was created in Microsoft PowerPoint. 
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interactomes was ascertained by computing their overlap with multi-omics patient data. 

Testable biological hypotheses on disease mechanisms were generated by conducting 

functional and phenotypic enrichment analysis of the interactome and identifying critical sub-

networks. Next, the drugs that targeted specific proteins in the disease interactome were 

identified. The drugs that induced differential gene expression profiles (in cell lines) negatively 

correlated with disease-associated expression profiles (in patients) were prioritised as 

‘repurposable drugs’ after performing multiple analyses to ascertain their biological validity. It 

is critical to test potential drugs in an experimental preclinical study. Therefore, an animal 

model was used to assess the utility of the drug. Biochemical and bioinformatics analyses 

were used to quantify drug activity and binding kinetics. Behavioural tests involving 

experimental paradigms were used to measure symptom alleviation.  

 

The methodology to derive biological and clinical insights from single interactomes, described 

thus far, has been demonstrated in Chapters 2-9.  

 

1.5.1.1 Compilation of disease-associated genetic data for complex disorders 

In Chapters 2-6, the aim was to examine the mechanisms underlying complex disorders under 

polygenetic regulation, namely, Alzheimer’s disease (Chapter 2), hypoplastic left heart 

syndrome (Chapter 3), malignant pleural mesothelioma (Chapter 4), malignant peritoneal 

mesothelioma (Chapter 5) and COVID-19 (Chapter 6). Fig. 10 shows the methodologies 

proposed for compiling the gene sets and constructing the interactomes of complex and 

monogenic disorders. 

 

Disease-associated genetic data were obtained from different sources, deemed suitable for 

the disorders in question. These genetic data were used as seed nodes to identify active 

and/or conserved disease-specific network modules in the human interactome (Fig. 10). 

Transcriptomic and genomic disease-specific data capture dynamic mechanisms correlated 

with disease pathophysiology (Mitra et al., 2013). When mapped to the interactome, this data 

will help reveal ‘active’ network modules underlying differential molecular activity and 

phenotypic manifestation in disease (Mitra et al., 2013). In the SCZ, mesothelioma, 

Alzheimer’s disease, and COVID-19 studies, active network modules were extracted. In the 

SCZ study, the genes historically linked to the disease in the pre-GWAS era (Farrell et al., 

2015) and the variant-harbouring genes identified in GWA studies (Ripke et al., 2014) were 

used as seed nodes. The historical genes included genes harbouring structural variations, 

linked to antipsychotic pharmacology and positional candidates in linkage studies (Farrell et 

al., 2015). Two other the studies were on the pleural and peritoneal subtypes of mesothelioma 

(a rare and aggressive cancer). In the pleural mesothelioma study, genes reported by the 

Ingenuity Pathway Analysis suite (Cedres et al., 2012) to be related to this specific cancer 

through gene expression changes or genetic variants, or by being targeted by drugs clinically 

active against the cancer, were used. In the peritoneal mesothelioma study, a list of genes 

associated with the cancer was compiled from nine studies (Joseph et al., 2017, Ugurluer et 

al., 2016, Chirac et al., 2016, Foster et al., 2010, Hung et al., 2020, Pillai et al., 2013, Varghese 
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et al., 2011, Zaffaroni et al., 2007, Hung et al., 2018). These genes harboured mutations, copy 

number aberrations, rearrangements, or showed expression patterns in peritoneal 

mesothelioma surgical specimens correlated with poor prognosis in patients or reduced cell 

survival/less favourable response to drugs. In the study that examined the role played by the 

organelle cilia in Alzheimer’s disease pathology, the genes associated with Alzheimer’s 

disease were extracted from DisGeNET (Piñero et al., 2015), with the gene-disease 

association score > 0.2 to include only expert-curated disease genes. In the COVID-19 study, 

the host proteins interacting with 27 severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) viral proteins identified from the 2019-nCoV/USA-WA1/2020 strain (Gordon et al., 

2020) were used to construct the network module active in host invasion and response 

mechanisms.  

 

Active modules, when preserved across species, are called ‘conserved’ modules (Mitra et al., 

2013). Mapping mutational data from animal models to the human interactome will help identify 

conserved network modules (Mitra et al., 2013). The disease-associated genes in the 

hypoplastic left heart syndrome (HLHS) study were obtained from animal models. Specifically, 

genes harbouring HLHS-associated mutations were recovered from a large-scale 

mutagenesis screen conducted with eight independent mouse lines (Liu et al., 2017, Li et al., 

2015) to construct an active and conserved network module.  

 

Figure 10: The proposed methodology for gene set compilation and interactome construction in complex and 
monogenic disorders. In the case of complex disorders, genes carrying disease-associated mutations or showing 
differential expression in patients can be compiled. An active disease network can be assembled by identifying the 
direct interactors of the proteins encoded by these genes (i.e., the ‘linkage’ based method for interactome construction). 
Alternatively, genes from animal models of human diseases can be compiled and their human orthologues can be 
identified. These genes will help construct conserved networks. In the case of monogenic disorders for which only 
causative genes will be available, one causative gene-centric gene set and three disease-centric gene sets can be 
compiled, and used for interactome construction. The network diagrams were created using Cytoscape. The figure was 
assembled in Microsoft PowerPoint. 
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Altogether, it is clear that polygenic sets associated with complex disorders can be used as 

seed nodes in the interactomic framework. These gene sets could be curated using expert 

knowledge and in alignment with the specific hypotheses formulated for each disorder.  

 

Several diseases are believed to be under monogenic regulation, and yet their complex 

phenotypes remain unexplained by single causative genes. The interactome framework allows 

one to map the relationships of the causative genes with additional lists of genes suspected 

to be active in the disease, based on gene-centric or phenotype-centric inferences (Fig. 10): 

(i) genes speculated to be associated with the disease by the BeFree text mining algorithm 

that employs a kernel-based approach based on morphosyntactic and dependency 

information to identify gene-disease associations (Bravo et al., 2014), (b) genes associated 

with etiologically related disorders, (c) genes associated with disorders sharing phenotypic 

similarity with the disease in question and (d) genes whose perturbation is known to cause 

significant overexpression or underexpression of the causative gene. Chapter 7 presents a 

protein interactome perspective on the rare and lethal skeletal dysplasia called 

spondylometaphyseal dysplasia, Sedaghatian type (SMDS). SMDS exhibits an autosomal 

recessive pattern of inheritance, and has been attributed to at least 3 mutations in the gene 

GPX4 (Smith et al., 2014, Aygun et al., 2012), which codes for the protein glutathione 

peroxidase. This study showed that the interactomic framework unravels the 

interdependencies of this causative gene in the neighbourhood network that help produce the 

complex disease phenotype. 

 

1.5.1.2  Construction of disease interactomes using the linkage method 

In Chapters 2-7, the disease interactomes were constructed by identifying the direct 

interacting partners of the proteins encoded by the disease-associated genes (i.e., seed 

nodes) from the experimentally validated PPIs catalogued in two PPI databases, namely, 

HPRD (Keshava Prasad et al., 2009) and BioGRID (Stark et al., 2006). This method of 

interactome construction is called linkage-based (Fig. 10), because it assumes that the direct 

interactors of a protein encoded by a gene associated with a disease phenotype are likely to 

produce or be associated with the same disease phenotype (Barabási et al., 2011, Barabasi 

and Oltvai, 2004). For example, within a disease locus identified using the forward genetics 

approach and containing an average of 100 genes, it is more than 10% likely that the (genes 

coding for the) direct interacting partners of the known disease proteins are the true disease-

causing genes than the other genes in the locus (Barabási et al., 2011, Barabasi and Oltvai, 

2004). The linkage-based method differs from modularity-based and diffusion-based methods 

(Barabási et al., 2011). The modularity-based method assumes that proteins belonging to the 

same topological or functional modules are highly likely to be involved in the same disease. 

The diffusion-based method identifies proteins closest to those encoded by disease-

associated genes using random walkers. Note that in Chapter 3 (hypoplastic left heart 

syndrome), the disease-associated genes identified in mouse models were mapped to their 

corresponding human orthologues using the Homologene database. After piecing together the 

neighbourhood network of the disease-associated genes using experimentally validated PPIs, 

we augmented the network using novel PPIs computationally predicted using the High-

precision Protein-Protein Interaction Prediction (HiPPIP) algorithm. As mentioned in section 

1.1.6, a large part of the human interactome remains unknown, and computational algorithms 
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developed to predict PPIs in human as well as model organisms (Kotlyar et al., 2015, Hopf et 

al., 2014, Emamjomeh et al., 2014a, Garzón et al., 2016, You et al., 2013, Jia et al., 2015, 

Malavia et al., 2017b, Deng et al., 2003, Raja et al., 2013) help circumvent the resulting 

sparsity of the interactome.  

 

The training dataset for developing the HiPPIP model consisted of 20,000 known (i.e., 

experimentally verified) interactions from HPRD, combined with 80,000 non-interacting pairs 

(Ganapathiraju et al., 2016). The test set comprised 0.3% known interactions out of 160,000 

pairs, with proteins having more than 50 known PPIs considered as hubs. The model 

employed a random forest algorithm, incorporating protein features such as cellular 

localisation, molecular function, gene location, expression, domains, and tissue membership. 

Trained with 30 trees, the model produced a continuous score within the [0,1] range. 

Evaluation on a held-out test dataset, using a threshold of 0.75, resulted in 97.5% precision 

and 5% recall. Additional evaluations included generating ranked lists for hub genes, treating 

pairs with a score > 0.5 as novel interactions. These predictions were ranked by score, and 

precision-recall analysis was conducted by adjusting the threshold from 1 to 0. Scanning the 

ranked lists from top to bottom allowed the computation of true positives versus false positives. 

The HiPPIP model was initially introduced for SZ genes (Ganapathiraju et al., 2016). Each 

historical (pre-GWAS) and GWAS SZ gene was paired with every other human gene. Pairs 

with a score > 0.5 were considered predicted interactions, and these, combined with known 

PPIs, constituted the SZ interactome. 0.5 was chosen as the threshold based on evaluations 

with hub proteins that showed that the pairs that received a score > 0.5 are highly likely to be 

interacting pairs. This observation was further validated by experimentally confirming a few 

novel PPIs above this score. 

 

One of the strengths of HiPPIP is the translational impact of the predicted PPIs, as illustrated 

in individual studies. For example, based on HiPPIP predictions, the human OASL protein was 

shown to interact and co-localise with RIG-I involved in activating cellular innate immunity to 

virus infections (Zhu et al., 2014). OASL was found to mediate host responses to viral 

infections by activating RIG-I through its C-terminal ubiquitin-like domain, mimicking 

polyubiquitin (Zhu et al., 2014). Additionally, interactome-level analysis of disease-specific 

proteins including their predicted PPIs revealed the central role of cilia in congenital heart 

disease (Li et al., 2015) and identified mitochondrial proteins as crucial in hypoplastic left heart 

syndrome, a subtype of congenital heart disease called (Liu et al., 2017). Interactome analysis 

also revealed genetic and biological overlaps between schizophrenia and rheumatoid arthritis, 

potentially explaining their inverse epidemiological relationship (Malavia et al., 2017). 

Computational evaluations indicate that HiPPIP outperforms other state-of-the-art algorithms 

in PPI prediction (Dunham and Ganapathiraju, 2022). However, the algorithm has notable 

limitations. First, there is a scarcity of large-scale experimental confirmation for the predicted 

PPIs, with only 17 PPIs tested and validated experimentally (Zhu et al., 2014, Ganapathiraju 

et al., 2016). Second, the generalisation of the model to diverse and less-explored biological 

contexts may be limited by the protein sets represented in the training data. Selective 

discovery of PPIs introduces sampling biases into the training set (Von Mering et al., 2002). 

These biases stem from examining PPIs from specific cellular environments or the PPIs of 

proteins highly expressed in specific tissues or conserved across multiple species (Von Mering 

et al., 2002). Third, the training data was sourced from HPRD (Keshava Prasad et al., 2009), 
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which has not been updated since 2010. The relevance of the model to the current state of 

knowledge may be limited, given the rapid accrual and 

update of PPI data and gene annotations since then. 

Lastly, the new PPIs predicted by HiPPIP exhibit 

limited overlap with recently released interactome 

maps (Luck et al., 2020, Huttlin et al., 2020) (Chapter 

6). The predicted PPIs included in the interactomes 

reported in chapters 2-8 are all sourced from HiPPIP. 

Given its limitations, future studies would benefit from 

a more robust approach, involving the use of a 

consensus method, incorporating PPIs predicted by 

multiple algorithms, including those discussed in 

section 1.1.6. 

 

The decision to use the known (i.e., experimentally 

verified) PPIs from the HPRD database (in conjunction 

with the BioGRID database) in chapters 2-8 was 

influenced by the addition of HPRD PPIs in the HiPPIP 

training set. However, using more comprehensive and updated datasets with context-specific 

information, particularly those curated through international collaborations such as the IMEx 

consortium, would have improved the studies. The IMEx consortium curates molecular 

interactions from various databases (Porras et al., 2020), including DIP (Xenarios et al., 2002), 

IntAct (Xenarios et al., 2002), MINT (Licata et al., 2012), MatrixDB (Chautard et al., 2010), IID 

(Kotlyar et al., 2019), Innate DB (Breuer et al., 2013), and UniProt (UniProt Consortium, 2019), 

all in the Proteomics Standards Initiative Molecular Interactions (PSI-MI) standard format. 

IMEx contains ~660,000 PPIs, covering 86% of the human interactome (assuming an 

estimated interactome size exceeding 767,000 PPIs), and these interactions are extensively 

annotated with biological features (Porras et al., 2020). 

 

1.5.1.3 Validation of the disease interactomes using multi-omics disease data 

 

The biological validity of the disease interactomes – constructed from the proteins encoded by 

the disease-associated genes, and their experimentally determined and computationally 

predicted PPIs – was ascertained by computing their overlap with multi-omics patient datasets, 

depending on their availability (as seen in Chapters 2-6). Statistically significant overlaps with 

the genes differentially regulated in transcriptomic, methylation and proteomic datasets of 

patients compared to control subjects validated the dynamical integrity of the interactomes 

under disease conditions. The statistical significance of the overlaps between the list of genes 

in the interactome and the differentially regulated genes was computed using an 

overrepresentation (or enrichment) analysis based on hypergeometric distribution (Fig. 11). In 

this method, p-value is computed from the probability of k successes in n draws (without 

replacement) from a finite population of size N containing exactly K objects with an interesting 

feature.  

 

Figure 11: Parameters of the 
enrichment analysis based on 
hypergeometric distribution. The Venn 
diagram shows the four parameters used 
to compute the hypergeometric p-values 
for the enrichment analyses performed 
with disease interactomes and multi-
omics datasets. Note that ∩ indicates 
intersection (i.e., the number of genes 
shared between K and n). The figure was 
created in Microsoft PowerPoint. 
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Population size N = Total number of genes whose differential regulation under disease 

conditions was tested 

Number of successes in the population K = Number of genes that were differentially regulated 

under the disease condition 

Sample size n = Number of genes in the interactome 

Number of successes in the sample k = K ∩ n, where ∩ indicates intersection (i.e., the number 

of genes shared between K and n). 

 

The p-values derived from the enrichment analysis were corrected for multiple hypothesis 

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). In this method, the 

hypergeometric p-values are sorted from small to large, multiplied by the total number of tests 

and then divided by their rank order. A p-value < 0.05 after Benjamini-Hochberg correction 

was considered to be statistically significant. Prior to the enrichment analyses, differentially 

regulated genes were identified from the multi-omics datasets using specific criteria. For 

example, in differential transcriptomic datasets, genes with fold change >2 or ½ were 

considered as significantly overexpressed and underexpressed respectively at p-value < 0.05. 

In differential methylation datasets, methylation values (M-values) were computed as M = 

log2[β (1-β)] for both control and test disease cases, where β is the ratio of methylated probe 

intensity and overall intensity. Difference between M-values of test and control cases was then 

computed, and genes with M-value > 1 and M-value < 1 were considered to be 

hypermethylated and hypomethylated respectively at p-value < 0.05.  

 

1.5.1.4  Characterization of the disease interactome 

 

To identify the functions overrepresented in the disease interactome as a whole, it is critical to 

examine the enrichment of its constituent genes in various biological modalities from various 

biological levels. Therefore, in Chapters 2-7, enrichments for biological processes, cellular 

components and molecular functions (Gene Ontology (Consortium, 2004)), pathways 

(Reactome (Croft et al., 2014)), diseases (OMIM (Hamosh et al., 2005) and DisGeNET (Piñero 

et al., 2015)), mutant phenotypes (Mammalian Phenotype Ontology (Smith and Eppig, 2012)) 

and transcription factor targets (MSigDB (Liberzon et al., 2011)) were computed using the 

gene set analysis toolkit called WebGestalt (Liao et al., 2019). WebGestalt computes 

enrichment of specific functional groups (e.g., a Reactome Pathway) in an input list (e.g., 

genes in the disease interactome). Statistical significance is computed using Fisher's exact 

test and corrected using the Benjamini-Hochberg method for multiple test adjustment. 

WebGestalt was chosen for its user-friendly interface, intuitive plots, large collection of 

functional categories from different types of functional databases and multiple enrichment 

analysis methods. This analysis typically yielded information from different biological levels 

potentially influenced by the disease state. For example, analysis with the SARS-CoV-2-

modulated host protein interactome (Chapter 6) provided insights into the conditions comorbid 

with COVID-19, and subcellular locations, cellular processes and pathways potentially 

targeted by SARS-CoV-2. 
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Apart from the general functional associations of the interactome, it is critical to identify the 

topological, functional and regulatory modules contained within it. Some neighbourhoods in 

the interactome may consist of genes that have a high tendency to interact with genes in the 

same local neighbourhoods than with genes in other neighbourhoods (Barabási et al., 2011, 

Barabasi and Oltvai, 2004). Such topological modules can be identified using the Netbox 

algorithm (Cerami et al., 2010) that is blind to the function of the individual genes (Chapter 3 

and Chapter 6); the data can consist of the disease-associated genes (i.e., seed genes) and 

all human PPIs. It expands the set of seed genes by adding nodes from the entire human 

interactome whose number of links to the seed genes are statistically significant compared to 

its degree in the human interactome. From this sub-network, it identifies highly interconnected 

modules by computing a scaled modularity score, as compared with the modularity observed 

in 1000 random permutations of the sub-network. Scaled modularity refers to the standard 

deviation difference between the observed sub-network and the mean modularity of the 

random networks (Wang and Zhang, 2007). In contrast with the network clustering algorithms 

detecting topological modules, those detecting functional modules partition the interactome 

based on the aggregation of genes with similar or related functions in local neighbourhoods. 

Functional modules can be extracted using the HumanBase toolkit (Chapter 5 and Chapter 

7) (Krishnan et al., 2016). HumanBase uses shared k-nearest-neighbours and the Louvain 

community-finding algorithm to cluster the genes sharing the same network neighbourhoods 

and similar Gene Ontology biological processes into functional modules. The p-values of the 

terms enriched in the modules are calculated using Fisher’s exact test and Benjamini-

Hochberg method. ReactomeFIViz, a Cytoscape plugin (Wu et al., 2014), was used to extract 

a regulatory module involved in viral budding and interferon signalling pathways from the host 

protein interactome (Chapter 6). Unlike topological and functional modules that contain 

undirected (non-directional) interactions, a regulatory module contains directed interactions; 

an interaction in a regulatory module is usually between two proteins participating in the same 

biochemical reaction as components of a protein complex, or as an input, catalyst, activator or 

inhibitor (Barabási et al., 2011, Barabasi and Oltvai, 2004). Overall, the topological modules 

(that show enrichment for cellular functions), and the functional and regulatory modules 

detected from the disease interactomes could either correspond to protein complexes in which 

proteins interact within a specific location/time/condition to perform a function in a coordinated 

manner (e.g., RNA splicing machinery and transcription machinery), or to form dynamic, yet 

functionally coherent units, in which the proteins interact with one another at different 

times/conditions to carry out a biological process (e.g., signalling pathways and cell cycle 

regulation) (Spirin and Mirny, 2003, Barabási et al., 2011, Barabasi and Oltvai, 2004). The 

construction of disease interactomes based on disease-associated genes, their validation of 

using real-world clinical datasets and their functional characterization using multiple biological 

data modalities, led to the generation of new insights into the mechanisms underlying the 

diseases examined in Chapters 2-7. 

 

1.5.1.5 Drug repurposing based on disease-associated drug target networks 

 

GWA studies offer several unexplored opportunities for hypothesis-driven drug discovery and 

therapeutic interventions in human disorders. Although of small effect sizes, common genetic 

variants may help identify new drug targets, and biomarkers for improved disease screening 

and allow patient stratification for better matching of indications to high/low risk populations 



Introduction 

45 
 

(Okada, 2014, Breen et al., 2016). Unfortunately, there are several challenges in using genetic 

data to derive clinically actionable results. GWA studies tag disease-associated SNPs in 

specific genomic regions and do not directly implicate genes and causal alleles in disease 

aetiology (Breen et al., 2016). It is difficult to pinpoint causal alleles due to incomplete 

expression, protein and methylation data and the lack of large-scale brain sampling (from 

diverse spatiotemporal points) (Breen et al., 2016). Additionally, it is difficult to pinpoint specific 

drug targets within the polygenic architecture of complex disorders (Breen et al., 2016). 

However, the network medicine paradigm can be effectively used for clinical translation of 

genetic data. Drug targets are three times more likely to be found among the direct interactors 

of the proteins encoded by the genes in GWA loci than in the loci themselves (Cao and Moult, 

2014). Hence, interactomes of variant-harbouring genes can be examined to identify novel 

drug targets or reposition existing drugs for novel therapies. A generalizable framework for 

drug identification in complex disorders can combine the drug information obtained from the 

interactome with the widely applied comparative transcriptomics approach employing 

differential (gene) expression signatures (DES) (Dudley et al., 2011, Athauda et al., 2017, 

Kinnings et al., 2009, Evans et al., 2005). Unique DES often underlie disease mechanisms 

(Sirota et al., 2011, Maertzdorf et al., 2012, Chaussabel et al., 2005, Kumar et al., 2014, Chiu 



Introduction 

46 
 

et al., 2013). Drugs administered to treat these diseases revert the expression of these genes 

to their normal levels (Duran-Frigola et al., 2017, Pushpakom et al., 2019). DES for patients 

with the disease (compared to healthy subjects) are quantified using gene expression analysis 

based on microarrays and RNA sequencing methods. Online repositories such as the Gene 

Expression Omnibus (GEO) contain DES datasets, and make them freely available for 

integrated computational analyses (Barrett et al., 2012). Similarly, DES for drug-treated versus 

untreated cell lines is made available through Connectivity Map (CMAP) (Lamb et al., 2006). 

The transcriptomics approach involves comparing the differential gene expression profiles 

induced by drugs targeting the proteins in a disease module with the expression profiles of the 

Figure 12: The proposed methodology for repurposing drugs. Drugs can be extracted from the drug-protein 
interactome and screened for negative correlation of drug-induced versus disease-associated gene expression profiles. 
Drugs shortlisted in this manner should be checked for their toxicity, and eliminated if they are found to have harmful 
side effects. Subsequently, the drugs can be subjected to a series of network-based analyses to assess their biological 
validity, as shown in the figure. Lines of different colours indicate the different pieces of evidence supporting the 
biological validity of the drugs. Each drug is marked by coloured boxes that correspond to specific pieces of evidence. 
Drugs that get tagged with several pieces of supporting information can be directly tested in clinical trials, or subjected 
to additional examinations in preclinical models. The figure was created in Microsoft PowerPoint. 
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patients (compared to controls). This procedure will help assess the real-world clinical activity 

of the drugs in the disease. Drug repurposing based on the negative correlation of drug-

induced versus disease-associated gene expression profiles has resulted in some valuable 

results in the past (Dudley et al., 2011, Athauda et al., 2017, Kinnings et al., 2009, Evans et 

al., 2005). Topiramate, an anti-convulsant drug used to treat epilepsy was identified to be 

potentially repurposable for inflammatory bowel disease based on the negative correlation of 

drug-induced profiles extracted from CMAP (Lamb et al., 2006) and disease-associated profile 

from GEO (Barrett et al., 2012, Dudley et al., 2011). They further demonstrated its efficacy in 

a rodent model of inflammatory bowel disease (Dudley et al., 2011). In Chapter 8, FDA-

approved repurposable drugs were identified for SCZ using comparative transcriptomic 

analysis of drug-induced and SCZ-associated gene expression profiles. Their biological 

validity was assessed using clinical trial data, network-based analyses and literature review. 

This work led to the testing of cromoglycate as adjunctive therapy for SCZ (Nimgaonkar, 2019) 

and acetazolamide for treatment-resistant SCZ (Nimgaonkar, 2022). In Chapter 4, Chapter 

5, Chapter 6 and Chapter 7, repurposable drugs for other disorders were identified using the 

approach described above. Fig. 12 shows the proposed framework to identify repurposable 

drugs. 

 

1.5.1.6    Drug testing in animal models 

 

It is often difficult to directly translate the repurposable drugs identified using the methodology 

described in the previous section to clinical trials. In this case, further preclinical studies in 

animal models may be necessary to test the efficacy of the drug and the mechanisms 

underlying its pharmacological actions. Appendix section 14.2 describes drug testing against 

a complex neurological disorder. Accordingly, the study describes the use of enzyme 

histochemistry to visualise enzyme activity, in vitro assays to quantify enzyme and substrate 

activity, bioinformatics methods to model drug-enzyme binding kinetics, and experimental 

paradigms to measure the cognitive variable (memory acquisition and retention) and toxicity 

(dysregulation of motor activity). Analogous variables could be examined for other complex 

disorders, i.e., visualising and quantifying drug target activity, modelling the binding kinetics of 

the drug with the target protein, and measuring quantifiable phenotypes indicative of 

therapeutic benefit and adverse events. Therefore, the drugs that target the interactome of a 

disorder, if identified as repurposable and not directly transferable to the clinical development 

pipeline, could be tested in preclinical animal model studies using the framework illustrated 

in Appendix section 14.2.  

 

Altogether, the integration of the disease interactome with drugs, drug repurposing based on 

comparative transcriptome analysis and preclinical studies in animal models led to the 

clinically translatable results described in Chapters 4-9.  

 

Below, a brief description of the framework for the analysis of multiple interactomes (see Fig. 

9), as implemented in Chapter 9 and Chapter 10, is provided. The sub-sections that follow 

describe the constituent steps of the framework in detail. 

 

1.5.2 The network biology-based framework for examining multiple interactomes 
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To understand the higher-order relationships among disorders (e.g., subtypes of a psychiatric 

disorder), disease interactomes were constructed using the linkage method and then 

intersected with context-specific data (e.g., region-specificity) following the ‘disease module-

based method’ for interactome construction. The relationships of the resultant context-specific 

disease sub-networks, and the influence of context-specific data on these relationships, were 

examined using various clustering and dimensionality reduction methods. To understand the 

higher-order relationships governing clinical activity in multiple disorders (e.g., 

presence/absence of drug contraindications in comorbid diseases), DTNs were generated, 

i.e., the proteins targeted by drugs (indicated for specific diseases) and their first-order 

interactors. The DTNs were refined by intersecting them with disease interactomes and tissue-

specific and pathway data. Clustering and dimensionality reduction methods were employed 

to plot the relationships between the DTNs (producing varying clinical activity in multiple 

disorders) and assess the influence of specific disease sub-networks, tissues, and pathways 

on these relationships. 

 

The methodology to elucidate the biological themes underlying the aetiology of multiple 

disorders and their complex clinical relationships has been demonstrated in Chapter 9 and 

Chapter 10. 

 

1.5.2.1  Identification of context-specific disease interactomes 

 

The analyses described in section 1.5.1 aimed to discover and functionally characterise single 

disease interactomes. Hence, the interactomes were constructed using the linkage-based 

method, i.e., retrieving the pairwise linkage information between the proteins encoded by 

disease-associated genes and their first-order direct interactors in the human interactomes. 

However, while comparing multiple disease interactomes to elucidate common disease 

mechanisms and points of aetiological differentiation, it is necessary to identify the specific 

sub-networks of the disease interactomes that are biologically active. Therefore, disease 

interactome construction and refinement using specific biological modalities is the first step in 

investigating the higher-order relationships of any group of disorders using the interactomic 

framework. The disease module-based method will help refine the disease interactome into 

its biologically active sub-network. This method assumes that genes in the same topological 

or functional module are highly likely to be involved in the same disease (Barabási et al., 2011). 

Therefore, after disease interactomes are constructed using the linkage-based method, these 

interactomes could be intersected with a tissue- or cell line-specific interactome, resulting in 

context-specific sub-networks, whose biological validity could further be ascertained by 

examining their expression patterns or enrichment for specific functions (Barabási et al., 2011). 

Fig. 13 shows the proposed methodology – derived based on Chapter 9 – to examine the 

unifying and differentiating biological themes underlying related disorders or subtypes of the 

same disorder. 

1.5.2.2  Comparative disease interactome analysis 

 

For comparing the disease interactomes, their enrichment in genomic and proteomic datasets 

– extracted from various levels of spatiotemporal diversity and granularity (single cell, tissue, 

organism) – could be examined. For example, large-scale analysis incorporating disease 
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interactomes and tissue-specific transcriptomes may reveal previously hidden associating or 

disassociating patterns of regional specificities among the disorders. Hierarchical clustering 

and principal component analysis (PCA) will help understand the grouping patterns of the 

diseases. These algorithms will delineate groups based on the expression variations of the 

interactome genes within the tissue, e.g., at the level of histochemically segregated 

compartments and cell type. Component loading values in PCA will help infer the influence of 

specific tissue compartments and cell types on the grouping patterns. The hierarchical 

clustering and PCA methods can be implemented as follows. 

 

PCA can be used to capture relationships between the disease interactomes. The negative 

log-transformed p-values indicating the statistical enrichment of various biological modalities 

in the interactomes can be assembled into a data matrix containing the modalities as rows and 

the disorders as columns; each cell in the matrix contained a –log10P value. As seen in 

previous studies, –log10 transformed p-values can be used as inputs for PCA (Chang and 

Keinan, 2014, McGuirl et al., 2020). The data matrix can be pre-processed to include only 

those rows and columns that contained less than 70% missing values. The –log10P values in 

the matrix can be centred using the unit variance scaling method, in which the values are 

Figure 13: The proposed methodology to elucidate the higher-order relationships between disorders. First, the 
disease interactomes should be intersected with context-specific (such as cell line- or tissue-specific) interactomes. 
Then, the overlapping sub-networks can be extracted. The differential enrichment of the various disease sub-networks 
in a specific biological modality can be computed. The metrics from this analysis can be used to identify the grouping 
patterns of the diseases and pinpoint the specific biological modalities that influenced these patterns. Network diagrams 
were created using Cytoscape, the heatmap using the web tool Clustvis and the PC plot using Microsoft Excel. The 
figure was assembled in Microsoft PowerPoint. 
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divided by standard deviation so that each row or column has a variance of one; this ensures 

that they assume equal importance while finding the components. The method called singular 

value decomposition (SVD) with imputation can be used to extract principal components. In 

this method, missing values are predicted and iteratively filled using neighbouring values 

during SVD computation, until the estimates of missing values converge. The number of 

principal components computed will be equal to the number of column dimensions in the data 

matrix, i.e., the number of disorder interactomes. PCA essentially transforms the original 

variables (–log10P) into uncorrelated variables called principal components. These principal 

components can be ranked in the descending order of the percentage of total variance 

explained by them. The first two components that (generally) cumulatively explain the 

maximum percentage of variance seen in the enrichment patterns, i.e., PC1 and PC2, can be 

selected. The component scores of each disorder can be plotted on a 2D plane to capture the 

angle of highest variability and delineate grouping patterns of the disorders based on 

approximated distances between the scores. The positions of each observation in the PC plot 

are called component scores and are calculated as linear combinations of the original 

variables and the corresponding weights aij (also known as loading values). For example, the 

score for the rth sample on the kth principal component is calculated as 

𝑌𝑟𝑘 = 𝑎1𝑘𝑥𝑟1 +  𝑎2𝑘𝑥𝑟2 + ⋯ + 𝑎𝑝𝑘𝑥𝑟𝑝  

 

The importance of each biological modality is reflected by the magnitude of their corresponding 

loading values on the principal components (PC1 and PC2), and these values can be used to 

identify the modalities that were most influential in producing the grouping patterns seen in the 

PC plot. 

The data matrix of biological modalities (rows) and disease interactomes (columns) can be 

subjected to hierarchical clustering to check whether the grouping patterns observed in the PC 

plot are valid. Pairwise distances in the data matrix can be calculated using Pearson 

correlation and the data points can be grouped using the average linkage method, i.e., the 

dendrograms can be generated by merging the data points with the smallest distance first, 

and those with larger distances later. In the average linkage method, the average distance of 

all possible pairs is considered while clustering.  

The approach adopted in Chapter 9 can be applied across related disorders or disorder 

subtypes to delineate underlying biological themes.  

1.5.2.3 Identification of context-specific drug target networks  
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Adverse events precipitated by drugs in individual diseases have been investigated within the 

framework of the PPI network (Mizutani et al., 2012, Fliri et al., 2005, Wang et al., 2013, 

Campillos et al., 2008, Brouwers et al., 2011, Hase et al., 2009). However, the effects of 

multiple drugs and their contraindications on comorbid conditions remain largely unexplored. 

In Chapter 10, the mechanisms underlying drug contraindications in pairs of comorbid 

diseases were elucidated by examining DTNs. Fig. 14 shows the proposed methodology – 

derived based on Chapter 10 – to examine the target networks of drugs to elucidate patterns 

predictive of their clinical activity. The Drug Bank database (Wishart et al., 2008) can be used 

to compile the lists of drugs indicated for the diseases. The proteins targeted by the drugs can 

be obtained by querying the DGIdb (drug gene interaction database) web portal (Griffith et al., 

2013). To construct the DTNs, the PPIs of the drug targets can be compiled from HPRD 

(Keshava Prasad et al., 2009) and BioGRID (Stark et al., 2006). To refine the DTNs, 3 types 

of data that reflect their biological profiles can be examined, namely (i) disease PPI networks, 

(ii) biological pathways and (iii) tissue gene expression. Specifically, gene overrepresentation 

analyses based on hypergeometric distribution can be conducted to check the enrichment of 

the DTNs among disease interactomes, genes showing high/moderate expression in 53 

tissues across the human body (Consortium, 2015), and proteins involved in ~1000 biological 

pathways (Croft et al., 2014). Overlaps computed in this manner were considered to be 

Figure 14: The proposed methodology to elucidate the higher-order relationships between drug target 
networks (DTNs). First, the DTNs should be intersected with various biological modalities (e.g., the disease 
interactome, pathways, and tissues). The enrichment of the DTNs for each of these modalities should be computed. 
The grouping patterns of the DTNs should be identified based on their differential enrichment metrics. The relative 
influence of specific biological modalities on each of the DTNs (with varying clinical activity) can be identified using an 
additional set of analyses involving Euclidean distance metrics. Network diagrams were created using Cytoscape, the 
heatmap using the web tool Clustvis and the PC plot using Microsoft Excel. The figure was assembled in Microsoft 
PowerPoint. 
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statistically significant at p-value < 0.05 after correction for multiple hypotheses using the 

Benjamini-Hochberg method. The sub-networks obtained by intersecting the DTNs with each 

of the biological modalities were used for further analysis. 

 

1.5.2.4  Comparative drug target network analysis 

 

PCA was used to compare the DTNs and identify their grouping patterns. PCA was performed 

with a data matrix containing the DTNs (columns) versus specific disease protein sets (from 

the disease interactome), pathways or tissues (rows). For example, for the data modality 

‘disease protein set’, the rows would be ‘common to both the networks’, ‘unique to disease A 

network’ and ‘unique to disease B network’ and for the data modality ‘tissue’, the members 

would be ‘amygdala’, ‘aorta’, ‘lungs’, etc. Each cell contained –log10 transformed p-values, 

which have been used as inputs for PCA in previous studies (Chang and Keinan, 2014, 

McGuirl et al., 2020). All the PCs generated after this analysis were considered for our study, 

and the PC scores of the DTNs were used to identify their grouping patterns. Following this, 

the component loading values denoting the weights of each of the biological modalities on the 

PCs were extracted. Lastly, specific disease protein sets, pathways and tissues that were 

more closely related to each of the 4 DTNs were isolated in terms of Euclidean distance. 

Specifically, the Euclidean distance between the PC scores of each of the DTNs and the 

corresponding component loadings of the biological modalities was calculated. In summary, 

the framework helps examine the biological modalities influencing specific clinical events (e.g., 

adverse events as shown in Chapter 10), and can inform rational drug development strategies 

in complex disorders with aetiological and clinical associations.  

 

Overall, the thesis proposes a comprehensive methodology for extensively exploring individual 

disease interactomes and drug target networks and their interactions at higher levels 

encompassing multiple networks. This pipeline addresses the significant limitations observed 

in current network biology studies. Its primary importance lies in its potential for incorporation 

into routine examinations of the multigenic origins of diseases and the polypharmacological 

aspects of drug action. 
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2. Cilia interactome with predicted protein–protein interactions reveals connections 

to Alzheimer’s disease, ageing and other neuropsychiatric processes 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., Srilakshmi Chaparala, Cecilia W. Lo, and Madhavi K. 

Ganapathiraju. Cilia interactome with predicted protein–protein interactions reveals 

connections to Alzheimer’s disease, ageing and other neuropsychiatric processes. Scientific 

reports 10, no. 1 (2020): 1-16. 

 

Summary of this chapter 

 

Neurological and neuropsychiatric phenotypes often co-occur with ciliopathies. The crucial 

role of the cilium in neuronal signalling, neurogenesis and neuronal migration indicated that a 

systems-level investigation of how ciliary proteins function together may provide insights into 

their contribution towards nervous system phenotypes. In this chapter, I demonstrate how 

the interactomic framework was used to derive biological insights into the interlinked biology 

of cilia and brain disorders. I constructed the cilia interactome using the experimentally 

identified and computationally predicted protein-protein interactions (PPIs) of primary and 

motile ciliary proteins. Overlap with genetic and transcriptomic datasets and functional 

interactions ascertained its biological validity. My analysis of the interactomes of seven 

neuropsychiatric and neurological disorders generated using variant-harbouring disease-

associated genes revealed that they shared statistically significant overlaps with the cilia 

interactome, which additionally overlapped with the genes differentially expressed in patients 

affected with six of these disorders. The interactome was significantly associated with 

cellular pathways related to neuropsychiatric processes and contained proteins targeted by 

~100 drugs used to treat nervous system disorders. As a case study, I identified an 

interactome sub-network in which Alzheimer’s disease (AD)-associated, ciliary and ageing-

related proteins intersected. Its integration with multi-omics data revealed the potential role 

played by ciliary sonic hedgehog signalling in hippocampal neurogenesis and memory 

deficits in AD. Finally, I generated testable hypotheses on novel PPIs involved in 

neuropsychiatric disorders, primary ciliary dyskinesia, hydrocephalus, ciliogenesis and ciliary 

membrane receptor trafficking. Altogether, the interactomic framework suggested that ciliary 

defects underlay neuropsychiatric processes. 

 

Contribution to this chapter (60%) 

 

• Conceptualised, performed and derived the conclusions for cilia interactome validation, 

functional enrichment and intersection analyses 

• Conceptualised, performed and derived the conclusions for the study of the ciliary 

association of Alzheimer’s disease and ageing 

• Generated all the testable hypotheses for novel PPIs 
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• Wrote and edited the manuscript and prepared Fig. 1, Fig. 3, Fig, 4, Table 1, Table 3 and 

Supplementary File 5
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OPEN Cilia interactome with predicted 
protein–protein interactions 
reveals connections to Alzheimer’s 
disease, aging and other 
neuropsychiatric processes 
Kalyani B. Karunakaran1,6, Srilakshmi Chaparala2,3,6, Cecilia W. Lo4 & 
Madhavi K. Ganapathiraju2,5

 

Cilia are dynamic microtubule-based organelles present on the surface of many eukaryotic cell types 
and can be motile or non-motile primary cilia. Cilia defects underlie a growing list of human disorders, 
collectively called ciliopathies, with overlapping phenotypes such as developmental delays and 
cognitive and memory deficits. Consistent with this, cilia play an important role in brain development, 
particularly in neurogenesis and neuronal migration. These findings suggest that a deeper systems- 
level understanding of how ciliary proteins function together may provide new mechanistic insights 
into the molecular etiologies of nervous system defects. Towards this end, we performed a protein– 
protein interaction (PPI) network analysis of known intraflagellar transport, BBSome, transition 
zone, ciliary membrane and motile cilia proteins. Known PPIs of ciliary proteins were assembled from 
online databases. Novel PPIs were predicted for each ciliary protein using a computational method 
we developed, called High-precision PPI Prediction (HiPPIP) model. The resulting cilia “interactome” 
consists of 165 ciliary proteins, 1,011 known PPIs, and 765 novel PPIs. The cilia interactome 
revealed interconnections between ciliary proteins, and their relation to several pathways related to 
neuropsychiatric processes, and to drug targets. Approximately 184 genes in the cilia interactome 
are targeted by 548 currently approved drugs, of which 103 are used to treat various diseases of 
nervous system origin. Taken together, the cilia interactome presented here provides novel insights 
into the relationship between ciliary protein dysfunction and neuropsychiatric disorders, for e.g. 
interconnections of Alzheimer’s disease, aging and cilia genes. These results provide the framework 
for the rational design of new therapeutic agents for treatment of ciliopathies and neuropsychiatric 
disorders. 

 
Abbreviations 

PPI Protein–protein interaction 
GO Gene ontology 
HiPPIP High-confidence protein–protein interaction prediction model 

 
Cilia are dynamic organelles projecting from the surface of many types of eukaryotic cells. They detect changes 
in the extracellular environment and transduce signals into the cell to regulate a wide variety of physiological 
and developmental processes. They can be either motile or non-motile, and exhibit a microtubule organization 
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of 9 + 2 or 9 + 0, respectively1. Primary cilia are sensory organelles modulating several core signaling and cellular 
polarity pathways that are fundamental for tissue homeostasis and embryonic development2. Motile cilia drive the 
flow of bodily fluids including mucus and cerebrospinal fluid3,4. Defects involving the primary cilia are observed in 
various human ciliopathies such as Bardet-Biedl syndrome (BBS), Joubert syndrome and Meckel–Gruber 
syndrome. Motile cilia defects are seen in primary ciliary dyskinesia (PCD), male infertility and laterality defects5. 
The cilium is a complex organelle comprising over 600 proteins1. Underscoring their functional importance, 
many of these ciliary proteins are highly evolutionarily conserved including the intraflagellar transport (IFT) 
complexes located within the axoneme involved in bidirectional protein transport between the ciliary base and 
the tip, complexes localizing to the transition zone (TZ) at the ciliary base acting as a ‘ciliary gate’ regulating 
protein trafficking into and out of the cilia and BBSomes mediating cilia assembly6–8. 

Primary cilium is increasingly viewed as a hub for neuronal signalling. A large body of evidence has emerged 
demonstrating the role of cilia in the development and function of the central nervous system (CNS)9–11. Gene 
knockdown of BBS proteins such as BBS1, BBS4-5, BBS7, and BBS9-12 lead to cortical defects and improper 
neuronal migration, highlighting the significance of cilia genes in brain development12. Additionally, neural tube 
defects are observed in the brain with the disruption of cilia-transduced sonic hedgehog signaling (Shh) and Wnt 
signaling13,14. Indeed, many ciliopathies are known to be associated with neurological deficits such as develop- 
mental delays, cognitive impairment and neuropsychiatric disorders including ataxia, autism spectrum disorders 
and schizophrenia10,12. Importantly, the ciliary proteins AHI1, ARL13b, CDKL5 and EFHC1 have been implicated 
in autism spectrum disorder, epilepsy, and schizophrenia15–18. A recent study identified neuropsychiatric risk 
genes (NEK4, SDCCAG8, FEZ1, CEP63, PDE4B and SYNE1) to be linked to cilia assembly and function15. In 
addition, several ciliary proteins interact with proteins that are known to play a role in neuropsychiatric disorders: 
PCM1, BBS4 with DISC1 in schizophrenia, bipolar disorder and depression19,20, KIF3A, PCNT with DCDC2 
in dyslexia21,22, and PCM, AHI1 with HTT in Huntington disease12,23,24. Hydrocephalus, a phenotype observed 
frequently in BBS and other ciliopathies, may reflect the role of motile cilia in the flow of cerebrospinal fluid in 
the brain10. Ciliopathies have also been associated with obesity, suggesting a role for cilia in the neural circuitry 
responsible for monitoring food intake and satiety25. The obesity-related genes MC4R and ADCY3 co-localize 
to primary cilia of hypothalamic neurons, and impairing this localization or blocking their signalling in primary 
cilia led to gain in body weight in mice26. 

Given the importance of large multi-protein complexes in its assembly and function, knowledge of the pro- 
tein–protein interactions (PPIs) of ciliary proteins would help to elucidate the potential role of cilia biology in 
neuropsychiatric diseases. Studies based on PPI networks have significantly advanced our knowledge of specific 
proteins or the diseases that they are associated with, such as DISC1 in schizophrenia, or the NPHP-JBTS-MKS 
protein complex in ciliopathies27. DISC1 was a novel protein with well-characterized domains but of unknown 
function with no known human homolog, when it was identified as being associated with schizophrenia28,29. To 
understand the function of DISC1, its PPIs were determined using yeast 2-hybrid technology30,31. This led to a 
large number of studies, which connected DISC1 to cAMP signaling, axon elongation and neuronal migration. 
A study revealed that the role played by DISC1 in dopamine signaling, which is implicated in schizophrenia, 
may also involve primary cilia on neurons19. DISC1 localized to primary cilia on rat striatal neurons and was 
found to be involved in the formation and maintenance of cilia with certain dopamine receptors19. The PPI 
network of ciliary proteins CEP290 and RPGR revealed their connection to photoreceptors, and disruption of 
this network has been shown to cause blindness on rapid degeneration of photoreceptors, a finding associated 
with several ciliopathies32. 

Large-scale proteomic and protein interactome analyses have significantly advanced our understanding of its 
role in developmental biology and disease33–37. Multidimensional protein identification technology (MudPIT) was 
used to identify 195 candidate primary cilia proteins localizing to sensory cilia, or linked to known ciliopathies33. 
850 interactors of nine NPHP/JBTS/MKS proteins (i.e. Nephronophthisis/Joubert/Meckel-Gruber syndromes) 
were identified using the G-LAP-Flp purification strategy, and several cilia-specific modules, namely ‘NPHP1- 
4-8’ functioning at the apical surface, ‘NPHP5-6’ at centrosomes and ‘MKS’ linked to hedgehog signaling were 
uncovered34. In another study, in vivo proximity-dependent biotinylation (BioID) was used to identify more than 
7,000 interactions of 58 centriole, satellite and ciliary transition zone proteins, which revealed protein modules 
involved in cilia and centrosome biogenesis35. The interactome of CPLANE (ciliogenesis and planar polarity effec- 
tor) proteins, namely that of Inturned (INTU), Fuzzy (FUZ) and Wdpcp (WDPCP), consisting of ~ 250 interac- 
tions, was identified using LAP-tagged immunoprecipitation, and it was shown that the CPLANE proteins govern 
IFT-A/B trafficking36. Systematic tandem affinity purifications coupled to mass spectrometry was employed to 
identify 4,905 interactions and 52 complexes for 217 proteins with known or suspected involvement in ciliary 
function or disease, and this study linked vesicle transport, the cytoskeleton and ubiquitination to ciliary signal- 
ing and proteostasis37. None of these experimental methods are single handedly capable of identifying all the 
possible interactions of ciliary genes. In fact, it is the ability of an experimental method to discover interactions 
not detected by another method that makes it truly valuable. Machine learning methods can computationally 
predict new interactions that other high throughput detection methods may fail to capture and serve as hypoth- 
eses-generation methods that may be validated by other experimental methods. Here, we applied computational 
method that we developed previously to discover novel PPIs of 165 ciliary proteins and analyzed the resulting 
ciliary PPI interactome for novel associations and potential connections to neuropsychiatric diseases. 

Experimental procedures 
Dataset. Compilation of Cilia Gene List: We obtained a list of 165 cilia genes that were curated from lit- 

erature by prioritizing the genes based on their association with cilia from Dr. Gregory Pazour’s lab building 
upon their prior work38. This list includes IFT proteins, BBS proteins, TZ proteins, ciliary membrane proteins, 
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and proteins restricted to motile cilia. Known PPIs were collected from Human Protein Reference Database 
(HPRD)39 and Biological General Repository for Interaction Datasets (BioGRID)40. Gene-drug associations and 
ATC classifications were collected from DrugBank41, while neuropsychiatric gene-disease associations were col- 
lected from the GWAS catalog (www.ebi.ac.uk/gwas/). Random gene sets used in shortest path comparisons 
were sampled from about twenty thousand human proteins listed in the Ensembl database (www.ensembl.org). 
Novel PPIs were predicted using the HiPPIP model that we developed42. Each ciliary protein (say C1) was paired 
with each of the other human genes say, (G1, G2, … Gn), and each pair was evaluated with the HiPPIP model. 
The predicted interactions of each of the cilia genes were extracted, which resulted in 620 newly dis- covered 
PPIs of cilia genes. The average shortest path distance was computed using the Networkx package in python. 
Pathway associations were computed using Ingenuity Pathway Analysis suite. GO term enrichment was carried 
out using BinGO43; for each C1, a list of its known and predicted interacting partners (i.e. B1, B2, … Bn) are given 
as input to BinGO, which extracts the GO terms of all these genes and finds which of the GO terms are 
statistically enriched in comparison to the background distribution of GO terms of all human proteins. All 
statistically significant terms are assigned as network-based enriched GO terms of C1. 

Gene expression datasets in Gene Expression Omnibus were used to compute the overlap of the cilia 
interactome with genes differentially expressed in various neuropsychiatric disorders: major depressive dis- 
order (GSE5398744), schizophrenia (GSE1761245), bipolar disorder (GSE1267946), autism spectrum disorder 
(GSE1812347), Alzheimer’s disease (GSE2937848 and GSE2814649), Parkinson’s disease (GSE28894) and non- 
syndromic intellectual disability (GSE3932650). Genes with fold change > 2 or < ½ were considered as significantly 
overexpressed and underexpressed respectively at p value < 0.05. A gene with transcripts per million ≥ 2 was 
considered to be ‘expressed’ while analyzing the overlap of the interactome with genes expressed in the amygdala, 
anterior cingulate cortex, caudate, cerebellum, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, 
putamen, spinal cord and substantia nigra extracted from GTEx51. Time-dependent gene expression variation in 
the hippocampal region was extracted from BrainSpan Atlas containing RNA-Seq data from post-conceptional 
weeks to middle adulthood52. 78 genes associated with Alzheimer’s disease were extracted from DisGeNET53 

(with score > 0.2 to include only expert-curated disease-gene associations). Then, to construct the Alzheimer’s 
disease interactome, whose overlap was to be checked with the cilia interactome, 4,742 known PPIs extracted 
from HPRD54 and BioGRID55, and 490 computationally predicted PPIs of these 78 genes were assembled. The 
biological validity of the interactome was shown by the fact that 676 genes out of the 3,944 genes in the AD 
interactome are differentially expressed in CA1 hippocampal gray matter from patients with severe Alzheimer’s 
disease versus healthy controls (GSE2814649), out of which 71 were novel interactors (p value = 1.138e−20). 

Results 
We assembled a list of 165 genes encoding proteins known to be associated with primary and/or motile cilia, 
including IFT, BBS, TZ, and ciliary membrane proteins, as well as proteins restricted to motile cilia. Known PPIs 
of ciliary proteins were assembled from HPRD and BioGRID40,56. Novel PPIs were predicted for each of the cilia 
genes using our High-precision Protein–Protein Interaction Prediction (HiPPIP) model42. In this manner, a 
ciliary protein interactome was assembled comprising 165 ciliary proteins (red color square shaped nodes) with 
1,011 known PPIs (blue edges) and 765 novel PPIs (red edges) that connect to 800 previously known interactors 
(light blue nodes) and 705 novel interactors (red nodes) (Fig. 1 and Table 1). We predicted 216 new interactions 
for 50 out of the 56 cilia genes that had no known PPIs. For example, GPR83 has 12 novel PPIs, LRRC48 has 10, 
PKD1L1 has 10, and SPEF has 10 novel PPIs. The number of known and novel PPIs of cilia genes are given in 
Supplementary File 1, and the lists of all genes and PPIs is given in Supplementary File 2. 

For each of the ciliary proteins, we computed the enrichment of gene ontology (GO) terms among its interact- 
ing partners in order to aid in the discovery of its function using BinGO (Biological Networks Gene Ontology 
tool)43. This information is especially useful for those ciliary proteins that have either no known or very few 
known GO biological process terms. For example, there are 11 genes that have no known GO terms, and we 
predicted new GO terms for each of those genes, for e.g. 27 novel GO terms for ARMC4, 11 for CCDC63, and 
30 for DNAAF2. 

We computed the pathway associations of genes in the interactome, using the Ingenuity Pathway Analysis 
(IPA) suite (Ingenuity Systems, www.ingenuity.com). This showed a significant overlap of neuronal pathways 
with the cilia interactome (see selected pathways in Table 2). The complete list of all pathways, their p values and 
the genes from the interactome that are associated with these pathways, are given in Supplementary File 3. We 
also extracted information about drugs targeting the genes in the interactome. This analysis showed that there 
are several genes that are targets to drugs belonging to the Anatomic category of “nervous system”, highlighting 
the connection between cilia and the nervous system as shown in Fig. 2 and Supplementary File 4. 

Experimental Validation of novel cilia PPIs in independent studies. Four of the novels PPIs 

that we predicted for cilia genes were independently recovered by other groups. TMEM237-SFXN5 and 
DYNLL2-c17orf47 were recovered by yeast two-hybrid experiments in the recent release of the human pro- 
tein interactome map57. We also predicted two PPIs of IFT140 that were discovered as part of the CPLANE 
interactome using affinity purification-mass spectrometry, but were not deposited in BioGRID or HPRD: 
IFT140-TELO2 and IFT140-TRAP136. It is also worth noting that 8 novel interactors in the interactome 
appeared among the proteins isolated from the primary cilia of mouse kidney cells using a method called Mud- 
PIT (multidimensional protein identification technology)33: ABCE1, CCDC47, CCT5, G3BP1, GBF1, RAB10, 
RAN and USP14. 94 genes in the cilia interactome, including 44 cilia genes, 36 known and 14 novel interac- 
tors, were also recovered as regulators of the ciliary sonic hedgehog pathway in a CRISPR genetic screen (p 

http://www.ebi.ac.uk/gwas/
http://www.ensembl.org/
http://www.ingenuity.com/
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Figure 1. Cilia interactome. Cilia genes are shown as small dark-blue colored nodes and interactor genes are 
larger round nodes; the interactors are colored in light blue if they are previously known interactors and in red 
if they are found only through novel PPIs. PPIs are shown as edges, where blue color edges are known PPIs and 
red color edges are novel predicted PPIs. Most genes at the bottom of the figure have had zero known PPIs, and 
have multiple novel predicted PPIs. 

 

 
value = 2.28e−19)58. The interactome was also significantly enriched with genes differentially expressed in bron- 
chial biopsies of primary ciliary dyskinesia patients (p value = 2.64e−02)59. 
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Cilia gene K N Novel interactors 

AHI1 1 2 ARFGEF3, IFNGR1 

AK7 0 3 BEGAIN, C14orf177, SLC25A29 

ARL13B 1 4 MINA, CRYBG3, ARL6, DHFRL1 

ARMC4 3 3 ARHGAP21, OTUD1, PIP4K2A 

ATP8A2 1 3 C1QTNF9B-AS1, WASF3, SACS 

ATXN10 9 9 TTLL12, RIBC2, SMC1B, GGA1, KCNH3, PIK3R2, KIAA0930, SAMM50, CERK 

B9D1 7 3 TNFRSF13B, USP22, GIT1 

B9D2 2 7 PLEKHG2, YIF1B, CCDC97, CNFN, CEACAM21, ZNF574, CNTD2 

BBIP1 0 0 None 

BBS1 13 6 ACTN3, BAK1, BAD, ATP6AP2, PEPD, POLR2G 

BBS2 11 10 APOC2, WRNIP1, CETP, GOT2, SPTSSA, CES1, CNOT1, HSF4, MAP2K5, KCNK17 

BBS4 13 5 ANP32A, AAGAB, MRPL28, SEMA7A, IGDCC3 

BBS5 5 11 SLC6A15, CCDC173, KLHL41, CTSK, COTL1, EIF4EBP3, UBR3, KLHL23, ORM2, PRDM2, HRH1 

BBS7 5 8 ANXA5, PDE8B, MSH6, MAD2L1, TRPC3, NDNF, QRFPR, CNGA1 

BBS9 0 6 NME8, CD33, EHMT2, TRGV9, FGF2, CAPN1 

CASC1 1 2 GOLT1B, PYROXD1 

CBY1 8 3 APOL2, BCR, SPTLC3 

CC2D2A 0 3 CPEB2, NCAPG, RAB28 

CCDC114 8 4 CGB8, EXOC3L2, CGB7, CGB1 

CCDC135 6 0 None 

CCDC39 0 1 TTC14 

CCDC40 1 3 NARF, RPTOR, WDR45B 

CCDC63 0 2 ALKBH2, C12orf76 

CCDC65 0 3 FAM186B, DNAJC22, RHEBL1 

CCNA1 32 7 VDR, RFC3, GJB2, ZNF385A, PSMB9, SLC7A1, EDEM1 

CDK3 17 10 CCDC47, CA4, ALG1, TLK2, ITIH4, PRKCA, PECAM1, NAP1L1, FOXJ1, TBX2 

CEP290 2 0 None 

CETN1 4 10 ALDH7A1, CCNH, GABRE, MUL1, YES1, LGALS3, PTPRM, USP14, TPD52L2, PTAFR 

CETN2 9 12 ATP6AP1, C14orf166, ATP2B3, NUCB1, DKC1, PTPRN, CLIC2, DNASE1L1, TEX28, IL2RG, DDX3X, CORIN 

CETN3 6 11 ATP6AP1L, HSP90AB1, HOXD10, SGOL1, FABP4, HAPLN1, TNNT1, P3H1, DNAJC19, POLR3G, PRKD3 

CHMP5 14 6 NUP98, UBAP1, DYNLL2, TMEM8B, DOPEY2, GPX3 

DAW1 2 1 RAB25 

DDI2 0 3 AADACL3, CELA2A, PRAMEF1 

DNAAF1 0 2 LINC00311, KCNG4 

DNAAF2 1 4 ATL1, TRIM9, L2HGDH, TMX1 

DNAAF3 0 7 ACPT, BRSK1, SIGLEC14, SIGLEC12, LENG9, LILRA5, ZNF606 

DNAH1 0 7 ABHD14A, SEPSECS, LIN7B, POC1A, RPP30, GNL3, G3BP1 

DNAH10 0 3 GATC, RILPL2, TMEM120B 

DNAH11 0 3 CPVL, GGCT, IL6 

DNAH12 0 1 PDE12 

DNAH14 1 6 ACBD3, CNIH3, ENAH, TMEM63A, SDE2, MIXL1 

DNAH17 0 0 None 

DNAH2 0 6 CDK18, CCDC42, KCTD11, ODF4, PIK3R6, KRBA2 

DNAH3 0 7 ERI2, TCIRG1, SOD1, THUMPD1, NPIPB3, LOC81691, IVL 

DNAH5 0 13 CTNND2, CKB, CDH6, DAP, LARGE, MYO10, TLE1, MVP, RAN, TRIO, MARCH6, MICAL1, RBFOX2 

DNAH6 0 1 PLGLB1 

DNAH7 2 9 CSTF3, SHC1, STK17B, STAT4, METTL21A, TMEFF2, NABP1, TMEM194B, MIB2 

DNAH8 0 3 TOMM6, RAB44, RASGRP1 

DNAH9 0 3 YBX2, NLGN2, STX8 

DNAI1 2 6 ATG10, CDKN2A, ZIC3, NPR2, METTL21B, GLDC 

DNAI2 0 1 MFSD11 

DNAJB1 28 10 CYP4F3, ARR3, CEP72, ADGRL3, ELAVL3, DNM2, ILF3, LYL1, SH3BP1, SSTR2 

DNAJB13 0 4 BDKRB1, ARFRP1, KLHL35, WISP1 

DNAL1 0 3 CIPC, LIN52, SLIRP 

DNAL4 9 9 DDX17, CACNA1I, UBA7, TRIOBP, TOM1, GTPBP1, RHOT2, JOSD1, HMGXB4 

DNALI1 5 3 GJA4, GJB5, TMEM200B 

Continued 
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Cilia gene K N Novel interactors 

DRC1 1 4 C2orf44, CENPO, C2orf16, TCF23 

DRC7 6 8 CCDC102A, ADGRG5, CPNE2, C16orf70, ZNF319, USB1, NDUFB9, MT4 

DRD1 11 5 AP3M1, PLCD1, RARS, PPP4C, KCNMB1 

DRD2 20 13 CASP1, CCNA2, CD3G, CD3E, GPC6, SGSH, VWA5A, INPPL1, IL10RA, PSG7, NQO2, RBM22, E2F6 

DRD5 5 2 NKX3-2, FGFBP2 

DYNLL1 76 5 RFC5, SUDS3, GABRQ, WSB2, VSIG10 

DYNLL2 47 9 C17orf67, CHMP5, C17orf47, HSF5, STXBP4, F13A1, KIF2B, PRKD3, MSI2 

DYNLRB1 6 2 CBFB, PDRG1 

DYNLRB2 4 8 WWOX, SDR42E1, TGFBI, ZNF134, SLC38A8, NECAB2, IRF2BPL, MPHOSPH6 

DYNLT1 28 7 CRHBP, ACAT2, SYNJ2, RPS6KA2, TMEM143, PARK2, ERO1L 

DYNLT3 7 4 CYBB, IFITM1, UIMC1, FOS 

DYX1C1 4 3 GCOM1, PRTG, WDR72 

DZIP1L 4 3 PRR23B, NME9, PRR23C 

EFHC1 6 2 CENPQ, ADGRF4 

ESYT3 0 2 FAIM, SLC35G2 

GALR2 1 1 EIF4A3 

GALR3 0 4 EIF3D, CEP72, ENTHD1, SUV420H1 

GAS8 0 7 FANCA, COX7B, DPEP1, MYLIP, MVD, MC1R, TAF1C 

GPR161 0 3 C1orf112, TOR1AIP1, TBX19 

GPR83 0 12 FUT4, CST1, CDK2AP1, AQP3, FGF13, PLSCR3, TYR, TPBG, JRKL, MRE11A, NINJ1, SPR 

HEPH 0 1 MSN 

HSPB11 2 4 C1orf168, C1orf87, RPS26P15, PARS2 

HYDIN 1 2 FAM96B, CFDP1 

IFT122 1 2 ZNF148, SLCO2A1 

IFT140 4 7 DNAJA3, ZNF263, SLC9A3R2, RAB11FIP3, TELO2, IL32, TRAP1 

IFT172 2 4 EFR3B, DNAJC27, RAB10, TMEM214 

IFT20 28 7 ABHD15, COASY, HLCS, RALGPS2, RICTOR, TP53I13, RAB11FIP4 

IFT22 0 5 C7orf43, NFE4, ORAI2, KMT2E, ZNF655 

IFT27 2 5 DDX17, TNRC6B, KDELR3, TRIOBP, TAB1 

IFT43 2 3 ELMSAN1, LIN52, NEK9 

IFT46 0 6 NLRX1, TMPRSS4, SCN3B, TRAPPC4, SIDT2, PDZD3 

IFT52 1 2 SPINT3, TOMM34 

IFT57 4 6 CLTA, CASP8, CBLB, HTT, SLC25A3, TERT 

IFT74 0 0 None 

IFT80 1 5 FGFR4, OTOL1, SLITRK3, NMD3, ZBBX 

IFT81 1 6 ERP29, NAA25, TPCN1, SLC8B1, SDS, RPH3A 

IFT88 6 6 C1QTNF9B-AS1, ALDH8A1, MAP4K5, PDX1, TRIM24, SAP18 

INVS 5 2 ABCA1, TMEM245 

IQCB1 1 6 CD80, UPK1B, TRH, LMOD1, PVRL3, TBL1X 

LCA5 3 1 FILIP1 

LOXHD1 0 4 HDHD2, HAUS1, C18orf25, SKA1 

LRRC48 0 10 ELAC2, GID4, EIF3E, FUNDC2, SMCR8, ZNF287, SPECC1, PLAGL1, ZNF624, SOD2 

LRRC56 0 2 KRTAP5-1, MOB2 

LRRC6 2 1 ST3GAL1 

MCHR1 2 8 GRAP2, EP300, APOBEC3A, MASP2, EFCAB6, TCIRG1, MRPS18A, ST13 

MKS1 2 5 ABCC3, DGKE, CACNA1G, RNF43, SMG8 

NEK8 4 0 None 

NME5 2 8 HBEGF, APTX, MKRN1, IFITM1, VDAC1, SPOCK1, VIPR1, P4HA2 

NME8 1 2 BBS9, SUGCT 

NPHP1 15 2 BCL2L11, COX5B 

NPHP3 2 15 
CCDC50, ANAPC13, COL7A1, ASTE1, NAA50, DPP7, EPC1, DDX3Y, CDV3, DNAJC13, PIK3R4, TOPBP1, 
PARP14, PPP2R3A, RAB6B 

NPHP4 1 6 FBXO44, EDIL3, C1orf127, TMEM201, SCRG1, RBP7 

NPY2R 4 3 APOC3, ABCE1, SMAD1 

NPY5R 4 2 MDH2, KIF23 

PDCD6IP 37 5 ATG7, CLASP2, FBXL2, CRTAP, STAC 

PIH1D1 31 5 CABP5, C19orf73, RCN3, RASIP1, PRKG2 

Continued 
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Cilia gene K N Novel interactors 

PKD1 24 9 NTHL1, NADSYN1, PDPK1, OR1F1, DDX58, NTN3, RPL3L, SOX17, PPL 

PKD1L1 0 10 C7orf69, ABCC3, C7orf65, ACAA2, C7orf57, MGAT2, ABCA13, RPL6, PLCB2, PSME3 

PKD2 14 6 KIF11, ADH1C, MTAP, ADH1A, PPP3CA, UCHL3 

PKD2L1 3 6 MYOF, HNRNPA2B1, LGI1, CAB39, GBF1, PRPS2 

PKHD1 1 7 ORM1, CSTF2T, ILK, ATXN2, EML4, BAG2, PTGIS 

PPIL6 0 2 AK9, CEP57L1 

PPP1CB 26 9 NRBP1, DHX57, GCKR, NCOA1, MATN1, SRD5A2, UPK2, SH3KBP1, ZNF512 

PTCH1 65 5 CORO2A, ECM2, DPP3, TMOD1, UFM1 

QRFPR 0 9 BBS12, BBS7, NDNF, EXOSC9, ADAD1, KIAA1109, TRPC3, TNIP3, TMEM155 

RABL5 0 0 None 

ROPN1L 3 4 FAM173B, 42435, CMBL, CCT5 

RPGR 11 5 NUDT12, ATP6AP2, USP9X, SLC9A7, TSPAN7 

RPGRIP1 23 1 SLC6A2 

RPGRIP1L 3 2 CES1P1,SLC6A2 

RSPH1 1 7 LINC01547, OSMR, COL18A1, LINC00313, LINC00334, LRRC3, UMODL1 

RSPH10B 0 7 DAGLB, CCZ1B, FOXK1, MMD2, RBAKDN, GRID2IP, SLC29A4 

RSPH3 5 6 PNLDC1, MRPL18, RGS17, TAGAP, SERAC1, SYTL3 

RSPH4A 0 6 LACE1, HS3ST5, FAM26F, FLJ34503, FAM26E, ZUFSP 

RSPH6A 0 1 SLC1A5 

RSPH9 2 9 C6orf223, LRRC73, OARD1, KLHDC3, ADCY10P1, TSPO2, TCTE1, TAF8, SPATS1 

RTDR1 13 0 None 

SMO 8 1 LINC-PINT 

SPAG1 3 7 MME, NIPAL2, CPQ, POLR2K, RGS22, COL4A1, STK3 

SPAG16 2 1 IKZF2 

SPAG17 0 2 GDAP2, FAM46C 

SPAG6 2 2 OTUD1, PIP4K2A 

SPEF2 0 10 C5orf42, BRIX1, NIPBL, LMBRD2, DNAJC21, CAPSL, NADK2, UGT3A1, TARS, WDR70 

TCTE1 1 7 KLC4, C6orf223, LRRC73, KLHDC3, SPATS1, TAF8, RSPH9 

TCTE3 1 4 TCP10, LINC01558, RPS6KA2, RNASET2 

TCTN1 0 3 GLTP, SVOP, FAM222A 

TCTN2 0 3 COQ5, KDM2B, CCDC92 

TCTN3 0 0 None 

TMEM17 0 3 FAM161A, COMMD1, C2orf74 

TMEM216 1 9 TEX40, SAC3D1, ATL3, EFEMP2, CABP2, CCDC87, SSH3, POLA2, TRMT112 

TMEM231 3 4 TMEM170A, CNTNAP4, ADAT1, VAT1L 

TMEM237 2 2 ATP6V1C2, SFXN5 

TMEM30B 0 4 BCAR1, SLC38A6, C14orf37, NAA30 

TMEM67 1 4 NDUFAF6, INTS8, FAM92A1, LAPTM4B 

TRAF3IP1 27 3 ATG4B, ANO7, SNED1 

TSG101 86 10 PILRA, RPS13, MYLPF, DNAJB11, CALML5, ST5, PPP2R5D, MAPK15, ZNF160, ZNF419 

TTC21B 0 4 COBLL1, G6PC2, CSRNP3, CERS6 

TTC28 3 4 GATSL3, TPST2, PES1, PITPNB 

TTC30B 0 7 FKBP7, CCDC141, PLEKHA3, RBM45, HNRNPA3, SESTD1, TTC30A 

TTC8 1 1 PTPN21 

VPS28 27 7 THEM6, CCNB1, OXCT1, OPLAH, RPL37A, SCRIB, CACNA1I 

VPS37A 7 4 MICU3, CCAR2, COL11A2, KIAA1456 

VPS4B 7 2 SPHAR, PHLPP1 

WDR19 0 3 NWD2, TLR10, CHRNA9 

WDR35 0 0 None 

WDR63 0 2 RPL17P5, RPF1 

WDR78 0 1 GNG12 

ZMYND10 10 2 ACTR3, RALGDS 

ZMYND12 0 3 ERMAP, C1orf50, CABIN1 

 
Table 1. Novel interactors of each of the cilia genes. The table shows the number of known and 
computationally predicted novel PPIs for each of the 165 cilia genes, and lists their corresponding novel 
interactors. 
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Neuronal pathways in cilia interactome p value Number of proteins Proteins 

Huntington’s disease signaling 1.00E−13 15 
PLCB2,SHC1,CASP1,GNG12,PIK3R6,POLR2G,PIK3R4,CLTA,PIK3R2,CAPN1,PDPK1,R 
PH3A,CASP8,POLR2K,PRKD3 

Dopamine-DARPP32 feedback in cAMP Signaling 2.00E−08 8 PLCB2,PPP2R3A,PRKG2,CALML5,PLCD1,PPP2R5D,PPP3CA,PRKD3 

CREB signaling in neurons 3.02E−08 11 
CALML5,PLCB2,SHC1,GNG12,PIK3R6,POLR2G,PIK3R4,PIK3R2,PLCD1,POLR2K,P 
RKD3 

nNOS signaling in neurons 8.13E−06 4 PPP3CA,CAPN1,CALML5,PRKD3 

nNOS signaling in neurons 8.13E−06 4 PPP3CA,CAPN1,CALML5,PRKD3 

Axonal guidance signaling 8.91E−06 15 
PLCB2,GIT1,SHC1,PIK3R6,ACTR3,NTN3,GNG12,MICAL1,PIK3R4,MYLPF,PLCD1,PP 
P3CA,PRKD3,SEMA7A,PIK3R2 

eNOS signaling 1.17E−05 13 
BDKRB1,CALML5,AQP3,CNGA1,CASP8,SLC7A1,HSP90AB1,PIK3R6,PIK3R4,PIK3R2, 
PDPK1,CHRNA9,PRKD3 

Synaptic long term potentiation 1.26E−05 5 PPP3CA,PLCB2,PRKD3,CALML5,PLCD1 

Wnt/Beta-catenin signaling 1.62E−05 6 CDKN2A,TLE1,PPP2R3A,ILK,SOX17,PPP2R5D 

Neuregulin signaling 3.63E−05 8 SHC1,TMEFF2,HSP90AB1,HBEGF,BAD,PIK3R2,PDPK1,PRKD3 

Neuropathic pain signaling in dorsal horn neurons 0.000224 7 PLCB2,FOS,PIK3R6,PIK3R4,PIK3R2,PLCD1,PRKD3 

Calcium signaling 0.000603 8 TNNT1,SLC8B1,CABIN1,CALML5,TRPC3,PPP3CA,ATP2B3,CHRNA9 

Dopamine receptor signaling 0.00251 3 PPP2R5D,SPR,PPP2R3A 

Glutamate receptor signaling 0.00398 1 CALML5 

Synaptic long term depression 0.00676 7 PLCB2,PPP2R3A,NPR2,PLCD1,PRKG2,PPP2R5D,PRKD3 

Wnt/Ca + pathway 0.0102 3 PPP3CA,PLCB2,PLCD1 

Dendritic cell maturation 0.0102 12 
PLCB2,STAT4,COL11A2,COL18A1,CD80,TRGV9,IL6,PIK3R6,PIK3R4,IL32,PIK3R2,P 
LCD1 

Reelin signaling in neurons 0.0407 3 PIK3R6,PIK3R4,PIK3R2 

Table 2. Overlap of neuronal pathways in cilia interactome. Neuronal pathways which were present in cilia 
interactome with number of novel interactors. 

 

 

 

 
Figure 2. Number of drugs targeting genes in the cilia interactome. The numbers are shown separated by 
the anatomic category of the drugs (anatomic, therapeutic and chemical classification) and also separated by 
whether they target known interactors (blue) or novel interactors (red) or both (cream-colored). 

 

 

Functional interactions of cilia genes with predicted novel interactors. We used ReactomeFIViz60, 

a Cytoscape plugin, to extract known functional interactions between cilia genes and their novel interactors. 
Five novel PPIs had such functional interactions, namely, IFT57-CLTA, DYNLL2-KIF2B, IFT57-HTT, CHMP5- 
UBAP1 (‘part of the same complex’, ‘bound by the same set of ligands’) and IFT57 → CASP8 (‘activation’). 

Discussion 
We developed the interactome of ciliary proteins that included IFT, BBS, TZ, ciliary membrane proteins and 
proteins in motile cilia. The interactome includes novel computationally predicted PPIs for multiple proteins, 
including proteins with few or no previously known PPIs. 
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Both analysis of individual novel PPIs and the cilia interactome as a whole has the potential to highlight con- 

nections to specific neurological disorders and lead to biologically insightful and clinically translatable results. 
We interpreted the functions of individual novel PPIs using literature-based evidence and top pathways obtained 
from IPA (See Supplementary File 5 for testable hypotheses on novel PPIs involved in neuropsychiatric disor- 
ders, primary ciliary dyskinesia, hydrocephalus and in biological processes such as ciliogenesis and trafficking 
of membrane receptors in cilia). The following is a demonstrative example of a systems-level analysis. 

 

Cilia, Alzheimer’s disease and aging. Alzheimer’s disease (AD) is a progressive neurodegenerative 

disease with an estimated prevalence of 10–30% in the population aged 65 years and more, characterized by 
memory loss (dementia), behavioral changes, impaired cognition and language61. Around two-thirds of demen- 
tia cases is attributed to AD61. Hippocampus, a region in the brain critical to memory and learning, exhibits 
signs of neurodegeneration in the early stages of AD62. It has been speculated that memory and learning defi- 
cits in AD may be associated with aging and reduced neurogenesis in the hippocampus62–64. It is interesting to 
note that primary cilia have been shown to mediate sonic hedgehog signaling (Shh) to regulate hippocampal 
neurogenesis65,66. So, we explored interconnections of AD, aging and cilia in the PPI network (the ‘interactome’), 
while asking the following questions: Are genes associated with AD, aging and cilia closely connected in the 
interactome? Will such a network also include genes involved in Shh signaling and neurogenesis, and genes 
expressed in the hippocampus? What specific biological processes may underlie the connections of AD to aging, 
and will they interact with the Shh pathway? 

Significant overlap was found between cilia and the AD interactomes (p value = 0.022). The AD interactome 
was highly significantly enriched in ‘human aging-related genes’ (p value = 1.77e−37), compiled from the GenAge 
database67. 51 aging genes co-occurred in AD and cilia interactomes. The subnetwork of these 51 genes and their 
AD and cilia interactors is shown in Fig. 3. In this subnetwork, aging genes connected cilia genes with/without 
Shh involvement to AD genes (Fig. 3).The next question we asked was: do any of the 51 genes directly interact 
with a ciliary gene involved in the Shh pathway? 15 cilia genes in the network were also recovered as regulators 
of the Shh pathway in a CRISPR genetic screen: ARL13B, BBS1-2, BBS4-5, BBS7, CBY1, DYNLL1, IFT140, 
IFT20, IFT52, IFT81, PTCH1, STUB1 and TRAF3IP158. These 15 genes had direct interactions with 14 aging 
genes, 6 AD genes and 2 cilia genes. This included 13 novel predicted interactions connecting aging genes to 
cilia genes including 4 Shh genes (in italics): BAK1-BBS1, CDKN2A-DNAI1, TRAP1-IFT140, PDPK1-PKD1, 
SOD1-DNAH3, CCNA2-DRD2, TERT-IFT57, HTT-IFT57, FOS-DYNLT3, EP300-MCHR1, SHC1-DNAH7, 
PRKCA-CDK3 and RICTOR-IFT20. The network was significantly enriched in the GO term ‘neurogenesis’ (p 
value = 5.66e−12) and in genes expressed in the hippocampus (transcripts per million ≥ 2) (p value = 2.54e−09). 
The cilia genes DYNLT1 and PKD1 were associated with neurogenesis, and IFT20, IFT140, PTCH1 and BBS4 
were Shh regulators also associated with neurogenesis. Reduced size of hippocampus was noted in mutant mouse 
models of 5 cilia genes, namely BBS1, BBS2, BBS4, BBS7 and PDCD6IP (Mammalian Phenotype Ontology term: 
small hippocampus)68–70. We next identified the biological processes that may be specifically affected in AD in 
relation to its links with aging. 75 genes in the network were differentially expressed in the hippocampus of AD 
patients compared with non-AD subjects (GSE4835071, GSE3698072, GSE129773, GSE2814649, GSE2937848). 
We then examined the fold change in the normal expression of these 75 genes in the hippocampus at 40 years 
compared with 8 post-conceptional weeks. For this, we used the ’developmental transcriptome’ from the Brain- 
Span Atlas containing RNA-Seq data of up to 16 brain regions from post-conceptional weeks (number of weeks 
elapsed from the first day of the last menstrual period and the day of the delivery) to middle adulthood (up to 
40 years)52. The genes were grouped based on the specific direction in which their expression varied in AD versus 
aging (i.e. fold change in same/opposite directions in AD versus non-AD hippocampal samples compared with 
expression at 40 years versus 8 post-conceptional weeks) (Fig. 4). 42 genes showed an expression change in the 
opposite direction in AD versus aging. Out of this, 18 genes were underexpressed in AD but overexpressed in 
aging; they were enriched in the GO term ‘calcium-mediated signaling’ (p value = 8.72e−09). It has been postulated 
that calcium signaling pathways involved in cognition may be remodeled by an activated amyloidogenic pathway 
in AD, resulting in elevated levels of calcium and a constant erasure of new memories through enhancement of 
mechanisms involved in long term depression74. It is also worth noting that Shh signaling requires calcium 
mobilization75. The 18 genes included the cilia genes DYNLL1, DYNLT3, PKD1 and MCHR1, and the ciliary 
Shh regulator BBS7. 24 genes were overexpressed in AD but underexpressed in aging; they were enriched in 
‘circulatory system development’ (p value = 3.04e−07). Loss of hippocampal blood vessel density accompanied by 
ultrastructural changes in the blood vessels have been observed in a senescence-accelerated rat model of AD76. 
It is interesting to note that circulatory system processes were found to be upregulated in early stages of AD-like 
pathology in this model, while they were found to be downregulated with age, similar to our observations76. It 
is also interesting to note that neovascularization requires Shh signaling77. The 24 genes included the cilia genes 
CCDC40, SPAG6, ZMYND10, DNALI1 and SPAG1, BBS2 and CBY1 which are ciliary Shh regulators, DYNLT1, 
a cilia gene involved in neurogenesis and PTCH1 which is an Shh ligand also involved in neurogenesis. 25 genes 
showed an expression change in the same direction (either under/overexpression) in AD versus aging includ- 
ing the cilia genes VPS4B, CCNA1, DYNLRB2, NPHP1, DNAH7 and the ciliary Shh regulator BBS5; ‘negative 
regulation of cell death’ was enriched in this group (p value = 1.59e−09). Shh maintains neural stem cells in the 
hippocampus by inhibiting cell death78. 

In summary, our analysis demonstrates that aging and AD genes directly interact with ciliary Shh regulators 
in the interactome. This network is enriched in genes associated with neurogenesis and expressed in the hip- 
pocampus. Genes involved in calcium-mediated signaling and circulatory system development are differentially 
expressed in the opposite direction in AD versus aging, whereas genes involved in regulation of cell death are 
differentially expressed in the same direction. 
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Figure 3. Interconnections between cilia, aging and Alzheimer’s disease genes. Cilia genes are shown as red 
nodes; AD genes are colored in cyan and aging genes in green. PPIs are shown as edges, where grey edges are 
known PPIs and red color edges are novel predicted PPIs. Genes with bold labels are involved in the sonic 
hedgehog (Shh) pathway and those with blue labels are involved in neurogenesis. Note that, in this case, a bold 
blue-labeled gene indicates a cilia gene with Shh involvement, which is also involved in neurogenesis. 

 

 

Cilia and neuronal pathways and functions. Our pathways enrichment analysis of the cilia interac- 

tome revealed several neuronal pathways with high statistical significance (see Table 2 and Supplementary File 
3). This included axonal guidance signaling pathway with 15 novel cilia interactors, Huntington disease signaling 
with 15 novel interactors, eNOS signaling pathway with 13, Wnt signaling with 6, DARPP32 feedback in cAMP 
signaling with 8, dopamine receptor signaling with 3, synaptic long-term depression with 7, and synaptic long-term 
potentiation with 5 novel interactors. Dopamine receptors are localized in the membrane of neuronal cilia19, 
suggesting that these novel cilia interacting partners may have a role in neurotransmission. Dopamine signaling, 
eNOS signaling, and synaptic long term potentiation pathways are also known to be associated with neuropsychi- 
atric disorders such as schizophrenia79,80. The identification of Huntington’s disease (HD) pathway in the cilia 
interactome is also notable given that the protein huntingtin (HTT) localizes to the centrosome and plays an 
important role in ciliogenesis. The HD mutant mouse model exhibits abnormal cilia motility and cerebrospinal 
fluid flow23. Recovery of Wnt signaling thought to be involved in schizophrenia etiology is also of interest81,82. 

Analysis of the known and novel PPIs and GO term associations identified a role for cilia in neuronal dis- 
ease pathogenesis. While consistent with the known role of cilia in several key processes in the nervous system  
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Figure 4. Direction of fold change of gene expression levels in AD vs. non-AD hippocampal samples compared 
with expression at 40 years vs. 8 post-conceptional weeks. The X-axis shows the 67 genes that are differentially 
expressed in the hippocampus of Alzheimer’s disease patients compared with the hippocampus of healthy 
subjects. The red bars on the Y-axis show the fold change of the differential expression of these genes in AD 
vs. non-AD hippocampal samples. The blue bars on the Y-axis show the fold change in the expression level of 
these genes in normal hippocampus at 40 years after birth (middle adulthood) compared with 8 weeks after 
conception (fetal life) in healthy humans. 

 

 
such as the neuronal signaling and development, these findings reveal novel connections between cilia and 
these functional modules. The defects in neuronal migration and differentiation are the underlying cause of 
abnormal neural circuitry in psychiatric disorders12. This is further supported by the reported linkage of neu- 
ropsychiatric risk genes to cilia15,19 and the finding of neuropsychiatric phenotypes and brain abnormalities in 
ciliopathies5,12. Our interactome analysis shows that TCTN2, cilia gene with known role in neuronal development 
and migration12 has 3 novel interactors and neuronal GO terms such as initiation of neural tube closure, midbrain 
morphogenesis and mid brain development are enriched among the interacting partners. The GO terms that are 
enriched for interacting partners of ARMC4 include sympathetic neuron projection guidance, axonogenesis, axon 
extension, and axon fasciculation. Dynein gene, DNAAF2 has only one known but 4 predicted interactions. Two 
of those novel interactors, ATL1 and TRIM9 are shown to be associated with cognitive performance and psy- 
chosis respectively through GWAS. The GO terms such as axonogenesis, neuron maturation, synaptic growth at 
neuromuscular junction are enriched among the interacting partners. Ciliary membrane genes DRD1 and DRD2 
that are implicated in neurotransmission and linked to mental illnesses such as schizophrenia83 were identified 
with 4 and 12 novel interactors, respectively; the associated GO terms were neuronal action potential and synaptic 
plasticity regulation. We also observed 4 novel interactors for the cilia protein TMEM67, including two proteins 
associated with cilia assembly, LAPTM4B and NDUFAF6, with NDUFAF6 also known to be associated with 
Alzheimer’s disease84. Both ATG7, a novel interactor of the ciliary protein PDCD6IP, and SPR, a novel interac- 
tor of GPR83 have been associated with Parkinson’s disease85,86. GIT1, a novel interactor of B9D1 is associated 
with attention deficit hyperactivity disorder and MME, a novel interactor of SPAG1with Alzheimer’s disease87. 
On inspecting mammalian phenotype ontology (MPO) terms (www.informatics.jax.org/), 42 novel interactors 
were found to be associated with various morphological or physiological aspects of brain in mice. For example, 
the novel interactor ITSN1 was associated with decreased brain size, abnormal corpus callosum, hippocampal 
fimbria, hippocampal fornix, brain white matter and anterior commissure morphology. These findings support 
the role of these novel interactions and the GO terms in understanding the crucial role played by cilia biology 
in neuropsychiatric disorders. 

Overlap of cilia and neuropsychiatric disorder interactomes. To examine the connection between 

cilia and neuropsychiatric disorders, we computed the overlap between their interactomes. We considered 7 
neuropsychiatric disorders (NPDs), namely Attention Deficit Hyperactivity Disorder (ADHD), Major Depres- 
sive Disorder (MDD), schizophrenia, bipolar disorder, autism spectrum disorder, Alzheimer’s disease and Par- 
kinson’s disease. We extracted the genes associated with each disorder from the GWAS catalog (www.ebi.ac.uk/ 
gwas/) and then assembled disorder-specific interactomes with known PPIs from HPRD and BioGRID. We then 
computed how closely connected the cilia genes are to NPD genes by computing how many genes or interactors 
were shared between the cilia interactome and each NPD interactome. This analysis showed the overlap to be 
statistically significant (Table 3). For example, cilia interactome has an overlap of 88 genes with ADHD interac- 
tome (p value = 1.2E−16) of which 17 are novel interactors of cilia. Similar comparisons with other NPDs also 
showed overlaps as shown in Table 3. 

 
Overlap of cilia interactome with genes differentially expressed in neuropsychiatric disor- 
ders. 965 genes in the cilia interactome were found to be expressed (transcripts per million ≥ 2) in several 
brain regions including amygdala, anterior cingulate cortex, caudate, cerebellum, frontal cortex, hippocampus, 
hypothalamus, nucleus accumbens, putamen, spinal cord and substantia nigra, from GTEx RNA-Seq data51 (p 
value = 3.93E−58). Novel interactors of cilia genes were found to be highly statistically enriched among these 
genes expressed in the human brain (p value = 8.14E−09). 

http://www.informatics.jax.org/
http://www.ebi.ac.uk/gwas/
http://www.ebi.ac.uk/gwas/
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NPD 

 

 
NPD interactome 
size 

 

p value of 
overlap 

 
# Genes 
common to both 
interactomes 

 
# Novel 
interactors 
common to both 

# Genes 
differentially 
expressed in the 
disorder 

# Genes 
differentially 
expressed in the 
cilia interactome 

 

 

p value of overlap 

 
# Differentially 
expressed novel 
genes 

ADHD 406 1.20E−16 88 17 n/a n/a n/a n/a 

Alzheimer’s 
disease 

417 2.20E−24 104 19 1,103 106 4.70E−05 46 

Autism spectrum 
disorder 

53 2.20E−05 15 5 3,692 314 2.40E−04 119 

Bipolar disorder 764 3.10E−29 163 31 1,188 101 3.40E−02 38 

Major depressive 
disorder 

974 3.70E−23 177 32 187 21 2.50E−02 8 

Parkinson’s 
disease 

520 1.20E−20 112 18 2,487 258 6.20E−03 104 

Schizophrenia 688 1.50E−16 125 26 1,320 118 5.60E−03 40 

Intellectual dis- 
ability 

n/a n/a n/a n/a 706 75 6.50E−03 32 

Table 3. Overlap of neuropsychiatric disease (NPD) interactomes and genes differentially expressed in NPDs 
with the cilia interactome. The significance of the overlap along with the number of genes common to the NPD 
interactome/expression datasets and the cilia interactome are shown. 

 

 

 
We then computed the overlap of genes differentially expressed in neuropsychiatric disorders with the genes in 

the cilia interactome. We analyzed gene expression datasets of MDD (GSE53987)44, schizophrenia (GSE17612)45, 
bipolar disorder (GSE12679)46, autism spectrum disorder (GSE18123)47, Alzheimer’s disease (GSE29378)48, Par- 
kinson’s disease (GSE28894) and non-syndromic intellectual disability (GSE39326)50. The analysis showed the 
overlap to be statistically significant (Table 3). For example, the cilia interactome has an overlap of 106 genes with 
genes differentially in the Alzheimer’s disease dataset (p value = 4.7E−05) of which 46 are novel interactors of cilia. 

 

Cilia and nervous system drug targets. Given the strong connection between the cilia interactome and 

neuronal pathways, we tested the possibility of repurposing drugs targeting proteins in the cilia interactome for 
treating neurological disorders. Identifying new uses for drugs shortens the time of drug discovery and 
approval88. For example, the drug amantadine which is used to treat influenza infection was successfully repur- 
posed to treat dyskinesia and Parkinson’s disease88. This analysis identified 548 drugs targeting 184 genes in the 
cilia interactome. These fall into 3 major Anatomic Therapeutic Chemical (ATC) classification system categories, 
nervous system with 99 drugs, 102 drugs in the respiratory system, and 98 drugs in the cardiovascular system 
(Fig. 2, Supplementary File 4). This finding points at therapeutics targeting the cilia proteins which may provide 
a novel strategy for treating neurological disorders. 

Overall, 76 nervous system drugs targeted 7 novel interactors: HRH1, SLC6A2, CHRNA9, NQO2, ORM1, 
CACNA1I and CACNA1G. 57 drugs targeting 22 genes in the interactome are used in the treatment of at least one 
among the following neurological disorders- Parkinson’s disease, Alzheimer’s disease, attention deficit hyperactiv- 
ity disorder (ADHD), major depressive disorder (MDD), autism spectrum disorder, schizophrenia and bipolar 
disorder- out of which 35 drugs target 6 novel interactors, namely CACNA1G, CACNA1I, CHRNA9, HRH1, 
SLC6A2 and ORM1. 10 out of these 57 drugs targeted cilia genes as well as known and novel interactors of cilia 
genes: asenapine, chlorpromazine, clozapine, loxapine and paliperidone are schizophrenia drugs, olanzapine is 
used in the treatment of Alzheimer’s disease and schizophrenia, amphetamine in ADHD, imipramine in ADHD 
and MDD, mirtazapine in MDD and nortriptyline in schizophrenia, ADHD, MDD and bipolar disorder. 

Among other novel interactors targeted by nervous system drugs is SLC6A2 which is involved in neurotrans- 
mission and is associated with ADHD89,90. SLC6A2 interacts with RPGRIP1L, a ciliary protein known to cause 
Joubert syndrome, MKS and bipolar disorder91,92. The novel interactors CACNA1I and CACNA1G targeted by 
nervous system drugs are calcium channels that are known to be associated with Alzheimer’s disease and 
schizophrenia, respectively93,94. These novel interactors which are drug targets may have significant impact on 
the nervous system, and the pathogenesis of neurological disorders. 

In an independent study, we proposed that the drug acetazolamide which targets the genes CA2 and CA4, 
having known interactions with the cilia genes, DYNLL1 and CDK3 respectively, may be repurposed for schizo- 
phrenia based on negative correlation of drug-induced versus disease-associated gene expression profiles and 
other biological evidences95. Acetazolamide is currently under consideration for funding for clinical trial. Several 
cancer drugs with reported effects on ciliogenesis target known and novel interactors in the cilia interactome. 
Vinblastine targeting JUNN, a known interactor of BBS7 and TSG101, and TUBB, a known interactor of NPHP1 
and DYNLL1, inhibits cilia regeneration in partially deciliated Tetrahymena (a unicellular ciliate)96. Valproic 
acid targeting HDAC9, a known interactor of PKD1, restores ciliogenesis in pancreatic ductal adenocarcinoma 
cells97. Gefitinib targeting EGFR, a known interactor of PDCD6IP, inhibits the smoking-induced loss of cili- 
ated cells in the airway98. Gefitinib also increases the percentage of ciliated cells in human pancreatic cancer 
cell lines99. Geldanamycin targeting HSP90AB1, a novel interactor of CETN3, induces lengthening of cilia in 
3T3-L1, a fibroblast cell line100. 
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Conclusion 
We identified novel PPIs of cilia proteins and their associated pathways, their enriched Gene Ontology term 
associations, and drugs that target the interactors. This cilia interactome analysis reveals a link between cilia 
function, neuronal function and neurological disorders. We also demonstrated the interconnections of Alzhei- 
mer’s disease, cilia and aging genes. The predicted interactions will have to be validated at the level of network 
perturbations in the disease state by comparing neuropsychiatric patients with healthy controls. However, one 
has to be aware of a few caveats while studying the role of ciliary genes in neuropsychiatric disorders (NPDs). 
Association of a ciliary gene with a NPD can be unequivocally ascertained only if this association is discovered 
within the ciliary compartment in the context of the particular NPD, i.e. a mechanistic link between ciliary 
function and the disorder has to be demonstrated. It may not be a true association if a ciliary gene was shown to 
be associated with a NPD in a cellular context not connected with cilia; a protein may perform its function at 
different subcellular locations. Mapping the interactome of cilia genes would be useful in carrying out network- 
based systems biology studies, which will help elucidate the contribution of these novel PPIs to nervous system 
disease pathology as well as to develop novel therapeutics for these disorders. 

Data availability 
We will make the cilia interactome publicly available on our web application Wiki-Pi101. Novel PPIs will be high- 
lighted in yellow on the website. The number of novel and known PPIs of the cilia genes are given in Supplemen- 
tary File 1. Interactome network diagram that is shown in Fig. 1 is also being made available in PDF format and in 
Cytoscape file format as Supplementary File 6 and Supplementary File 7 respectively. PDF file would be suitable 
for printing in high resolution and for electronically searching for specific genes, and Cytoscape would allow 
further processing and data analysis. Wiki-Pi allows users to search for interactions by specifying biomedical 
associations of one or both proteins involved. Thus, queries can be customized to include/exclude gene symbol, 
gene name, GO annotations, diseases, drugs, and/or pathways for either gene involved in an interaction. For 
example, researchers can search for interactions by giving at least one cilia gene and a pathway of interest, say 
“IFT20 interactions where the interactor is involved in immunity”; this query would match 5 PPIs out of a total 
of 19 PPIs of IFT20. Another example is the search “find interactions where one protein’s annotation contains 
the word ciliary and the other protein’s annotation contain the word neuronal”. The search returns 353 PPIs, out 
of which 13 are novel PPIs. 
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3. Novel protein–protein interactions highlighting the crosstalk between hypoplastic 

left heart syndrome, ciliopathies and neurodevelopmental delays 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., George C. Gabriel, Narayanaswamy Balakrishnan, Cecilia W. Lo, 

and Madhavi K. Ganapathiraju. Novel protein–protein interactions highlighting the crosstalk 

between hypoplastic left heart syndrome, ciliopathies and neurodevelopmental 

delays. Genes 13, no. 4 (2022): 627. 

 

Summary of this chapter 

 

In this chapter, I demonstrate how the interactomic framework was used to derive biological 

insights into hypoplastic left heart syndrome (HLHS), a rare and severe subtype of 

congenital heart disease. Despite the discovery of HLHS-associated genes, an integrative 

approach to elucidate their functional consequences is still lacking. To address this, I 

constructed the HLHS interactome containing the experimentally verified and 

computationally predicted protein-protein interactions (PPIs) of HLHS-associated genes 

identified from a mouse mutagenesis screen and ascertained its biological validity using 

transcriptomes of HLHS patients. ~60% of the interactome consisted of housekeeping genes 

that could harbour large-effect mutations showing limited transmission, possibly explaining 

the genetic heterogeneity of HLHS. Netbox analysis allowed the identification of topological 

modules enriched with genes pertinent to HLHS biology. I further showed the network 

proximity of HLHS-associated genes to genes associated with diseases that occur as 

comorbidities with HLHS and the tissue-specificity of interactome genes for sites of 

extracardiac anomalies in HLHS. Finally, I showed the statistically significant intersection of 

the HLHS interactome with ciliopathy and microcephaly interactomes. Further 

characterisation of the intersecting genes revealed their biological associations, which 

supported clinical observations in HLHS patients. Altogether, I demonstrated the utility of the 

HLHS interactome as a functional landscape to integrate and analyse publicly available 

HLHS-related multi-omics data and derive novel insights into HLHS biology. 

 

Contribution to this chapter (75%) 

 

• Developed the methodology of the project, which included HLHS interactome 

construction, validation, functional characterisation, and network proximity and 

intersection analyses 

• Curated all the datasets, performed all the analyses and derived the conclusions 

• Conceptualised and wrote the manuscript and prepared all the figures, tables and 

supplementary files
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Abstract: Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) affecting 1 

in 5000 newborns. We constructed the interactome of 74 HLHS-associated genes identified from a large-scale 

mouse mutagenesis screen, augmenting it with 408 novel protein–protein interactions (PPIs) using our High-

Precision Protein–Protein Interaction Prediction (HiPPIP) model. The interactome is available on a webserver 

with advanced search capabilities. A total of 364 genes including 73 novel interactors were differentially 

regulated in tissue/iPSC-derived cardiomyocytes of HLHS patients. Novel PPIs facilitated the identification 

of TOR signaling and endoplasmic reticulum stress modules. We found that 60.5% of the interactome consisted 

of housekeeping genes that may harbor large-effect mutations and drive HLHS etiology but show limited 

transmission. Network proximity of diabetes, Alzheimer’s disease, and liver carcinoma-associated genes 

to HLHS genes suggested a mechanistic basis for their comorbidity with HLHS. Interactome genes showed 

tissue-specificity for sites of extracardiac anomalies (placenta, liver and brain). The HLHS interactome shared 

significant overlaps with the interactomes of ciliopathy- and microcephaly-associated genes, with the 

shared genes enriched for genes involved in intellectual disability and/or developmental delay, and neu- 

ronal death pathways, respectively. This supported the increased burden of ciliopathy variants and 

prevalence of neurological abnormalities observed among HLHS patients with developmental delay and 

microcephaly, respectively. 
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1. Introduction 

Hypoplastic left heart syndrome (HLHS) is a severe form of congenital heart disease (CHD), which 

is one of the most common birth defects affecting ~1% of live births and a major driver of infant mortality 

resulting from congenital defects [1]. CHD constitutes structural abnormalities that can affect any cardiac 

structure including the atria, ventricles, aorta, and pulmonary artery or the valves connecting these 

chambers. Examples of CHD include atrial and ventricular septal defects, conotruncal defects affecting 

the ventricular septum and the outflow tract, complex CHD involving disturbance of left–right patterning 

(e.g., transposition of the great arteries), and valvular defects including inflow (mitral and tricuspid) and 

outflow (aortic/pulmonic) valves. 
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CHD classified as left ventricular outflow tract obstructive (LVOTO) lesions comprise a constellation 

of structural heart defects involving obstruction of flow from the left ventricle (LV). Clinical studies have 

provided strong evidence of a shared genetic etiology for LVOTO lesions, such as hypoplastic left heart 

syndrome (HLHS), bicuspid aortic valve (BAV) and coarctation (CoA) [1]. HLHS is a complex CHD, 

constituting ~1.4 to 3.8% of the CHD cases and estimated to affect 1 in 5000 newborns [2]. It is characterized 

by underdevelopment of the structures on the left side of the heart, namely, atresia or critical stenosis of the 

mitral or aortic valves and hypoplasia of the left ventricle, ascending aorta and aortic arch [2]. Until 

~30 years ago, infants born with this condition would have died within the first few weeks of life; 23% of 

the deaths occurring in the first week of life due to cardiac abnormalities have been attributed to HLHS 

[2,3]. The incidence of HLHS during the fetal stage could be higher. Currently, surgical palliative 

techniques and improved post-operative care have significantly improved survival, with ~60–70% HLHS 

neonates surviving for at least 5 years following repair [4–6]. Mortality, however, is highest in the first year 

of life, with 30% of the infants dying or requiring heart transplant before turning one year old. Nevertheless, 

90% of those surviving to one year will survive long-term up to 18 years old and beyond [7]. 

Brain comorbidities such as corpus callosum agenesis, holoprosencephaly, microcephaly and white 

matter injury have been identified in HLHS neonates, and cognitive, motor and behavioral adverse 

outcomes such as attention-deficit hyperactivity disorder,        learning disabilities, and global developmental 

delay have been noted among HLHS survivors [8,9]. Given the high mortality and comorbidities 

associated with HLHS, there is a critical need to investigate the molecular mechanism(s) of disease 

pathogenesis in HLHS, as only then can therapies be developed to improve outcomes. 

In humans, a genetic etiology for HLHS is demonstrated by high familial aggregation of HLHS with 

other LVOTO defects. Thus, using a statistical framework to calculate genetic effect size, >0.9 heritability 

was observed for HLHS and >0.7% for HLHS associated with other cardiovascular malformations (p-

value < 1×10−5) [10].  HLHS is also shown to have a complex multigenic etiology, with clinical studies 

suggesting a digenic etiology being the most likely [11]. Supporting such complex genetics, a large-scale 

mutagenesis screen in mice for mutations causing CHD recovered eight mutant lines with HLHS. None 

shared any genes in common, and none showed Mendelian pattern of inheritance. Together, these findings 

indicated HLHS has a multigenic etiology and is genetically heterogeneous. Interestingly, the recovery of 

the HLHS causing mutations in one HLHS mouse line, Ohia, confirmed a digenic etiology with mutations 

in two genes, Sap130 and Pcdha9, shown to cause HLHS [12]. Further supporting a multigenic etiology 

is the finding that five of the eight HLHS mutant mouse lines had two or more genes in 10 of 14 human 

chromosome linkage intervals associated with HLHS, with significant enrichment observed when two or more 

of the mouse HLHS-associated genes were interrogated across these linkage intervals (OR 322.5; CI 24.9–

4177.2; p = 5.6 ×10−10) [13]. 

CHD-associated de novo mutations in histone-modifying genes such as KMT2D, 

CHD7, KDM5A, KDM5B, WDR5, RNF20, UBE2B and USP44 were identified in an exome sequencing 

study conducted with 60 HLHS cases and 264 controls by the Pediatric Cardiac Genomics Consortium (PCGC) 

[14]. Genome sequencing studies and genome-wide screening by comparative genomic hybridization have 

identified HLHS-associated variants in cardiomyopathy-associated genes such as MYBPC3, RYR2 and MYH6 

[15], as well as genes associated with mechanotransduction in cardiomyocytes such as VASP and TLN2 [16]. 

Other genes implicated in HLHS included RBFOX2, which mediates RNA metabolism [17], the cardiac 

transcription factor PROX1 [18], the endocytic receptor LRP2 [19], and the transcriptional regulator POGZ 
found in patients with HLHS and developmental delay [20]. However, despite the recovery of genes associated 

with HLHS, an integrative approach to elucidate their functional consequences is still lacking. 

In the current study, we examined HLHS within the mechanistic framework of the protein–protein 

interaction (PPI) network or protein ‘interactome’. Proteins fuel the cellular          machinery, and their interactions 

reflect the functions that they subserve. This can be infor- 
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mative of disease mechanisms and may also help uncover higher-order relationships in the genetic architecture 

of complex disorders [21–23]. However, only ~145,000 PPIs (25%) out of the estimated ~600,000 PPIs 

estimated to exist are known from public repositories such as HPRD [24] and BioGRID [25]. Detecting these 

PPIs using experimental techniques such as the yeast two-hybrid system and co-immunoprecipitation is 

prohibitively time consuming and expensive. Hence, we have developed a machine learning computational 

method to predict PPIs called HiPPIP (High-Precision Protein–Protein Interaction Prediction). HiPPIP 

computes features of protein pairs such as cellular localization, molecular function, biological process 

membership, genomic location of the gene and gene expression in microarray experiments, and classifies the 

pairwise features as interacting or non-interacting based on a random forest model [21]. This method has been 

validated as accurate by computational evaluations [21] and experimental validations [21,26,27]. The novel 

PPIs predicted using HiPPIP have yielded discoveries with translational impact, including identifying the 

cen tral role of cilia in CHD [12,21,28]. Here we constructed an ‘HLHS interactome’ with over 400 novel PPIs 

predicted by HiPPIP and over 1400 known PPIs.  We further developed a web resource with the novel PPIs 

on Wiki-HLHS, an interactive webserver for exploring novel interactions relevant to HLHS proteins or 

pathways of interest. We demonstrate the utility of the HLHS interactome for discovering higher-order genetic 

architecture of HLHS based on network analysis, functional enrichment, and transcriptome analyses. 

2. Materials and Methods 

2.1. Compilation of HLHS-Associated Genes and Prediction of Novel Interactions 

A list of 74 HLHS-associated genes was compiled from HLHS mutant mice, specifically, from 8 

independent mouse lines recovered from a large-scale mouse mutagenesis screen [12,28]. This includes 

all homozygous mutations identified in the 8 HLHS mouse lines and heterozygous mutations also found 

in the HLHS human linkage intervals. Novel PPIs of the proteins encoded by these genes were predicted 

using the HiPPIP model that we described in our earlier work [21]. Each HLHS protein (say N1) was paired 

with each of the other human proteins say, (M1, M2, . . . , Mn), and each pair was evaluated with the 

HiPPIP model. The predicted interactions of each of the HLHS proteins were extracted (namely, the pairs 

whose score is >0.5, a threshold which through computational evaluations and experimental validations was 

revealed to indicate interacting partners with high confidence). The interactome figures were created using 

Cytoscape [29]. 

2.2. Identification of Network Modules 

Network modules among the HLHS proteins and their interactors were identified using Netbox [30]. 

Netbox reports modularity and a scaled modularity score, as compared with the modularity observed in 1000 

random permutations of the subnetwork. Scaled modularity refers to the standard deviation difference 

between the observed subnetwork and the mean modularity of the random networks [31]. 

2.3. Functional Enrichment Analysis 

Pathway associations of genes in the HLHS interactome were computed using Ingenuity Pathway 

Analysis (IPA) [32]. Statistical significance of the overlaps between genes in the HLHS interactome and 

pathways in the Ingenuity Knowledge Base (IKB) was computed with Fisher’s exact test based on 

hypergeometric distribution. Biological process, cellular component and molecular function (Gene Ontology 

[33]), pathway (Reactome [34]), disease (OMIM [35] and DisGeNET [36]) and transcription factor target 

(MSigDB [37]) enrichments were computed using WebGestalt [38]. WebGestalt computes the distribution 

of genes belonging to a particular functional category in the input list and compares it with the background 

distribution of genes belonging to this functional category among all the genes that belongs to any functional 

category in the database selected by the user. Statistical significance of functional category enrichment is 

computed using Fisher’s exact test and 
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corrected using the Benjamini–Hochberg method for multiple test adjustment. Annotations  with FDR-

corrected p-value < 0.05 were considered significant. 

2.4. Gene Expression Enrichment Analysis 

The enrichment of the HLHS interactome in genes expressed in specific tissues was computed using 

RNA-sequencing data from 53 postnatal human tissues extracted from GTEx [39]. Two gene sets were 

compiled for the analysis. The first set contained genes showing high or medium expression (transcripts per 

million (TPM) ≥ 9) in 53 tissues, provided that they were not housekeeping genes, i.e., genes detected in all 

the tissues with transcripts per million 1, as identified in the Human Protein Atlas [40]. The second set 

contained all the genes that showed high or medium expression in the 53 tissues, irrespective of whether they 

were housekeeping genes or not. TPM is a metric for quantifying gene expression; it directly measures the 

relative abundance of transcripts. GMT files served as inputs for the gene over-representation analysis 

(GSEA) that was conducted based on hypergeometric distribution. Tissue-specificity of the genes in the HLHS 

interactome was checked using TissueEnrich [41]. The analysis was based on tissue-specific genes compiled 

from GTEx [39], Human Protein Atlas [40], and Mouse ENCODE [42]. This included ‘tissue- enriched genes’ 

with at least 5-fold higher mRNA levels in a particular tissue compared to all the other tissues, ‘group-

enriched genes’ with at least 5-fold higher mRNA levels in a group of 2–7 tissues, and ‘tissue-enhanced 

genes’ with at least 5-fold higher mRNA levels in a particular tissue compared to average levels in all 

tissues. 

2.5. Network Overlap Analysis 

Statistical significance of the overlaps between genes in the HLHS interactome and in the SARS-CoV-

2-modulated host protein interactome, the ciliary interactome, the ciliopathy interactome and the 

microcephaly interactome was computed based on hypergeometric test. 

3. Results 

We compiled a list of 74 genes associated with HLHS that were previously identified from eight 

independent mouse lines with HLHS [12,28]. The protein interactome of these HLHS-associated genes (or 

‘HLHS candidate genes’) were assembled by collecting the known protein–protein interactions (PPIs) 

from the Human Protein Reference Database (HPRD) [24] and the Biological General Repository for 

Interaction Datasets (BioGRID) [25]. Additionally, we predicted novel PPIs by applying the HiPPIP 

algorithm, described in our earlier work [21], which is a machine learning algorithm that computes 

features of protein pairs, such as whether they are co-expressed, or have common biological process or 

molecular functional annotations, are within the same gene neighborhood, etc., and classifies the feature 

vector as interacting or non-interacting, using a random forest model.  In a recent study, other state-of-the-

art algorithms for PPI prediction were extensively evaluated and it was found that none of them reached 

the superior performance achieved by HiPPIP [43]. Further, seventeen novel PPIs predicted by HiPPIP in 

relation to other diseases were tested through experimental methods by different research groups, and all 

those tested were shown to be true PPIs ([21,27] and some unpublished results). Thus, we assembled the 

HLHS interactome with 1496 previously known PPIs (blue edges in Figure 1) and 408 novel 

computationally predicted PPIs (red edges in Figure 1), which altogether connected 72 of the 74 HLHS-

associated genes with 1248 known interactors and 377 novel interactors (Figure 1 and Supplementary Data 

File S1). Among the 74 genes, only WFDC11 and XKR9 had neither known nor novel PPIs. HiPPIP 

predicted 644 PPIs of which 236 PPIs were previously known, leaving 408 PPIs to be considered as novel 

PPIs of the HLHS candidate genes; thus, of the 1496 known PPIs in this interactome, 236 (15.8%) were 

also predicted by HiPPIP, while 1260 (84.2%) were not (which is as expected, because each method, 

whether computational or biotechnology based, discovers some of the true PPIs in the interactome, but not 

all). Four genes identified to be associated 
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with HLHS in independent studies [15,17,18,20] were retrieved as known interactors of our HLHS 

candidate genes (shown in bold): EP300-PROX1, TSC1-POGZ, HNRNPAB-RBFOX2 and 

PSEN1-RYR2. 

Figure 1. Hypoplastic left heart syndrome (HLHS) protein–protein interactome: Network view of the 

HLHS interactome is shown as a graph, where genes are shown as nodes and protein–protein interactions 

(PPIs) as edges connecting the nodes. HLHS-associated genes are shown as dark blue square-shaped 

nodes, novel interactors and known interactors as red and light blue colored circular nodes, respectively. Red 

edges are the novel interactions, whereas blue edges are known interactions. 

3.1. Wiki-HLHS: A Webserver of HLHS PPIs 

To accelerate biomedical discovery, we made the HLHS interactome publicly acces- sible with the 

construction of a web application called Wiki-HLHS (http://severus.dbmi. pitt.edu/wiki-HLHS, accessed 

on 7 January 2022). This webserver has advanced search capabilities, and for each pair of PPIs, there are 

side-by-side comprehensive Gene Ontology (GO) annotations, and annotations related to diseases, drugs 

and pathways. Here, a user can query for results such as “show me PPIs where one protein is involved in 

HLHS and the other is involved in microcephaly”, and then see the results with the functional details of the 

two proteins side-by-side. This pairwise retrieval of PPIs and their biomedical associations is a unique 

feature of this web application not available in any other PPI web database. The PPIs and their annotations 

are also indexed in major search engines such as 

http://severus.dbmi.pitt.edu/wiki-HLHS
http://severus.dbmi.pitt.edu/wiki-HLHS
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Google and Bing. A user can browse the genes in the HLHS interactome using list view of HLHS-

associated genes. Novel PPIs are shown in a different color in search results. 

3.2. Identification of Network Modules from the HLHS Interactome 

We identified network modules in the HLHS interactome using Netbox [30], starting with the HLHS 

genes as core genes and adding nodes from the human interactome. The number of edges of node to core 

genes is statistically significant compared to its degree of interactions in the human interactome. It includes 

all edges between these nodes and the core genes and identifies highly interconnected modules in this 

network. Netbox connected 143 proteins (48 HLHS candidate genes and 95 linker proteins) into 19 modules, 

of which 11 modules had 4 or more nodes each (Supplementary Data File S2). Three modules had statistically 

significant enrichment of GO biological process terms: TOR signaling (p-value = 6.97 × 10−4, odds ratio = 

27.79), response to endoplasmic reticulum (ER) stress (p-value = 2.00 × 10−3, odds ratio = 55.26) and 

intracellular receptor signaling pathway (p-value = 9.44 × 10−14, odds ratio = 20.58) (Figure 2). The novel 

PPIs facilitated the identification of two functional modules that may be critical to HLHS pathology, namely, 

TOR signaling and ER stress [44,45]. 

Figure 2. Modules identified from the hypoplastic left heart syndrome (HLHS) interactome: Three modules   that 

were enriched in specific GO biological processes are shown. Within each module, nodes with bold italicized 

labels depict genes with at least one transcriptomic evidence relevant to HLHS. HLHS-associated genes are shown 

as square-shaped nodes and novel interactors and known interactors are shown as circular nodes. Red edges are the 

novel interactions, whereas blue edges are known interactions. 

3.3. Functional Enrichment for Human Diseases in the HLHS Interactome 

We compiled the list of pathways for proteins in the HLHS interactome that are associated with the Ingenuity 

Pathway Analysis suite [32]. Selected pathways that are significantly associ- ated with HLHS are shown in Figure 

3 (complete list in Supplementary Data File S3). The Gene Ontology (GO) terms and diseases from OMIM and 

DisGeNET that are significantly associated with the HLHS interactome at p-value < 0.05 are shown in 

Supplementary Data Files S4–S8. Ex- amination of OMIM-related genes (Figure 4A; Supplementary Data File S7) 

showed enrichment 
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associated with non-insulin-dependent diabetes mellitus (p-value = 1.44 × 10−7, odds ratio = 14.49)     and insulin-

dependent diabetes mellitus (p-value = 0.02, odds ratio = 15.57) in the HLHS interactome, indicating a 

mechanistic link between HLHS and disease processes related to energy metabolism. Nine diabetes-

associated genes that had direct interactions with ten HLHS can didates were responsible for this enrichment, 

including the novel interaction of the diabetes- associated IRS1 with the HLHS candidate NRDC (Figure 5A; 

Supplementary Data File S7). Supporting this association, 8.5% of infants born to diabetic mothers have 

been shown to have congenital heart defects including HLHS, double-outlet right ventricle, truncus arteriosus, 

transposition of the great arteries and ventricular septal defects [46]. Interestingly, also significantly enriched are 

genes associated with Alzheimer’s disease (AD) (p-value = 1.84 × 10−5, odds ratio = 21.23) (Figure 4A; 

Supplementary Data File S7), with five genes associated with AD exhibiting direct interactions with nine HLHS 

candidate genes (Figure 5B), supporting a recent study showing increased risk of dementia among patients with 

congenital heart disease [47]. Finally, examination for enrichment in DisGeNET showed marked enrichment for 

many different types of cancer, with mammary neoplasms, adenocarcinoma and liver carcinoma being the top 

three diseases recovered from DisGeNET (Figure 4B; Supplementary Data File S8). 
 

Figure 3. Pathways associated with the hypoplastic left heart syndrome (HLHS) interactome: The 

number of proteins from the HLHS interactome that are involved in the top 30 pathways most 

significantly associated with the interactome are shown. 

A previous autopsy study showed 43% of HLHS patients have hepatic necrosis [48], and more recent 

studies have indicated a high incidence of hepatocellular carcinoma among patients having had the Fontan 

procedure, a third stage surgical palliation that all HLHS patients must undergo [49]. A total of 67 genes 

associated with liver carcinoma exhibited direct interactions with 28 HLHS candidate genes, including 7 

novel interactions (listed in the format HLHS candidate gene-liver carcinoma-associated gene: NRDC-

IRS1, RPS6KA1-CXCL12, NIF3L1-CXCL12, STT3B-GNMT, ZAN-TFPI2, COL15A1-PDGFB and 

MFSD6-STAT1).  We noted that of the top ten diseases recovered from DisGeNET, the 
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top nine are cancer related, but the tenth is “insulin resistance”, further supporting a link  between HLHS 

and diabetes. 
 

Figure 4. Diseases associated with the hypoplastic left heart syndrome (HLHS) interactome: The number of 

genes from the HLHS interactome that are involved in the top 10 (A) OMIM diseases and 

(B) DisGeNET diseases most significantly associated with the interactome are shown. 

 

Figure 5. Network proximity of other disease-associated genes to genes associated with hypoplastic left heart 

syndrome (HLHS): Dark blue square-shaped nodes are HLHS-associated genes and green square-shaped 

nodes are diabetes-associated genes in (A) and Alzheimer’s disease-associated genes  in (B). Light blue nodes 

are known interactors and red nodes are novel interactors. Red edges are the novel interactions, whereas blue 

edges are known interactions. 

3.4. GO Biological Process Enrichment and Overlap with HLHS Transcriptome Datasets 

Among GO biological processes (Supplementary Data File S4), the most significantly 

enriched in the HLHS interactome was covalent chromatin modification (p-value < 1 × 10−15, odds 

ratio = 2.41). This observation was corroborated by the finding that the most significantly enriched GO 

subcellular locations included transcription factor complex (p-value < 1 × 10−6, odds ratio = 3.14) 

and nuclear chromatin (p-value < 1 × 10−6, odds ratio = 2.82), and among the molecular functions 

(Supplementary Data File S6), DNA-binding transcription activator activity, RNA polymerase II-

specific (p-value < 1 × 10−14, odds ratio = 3.33) and transcription coactivator 
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activity (p-value < 1 × 10−14, odds ratio = 3.38). Motivated by the enrichment of transcriptional regulatory 

processes in our interactome and several previous studies suggesting transcriptomic changes associated with 

HLHS [19,50,51], we further investigated the overlap of the HLHS interactome with four HLHS-related 

transcriptomic datasets. We studied whether the genes in the HLHS interactome were differentially expressed 

or alternatively spliced in four different RNA-seq datasets comprising either tissues or cardiomyocytes derived 

from induced pluripotent stem cells (iPSCs) (Supplementary Data File S9). 

Our analysis identified 73 novel interactors (19%) (Table 1) and overall 364 genes (21%) in the HLHS 

interactome that had one or more transcriptomic association (Supplementary Data File S9). Each of these 

four RNA-seq datasets showed consider- able, albeit statistically non-significant, overlap with the 

interactome. The datasets include differential expression in cardiomyocytes differentiated from iPSCs of 

five HLHS patients versus two controls (GSE92447 [51]), yielding 131 genes present in the interac tome 

(odds ratio = 1.09), HLHS-right ventricle versus control-left ventricle/control-right ventricle (GSE23959 

[50]), yielding seven genes in the interactome (odds ratio = 2.43), iPSC-derived cardiomyocytes at 25 

days from one HLHS proband versus parents yielding 131 genes (odds ratio = 1.01) [19], and genes 

affected by alternative splicing in HLHS- right ventricle versus control-right ventricle/control-left ventricle 

(GSE23959 [50]), yielding 136 overlapping genes (odds ratio = 1.02). Though these overlaps are not 

statistically significant at the systems level, the individual genes and their transcriptomic evidence may 

provide biologically relevant information about the etiology of HLHS. We did not observe statistically 

significant overlaps between HLHS transcriptomic data and the HLHS interactome, despite examining all the 

available RNA-seq datasets. This could be attributed to the tendency of iPSC-derived cell lines to exhibit 

donor-specific gene expression patterns [52] and sample sizes (in these transcriptomic studies) that are not 

large enough to capture the genetic heterogeneity of HLHS [53]. Additionally, transcriptomic, proteomic 

and phenotypic equivalences between these external datasets and the murine-derived gene set used for 

interactome construction should be interpreted cautiously, unless the biological levels are comprehensively 

characterized and a clear equivalence of factors is demonstrated in both the species [54]. Nevertheless, it 

has been shown that the HLHS mouse lines (from which the gene set used for interactome construction 

was identified) had mutations in two or more genes in 10 of 14 human chromosome intervals associated with 

HLHS and left ventricle outflow obstruction [12]. In addition, essential features that characterize HLHS, 

such as hypoplasia of the left ventricle, aorta, and mitral valve, were confirmed in the recovered mouse 

mutant lines [12]. 

We studied the tissue-specific expression of the HLHS interactome genes using RNA- seq data of 53 

postnatal human tissues obtained from GTEx [39], with and without the inclusion of housekeeping genes 

from the Human Protein Atlas [40]. An expression of more than nine transcripts per million (TPM) is 

considered high/medium expression. A total of 9634 genes detected in all the tissues with TPM ≥ 1 were 

considered as housekeeping genes. Statistical significance of the enrichment was computed using Fisher’s 

exact test and corrected using the Benjamini–Hochberg multiple test adjustment. Compared to when 

housekeeping genes were excluded, as shown in Figure 6A, the HLHS interactome genes were significantly 

enriched in several tissues (Figure 6B)—including in heart-related tissues such as the atrial appendage, 

coronary artery, aorta and the left ventricle—when housekeeping genes were included in the analysis. This 

could indicate that a large number of genes in the HLHS interactome were housekeeping genes. In line 

with this, we found that 60.5% (1028 genes) of the interactome was comprised of housekeeping genes, a 

highly statistically significant over-enrichment (p-value = 2.03 × 10−10) of 1.14-fold compared to 

expectations (906 genes). We also noted that the left ventricle showed a lower statistical significance of 

enrichment compared with the other three heart-related tissues (atrial appendage, coronary artery and 

aorta). 
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Table 1. Novel interactors in the hypoplastic left heart syndrome (HLHS) interactome with biological 

evidence related to HLHS: The table shows those novel interactors of HLHS-associated genes that have 

2 or more HLHS-related biological evidence associated with them. The complete list of biological evidence 

for all the genes in the interactome can be found in Data File S9. 
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Figure 6. Tissue enrichment of the genes in the hypoplastic left heart syndrome (HLHS) interactome: The 

tissue enrichment patterns of the HLHS interactome were identified using the gene expression profiles of 53 

postnatal human tissues extracted from GTEx. Enrichment was assessed by considering 

(A) any gene that showed high/medium expression in the tissues (transcripts per million (TPM) ≥ 9) and (B) 

any gene that showed high/medium expression in the tissues, except for housekeeping genes (detected in 

all the tissues with TPM ≥ 1). Statistical significance of tissue enrichment was computed using Fisher’s exact 

test and corrected using the Benjamini–Hochberg method for multiple test adjustment. It can be observed that 

the HLHS interactome genes showed a higher statistical significance of enrichment in several tissues 

(including the heart-related tissues shown as red data points) when housekeeping genes were considered as 

shown in (B) compared to when housekeeping genes were excluded as shown in (A), indicating that 

housekeeping genes could be over-represented in the interactome. 

We further employed the TissueEnrich tool to examine the tissue-specificity of the genes in the 

HLHS interactome based on expression data from GTEx [39], Human Protein Atlas [40] and Mouse 

ENCODE [42] (Figure 7A–C). Genes with an expression level greater  than 1 TPM (transcripts per million) 

and relative expression at least 5-fold higher in a particular tissue (tissue-enriched) or a group of two to 

seven tissues (group-enriched) were considered [55]. As expected from an interactome showing an over-

enrichment of housekeeping genes, the HLHS interactome did not show any statistically significant tissue- 

 iPSCS of 5 HLHS 
Patients Versus 2 
Controls (GSE92447) 

Versus Control-Left 
Ventricle/Control-Right 
Ventricle (GSE23959) 

Versus Control-Right 
Ventricle/Control-Left 
Ventricle (GSE23959) 

Cardiomyocytes from 1 
HLHS Proband 
Versus Parents 

Count 

DBN1 ✓  ✓ ✓ 3 

MYL9  ✓  ✓ 2 

ASCC3   ✓ ✓ 2 

CDH5 ✓   ✓ 2 

CKB ✓   ✓ 2 

GART ✓  ✓  2 

PWP1   ✓ ✓ 2 

TFPI2 ✓   ✓ 2 

THBS1 ✓   ✓ 2 
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specific enrichment. However, it was noteworthy that six tissues—placenta, skin, liver, lung, brain and testis—

showed large overlaps with the HLHS interactome according to data from at least two of the databases and 

appeared among their lists of top ten tissues (in terms of the number of tissue-specific genes found in the 

interactome, and not the statistical significance of this overlap) (Figure 7A–C). Ten HLHS candidates had 

novel PPIs with eleven heart- specific proteins across the three databases (HLHS candidates are shown in bold): 

NFRKB- OPCML, NEUROD4-IL23A, TSC1-PAEP, OIT3-PLA2G12B, CDH16-CDH5, SLC12A5-JPH2, 

SLC12A5-MYL9, DSC2-FHOD3, GALE-PLA2G5, PLS3-NRSN1 and TSPAN15-ADAMDEC1. 
 

Figure 7. Tissue-specificity of hypoplastic left heart syndrome (HLHS) interactome genes: The graphs show 

the number of genes from the interactome that exhibit tissue-specificity according to data from 

(A) GTEx, (B) Human Protein Atlas and (C) mouse ENCODE. The genes show at least 5-fold higher 

expression in a tissue (‘tissue-enriched’) or a group of 2–7 tissues compared to all the other tissues (‘group-

enriched’). 

3.5. HLHS and Developmental Delay 

Cilia are dynamic projections on cellular surfaces, which detect a wide variety of cues from the 

environment and transduce signals into the cell to regulate physiological and developmental processes. A 

genetic screen for recessive CHD-associated mutations had highlighted the role of cilia-transduced cell 

signaling in CHD [28]. Thirty-four of the sixty-one CHD-associated genes recovered in this screen were 

cilia-related. To examine for possible ciliary connection to HLHS, we computed the overlap of the HLHS 

interactome with the interactome of ciliary proteins containing a total of 1665 proteins and 1776 PPIs [56]. The 

interactomes shared a highly statistically significant overlap (p-value = 3.97 × 10−25) of 284 genes, and 30% 

of the overlapping genes were differentially expressed or were affected by alternative splicing in at least one 

of the four HLHS RNA-seq datasets described in the previous section [19,50,51]. The Reactome pathways 

gene expression, SUMOylation and cell cycle were enriched among the shared genes by 2.4-fold, 6.4-fold 

and 3.4-fold, respectively. Next, we collected a list of 187 genes that have been implicated in 35 ciliopathies 

from Reiter et al. [57], and assembled its interactome containing 2486 proteins and 3022 interactions. We 

found that 28% of the HLHS interactome overlapped with 19% of the ciliopathy interactome (473 genes), 

a highly statistically significant overlap (p-value = 1.18 × 10−58) with an enrichment ratio of 2-fold 

compared to expectations (234 genes) (Figure 8 and Supplementary Data File S10). We also found that 67 

HLHS-associated genes, 157 ciliopathy- associated genes and 3 genes associated with both (CCDC65, 

KIAA0586 and DNAH1) were connected via 841 intermediate interactors. Eight direct known interactions 

were found between HLHS candidates and ciliopathy-associated genes (HLHS candidates are shown in 

bold): TSC22D1-UNC119, RPTOR-CILK1, MFSD6-TMEM237, EP300-CRX, CTNNA3-CRX, 

CTNNA3-FAM161A, NIF3L1-NME7 and TSC1-GLIS2, and one direct novel interaction, RP- 
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TOR-CCDC40. We identified the top 30 GO biological processes that were significantly associated with 

the HLHS and the ciliopathy interactomes and computed the number of genes that were exclusively found 

in the HLHS/ciliopathy interactomes or shared between the two interactomes in each of these processes 

(Supplementary Figures S1 and S2). Regulation of DNA-binding transcription factor activity was enriched 4-

fold among the shared genes between the two interactomes (p-value = 3.96 × 10−12). Speculating that 

transcription fac- tor (TF) activity could be a major factor in the crosstalk between HLHS and ciliopathy, 

we sought to identify the TFs whose target genes were significantly enriched among the genes shared by the 

HLHS and ciliopathy interactomes. The enrichment analysis was performed using WebGestalt [38] and based 

on curated TF-target gene sets in MSigDB [37]. The targets of CREBP1 and ALX4 showed significant over-

enrichment (p-values of 2.57 × 10−4 and 1.18 × 10−3) of 8.68-fold and 38.85-fold (five genes and two 

genes) compared to expectations. The targets of CREBP1 found from among the genes shared between 

the HLHS and ciliopathy interactomes were EP300, PRNP, SMAD3, SUMO1 and TBX6, while 

the targets of ALX4 were JUN and TCF7L2. 
 

Figure 8. A partial network view of novel protein–protein interactions (PPIs) interconnecting hy- 

poplastic left heart syndrome (HLHS) genes with ciliopathy-associated genes: Genes are shown as nodes 

and PPIs as edges. As the integrated HLHS and ciliopathy interactome is very large, only a partial view 

incorporating genes that are associated with intellectual disability and/or developmental delay (ID/DD) 

and the novel interactors of HLHS-associated genes/ciliopathy-associated genes are shown. Legend—

square-shaped dark blue nodes: HLHS-associated genes; square-shaped green nodes: ciliopathy-associated 

genes; nodes with bold and italicized labels: ID/DD-associated genes; red nodes/edges: novel 

interactors/interactions; light blue nodes/edges: known interactors/interactions.  

HLHS patients having developmental delay as a comorbidity have been shown to have a higher 

burden of ciliopathy variants compared to HLHS patients without developmental delay, with a summative 

C-score of 4.05 versus 2.02 (p-value of the observed difference < 0.01). Summative C-score is a 

standardized value used to assess the level of gene disruption in a condition; in this specific study, the C-

score of 4.07 was identified as a threshold at which 50% of pathogenic variants and 3% of benign variants were 

retained [58]. This prompted us to compare the enrichment of genes implicated in developmental delay 
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in the HLHS and ciliopathy interactomes, and specifically among the genes uniquely found in the 

HLHS/ciliopathy interactomes and those shared between the HLHS and ciliopathy interactomes. A total 

of 703 genes harboring loss-of-function and missense variants linked to intellectual disability and/or 

developmental delay (ID/DD) were collected from the Developmental Brain Disorder Gene Database [59]. 

These ID/DD genes showed an overlap of higher significance with the HLHS interactome (p-value = 3.77 × 

10−8, odds ratio = 1.67) compared with the ciliopathy interactome (p-value = 7.61 × 10−3, odds ratio = 

1.23). Ad ditionally, significant enrichment for ID/DD was shown by genes uniquely found in the 

HLHS interactome (p-value = 7.16 × 10−6, odds ratio = 1.65) and genes shared by the HLHS and 

ciliopathy interactomes (p-value = 1.93 × 10−3, odds ratio = 1.73) (Figure 8), but not by the genes 

uniquely found in the ciliopathy interactome. The HLHS candidate KIAA0586 was associated with 

ciliopathy as well as ID/DD. Eight other HLHS candidates were linked to ID/DD (i.e., they also harbored 

ID/DD-associated variants), namely, TSC1, KDM3B, CEP192, TRAPPC2L, EP300, CTNNA3, KCNQ3 

and AP3B2. We identified 19 novel PPIs of HLHS candidates with ID/DD genes (HLHS candidates 

are shown in bold): SERPINB7-OGDH, SERPINB7-PIGN, NOMO1-NDE1, NOMO1-

KCNA1, NCOA1- PPP1CB, FER-HSD17B4, CKAP4-POLR3B, AMT-IMPDH2, RPS6KA1-

ASCC3, STT3B- SMARCC1, DSC2-ITSN1, AGAP1-SLC19A3, OXNAD1-SLC6A1, MFSD6-

HIBCH, KAT8- PRRT2, HNRNPAB-SYNCRIP, NIF3L1-ABI2, PLS3-CUL4B and CCR1-

CTNNB1. 

These results implicate the cilium as a potential focal point for examining HLHS etiology and its 

comorbid relationships with ciliopathy, intellectual disability and developmental delay. 

3.6. HLHS and Microcephaly 

Severe neurological outcomes such as seizure activity, ischemia, and hemorrhage in HLHS patients 

are more prevalent with neonatal microcephaly than without (43% versus 4%, p-value = 0.02); the 

prevalence is 33% in HLHS patients with fetal microcephaly (p-value = 0.06) [60]. This prompted us to 

examine their interconnections. A total of 84 genes associated with microcephaly were collected from the 

MONARCH database [61] and the microcephaly interactome containing 1867 proteins and 2081 interactions 

was assembled. Sixty-two HLHS candidates were connected to 77 microcephaly genes via 652 interme- 

diate interactors. Five direct known interactions were found between HLHS candidates and microcephaly-

associated genes (HLHS candidates are shown in bold): TSC1-POGZ, TSC1-CDK6, CTNNBL1-STAMBP, 

TRAPPC2L-TRAPPC6B and TSC22D1-QARS1. We found that 24% of the HLHS interactome overlapped 

with 22% of the microcephaly interactome (405 genes), a highly statistically significant overlap (p-value = 

2.39 × 10−65) with an enrich ment ratio of 2.31-fold compared to expectations (176 genes) (Figure 9 and 

Supplementary Data File S11). We identified the top 30 GO biological processes that were significantly 

associated with the HLHS and the microcephaly interactomes and computed the number of genes that were 

exclusively found in the HLHS/microcephaly interactomes or shared between the two interactomes in each 

of these processes (Supplementary Figures S3 and S4). 

Neuron death was enriched 4-fold (32 genes) among the genes common to the HLHS and microcephaly 

interactomes (p-value = 5.13 × 10−10). It was also interesting to note that neuron death, 

neurodegeneration and other related processes and diseases appeared as enriched terms in the HLHS 

interactome across several functional categories. We extracted a total of 95 genes from the HLHS 

interactome belonging to these categories, specifically, 5 genes linked to Alzheimer’s disease (OMIM ID: 

104300), 4 genes in late-onset Parkinson’s disease (OMIM ID: 168600), 5 genes linked to neurofibrillary 

degeneration (DisGeNET ID: C0085400), 17 genes in neurodegenerative disorders (DisGeNET ID: 

C0524851) and 79 genes  linked to neuron death (GO ID: 0070997). Two pathways showed high 

statistical significance and enrichment ratio among these 95 genes, namely, constitutive signaling 

by AKT1 E17K in cancer (p-value = 5.94 × 10−7, odds ratio = 32.83) and intrinsic pathway for 

apoptosis (p-value = 6.94 × 10−7, odds ratio = 21.32 folds). A total of 10 novel interactors of HLHS 

candidates were found among these 95 genes (ITSN1, RHOA, NQO1, CTNNB1, TRAF2, 
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MAP3K5, PRPH, UBQLN2, UNC5B and FUS). Five of these novel interactors (ITSN1, RHOA, 

TRAF2, CTNNB1 and UNC5B) seemed to be involved in death receptor signaling/apoptosis, 

axon guidance/EPH-Ephrin signaling and/or developmental biology, and their novel PPIs with 

HLHS candidates were as follows (HLHS candidates are shown in bold): DSC2-ITSN1, AMT-

RHOA, CCR1-CTNNB1, TSC1-TRAF2 and OIT3-UNC5B. 
 

Figure 9. A partial network view of novel protein–protein interactions (PPIs) interconnecting hy- 

poplastic left heart syndrome (HLHS) genes with microcephaly-associated genes: Genes are shown as nodes 

and PPIs as edges. As the integrated HLHS and microcephaly interactome is very large, only a partial view 

incorporating genes that are involved in neuronal death processes and the novel interactors of HLHS-

associated genes/microcephaly-associated genes are shown. Legend—square-shaped dark blue nodes: 

HLHS-associated genes; square-shaped green nodes: microcephaly-associated genes; nodes with bold and 

italicized labels: genes involved in neuron death; red nodes/edges: novel interactors/interactions; light blue 

nodes/edges: known interactors/interactions. 

Genes in the HLHS interactome linked to neuronal death processes may serve as potential candidates 

for examining the genetic basis of microcephaly in HLHS patients and the increased prevalence of poor 

neurological outcomes in these patients. The intriguing link between neurodegenerative processes and HLHS 

is another result that warrants closer inspection especially in light of the recent finding that adults with 

congenital heart disease show an increased risk of dementia and early onset dementia, particularly amongst 

patients with complex lesions [47]. 

4. Discussion 

In this study, we adopted a protein interactome analysis approach to study HLHS- associated genes. 

The interactome analysis framework postulates that diseases develop when PPIs are perturbed by genetic 

mutations or aberrant expression of genes/proteins, ultimately leading to disrupted cellular functions [62]. 

Extensive interconnectivity and intraconnectivity of the network components in the PPI network suggest that 

the effects of such perturbations may spread to other proteins, encoded by genes that do not harbor any disease-

associated alterations, through the network of their interactions, posing deeper im- plications for disease 

development [62]. In this study, we assembled the HLHS interactome by supplementing previously known 

protein PPIs with computationally predicted PPIs, which are deemed accurate, and provided valuable 

insights into etiology through network and enrichment analysis. 
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We made the PPIs, including the novel PPIs, available on a searchable webserver to enable biologists 

to study the PPI of their interest (http://severus.dbmi.pitt.edu/wiki- HLHS, accessed on 7 January 2022). 

Our website provides advanced search capabilities, which allows a user to ask questions that will help 

generate testable hypotheses around individual PPIs. The full text of the PPIs and their annotations will 

also be indexed in internet search engines, so that biologists searching in Google, Bing, etc., will find this 

content. System-level analysis of the interactome with transcriptomic or proteomic data may help to 

identify its functional landscape. Investigation of individual PPIs will accelerate the understanding of disease 

biology by several years. 

More than 60% of the HLHS interactome, including 51% (38) of the HLHS-associated genes (or ‘core 

genes’ used for interactome construction), was composed of genes that are constitutively expressed in all the 

tissues (i.e., housekeeping genes). It has been reported that none of the HLHS-associated mutations harbored 

by the core genes were shared among the HLHS mutant mouse lines [12]. The preponderance of 

housekeeping genes among the core genes as well as the HLHS interactome as a whole could explain 

this genetic heterogeneity. The transmission of mutations in housekeeping genes may be stymied due to 

their roles in sustaining essential cellular functions, whose perturbation may result in lethality or reduction 

in reproductive fitness [1]. Although mutations in housekeeping genes are expected to give rise to 

phenotypes that affect multiple tissues, it is possible that they give rise to cardiac-restricted phenotypes 

due to complex regulatory influences stemming from epigenetic, epistatic and protein interactions. Further 

interactome-based investigations driven by this observation (i.e., the enrichment of housekeeping genes in the 

HLHS interactome) such as those examining vulnerability to network perturbations, and compensatory 

mechanisms counteracting them, may provide interesting insights. 

The HLHS interactome did not show statistically significant enrichment for specific ex- pression in any 

tissues, as can be expected from the over-enrichment of housekeeping genes in the interactome. However, three 

out of the six tissues that contained the greatest number of tissue-specific interactome genes have also been 

documented as sites of extracardiac anomalies in HLHS, namely, the placenta, liver and brain. Specifically, 

placental abnormalities have been noted in pregnancies that involved fetal HLHS [63]. Increased occurrence 

of hepatic necrosis has been noted among patients with infantile coarctation of the aorta and HLHS compared 

with patients having other cardiac defects (38% vs. 6%) [64]. The prevalence of brain abnormalities among 

HLHS neonates and survivors is well-documented [8,9]. The total number of tissue-elevated genes was highly 

variable among the six tissues that showed the largest overlaps with the HLHS interactome. For example, 2709, 

1987, 981, 593, 288 and 197 tissue-elevated genes were found in these tissues, i.e., brain, testis, liver, skin, 

placenta and lung, respectively, according to the Human Protein Atlas data [40]. Tissues showing a relatively 

lower number of tissue-elevated genes such as the placenta and lung, as well as those with a higher number 

of tissue-elevated genes such as the brain, testis, liver and skin, showed overlaps with HLHS interactome. 

Hence, the overlaps may not have been skewed in relation to the total number of tissue-elevated genes in the 

tissues. Nevertheless, these statistically non-significant results, which are derived from transcriptomic analysis 

of the human orthologs of mouse genes, must be interpreted with caution (and after further analysis) in the 

context of HLHS. 

We showed that the interactome of ciliopathy-associated genes shared a significant overlap with the 
HLHS interactome and that transcription regulation may be over-enriched among these common genes. The 

targets of transcription factors CREBP1 and ALX4 were identified to be significantly enriched among the 

shared genes. CREBP1 (also known as ATF2) has been shown to regulate the expression of five genes, 

namely, EP300 (an HLHS-associated gene sharing a direct interaction with the ciliopathy gene CRX), 

SUMO1 (a shared interactor having a novel PPI with the ciliopathy-associated gene MAK and a 

known PPI with the HLHS-associated gene NCOA1) and three known shared interactors of HLHS and 

ciliopathy genes (PRNP, SMAD3 and TBX6). ATF2 is involved in cardiomyocyte 

http://severus.dbmi.pitt.edu/wiki-HLHS
http://severus.dbmi.pitt.edu/wiki-HLHS
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differentiation [65]. Future studies could concentrate on the role played by ATF2 and its targets in the 

shared etiology of ciliopathies and HLHS. 

We also showed the preferential enrichment of genes involved in intellectual disability and/or 

developmental delay (ID/DD) among genes unique to the HLHS interactome and genes shared between 

the HLHS and ciliopathy interactomes (in comparison with genes unique to the ciliopathy interactome). 

This finding was in line with the observation of increased ciliopathy variant burden among HLHS patients 

with developmental delay [58]. Additionally, we provided a list of 19 direct novel PPIs between HLHS-

associated and ID/DD genes that may be biochemically validated.  For example, OGDH is an ID/DD 

gene that is critical to the tricarboxylic acid cycle and found in the mitochondrial matrix.     Loss of OGDH 
has been shown to lead to neurodegeneration [66]. This gene shows high expression in the left ventricle and 

in brain regions such as the olfactory bulb, hippocampus, cerebellum and pons [67]. This evidence supports 

OGDH as a potential candidate for future studies on the comorbidity of HLHS and ID/DD. 

We predicted five direct novel PPIs between HLHS- and microcephaly-associated genes. In 

addition, genes associated with HLHS and microcephaly share several common interactors that are 

significantly enriched for neuronal death pathways. This suggests a mechanistic basis for their 

comorbidity and the increased prevalence of neurological abnormalities among HLHS patients with 

microcephaly [60]. The over-representation of       neurodegenerative disease-associated genes and processes in 

the HLHS interactome should be investigated, with a focus on the potentially pleiotropic roles of the 

AKT1-mediated pathways and the intrinsic apoptotic pathway in HLHS and neurodegeneration. The ten 

direct PPIs between HLHS- and diabetes-associated genes can be used to examine their joint genetic basis 

and the increased risk of developing HLHS seen among infants born to diabetic mothers [46]. 

We studied the associations of ciliopathy and microcephaly to the HLHS interactome (on a case-by-case 

basis) because of their specific relevance to HLHS, namely, (a) increased burden of ciliopathy variants 

among HLHS patients with developmental delay [58] and 

(b) increased prevalence of neurological abnormalities among HLHS patients with microcephaly [60]. 

Further studies may be required to systematically compare the associations of all the phenotypes relevant 

to HLHS. Nevertheless, we constructed the interactomes of two other disorders that are comorbid with 

HLHS, namely, chronic kidney disease [68] and cardiovascular disease [69], and compared their overlaps 

with that exhibited by ciliopathy and microcephaly interactomes. The interactomes of 12 expert-curated 

chronic kidney disease (CKD)-associated genes and 43 cardiovascular disease (CVD)-associated genes 

compiled from DisGeNET (with a gene–disease association score > 0.2) showed statistically significant 

overlaps with the HLHS interactomes (p-values of 6.97 × 10−6 and 5.47 × 10−30). However, fewer genes 

were shared by the HLHS interactome with CKD (33 genes) and CVD (179 genes) interactomes in 

comparison with the ciliopathy (473 genes) and microcephaly (405 genes) interactomes. In summary, our study 

provides evidence for the utility of the HLHS interactome in investigating various HLHS comorbidities 

and the functional consequences of the genes harboring HLHS-associated mutations. These results will 

directly inform and catalyze future investigations on the molecular basis of HLHS and biomedical studies 

seeking to improve clinical interventions in HLHS. 

5. Conclusions 

Knowledge on the exact mechanistic basis of HLHS is limited despite a steady increase in the generation 

of CHD- and HLHS-related data. In this scenario, the HLHS interactome will serve as a functional landscape 

to integrate and analyze publicly available HLHS-related multi- omics data and generate new hypotheses that 

will allow biologists to prioritize pathways and drugs for experimental testing and the developmental of new 

avenues for therapeutic interventions. To facilitate analysis by both computational and biomedical 

scientists, the HLHS interactome is being released via an interactive webserver called Wiki-HLHS. 
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4. Novel malignant pleural mesothelioma interactome with 364 novel protein-protein 

interactions 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., Naveena Yanamala, Gregory Boyce, Michael J. Becich, and Madhavi 

K. Ganapathiraju. Malignant pleural mesothelioma interactome with 364 novel protein-protein 

interactions. Cancers 13, no. 7 (2021): 1660. 

 

Summary of this chapter 

 

In this chapter, I demonstrate how the interactomic framework was used to gain biological and 

clinically translatable insights into malignant pleural mesothelioma (MPM), an aggressive cancer 

affecting the pleural lining of the lungs. MPM has a median survival of ~1 year after diagnosis in the 

invasive phase, warranting the expeditious discovery of the underlying molecular mechanisms and 

therapeutics. I constructed the MPM interactome using genes that affect MPM through gene 

expression changes or genetic variants, or by being targeted by drugs clinically active against MPM, 

as the starting points, and assembling their experimentally determined and computationally predicted 

protein-protein interactions (PPIs), including five which were experimentally validated in this study. I 

demonstrated the biological validity of the MPM interactome through comparison with ten MPM-

related multi-omics datasets. This effectively showed how the interactome pieces together an 

integrated view of the functional links among MPM-associated genes from various studies. The 

interactome showed enrichment for cancer-related pathways. Further, I performed a comparative 

analysis of the differential expression profiles of lung cancer patients and the profiles induced by 

drugs targeting proteins in the MPM interactome and further downstream analyses to identify five 

repurposable drugs for MPM. Altogether, this study provided an integrative and mechanistic 

framework for the functional translation of MPM-related multi-omics data. 

 

Contribution to this chapter (75%) 

 

• Developed the methodology of the project, which included MPM interactome construction, 

validation, functional characterisation and drug repurposing analysis 

• Curated all the datasets, performed all the analyses (except for experimental validation of novel 

PPIs) and derived the conclusions 

• Conceptualised and wrote the manuscript and prepared all the figures (except for Fig. 3), tables, 

supplementary files and appendix
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Simple Summary: Internal organs like the heart and lungs, and body cavities like the thoracic and abdominal 

cavities, are covered by a thin, slippery layer called the mesothelium. Malignant pleural mesothelioma (MPM) 

is an aggressive cancer of the lining of the lung, where genetics and asbestos exposure play a role. It is not 

diagnosable until it becomes invasive, offering only a short survival time to the patient. To help understand 

the role of the genes that relate to this disease most of which are poorly understood, we constructed the ‘MPM 

interactome’, including in it the protein-protein interactions that we predicted computationally and those that 

are previously known in the literature. Five novel protein-protein interactions (PPIs) were tested and validated 

experimentally. 85.65% of the interactome is supported by genetic variant, transcriptomic, and proteomic 

evidence. Comparative transcriptome analysis revealed 5 repurposable drugs targeting the interactome 

proteins. We make the interactome available on a freely accessible web application, Wiki-MPM. 

 

Abstract: Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the 

lung, with a median survival of less than one year. We constructed an ‘MPM interactome’ with over 300 

computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-

curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from 

Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database 

(HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein 

pairs such as cellular localization, molecular function, biological process membership, genomic location of the 

gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-

interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The 

interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with 

normal pleura and with other thoracic tumors, genes whose high expression has been correlated with 

unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-

derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins 

are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-

associated versus drug-induced differential expression profiles, we identified five potentially repurposable 

drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may 

be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes 

is a powerful approach with high translational impact. It shows how MPM- associated genes identified by 

various high throughput studies are functionally linked, leading to clinically translatable results such as 

repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization 

and advanced search capabilities. 
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1. Introduction 

Internal organs such as heart and lung, and body cavities such as thoracic and abdominal cavities, 

are covered by a thin slippery layer of cells called the “mesothelium”. This protective layer prevents organ 

adhesion and plays a number of important roles in inflammation and tissue repair [1]. The mesothelia that 

line the heart, lung and abdominal cavity are called pericardium, pleura and peritoneum, respectively. 

Mesothelioma is the cancer that originates from this lining (described in detail in a recent review article 

[2]). Most types of mesothelioma metastasize to different locations in the body [3]. Pleural mesotheliomas 

account for ~90% of malignant mesotheliomas and have a short median survival, of less than 1 year [4]. 

Malignant pleural mesothelioma (MPM) is associated with exposure to asbestos;  it has a long 

latency period after exposure and is conclusively diagnosable only after reaching the invasive phase [3]. 

It tends to cluster in families and occurs only in a small fraction of the population exposed to asbestos, 

suggesting the involvement of a genetic component [5]. These factors necessitate expeditious discovery of 

genetic predispositions, molecular mechanisms and therapeutics for the disease. 

The molecular mechanisms of disease are often revealed by the protein-protein interactions (PPIs) of 
disease-associated genes. For example, the involvement of transcriptional deregulation in MPM pathogenesis 

was identified through mutations detected in BAP1 and its interactions with proteins such as HCF1, ASXL1, 

ASXL2, ANKRD1, FOXK1 and FOXK2 [6]. PPI of BAP1 with BRCA1 was central to understanding the role 

of BAP1 in growth-control pathways and cancer; BAP1 was suggested to play a role in BRCA1 stabiliza tion 

[7,8]. Studies on BAP1 and BRCA1 later led to clinical trials of the drug vinorelbine as a second line therapy 

for MPM patients, and the drug was shown to have rare or moderate effects in MPM patients [9,10]. BAP1 
expression was shown to be necessary for vinorelbine activity; 40% of MPM patients in a study showed low 

BRCA1 expression and vinorelbine resistance [11–13]. Further, 60% of the disease-associated missense 

mutations perturb PPIs in human genetic disorders [14]. 

Despite their importance, only about 10–15% of expected PPIs in the human protein interactome are 

currently known; for nearly half of the human proteins, not even a single PPI is currently known [15]. Due 

to the sheer number of PPIs remaining to be discovered in the human interactome, it becomes imperative 

that biological discovery be accelerated by computational and high-throughput biotechnological methods. 

We developed a computational model, called HiPPIP (high-precision protein-protein interaction 

prediction) that is deemed accurate by computational evaluations and experimental validations of 18 

predicted PPIs, where all the tested pairs were shown to be true PPIs ([16,17] and current work, and other 

unpublished works). HiPPIP computes features of protein pairs such as cellular localization, molecular 

function, biological process membership, genomic location of the gene, and gene expression in microarray 

experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest 

model [16]. Though each of the features by itself is not an indicator of an interaction, a machine learning 

model was able to use the combined features to make predictions with high precision. The threshold of HiPPIP 

to classify a protein-pair as “a PPI” was set high in such a way that it yields very high-precision 

predictions, even if low recall. Novel PPIs predicted using this model are making translational impact. For 

example, they highlighted the role of cilia and mitochondria in congenital heart disease [18,19], that 

oligoadenylate synthetase-like  protein (OASL) activates host response during viral infections through RIG-

I signaling via its PPI with retinoic acid-inducible gene I (RIG-I) [17], and led to the identification of drugs 
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potentially repurposable for schizophrenia [20], one of which is currently under clinical  trials. 

In this work, we studied MPM-associated genes and their PPIs assembled with HiPPIP and analyzed 

the MPM interactome to draw translatable results. We demonstrate the various ways in which systems-

level analysis of this interactome could lead to biologically insightful and clinically translatable results. We 

made the interactome available to the cancer biology research community on a webserver with 

comprehensive annotations, so as to accelerate biomedical research on MPM. 

2. Results 

We collected 62 MPM-associated genes from the Ingenuity Pathway Analysis (IPA) suite, which 

will be referred to as ‘MPM genes’ here; these genes have been reported to affect MPM through gene 

expression changes or genetic variants, or by being targeted by drugs clinically active against MPM (see 

details in Data File S1) [21]. Previously known PPIs of the 62 MPM genes were collected from Human 

Protein Reference Database (HPRD), version 9 [22] and Biological General Repository for Interaction 

Datasets (BioGRID) version 4.3.194 [23]. Novel (hitherto unknown) PPIs were predicted with HiPPIP, a 

computational model. We discovered 364 novel PPIs of MPM genes (Table 1), which are deemed highly 

accurate according to prior evaluation of the HiPPIP model including experimental validations [16]. The 

MPM interactome thus assembled has 2459 known PPIs and 364 novel PPIs among the 62 MPM-

associated genes and 1911 interactors (Figure 1 and Data File S2). Nearly half of the MPM genes had 10 

or less known PPIs each, and about 130 novel PPIs have been predicted for these (Figure 2). HiPPIP 

predicted 920 PPIs of which 556 PPIs were previously known, leaving 364 PPIs to be considered as novel 

PPIs of the MPM genes. There were an additional 1903 PPIs that are known and not predicted by HiPPIP. 

This is as expected because the HiPPIP prediction threshold has been fixed to achieve high precision by 

compromising recall, which is required for adoption into biology; in other words, it is set to predict only a 

few PPIs out of the hundreds of thousands of unknown PPIs, but those that are predicted will be highly 

accurate. It has to be noted that neither PPI prediction nor high throughput PPI screening can be 

performed with high-precision  and high-recall. Co-immunoprecipitation (Co-IP) based methods show high-

precision and extremely-low recall (detecting only one PPI at a time), whereas multi-screen high-quality yeast 

2-hybrid methods show high-precision with low recall (detecting a few tens of thousands of PPIs). Thus, 

HiPPIP is on par with other methods in terms of precision and the number of new PPIs detected. 18 novel 

PPIs predicted by HiPPIP were validated to be true (validations have been reported in [16,17], the current 

work and other unpublished works); the experiments were carried out by diverse research labs. 

 

Table 1. Novel Interactors of each of the malignant pleural mesothelioma (MPM) Genes: Number of 

known (K) and computationally predicted novel (N) protein-protein interactions (PPIs) and lists the novel 

interactors. Bold genes in the 4th column are Novel Interactors that were experimentally validated in the 

current study. 
 

Gene K N Novel Interactors 

ATP1B1 21 7 
HCRTR1, SERPINC1, TM4SF1, PRRX1, CD84, CREG1, 
THOC1 

ATIC 5 5 MAP3K7, CPS1, KIAA1524, VWC2L, DES 

ATXN1 287 5 CNOT6L, XPO7, C7, PITX3, RPL19 

BAP1 27 2 PLN, PARP3 

CDKN2A 168 5 NFX1, DNAI1, GLIPR2, SIT1, CA9 

17 10 
PLCL1, DCTD, SKP1, GLP1R, AOX1, CD28, ATP5G3, 

CLK1, BCS1L, CDC26 
CTLA4 
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Table 1. Cont. 
 

Gene K N Novel Interactors 

DHFR 10 7  
RHOQ, SCZD1, TOMM7, EXOC4, DTYMK, COPS8, 
CRHBP 

FGFR1 67 7  
ZFYVE1, NRG1, TPMT, OR51B4, SHB, PPP2CB, 
EIF4EBP1 

FGFR2 46 8 
PTPRE, OAT, PLXNA1, SEC23IP, MDM2, MGMT, 
PLSCR1, ELK4 

FGFR3 43 6 GRK4, GMPS, STK32B, IDUA, IRF2BPL, ADD1 

FLT1 25 8  
MIPEP, RASSF9, HMGB1, FLT3, LATS2, ALOX5AP, 
ARL2BP, CDK8 

FLT3 17 8 
FMO1, SNRPA1, PNPLA3, NFIB, GPR12, SHC1, FLT1, 
CDK8 

FLT4 16 4 NKX2-5, HNRNPH1, GRIA1, PNPLA8 

FOXO3 27 4 GPR6, HDAC2, PRDM13, SIM1 

GART 4 5 TIAM1, NMI, TMPRSS15, JUN, IFNAR1 

GIPR 2 0 None 

HLA-DQA1 9 6 HLA-DQA2, KLHDC3, TAL2, NXF1, BRD2, HLA-DPB1 

HSP90AA1 158 6 IGHA2, MED28, PHLDA2, TCIRG1, IGHD, USP13 

HSP90AB1 59 10 
SLC25A27, PENK, ZFP36L2, MTX2, TPSAB1, PROS1, 
GPRC5B, CCR7, GNPDA1, CETN3 

HSP90B1 36 2 MMP17, EPB41L4B 

IL4R 23 5 RBBP6, NPIPB5, SLC20A1, ERN2, HDGFRP3 

KAZN 12 6 KIF1B, NPPA, CELA2A, CELA2B, CTRC, FBLIM1 

KDR 60 8  
UTP3, SRP72, SHOX2, KIT, ALB, CACNA1S, CHIC2, 
GSTA2 

KRT5 25 10  
SORD, KRT6A, NADSYN1, SAP18, KRT7, TARBP2, 
KRT6B, KRT4, DCTN1, GPD1 

KRT72 19 8 
SP7, KRT78, KRT80, LARP4, MYL6B, KRT74, BCDIN3D, 
GRASP 

LCK 143 5 NCDN, ZSCAN20, YBX1, CITED4, CAMK1D 

LY6E 6 8 PIP, GLI4, HSF1, AKR1B1, EIF3H, JRK, GML, GPAA1 

LYN 125 12 
NEK7, SGK3, PDCD4, TRPA1, TERF1, PNMA2, IL7, 
CLCF1, AGXT, ARFGEF1, CRH, KLHL41 

NTRK2 34 3 NXNL2, KCNS1, CDK20 

PDCD1 2 3 COPS8, MCL1, OR6B3 

PDGFRA 64 4 SPOCK1, RAPGEF1, ALB, CD244 

PDGFRB 76 8 
PLAUR, TUFM, CDX1, CHRM3, FAXDC2, ITK, CDK14, 
MITF 

PDPN 2 5 PRDM2, PRMT1, ZBTB48, CELA2B, LHX1 

POLE 12 7 SCARB1, RAN, VSIG4, ULK1, EIF2B1, MMP17, NOS1 

POLE2 19 6 SAV1, PYGL, NID2, PARK7, DRD3, ATOH1 

POLE3 7 7 TNC, TRIM32, EIF4G2, ASTN2, GSN, CST3, ALAD 

POLE4 7 4 REG3G, SGOL1, EVA1A, B4GALT4 

PRR5 5 3 WNT7B, TTC38, SCUBE1 
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Table 1. Cont. 
 

Gene K N Novel Interactors 

   SLC22A18AS, SIRPA, SLC22A18, STIM1, SPINK1, 

RRM1 10 12 ZFPM2, SH2D3A, PSMD13, RNH1, NUP98, CUZD1, 

   RGS4 

RRM2 9 10 
TAF1B, ST3GAL3, NPBWR2, LPIN1, GCG, MGAT4A, 
BARX1, ASAP2, ITSN2, LAPTM4A 

SP1 146 5 HNRNPA1, REG1A, RAPGEF3, GRIN1, ENDOU 

SRC 300 9 
ZNF687, ENPP7, FMR1, PI3, PTPRT, CUL4B, DPYD, 
BARD1, PLTP 

TARP 1 4 TBX20, GGCT, IL6, CPVL 

TBCE 2 3 SERTAD3, EIF2B2, PRDM2 

TTF1 6 3 AMPH, DFNB31, QRFP 

TUBA1A 63 3 TUBA1C, AMHR2, ACVR1B 

TUBA1C 63 8 
PRKAG1, SHMT2, AMHR2, SCAF11, ACVR1B, AQP5, 
KMT2D, TUBA1A 

TUBA3C 12 3 XPO4, EIF3FP2, PARP4 

TUBA3D 1 6 
TUBA3E, WTH3DI, CCDC74B, FAM168B, LOC151121, 
IMP4 

   WNT6, ETV6, ATP5G3, CAPN2, CXCR1, SLC11A1, 

TUBA4A 51 14 CDK5R2, ALPP, IL1RL1, NUPR1, HPCA, SKP1, DPYSL2, 

   STK16 

TUBA8 7 2 POTEH, CCT8L2 

TUBB1 1 2 C20orf85, SLMO2 

TUBB2A 27 0 None 

TUBB3 34 6 PRDM7, SLC7A5, PIEZO1, MVD, TRAPPC2L, TCF25 

TUBB4A 10 7 
UQCR11, APC2, ABCA7, PLIN3, KDM4B, SBNO2, 
HMG20B 

TUBB4B 19 4 TSC1, NELFB, C9orf9, PTPRE 

TUBD1 1 6 TMED1, PTRH2, TRPV1, GJB3, EPX, RFX5 

TUBE1 0 6 DPAGT1, NUDC, RPS20, CDC40, GOPC, C6orf203 

TUBG1 28 6 WNT3, PHB, RND2, CTRL, SGCA, RARA 

TUBG2 3 3 NBR2, IKZF3, CLMP 

TYMS 3 9  
YES1, TAF3, ITGAM, NDUFV2, EPB41L3, SMCHD1, 
OCRL, THOC1, NAPG 

WT1 64 8  
FJX1, PEX3, CAPRIN1, PAX6, BST2, B3GNT3, CALML5, 
HIPK3 
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Figure 1. Malignant pleural mesothelioma (MPM) Protein-Protein Interactome: Network view of the MPM interactome is 

shown as a graph, where genes are shown as nodes and protein-protein interactions (PPIs) as edges connecting the nodes. MPM-

associated genes are shown as dark blue square-shaped nodes, novel interactors and known interactors as red and light blue colored 

circular nodes respectively. Red edges are the novel interactions, whereas blue edges are known interactions. 

 

Figure 2. Number of protein-protein interactions (PPIs) in the malignant pleural mesothelioma (MPM) Interactome: The  62 MPM 

genes are shown along the X-axis, arranged in ascending order of their number of known PPIs. Blue line, right-side axis: Number of 

known PPIs is shown. Red bars, left-side axis: Number of novel PPIs. 
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2.1. Experimental Validation of Selected Protein-Protein Interactions (PPIs) 

We carried out experimental validations of five predicted PPIs chosen for their biological relevance and 

proximity to MPM genes, namely, BAP1-PARP3, KDR-ALB, PDGFRA-ALB, CUTA-HMGB1 and CUTA-

CLPS. They were validated using protein pull-down followed by protein identification using mass 

spectrometry (Table S1) or size-based protein detection assay (Figure 3). Each bait protein was also paired with 

a random prey protein serving as control (specifically, BAP1-phospholambin, ALB-FGFR2 and CUTA-

FGFR2). All predicted PPIs were validated to be true, while control pairs tested negative. In addition to 

these five, another PPI from the MPM interactome, namely HMGB1-FLT1 was validated in our prior work 

through co-immunoprecipitation [16]. Three novel PPIs, namely HLA-DQA1— HLA-DQB1, FGFR2—FGF2 

and CDKN2A—CDKN2B, that we reported in the preprint of this work [24], have since been reported as 

known PPIs in a recent version of BioGRID (downloaded February 2021); these three are treated as known 

PPIs in the remaining description. 

 

 

 

Figure 3. Validation of predicted ALB interactions and CUTA interactions using Wes™ Simple West- ern 

total protein detection assay: Pseudo-gel or virtual-blot like image of the validated interactions of ALB (lanes 

1–2) and CUTA (lanes 4, 7) along with negative control (lane 3). In addition to the final pull-down samples, 

wash and/or flow through after binding ‘bait’ and ‘prey’ proteins for the CUTA interactions are also shown 

(lanes 5, 6, 8 and 9). The electropherogram image of Simple Western results using Total protein size-based 

assay. (A) ALB interactions with true positives KDR/VEGFR2, PDGFRA and false positive FGFR2. (B) 

CUTA interactions with HMGB1. (C) CUTA interactions with CLPS. An overlay of the electropherogram 

of the wash from HMGB1 after CUTA binding is also shown in (C) for comparison. 
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2.2. Functional Interactions of Malignant Pleural Mesothelioma (MPM) Genes with Predicted 
Novel Interactors 

We used ReactomeFIViz [25], a Cytoscape plugin, to extract known functional interactions 
between MPM-associated genes and their novel interactors. Seven novel PPIs had such functional 

interactions, namely (MPM genes are shown in bold), PDGFRB-RAPGEF1 (‘part of the same 

complex’, ‘bound by the same set of ligands’), SP1→HNRNPA1 (‘expression regulation’), HLA-

DQA1→HLA-DPB1, HLA-DQA2→HLA-DQA1 (‘part of the same complex’, ‘catalysis’), 

CTLA4-CD28, PDGFRB-PLAUR (‘bound by the same set of ligands’) and FGFR2-MDM2 

(‘ubiquitination’). 

2.3. Web Server 

We made the MPM interactome available on a webserver called Wiki-MPM (http: 

//severus.dbmi.pitt.edu/wiki-MPM). It has advanced-search capabilities, and presents comprehensive 

annotations, namely Gene Ontology, diseases, drugs and pathways, of the two proteins of each PPI side-

by-side. Here, a user can query for results such as “PPIs where one protein is involved in mesothelioma 

and the other is involved in immunity”, and then see the results with the functional details of the two 

proteins side-by-side. The PPIs and their annotations also get indexed in major search engines like Google 

and Bing; thus a user searching for ‘KDR and response to starvation’ would find the PPIs KDR-CAV1 

and KDR-ALB, where the interactors are each involved in ‘response to starvation’. Querying by biomedical 

associations is a unique feature which we developed in Wiki-Pi that presents known interactions of all 

human proteins [26]. Wiki-MPM is a specialized version for disseminating the MPM interactome with its novel 

PPIs, visualizations and browse features. The novel PPIs have a potential to accelerate biomedical discovery 

in mesothelioma and making them available on this web server brings them to the biologists in an easily-

discoverable and usable manner. Wiki-MPM will be integrated into the National Mesothelioma Virtual Bank 

[27,28], and will be available to the mesothelioma research community as part of our translational support of 

cancer research. 

2.4. Pathway Analysis 

We compiled the list of pathways that any of the proteins of MPM interactome are associated with, using 

Ingenuity Pathway Analysis suite [29]. Top 30 pathways by statistical significance of association are shown 

in Figure 4A. A number of pathways such as NF- κB signaling, PI3/AKT signaling, VEGF signaling and 

natural killer cell signaling, are highly relevant to mesothelioma etiology. They are found to be connected to 

MPM genes through novel PPIs that were previously unknown. For example, the PI3K/AKT signaling pathway 

regulating the cell cycle is aberrantly active in MPM, and the mesothelioma gene FGFR1 is connected to 

this pathway via its novel predicted PPIs with EIF4EBP1 and PRP2CB (Figure 4B) [30]. Statistical 

significance of association to the interactome, and various MPM genes and novel interactors belonging to 

these pathways are shown in Table 2 and Data File S3. A cancer biologist may utilize the Supplementary 

Data (Data Files S2 and S3) to study novel PPIs that connect MPM genes to a pathway that they are interested 

in studying. 

http://severus.dbmi.pitt.edu/wiki-MPM
http://severus.dbmi.pitt.edu/wiki-MPM
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Cancer 

1.58 ×  −10 

FGFR2, FGFR3, 

FLT4 

GRIN1, GRIA1 

RND2 

 

 

Table 2. Pathways that are relevant to the pathophysiology and genetics of malignant pleural mesothelioma: Pathway analysis 

revealed that molecular mechanisms underlying various types of cancers, axonal guidance signaling, PI3/AKT signaling, VEGF 

signaling, natural killer cell signaling and inflammation signaling pathways may be pertinent to the development of MPM. A 

list of all the associated pathways is shown in Data File S3. 

Pathway p-Value MPM Genes Novel Interactors 

Glucocorticoid Receptor Signaling 

 
Molecular Mechanisms of 

5.01 × 10
 

KRT72, HSP90B1, FGFR3, 
−56 HSP90AB1, FGFR1, KRT5, 

FOXO3, FGFR2, HSP90AA1 
 

53  CDKN2A, SRC, FGFR3, 

FGFR1, FGFR2 

FGFR1, LCK, FLT1, KDR, 

PDGFRA, 

KRT74, HMGB1, PRKAG1, IL6, 

KRT6B, KRT78, KRT80, KRT7, 

KRT4, TAF3, NPPA, MAP3K7, 

KRT6A 

CDK14, CDK20, CDKN2B, 

PRKAG1, WNT7B, RND2, WNT6, 

CDK8, RHOQ, RAPGEF3, 

MAP3K7, WNT3 

NF-κB Signaling 1.26 × 10−39
 FGFR2, NTRK2, FGFR3, PDGFRB, 

FLT4 
MAP3K7 

Small Cell Lung Cancer 

Signaling 
2.00 × 10−37 FGFR1, FGFR2, FGFR3 CDKN2B 

 
Axonal Guidance Signaling 2.51 × 10−37

 

TUBB1, TUBA1A, TUBA4A, 

TUBA8, TUBB2A, NTRK2, FGFR3, 

FGFR1, TUBB3, TUBG1, TUBA1C, 

TUBB4B, FGFR2, TUBB4A 

 

MYL6B, DPYSL2, PRKAG1, PLCL1, 

WNT7B, WNT6, PLXNA1, TUBA3E, 

WNT3 

PI3K/AKT Signaling 36  HSP90B1, FOXO3, 

HSP90AA1, HSP90AB1 

VEGF Signaling 3.98 × 10−36 FGFR1, FLT1, SRC, KDR,FOXO3, 

Role of Macrophages, 

OCRL, PPP2CB, MCL1, EIF4EBP1 

 
EIF2B1, EIF2B2 

IL1RL1, IL6, PLCL1, WNT7B, IL7, 

Fibroblasts and Endothelial 

Cells in Rheumatoid Arthritis 
6.31 × 10−36 SRC, FGFR3, FGFR1, FGFR2 WNT6, CALML5, MAP3K7, WNT3, 

APC2 

 
 

Natural Killer Cell Signaling 6.31 × 10−32 FGFR1, LCK, FGFR2, FGFR3 OCRL, CD244 

Actin Cytoskeleton Signaling 1.58 × 10−30 FGFR1, FGFR2, FGFR3 MYL6B, GSN, APC2 
 

FGFR1, FLT1, KDR, 

HSP90B1, 

eNOS Signaling 3.16 × 10−30
 FGFR2, HSP90AA1, FGFR3, FLT4, 

HSP90AB1 
PRKAG1, CALML5, AQP5, CHRM3 

Neuroinflammation Signaling 

Pathway 
3.98 × 10−30 FGFR1, HLA-DQA1, FGFR2, FGFR3 

HMGB1, HLA-DQB1, ACVR1B, 

IL6, 
FGFR1, TUBB3, TUBG1, TUBB1, 

Gap Junction Signaling 1.00 × 10−29
 

TUBA1C, TUBA1A, SRC, TUBB4B, 

TUBA4A, FGFR2, TUBA8, 

TUBB2A, FGFR3, SP1, TUBB4A 

GJB3, PRKAG1, TUBA3E, PLCL1, 

GRIA1 

 
 

Integrin Signaling 1.58 × 10−28 FGFR1, SRC, FGFR2, FGFR3 
GSN, ITGAM, RHOQ,CAPN2, 

IL-6 Signaling 1.58 × 10−28 FGFR1, FGFR2, FGFR3 IL1RL1, MCL1, IL6, MAP3K7 

6.13 × 10 

− 
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Figure 4. Pathways associated with malignant pleural mesothelioma (MPM) interactome: (A) Number of genes from MPM 

interactome associated with various pathways are shown. Top 30 pathways based on significance of association with the interactome 

are shown. (B) PI3K/AKT Signaling Pathway: Dark blue nodes are MPM genes, light blue nodes are known interactors and red 

nodes are novel interactors. Nodes with purple labels are genes involved in the PI3K/AKT signaling pathway. 

 

2.5. Potentially Repurposable Drugs 

We previously identified drugs potentially repurposable for schizophrenia through interactome analysis, 

and one of them is currently in clinical trials (ClinicalTrials.gov Identifier: NCT03794076) and another clinical 

trial has been funded and is yet to start [20]. Following this methodology, we constructed the MPM drug-

protein interactome that shows the drugs that target any protein in the MPM interactome. This analysis has 

been carried out on an earlier version of BioGRID (3.4.159), which had fewer known PPIs, as reported in the 

preprint version of the paper [24], and has not been recomputed with the latest version of BioGRID unlike 

the other analyses presented here. There are 513 unique drugs that target 206 of these proteins (of which 

28 are novel interactors that are targeted by 147 drugs) (Figure 5 and Data File S4). We adopted the established 

approach of comparing drug- induced versus disease-associated differential expression using the BaseSpace 

correlation software (previously called NextBio) [31,32], to identify five drugs that could be potentially 

repurposable for MPM (Table 3; the table also shows corresponding information for two known MPM drugs). 

These are: cabazitaxel, used in the treatment of refractory prostate cancer; primaquine and pyrimethamine, two 

anti-parasitic drugs; trimethoprim, an antibiotic; and gliclazide, an anti-diabetic drug (See Appendix A, titled 

‘Repurposable Drugs for Treatment of Malignant Pleural Mesothelioma’). The drugs were selected based on 

whether they induced a differential expression (DE) in genes that showed a negative correlation with 

lung cancer associated DE, and affected genes of high DE in MPM tumors/cell lines (GSE51024 [33] and 

GSE2549 [34]), or underwent prior clinical testing in lung cancer. Lung cancers share common pathways 

with mesothelioma initiated on asbestos exposure. Therefore, drugs targeting lung cancers can potentially be 

used in MPM [35]. Table 3 shows pharmacokinetic details of the drugs as reported in Drug Bank [36]. 
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Figure 5. Malignant pleural mesothelioma (MPM) Drug-Protein Interactome: The network shows the drugs (green color nodes) 

that target the proteins in the MPM interactome. Larger green nodes correspond to drugs that target the anatomic category 

‘antineoplastic and immunomodulating agents’. The color legend for genes (proteins) is as shown in Figure 1, with MPM genes in 

dark blue, their known interactors in light blue and novel interactors in red. 

 

Table 3. Pharmacokinetic details of known mesothelioma drugs and the drugs that are presented as candidates for repurposing. 

Known mesothelioma drugs are shown in bold italics. Score corresponds to scaled correlation score with lung cancer expression 

studies from BaseSpace (NextBio) analysis. 

Drug Name & Score Original Therapeutic Purpose(s) Delivery Half-Life Toxicity Targets 

Pemetrexed 
negative 79 

Chemotherapeutic drug for 
pleural mesothelioma and 
non-small cell lung cancer 

Chemotherapeutic drug for 

Powder for solution; 
3.5 h Data not available 

 

ATIC, DHFR, 

GART, TYMS 

MitoMycin 
negative 64 

 
 

 
Cabazitaxel 
negative 79 

breast, bladder, esophageal, 
stomach, pancreas, 

mesothelioma, lung and liver 
cancers 

 
 

Anti-neoplastic agent in 
hormone-refractory metastatic 

prostate cancer 

Injection, powder or 
lyophilized for solution; 

Intravenous 

 

 

 
Solution; Intravenous 

 

8–48 min 

 

 

Rapid initial-phase of 4 
min, 

intermediate-phase of  2 
h and prolonged 

terminal-phase of 95 h 

Nausea and 
vomiting 

 
 

Neutropenia, 
hypersensitivity 

reactions, 
gastrointestinal 
symptoms, renal 

failure 

 

 
 

 

 

 
TUBB1, TUBA4A 

Pyrimethamine 
negative 83 

Anti-parasitic agent in 
toxoplasmosis and acute malaria 

 

Tablet; Oral 4 days Data not available DHFR 

 
 

- 
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Table 3. Cont. 
 

Drug Name & Score Original Therapeutic Purpose(s) Delivery Half-Life Toxicity Targets 

 
Trimethoprim 

negative 63 

Anti-bacterial agent/antibiotic in 
urinary tract, respiratory tract and 

middle-ear infections and 
traveler’s diarrhea 

 

Tablet/solution; Oral 8 to 11 h 

 

Oral toxicity in 
mice 

at LD50 = 4850 mg/kg 

 

DHFR, TYMS 

Primaquine 
negative 71 

 

Anti-malarial agent Tablet; Oral 3.7 to 7.4 h Data not available KRT7 
 

Oral toxicity in 
mice 

at LD50 = 3000 mg/kg, 
accumulation in 

people with severe 

 

Gliclazide 
negative 56 

Anti-diabetic/hypoglycemic 
medication in type 2 diabetes 

mellitus 

 
Tablet; Oral 10.4 h 

hepatic and/or renal 
dysfunction, side-

effects of 
hypoglycemia 

including dizziness, 
lack of energy, 

drowsiness, 
headache and 

sweating 

 
VEGFA 

 
 

 

Although in each case, there would be some genes that are differentially expressed in the same 

direction for both the drug and the disorder (for e.g., both the drug and the disease cause some genes to 

overexpress), the overall effect on the entire transcriptome has an anti-correlation. A correlation score is 

generated based on the strength of the over lap between the drug and the disease datasets. Statistical criteria 

such as correction for multiple hypothesis testing are applied and the correlated datasets are then ranked 

by statistical significance. A numerical score of 100 is assigned to the most significant result, and the scores 

of the other results are normalized with respect to this top-ranked result. We excluded drugs with 

unacceptable toxicity (e.g., minocycline) or unsuitable pharmacokinetics. The final list comprised 15 

drugs, out of which 10 have already been tested against mesothelioma in clinical trials/animal models, and 

several of them were found to display clinical activity [37–53] (Table S2). Gemcitabine and pemetrexed 

are being used as first-line therapy for mesothelioma, in combination with cisplatin [45,53]. Ipilimumab 

has been identified to be a potential second-line or third-line therapy in combination with nivolumab [47]. 

Ixabepilone stabilizes cancer progression for up to 28 months [49].  Zoledronate, which showed modest 

activity in MPM, induced apoptosis and S-phase arrest in human mesothelioma cells and inhibited tumor 

growth in an orthotopic animal  model [54,55]. Sirolimus/cisplatin increased cell death and decreased cell 

proliferation in MPM cell lines [56]. α-Tocopheryl succinate increased the survival of orthotopic animal 

models of malignant peritoneal mesothelioma [57]. Pre-clinical testing of vitamin E and its analogs are in 

progress [58,59]. 

Primaquine targets KRT7, a novel interactor of KRT5, whose high expression has been cor- 

related with tumour aggressiveness and drug resistance in malignant mesothelioma [60–62].  Primaquine may 

be re-purposed for MPM treatment at least as an adjunctive drug with pemetrexed, the drug currently used 

for first-line therapy. Primaquine enhanced the sensitivity of the multi-drug resistant cell line KBV20C to 

cancer drugs [63]. Gliclazide is an anti-diabetic drug inhibiting VEGFA [64], a known interactor of KDR, 

and is significantly upregulated in MPM tumour (Log2FC = 1.83, p-value = 0.0018). Glicazide inhibits 

VEGF- mediated neovascularization [64]. High levels of VEGF have been correlated with both asbestos 

exposure in MPM and advanced cancer [65,66]. Glibenclamide, a drug with a 

similar mechanism of action as that of glicazide, increases caspase activity in MPM cell lines and primary 

cultures, leading to apoptosis mediated by TRAIL (TNF-related apoptosis inducing ligand) [67]. 

Eliminating those drugs which are being/have already been tested in mesothelioma with varying 

results, we arrived at a list of five potentially repurposable drugs in the descending order of negative 

correlation scores: pyrimethamine, cabazitaxel, primaquine, trimethoprim and gliclazide (Table 3). 

Cabazitaxel targets the MPM genes, TUBB1 and 
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TUBA4A, and was effective in treating non-small cell lung cancer (NSCLC) that was resistant to 

docetaxel, a drug that targets TUBB1 along with other known interactors of MPM genes [37]. 

Pyrimethamine and trimethoprim target the MPM gene TYMS involved in folate metabolism, which was 

found to be differentially expressed in MPM tumors (GSE51024 [33]) (log2FC = 1.82, p-value = 4.10     

10−17). MPM tumors have been shown to be responsive to anti-folates [68]. 

2.6. Analysis with Other High-Throughput Data 

This section describes the overlap of the MPM interactome with various types of MPM- related 

biological evidence. 1690 (85.65%) proteins in the interactome were supported by genetic variant, 

transcriptomic, and proteomic evidence, and are listed in Data File S5. Table 4 shows 48 novel interactors 

that had three or more pieces of biological evidence. 

Table 4. Novel interactors in the malignant pleural mesothelioma (MPM) interactome with biological evidences related to MPM. The 

table shows the following data in columns labeled A to F. (A) 48 novel interactors of MPM associated genes  that have been 

linked to four or more biological evidences related to MPM, namely, B1: high or medium gene expression in lungs, B2: 

differential gene expression in MPM tumor versus other thoracic tumors, B3: differential gene expression in MPM tumor versus 

normal adjacent pleural tissue, B4: differential gene expression in MPM tumors of epithelioid, biphasic and sarcomatoid types, 

B5: differential gene methylation in MPM, B6: gene expression correlated with unfavorable lung cancer prognosis, B7: differential 

gene expression on exposure to asbestos or asbestos-like particles, C: isolation as exosome-derived proteins from malignant 

mesothelioma cell lines, D: differential protein abundance levels in epithelioid and sarcomatoid types of malignant mesothelioma, 

and E: genetic variants in MPM. Last column, F, gives the total number of sources of evidences for each gene. The complete list 

of biological evidence for all the genes in the interactome can be found in Data File S5. 
 

A B C D E F 

Novel Interactor 
Differential Gene Expression Exosome-Derived Differential Genetic 

 

Total 

 

 
 

 

TNC yes yes yes yes yes yes 6 

CUL4B yes yes yes yes yes 5 

GMPS yes yes yes yes yes 5 

IL6 yes yes yes yes yes 5 

MGMT yes yes yes yes yes 5 

NFIB yes yes yes yes yes 5 

NUDC yes yes yes yes yes 5 

PLAUR yes yes yes yes yes 5 

PLIN3 yes yes yes yes yes 5 

PLXNA1 yes yes yes yes yes 5 

PRMT1 yes yes yes yes yes 5 

RNH1 yes yes yes yes yes 5 

SCARB1 yes yes yes yes yes 5 

SLC7A5 yes yes yes yes yes 5 

SMCHD1 yes yes yes yes yes 5 

ASAP2 yes yes yes yes 4 

B4GALT4 yes yes yes yes 4 

CAPN2 yes yes yes yes 4 

CDC40 yes yes yes yes 4 

DTYMK yes yes yes yes 4 

EIF3H yes yes yes yes 4 

EPB41L3 yes yes yes yes 4 
 

 B1 B2 B3 B4 B5 B6 B7 Proteins Protein Levels Variants 

CAPRIN1 

RAN 

yes 

yes 

yes 

yes 

yes 

yes 

 

G 

yes 

yes 

G 

G 

   yes yes 6 

yes yes 6 
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Table 4. Cont. 
 

A B C D E F 

Novel Interactor 
Differential Gene Expression Exosome-Derived Differential Genetic 

Total 

 

 
 

 

HNRNPA1 yes yes yes yes 4 

HNRNPH1 yes yes yes yes 4 

LARP4 yes yes yes yes 4 

MGAT4A yes yes yes yes 4 

MITF yes yes yes yes 4 

NDUFV2 yes yes yes yes 4 

OAT yes yes yes yes 4 

PHB yes yes yes yes 4 

PHLDA2 yes yes yes yes 4 

PLCL1 yes yes yes yes 4 

PRKAG1 yes yes yes yes 4 

PROS1 yes yes yes yes 4 

PTRH2 yes yes yes yes 4 

PYGL yes yes yes yes 4 

RBBP6 yes yes yes yes 4 

SEC23IP yes yes yes yes 4 

SGK3 yes yes yes yes 4 

SHMT2 yes yes yes yes 4 

SLC20A1 

TCIRG1 

 yes 

 yes 

 yes yes yes 4 

yes yes 4 

XPO4   yes yes yes yes 4 

YBX1 yes yes yes yes 4 

We compiled the list of genes harboring MPM-associated genetic variants from Bueno et al. [5], and 

compared this list with all the genes in the MPM interactome (i.e., MPM-associated genes, their 

known and novel interactors) to identify overlaps. 275 genes in the MPM interactome harbored 
either germline mutations, or somatic single nucleotide variants (SNVs) or indels (insertions or 

deletions) (Figure 6, Table 4 and Data File S5) associated with MPM tumors. Of these 275 genes, 

37 were novel interactors of MPM genes. MGMT carried germline mutations while the following 

carried somatic mutations: ASTN2, BARX1, BRD2, CALML5, CAPRIN1, CLK1, CPS1, DPYD, 

EIF3H, EPB41L3, GMPS, GPR12, ITGAM, KIAA1524, KMT2D, KRT4, MGAT4A, NBR2, 

NDUFV2, NFIB, NFX1, NUDC, PLCL1, PRDM2, PRKAG1, PRMT1, PTPRT, PTRH2, RBBP6, 

SGK3, SLC20A1, SMCHD1, SPOCK1, TMPRSS15, TNC and XPO4. Fourteen of these interact 

with MPM genes that also harbored a genetic variant (MPM genes are shown in bold): CDKN2A-

NFX1, FLT1-LATS2, TUBA3C-XPO4, PDGFRA-SPOCK1, TYMS-SMCHD1, TYMS-

EPB41L3, GART-TMPRSS15, TYMS-NDUFV2, TYMS-ITGAM, RRM2-BARX1, RRM2-

MGAT4A and ATIC-CPS1, ATIC-KIAA1524 and POLE-NOS1. 

 B1 B2 B3 B4 B5 B6 B7 Proteins Protein Leve ls Variants 

EXOC4 

GNPDA1 

yes 

yes 

yes 

yes 

 yes 

yes 

   yes 

yes 

4 

4 
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Figure 6. Genes with biological evidences in the malignant pleural mesothelioma (MPM) Protein-Protein Interactome: On the 

interactome network shown in Figure 1, various biological evidences of relation to malignant pleural mesothelioma (MPM) are 

shown as node border colors. Genes with variants associated with MPM have orange borders, genes with MPM/lung 

cancer/asbestos exposure-associated gene/protein expression changes have light green-colored borders and genes with black 

border have both genetic variants and gene/protein expression changes associated with them. The gene expression-associated 

features include differential expression in MPM tumors versus normal adjacent pleura, MPM tumors versus other thoracic tumors, 

differential gene methylation (affecting gene expression) in MPM tumors, gene expression correlated with unfavorable lung 

cancer prognosis, differential gene expression on exposure to asbestos or asbestos-like particles and high/medium expression in 

normal lungs. The protein expression-associated features include isolation as exosome-derived proteins from malignant 

mesothelioma cell lines and differential protein abundance levels in epithelioid and sarcomatoid types of malignant mesothelioma. 

The complete list of genes in the interactome and their corresponding evidence can be found in Data File S5. 

We collected the methylation profile of pleural mesothelioma [69], and found 8 novel interactors to be 

hypomethylated in pleural mesothelioma versus non-tumor pleural tissue, namely, ACVR1B, IL6, MGMT, 

NRG1, OAT, PHLDA2, PLAUR and TNC (Table S3). Some of them have little or no expression in lung 

tissue but are overexpressed in MPM. PLAUR is a prognostic biomarker of MPM [70]. Similarly, FGFR1 

and its novel interactor NRG1 had elevated mRNA expression in H2722 mesothelioma cell lines and in 

MPM tissue, both contributing to increased cell growth under tumorigenic conditions [71,72]. TNC, 

involved in invasive growth, is a prognostic biomarker overexpressed in MPM, having low expression in 

normal lung tissues [73,74]. Thus, these novel interactors, which are not normally expressed in lung 

tissue, may be hypomethylated in MPM leading to their overexpression, contributing to MPM etiology. 
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Three hundred and ninety three (393) genes in the MPM interactome were also differentially 

expressed in mesothelioma tumors versus normal pleural tissue adjacent to tumor (GSE12345 [75]) (p-

value of overlap = 9.525 × 10−19, odds ratio = 1.51). 52 out of the 314 novel interactors in the interactome 

were differentially expressed in this dataset (p-value = 0.046, odds ratio = 1.26). 938 genes, including 132 

novel interactors, in the inter- actome were found to be differentially expressed in MPM tumors of 

epithelioid, biphasic and sarcomatoid types versus paired normal tissues (GSE51024 [33]) (p-value of 

overlap = 1.415 ×10−18, odds ratio = 1.24). Genes with fold-change >2 or < 1/2 were considered as 

overexpressed and underexpressed, respectively, at a p-value < 0.05. Similarly, 744 genes in the MPM 

interactome were differentially expressed in MPM tumors versus other thoracic cancers such as thymoma and 

thyroid cancer (GSE42977 [76]) (p-value = 3.04 × 10−41, odds ratio = 1.53). 112 out of the 314 novel 

interactors in the interactome were differentially expressed in this dataset (p-value = 7.77 × 10−6, odds ratio = 

1.45). This shows that the MPM interactome is enriched with genes whose expression helps in distinguishing 

MPM from other thoracic tumors and also with genes differentially expressed in mesothelioma tumors versus 

normal pleural tissue (Figure 6 and Data File S5). From RNA-seq data in GTEx, we found that 1311 genes, 

including 189 novel interactors, in the interactome have high/medium expression in normal lung tissue (median 

transcripts-per-million (TPM) > 9) (Figure 6 and Data File S5) [77]. 

A recent study had examined the gene expression profiles from the lungs of mice ex posed to asbestos 

fibers (crocidolite and tremolite), an asbestiform fiber (erionite) and a mineral fiber (wollastonite) [78]. 

Crocidolite, tremolite and erionite are capable of inducing lung cancer and mesothelioma in humans and 

animal models [78]. On the other hand, wollas tonite is a low pathogenicity fiber that shows no association 

with the incidence of lung cancer and mesothelioma in humans, or carcinogenesis in animal models [79]. The 

MPM interactome showed significant enrichment with all the 4 fibers (Figure 6 and Data File S5). The highest 

statistical significance was shown for the human orthologs of the mouse genes that were differentially 

expressed upon crocidolite exposure (199 genes, p-value = 1.16 × 10−18, odds ratio = 1.88).  This was 

followed by tremolite (47 genes, p-value = 2.445 × 10−5, odds ratio = 1.87), wollastonite (16 genes, p-value 

= 0.0037, odds ratio = 2.09) and erionite (10 genes, p-value = 0.025, odds ratio = 2.01). Altogether, 245 

genes in the interactome, including 29 novel interactors, have transcriptomic evidence with respect to 

exposure to asbestos or asbestos-like fibers. These novel interactors are: ALB, B4GALT4, CAPN2, CDC40, DES, 

FMO1, FMR1, GML, GRIA1, HMG20B, HNRNPA1, ITSN2, LARP4, LPIN1, MGAT4A, NEK7, NFIB, 

NRG1, OCRL, PAX6, PDCD4, PITX3, PTRH2, REG3G, TAF1B, THOC1, TMED1, TNC and XPO4. 

From data in Pathology Atlas, we found that high expression of 73 genes, including that of 10 novel 

interactors, in the interactome has been positively correlated with unfavor- able prognosis for lung cancer (p-

value = 1.72 × 10−9, odds ratio = 2.05) [80]. These novel interactors are: SPOCK1, SLC7A5, SCARB1, PLIN3, 

PLAUR, PIEZO1, KRT6A, GJB3, B3GNT3 and ARL2BP. We predicted ARL2BP to interact with 

FLT1, a VEGF receptor expressed in MPM cells. VEGF level in MPM patients is a biomarker for 

unfavorable prognosis, and lung cancer tumors expressing FLT1 have been associated with poor prognosis 

[81,82]. 
Exosomes are extracellular vesicles secreted into the tumor microenvironment. They facilitate 

immunoregulation and metastasis by shuttling cellular cargo and directing inter- cellular communication. In 

a proteomic profiling study, 2176 proteins were identified in exosomes of at least one of the four human 

malignant mesothelioma cell lines (JO38, JU77, OLD1612 and LO68) [83]. 324 proteins in the MPM 

interactome appeared among these exosome-derived proteins (p-value = 8.86 × 10−10, odds ratio = 1.36), 

out of which 47 were novel interactors. Six hundred and thirty one (631) exosome-derived proteins were identi- 

fied in all four malignant mesothelioma cell lines. Out of these, 127 occurred in the MPM interactome (p-

value = 4.54 10−12, odds ratio = 1.84), out of which 15 were novel interac- tors (PRKAG1, HNRNPA1, 

HNRNPH1, SORD, RNH1, RAN, PYGL, SLC7A5, RPS20, PARP4, YBX1, DCTN1, TUFM, EXOC4 

and GNPDA1). In the following novel PPIs, both proteins 
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involved in the interaction appeared among exosome-derived proteins (MPM gene in the interaction 

is shown in bold): TUBB3-SLC7A5, HSP90AB1-PROS1, HSP90AB1-GNPDA1, TUBB4A-

PLIN3, LYN-ARFGEF1, HSP90AA1-PHLDA2, HSP90AA1-TCIRG1, TUBG1-PHB, GART-

NMI, SRC-CUL4B and ATIC-CPS1. 

We computed the overlap of the interactome with 142 proteins that showed significant differences in 

abundance levels between epithelioid and sarcomatoid types of diffuse malignant mesothelioma [84]. In that 

study, a Fourier transform infrared (FTIR) imaging approach was employed to identify pathologic regions 

from diffuse malignant mesothelioma tissue samples [84]. These pathologic regions were then harvested using 

laser capture         microdissection for proteomic analysis. 32 proteins in the interactome were more abundant in 

either epithelioid or sarcomatoid subtypes (p-value = 5.16 × 10−5, odds ratio = 2.06), including six novel 

interactors (p-value = 0.038, odds ratio = 2.43). The novel interactors KRT78, NDUFV2, PRMT1, RAN 

and RNH1—predicted to interact with the MPM genes KRT72, TYMS, PDPN, POLE and RRM1, 

respectively—had higher abundance in epithelioid samples, whereas IGHA2—predicted to interact with 

HSP90AA1—had higher abundance in sarcomatoid samples. The predicted interactions of these protein 

biomarkers with MPM- associated genes provide a mechanistic basis for experimental dissection of their 

ability to act as factors differentiating epithelioid tumors from sarcomatoid tumors (and vice versa). 

 

3. Discussion 

Currently, mesothelioma biologists only study a handful of genes, such as BAP1, CDKN2A and NF2. 

To shed light onto the other MPM-associated genes, whose functions remain poorly characterized, we 

assembled the ‘MPM interactome’ with ~2400 previously known PPIs and 364 computationally predicted 

PPIs (five of which have been validated in this work), which along with their biological annotations are 

being made available to researchers. We demonstrate the power of interactome-scale analyses to generate 

biologically insightful and clinically translatable results. The interactome has highly significant overlaps with 

MPM-associated genetic variants, genes differentially expressed or methylated in MPM or upon asbestos 

exposure, genes whose expression has been correlated with lung cancer prognosis, and with exosome-derived 

proteins in malignant mesothelioma cell lines. The interactome was enriched in cancer-related pathways. We 

extended the MPM interactome to include the drugs that target any of its proteins and analyzed it to identify a 

shortlist of 5 drugs that can potentially be repurposed for MPM—an example of a clinically translatable result. 

We validated in vitro five novel PPIs in the interactome, namely, BAP1-PARP3, ALB- KDR, 

ALB-PDGFRA, CUTA-HMGB1 and CUTA-CLPS. Literature evidence shows that these 
PPIs may be viable candidates for further experimentation in MPM cell lines or animal models. We 

hypothesize that the BAP1-PARP3 interaction may enhance cancer growth in MPM. BAP1 is a tumor 

suppressor protein playing a role in cell cycle progression, repair of DNA breaks, chromatin remodeling, 

and gene expression regulation; variants in BAP1 have been implicated in hereditary and sporadic 

mesothelioma [85]. PARP3 is involved in DNA repair, regulation of apoptosis, and maintenance of 

genomic stability and telomere integrity [86]. Interaction of BAP1 with BRCA1 has been shown to inhibit 

breast cancer growth [7]. In the absence of BRCA1 activity or with a perturbation in its interaction 

with BAP1, cancerous growth is enhanced [87]. Loss of BRCA1 protein expression has been noted in 

MPM [12]. In this scenario, it is possible that the novel interaction of BAP1 with PARP3 in cancerous 

cells may be promoting cancerous growth, possibly through regulation of DNA repair and apoptosis. 

BAP1 and PARP3 were found to be moderately overexpressed in sarcomatoid MPM tumors compared 

with normal pleural tissue (log2FC = 0.575, p-value = 0.028, and log2FC = 0.695, p-value = 0.0212, 

respectively) (GSE42977 [76]). Perturbation of the interaction of BAP1 with PARP3, using PARP3 
inhibitors, may then suppress cancerous growth, at least in sarcomatoid MPM. Several studies and clinical 

trials [87], have shown that PARP inhibitors influence cancers in which mutations in BRCA1 or BRCA2 
are observed, which led us to assume that the 
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cancerous growth-inhibiting interaction of BAP1 with BRCA1 may already be perturbed in this case, and that 

PARP inhibitors may actually be blocking the novel interaction of BAP1 with PARP3 which enhances cancer 

growth. It has been pointed out that upon inhibiting PARP activity, cancerous cells that lack BRCA1 or 

BRCA2 activity may undergo cell cycle arrest and apoptosis, possibly due to an accumulation of chromatid 

aberrations and an inability to perform DNA repair in the absence of BRCA [7,87]. Thus, we suspect that the 

novel interaction of BAP1 and PARP3 may also be perturbed by PARP inhibitors, leading to inhibition of 

cancer growth. 

Low levels of ALB have been correlated with poor prognosis in MPM patients [88]. The two MPM genes, 

KDR and PDGFRA, that ALB is predicted to interact with, are members of the PI3K/AKT pathway which 

has been shown to be aberrantly active in mesothelioma [89]. High expression of CUTA has been correlated 

with favorable prognosis in lung cancer (Pathology Atlas). It was found to be overexpressed in MPM 

tumors versus normal pleura (log2FC = 0.871, p-value = 0.0039) (GSE2549 [34]).  CLPS inhibits metastasis of 

the melanoma cell line, B16F10, to lungs by blocking the signaling pathway involving β1 integrin, FAK 

and paxillin [90]. CLPS has a novel interaction with NEDD9, which has been shown to mediate β1 

integrin signaling and promote metastasis of non-small lung cancer cells [91]. CD26, a cancer stem cell 

marker of malignant mesothelioma, has been shown to associate with the integrin α5β1 (or ITGA5, a novel 

interactor of the MPM gene, FGFR2) and promote cell migration and invasion in mesothelioma cells [91]. 

Another cancer stem cell marker of malignant mesothelioma, CD9, inhibits this metastatic effect mediated 

by CD26. Depletion of CD26 and CD9 was shown to respectively lead to decreased and increased 

expression of NEDD9 and FAK in mesothelioma cells lines, hinting at the involvement of NEDD9 in 

mesothelioma tumor invasiveness [91]. NEDD9 has a known interaction with LYN, an MPM gene, 

shown to play a negative role in the regulation of integrin signaling in neutrophils [92]. CUTA has a 

novel interaction with HMGB1, which has been shown to activate the integrin αMβ2 (or ITGAM, a novel 

interactor of the MPM gene, TYMS) and the cell adhesion and migratory function of neutrophils mediated 

by αMβ2 [93]. HMGB1 also has a novel interaction with the MPM gene, FLT1, shown to be involved in 

the migration of multiple myeloma cells by associating with β1 integrin, and mediating PKC activation [94]. 

A recent bioinformatics study identified the genes differentially expressed in epithelioid MPM tissues 

versus normal pleural tissues (GSE42977 [76]), and extracted the known PPIs interconnecting these genes 

from the STRING database [95]. They identified 10 hub genes from this network and shortlisted 31 drugs 

targeting the proteins in the network based on scores from the Drug-Gene Interaction Database (DGIdb). 

The DGIdb score takes into account the literature evidence for a particular drug-protein interaction, the 

number of proteins in the network that interact with the given drug, and the ratio of the average number 

of known protein interactors for all drugs compared to the number of known protein interactors for the 

given drug. CDK1, which is one of the hub genes identified in their study, is a known interactor of 

three MPM-associated genes, namely, LYN, SP1 and RRM2, and we showed that it has association to 

MPM in three omics datasets: high expression correlated with unfavorable lung cancer prognosis, 

differential expression in MPM tumors versus adjacent pleural tissue, and isolation as an exosome-derived 

protein in malignant mesothelioma cell lines. Our work overall presents a more comprehensive study in terms 

of a larger number of MPM genes analyzed, which were compiled from multiple sources by IPA, and 

analysis of a larger number of MPM associated omics data sets, and presents transcriptomic-driven 

shortlisting of repurposable drugs for which additional evidence is presented from clinical trial data, 

literature, and differential expression of target genes in MPM datasets. 

Our study provides an integrative and mechanistic framework for functional translation of 

mesothelioma-related multi-omics data. The novelty of our work stems from two key factors: (a) we present 

computationally predicted PPIs of high precision, which link MPM-related genes from disparate genetic-

variant / transcriptomic/proteomic studies in hitherto unknown ways within the functional landscape of the 

interactome, and (b) the 
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richly annotated MPM interactome is made available on a webserver to facilitate analysis by biologists and 

computational systems biologists. Our approach has some limitations. The drug-associated expression 

profiles analyzed in this study were induced in a diverse set of cell lines rather than in mesothelioma cell 

lines. The effect of the proposed drugs should be examined in MPM cell lines or animal models. We 

reported the overlap of mouse genes differentially expressed upon asbestos exposure [78] with 

corresponding human orthologs in the interactome. Mouse models have been routinely used to study 

pathologic changes associated with asbestos exposure, including gene expression, and these findings have 

been extrapolated to human diseases such as mesothelioma [96–99]. Nevertheless, our results should be 

interpreted with caution. It is not possible to draw direct transcriptomic/proteomic/phenotypic 

equivalences between mice and humans, unless these levels are comprehensively characterized in both 

the species, and a clear equivalence of factors defining a condition such as asbestos exposure is 

demonstrated in both the species [100]. Next, it is beyond the scope of our expertise to validate the large 

number of computationally predicted PPIs in a tissue or cell line of interest. However, we demonstrated 

the validity of computational predictions on a small number of PPIs on purified proteins with appropriate 

controls. The computational model has also been validated through additional experiments previously; 

some of the novel PPIs predicted previously by our method have translated into results of biomedical 

significance [17–19]. 

 

4. Methods 

4.1. Data Collection 

A search using the keyword “malignant pleural mesothelioma” on IPA (Ingenuity Pathway 

Analysis) retrieved genes causally related to the disease. IPA retrieves genes from the Ingenuity Knowledge 

Base which has ~5 million experimental findings expert-curated from biomedical literature or incorporated 

from other databases [29]. 

4.2. High-Precision Protein-Protein Interaction Prediction (HiPPIP) Model 

PPIs were predicted by computing features of protein pairs, namely, cellular localiza- tion, molecular 

function and biological process membership, genomic location of the gene, gene expression from microarray 

experiments, protein domains and tissue membership of proteins, as described in Thahir et al. [101], and 

developing a random forest model to classify the pairwise features as interacting or non-interacting. A 

random forest with 30 trees was trained using the feature offering maximum information gain out of four 

random features to split each node; minimum number of samples in each leaf node was set to be 10. The 

random forest outputs a continuous valued score in the range of [0,1]. The threshold to assign a final label 

was varied over the range of the score for positive class (i.e., 0 to 1) to find the precision and recall 

combinations that are observed. 

4.3. Evaluation of PPI Prediction Model 

Evaluations on a held-out test data showed a precision of 97.5% and a recall of 5% at a threshold of 

0.75 on the output score. Next, we created ranked lists for each of the hub genes (i.e., genes that had >50 

known PPIs), where we considered all pairs that received a score >0.5 to be novel interactions. The 

predicted interactions of each of the hub genes are arranged in descending order of the prediction score, 

and precision versus recall is computed by varying the threshold of predicted score from 1 to 0. Next, by 

scanning these ranked lists from top to bottom, the number of true positives versus false positives was 

computed. 

4.4. Novel PPIs in the MPM Interactome 

Each MPM gene, say Z, is paired with each of the other human genes (G1, G2 . . . GN), and each pair 

is evaluated with the HiPPIP model. The predicted interactions of each of the MPM genes (namely, the pairs 

whose score is >0.5) were extracted. These PPIs, combined 
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with the previously known PPIs of MPM genes collectively form the ‘MPM interactome’. Interactome 

figures were created using Cytoscape [102]. 

Note that 0.5 is the threshold chosen not because it is the midpoint between the two classes, but because 

the evaluations with hub proteins showed that the pairs that received a score >0.5 are highly confident to be 

interacting pairs. This was further validated through experiments for a few novel PPIs above this score. 

4.5. Previously Known PPIs in the MPM Interactome 

Previously known PPIs of the 62 MPM genes were collected from Human Protein Reference 

Database (HPRD) version 9 [22] and Biological General Repository for Interaction Datasets (BioGRID) 

version 4.3.194 [23]. The data behind our web-server will be updated once in a year with recent versions of 

BioGRID, and if novel PPIs are shown validated by such updates to known PPIs, the information will be 

posted on the web-server. 

4.6. In Vitro Pull-Down Assays 

An initial screening to find physical interactions was performed using an in vitro pull- down assay for 

some of the predicted novel PPIs. This technique utilizes a His/biotin tag- fused protein immobilized on an 

affinity column as the bait protein and a passing-through solution containing the ‘prey’ protein that binds to 

the ‘bait’ protein. The subsequent elution will pull down both the target (prey) and tagged-protein (bait) 

for further analysis by immunoblotting to confirm the predicted interactions. The pull-down assays were 

conducted using the Pull-Down PolyHis Protein:Protein Interaction Kit (Pierce™
, Rockford, IL, USA) 

according to the manufacturer’s instructions. 

4.7. Protein Identification Methods 

Peptide sequencing experiments were performed using an EASY-nLC 1000 coupled to a Q Exactive 

Orbitrap Mass Spectrometer (Thermo Scientific, San Jose, CA, USA) operating in positive ion mode. An 

EasySpray C18 column (2 µm particle size, 75 µm diameter by 15 cm length) was loaded with 500 ng of 

protein digest in 22 µL of solvent A (water, 0.1% formic acid) at a pressure of 800 bar. Separations were 

performed using a linear gradient ramping from 5% solvent B (75% acetonitrile, 25% water, 0.1% formic acid) 

to 30% solvent B over 120 min, flowing at 300 nL/min. 

The mass spectrometer was operated in data-dependent acquisition mode. Precursor scans were acquired 

at 70,000 resolution over 300–1750 m/z mass range (3e6 AGC target, 20 ms maximum injection time). 

Tandem MS spectra were acquired using HCD of the top 10 most abundant precursor ions at 17,500 

resolution (NCE 28, 1e5 AGC target, 60 ms maximum injection time, 2.0 m/z isolation window). Charge states 

1, 6–8 and higher were excluded for fragmentation and dynamic exclusion was set to 20.0 s. 

Mass spectra were searched for peptide identifications using Proteome Discoverer 2.1 (Thermo 

Scientific, Waltham, MA, USA) using the Sequest HT and MSAmanda algorithms, peptide spectral matches 

were validated using Percolator (target FDR 1%). Initial searches were performed against the complete UniProt 

database (downloaded 19 March 2018). Pep- tide matches were restricted to 10 ppm MS1 tolerance, 20 mmu 

MS2 tolerance, and 2 missed tryptic cleavages. Fixed modifications were limited to cysteine 

carbamidomethylation, and dynamic modifications were methionine oxidation and protein N-terminal 

acetylation. Peptide and protein grouping and results validation was performed using Scaffold 4.8.4 

(Proteome Software, Portland, OR, USA) along with the X! Tandem algorithm against the previously 

described database. Proteins were filtered using a 99% FDR threshold. 

4.8. Ingenuity Pathway Analysis 

Pathway associations of genes in the MPM interactome were computed using Ingenuity Pathway 

Analysis (IPA). Statistical significance of the overlaps between genes in the MPM interactome and 

pathways in the Ingenuity Knowledge Base (IKB) was computed with Fisher’s exact test based on 

hypergeometric distribution. In this method, p-value is 
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computed from the probability of k successes in n draws (without replacement) from a finite population 

of size N containing exactly k objects with an interesting feature, where N = total number of genes 

associated with pathways in IKB, K = number of genes associated with a particular pathway in IKB, n = 

number of genes in the MPM interactome and k = K n. This value was further adjusted for multiple 

hypothesis correction using the Benjamini-Hochberg procedure. 

 
4.9. Analysis of Differential Gene Expression in Pleural Mesothelioma Tumors and Lungs of 
Asbestos-Exposed Mice Versus Normal Tissue in Lungs 

The overlap of the MPM interactome with genes differentially expressed in pleural mesothelioma 

tumors compared with normal pleural tissue adjacent to mesothelioma was computed using the dataset 

GSE12345 [75]. Genes differentially expressed in the lungs of mice exposed to crocidolite and erionite 

fibers were obtained from the dataset GSE100900 [78]. Genes with fold change >2 or 1/2 were considered 

as significantly overexpressed and underexpressed respectively at p-value < 0.05. 

4.10. Analysis of DNA Methylation in MPM Tumors 

The dataset GSE16559 [69] was used to analyze the methylation profile of pleural mesotheliomas. 

In this study, genes found to be differentially methylated in mesothelioma were identified from a set of 773 

cancer-related genes associated with 1413 autosomal CpG loci. Methylation values (M-values) were computed 

as M = log2 (β (1 β)) for both control (non-tumor pleural tissue) and test (pleural mesothelioma) cases, where 

β is the ratio of methylated probe intensity and overall intensity. Difference between M-values of test and 

control cases was then computed, and genes with M-value > 1 and M-value < 1 were considered to be 

hypermethylated and hypomethylated respectively at p-value < 0.05. 

4.11. Correlating Expression of MPM Genes with Lung Cancer Prognosis 

Data for correlation of gene expression and fraction of patient population surviving after treatment 

for lung cancer was taken from the Pathology Atlas [80]. Genes with log- rank p-value < 0.001 were 

considered to be prognostic. Unfavorable prognosis indicates positive correlation of high gene expression 

with reduced patient survival. 

4.12. Identification of Repurposable Drugs in the MPM Drug-Protein Interactome 

Negative correlation between lung cancer and drugs were studied using the BaseSpace correlation 

software, which uses a non-parametric rank-based approach to compute the extent of enrichment of a 

particular set of genes (or ‘bioset’) in another set of genes [31]. Readers may refer to Appendix A, titled 

‘Repurposable Drugs for Treatment of Malignant Pleural Mesothelioma (MPM)’ for more details on the 

methodology used to identify         repurposable drugs. 

5. Conclusions 

Biomedical discovery in the field of MPM research has to be accelerated to fuel clinically translatable 

results due to an urgent need to diagnose MPM preemptively, prevent its post-treatment recurrence, and curb 

its predicted increase in incidence in western and economically emerging nations [103]. In this study, we 

presented the MPM interactome as a valuable resource for mesothelioma biologists. We demonstrated its 

biological validity through comparison with MPM-related multi-omics data, which served to 

contextualize the novel PPIs within the mesothelioma landscape. Making novel MPM PPIs available 

freely on a webserver will catalyze investigations into these by cancer biologists and may lead to 

biologically or clinically translatable results. The MPM interactome with disease- associated proteins and 

their interacting partners will help biologists, bioinformaticians and clinicians to piece together an 

integrated view on how MPM-associated genes from various studies are functionally linked. Biological 

insights from this ‘systems-level’ view  will help generate testable hypotheses and clinically translatable 

results. Future work 
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will focus on expanding this interactome by including interactions from additional PPI repositories, other 

mesothelioma types and mesothelioma datasets. 
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Appendix A Repurposable Drugs for Treatment of Malignant Pleural Mesothelioma (MPM) 

We present here five drugs (cabazitaxel, pyrimethamine, trimethoprim, primaquine and glicazide) that 

could potentially be repurposed for the treatment of malignant pleural mesothelioma (MPM). These drugs 

were shortlisted through three types of analysis: (A) considering those that were already tested in non-

small cell lung cancer (NSCLC), (B) gene expression analysis of drugs that target MPM genes or novel 

interactors in the MPM interactome, or (C) gene expression analysis of drugs that target known interactors 

in the malignant pleural mesothelioma (MPM) interactome. Drugs were selected based on whether they 

were already tested against lung cancer in clinical trials and/or showed overall negative correlation with 

lung cancer expression studies, because both mesothelioma and lung cancers have been shown to share 

common pathways that are initiated on exposure to asbestos fibres in mesothelial cells and lung epithelial 

cells respectively [35]. 

https://www.mdpi.com/article/10.3390/cancers13071660/s1
https://www.mdpi.com/article/10.3390/cancers13071660/s1
http://severus.dbmi.pitt.edu/wiki-MPM
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Another criterion used was whether the genes targeted by the drugs showed high differential expression in 

MPM tumours/cell lines. The details of these methods and observations are presented below. 

 

Appendix A.1 Repurposable Drugs Already Tested in Non-Small Cell Lung Cancer 

Nine overlapping drugs were found between drugs tested in NSCLC and drugs occurring in the 

MPM drug-protein interactome, that were negatively correlated with lung cancer expression studies, 

namely, cabazitaxel, dasatinib, docetaxel, gemcitabine, ipilimumab, ixabepilone, minocycline, pazopanib 

and pemetrexed. Minocycline was eliminated due to its toxicity. All of the remaining eight drugs were found 

to be effective in treatment of NSCLC (Table S2). Out of these eight drugs, cabazitaxel was the only drug 

that was not tested for treatment of mesothelioma. The fact that the other seven drugs were already tested 

against mesothelioma in clinical trials demonstrates the validity of our approach. It was interesting to note that 

drugs that targeted known interactors in addition to some MPM genes were found to have either no effect 

or limited clinical activity in mesothelioma, for e.g., dasatinib, docetaxel and pazopanib. On the other 

hand, drugs that targeted only MPM genes were found to be effective in treatment of mesothelioma or were 

capable of preventing disease progression, for e.g., gemcitabine, ipilimumab, ixabepilone and pemetrexed. 

This raises the suspicion that drugs that do not act on “off-target” genes (known interactors, in this case) 

may be more effective. In this respect, cabazitaxel, which targets the MPM genes TUBB1 and TUBA4A, may 

be a suitable candidate for mesothelioma. Cabazitaxel was found to be effective in treatment of NSCLC 

resistant to docetaxel, a drug that targets TUBB1 and other known interactors [37]. 

Appendix A.2 Repurposable Drugs Targeting MPM Genes and Novel Interactors 

The MPM genes that were most differentially expressed with high significance in MPM tumors 

(GSE51024 [33]) were TYMS (log2FC = 1.82, p-value = 4.10 × 10−17) and DHFR (log2FC = 0.89, p-

value = 1.20 × 10−14), and the drugs that target these genes (also having   negative correlation with lung 

cancer expression) were pyrimethamine and trimethoprim. The first line drug currently used to treat 

mesothelioma is premetrexed, which targets proteins in the folate metabolic pathway, namely, DHFR, 

TYMS and GART [104]. Since MPM tumors have been shown to be responsive to anti-folates [68], both 

pyrimethamine (which targets only DHFR) and trimethoprim (which targets both DHFR and TYMS), seem 

to be interesting candidates. Pyrimethamine, an anti-parasitic drug commonly used to treat toxoplasmosis 

and cystoisosporiasis, has shown anti-tumor activity in metastatic melanoma cells and in murine models 

of breast cancer [105,106]. Trimethoprim, an anti- bacterial drug commonly used in the treatment of 

urinary bladder and respiratory tract infections, is also used to treat bacterial infections in cancer patients 

[107,108]. 

Keratin proteins form important components of the cell cytoskeleton, called intermediate filaments, in 

epithelial cells, and are commonly used as diagnostic markers in cancer [60]. In addition to their role as cancer 

markers, their involvement in cellular functions such as cell motility, proliferation, cell polarity, protein 

synthesis, membrane trafficking and most importantly, tumour invasion and metastasis make them attractive 

as candidates for drug development [60]. KRT7 is a keratin primarily expressed in mesothelial cells, apart 

from cells lining ducts and the intestine [60]. In a patient with malignant mesothelioma of the epithelioid 

type (which spreads to mediastinum and breast), KRT7 was found to be significantly overexpressed when 

she developed resistance to pemetrexed/carboplatin, provided as a second line therapy [61]. The cancer 

cells showed a drastic increase in their immunoreactivity to CK7, the protein encoded by KRT7 [61]. At 

the last stage of cancer progression (which was followed by her death), the patient showed dyspnoea 

(difficulty in breathing), increased tumour volume and pleural fluid [61]. In another case, KRT7 was found be 

significantly overexpressed in an aggressive state of MPM, prior to treatment [61]. Two-thirds of malignant 

mesothelioma cases have been reported to be K7+/K20− (pos- itive for expression of KRT7 and negative 

for expression of KRT20) [60]. Expression of 
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KRT7 in three histological types of mesothelioma, namely, epithelioid, sarcomatid and biphasic, has been 

used to distinguish them from synovial sarcoma that metastasizes to the lungs and pleura [62]. KRT7 

has been identified as marker of circulating tumour cells in lung cancer [109]. KRT7 was also found to be 

significantly upregulated in MPM tumours (log2FC = 3.80, p-value = 0.0002), and in cell line models of MPM 

(log2FC = 2.266, p-value = 0.029) (GSE2549 [34]). Positive expression of KRT7 was noted in various types 

of non-small cell lung cancers, including large cell neuroendocrine carcinoma and lung adenocarcinoma 

[110,111]. In the MPM interactome, KRT7 was predicted to interact with KRT5, an MPM gene that serves as 

a marker for malignant mesothelioma, along with vimentin, and is specifically used to distinguish pleural 

mesothelioma of the epithelioid type from pulmonary adenocarcinoma and non-pulmonary adenocarcinoma 

metastasizing to pleura [60,112]. KRT7 is a target of primaquine, an-antimalarial agent known to destroy the 

malarial parasites, Plasmodium vivax and Plasmodium ovale, inside the liver [113,114]. The exact mechanism 

of action has not been elucidated for this drug. However, in independent studies, primaquine has been shown 

to bind to keratin in a concentration-dependent manner, and also mediate strong membrane perturbations in 

cell membrane models [113,115]. Since high expression of KRT7 has been shown to be related to tumour 

aggressiveness and drug resistance in malignant mesothelioma, and its high expression was also noted in MPM 

tumours and cell lines, primaquine may be re-purposed for treatment of MPM at least as an adjunctive drug 

with pemetrexed, the drug currently used for first line therapy. It is interesting to note that primaquine 

enhanced the sensitivity of KBV20C cells to cancer drugs, namely, vinblastine, vinorelbine, paclitaxel, 

docetaxel, vincristine and halaven [63]. KVB20C is a multi-drug resistant cell line derived from oral squamous 

carcinoma. Primaquine compounds (substituted quinolines) have also been shown to exert anti-tumor activity 

in breast cancer cells [116]. 

 

Appendix A.3 Repurposable Drugs Targeting Known Interactors 

Out of the four drugs targeting known interactors in the MPM interactome and showing negative 

correlation with lung cancer associated gene expression, three drugs were al- ready known to exhibit anti-

tumour activity in pre-clinical models of mesothelioma, namely, zoledronate, sirolimus and the vitamin E 

analog, alpha-tocopheryl succinate, which shows the validity of our approach. Zoledronate, which showed 

modest activity in MPM, induced apoptosis and S-phase arrest in human mesothelioma cells and inhibited 

tumor growth in the pleural cavity of an orthotopic animal model [54,55]. Sirolimus/cisplatin increased cell 

death and decreased cell proliferation in cell lines of MPM [56]. Alpha-tocopheryl succinate increased survival 

of orthotopic animal models of malignant peritoneal mesothelioma [57]. Zoledronate has demonstrated modest 

clinical activity in patients with advanced MPM [54]. Sirolimus has not been tested against MPM in clinical 

trials, but everolimus, a drug derived from sirolimus sharing similar properties with it, has shown only 

limited clinical activity in MPM, and further testing as a single-agent was not advised based on the results 

from this study [117]. Both vitamin E and its analog, alpha-tocopheryl succinate have not been tested 

against MPM in clinical trials. However, testing of vitamin E and its analogs are being carried out in 

various pre-clinical settings [58,59]. Hence, it was the drug gliclazide that emerged as a potentially 

repurposable drug, untested against MPM. 

Gliclazide, an anti-diabetic drug, inhibits VEGFA, which has been shown to be significantly upregulated 

(Log2FC = 1.83, p-value = 0.0018) in MPM tumour (GSE2549 [34]). This 

drug inhibits VEGF expression induced by advanced glycation end products in bovine reticular 

endothelial cells, and VEGF expression induced by ischemia in retinal tissue of mice [64,118]. In the 

latter case, glicazide also inhibits neovascularization, a process known to be mediated by VEGF. VEGF 

has been identified as a prognostic marker for MPM. High levels of VEGF have been correlated with 

both asbestos exposure in MPM, and an advanced stage of the disease [65,66]. It is interesting to note that 

glibenclamide, a drug whose mechanism of action is similar to that of glicazide, has been shown to increase 

caspase activity in MPM cell lines and primary cultures, leading to apoptosis mediated by 
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TNF-related apoptosis inducing ligand (TRAIL) [67]. Hence, glicazide may be repurposed to inhibit 

neovascularization and perhaps enhance apoptosis in MPM. 
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5. Malignant peritoneal mesothelioma interactome with 417 novel protein-protein interactions 

 

The experimental chapter is based on the following pre-print publication: 

Karunakaran, Kalyani B., and Madhavi K. Ganapathiraju. Malignant peritoneal mesothelioma 

interactome with 417 novel protein-protein interactions. Research Square (2021).  

 

Summary of this chapter 

 

In this chapter, I demonstrate how the interactomic framework was used to gain biological and 

clinically translatable insights into malignant peritoneal mesothelioma (MPeM). MPeM is a 

mesothelioma subtype affecting the peritoneal lining of the abdominal cavity and intra-abdominal 

organs and having a median survival of ~2.5 years. To understand its underlying molecular 

mechanisms, I constructed the MPeM interactome using genes that showed genetic aberrations in 

MPeM or expression changes correlated with MPeM prognosis or drug response. I assembled their 

experimentally determined and computationally predicted protein-protein interactions (PPIs). I 

demonstrated the biological validity of the interactome by showing that MPeM-related transcriptomic 

evidence supports ~76% of the constituent genes. I identified functional gene modules and 

interactome genes highly expressed in extramedullary hematopoiesis sites and genes correlated with 

unfavourable prognosis in various cancers, all of which are predicted to have functional 

consequences for MPeM. I further showed the extensive overlap shared by the MPeM interactome 

with the malignant pleural mesothelioma (MPM) interactome (described in chapter 4) and MPM cell 

line expression profiles. Lastly, I performed a comparative analysis of peritoneal mesothelioma-

associated and drug-induced gene expression profiles and identified 29 repurposable drugs for 

MPeM. In summary, this study provided valuable insights into MPeM biology and helped identify 

potentially repurposable drugs, such as irinotecan, paclitaxel and sirolimus. 

 

Contribution to this chapter (90%) 

 

• Developed the methodology of the project, which included MPeM interactome construction, 

validation, functional characterisation intersection analysis with MPM interactome and drug 

repurposing analysis 

• Curated all the datasets, performed all the analyses and derived the conclusions 

• Conceptualised and wrote the manuscript and prepared all the figures, tables and supplementary 

files
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Abstract 

Malignant peritoneal mesothelioma (MPeM) is an aggressive cancer affecting the abdominal peritoneal lining 

and intra-abdominal organs, with a median survival of ~2.5 years. We constructed an ‘MPeM interactome’ with 

over 400 computationally predicted protein-protein interactions (PPIs) and over 4,700 known PPIs of 59 

literature-curated genes whose activity affects MPeM. The interactome integrated known PPIs of these genes 

from BioGRID and HPRD databases. Novel PPIs were predicted using the HiPPIP algorithm, which computes 

features of protein pairs such as cellular localization, molecular function, biological process, genomic location, 

and gene expression, and classifies the pairwise features as interacting or non-interacting based on a random forest 

model. Transcriptomic evidence from rodent and human peritoneal mesothelioma samples validated 75.6% of the 

interactome and 65% of the novel interactors. 152 drugs targeting 427 proteins within the MPeM interactome 

were identified. Comparative transcriptome analysis of peritoneal mesothelioma-associated vs. drug-induced 

gene expression profiles, revealed 39 repurposable drugs, with 29 effective against peritoneal and pleural 

mesothelioma and primary peritoneal cancer in clinical trials, animal models, or cell lines. Functional modules 

related to chromosomal segregation, transcriptional deregulation, IL-6 production and hematopoiesis were 

identified from the interactome. Furthermore, genes with tissue-specific expression in extramedullary 

hematopoietic sites and those correlated with unfavourable prognoses in various cancers were detected. Lastly, 

the MPeM interactome significantly overlapped with the malignant pleural mesothelioma (MPM) interactome, 

revealing shared molecular pathways. Our findings demonstrate the utility of the MPeM interactome in 

uncovering functional links among MPeM genes and generating clinically translatable results such as repurposed 

drugs.  

mailto:madhavi@pitt.edu
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Introduction 

Internal organs, such as the heart and lungs, and body cavities, such as the thoracic and abdominal cavities, are 

covered by a thin, slippery layer of cells called the “mesothelium”. Mesothelioma is a rare but highly aggressive 

cancer that originates from this lining, constituting the subtypes pericardial (heart), pleural (lung) and peritoneal 

(abdomen) mesothelioma; it is usually found in advanced stages and has a median survival of one year.1 

Mesothelioma is intricately linked with exposure to asbestos but with a long latency period of a few decades 

between exposure and the occurrence of the disease and does not have a non-invasive pre-malignant phase, unlike 

other cancers. The focus of this work is on the genetics and biological mechanisms of malignant peritoneal 

mesothelioma (MPeM).  

The peritoneum is a serosal membrane made up of two layers of mesothelial cells lining the abdominal cavity and 

intra-abdominal organs. MPeM affects this peritoneal lining and grows within the peritoneal space.1 Patients may 

exhibit symptoms such as weight loss, shortness of breath, chest and abdominal pain, increased abdominal girth 

and peritoneal effusion between the ages of 40-65 years.1 MPeM constitutes a substantial percentage (15%-20%) 

of all mesothelioma diagnoses and is distinct from malignant pleural mesothelioma (MPM) due to its limited 

association with asbestos exposure (8% compared to 80% for MPM).2 MPeM was more apparent among patients 

with a history of abdominal surgeries rather than asbestos exposure.1,2 Peritoneal cases are also becoming 

increasingly prevalent among mesothelioma patients without occupational exposure, given the current scenario 

in which the population of asbestos-exposed individuals is diminishing.1 MPeM exhibits a highly variable pattern 

of disease progression and patients often develop risk of postoperative morbidity and mortality.1 MPeM has a 

higher median survival rate than pleural mesothelioma (31 months versus 14 months),3 and is currently treated 

with a combination of pemetrexed and cisplatin.1 Given the unique features of MPeM and its fatal nature, it is 

imperative that the molecular mechanisms underlying this disease are expeditiously discovered. 

Factors predisposing patients to MPeM remain unclear.2 However, MPeM is known to be proportionally more 

prevalent than MPM among patients with germline mutations and without a history of asbestos exposure (25% 

versus 7%4).1 Multiple studies have examined the genetic underpinnings of MPeM (see Table 1). Altogether, 

these studies reported 59 MPeM-associated genes that harboured mutations, copy number aberrations, and 

rearrangements, or whose expression correlated with poor prognosis in MPeM patients, and reduced cell survival 

or unfavourable drug responses in MPeM surgical specimens.5-13  The Cancer Genome Atlas (TCGA) also 

provided comprehensive genomic datasets of mesothelioma, describing mutations in BAP1, CDKN2A, LATS1, 
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LATS2, MSH2, NF2, PBRM1, PTCH1, RBFOX1, SETD2, SETDB1 and TP53 (included in Table 1).14 The next 

step to discovering biological mechanisms is to understand how these genes play a role in the disease. To address 

this, we constructed the protein-protein interaction network (or the ‘interactome’) of these MPeM-associated 

genes. Using various bioinformatics methods, we gained insights into the biological processes underlying MPeM 

and identified repurposable drugs. 

Table 1: Publications examining the genetic basis of MPeM, related details, and the gene lists from each used in our study 

Study Study methods Patient samples MPeM-associated genes 

Hung et al.13 Immunohistochemistry, 

fluorescence in situ hybridization 

(FISH), targeted next-generation 

sequencing of tumour DNA and 

RNA 

88 consecutive patients with 

peritoneal mesotheliomas 

diagnosed at a single 

institution between 2005 

and 2015 

ALK 

Joseph et al.5 Next-generation sequencing 510 

cancer-related genes, 

immunohistochemistry 

13 patients with malignant 

mesothelioma arising in the 

peritoneal cavity 

ARID1A, BAP1, DDX3X, 

NF2, SETD2, TERT, WT1 

Ugurluer et al.6 Next-generation sequencing 

testing, descriptive and Kaplan-

Meier statistics 

11 patients with somatic 

cancer-related mutations  

AR, ASXL1, BAP1, BRIP1, 

CDK12, DAXX, EPHB1, 

ESR1, FGF6, IRS2, JAK1, 

KDM6A, KDR, KEAP1, 

KMT2A, MET, MRE11, 

MTOR, NSD1, SETD2, 

TSC1 

Chirac et al.7 Comparative genomic 

hybridization using the Agilent 

Human Genome CGH 180 K array 

MPeM samples from 33 

patients 

ADAM3A, ARHGAP22, 

BAP1, CDH5, CDKN2A, 

CHEK2, CTNNB1, DPYD, 

EGFR, HRAS, IGKC, JUN, 

MAPK8, NF2, NR2F2, 

PTEN, RASSF1, RB1, 

RHEB, RICTOR, SDHB, 

SMARCB1, STK11, TRIO, 

VEGFB 

Foster et al.8 Evaluation of patient tumours for 

mutations in the catalytic TK-

domain, treatment of patients with 

cytoreductive surgery, COS-7 cell 

expression model to determine 

mutation activating profiles and 

response to erlotinib 

MPeM tumours from 29 

patients, 25 of whom were 

treated with cytoreductive 

surgery 

EGFR 
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Hung et al.9 Targeted next-generation 

sequencing, 

immunohistochemistry 

Diffuse peritoneal 

mesotheliomas from 26 

patients 

ARID1B, BAP1, CDKN2A, 

CHEK2, NF2, PBRM1, 

PRDM1, SETD2, SUZ12, 

TP53, TRAF7 

Pillai et al.10 Immunohistochemistry, prognostic 

significance using the Kaplan-

Meier method 

MPeM samples from 42 

patients 

MUC1 

Varghese et al.11 Gene expression analyses, 

pathway-specific inhibition 

Fresh pre-treatment MPeM 

tumour samples collected 

from 41 patients who 

underwent surgical 

cytoreduction and received 

regional intraoperative 

chemotherapy perfusion 

PIK3CA, RICTOR 

Zaffaroni et al.12 Immunohistochemistry 32 MPeM surgical 

specimens 

BIRC5 

Protein-protein interactions (PPIs) drive the biological processes in cells including signal transduction, formation 

of cellular structures and enzymatic complexes. The molecular mechanisms of disease are often revealed by the 

PPIs of disease-associated genes. For example, the involvement of transcriptional deregulation in pleural 

mesothelioma pathogenesis was identified through mutations detected in BAP1 and its interactions with proteins 

such as HCF1, ASXL1, ASXL2, ANKRD1, FOXK1 and FOXK2.15 PPI of BAP1 with BRCA1 was central to 

understanding the role of BAP1 in growth-control pathways and cancer; BAP1 was suggested to play a role in 

BRCA1 stabilization.16,17 Studies on BAP1 and BRCA1 later led to clinical trials of the drug vinorelbine as a 

second line therapy for MPM patients, and the drug was shown to have rare or moderate effects in MPM 

patients.18,19  

Despite their crucial role in understanding disease mechanisms and discovering drugs, ~75% of estimated PPIs 

are unknown, and several disease-associated genes lack known PPIs. The human interactome may contain more 

than 600,000 PPIs,20 but only ~150,000 PPIs are known from PPI repositories such as HPRD21 and BioGRID.22 

Experimental detection of PPIs using techniques such as co-immunoprecipitation (Co-IP)23,24 is time-consuming 

at large scale. Although systematic high throughput studies with yeast two-hybrid (Y2H) system25 and affinity 

purification–mass spectrometry (AP–MS)26 have helped discover tens of thousands of PPIs, a large part of the 

interactome remains unknown. We developed HiPPIP (high-precision protein-protein interaction prediction), a 

computational model deemed highly accurate by computational evaluations, and experimental validations of 18 

predicted PPIs, where all the tested pairs were shown to be true PPIs.27,28  
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We derived valuable insights from the analysis of disease-specific protein interactomes that included PPIs 

predicted by HiPPIP. Notably, we identified 2,156 novel PPIs for diseases such as MPM,29 schizophrenia,27 

rheumatoid arthritis,30 and congenital heart disease.31,32 Our previous study that demonstrated the functional links 

of MPM-associated genes from various high throughput investigations within the MPM interactome, underscored 

the importance of interactome analysis in understanding the molecular basis of mesothelioma.29 More than 85% 

of the genes in the interactome were supported by MPM-related genetic variant, transcriptomic and proteomic 

evidence. Furthermore, we experimentally validated 5 novel PPIs of MPM-associated genes and identified 5 

repurposable drugs targeting the interactome proteins. This collective evidence motivated us to extend our 

interactome-based approach to the exploration of the genetic basis of MPeM. 

In this work, we constructed the ‘MPeM interactome’ by assembling the known and computationally predicted 

PPIs of the genes associated with MPeM. Analysing this interactome within the context of peritoneal 

mesothelioma transcriptomic data, gene tissue specificity, prognostic relevance of genes in other cancers, and 

interconnections to MPM, we expanded our understanding of MPeM. We then investigated the pathways and 

functional modules associated with the interactome. Finally, we integrated drugs sourced from the Drug Bank 

repository33 targeting at least one of the interactome proteins, and performed comparative transcriptome analysis 

of drug-induced and MPeM-associated profiles to identify 29 repurposable drugs for MPeM. 

Results 

PPIs of the MPeM-associated genes (or ‘core’ genes) shown in Table 1 were collected from HPRD21 (Human 

Protein Reference Database) and BioGRID22 (Biological General Repository for Interaction Datasets); see 

Supplementary Data File 1 for the reported gene alterations. The HiPPIP algorithm described in our earlier work 

was applied to MPeM genes to discover hitherto unkown PPIs.34 HiPPIP computes features of protein pairs such 

as cellular localization, molecular function, biological process membership, genomic location of the gene, and 

gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting 

based on a random forest model.27 The ‘MPeM interactome’ assembled in this manner contained 4,747 known 

PPIs and 417 novel PPIs connecting 58 MPeM-associated genes to 2,747 known interactors and 306 novel 

interactors (Fig. 1 and Supplementary Data File 2). The 59th MPeM-associated gene ADAM3A had neither 

known nor novel PPIs.  

The number of known and computationally predicted novel PPIs for each of the MPeM genes are shown in Fig. 

2 and Supplementary Data File 3; the novel interactors are listed in Supplementary Data File 3. Thirteen 

genes had 10 or less interactions each and 73 novel PPIs were predicted for all of the genes combined. There are 

21 hub-genes that had more than 75 known PPIs each and 160 novel PPIs were predicted for all of the genes 

combined. 
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Figure 1. A partial network view of protein-protein interactions (PPIs) in the malignant 

peritoneal mesothelioma (MPeM) interactome: Genes are shown as nodes and PPIs as edges. As 

the complete MPeM network is very large, only a partial view showing a large connected 

component of MPeM candidate genes and their novel interactors, all of which have MPeM-related 

transcriptomic evidence (Supplementary Data File 4), is shown. Legend: dark blue square-shaped 

nodes: MPeM candidate genes; red nodes/edges: novel interactors/interactions; light blue nodes and 

blue edges: known interactors/interactions. 
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Overlap of the MPeM interactome with transcriptomic data 

198 out of 306 (65%) novel interactors, and 2,353 (75.6%) proteins overall of the MPeM interactome, showed 

differential gene expression in pre-clinical models and human tumour specimens of peritoneal mesothelioma (see 

Table 2 and Supplementary Data File 4). These included human orthologues of genes differentially expressed 

in MPeM tumour specimens from patients, peritoneal mesotheliomas of rats, either spontaneously or chemically 

induced, mouse peritoneal mesothelioma cell lines resulting from crocidolite asbestos, and human peritoneal 

mesothelial lines exposed to crocidolite. These overlap studies confirmed the biological validity of the MPeM 

interactome by demonstrating its relevance in the context of rodent xenograft/cell line mesothelioma models and 

human mesothelial cell lines. 

Table 2: Transcriptomic datasets enriched in the MPeM interactome, with the number of differentially expressed genes (DEGs) 

and p-value and odds ratio of enrichment.  

Transcriptomic dataset (with reference to source publication) Number of 

DEGs in the 

interactome 

P-value of 

enrichment 

Odds ratio 

of 

enrichment 

Granulocytic myeloid-derived suppressor cells (G-MDSCs) from spleens of 

mice bearing AB12 mesothelioma grafts versus naive neutrophils 

(GSE4325435) 

975 2.02E-14 1.21 

Neutrophils infiltrating AB12 mesothelioma tumour grafts versus naive 

bone marrow derived neutrophils (GSE4325435) 

1006 1.97E-17 1.24 

BCA induced peritoneal mesothelioma versus non-transformed mesothelial 

cell line 

533 1.08E-04 1.15 

Figure 2. Number of protein-protein interactions: The MPeM associated genes are listed along 

the x-axis, arranged in the ascending order of their number of known protein-protien interactions. 

The number of novel predicted PPIs and previously known PPIs are shown as red bars on primary 

axis (left) and blue line on secondary axis (right).  For example, DPYD has three known PPIs and 8 

novel PPIs, and AR has 265 known and zero novel PPIs.   
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O-Nitrotoluene (O-NT) induced peritoneal mesothelioma versus non-

transformed mesothelial cell line (GSE468236)* 

332 - - 

Spontaneous malignant mesotheliomas from 2-year-old rats versus normal 

mesothelial Fred-PE cells (GSE4758137)* 

794 - - 

LP9 mesothelial cells exposed for 8 hours to 5ug/cm2 crocidolite asbestos 

versus untreated mesothelial cells (GSE1403438) 

303 6.39E-08 1.32 

LP9 mesothelial cells exposed for 8 hours to 5ug/cm2 crocidolite asbestos 

versus untreated mesothelial cells (GSE6396639) 

560 1.24E-05 1.16 

LP9 mesothelial cells exposed for 8 hours to 1ug/cm2 crocidolite asbestos 

(GSE1403438) 

85 8.76E-04 1.38 

Primary peritoneal mesothelial HM3 cells exposed to 5ug/cm2 crocidolite 

asbestos for 8 hours (GSE6396639)  

 

797 3.99E-12 1.22 

Biphasic versus epithelial peritoneal mesothelioma tumour specimens40 118 2.17E-19 2.25 

Lungs of mice exposed to crocidolite fibers41 322 3.5E-13 1.44 

Lungs of mice exposed to wollastonite fibers41 23 0.044 1.43 

*A considerable number of genes in the interactome were differentially expressed in rat models of spontaneous and induced peritoneal mesothelioma, 

but their overlaps were not statistically significant. 

In order to examine whether the interactome showed preferential enrichment for any specific subtype of peritoneal 

mesothelioma, we computed its overlap with genes found to be differentially expressed in biphasic versus 

epithelial peritoneal mesothelioma tumour specimens and vice versa.40 Significant enrichment was found with 

biphasic mesothelioma, but not with epithelial mesothelioma (Table 2 and Supplementary Data File 4). This 

overlap included 4 genes predicted as novel interactors of 4 MPeM-associated genes (MPeM genes are shown in 

bold): ARID1A-TAF12, PIK3CA-LYPLA1, EPHB1-MRPL3 and KEAP1-LONP1. Hence, the interactome 

with over 100 genes specific to the biphasic subtype of MPeM will prove valuable for investigating this relatively 

rarer subtype compared to the epithelioid and sarcomatoid subtypes.42
 

Diffuse MPeM is known to share similar clinical presentation, morphology and immunostaining profiles with 

ovarian/primary peritoneal serous carcinoma (OC/PPC), and may hence be indistinguishable from the latter.43 

Gene expression signatures characterizing these two tumours have been identified in an attempt to elucidate the 

molecular differences distinguishing them from one another.43 We computed the overlap of the MPeM 

interactome with these expression profiles (see Supplementary Data File 4). Out of the 12 genes in the 

interactome found to be differentially expressed in OC/PPC versus diffuse MPeM (including the MPeM-

associated gene ESR1), 3 were predicted as novel interactors of MPeM-associated genes: HRAS-IGF2, JUN-

TACSTD2 and CHEK2-SUSD2. Eight genes including the MPeM-associated gene KDR were found to be 
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differentially expressed in diffuse MPeM versus OC/PPC. This analysis helped pinpoint the genes that distinguish 

MPeM from other morphologically and histogenetically similar tumours. 

In summary, these overlap studies validated the relevance of MPeM interactome to MPeM tumours in rodent 

models and human patients, identified genes specific to MPeM subtypes and those aiding in differential diagnosis 

from other cancers. The interactome can be used as a mechanistic framework for investigating MPeM-related 

genes. 

Tissue-specificity of the genes in the MPeM interactome 

We studied tissue specific expression of the interactome genes using mouse ENCODE and GTEx data.44,45 Genes 

with an expression > 1 TPM (transcripts per million) and 5-folds higher in a single tissue (tissue-enriched) or 2-

7 tissues (group-enriched) were included.46 Unexpectedly, the top enriched organs were spleen and small 

intestine, and not abdominal organs lined by the peritoneum (Fig. 3A). Instead, the human organs that shared 

many genes with the interactome were brain, testis, skin, lung, heart, oesophagus, artery and muscle (Fig. 3A). 

Similar trends were observed with mouse expression data, with the intestine, cortex, cerebellum, olfactory bulb, 

testis and bone marrow, and embryonic tissues such as E14.5 brain, E14.5 placenta and E14.5 heart, showing 

enrichment in the interactome (Fig. 3B). The interactome exhibited notable enrichment in human orthologues of 

mouse genes specific to spleen (81 genes, P-value = 0.019, odds ratio = 1.39) and thymus (57 genes, P-value = 

0.028, odds ratio = 1.42) (Fig. 3B). Ten MPeM-associated genes had novel PPIs with the orthologues of 10 spleen-

specific mouse genes, namely, SMARCB1-VPREB3, JAK1-VNN2, RHEB-NOS3, ALK-NLRC4, IRS2-MPO, 

TSC1-FCN1, RICTOR-CTSW, HRAS-CCL4 and BIRC5-AANAT (i.e. 10 novel interactors had spleen-

specificity; MPeM genes are shown in bold). 

We used BaseSpace Correlation Engine47,48 to identify human peritoneum-specific genes from the interactome. 

A gene was deemed specific to peritoneum if its expression decrease in other tissues compared to the tissue of 

interest was > 0.8 (i.e. specificity index > 0.8). Based on this, only 6 genes showed peritoneum-specific 

expression. OVGP1, a predicted interactor of the MPeM-associated gene DPYD, had moderate peritoneal 

specificity (specificity index = 0.57). 

Altogether, the analysis of tissue-specific expression in the interactome revealed scarce peritoneum-specific 

expression and unexpected enrichment in lymphatic organs such as spleen and thymus. 

Functional modules and pathways enriched in the MPeM interactome 
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We used the HumanBase toolkit49 (https://hb.flatironinstitute.org/) to identify functional modules in the MPeM 

interactome. HumanBase employs shared k-nearest-neighbours and the Louvain community-finding algorithm to 

cluster the genes sharing the same network neighbourhoods and similar Gene Ontology (GO) biological 

processes, into functional modules. Fourteen modules were detected of which 11 had more than 4 proteins each 

(Table 3).  

Figure 3. (B) Tissue-specificity of malignant 

peritoneal mesothelioma (MPeM) interactome 

genes in mouse organs: Tissue-specific expression 

of the genes in the interactome was examined using 

mouse ENCODE data. The graph shows the number 

of genes from the interactome that exhibit tissue 

specificity. The genes show at least 5-fold higher 

expression in a tissue (‘tissue-enriched’) or a group 

of 2-7 tissues compared to all the other tissues 

(‘group-enriched’). 

Figure 3. (A) Tissue-specificity of malignant 

peritoneal mesothelioma (MPeM) interactome 

genes in human organs: Tissue-specific expression 

of the genes in the interactome was examined using 

GTEx data. The graph shows the number of genes 

from the interactome that exhibit tissue specificity. 

The genes show at least 5-fold higher expression in 

a tissue (‘tissue-enriched’) or a group of 2-7 tissues 

compared to all the other tissues (‘group-enriched’). 

https://hb.flatironinstitute.org/
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Table 3: Functional modules in the MPeM Interactome (with FDR-corrected p-value) 

Module Enriched GO Biological Process FDR-corrected p-value 

M1 Chromosome Segregation <1E-08 

M2 Translation <1E-08 

M3 Hematopoiesis <1E-08 

M4 Covalent Chromatin Modification <1E-08 

M5 Transmembrane Receptor Protein Tyrosine Kinase Pathway <1E-08 

M6 Histone Modification <1E-08 

M7 mRNA Metabolic Process <1E-08 

M8 Cell-Cell Adhesion 2.86E-05 

M9 Transmembrane Receptor Protein Tyrosine Kinase Pathway 2.82E-04 

M10 Transmembrane Receptor Protein Tyrosine Kinase Pathway 2.64E-03 

M11 Negative Regulation of Intracellular Signal Transduction 3.98E-03 

M12 Negative Regulation of Hydrolase Activity 5.84E-03 

M13 Cell-Cell Junction Assembly 5.97E-03 

M14 Positive Regulation of Interleukin-6 Production 0.023 

Next, we identified the Reactome pathways enriched in the MPeM interactome using the gene set analysis toolkit 

called WebGestalt (Supplementary Data File 5).50
 WebGestalt computes the statistical significance of the 

association of the genes with a specific functional group (e.g. a Reactome Pathway) using Fischer’s exact test and 

Benjamini-Hochberg method for multiple test adjustment. The top-30 pathways associated with the MPeM are 

shown in Table 4.51
 

The identified modules and pathways could contribute to peritoneal mesothelioma development and progression 

(see Discussion), including dysregulated chromosome segregation, covalent chromatin modification, altered 

mRNA metabolic processes, disrupted translation, post-translational events, activation of transmembrane receptor 

protein tyrosine kinase pathways, disrupted cell-cell junction assembly, and cytokine signalling, particularly 

interleukin-6 production. The identification of hematopoiesis as an enriched module aligns with the enrichment 

of genes specific to the extramedullary hematopoietic sites, spleen and thymus, in the interactome (Fig. 3). 

Table 4: Selected pathways associated with MPeM interactome (FDR-corrected p-value < 1E-15) 

Pathway Number 

of genes 

MPeM genes Novel interactors 
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Immune System 578 BIRC5, CTNNB1, DDX3X, HRAS, IRS2, JAK1, 

JUN, KEAP1, MAPK8, MRE11, MTOR, MUC1, 

NF2, PIK3CA, PTEN, RICTOR, TP53, TRAF7 

AKT3, AP1M2, ARPC1B, BST2, BTBD1, CALML5, 

CAPZA2, CCL4, CENPE, CFHR3, CPB2, CRKL, 

DCTN1, DEFB115, DEFB116, FBXW8, FCN1, GM2A, 

GSTA2, KLRC1, KLRC2, LAMP1, LIF, MADCAM1, 

MPO, NCSTN, NLRC4, NOS3, OSM, PAFAH1B2, 

PANX1, PLA2G2A, PSMB4, PTPRN2, PYGB, 

RAP1GAP, REG3A, SIAH1, SLC2A5 

Gene expression 

(Transcription) 

517 AR, ARID1A, ARID1B, BIRC5, BRIP1, 

CDK12, CDKN2A, CHEK2, CTNNB1, DAXX, 

EGFR, ESR1, JUN, KMT2A, MET, MRE11, 

MTOR, PBRM1, PRDM1, PTEN, RB1, RHEB, 

RICTOR, SMARCB1, STK11, SUZ12, TP53, 

TSC1 

AKT3, DNMT3A, GTF2E1, ICE1, KIT, NLRC4, NR1D1, 

PCBP4, PSMB4, SNRPF, TAF12, TFB2M, ZNF157, 

ZNF195, ZNF266, ZNF79 

Developmental 

Biology 

361 CTNNB1, EGFR, EPHB1, HRAS, IRS2, JUN, 

KDM6A, MAPK8, MET, NR2F2, PIK3CA, 

SUZ12, TRIO 

AKT3, ARPC1B, CACNA1S, CDSN, DAB1, FOXA3, 

NCSTN, PKLR, PSMB4, RAP1GAP, RHOC, RPS24, 

SIAH1, SLC2A2 

Cytokine Signaling 

in Immune system 

269 BIRC5, IRS2, JAK1, JUN, MAPK8, MUC1, 

PIK3CA, TP53 

BST2, CCL4, CRKL, GSTA2, LIF, OSM, PSMB4 

Cell Cycle 247 BIRC5, BRIP1, CDKN2A, CHEK2, MRE11, 

RB1, TERT, TP53 

AKT3, BANF1, CENPE, CETN2, DCTN1, MAU2, 

NIPBL, PCBP4, PCNT, POLD1, PSMB4, SYCP3 

Cellular responses 

to stress 

170 AR, CDKN2A, JUN, MAPK8, MRE11, MTOR, 

RB1, SUZ12, TP53 

CAPZA2, DCTN1, ID1, PSMB4 

DNA Repair 133 BAP1, BRIP1, CHEK2, MAPK8, MRE11, TP53 CETN2, CUL4A, MBD4, POLD1 

Deubiquitination 125 AR, ASXL1, BAP1, ESR1, KEAP1, PTEN, TP53 PSMB4 

MAPK family 

signaling cascades 

153 EGFR, FGF6, HRAS, IRS2, JAK1, JUN, MET DLG2, FGF7, KIT, NRG2, PSMB4 

SUMOylation 104 AR, BIRC5, CDKN2A, DAXX, ESR1, SUZ12, 

TP53 

CETN2, DNMT3A, SENP1 

Association with other cancers 

The prolonged survival of carriers of MPeM-associated mutations (e.g. in BAP1 and TP53) has been linked to 

the occurrence of other cancers.1 This connection between cancer prognosis and comorbidities in MPeM patients 

prompted us to explore the presence of prognostic genes from various cancers within the MPeM interactome. We 

systematically examined the overlap between the MPeM interactome and prognostic genes from 20 cancer types, 

using data from Pathology Atlas for gene expression and patient survival correlation.52 Genes with log-rank P-

value < 0.001 were deemed prognostic, where high expression correlated with low patient survival was 

unfavourable prognosis, and increased survival was favourable prognosis. In the MPeM interactome, we 

identified a significant enrichment of genes that exhibited elevated expression, positively correlating with (i) 

unfavourable prognosis in liver, renal, pancreatic and lung cancers and (ii) favourable prognosis in testis, breast, 

thyroid and skin cancers (Supplementary Data File 6). 

Next, we explored the relationship between interactome genes and other diseases using the DisGeNET database.53 

The top-5 diseases associated with MPeM were prostatic, mammary, stomach, liver and lung neoplasms, all at P-

value < 1E-15 (Supplementary Data File 7). Notably, numerous novel interactors were linked to these diseases. 

For example, 13 novel interactors of MPeM-associated genes were associated with prostatic neoplasms (MPeM 
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genes are shown in bold): MET-SLC26A4, DPYD-SULT2A1, CTNNB1-LAMB2, IRS2-MPO, HRAS-

ZFP36L2, VEGFB-UCP3, PRDM1-HPGD, NSD1-NPR3, KEAP1-SLC5A5, MET-FOXA3, RHEB-NOS3, 

HRAS-HBG1 and JAK1-CBR1.  

We then utilized Phenogrid from the MONARCH toolkit54 to identify diseases most phenotypically akin to 

MPeM. Phenogrid, an algorithm in the toolkit, determines shared phenotypes between two diseases. It gauges the 

information content of each phenotype (gene and disease associations) to quantify the observed similarity 

observed between the diseases. Ovarian fibroma (OF), desmoplastic small round cell tumour (DSRCT), Budd-

Chiari syndrome (BCS) and primary peritoneal carcinoma (PPC) exhibited high phenotypic similarity to MPeM 

(similarity score > 80). We compiled 6, 43, 24 and 49 genes associated with OF, DSRCT, BCS and PPC, 

respectively, and examined their enrichment in the MPeM interactome. Notably, significant enrichment was found 

for genes associated with DSRCT (P-value = 4.16E-04, odds ratio = 2.31) and PPC (P-value = 5.72E-08, odds 

ratio = 2.98).  

Altogether, the significant gene enrichment patterns for diverse cancers uncovered from the interactome offers 

the potential to improve prognosis predictions and customize treatment strategies. Moreover, our identification of 

diseases closely resembling MPeM can be leveraged to advance the diagnosis of MPeM. 

Interconnections to pleural mesothelioma interactome 

We sought to uncover the shared biological aspects between MPeM and malignant pleural mesothelioma (MPM). 

We compared the overlap of MPeM interactome with the MPM interactome,29 revealing 989 shared genes, a 

highly significant overlap (P-value = 3.18E-289, odds ratio = 2.92). This overlap included 4 core genes linked to 

both MPM and MPeM (BAP1, CDKN2A, KDR and WT1), 29 PPIs between MPM and MPeM core genes (one 

novel), and 21 novel interactors of MPM and MPeM core genes, alongside known interactors. Thirty-eight MPM-

associated genes, 41 MPeM genes and the 4 genes common between them formed an intricately interconnected 

network of PPIs (Fig. 4). Six of these were novel PPIs (FLT1-FLT3, TUBA1A-TUBA1C, RHGAP22-MAPK8, 

DPYD-SRC, JUN-GART and TSC1-TUBB4B).  

Of the genes shared between the MPM and MPeM interactomes, 62.5% displayed differential expression in both 

MPeM and MPM differential gene expression datasets, i.e. in at least one of seven MPeM (Supplementary Data 

File 4) and one of six MPM datasets.29 Notably, 33% of these differentially expressed genes were involved in the 

immune system (P-value < 1E-16). We identified a compact network (Supplementary Fig. 1) interconnecting 5 

MPeM-associated and 5 MPM-associated genes via 19 known PPIs and 5 novel PPIs. This network highlighted 

the potential shared immune pathways that could contribute to tumour invasion and metastasis in both subtypes,55 

notably IL-17 signalling via its modulator IKBKE56 and TH17 cell differentiation via four genes, namely, MPeM-
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associated HSP90AA1 and HSP90AB1, MPM-associated JUN and MAPK8, and MPM-associated membrane 

protein MUC1 widely implicated in mesothelioma malignancy.57 

In summary, we uncovered a substantial shared gene pool between MPeM and MPM upon exploring their 

interactome overlaps. The majority of these genes showed altered expression in both MPeM and MPM 

transcriptomic datasets, predominantly in immune-related pathways. This underscores the significant role played 

by immune pathways in the progression of both mesothelioma subtypes, holding crucial implications for future 

research and therapeutic approaches. 

Potentially repurposable drugs for MPeM 

We followed the established approach of comparing drug-induced versus disease-associated differential 

expression58 to identify potential drugs for MPeM treatment. Utilizing the BaseSpace Correlation software suite 

(https://www.nextbio.com),47,48 which previously helped identify repurposable drug candidates for 

schizophrenia59 (currently undergoing clinical trials60,61) and mesothelioma,29 we analysed pre-processed gene 

expression datasets. We constructed the MPeM drug-protein interactome that shows the drugs that target any 

protein in the MPeM interactome. In total, 152 drugs (collected from Drug Bank33) were found to target 427 

Figure 4. Interconnections of malignant peritoneal and pleural mesothelioma candidate 

genes: Square-shaped blue nodes: malignant peritoneal mesothelioma (MPeM) candidates, square-

shaped green nodes: malignant pleural mesothelioma (MPM) candidates, square-shaped black 

nodes: genes that are MPeM as well as MPM candidates. Light blue and red colored edges indicate 

known and novel interactions respectively. 

https://www.nextbio.com/


  

138  

proteins, encompassing 16 MPeM-associated genes, 361 known interactors and 50 novel interactors. Our focus 

then turned to selecting 5 gene expression datasets pertinent to peritoneal mesothelioma. These included 

granulocytic myeloid-derived suppressor cells (G-MDSCs) sourced from spleens of mice with AB12 

mesothelioma grafts versus naive neutrophils, as well as neutrophils infiltrating AB12 mesothelioma tumour 

grafts versus naive bone marrow derived neutrophils (GSE4325435). Additionally, datasets covering BCA induced 

peritoneal mesothelioma versus non-transformed mesothelial cell line, O-NT induced peritoneal mesothelioma 

versus non-transformed mesothelial cell line (GSE468236), and spontaneous malignant mesotheliomas from 2-

year-old rats versus normal mesothelial Fred-PE cells (GSE4758137) were included.  

Then, we curated a list of chemical compounds with differential gene expression profiles (drug vs. no drug) that 

exhibited negative correlations with at least one of the 5 peritoneal mesothelioma differential gene expression 

datasets (disease vs. control). The rationale for choosing drugs that show a negative correlation with at least one 

of the 5 expression datasets is rooted in the complexity of the MPeM genetic landscape. This approach recognizes 

the heterogeneous nature of MPeM and the inherent variability across its associated expression datasets. At the 

Figure 5. Repurposable drugs for malignant peritoneal mesothelioma (MPeM): The network shows 

29 repurposable drugs (diamond-shaped green colored nodes) that target the proteins in the MPeM 

interactome. MPeM candidates are shown as dark blue nodes, their known interactors are light blue and 

novel interactors are red. 
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same time, it acknowledges the potential of drugs – even those that display correlation with only a single MPeM 

expression profile – to effectively target specific genes that might not exhibit uniform dysregulation across 

datasets. 

Overall, we identified 39 drugs as potentially repurposable candidates for MPeM, including 23 that showed 

negative correlation with two or more gene expression datasets and 16 negatively correlated with a single dataset 

(Supplementary Data Files 8-12).  

Literature review supported the biological validity of 29 (74%) out of these 39 drugs. These 29 drugs are shown 

in Fig. 5. Notably, 2 of these drugs (paclitaxel: NCT04000906 and imatinib: NCT00402766) are already in clinical 

trials for MPeM, and 2 others (pemetrexed and vinorelbine) are part of the standard therapy for mesothelioma.62 

In addition to this, the other shortlisted drugs exhibited activity relevant to MPeM (see Supplementary Note 1 

for details). In short, irinotecan has exhibited effectiveness against peritoneal mesothelioma, pleural 

mesothelioma, and peritoneal metastasis. Clinical trials and tests in cell lines have demonstrated the efficacy of 

paclitaxel and sirolimus against peritoneal mesothelioma and peritoneal metastasis. Clinical trials, animal models, 

and cell lines have validated the efficacy of twelve drugs against malignant pleural mesothelioma, namely, 

epirubicin, panobinostat, doxorubicin, imatinib, vinblastine, idarubicin, azacitidine, vorinostat, dactinomycin, 

acetylcysteine, staurosporine, and quercetin. Six drugs have shown effectiveness against primary peritoneal 

cancer and peritoneal metastasis in other cancers, namely, ruxolitinib, daunorubicin, dasatinib, topotecan, 

dexamethasone, and nintedanib. Methotrexate, resveratrol, everolimus, and genistein have demonstrated efficacy 

against both malignant pleural mesothelioma and peritoneal metastasis or sclerosis. Mitoxantrone and vincristine 

have been proven effective in managing pleural/peritoneal effusions.  

Discussion 

While multiple studies have examined MPeM genetics,5-13 this study employs the protein interactome to uncover 

the biological themes underlying the MPeM-associated genes. The MPeM interactome, constructed from over 

4,700 known and over 400 novel interactions of MPeM-associated genes from 9 studies, is examined using 

functional enrichment and transcriptome-based analyses to confirm its biological significance and to gain valuable 

insights into MPeM etiology, as well as to identify potentially repurposable drugs. Although a study centered on 

a single biological hypothesis would have been advantageous, the absence of mechanistic research on MPeM 

compelled us to conduct an exploratory analysis, resulting in a comprehensive understanding of its functional 

landscape. The hypotheses generated herein can be explored further through in vitro and in vivo studies. 

Given the limited biological information available for MPeM, integrating the MPeM interactome with 

transcriptomic evidence becomes crucial to distinguish true disease-associated genes from those unrelated to the 

https://clinicaltrials.gov/ct2/show/NCT04000906
https://clinicaltrials.gov/ct2/show/NCT00402766
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disease, going beyond the core MPeM genes. We found that, within the interactome, over 75% — including more 

than 60% of novel interactors predicted for MPeM-associated genes — exhibited MPeM-related transcriptomic 

changes in humans and rodent models. Notably, 70% of these genes (1654 in total) had two or more pieces of 

supporting evidence. This integration of transcriptomic proof and the MPeM interactome effectively helped 

discern disease-associated genes from others. By overlaying disease-specific transcriptomic and genomic data 

onto the interactome, we could uncover an active sub-network of MPeM-associated genes (see Supplementary 

Data File 4) that possibly drives disease phenotypes.63 The validity of our interactome-based approach is 

ascertained further by two factors: first, the unbiased identification of additional genes from the MPeM 

interactome, previously appearing in MPeM-related transcriptomic datasets, and second, their close functional 

proximity and interconnectedness with curated core genes harbouring MPeM-associated variants. 

Biphasic MPeM, a rare subtype combining the common yet milder epithelioid type with the rarer, more severe 

sarcomatoid type, remains challenging to diagnose and manage due to limited reporting and occurrence.64,65 The 

enrichment of the interactome with genes unique to biphasic MPeM implies distinctive molecular mechanisms 

underlying this subtype, operating at the network level. The identification of new interactors specific to this 

subtype suggests unexplored pathways and potential treatment targets. The interactome – encompassing over 100 

biphasic subtype genes – can be used as a resource for biomarker discovery and tailored therapies. This 

underscores the broader potential of interactome-based methods for uncovering complexities in rare cancer 

subtypes. 

Differential diagnosis of MPeM is challenging due to its non-specific clinical symptoms and histological patterns, 

often leading to misdiagnosis of other cancers.66 Three novel interactors of MPeM-associated genes – TACSTD2, 

IGF2 and SUSD2 – can help differentiate OC/PPC from MPeM. Given that MPeM diagnosis currently relies on 

pathological evaluations,66 resources such as our interactome can be leveraged to develop immunohistochemical 

diagnostic panels, thereby improving diagnosis and treatment outcomes. 

The interactome showed enrichment for spleen and thymus-specific genes. This corresponded to the identification 

of a hematopoiesis module in the MPeM interactome. Both spleen and thymus regulate extramedullary 

hematopoiesis, i.e. the production of blood cells outside the bone marrow, a phenomenon crucial for cancer 

progression, albeit less reported in solid tumours compared to myeloproliferative neoplasms.67 When reported, 

the phenomenon often manifests as organomegaly (enlarged organ).67 Expansion of myeloid cells in the spleen 

through the process of extramedullary hematopoiesis resulting in splenomegaly has been observed in BAP1 (a 

core mesothelioma gene) knockout mice.68 Although further investigations may be necessary to understand the 

functional implications, our finding suggests a potential link between extramedullary hematopoiesis and MPeM 

development. 
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The lack of enrichment of peritoneum-specific genes or genes specific to abdominal organs in the interactome is 

consistent with the absence of a distinct primary site for MPeM.69 Pathological assessments commonly depict 

MPeM as diffusely spread throughout the abdominal cavity. However, additional research is necessary to 

determine if this lack of a primary site arises from the heterogeneity of MPeM-associated genes. 

The modules and pathways identified from the interactome provide insights into processes spanning multiple 

biological levels that could contribute to the development and progression of peritoneal mesothelioma. Note that 

the majority of supporting evidence stems from pleural mesothelioma studies. Dysregulated covalent chromatin 

modification, including histone modifications and SUMOylation, can lead to genetic instability and epigenetic 

changes driving malignant transformation.70 Altered mRNA metabolic and transcriptional processes might impact 

gene expression profiles,71,72 while disrupted translation and post-translational events like deubiquitination could 

influence cellular proteomes.40,73 Furthermore, the activation of transmembrane receptor protein tyrosine kinase 

pathways, coupled with downstream MAPK cascades,74 and disrupted cell-cell junction assembly can enhance 

tumour cell survival and invasiveness,75 thereby promoting cancer progression.  

The enrichment of cytokine signalling underscores the potential impact of inflammation, particularly the positive 

regulation of interleukin-6 (IL-6) production, on the progression of peritoneal mesothelioma. Indeed, elevated 

expression of an anti-apoptotic factor called survivin (BIRC5) induced by the cytokine IL-6 has been reported in 

MPeM patients; knockdown of this gene led to increased (spontaneous and drug-induced) apoptosis.12 The IL-6 

production module contained 13 novel interactors of MPeM core genes: NR2F2-SYCP3, ESR1-DDX43, RB1-

LRCH1, RB1-PCDHB5, MRE11-GPR83, PBRM1-FBXW8, RB1-CDADC1, MET-FOXA3, RB1-CNTN3, 

SMARCB1-MYO18B, TRIO-DNAH5, ARHGAP22-ZNF488 and SDHB (and MTOR)-SLC45A1. Future 

studies could concentrate on examining these novel PPIs. This is particularly important because both chronic 

inflammation induced by abdominal surgeries and persistent peritoneal inflammation (i.e. chronic peritonitis) 

confer a risk of developing MPeM.1 

Lastly, among the MPeM core genes used for interactome construction, 56% (33 in total) were linked to 

chromosomal events such as copy number gain/loss, gene loss, deletion and gene rearrangement. 

Correspondingly, the interactome revealed enrichment for chromosome segregation as a functional module. 

Notably, we identified 7 novel PPIs that can be examined in experimental studies, with both the MPeM core genes 

and their novel interactors involved in chromosomal events (MPeM genes are shown in bold): RASSF1-LARS2, 

ARID1B-MTHFD1L, RHEB-CENPE, VEGFB-TFB1M, JUN-GART, PTEN-KIF20B and KEAP1-SENP1. 

The pleural and peritoneal mesothelioma subtypes differ in their association with germline mutations, history of 

asbestos exposure, and post-operative complications and have different median survival rates.2,3 Although several 
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studies have examined the genomic features distinguishing them,76,77 none have identified their underlying 

biological themes. We showed that more than 950 genes co-occurred commonly in MPM and MPeM 

interactomes, which is an approximately 3-fold higher enrichment of high statistical significance than expected. 

Moreover, this shared interactomic subspace that underlies the two distinct mesothelioma subtypes is likely driven 

by immune pathways. This observation is particularly relevant given the emerging potential of gene signatures 

from the mesothelioma tumour immune microenvironment to predict therapy responses.78 

Currently, the first-line chemotherapy regimen for MPeM involves pemetrexed/cisplatin, resulting in complete or 

partial responses in merely 26% of patients and disease stabilization in only 45% of patients.1 We identified 

several repurposable drugs for MPeM treatment, with over 70% showing effectiveness against peritoneal 

mesothelioma, pleural mesothelioma, peritoneal metastasis and/or primary peritoneal cancer in clinical trials, 

animal models or cell lines, confirming the credibility of the approach. However, the drug-associated expression 

profiles analyzed in our study were induced in a wide variety cell lines. Therefore, to advance clinical translation 

in MPeM, the effect of the proposed drugs should be examined in human peritoneal mesothelioma cell lines or 

animal models. 

Overall, the study allows us to conceptualise MPeM as originating from disrupted interactions within the MPeM 

interactome due to genetic mutations or aberrant expression of MPeM-associated genes, yielding broader 

implications for comorbid conditions and drug responses.79 The disturbances capable of influencing this 

interactome can manifest across multiple levels. The genetic underpinnings of MPeM manifest across several 

organs outside of the peritoneum and abdominal organs and are linked to processes operating at the genomic, 

transcriptomic, and proteomic levels. Perturbations within the immunological system also contribute to MPeM 

development, with immune-mediated pathways playing a critical role in the shared origins of pleural and 

peritoneal subtypes of mesothelioma. Additionally, MPeM shares genetic attributes with other malignancies, 

including (but not limited to) genes predictive of patient prognosis. It could be difficult to differentially diagnose 

some of these malignancies from MPeM upon phenotypic assessment. Overall, MPeM is a complex disorder 

warranting investigations from various perspectives. 

Our study has a few limitations. For several analyses, we have used genetic data from animal models due to the 

absence of human patient data. Results from these should be interpreted with caution. Direct correlations of 

genes/proteins/phenotypes between animal models and humans require thorough characterization in both 

species.80 Also, our bioinformatics-based conclusions should be confirmed through experimental validation in 

pertinent tissues or cell lines. 
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In summary, our study provides a network-level view of MPeM-associated genes and their functional 

consequences. The MPeM interactome can serve as a functional landscape to integrate multi-omics data, 

informing genetic studies and biomedical studies seeking to improve clinical interventions in MPeM. 

Methods 

Compilation of MPeM-associated genes and prediction of novel interactions 

A list of 59 MPeM-associated genes that harboured mutations, copy number aberrations, rearrangements or 

showed expression correlated with poor prognosis in MPeM patients or reduced cell survival or less favourable 

response to drugs in MPeM surgical specimens was compiled from eight studies.5-13 Novel PPIs of the proteins 

encoded by these genes were predicted using the HiPPIP model that we developed.34 Each MPeM protein (say 

N1) was paired with each of the other human proteins say, (M1, M2,…Mn), and each pair was evaluated with the 

HiPPIP model.34 The predicted interactions of each of the MPeM proteins were extracted (namely, the pairs whose 

score is >0.5, a threshold which through computational evaluations and experimental validations was revealed to 

indicate interacting partners with high confidence). The interactome figures were created using Cytoscape.81 

Identification of functional modules 

Functional gene modules were extracted using the HumanBase toolkit49 (https://hb.flatironinstitute.org/). 

HumanBase uses shared k-nearest-neighbors and the Louvain community-finding algorithm to cluster the genes 

sharing the same network neighborhoods and similar GO biological processes into functional modules. The p-

values of the terms enriched in the modules are calculated using Fisher’s exact test and Benjamini–Hochberg 

method. 

Functional enrichment analysis 

Biological process (Gene Ontology82), pathway (Reactome83) and disease (DisGeNET53) enrichments were 

computed using WebGestalt.50 WebGestalt computes the distribution of genes belonging to a particular functional 

category in the input list and compares it with the background distribution of genes belonging to this functional 

category among all the genes that belongs to any functional category in the database selected by the user. 

Statistical significance of functional category enrichment is computed using Fisher's exact test, and corrected 

using the Benjamini-Hochberg method for multiple test adjustment. Annotations with FDR-corrected p-value < 

0.05 were considered significant.  

Tissue-specific expression analysis 

https://hb.flatironinstitute.org/
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Tissue-specificity of the genes in the MPeM interactome were checked using TissueEnrich.84 The analysis was 

based on tissue-specific genes compiled from GTEx and Mouse ENCODE.44,45 This included ‘tissue-enriched 

genes’ with at least 5-folds higher mRNA levels in a particular tissue compared to all the other tissues, ‘group-

enriched genes’ with at least 5-folds higher mRNA levels in a group of 2-7 tissues and ‘tissue-enhanced genes’ 

with at least 5-folds higher mRNA levels in a particular tissue compared to average levels in all tissues. 

Network overlap analysis 

Statistical significance of the overlaps between genes in the MPeM and MPeM interactomes was computed based 

on hypergeometric distribution.  

Identification of prognostic cancer genes  

Data for correlation of gene expression and fraction of patient population surviving after treatment of 20 cancer 

types was taken from Pathology Atlas.52 Genes with log-rank P-value < 0.001 were considered to be prognostic. 

Unfavourable prognosis indicates positive correlation of high gene expression with reduced patient survival. 

Identification of repurposable drugs 

The list of chemical compounds whose gene expression profiles correlated negatively with 5 gene expression 

datasets associated with peritoneal mesothelioma were compiled using the BaseSpace correlation software 

(https://www.nextbio.com) (List 1). The datasets considered were granulocytic myeloid-derived suppressor cells 

(G-MDSCs) from spleens of mice bearing AB12 mesothelioma grafts versus naive neutrophils, neutrophils 

infiltrating AB12 mesothelioma tumour grafts versus naive bone marrow derived neutrophils (GSE4325435), BCA 

induced peritoneal mesothelioma versus non-transformed mesothelial cell line, O-NT induced peritoneal 

mesothelioma versus non-transformed mesothelial cell line (GSE468236) and spontaneous malignant 

mesotheliomas from 2-year-old rats versus normal mesothelial Fred-PE cells (GSE4758137). Next, we identified 

drugs that targeted at least one gene in in the MPeM interactome using Drug Bank.33 We then compared list 1 and 

list 2 to identify the drugs that not only target proteins in the interactome but are also negatively correlated with 

MPeM-associated gene expression profiles. 
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6. Interactome of SARS-CoV-2 modulated host proteins with computationally predicted 

PPIs: Insights from illustrative translational systems biology studies 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., N. Balakrishnan, and Madhavi K. Ganapathiraju. Interactome of SARS-

CoV-2 modulated host proteins with computationally predicted PPIs: Insights from illustrative 

translational systems biology studies. Frontiers in Systems Biology (2022): 2. 

 

Summary of this chapter 

 

In this chapter, I demonstrate how the neighbourhood network of the human proteins modulated by 

SARS-CoV-2 – containing both experimentally determined and computationally predicted protein-

protein interactions – was constructed to derive biological insights into host invasion and response 

mechanisms and identify repurposable drugs for COVID-19. The host protein interactome was 

validated using multiple SARS-CoV/SARS-CoV-2 associated transcriptomic and proteomic 

datasets. Topological module, tissue-specificity, and functional enrichment analyses helped 

characterise the interactome extensively. I also showed the network proximity of host proteins to 

genes associated with common co-morbidities found among critically ill COVID patients and non-

survivors. Finally, I identified 24 repurposable drugs for COVID-19 using comparative 

transcriptome analysis, which included those undergoing COVID-19 clinical trials, showing broad-

spectrum antiviral properties or proven activity against SARS-CoV-2 or SARS-CoV/MERS-CoV in 

cell-based assays. In summary, the interactomic framework helped to integrate rapidly emerging 

SARS-CoV-2 data and generate biologically insightful and biomedically actionable results. 

 

Contribution to this chapter (85%) 

 

• Designed the study and developed the methodology of the project, which included interactome 

construction, validation, functional characterisation, network proximity and drug repurposing 

analysis 

• Curated all the datasets, performed all the analyses and derived the conclusions 

• Conceptualised and wrote the manuscript and prepared all the figures, tables and 

supplementary files



  

151  

ORIGINAL RESEARCH 

published: 29 April 2022 doi: 10.3389/fsysb.2022.815237 
 

 
 

 

 
 

 

Interactome of SARS-CoV-2 Modulated Host 
Proteins With Computationally Predicted PPIs: 
Insights From Translational Systems           Biology Studies 

Kalyani B. Karunakaran 1, N. Balakrishnan 1 and Madhavi K. Ganapathiraju 2,3* 

1Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India, 2Department of Biomedical Informatics, School of Medicine, Pittsburgh, PA, 

United States, 3Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, United States 

 
 

 

 
Edited by: 

Alyssa E. Barry, Deakin University, 

Australia 

Reviewed by: 

Gokhan Ertaylan, Flemish Institute for 

Technological Research (VITO), 

Belgium 

Ranjith Kumavath, Central University of 

Kerala, India 

*Correspondence: 

Madhavi K. Ganapathiraju 

madhavi@pitt.edu 

 

Specialty section: This article was 

submitted to Integrative Systems 

Immunology, 

a section of the journal Frontiers in 

Systems Biology 

Received: 24 November 2021 

Accepted: 11 February 2022 

Published: 29 April 2022 

Citation: Karunakaran KB, Balakrishnan 

N and Ganapathiraju MK (2022) 

Interactome of SARS-CoV-2 Modulated 

Host Proteins With Computationally 

Predicted PPIs: Insights From 

Translational Systems Biology Studies. 

Front. Syst. Biol. 2:815237. 

doi: 10.3389/fsysb.2022.815237 

Accelerated efforts to identify intervention strategies for the COVID-19 pandemic caused 

by SARS-CoV-2 need to be supported by deeper investigations into host invasion and 

response mechanisms. We constructed the neighborhood interactome network of the 332 

human proteins targeted by SARS-CoV-2 proteins, augmenting it with 1,941 novel human 

protein-protein interactions predicted using our High-precision Protein-Protein Interaction 

Prediction (HiPPIP) model. Novel interactors, and the interactome as a whole, showed 

significant enrichment for genes differentially expressed in SARS-CoV-2-infected A549 and 

Calu-3 cells, postmortem lung samples of COVID-19 patients and blood samples of COVID-

19 patients with severe clinical outcomes. The PPIs connected host proteins to COVID-

19 blood biomarkers, ACE2 (SARS-CoV-2 entry receptor), genes differentiating SARS-

CoV-2 infection from other respiratory virus infections, and SARS-CoV-targeted host 

proteins. Novel PPIs facilitated identification of the cilium organization functional module; 

we deduced the potential antiviral role of an interaction between the virus-targeted NUP98 

and the cilia-associated CHMP5. Functional enrichment analyses revealed 

promyelocytic leukaemia bodies, midbody, cell cycle checkpoints and tristetraprolin 

pathway as potential viral targets. Network proximity of diabetes and hypertension 

associated genes to host proteins indicated a mechanistic basis for these co- morbidities 

in critically ill/non-surviving patients. Twenty-four drugs were identified using comparative 

transcriptome analysis, which include those undergoing COVID-19 clinical trials, showing 

broad-spectrum antiviral properties or proven activity against SARS-CoV-2 or SARS-

CoV/MERS-CoV in cell-based assays. The interactome is available on a webserver at 

http://severus.dbmi.pitt.edu/corona/. 
 
Keywords: interactome analysis, protein-protein interactions, computational prediction, COVID-19, SARS-CoV-2, 
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1 INTRODUCTION 

COVID-19 (Coronavirus Disease 2019) is an infectious virus 

outbreak which emerged as an epidemic in one city in December 

2019, and within 3 months swept across 220 countries and 

territories, developing into a pandemic global health crisis with 

more than 180 million confirmed infected cases and more than 

4 million deaths as of 1 July 2021 (WHO). The novel 

coronavirus (SARS-CoV-2/nCoV-19) has been identified as the 

causative agent of this disease (Rothan and Byrareddy, 2020). 

Coronaviruses are a large family of viruses that are pathogenic in 

mammals and birds. In humans, they cause respiratory infections 

ranging from the common cold to possibly fatal acute respiratory 

distress syndrome (ARDS) and acute lung injury (ALI), which are 

noted in COVID-19 as well as in its predecessors, namely, SARS 

(severe acute respiratory syndrome, 2002–2003) and MERS 

(middle east respiratory syndrome, 2012) (Gralinski and Baric, 

2015). SARS-CoV-2 is airborne, and causes no symptoms in several 

infected people who may become silent carriers of the disease to 

the more vulnerable population. COVID-19 is spreading at an 

exponential rate globally, prompting scientists across the globe 

to investigate the mechanisms of its host invasion and host 

response to viral infection, in hopes of discovering treatment 

strategies to combat the outbreak. 

The viral infection sets off a cascade of interactions among 

multiple genes and proteins in the host cell. This complex network 

has the potential to restrict viral replication in host cells, or 

conversely, to be taken over by the virus for its perpetuation. 

Several research groups have studied the effects of SARS-CoV-

2 on the host from a systems-level perspective (Blanco-Melo et 

al., 2020a; Gordon et al., 2020a; Zhou et al., 2020a). 332 human 

proteins that bind to SARS-CoV-2 proteins were identified 

through affinity purification—mass spectrometry (AP-MS) by 

Gordon et al. (Gordon et al., 2020b). Melo et al. identified more 

than 6,000 genes differentially expressed in A549, Calu-3 and NHBE 

cell lines upon SARS-CoV-2 infection, and in COVID-19 patients 

(Blanco-Melo et al., 2020b). Bojkova et al. monitored SARS-

CoV-2 infection in Caco2 cell line and generated temporal 

infection profiles of 2,687 genes in the host translatome and 

6,258 proteins in the proteome (Denisa Bojkova and Koch, 2020). 

Data generated by these studies can be employed to conduct 

systematic, unbiased and data-driven investigations into COVD-

19 from the perspective of the host, by constructing the relevant 

protein interactome (i.e., protein- protein interaction network). 

Protein-protein interactions (PPIs) drive the cellular machinery 

and facilitate biological processes including signal transduction, 

formation of cellular structures and enzymatic complexes. When 

viral proteins bind to some proteins in the host cell, this effect may 

spread along the interactome through regulatory and biophysical 

interactions, affecting other proteins in the PPI network, posing 

deeper implications for viral infection, host immunity, and the effect 

of therapeutics (Barabási et al., 2011). Despite being critical to 

unravelling novel disease mechanisms and drugs, ~75% of 

estimated PPIs are currently unknown and several disease-

associated genes have no known 

PPIs. More than ~600,000 PPIs are said to exist in the human 

interactome (Keskin et al., 2016) and only ~150,000 PPIs are 

known from PPI repositories such as HPRD (Keshava Prasad et 

al., 2008) and BioGRID (Stark et al., 2006). Detecting the PPIs 

using experimental techniques such as co-immunoprecipitation 

(Co-IP) (Blasche and Koegl, 2013; Trepte et al., 2015) is 

prohibitively laborious and time-consuming at large scale. Tens 

of thousands of PPIs are being added into the interactome 

through systematic high throughput studies with yeast two hybrid 

(Y2H) system (Luck et al., 2020) and AP–MS (Huttlin et al., 

2020). Despite this, a large part of the interactome remains 

unknown. Hence, computational algorithms have been developed 

to predict PPIs in human as well as model organisms (Deng et al., 

2003; Raja et al., 2013; You et al., 2013; Emamjomeh et al., 2014; 

Hopf et al., 2014; Jia et al., 2015; Kotlyar et al., 2015; Garzón et al., 

2016; Malavia et al., 2017a). We have previously developed a 

computational model called HiPPIP (High-Precision Protein-Protein 

Interaction Prediction) that was deemed highly accurate by 

computational evaluations and experimental validations (Zhu et 

al., 2014; Ganapathiraju et al., 2016a; Dunham and Ganapathiraju, 

2022). HiPPIP computes features of protein pairs such as cellular 

localization, molecular function, biological process membership, 

genomic location of the gene, and gene expression in microarray 

experiments, and classifies the pairwise features as interacting or 

non-interacting based on a random forest model (Ganapathiraju et 

al., 2016a). Though each of the features by itself is not an indicator 

of an interaction, a machine learning model was able to use the 

combined features to make predictions with high precision. The 

threshold of HiPPIP to classify a protein-pair as “a PPI” was set high 

in such a way that it yields very high-precision predictions even if 

low recall. Seventeen of the predicted PPIs were tested 

experimentally and were shown to be true PPIs, namely, 8 PPIs 

validated by co-immunoprecipitation: DDX58-OASL (Zhu et al., 

2014), HMGB1-FLT1 (Ganapathiraju et al., 2016a), HMGB1-KL 

(Ganapathiraju et al., 2016a), STT3A-RPS25 (Ganapathiraju et 

al., 2016a), STT3A-SYCP3 (Ganapathiraju et al., 2016a), STT3A-

MCAM   (Ganapathiraju   et   al.,   2016a),   PDCD1- 

<hidden> (unpublished validation), YWHAE1-<hidden> 

(unpublished validation), five PPIs validated by in vitro pull- 

down and mass spectrometry: ALB-KDR (Karunakaran et al., 

2021), ALB-PDGFRA (Karunakaran et al., 2021), BAP1-PARP3 

(Karunakaran et al., 2021), CLPS-CUTA (Karunakaran et al., 

2021), HMGB1-CUTA (Karunakaran et al., 2021) and 4 PPIs 

validated by co-localization: STX3-LPXN (Ganapathiraju et al., 

2016a), STX4-MAPK3 (Ganapathiraju et al., 2016a), IFT88-KL 

(unpublished validation) and WDR5-IGFBP3 (unpublished 

validation). Some of the predicted PPIs proved to have high 

translational impact. For example, we predicted that the human 

OASL protein (IFN-inducible oligoadenylate synthetases-like) 

interacts with RIG-I (retinoic acid-inducible gene I); it was 

validated to be a true PPI. Further investigations conclusively 

showed that this interaction is responsible for activating cellular 

innate immunity to virus infections: OASL enhances antiviral 

signalling mediated by the viral RNA sensor RIG-I by binding 

through its C-terminal ubiquitin-like domain (Zhu et al., 2014). 

Other high-impact results from interactome analysis include 

https://covid19.who.int/
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shared PPIs explaining inverse epidemiological relationship 

between schizophrenia   and   rheumatoid   arthritis   (Malavia et 

al., 2017b) and cilia-transduced cell signaling in congenital heart 

disease (Li et al., 2015; Liu et al., 2017), and more (Karunakaran 

et al., 2019a). 

In this work, we present the human protein-protein interactome of 

the proteins targeted by SARS-CoV-2 (Gordon et al. (2020a)). A 

concept diagram of the analysis carried out here is shown in Figure 

1. Key contributions of this work are about 2,000 previously 

unknown human PPIs that are computationally predicted with 

high-precision, and the results of analyzing the network of known 

and predicted interactions with functional annotations and with 

SARS-CoV-2-relevant transcriptomic and proteomic data. 

Importantly, we are making this interactome, 

with rich annotations, available on a webserver and in graph 

formats downloadable for further computational analyses. 

 
 

2 RESULTS 

We collected 332 host proteins that were identified to interact with 

27 SARS-CoV-2 viral proteins identified from the 2019- 

nCoV/USA-WA1/2020 strain by Gordon et al. (2020a). To 

assemble the interactome of these host proteins, we compiled 

known PPIs from HPRD (Keshava Prasad et al., 2008) (Human 

Protein Reference Database) and BioGRID (Stark et al., 2006) 

(Biological General Repository for Interaction Datasets), and 

predicted novel PPIs by applying the HiPPIP algorithm 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

FIGURE 1 | Concept diagram of the analysis presented in the paper: Clockwise from top-left: (A). SARS-CoV-2 enters the host cell with the help of an interaction 

between its surface-anchored “spike protein” and the ACE2 receptor on the host cell. Once the virus gains entry into the host cell, it hijacks the host cellular machinery to 

promote viral genome replication, and viral mRNA and protein synthesis (B). SARS-CoV-2 viral proteins (purple) produced in this manner interact with a specific set of 

host cell proteins (dark blue; identified by Gordon et al. (2020a). In this study, (C). we assembled the known (light blue) and computationally predicted/novel (red) 

interactors of the host proteins, and (D). systematically studied this expanded neighbourhood network of virus-targeted host proteins (E). Various types of analysis 

carried out in this work. Several more systems studies are possible with the interactome both because of new types of analysis or analysis with new data sources. Cilium, 

PML bodies and midbody figures are from (Morgan, 2007; Wilson, 2015; Hoischen et al., 2018) (with creative commons license on WikiMedia). Novel PPIs of the SARS- 

CoV-2 targeted host proteins predicted by HiPPIP can be found at http://severus.dbmi.pitt.edu/corona/. 

http://severus.dbmi.pitt.edu/corona/
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described in our earlier work (Ganapathiraju et al., 2016b) 

(Supplementary Table S1). Note that the interactome presented 

here is human protein interactome, and not a virus- host 

interactome; the relevance to COVID-19 is that the core proteins 

for which the interactome is assembled are those that the viral 

proteins bind to. Specifically, as shown in Figure 2, we assembled 

the known and novel interactors (round light blue and red colored 

nodes, respectively) of the host proteins (square- shaped dark blue 

colored nodes) targeted by SARS-CoV-2 viral proteins (diamond-

shaped green colored nodes). HiPPIP predicted ~2,600 PPIs of 

which ~600 PPIs were previously known, leaving ~2,000 PPIs to 

be considered as novel PPIs of the host proteins. There were an 

additional 3,500 PPIs that were known and not predicted by 

HiPPIP. This is as expected as the HiPPIP prediction threshold has 

been fixed to achieve high precision by compromising recall, 

which is required for adoption into biology; in other words, it is 

set to predict only a few PPIs out of the hundreds of thousands of 

unknown PPIs, but those will be highly accurate. It has to be noted 

that neither PPI prediction nor high throughput PPI screening can 

be performed with high-precision and high-recall. Co-IP based 

methods show high-precision and extremely-low recall 

(detecting only one PPI at a time), whereas multi-screen high- 

quality yeast 2-hybrid methods show high-precision with low 

recall (detecting a few tens of thousands of PPIs). Thus, HiPPIP is on 

par with other methods in terms of precision and the number of 

new PPIs detected. Recently, state-of-the-art algorithms that were 

developed after HiPPIP have been extensively evaluated, but none of 

them reached the superior performance achieved by HiPPIP 

(Dunham and Ganapathiraju, 2022). Seventeen novel PPIs 

predicted by HiPPIP in our other studies were tested, and all 

validated to be true; the experiments were carried out by diverse 

research labs. Overall, the host protein (HoP) interactome 

consisted of 4,408 proteins and 6,076 interactions. A partial 

network of host proteins and their novel interactors is shown in 

Figure 3A. Several COVID-centric network biology studies (Zhou 

et al., 2020b; Gysi et al., 2020; Kumar et al., 2020) presented analysis 

of the “known PPI neighborhood” of the host proteins targeted by 

SARS-CoV-2. Contrary to this, in our study, we augment this 

neighborhood with 1,941 computationally predicted PPIs of high 

precision (Figure 2), so as to 1) present a more complete version 

of the host protein interactome, 2) facilitate discovery of 

previously unknown disease mechanisms, and 3) allow 

characterization of under- 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

proteins, and between host proteins and its interactors can be found in http://severus.dbmi.pitt.edu/corona/. 

http://severus.dbmi.pitt.edu/corona/
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studied host proteins through functional associations of their 

predicted interactors. Moreover, the network is made available on an 

interactive webserver to enable biologists to examine the novel 

interactions relevant to their specific protein or pathway of interest, 

and as downloadable files in various formats to facilitate its 

investigation in conjunction with transcriptomic/ proteomic data 

by computational systems biologists. 

We verified whether any of the 2,000 novel PPIs came up in 

recently released interactome maps such as HuRI (HI-Union) 

(Luck et al., 2020) and BioPlex (Huttlin et al., 2020). While there 

was no overlap with the HI-union dataset, there were 8 PPIs in the 

BioPlex map (ADAM9-ADAM32, P3H3-OS9, PVR-NECTIN2, 

SRRM2-SNIP1,   PABPC4-LUC7L2,      PRKACA-AKAP1, 

NDUFA13-ECSIT, and NPTX1-NPTX2). The small overlap is 

not surprising because even high-throughput biotechnological 

methods discover different parts of the interactome with only 

small overlaps with each other, thus demonstrating 

complementary strengths (Luck et al., 2020). 

 

2.1 Wiki-CORONA: A Web Server of Novel 
Host PPIs 

The HoP interactome is available on a website called Wiki- 

CORONA (http://severus.dbmi.pitt.edu/corona/). It has advanced 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 
 

FIGURE 3 | Network views of protein-protein interactions in the host protein interactome: (A) Partial view of the HoP interactome: Genes are shown as nodes and 

PPIs as edges. As the full network is very large, only a partial view showing a large connected component of novel interactors and their neighbors, all of which have 

transcriptomic/proteomic evidence related to SARS-CoV-2 (Supplementary Table S2), is shown. Legend: Dark blue square-shaped nodes: host proteins targeted by 

SARS-CoV-2; red nodes/edges: novel interactors/interactions; light blue nodes and blue edges: known interactors and interactions. (B) ACE2 interactome: PPIs of ACE2 

protein, extended to show four host proteins that are two-edges away from it. Color legend is as in (A-C) Modules identified from network topology: Five out of 

seventeen total modules each with 3 or more nodes are shown. Each module was enriched in a specific GO biological process: (i) Endosomal transport, (ii) 

Ribonucleoprotein complex biogenesis, (iii) Cilium organization, (iv) Nuclear transport and (v) Epigenetic regulation of gene expression. Within each module shown in (i-v), 

nodes with bold italicized labels depict genes with at least one transcriptomic/proteomic evidence relevant to SARS-CoV-2. 

http://severus.dbmi.pitt.edu/corona/
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search capabilities, and presents comprehensive annotations, 

namely Gene Ontology, diseases, drugs and pathways, of the two 

proteins of each PPI side-by-side. Here, a user can query for results 

such as “PPIs where one protein is anti-viral and the other is 

involved in immunity,” and then see the results with the functional 

details of the two proteins side-by-side. The PPIs and their 

annotations also get indexed in major search engines like Google 

and Bing. Querying by biomedical associations is a unique feature 

which we developed in Wiki-Pi that presented known interactions of 

human proteins (Orii and Ganapathiraju, 2012). 

 

2.2 Interconnections of ACE2 With Host 
Proteins Targeted by SARS-CoV-2 

SARS-CoV-2 engages the host receptor ACE2 (angiotensin- 

converting enzyme 2) for cell entry (Hoffmann et al., 2020). 

The interactions of SARS-CoV-2 viral proteins with host proteins 

were studied by Gordon et al. in human embryonic kidney cells 

(HEK-293T/17) (Gordon et al., 2020a), which show very low 

endogenous expression of ACE2 (Warner et al., 2005); even if 

HEK-293 cells were transfected with ACE2 to allow heterologous 

ACE2 expression, its protein product may undergo proteolytic 

cleavage mediated by ADAM17 (Lambert et al., 2005). Possibly 

due to this reason, ACE2 was not identified as a host protein in that 

study (Gordon et al., 2020b). Therefore, we assembled the known 

and novel PPIs of ACE2 separately, owing to its crucial role in 

SARS-CoV-2 infection. Then, we extracted the shortest paths in 

the interactome connecting ACE2 to any of the 332 host proteins 

using methods described in our prior work, LENS (Lens for 

Enrichment and Network Studies of human proteins) (Handen and 

Ganapathiraju, 2015). We found that ACE2 was connected to 4 

host proteins targeted by SARS- CoV-2 (SIL1, LOX, MDN1 and 

NINL) through an intermediate interactor, i.e. separated by two 

edges, where one or both intermediary PPIs were novel predicted 

ones (see red edges in Figure 3B). Thus, we showed that novel 

PPIs connect ACE2 to multiple host proteins through 

intermediary proteins. 

These connections revealed interesting insights: ACE2 is a key player 

of the renin-angiotensin hormone system that regulates blood 

pressure and electrolyte balance (Burrell et al., 2004). In line with 

this, we found that its interactors, AGT (angiotensin), GHRL, 

CLTRN and POMC, were associated with the Reactome Pathway 

peptide hormone metabolism (p-value = 2.9 × 10−5). ACE2 and its 

interactors were also enriched in the Gene Ontology (GO) Biological 

Process circulatory system process (ACE2, AGT, NTS, POMC, 

GHRL and the host protein MYL4; p-value = 1 × 10−3). Three host 

proteins were associated with numerous vascular and cardiac 

phenotypes: LOX with abnormality of blood volume homeostasis, 

aortic root aneurysm, ascending aortic dissection, carotid artery 

dilatation, coronary artery atherosclerosis, cystic medial necrosis 

of the aorta, descending thoracic aorta aneurysm, dilatation of the 

cerebral artery, left ventricular failure, peripheral arterial stenosis, 

MYL4 with paroxysmal atrial fibrillation and bradycardia, and 

SIL1 with abnormal aldolase level. The co-morbidity of 

hypertension, diabetes and cardiovascular diseases among the 

group of COVID-19 patients with high fatality rate (Fang et al., 

2020a) 

warrants a closer look at ACE2 and the host proteins linked to 

cardiac and vascular phenotypes. We also examined the 

interconnections of the host proteins with other proteins that 

facilitate SARS-CoV-2 entry into host cells, namely, TMPRSS2, 

CTSB, CTSL, NRP1, AGTR2 and OR51E2 (Cantuti-Castelvetri et 

al., 2020; Cui et al., 2020; Hoffmann et al., 2020; Kerslake et al., 

2020). Five out of these 6 proteins—TMPRSS2, CTSB, CTSL, 

NRP1, and AGTR2—were found to be connected to 33 host 

proteins via 52 intermediate interactors including 12 novel 

interactors (Supplementary Figure S1). Detailed investigations 

may be necessary to understand the relationships of these host 

cellular entry proteins to other host factors targeted by SARS- 

CoV-2. 

 

2.3 Identification of Network Modules From 
the Host Protein Interactome 

Viruses have been shown to target network modules of host 

proteins (Jäger et al., 2012; Hafirassou et al., 2017; Yang et al., 

2019). These modules could either correspond to 1) protein 

complexes in which proteins interact within a specific 

location/time/condition to perform a function in a coordinated 

manner (e.g., RNA splicing machinery and transcription 

machinery), or 2) to form dynamic, yet functionally coherent 

units, in which the proteins interact with one another at different 

times/conditions to carry out a biological process (e.g., signaling 

pathways and cell cycle regulation) (Spirin and Mirny, 2003). We 

employed “Netbox” software implementation with data consisting 

of SARS-CoV-2 target proteins (core proteins) and all human PPIs 

(Cerami et al., 2010) to identify network modules. It expands the core 

proteins by adding nodes from the interactome whose number of 

links to core proteins are statistically significant compared to its 

degree in the human interactome. From this network, it identifies 

highly interconnected modules. It was able to connect 323 proteins 

(220 host proteins targeted by SARS-CoV-2 and 103 linker 

proteins) into 21 modules, of which 14 modules had 4 or more 

nodes each. For comparison, when novel PPIs were not included, 

it connected 199 proteins (138 host proteins and 61 linker proteins) 

into 18 modules of which 10 had 4 or more proteins each. Scaled 

modularity score (Z-score compared to random networks) was 

17.0 with novel PPIs, and it was 14.5 without novel PPIs (Z-score 

compared to corresponding random networks). Five modules 

formed with novel interactors had statistically significant 

enrichment of GO biological process terms: epigenetic regulation 

of gene expression (p-value = 3.3 × 10−4, odds ratio = 10.4), nuclear 

transport (p-value = 2.4 × 10−12, odds ratio = 21.6), cilium 

organization (p-value = 1.28 × 10−3, odds ratio = 7.8), 

ribonucleoprotein complex biogenesis (p-value = 0, odds ratio = 

22.4), and vesicle-mediated transport between endosomal 

compartments (p-value = 9.4 × 10−6, odds ratio = 123.4) (Figures 

3Ci–v). When novel PPIs were excluded, some of these associations 

were missed (epigenetic regulation of gene expression and cilium 

organization) and the modules were smaller, but 3 additional 

functional modules were found: cell cycle G2/M phase transition 

(p-value = 1.9 × 10−3, odds ratio = 21.7), DNA replication (p-value 

= 4.9 × 10−3, odds ratio = 55.25) 
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and cell-cell signaling by Wnt (p-value = 4.9 × 10−3, odds ratio = 

9.3). Hence, although several biological processes detected by 

including the novel PPIs could also be detected using only the 

known PPIs, functional modules such as cilium organization were 

only uncovered on inclusion of the novel PPIs that we predicted 

for the host proteins (namely, COMT-HOPX, MRPS5-IMMT, 

G3BP1-HAND1, ACSL3-MAP2, PRKACA-AKAP1, PIGO- 

PHKA1 and G3BP2-USO1). In summary, the novel PPIs 

improved existing COVID-related knowledge by facilitating the 

identification of functional modules, which would have remained 

hidden if one had only used known PPIs for module identification. 

 
2.4 Overlap of the Host Protein Interactome 
With Transcriptome and Proteome Data 

We systematically analyzed the overlap of the HoP interactome 

with gene expression profiles induced by SARS-CoV and SARS- 

CoV-2. Statistically significant overlaps were found with the 

genes differentially expressed in A549 (human lung alveolar 

carcinoma) cell lines transfected with ACE2 and infected with a 

high load of SARS-CoV-2 (multiplicity of infection/MOI = 2.0) (p-

value = 3.67 × 10−17, odds ratio = 1.26), Calu-3 (human lung 

epithelial carcinoma) cell line infected with a high SARS-CoV-2 

load (MOI = 2.0) (p-value = 1.98 × 10−3, odds ratio = 1.12) and 

postmortem lung samples of COVID-19 positive patients (p-value 

= 8.3 × 10−17, odds ratio = 1.37) [GSE147507 (Blanco-Melo et al., 

2020b)]. Significant enrichment of the novel interactors that were 

predicted to interact with the host proteins targeted by SARS-CoV-

2 was noted in the A549 cell line (p-value = 1.6 × 10−3, odds ratio = 

1.17) and COVID-19 patient (p-value = 1.18 × 10−2, odds ratio = 

1.19) datasets. Many proteins in the interactome, including novel 

interactors, were differentially expressed in epithelial cells infected 

with SARS-CoV (GSE17400, Calu-3 cell, 48 h post-infection; p-

value = 4.76 × 10−12). Several proteins also showed differential 

expression after infection by Urbani strain of SARS-CoV 

(GSE37827, Calu-3 cells, 72 h post- infection), in peripheral blood 

mononuclear cells of SARS patients (GSE1739 (Reghunathan et 

al., 2005)), in A549 cell line infected with a low SARS-CoV-2 

load (MOI = 0.2) and in NHBE (normal human bronchial epithelial) 

cell line infected with a high SARS-CoV-2 load (MOI = 2.0), but their 

overlaps were not statistically significant. Most importantly, the 

interactome demonstrated statistically significant overlaps with the 

genes differentially expressed in the leukocytes of COVID-19 

patients with ARDS admitted to the intensive care unit (ICU) 

versus those receiving non-intensive care (p-value = 4.63E-10, 

odds ratio = 1.13) (GSE157103 (Overmyer et al., 2021)) and 

whole blood of COVID-19 patients critical in ICU with ARDS 

versus non-critical patients on oxygen [p-value = 0.035, odds ratio 

= 1.04) (GSE172114 (Carapito et al., 2021)). This suggested that the 

HoP interactome can be used as a framework to contextualize the 

gene expression signatures differentiating the various clinical 

outcomes of COVID-19. Additionally, we showed the overlap of the 

interactome with genes differentially expressed in blood samples of 

COVID-19 patients admitted to the ICU with ARDS compared with 

non-critical patients on oxygen (p-value 

= 6.03 × 10−7, odds ratio = 1.11) (GSE172114 (Carapito et al., 

2021)) and in peripheral blood mononuclear cells (PBMCs) of 

COVID-19 patients in ICU versus healthy subjects (p-value = 

1.55 × 10−27, odds ratio = 1.25) and COVID-19 patients with 

moderate symptoms versus healthy subjects (p-value = 5.08 × 

10−30, odds ratio = 1.35) (GSE152418 (Arunachalam et al., 2020)). 

Statistically significant enrichments for novel interactors were 

also found with PBMCs of ICU-admitted COVID-19 patients (p-

value = 1.69 × 10−5, odds ratio = 1.18) and those with 

moderate symptoms (p-value = 8.01 × 10−4, odds ratio = 1.18). 

In summary, the overlaps of the transcriptional profiles induced by 

SARS-CoV/SARS-CoV-2 with the HoP interactome 1) 

ascertained the biological validity of the HoP interactome, 2) 

contextualized the differentially expressed genes within the 

mechanistic framework of the protein interactome and 3) 

highlighted novel interactors of the host proteins targeted by 

SARS-CoV-2 that may be prioritized for further study. 

Melo et al. had identified 120 genes differentially expressed upon 

infection by SARS-CoV-2 in the A549 cell line compared with 

infection by respiratory syncytial virus and/or influenza A virus 

(GSE147507 (Blanco-Melo et al., 2020a)). Of these, only 2 

differentially expressed genes (DEGs) were among the 332 host 

proteins targeted by SARS-CoV-2. Our study revealed several 

interesting links between host proteins and these DEGs (Figure 

4A): 1) although only 2 DEGs were found among the host proteins 

themselves, 31 DEGs were direct interactors of 38 host proteins, 

with some DEGs interacting with multiple host proteins; 2) 13 

novel PPIs existed between the two sets: AAR2- SAMHD1, 

TUBGCP2-C1R, IMPDH2-C1S, GOLGA7-TCIM, RAB8A-

STEAP1, GDF15-EHF, REEP5-PDK4 FAM162A- PARP14, 

STOML2-CDH1, FGA-RAB14, FBXL12-C19orf66, ECSIT-

C19orf66 and EIF4H-PTPN12; 3) 108 DEGs and 285 

host proteins connected to each other via a common interactor 

(there were 808 such shared interactors between DEGs and host 

proteins; statistically significant overlap with odds ratio = 1.5, p-

value = 7.12 × 10−54); 4) Pathway enrichment analysis of 

overlapping interactome (consisting of 808 shared interactors, and 

the DEGs and the host proteins that they interact with) revealed 

enrichment of several immune-related pathways (each with FDR-

corrected p-value < 0.05). 

Messner et al. had identified 27 protein biomarkers whose 

expression varied according to the WHO severity grades for 

COVID-19 infection (i.e. no oxygen support, with oxygen support 

and critical) (Messner et al., 2020). Out of these, 11 biomarkers 

were identified in our study as interactors of the host proteins 

targeted by SARS-CoV-2. This included 8 proteins, ACTB, C1R, 

C1S, CD14, FGA, GSN, ITIH3 and SAA1, which 

were predicted as novel interactors of the host proteins, TCF12, 

RALA, TUBGCP2, IMPDH2, REEP5, RAB14, RHOA and GNG5. 

Next, we considered the overlap between 65 host proteins that were 

identified to interact with SARS-CoV proteins by Pfefferle et al. 

(2011) and the host proteins targeted by SARS-CoV-2. Only 4 

proteins were common to both (BZW2, MARK2, MARK3 and 

SMOC1) (Figure 4B). However, the interactome revealed that 50 

host proteins targeted by SARS-CoV-2 had direct interactions 

with 32 host proteins targeted by SARS-CoV, and that 8 of these 
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were novel PPIs (N4BP2L2-EXOSC8, NMB-MRPS5, MKRN2- 

MRPS25, HOXC6-BRD2, XPA-AP2M1, VKORC1- DCTPP1, 

RSRP1-CEP350 and TPSAB1-ADAMTS1). 29 host proteins 

targeted by SARS-CoV were connected to 249 host proteins 

targeted by SARS-CoV-2 via a common interactor. 

GO biological process terms such as autophagic mechanism (odds 

ratio = 4.5, p-value = 2.2 × 10−5) regulation of mitochondrion 

organization (odds ratio = 7.5, p-value = 5.5 × 10−5) and protein 

localization to mitochondrion (odds ratio = 7.8, p-value = 3.74 × 

10−4) were enriched in the overlapping interactome, suggesting 

that these processes may be commonly targeted by both these 

viruses. Mitochondria may be directly targeted by viral proteins, 

and may be affected by the cellular changes arising from viral 

infection. They may also play a crucial role in viral pathogenesis due 

to their function as immune signalling hubs (Khan et al., 2015). 

These organelles are constantly eliminated and recycled through a 

process called mitophagy. Viruses can modulate mitochondrial 

function and mitophagy to exacerbate infection (Khan et al., 

2015). 

In summary, 63 out of the 65 host proteins targeted by SARS- CoV, 

and 108 out of the 120 genes differentially expressed upon 

SARS-CoV-2 infection interacted directly or through an 

intermediate interactor with the host proteins targeted by SARS-

CoV-2 (Figure 4). 

3,787 (86%) proteins in the interactome are supported by the above 

mentioned transcriptomic and proteomic evidence, and are listed in 

Supplementary Table S2. In fact, the selected novel interactors 

shown in Figure 2A all have transcriptomic/ proteomic evidence. 

We studied tissue-specific expression of the proteins in the 

interactome using GTEx data (Lonsdale et al., 2013). Genes with an 

expression level greater than 1 TPM (transcripts per million) and 

relative expression at least 5-fold higher in a particular tissue 

(tissue-enriched) or a group of 2-7 tissues (group-enriched) were 

considered (Fagerberg et al., 2014). As expected, many genes 

showed specific expression in lung, which is the target tissue of 

the virus, and in spleen, which regulates the immune response of 

the host (Figure 5). Host proteins targeted by SARS- CoV-2 had 

novel PPIs with 37 lung-specific proteins and 49 spleen-

specific proteins. Apart from these expected tissue associations, 

we noted that the host proteins also had novel PPIs with 61 brain-

specific and 28 heart-specific proteins, which 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

host 

proteins via an intermediate interactor. Thus, 108 out of 120 genes differentially expressed upon SARS-CoV-2 infections are closely connected to SARS-2 

 

proteins via an intermediate interactor. Thus, 63 out of 65 host proteins targeted by SARS-CoV are closely connected to host proteins targeted by SARS-CoV-2. 
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is of importance as cerebrovascular diseases and coronary heart 

diseases are co-morbidities among COVID-19 non-survivors 

(Figure 5) (Fang et al., 2020b). 

 

2.5 Functional Enrichment Analysis of the 
Host Protein Interactome 

We identified functional associations of the HoP interactome 

using the gene set analysis toolkit called WebGestalt (Liao et 

al., 2019). WebGestalt computes enrichment of specific functional 

groups (e.g., a Reactome Pathway) in an input list (e.g., genes 

in the HoP interactome). Statistical significance is computed 

using Fisher’s exact test, and corrected using the Benjamini–

Hochberg method for multiple test adjustment. WebGestalt was 

chosen for its user-friendly interface, intuitive plots, large 

collection of functional categories from different types of 

functional databases and multiple enrichment analysis methods. 

This 

analysis yielded information from different biological levels that 

may potentially be influenced by SARS-CoV-2 infection: 

 

(1) Co-morbidity relationships: proteins encoded by the genes 

associated with diabetes and hypertension showed 

network proximity to the host proteins targeted by SARS-

CoV-2 

(2) Subcellular locations: PML (promyelocytic leukaemia) bodies 

and the midbody may function as subcellular targets of SARS- 

CoV-2, since proteins localizing to these structures were found 

to be significantly enriched in the HoP interactome 

(3) Cellular processes: enrichment of proteins involved in cell cycle 

phase transitions may allude to SARS-CoV-2 modulating 

critical junctures in the host cell cycle to facilitate viral infection 

(4) Cellular pathways: the post-transcriptional tristetraproline- 

mediated regulatory pathway is significantly associated 

with the interactome and may be targeted by SARS- CoV-

2 proteins to weaken host immune response 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 
 

at 

least 5-fold higher expression in a tissue or a group of 2-7 tissues compared to all the other tissues. 
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2.6 Co-Morbidity Relationships 
We studied the association of interactome genes with any genetic 

disorders/traits in the OMIM database. 155 genes in the interactome, 

including 9 host protein-encoding genes, and 121 known interactors 

and 25 novel interactors of host proteins, were found to be associated 

with 35 disorders (overlap of each disease had p-value < 0.05). This 

included 13 types of cancers, 7 metabolic disorders, 4 neurological 

disorders, 3 developmental disorders, 2 eye-related disorders, 2 

vascular diseases, 1 infectious disease, 1 inflammatory disorder, 1 

respiratory disorder and 1 skin disease (Figure 6; Table 1). Some of 

these diseases enriched in the interactome are co-morbidities among 

non-survivors and critically ill COVID patients (e.g., diabetes, 

hypertension, cerebrovascular events and cancer) (Fang et al., 

2020b; Sidaway, 2020). 13 genes in the interactome were 

associated with non-insulin dependent diabetes mellitus (odds ratio 

= 10.8, p-value = 4.38 × 10−10), 6 genes with essential 

hypertension (odds ratio = 12, p-value = 2.34 × 10−5), 3 genes 

with ischemic stroke (odds ratio = 14.4, p-value = 1.7 × 10−3) and 10 

genes with lung cancer (odds ratio = 14.1, p-value = 2.36 × 10−9). 

Network proximity of the proteins associated with these co-morbid 

conditions to the SARS-CoV-2 host proteins may explain why 

patients with these conditions are increasingly affected by the viral 

infection. Further investigations are necessary to dissect these co-

morbidities. Treatment strategies that prevent the deterioration of 

the underlying genetic conditions must be devised to combat 

COVID-19 in susceptible individuals. Additionally, neurological 

disorders such as Alzheimer’s disease (odds ratio = 15.3, p-value = 

5.13 × 10−7) and schizophrenia (odds ratio = 12, p-value = 4.19 × 

10−6) were also found to be enriched in the interactome, warranting 

further investigations into these potential co-morbidities. 

2.7 Subcellular locations 
Gene Ontology enrichment analysis of the interactome identified 

several subcellular locations that may be targeted by SARS-CoV- 

2. Cellular locations included points of virus entry such as the cell-

substrate junction, nuclear periphery and specific sites from where 

viral proteins may potentiate viral replication, gene 
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orange colored italicized labels are hypertension-associated genes. 
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TABLE 1 | List of OMIM diseases enriched in the interactome: Details of enrichment of the disease genes in the interactome including the number of disease-associated 

genes, odds ratio and statistical significance (p-value) of enrichment are shown. 

OMIM disease Number of 

disease genes 

in the 

interactome 

Odds ratio 

of 

enrichment 

p-value of 

overlap 

Genes 

BREAST CANCER 15 15.033683 5.86E-14 PPM1D, NQO2, RB1CC1, AKT1, ATM, BRCA1, CASP8, 
    CDH1, ESR1, RAD51, CHEK2, BARD1, KRAS, TSG101, 
    TP53 

LEUKEMIA, ACUTE MYELOID 12 13.120305 2.26E-10 LPP, NSD1, RUNX1, CBFB, DNMT3A, CHIC2, GATA2, 
    KRAS, TERT, NPM1, NSD3, NUP214 

COLORECTAL CANCER 10 17.181352 2.26E-10 AXIN2, AKT1, APC, CTNNB1, FGFR3, EP300, NRAS, 
    BUB1B, TP53, SRC 

DIABETES MELLITUS, NONINSULIN-DEPENDENT 13 10.782779 4.38E-10 MAPK8IP1, GCK, AKT2, HMGA1, IRS1, KCNJ11, 
    MTNR1B, PPARG, PTPN1, SLC2A2, HNF1A, TCF7L2, 
    WFS1 

LUNG CANCERALVEOLAR CELL CARCINOMA, 10 14.149348 2.36E-09 BRAF, CASP8, MAP3K8, CYP2A6, RASSF1, EGFR, 

INCLUDED    ERBB2, KRAS, PRKN, PPP2R1B 

PROSTATE CANCER 8 14.802395 8.97E-08 MAD1L1, AR, CDH1, KLF6, CHEK2, ZFHX3, PTEN, CD82 

ALZHEIMER disease 7 15.30722 5.13E-07 A2M, APP, BLMH, ACE, PLAU, NOS3, PAXIP1 

SCHIZOPHRENIA 7 12.026946 4.19E-06 MTHFR, AKT1, COMT, DRD3, RTN4R, SYN2, DISC1 

LEUKEMIA, ACUTE LYMPHOBLASTIC 5 17.181,352 1.69E-05 TAL1, TAL2, GNB1, BCR, NUP214 

HYPERTENSION, ESSENTIAL 6 12.026946 2.34E-05 AGTR1, ADD1, ATP1B1, GNB3, NOS2, NOS3 

HEPATOCELLULAR CARCINOMA 5 13.363273 7.09E-05 ET, APC, CASP8, CTNNB1, TP53 

THYROID CANCER, NONMEDULLARY, 2 4 19.243114 7.09E-05 SRGAP1, HRAS, NRAS, PTEN 

LEUKOENCEPHALOPATHY WITH VANISHING 4 19.243114 7.09E-05 EIF2B2, EIF2B1, EIF2B5, EIF2B3 

WHITE MATTER     

OBESITYLEANNESS, INCLUDED 6 9.6,215,569 8.15E-05 ADRB3, CARTPT, GHRL, ADRB2, MC4R, PPARG 

MALARIA, SUSCEPTIBILITY TOMALARIA, 6 8.489609 1.49E-04 CISH, FCGR2B, HBB, NOS2, CD36, TNF 

RESISTANCE TO, INCLUDED     

MENINGIOMA, FAMILIAL, SUSCEPTIBILITY TO 4 16.035928 1.49E-04 NF2, PDGFB, PTEN, SMARCE1 

BECKWITH-WIEDEMANN SYNDROME 4 16.035928 1.49E-04 NSD1, CDKN1C, KCNQ1, IGF2 

OVARIAN CANCEROVARIAN CANCER, 4 16.035928 1.49E-04 AKT1, CDH1, CTNNB1, PRKN 

EPITHELIAL, INCLUDED     

HYPERCHOLESTEROLEMIA, FAMILIAL 4 13.745081 3.18E-04 ABCA1, APOA2, GHR, PPP1R17 

MITOCHONDRIAL COMPLEX I DEFICIENCY 6 7.2161677 3.71E-04 NDUFAF3, TMEM126B, NDUFAF2, NDUFAF1, NDUFA1, 
    NDUFB9 

PARKINSON disease, LATE-ONSET 4 12.026946 5.31E-04 SNCAIP, MAPT, ATXN2, TBP 

GASTRIC CANCERGASTRIC CANCER, 4 12.026946 5.31E-04 CASP10, APC, KLF6, ERBB2 

INTESTINAL, INCLUDED     

DIABETES MELLITUS, PERMANENT NEONATAL 3 14.432335 0.001751964 GCK, INS, KCNJ11 

JUVENILE MYELOMONOCYTIC LEUKEMIA 3 14.432335 0.001751964 CBL, ARHGAP26, PTPN11 

STROKE, ISCHEMIC 3 14.432,335 0.001751964 ALOX5AP, F2, NOS3 

LYMPHOMA, NON-HODGKIN, FAMILIAL 3 12.026946 0.003145343 CASP10, RAD54B, BCL10 

WILMS TUMOR 1 3 12.026946 0.003145343 GPC4, IGF2, WT1 

PHEOCHROMOCYTOMA 3 9.0202,096 0.007708062 RET, MAX, VHL 

RHEUMATOID ARTHRITIS 3 9.0202,096 0.007708062 SLC22A4, CIITA, PADI4 

RETINITIS PIGMENTOSA 3 7.2161677 0.015013329 PDE6G, CRX, ARL6 

ASTHMA, SUSCEPTIBILITY TO 3 6.5601524 0.018768223 ADRB2, PHF11, TNF 

PRADER-WILLI SYNDROME 3 6.5601524 0.018768223 NDN, MKRN3, MAGEL2 

TRACHEOESOPHAGEAL FISTULA WITH OR 4 4.5816938 0.019809755 CHD7, FANCC, FANCF, MYCN 

WITHOUT ESOPHAGEAL ATRESIA     

ENDOMETRIAL CANCER 2 9.6215569 0.028209828 CDH1, PTEN 

EPIDERMOLYSIS BULLOSA, JUNCTIONAL, NON- 2 9.6215569 0.028209828 LAMC2, LAMA3 

HERLITZ TYPE     

WOLF-HIRSCHHORN SYNDROME 2 9.6215569 0.028209828 CTBP1, NSD2 

MACULAR DEGENERATION, AGE-RELATED, 1 2 9.6215569 0.028209828 PLEKHA1, APOE 

DIABETES MELLITUS, INSULIN-DEPENDENT 2 8.0179641 0.040083771 ITPR3, HNF1A 

 

 

expression and modulate the immune response of the host such as 

the midbody, nuclear chromatin and PML (promyelocytic 

leukaemia) body (each term with p-value < 1  × 10−4). PML bodies 

are nuclear sub-compartments that repress viral replication 

through entrapment or epigenetic silencing of the 

viral genomes (Scherer and Stamminger, 2016). Components of 

PML bodies activate interferon-stimulated genes and cytokines, 

and may also be upregulated on induction of interferons (Scherer 

and Stamminger, 2016). Viruses have been known to target PML 

bodies to circumvent the anti-viral defences of the host cell 
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(Scherer and Stamminger, 2016). 61 proteins in the HoP 

interactome are PML components. These include the host protein 

AKAP8L, which has been known to promote retroviral gene 

expression, and 55 known interactors and 5 novel interactors 

(RNF111, SP140, ELF4, NFE2, and CIART) of other host 

proteins targeted by SARS-CoV-2. Our model predicted an 

interaction of EIF4E2 with SP140, an interferon- inducible PML 

component; SARS-CoV-2 may target these proteins. The 

midbody is a microtubule-rich structure that connects the daughter 

cells and marks the site of abscission during cytokinesis. Viruses 

have been known to recruit certain protein complexes that also 

localize to the midbody during cytokinesis, to the host cell 

membrane to promote its scission and thereby the release of 

viruses (Morita et al., 2010). This co- opting of proteins may 

explain the enrichment of midbody proteins in the HoP 

interactome. 83 proteins in the HoP interactome, including 11 host 

proteins (RHOA, CENPF, CIT, RAB8A, NUP62, SCCPDH, 

SPART, RDX, ARF6, CNTRL and RALA), 63 known interactors 

and 9 novel interactors (KIF4A, BIRC5, INCENP, ALKHB4,   

DNM2,   DDX11,   ARL2BP, ABRAXAS2 and WIS) are known 

to localize to the midbody. 

2.8 Cellular processes 
Enriched biological processes in the interactome included G1/ S 

and G2/M mitotic cell cycle phase transitions, regulation of 

vesicle-mediated transport, covalent chromatin modification and 

nuclear transport (p-value < 1  × 10−4). The response of 

the host cell to SARS-CoV-2 infection has been shown to be 

significantly delayed and devoid of several anti-viral mechanisms 

(Blanco-Melo et al., 2020a). During early stages of the infection, 

it is possible that the virus induces a G1/S phase transition to 

surreptitiously synergize the replication of the viral genome with 

that of the host genome (Fan et al., 2018). In the later stages, it 

may block the G2/M phase transition to maximise the levels of 

viral genome (Fan et al., 2018). We found novel interactions of 

host proteins with 34 proteins involved in cell cycle phase 

transition: ANAPC4, ANAPC7, ARPP19, CCNB3, CDC14B, 

CDC16, CDC7, CEP164, CETN2, CLSPN, CRLF3, DCTN1, 

DNM2, DYNC1H1, E2F6, ENSA, FBXL7, GFI1, GML, HYAL1, 

INHBA, JADE1, NEUROG1, NPAT, ORC2, PPM1D, RAD17, 

SPDYA, TAOK2, TICRR, TRIAP1, XPC, ZFP36L1 and ZNF655. 

Corroborating our hypothesis, a significantly large number of Vero 

E6 cells infected with SARS-CoV-2 were found to be in S and the 

G2/M phases, indicating that SARS- CoV-2 may induce cell cycle 

arrest between S and G2 phases to promote infection (Bouhaddou 

et al., 2020). 

2.9 Cellular pathways 
The HoP interactome showed a statistically significant enrichment 

of several pathways related to viral entry and infection such as 

infectious disease, HIV life cycle, vesicle- mediated transport and 

membrane trafficking (Figure 7). Several immunity-related 

pathways that mediate host response 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

FIGURE 7 | Pathways associated with the host protein interactome: Number of genes from the interactome associated with selected pathways are shown. 



  

163  

 
 

 

 

such as MyD88 dependent TLR4 signalling and ISG15 anti-viral 

mechanism were also identified. 

The transcriptional profile of the host cell after SARS-CoV-2 

infection had revealed a remarkably limited anti-viral response 

compared to that elicited by seasonal influenza-A and respiratory 

syncytial viruses (Blanco-Melo et al., 2020a). This prompted us to 

inspect a post-transcriptional regulatory pathway that was 

enriched in the HoP interactome, namely, the Reactome pathway 

called tristetraprolin (ZFP36) binds and destabilizes mRNA (p-

value < 1 × 10−4). ZFP36 is an RNA-binding protein that targets 

AU-rich sites in the mRNA transcripts coding for immune 

proteins and destabilizes them by promoting deadenylation of 

their poly (A) tails (Moore et al., 2018; Blackshear, 2002). 

YWHAB increases cytoplasmic localization of ZFP36, possibly 

preventing destabilization of these genes and attenuation of 

immune response (Brook et al., 2006). We extracted the direct 

PPIs of the 17 genes belonging to this pathway from the HoP 

interactome and isolated this sub- network for further inspection 

(Figure 8). Our predictions 

showed that the host protein DCAF7, which is known to function 

as a scaffold protein and a facilitator of PPIs, interacted with 

YWHAB (Figure 8). This raised the possibility that the virus 

protein Nsp9 (which interacts with DCAF7) may somehow 

perturb YWHAB-induced cytoplasmic localization of ZFP36 

through its action on DCAF7. Nsp9 may activate or promote the 

sequestration of YWHAB with DCAF7, thereby reducing its 

capacity to form a complex with ZFP36. ZFP36- mediated 

destabilization of immune genes may then lead to a weakened 

immune response, creating an environment conducive  for SARS-

CoV-2 infection. We also identified 3 drugs targeting the proteins 

in this sub-network using Drug Bank (Wishart et al., 2008): 

resveratrol targeting KHSRP and APP, known interactors of the 

host protein EXOSC2, which is involved in the tristetraprolin 

(TTP) pathway, staurosporine targeting TTP- associated 

MAPKAPK2, which has been predicted to interact with PABPC1, 

and dacarbazine targeting the host protein POLA2 (Figure 8). Gene 

expression profiles induced by these drugs in various cell lines 

were found to have a negative correlation with 
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SARS-associated gene expression profiles, namely, that of lung 

fibroblast MRC5 cells infected with SARS-CoV and peripheral 

blood mononuclear cells of SARS patients (analysis using 

NextBio; https://www.nextbio.com) (Kupershmidt et al., 2010; 

Chattopadhyay and Ganapathiraju, 2017). Resveratrol has been 

proposed as a therapeutic option for SARS-CoV-2 based on its 

antagonistic properties against MERS-CoV (Lin et al., 2017). 

 
2.10 Interconnections of Ciliary Proteins 
With Host Proteins Targeted by 

SARS-CoV-2 
SARS coronavirus, which emerged in 2002, has been known to 

induce necrosis in ciliated airway epithelium of humans in a 

species-specific manner (Sims et al., 2005). SARS-CoV-2’s host 

receptor ACE2 is highly expressed in ciliated respiratory cells 

(Sungnak et al., 2020). Cilia may serve as virus entry points and 

potential modulators of viral pathogenesis. This conjecture 

prompted us to investigate the ciliary association of the host 

proteins targeted by SARS-CoV-2 and their interactors in the HoP 

interactome. For this, we studied its overlap with an interactome 

of 165 ciliary proteins that we constructed in a similar manner 

(Karunakaran et al., 2020). The ciliary protein interactome 

contained 1,665 proteins. 617 of these proteins, and specifically 30 

core ciliary proteins, were also found in SARS- CoV-2’s host 

protein interactome, and the overlap was found to 

be statistically significant (p-value = 2.24E-10, odds ratio = 1.22). 14 

novel predicted interactions connected host proteins to ciliary 

proteins: NUP98-CHMP5, GG3BP1-DNAH1, SEPSECS- 

DNAH1, NEK9-IFT43, TLE1-DNAH5, ATP6AP1-CETN2, 

C1orf50-ZMYND12, RAB10-IFT172, TOR1AIP1-GPR161, 

DNAJC19-CETN3, NLRX1-IFT46, FKBP7-TTC30B, POLA2- 

TMEM216 and NDUFB9-DRC7. 

Pathway analysis of the 617 common proteins (i.e., common to 

HoP and cilia interactomes) revealed two interesting pathways: 

budding and maturation of HIV virion (p-value = 1.29 × 10−6; odds 

ratio = 8.8) and anti-viral mechanism by IFN-stimulated genes (p-

value = 1.3 × 10−2; odds ratio = 2.98). We predicted that the ciliary 

protein, CHMP5, involved in the former pathway, interacts with 

the host protein, NUP98, which is involved in the latter pathway. 

This prompted us to ask whether the predicted interaction 

connected the functional modules of viral budding to interferon 

(IFN) signaling. 

 

2.10.1 Novel Interaction of NUP98 With CHMP5 May 
Activate an IFN-Stimulated Pathway That Interferes 
With Viral Budding 

We extracted the PPIs of the 20 proteins belonging to viral 

budding and IFN pathways, and isolated this sub-network 

containing 171 proteins and 176 PPIs for further analysis. Firstly,    

we     identified     343     functional     interactions (i.e., activation, 

inhibition etc.) among 98 proteins in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 9 | Functional modules of viral budding and interferon-mediated anti-viral pathway: Host proteins are depicted as square shaped nodes. The novel 
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network. Strikingly, distinct functional modules were identified 

for both the pathways; CHMP5 seemed to serve as a connector 

from the viral budding pathway to the IFN pathway through 

NUP98 (Figure 9). The gene UBC was shared between the 

clusters. 

We then checked whether the genes in these modules were 

differentially expressed in Calu-3 lung cells infected with SARS 

CoV Urbani (for 72 h) versus mock infected cells. This was done to 

identify the functional interactions that may remain active during 

viral infection. It was assumed that differential expression of the 

genes would directly impact the proteins encoded by them and their 

interactions. 20 genes including NUP98 and CHMP5 were found 

to be differentially expressed (Figure 9). Viruses hijack the 

ESCRT/VPS4 (endosomal sorting complex required for transport) 

machinery of the host cell to release viral particles through 

membrane scission (Pincetic et al., 2010). This machinery is 

normally recruited during endocytic and membrane repair 

processes in the host cell. The process of membrane scission is 

catalyzed by various ESCRT-III proteins including CHMP5 

(Pincetic et al., 2010). VPS4 is an ATPase that is found in the 

cytoplasm in its inactive form. Activation of the VPS4 and its 

ATPase activity is essential for membrane budding and the release 

of viral particles (Pincetic et al., 2010). VPS4 is activated on 

membranes in the presence of its co-activator VTA (also known as 

LIP5). VTA is delivered to the membranes by ESCRT-III proteins 

such as CHMP5 (Pincetic et al., 2010). Hence, the interaction of 

VPS4 and VTA is facilitated by CHMP5. However, when 

interferons are induced in the host cell following viral infection, 

ISGs (interferon stimulated genes) such as ISG15, a dimer 

homologue of ubiquitin, may be activated (Pincetic et al., 2010). 

ISG15 may then conjugate to CHMP5 and promote its 

accumulation in the membrane, effectively blocking the 

interaction of VTA with VPS4 and preventing viral budding 

(Pincetic et al., 2010). The novel interaction of CHMP5 with 

NUP98 may serve as the critical juncture at which the IFN- 

stimulated anti-viral mechanism interferes with viral budding. 

NUP98, a protein induced on viral expression, has been shown to 

promote anti-viral gene expression in drosophila (Panda et al., 

2014). Both CHMP5 and NUP98 are overexpressed following 

SARS-CoV Urbani infection. This interaction may serve as a 

signal for the initiation of ISG15-mediated interference of viral 

budding. ISG15 may further regulate this mechanism through 

feedback inhibition of NUP98. Hence, potentiation of this anti- 

viral mechanism through administration of recombinant interferon 

alfa-2b and interferon alfacon-1 may be a feasible therapeutic 

option for SARS-CoV-2. Both these interferons induce gene 

expression profiles negatively correlated with SARS-associated 

profiles. The machinery of ESCRT-III and VPS4 is co-opted into 

two subcellular structures that are intricately linked to cilia 

function, namely, the centrosomes and the midbody (Morita et al., 

2010). It is important to study these structures as potential 

modulators of viral infections. 

2.11 Potentially Repurposable Drugs 
We followed the established approach of comparing drug- induced 

versus disease-associated differential expression (Sirota et al., 

2011) to identify drugs for SARS-CoV-2. For 

this, we used a software suite called BaseSpace Correlation Engine 

(previously called NextBio) (https://www.nextbio. com) 

(Kupershmidt et al., 2010; Chattopadhyay and Ganapathiraju, 

2017). This data analysis platform was used because it allows users 

to study the effect of diseases and/or drugs on thousands of pre-

processed publicly available gene expression datasets and has 

helped to identify drug candidates for diseases such as 

schizophrenia (Karunakaran et al., 2019b) (currently undergoing 

clinical trials (Vishwajit Nimgaonkar, 2022; Vishwajit 

Nimgaonkar, 2024)) and mesothelioma (Karunakaran et al., 

2021) in the past. We compiled a list of 933 chemical 

compounds whose differential gene expression profiles (drug versus 

no drug) were negatively correlated with at least one of the four 

SARS differential gene expression datasets (infected versus non-

infected); the 4 SARS datasets we studied were: Calu-3 epithelial 

cells infected for 48 h with SARS-CoV versus mock infected cells 

(GSE17400), Calu-3 lung cells infected for 72 h with SARS-CoV 

Urbani versus mock infected cells (GSE37827), lung fibroblast 

MRC5 cells 24 h post SARS-CoV infection (high MOI) versus 

mock infection (GSE56189) and PBMCs from SARS patients 

versus healthy subjects [GSE1739 (Reghunathan et al., 2005)]. 

We also compiled a list of 381 chemical compounds with gene 

expression profiles negatively correlated with the profile induced 

in human bronchial epithelial (NHBE) and lung cancer (A549) 

cells infected with the SARS-CoV-2 strain USA-WA1/2020 

[GSE147507 (Blanco-Melo et al., 2020a)] 

Although in each case, there would be some genes that are 

differentially expressed in the same direction for both the drug and 

the disease (i.e., both cause some genes to overexpress, or both 

cause some genes to under express), the overall effect on the entire 

transcriptome would be an anti-correlation. A correlation score is 

generated by NextBio based on the strength of the overlap 

between the drug and disease datasets. Statistical criteria such 

as correction for multiple hypothesis testing are applied and the 

correlated datasets are then ranked by statistical significance. 

A numerical score of 100 is assigned to the most significant 

result, and the scores of the other results are normalized with 

respect to this top-ranked result. 

Next, we identified 1,130 drugs that target at least one protein in the 

HoP interactome using WebGestalt (Liao et al., 2019). We used the 

“redundancy reduction” feature provided by WebGestalt to 

prioritize drugs with highly significant overlaps with the 

interactome, while also capturing all the unique target gene sets. 

This feature used an affinity propagation algorithm, which 

clusters sets of genes in the interactome targeted by specific drugs 

using Jaccard index as the similarity metric, and identifies a 

“representative” for each cluster (one drug and its targets), having 

the most significant p-value among all the gene sets in that cluster. 

This resulted in 209 drugs for further consideration. Given a class 

of drugs targeting the same set of proteins, this method ensures 

that only those individual drugs that target a statistically 

significant number of proteins in the interactome are prioritized 

for further analysis. 

Fifty-six drugs were found in common to the above two analyses, 

i.e., these drugs not only targeted genes in the HoP 

https://www.nextbio.com/
https://www.nextbio.com/
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TABLE 2 | 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or enrichment 

between the two biosets. 
 

Drug Bioset 1 Bioset 2 Score (scaled # Up # Down 
   negative in bioset in bioset 
   correlations) 1 (p-val), 1 (p-val), 
    down in up in 
    bioset 2 bioset 2 
    (p-val) (p-val) 

Alprenolol Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + alprenolol, 14 uM _vs._ DMSO 100 228 74 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (9.1E-9) (0.1079) 
 _vs._mock infection     

Chloramphenicol Calu-3 lung cells_SARS Cov urbani infected Liver of Crj-CD (SD)IGS rats 24 h after 28 days 100 75 78 
 72 h_vs._mock-infected daily dose of 1000 mg-kg chloramphenicol _vs._  (2.5E-9) (0.0006) 
  0 mg-kg    

Clotrimazole Calu-3 lung cells_SARS Cov urbani infected Liver of rats + CLOTRIMAZOLE at 52 mg-kg-d in 100 119 189 
 72 h_vs._mock-infected corn oil by oral gavage 3 days _vs._ vehicle  (6.5E-11) (0.0003) 

Didanosine Calu-3 epithelial cells infected for 48 h with SARS Primary rat hepatocytes + didanosine at 50 uM in 100 30 49 
 corona virus_vs._mock-infected DMSO 1 day_vs._vehicle  (2.2E-6) (0.0027) 

Epinephrine Lung fibroblast MRC5 cells 24 h post SARS Heart of rats + EPINEPHRINE at 0375 mg-kg-d in 100 107 (2E-7) 75 
 corona virus infection high MOI Zhou et al. (2020a) saline by intravenous 5 days _vs._ vehicle   (1.8E-5) 
 _vs._mock infection     

Fenofibrate Calu-3 lung cells_SARS Cov urbani infected Huvec cells treated with fenofibrate for 18 h _vs._ 100 395 230 
 72 h_vs._mock-infected untreated  (4.2E-16) (3.7E-15) 

Fenoprofen Calu-3 lung cells_SARS Cov urbani infected Kidney of rats + FENOPROFEN at 52 mg-kg-d in 100 72 69 
 72 h_vs._mock-infected corn oil by oral gavage 1 day _vs._ vehicle  (5.2E-13) (0.0015) 

Ifosfamide Calu-3 epithelial cells infected for 48 h with SARS Rhabdomyosarcoma xenografts F2 generation 100 451 1733 
 corona virus_vs._mock-infected treated with ICE-T _vs._ original patient tumor  (6E-20) (1.5E-7) 
  untreated    

Irinotecan Lung fibroblast MRC5 cells 24 h post SARS MCF7 breast cancer cells treated 6 h with 5 × 100 1,153 500 
 corona virus infection high MOI Zhou et al. (2020a) IC50 of topo I inhibitor SN38 _vs._ untreated  (4.9E-47) (0.0017) 
 _vs._mock infection     

Isoniazid PBMC from patients with SARS_vs._healthy Blood of TB patients infected with M. 100 334 450 
 subjects tuberculosis—post 2HRZE/4HR therapy _vs._  (6E-46) (4.5E-13) 
  before therapy    

Isradipine Calu-3 epithelial cells infected for 48 h with SARS HL60 cells + isradipine, 10.8 uM _vs._ DMSO 100 40 61 
 corona virus_vs._mock-infected vehicle  (5.7E-9) (0.0229) 

Nitric Oxide Lung fibroblast MRC5 cells 24 h post SARS HCT116 colon cancer cells + NO 24 h _vs._ 100 420 231 
 corona virus infection high MOI Zhou et al. (2020a) untreated control  (7.3E-44) (8.2E-9) 
 _vs._mock infection     

Paclitaxel Lung fibroblast MRC5 cells 24 h post SARS Mammary adenocarcinoma did not respond to 100 561 269 
 corona virus infection high MOI Zhou et al. (2020a) 3 weeks carboplatin/paclitaxel treatment _vs._  (1.5E-29) (1.4E-7) 
 _vs._mock infection untreated    

Phenethyl Calu-3 lung cells_SARS Cov urbani infected Primary human hepatocytes +25 uM phenethyl 100 401 389 

isothiocyanate 72 h_vs._mock-infected isothiocyanate for 48 h _vs._ vehicle  (2.8E-12) (0.0062) 

Riluzole Calu-3 lung cells_SARS Cov urbani infected PC3 cells + riluzole, 14.8 uM _vs._ DMSO vehicle 100 166 258 
 72 h_vs._mock-infected   (6.5E-5) (2.4E-6) 

Sorafenib Calu-3 lung cells_SARS Cov urbani infected Hodgkins lymphoma HD-MYZ cell line - 10 uM 100 309 378 
 72 h_vs. perifosine 5 uM sorafenib treated 24 h _vs._  (7.5E-14) (5.7E-16) 
  vehicle control    

Terazosin PBMC from patients with SARS_vs._healthy Heart of rats + TERAZOSIN at 657 mg-kg-d in 100 39 29 (0.031) 
 subjects water by oral gavage 5 days _vs_ vehicle  (0.0228)  

Tetracycline PBMC from patients with SARS_vs._healthy Hepatocytes of female donors treated 24 h with 100 50 98 
 subjects 1 uM tetracycline _vs._ 0uM  (0.0017) (8.5E-14) 

Adalimumab Calu-3 epithelial cells infected for 48 h with SARS Psoriasis lesional skin of adalimumab regimen 100 90 67 
 corona virus_vs._mock-infected responders—wk2 _vs._ wk0  (4.6E-40) (2.1E-5) 

Cyclosporine Calu-3 epithelial cells infected for 48 h with SARS Lesional skins of atopic dermatitis 5 mg/kg/d CsA 100 386 1,165 
 corona virus_vs._mock-infected responders - treated 12 weeks _vs._ baseline  (2.6E-61) (6E-19) 

Infliximab Calu-3 epithelial cells infected for 48 h with SARS Ulcerative colitis colon 10 mg/kg infliximab 100 170 693 
 corona virus_vs._mock-infected regimen—8 w _vs._ baseline  (2.6E-54) (5.7E-54) 

Prednisone Calu-3 epithelial cells infected for 48 h with SARS Blood of dengue patients 2 mg/kg prednisolone 100 370 571 
 corona virus_vs._mock-infected treated 3 days - 1month follow up _vs._ pre-  (1.4E-90) (2.1E-7) 
  treatment    

Interferon alfacon-1 Lung fibroblast MRC5 cells 24 h post SARS A549 lung adenocarcinoma cells treated 24 h 100 150 68 
 corona virus infection high MOI Zhou et al. (2020a) with 500IU infergen _vs._ untreated  (6.4E-5) (2.3E-10) 
 _vs._mock infection     

(Continued on following page) 
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TABLE 2 | (Continued) 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or 

enrichment between the two biosets. 
 

Drug Bioset 1 Bioset 2 Score (scaled # Up # Down 
   negative in bioset in bioset 
   correlations) 1 (p-val), 1 (p-val), 
    down in up in 
    bioset 2 bioset 2 
    (p-val) (p-val) 

Interferon alfa-2b PBMC from patients with SARS_vs._healthy Healthy whole blood - treated with IFNa-2b _vs._ 100 148 187 
 subjects not treated  (5E-12) (0.012) 

Dacarbazine Lung fibroblast MRC5 cells 24 h post SARS HL60 cells + dacarbazine, 22 uM _vs._ DMSO 100 127 69 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (6.5e-16) (0.0162) 
 _vs._mock infection     

Tamoxifen Lung fibroblast MRC5 cells 24 h post SARS Mammary epithelial cells 48 h with 10 uM 94 343 95 
 corona virus infection high MOI Zhou et al. (2020a) tamoxifen _vs._ DMSO  (1.5E-26) (1.9E-8) 
 _vs._mock infection     

Sumatriptan Lung fibroblast MRC5 cells 24 h post SARS Brain of rats + SUMATRIPTAN at 1100 mg-kg-d 93 117 87 
 corona virus infection high MOI Zhou et al. (2020a) in water by oral gavage 3 days _vs._ vehicle  (4.1E-7) (4.7E-6) 
 _vs._mock infection     

Nortriptyline Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + nortriptyline, 13.4 uM _vs._ DMSO 91 216 107 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (1.2E-5) (1.2E-6) 
 _vs._mock infection     

Quercetin Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + quercetin, 11.8 uM _vs._ DMSO 91 520 104 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (1.4E-32) (0.0018) 
 _vs._mock infection     

Resveratrol Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + resveratrol, 17.6 uM _vs._ DMSO 91 237 159 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (3.9E-15) (2.3E-5) 
 _vs._mock infection     

Cerivastatin PBMC from patients with SARS_vs._healthy Kidney of rats + cerivastatin at 7 mg-kg-d in corn 90 46 63 
 subjects oil by oral gavage 3 days _vs._ vehicle  (2.5E-5) (0.0121) 

Thioridazine Lung fibroblast MRC5 cells 24 h post SARS PC3 cells + thioridazine, 9.8 uM _vs._ DMSO 89 323 105 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (1.7E-9) (1.4E-5) 
 _vs._mock infection     

Mycophenolic acid Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + mycophenolic acid, 12.4 uM _vs._ 87 329 142 
 corona virus infection high MOI Zhou et al. (2020a) DMSO vehicle  (2.4E-6) (0.0142) 
 _vs._mock infection     

Granisetron PBMC from patients with SARS_vs._healthy Liver of rats + GRANISETRON at 175 mg-kg-d in 86 60 47 
 subjects water by oral gavage 3 days _vs._ vehicle  (0.0021) (0.3425) 

Ticlopidine Lung fibroblast MRC5 cells 24 h post SARS PC3 cells + ticlopidine, 13.4 uM _vs._ DMSO 85 306 83 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (7.8E-6) (0.0001) 
 _vs._mock infection     

Dobutamine Lung fibroblast MRC5 cells 24 h post SARS PC3 cells + dobutamine, 11.8 uM _vs._ DMSO 84 69 42 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (0.0023) (9.4E-9) 
 _vs._mock infection     

Permethrin Lung fibroblast MRC5 cells 24 h post SARS Neural 3D tissue constructs 16 days - treated on 81 277 168 
 corona virus infection high MOI Zhou et al. (2020a) d14 with 2.5 uM permethrin for 2 days _vs._  (5.7E-20) (1.3E-10) 
 _vs._mock infection untreated    

Sirolimus Calu-3 epithelial cells infected for 48 h with SARS SKBR3 line (mammary adenocarcinoma 71 54 (0.46) 517 
 corona virus_vs._mock-infected overexpressing HER2) + rapamycin 24 h _vs._   (5.7E-54) 
  vehicle    

Epirubicin Calu-3 epithelial cells infected for 48 h with SARS Breast tumors post epirubicin cyclophosphamide 68 80 452 
 corona virus_vs._mock-infected paclitaxel gemcitabine herceptin_vs._baseline  (1.8E-23) (1.4E-6) 

Timolol Calu-3 lung cells_SARS Cov urbani infected Heart of rats + timolol at 900 mg-kg-d in water by 65 108 227 
 72 h_vs._mock-infected oral gavage 5 days _vs._ vehicle  (1.7E-12) (2.2E-5) 

Miconazole Calu-3 lung cells_SARS Cov urbani infected HL60 cells + miconazole, 9.6 uM _vs._ DMSO 64 102 108 
 72 h_vs._mock-infected vehicle  (0.0003) (0.0248) 

Metyrapone Calu-3 lung cells_SARS Cov urbani infected MCF7 cells + metyrapone, 17.6 uM _vs._ DMSO 62 162 88 
 72 h_vs._mock-infected vehicle  (0.0004) (0.0096) 

Nitrazepam Lung fibroblast MRC5 cells 24 h post SARS Liver 310 mg per kg nitrazepam treated 3 days 56 117 84 (0.033) 
 corona virus infection high MOI Zhou et al. (2020a) _vs._ vehicle control  (1.1E-8)  

 _vs._mock infection     

Perhexiline Calu-3 lung cells_SARS Cov urbani infected liver of male rat + PERHEXILINE 320 mg per kg 52 103 223 
 72 h_vs_mock-infected for 5 days _vs._ vehicle  (0.0073) (8E-7) 

Staurosporine PBMC from patients with SARS_vs._healthy Primary rat hepatocytes + STAUROSPORINE at 41 143 232 
 subjects 1.3 uM in DMSO 1 day _vs._ vehicle  (0.0004) (0.0285) 

(Continued on following page) 
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TABLE 2 | (Continued) 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or 

enrichment between the two biosets. 
 

Drug Bioset 1 Bioset 2 Score (scaled # Up # Down 
   negative in bioset in bioset 
   correlations) 1 (p-val), 1 (p-val), 
    down in up in 
    bioset 2 bioset 2 

    (p-val) (p-val) 

Leflunomide Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + leflunomide, 14.8 uM _vs._ DMSO 40 70 30 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (0.0007) (0.0968) 
 _vs._mock infection     

Verapamil PBMC from patients with SARS_vs._healthy HL60 cells + verapamil, 8.2 uM _vs._ DMSO 39 38 43 
 subjects vehicle  (0.0001) (0.0299) 

Hydrocortisone Calu-3 epithelial cells infected for 48 h with SARS HUVECS 1uM hydrocortisone 500U/ml IL1B 36 71 324 

 corona virus_vs._mock-infected 2500 U/ml TNFα +1250 U/ml IFNγ 
4 h_vs._vehicle 

 (0.1487) (0.0692) 

Progesterone Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + progesterone, 12.8 uM _vs._ 31 270 116 
 corona virus infection high MOI Zhou et al. (2020a) DMSO vehicle  (2.6E-10) (0.0386) 
 _vs._mock infection     

Ramipril Lung fibroblast MRC5 cells 24 h post SARS MCF7 cells + ramipril, 9.6 uM _vs._ DMSO 31 147 53 
 corona virus infection high MOI Zhou et al. (2020a) vehicle  (1.7E-7) (0.0052) 
 _vs._mock infection     

Temazepam Calu-3 lung cells_SARS Cov urbani infected Cerebrocortical cells from E16.5 mice treated 27 11 25 

 72 h_vs._mock-infected 8 h—0.5 uM temazepam _vs._ DMSO  (0.0534) (0.0338) 

Additional statistical criteria such as correction for multiple hypothesis testing are applied and the correlated biosets are then ranked by statistical significance. A numerical score of 100 is 

assigned to the most significant result, and the scores of the other results are normalized with respect to the top-ranked result. 

 

interactome, but also induced gene expression profiles which are 

negatively correlated with that induced by SARS-CoV (Table 2) 

and SARS-CoV-2 (Table 3). 13 drugs showed negative correlation 

with both expression profiles. 24 of these have supporting 

evidence for biological relevance (see Appendix) through clinical 

trial data and published literature (Figure 10). 

 

• 4 drugs showed activity against SARS-CoV-2 in vitro 

(cyclosporine, sorafenib, tamoxifen, anisomycin) 

• 1 chemical compound (nitric oxide) found here is already 

being tested against SARS-CoV-2 in clinical trials 

• 1 drug (ramipril) belongs to the class of receptors targeted 

by SARS-CoV-2 

• 5 drugs display clinical activity against SARS or MERS 

(resveratrol, sirolimus, mycophenolic acid, interferon 

alpha-2b, interferon alfacon-1) 

• 3 drugs (quercetin, verapamil, progesterone) are active 

against influenza viruses 

• 2 drugs are active against DNA viruses (leflunomide, 

daunorubicin), and 

• 8 drugs show activity against other RNA viruses (clotrimazole, 

didanosine, paclitaxel, fenofibrate, cerivastatin, thioridazine, 

pioglitazone, miglitol) 

 

Eight drugs from our shortlist were independently identified or 

prioritized by other groups, namely: leflunomide [Chen et al. 

(Chen et al., 2021)], sirolimus [Zhou et al. (Zhou et al., 2020a)], 

leflunomide, quercetin and verapamil [Gysi et al. (Gysi et al., 

2020)], interferon alfa-2b, resveratrol, cyclosporine and 

mycophenolic acid [Li et al. (Li and De Clercq, 2020)]. 

Additionally, 8 out of the 24 shortlisted drugs were also found 

among 127 broad-spectrum antiviral drugs active against 80 

viruses (https://drugvirus.info/). These are cyclosporine, 

leflunomide, mycophenolic acid, sirolimus, sorafenib, tamoxifen, 

anisomycin and verapamil. Fourteen drugs were found to induce 

expression profiles negatively correlated with the profiles of ICU-

admitted COVID-19 patients with ARDS versus non-critical 

patients on oxygen [GSE172114 (Carapito et al., 2021)], namely, 

cerivastatin, cyclosporine, didanosine, leflunomide, miglitol, 

mycophenolic acid, paclitaxel, quercetin, resveratrol, sirolimus, 

sorafenib, tamoxifen, thioridazine and verapamil. Three drugs—

didanosine, miglitol and resveratrol—induced profiles negatively 

correlated with that of COVID-19 patients in ICU versus healthy 

subjects [GSE152418 (Arunachalam et al., 2020)]. Additionally 4 

drugs (sorafenib, quercetin, verapamil and cerivastatin) induced 

profiles negatively correlated with the profiles of ICU-admitted 

COVID-19 patients with ARDS versus those receiving non-

intensive care [GSE157103 (Overmyer et al., 2021)] and 2 drugs 

(resveratrol and didanosine) with profiles of COVID-19 patients 

critical in ICU with ARDS versus non-critical patients on oxygen 

[GSE172114 (Carapito et al., 2021)]. These drugs could be examined 

for their differential clinical activity in critical           versus non-critical 

cases. 

 
 

3 DISCUSSION 

In this study, to gain insight into the biological processes and 

pathways that may be involved in host response upon SARS- 

CoV-2 infection, we assembled the interactome of the host 

proteins targeted by the virus. The host protein (HoP) interactome 

has ~4,000 previously known PPIs in addition to ~2,000 PPIs 

that we computationally predicted. The interactome and its 

annotations are made available on the website that is freely 

https://drugvirus.info/


  

169  

 

TABLE 3 | 18 drugs with expression profiles negatively correlated with COVID-associated profile: The correlation score is based on the strength of the overlap or enrichment 

between the two biosets. 
 

Drug Bioset 1 Bioset 2 Correlation score # Up in 

bioset 

# Down in 

bioset 
   (scaled 1 (p-val), 1 (p-val), 
   negative down in up in 
   correlations) bioset 2 bioset 2 
    (p-val) (p-val) 

Didanosine Bronchial epithelial NHBE and lung cancer A549 Primary rat hepatocytes + DIDANOSINE at 500 uM 76 43 20 
 cells infected with SARS-CoV-2 strain in DMSO 1 day _vs._ vehicle  (3.2E-19) (0.1725) 
 United States-WA1/2020     

Isoniazid Bronchial epithelial NHBE and lung cancer A549 Blood of TB patients infected with M. tuberculosis - 75 268 580 
 cells infected with SARS-CoV-2 strain post 2HRZE/4HR therapy _vs._ before therapy  (2.4E-47) (5.9E-9) 
 United States-WA1/2020     

Epirubicin Bronchial epithelial NHBE and lung cancer A549 Liver 2.7 mg per kg Epirubicin treated 3 days _vs._ 66 92 100 
 cells infected with SARS-CoV-2 strain vehicle control  (1.4E-21) (0.0001) 
 United States-WA1/2020     

Paclitaxel Bronchial epithelial NHBE and lung cancer A549 Ovarian cancer OVISE cells +10X IC50 66 82 91 
 cells infected with SARS-CoV-2 strain concentration of paclitaxel for 24 h _vs._ untreated  (4.2E-15) (0.0358) 
 United States-WA1/2020     

Daunorubicin Bronchial epithelial NHBE and lung cancer A549 Heart 3.25 mg per kg Daunorubicin treated 1 day 65 40 34 
 cells infected with SARS-CoV-2 strain _vs._ vehicle control  (1.3E-14) (0.0004) 
 United States-WA1/2020     

Rifapentine Bronchial epithelial NHBE and lung cancer A549 Kidney of rats + RIFAPENTINE at 75 mg-kg-d in 64 24 77 
 cells infected with SARS-CoV-2 strain corn oil by oral gavage 1 day _vs._ vehicle  (0.0117) (2.2E-7) 
 United States-WA1/2020     

Ticlopidine Bronchial epithelial NHBE and lung cancer A549 Liver of Crj-CD (SD)IGS rats 24h after 14 days daily 63 59 59 
 cells infected with SARS-CoV-2 strain dose of 300 mg-kg ticlopidine _vs_ 0 mg-kg  (2.9E-15) (0.2386) 
 United States-WA1/2020     

Ifosfamide Bronchial epithelial NHBE and lung cancer A549 Heart of rats + IFOSFAMIDE at 143 mg-kg-d in 61 34 93 
 cells infected with SARS-CoV-2 strain saline by oral gavage 5 days _vs._ vehicle  (2.6E-15) (0.0091) 
 United States-WA1/2020     

Quercetin Bronchial epithelial NHBE and lung cancer A549 Hep G2 hepatocarcinoma cell line cultured for 24 h 60 25 233 
 cells infected with SARS-CoV-2 strain with 10 nM quercetin _vs._ 0.5% DMSO  (0.0016) (1.7E-12) 
 United States-WA1/2020     

Resveratrol Bronchial epithelial NHBE and lung cancer A549 AML THP-1 cells 24 h Mycobacterium tuberculosis 58 162 293 
 cells infected with SARS-CoV-2 strain infected - with 100 uM resveratrol _vs._ without  (2.8E-23) (3.1E-5) 
 United States-WA1/2020     

Tetracycline Bronchial epithelial NHBE and lung cancer A549 Primary rat hepatocytes + TETRACYCLINE at 58 19 (0.001) 174 
 cells infected with SARS-CoV-2 strain 520 uM in DMSO 0.67 days _vs._ vehicle   (6.2E-7) 
 United States-WA1/2020     

Pioglitazone Bronchial epithelial NHBE and lung cancer A549 Heart of rats + PIOGLITAZONE at 1500 mg-kg-d in 57 15 (0.343) 91 
 cells infected with SARS-CoV-2 strain corn oil by oral gavage 5 days _vs._ vehicle   (7.5E-7) 
 United States-WA1/2020     

Chloramphenicol Bronchial epithelial NHBE and lung cancer A549 Liver of Crj-CD (SD)IGS rats 24 h after 28 days daily 55 39 (5E-09) 23 
 cells infected with SARS-CoV-2 strain dose of 1000 mg-kg chloramphenicol _vs._   (0.0535) 
 United States-WA1/2020 0 mg-kg    

Permethrin Bronchial epithelial NHBE and lung cancer A549 Neural 3D tissue constructs 16 days - treated on 55 18 157 
 cells infected with SARS-CoV-2 strain d14 with 2.5 uM permethrin for 2 days _vs._  (0.4565) (5.5E-5) 
 United States-WA1/2020 untreated    

Miglitol Bronchial epithelial NHBE and lung cancer A549 Osteosarcoma U-2 OS cells treated 12 h with 45 3 (0.0366) 31 
 cells infected with SARS-CoV-2 strain 1000 nM miglitol _vs._ DMSO   (8.4E-6) 
 United States-WA1/2020     

Nortriptyline Bronchial epithelial NHBE and lung cancer A549 Primary rat hepatocytes + NORTRIPTYLINE at 42 93 392 
 cells infected with SARS-CoV-2 strain 70 uM in DMSO 1 day _vs._ vehicle  (2.7E-8) (0.0048) 
 United States-WA1/2020     

Nitrazepam Bronchial epithelial NHBE and lung cancer A549 Liver of rats + nitrazepam at 310 mg-kg-d in CMC 41 22 119 
 cells infected with SARS-CoV-2 strain by oral gavage 3 days _vs._ vehicle  (0.0471) (0.0016) 
 United States-WA1/2020     

Anisomycin Bronchial epithelial NHBE and lung cancer A549 PC3 cells + anisomycin, 15 uM _vs._ DMSO vehicle 41 75 281 
 cells infected with SARS-CoV-2 strain   (0.2238) (3.5E-5) 
 United States-WA1/2020     

Additional statistical criteria such as correction for multiple hypothesis testing are applied and the correlated biosets are then ranked by statistical significance. A numerical score of 100 is 

assigned to the most significant result, and the scores of the other results are normalized with respect to the top-ranked result. 
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accessible, Wiki-Corona. The HoP interactome was found to share 

large and statistically significant overlaps with gene expression 

profiles induced by SARS-CoV and SARS-CoV-2. Proteins with 

tissue-specific gene expression in lungs, spleen, brain and heart 

were also found in the interactome. Topologically connected 

modules in the network showed functional association to cilium 

organization, nuclear transport, ribonucleoprotein complex 

biogenesis, endosomal transport and epigenetic regulation of gene 

expression. The interactome was enriched for subcellular 

locations and host cellular processes that may be targeted by 

SARS-CoV-2. It also showed significant associations with several 

disorders including cancers, metabolic, neurological, developmental 

and vascular disorders. For example, the host proteins were found 

to directly interact with proteins associated with two co-

morbidities, hypertension and diabetes, which are commonly 

found among COVID-19 non-survivors. Protein biomarkers 

showing varied expression across the different stages of COVID-

19 were predicted as novel interactors of the host proteins targeted 

by SARS-CoV-2. The SARS-CoV-2 host proteins and ciliary 

proteins shared several common interactors. The role of cilia as 

viral entry points and modulators of viral infections should be 

investigated further on this premise. On further analysis of the 

shared interactome, we 

hypothesized that the novel interaction of NUP98 with CHMP5, a 

ciliary (and centrosome and midbody-localizing) protein, may 

activate an IFN-stimulated pathway with the potential to interfere 

with viral budding. We shortlisted drugs potentially repurposable for 

COVID-19 based on the negative correlation of drug-induced 

versus disease-associated gene expression profiles. These included 

drugs with proven in vitro activity against SARS-CoV-2, those 

that were already being tested for their clinical activity against 

SARS-CoV-2, those with proven activity against SARS-CoV/ 

MERS-CoV, broad-spectrum antiviral drugs, and those 

identified/prioritized by other computational re-purposing studies. 

Our computational approach has several limitations. Drug- 

associated expression profiles analyzed in this study were induced 

in several types of cell lines (including cancer cell lines) that may 

not be directly relevant to COVID-19 or SARS-CoV-2 infection. 

The effect of the proposed repurposable drugs should be studied in 

human bronchial epithelial cells and/or in human lung cancer cell 

lines, both of which were recently used to study host transcriptional 

response upon SARS-CoV-2 infection (Blanco-Melo et al., 2020a). 

The repurposable drugs discussed in this study can simply be 

identified through comparative transcriptomic analysis; i.e., by 

comparing drug-induced expression profiles with SARS-CoV/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

interactome. Host proteins targeted by SARS-CoV-2 are shown as dark blue nodes, their known interactors are light blue and novel interactors are red. 
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SARS-CoV-2-induced profiles. However, by considering the drugs 

targeting the proteins in the HoP interactome, we attempted to 

provide starting points for a mechanistic and experimentally 

testable basis for the negative correlation observed between the 

drugs and the viral infection at the transcriptomic level. These 

starting points are typically subnetworks (e.g., Figure 10) showing 

interconnections of the drug targets and the host proteins targeted 

by the virus in the human interactome. The sets of host proteins 

interacting with SARS-CoV and SARS- CoV-2, which were 

analyzed in our study to elucidate common pathways targeted by 

these viruses, were themselves identified using different protein 

interaction mapping techniques (AP–MS and Y2H) in different 

studies. These techniques differ from each other with respect to the 

nature of the PPIs that they detect: AP–MS identifies direct and 

indirect interactions among members of stable protein complexes, 

while Y2H may identify direct and more transient interactions 

between pairs of proteins. Therefore, each of these techniques 

may detect a different portion of the virus-host interactome. The 

marginal overlap observed between the sets of host proteins 

interacting with SARS-CoV and SARS-CoV-2 could be attributed 

to the differences in the interactome subspaces detected by Y2H 

and AP–MS, respectively. In this scenario, one may expect the 

neighborhood networks of these host proteins to also exhibit this 

discordance. However, we observed extensive interconnections 

between these sets of proteins, via direct and intermediate 

(known as well as novel) interactors. This shows that 1) it is the 

ability of the different techniques to detect different subspaces of 

the interactome in a complementary manner that makes them 

valuable, 2) machine learning methods may capture novel PPIs 

that other techniques fail to capture, and 3) computational methods 

may be employed to piece together an integrated view of the 

interactome, despite the limitations of the individual mapping 

techniques. 

The novelty of this work stems from several aspects. 1) Despite an 

explosive increase in the generation of COVID-19 related data, 

knowledge on the mechanistic basis of the host cellular response to 

SARS-CoV-2 infection is limited. Therefore, we prioritized 

dataset mining and hypothesis generation over data generation by 

integrating and analyzing publicly available multi-omics data 

within the functional landscape of the protein interactome using 

bioinformatic tools. This approach directly contributes towards 

COVID-19 research prioritization, namely, selection of 

pathways and drugs for experimental dissection and clinical 

interventions. 2) Computationally predicted PPIs enhanced 

hypothesis generation by linking host genes across various high 

throughput studies in as-yet-undiscovered ways. 3) To facilitate 

analysis by both computational and biomedical scientists, all the 

results are being released in multiple data formats in open access 

and via an interactive webserver (see Data Availability). 4) The 

HoP interactome will facilitate several future systems biology 

studies derived from overlaying the interactome with data 

generated for research on coronaviruses, and specifically on 

COVID-19. In summary, the interactome will be useful for carrying 

out several studies in the future with rapidly emerging data to 

generate biologically insightful results that may be translated to 

biomedically actionable results. 

4 METHODS 

4.1 Compilation of Host Proteins and 
Prediction of Novel Interactions 

The list of 332 host proteins identified to interact with 27 SARS-

CoV-2 proteins was compiled from data files in Gordon et al. 

(2020a). Novel PPIs of these proteins were predicted using the 

HiPPIP model that we developed (Ganapathiraju et al., 2016b). 

Each host protein (say N1) was paired with each of the other 

human protein say (M1, M2, . .  . Mn), and each pair was 

evaluated with the HiPPIP model (Ganapathiraju et al., 2016b). 

The predicted interactions of each of the host proteins were 

extracted (namely, the pairs whose score is >0.5, a threshold 

which through computational evaluations and experimental 

validations was revealed to indicate interacting partners with high 

confidence). This resulted in 1941 newly discovered PPIs of the 

host proteins. The interactome figures were created using 

Cytoscape (Shannon et al., 2003). 

The significance of the overlap of this interactome with two 

datasets, namely, with the ciliary protein interactome and the 

interactome of 120 genes differentially expressed in SARS-CoV- 2-

infected A549 cell line (Blanco-Melo et al., 2020a), was computed 

based on hypergeometric distribution. 

4.2 Identification of Network Modules 
Network modules among the host proteins targeted by SARS- 

CoV-2 and their interactors were identified using Netbox (Cerami 

et al., 2010). Netbox reports modularity and a scaled modularity 

score, as compared with the modularity observed in 1,000 random 

permutations of the subnetwork. Scaled modularity refers to the 

standard deviation difference between the observed subnetwork 

and the mean modularity of the random networks (Wang and 

Zhang, 2007). 

4.3 Transcriptome and Proteome Analysis 
Statistical significance of the overlaps between genes in the HoP 

interactome and SARS-CoV/SARS-CoV-2 induced/associated 

transcriptomic/proteomic datasets was computed based on 

hypergeometric distribution. In this method, p-value is computed 

from the probability of k successes in n draws (without 

replacement) from a finite population of size N containing exactly 

K objects with an interesting feature. 

𝑃 (𝑋 = 𝑘) =
(𝐾

𝑘
)(𝑁−𝐾

𝑛−𝑘
)

(𝑁
𝑛

)
 

 

N = Total number of genes/proteins assayed. 

K = Number of SARS-CoV/SARS-CoV-2-induced/associated 

genes/proteins. 

n = Number of genes in the HoP interactome. k = 

K ∩ n. 

4.4 Tissue-Specificity Analysis 
Tissue-specificity of the genes in the HoP interactome were 

checked using TissueEnrich (Jain and Tuteja, 2019). The 
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analysis was based on genes from the GTEx database (Lonsdale et 

al., 2013). This included ‘“tissue-enriched genes” with at least 5-

fold higher mRNA levels in a particular tissue compared to all 

the other tissues, “group-enriched genes” with at least 5-fold 

higher mRNA levels in a group of 2-7 tissues and “tissue-enhanced 

genes” with at least 5-fold higher mRNA levels in a particular 

tissue compared to average levels in all tissues. 

 

4.5 Functional Enrichment Analysis 
Gene Ontology, Pathway and genetic disorder enrichments were 

computed using WebGestalt (Liao et al., 2019). WebGestalt 

computes the distribution of   genes   belonging to a particular 

functional category in the input list (i.e., genes in the HoP 

interactome/ACE2 and its interactors) and compares it with the 

background distribution of genes belonging to this functional 

category among all the genes that belongs to any functional 

category in the database selected by the user. Statistical 

significance of functional category enrichment is computed using 

Fisher’s exact test, and corrected using the Benjamini–Hochberg 

method for multiple test adjustment. Annotations with FDR-

corrected p-value < 0.05 were considered significant. 

ReactomeFIViz, a Cytoscape plugin, was used to extract known 

functional interactions among genes in the   HoP   interactome   

that were involved in viral budding and interferon signaling 

pathways (Wu et al., 2014). 

4.6 Potentially Repurposable Drugs 
The list of chemical compounds whose gene expression profiles 

correlated negatively with four SARS datatsets and one COVID-

19 dataset were compiled using the BaseSpace correlation 

software (https://www.nextbio.com) (List 1). The datasets 

considered were human bronchial epithelial (NHBE) and lung 

cancer (A549) cells infected with the SARS-CoV-2 strain USA-

WA1/2020 [GSE147507 (Blanco-Melo et al., 2020a)], Calu-3 

epithelial cells infected for 48 h with SARS- CoV versus mock 

infected cells (GSE17400), Calu-3 lung cells infected for 72 h with 

SARS-CoV Urbani versus mock infected cells (GSE37827), lung 

fibroblast MRC5 cells 24 h post SARS- CoV infection (high MOI) 

versus mock infection (GSE56189) and peripheral blood 

mononuclear cells (PBMCs) from patients with SARS versus 

healthy subjects [GSE1739 (Reghunathan et al., 2005)]. Next, we 

identified drugs that targeted at least one gene in the HoP 

interactome using WebGestalt (Liao et al., 2019). After employing 

the “redundancy reduction” feature in   WebGestalt   to   reduce 

the search space of drugs, we were left with a fewer number 

of drugs (List 2). In this feature, an affinity propagation algorithm 

clusters gene sets in the interactome targeted by specific drugs 

using Jaccard index as the similarity metric, and identifies a 

“representative” for each cluster (one drug and its targets), having 

the most significant p-value among all the gene sets in that 

cluster. We then compared list 1 and list 2 to identify the drugs 

that not only target 

proteins in the interactome but are also negatively correlated with 

SARS/COVID-19. 

List of drugs validated to be effective against SARS-CoV-2 in cell-

based assays were obtained from the COVID-19 Gene and Drug 

Set Library (https://amp.pharm.mssm.edu/covid19/) (Kuleshov et 

al., 2020). 

The drug-protein interactome figure was created using Cytoscape 

(Shannon et al., 2003). 
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full#supplementary-material 

 
Supplementary Figure S1 | Network proximity of cellular entry proteins and host 

proteins targeted by SARS-CoV-2: Dark blue nodes are host proteins targeted by 

SARS-CoV-2, light blue nodes are known interactors and red nodes are novel 

interactors. Brown-colored nodes with bold black italicized labels are 

the “cellular entry proteins” that facilitate the entry of SARS-CoV-2 into host cells. 

Supplementary Table S1 | List of proteins and protein-protein interactions in 

the host protein interactome, and the integrated interactome with virus- host 

PPIs and PPIs in the neighborhood network of host proteins: Computationally 

predicted interactors and interactions are indicated as “novel 

interactors” and “novel PPIs” respectively, whereas previously known interactors 

and interactions are shown as “known interactors” and “known PPIs”. 

Supplementary Table S2 | Complete list of SARS/COVID-related biological 

evidences of genes in the host protein interactome: A tick mark indicates the 

presence of a particular evidence for a given gene. 
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7. GPX4-associated Sedaghatian Type Spondylometaphyseal Dysplasia: A Protein 

Interactome Perspective 

 

The experimental chapter is based on the following pre-print publication: 

Karunakaran, Kalyani B., N. Balakrishnan, and Madhavi K. Ganapathiraju. GPX4-associated 

Sedaghatian type spondylometaphyseal dysplasia: A protein interactome 

perspective. bioRxiv (2022). 

 

Summary of this chapter 

 

In this chapter, I demonstrate how the interactomic framework was used to gain biological and 

clinically translatable insights into spondylometaphyseal dysplasia, Sedaghatian type (SMDS), a 

rare and lethal skeletal dysplasia inherited in an autosomal recessive manner and caused by 

mutations in the gene GPX4. My aim was to expand the functional landscape of this poorly studied 

disorder. For this, I constructed three phenotype (i.e., SMDS)-centric interactomes and one GPX4-

centric interactome. They contained experimentally determined and computationally predicted 

PPIs. I extensively characterised these interactomes using gene-phenotype association data, 

functional module analysis and transcriptomic analysis. I conducted extensive literature review to 

demonstrate the potential biological relevance of seven proteins predicted as novel interactors of 

GPX4 to SMDS. Lastly, I performed a comparative analysis of the differential expression profiles of 

dysplasia patients and the profiles induced by drugs targeting the neighbourhood network of GPX4 

to identify 11 repurposable drugs for SMDS. Further, I found another potential drug candidate 

based on the proximity of its targets to GPX4. In summary, this study provided a functional 

landscape of SMDS, allowing biologists to prioritize genes, functional modules and drugs for 

therapeutic interventions in SMDS. 

 

Contribution to this chapter (85%) 

 

• Designed the study and developed the methodology of the project, which included interactome 

construction, functional characterisation, drug repurposing and network proximity analysis 

• Curated all the datasets, performed all the analyses and derived the conclusions 

• Conceptualised and wrote the manuscript and prepared all the figures, tables and 

supplementary files
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Abstract 

 
Spondylometaphyseal dysplasia, Sedaghatian type (SMDS) is a rare and lethal skeletal 

dysplasia inherited in an autosomal recessive manner and caused by mutations in GPX4. In 

order to expand the functional landscape of this poorly studied disorder and accelerate the 

discovery of biologically insightful and clinically actionable targets, we constructed SMDS- 

centric and GPX4-centric protein-protein interaction (PPI) networks, augmented with novel 

protein interactors predicted by our HiPPIP algorithm. The SMDS-centric networks included 

those that showed the interconnections of GPX4 with other putative SMDS-associated genes 

and genes associated with other skeletal dysplasias. The GPX4-centric network showed the 

interconnections of GPX4 with genes whose perturbation has been known to affect GPX4 

expression. We discovered that these networks either contained or were enriched with genes 

associated with specific SMDS pathophenotypes, tissue-naïve/fetus-specific functional 

modules and genes showing elevated expression in brain and/or testis similar to GPX4. We 

identified 7 proteins as novel interactors of GPX4 (APBA3, EGR4, FUT5, GAMT, GTF2F1, 

MATK and ZNF197) and showed their potential biological relevance to GPX4 or SMDS. 

Comparative transcriptome analysis of expression profiles associated with chondroplasia and 

immune-osseous dysplasia versus drug-induced profiles revealed 11 drugs that targeted the 

neighborhood network of GPX4 and other putative SMDS-associated genes. Additionally, 

resveratrol, which is currently being tested against a skeletal dysplasia in a clinical trial, was 

identified as another potential candidate based on the proximity of its targets to GPX4. 

mailto:madhavi@pitt.edu
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Introduction 

 
Spondylometaphyseal dysplasias (SDs) constitute a heterogeneous group of skeletal dysplasias 

characterized by abnormal development of the spine and the metaphyses of tubular bones, 

progressive growth and mobility impairment. Spondylometaphyseal dysplasia, Sedaghatian 

type (SMDS) is a rare and lethal SD characterized by cupping (or the inward bulging) of the 

metaphyseal region in long bones (i.e. metaphyseal cupping), flattening of the vertebrae 

(platyspondyly), abnormal shoulder bone (scapula) morphology, short upper limbs 

(rhizomelia), abnormal heart rate (arrhythmia), impaired electric conduction from the atrial to 

the ventricular chamber of the heart (atrioventricular block), cardiorespiratory arrest and 

several pathologic features in the brain such as the absence/underdevelopment (i.e. 

agenesis/hypogenesis) of the corpus callosum and underdevelopment of the cerebellum 

(cerebellar hypoplasia).1-8 Respiratory distress is the primary cause of death for infants born 

with this congenital condition.1,7,8 Four patients living with this debilitating disorder exhibit 

delayed cognitive development, severe hypotonia characterized by a lack of neck muscle 

control and an inability to sit or walk unsupported, and intractable epileptic seizures.9 SMDS 

shows an autosomal recessive pattern of inheritance, and has been attributed to at least 3 

mutations in the gene GPX4 (located in the chromosomal region 19p13.3), which codes for the 

protein glutathione peroxidase, namely, c.381C>A (p.Tyr90Ter/Y90*) (single nucleotide 

variant in exon 3 that introduces a translation stop before the indicated amino acid position in 

the protein), c.587+5G>A (single nucleotide variant in intron 4 causing splicing out of a part 

of exon 4, indicated here with reference to the nearest coding sequence) and c.588-8_588- 4del 

(5 bp deletion in intron 4 causing skipping of exon 5, indicated here with reference to the 

nearest coding sequence).7,8,10 GPX4 is a multifunctional (‘moonlighting’) protein that not 

only catalyzes the reduction of lipoproteins and membrane phospholipids to prevent oxidative 

damage resulting from lipid peroxidation,11 but also serves as a structural protein in the 

midpiece of mature sperm.12 GPX4 activity and synthesis are influenced by Selenium levels, 

as its catalytic site contains a selenocysteine residue.13 Therapeutic options for SMDS are 

dismally limited to controlling oxidative damage using vitamin E, n-acetyl-cysteine and 

coenzyme Q10 supplements. Except for some early findings on the clinical presentation of 

SMDS1-6 and the characterization of the GPX4 mutations,7,8 the etiology of this severe lethal 

dysplasia remains largely unexplored. Hence, novel approaches are needed to elucidate the 

broad themes underlying this disorder. 
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Protein-protein interactions (PPIs) drive the cellular machinery by facilitating a variety of 

biological processes including signal transduction, formation of cellular structures and 

enzymatic complexes. Disease-associated variants are enriched in protein cores and protein 

interaction interfaces.14 Variants localized to the protein core may disrupt its tertiary structure 

and abolish all chances of the protein interacting with any of its interaction partners (node 

removal in the interactome).14 Variants localized to interaction interfaces may perturb specific 

interactions (edge perturbation in the interactome).14 Over two-thirds of disease- associated 

variants alter binding affinity or even establish novel interactions.15 Hence, genetic mutations 

may perturb proteins and this effect may spread in the PPI network (or the ‘interactome’) 

affecting other proteins, posing deeper implications for disease development,16 for example 

multiple pathophenotypes in a single disease despite the disease being associated with a single 

genotype.17 Several studies, led by our own group and others, have successfully traced shared 

genetics and symptomatology among different diseases back to this complex network of 

PPIs.18-21 Therefore, for functional interpretation of genetic variants associated with complex 

disorders, it is imperative that we place variants in the complex web of PPIs. 

Mapping disease-associated variants onto PPI networks will pull in more disease-associated 

genes into the network, offering an opportunity to analyze communities of proteins involved 

in mechanisms relevant to disease etiology. 

 
In this study, we adopted an interactome-based approach to construct an integrated functional 

landscape for GPX4-associated SMDS in relation with other SDs, phenotypically similar 

dysplasias, genes other than GPX4 speculated to be associated with SMDS and genes whose 

perturbation affects GPX4 expression. We identified functional modules and pathophenotypes 

enriched in this landscape, and used human transcriptomic data to identify groups of genes 

clustering with GPX4, which showed elevated expression in specific tissues. Finally, we 

adopted two approaches to propose a few repurposable drugs, namely, comparative analysis 

of drug-induced and disease-associated transcriptomes, and examining the network proximity 

of GPX4 to the protein targets of drugs that are being used or being tested against other 

skeletal dysplasias. 

 
Results 

 
We assembled the known PPIs of GPX4 from HPRD22 (Human Protein Reference Database) 

and BioGRID23 (Biological General Repository for Interaction Datasets), and predicted its 
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novel PPIs by applying the HiPPIP algorithm described in our earlier work.20 HiPPIP 

computes features of protein pairs such as cellular localization, molecular function, biological 

process membership, genomic location of the gene, and gene expression in microarray 

experiments, and classifies the pairwise features as interacting or non-interacting based on a 

random forest model.20 HiPPIP was shown to have high precision in its original evaluation20 

and to be superior to state-of-the-art algorithms in a recent evaluation.24 Eighteen novel PPIs 

predicted by HiPPIP were experimentally tested and all eighteen were found validated to be 

true PPIs by collaborators as summarized in our recent work.25 GPX4 has two known 

interactions, with MAPK13 (mitogen-activated protein kinase 13) and PRDX6 (peroxiredoxin 

6). Additionally, we predicted seven novel interactions with APBA3 (amyloid beta precursor 

protein binding family A member 3), EGR4 (early growth response 4), FUT5 

(fucosyltransferase 5), GAMT (guanidinoacetate N-methyltransferase), GTF2F1 (general 

transcription factor IIF subunit 1), MATK (megakaryocyte-associated tyrosine kinase) and 

ZNF197 (zinc finger protein 197). Table 1 lists the evidence supporting the biological 

relevance of these novel interactors to GPX4 or SMDS, identified from our analyses. 

 
Protein interactome analysis is a useful tool for elucidating biologically relevant relationships 

existing at a higher level among genes, which may not be apparent by examining individual 

genes. Therefore, for further mechanistic characterization of GPX4, we inspected its 

interconnections in the human interactome with (a) other genes speculated to be associated 

with SMDS in the DisGeNET26 database, (b) genes associated with other types of SDs, (c) 

genes associated with disorders that shared phenotypic similarity with SMDS and (d) genes 

whose perturbation was known to cause significant overexpression or underexpression of 

GPX4. Following this, we used the HumanBase toolkit27 to identify functional modules in 

each of these GPX4-associated interactomes. HumanBase employs shared k-nearest- 

neighbors and the Louvain community-finding algorithm to cluster the genes sharing the same 

network neighborhoods and similar GO biological processes into functional modules. 

Additionally, we compiled the genes involved in 12 major pathophenotypes associated with 

SMDS from the MONARCH28 database and computed the statistical significance of the 

enrichment of these genes in each of the interactomes, against a background of 15451 genes 

with phenotype associations. The selected phenotypes were atrial septal defect (290 genes), 

atrioventricular block (54 genes), cardiorespiratory arrest (10 genes), cerebellar hypoplasia 

(219 genes), myocarditis (7 genes), agenesis of corpus callosum (240 genes), arrhythmia (355 
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1 Table 1: Biological relevance of novel interactors of GPX4. The table lists different pieces of evidence gathered from our study that support the biological validity of the 

2 computationally predicted novel interactors of GPX4 to SMDS or GPX4 itself. Note that in the table, “phenotypic similarity” refers to “phenotypic similarity with SMDS” 

3 (unless specified otherwise). SMDS: SpondyloMetaphyseal Dysplasia, Sedaghatian type, SD: Spondylometaphyseal Dysplasia. 

Gene Potential biological relevance to GPX4/SMDS 

APBA3 a) An intermediate interactor of GPX4 and IARS2, an arrhythmia-and X-linked spondyloepimetaphyseal dysplasia-associated gene (the latter is a bone 

dysplasia phenotypically similar to SMDS) 

b) A known interactor of BCR1, mutations in which leads to underexpression of KIAA0586, a gene associated with Joubert syndrome (which shares several 

phenotypes with SMDS) 
c) An intermediate interactor of GPX4 and APP, which is targeted by resveratrol, a drug currently in clinical trials for skeletal dysplasias 

d) Co-occurred with GPX4 and its other novel interactors (GAMT and GTF2F1), and with potential SMDS-associated genes (RPS19) and/or their novel 

interactors (NEDD8, PSMD8, XRCC1 and DXO) in a cellular oxidant detoxification module 

e) Co-occurred along with novel interactors of GPX4 (GTF2F1) and novel interactors of SD-associated genes (RXRB, SLC48A1 and SF3A2) in an epithelial 

morphogenesis and fetus-specific protein catabolic process 
f) Co-occurred with other novel interactors of GPX4 (GTF2F1) and novel interactors of genes associated with phenotypically similar bone dysplasias 

(DNASE1L1) in a toxic substance response module 

EGR4 a) A transcription factor that regulates hind brain development in Xenopus 
b) Connected via DNMT3L to a novel interactor of the (potentially) SMDS-associated ARTN called LDB1, mutations in which lead to patterning defects 

c) Showed expression-based clustering with GPX4 due to elevated expression in brain tissues 

d) EGR4 mice mutants shared 6 phenotypes with GPX4 mice mutants: male infertility, oligozoospermia, small testis, abnormal sperm head morphology, 

decreased testis weight and kinked sperm flagellum 

e) Co-occurred in an adenylate cyclase-activating GPCR signaling module along with other novel interactors of GPX4 (MATK and ZNF197) and with 

potential SMDS-associated genes (ARTN and AGRP) and/or their novel interactors (CHRNB4, PSG9, TONSL, CAMK4, FCGBP, DIO1 and DHODH) 

f) Co-occurred in extracellular organization/cartilage development modules with other novel interactors of GPX4 (FUT5 and ZNF197) and with SD-associated 

genes (COL2A1 and TRPV4) and novel interactors of SD-associated genes (SPDYA, MST1, DRD2, KMT2D, GP5, LY6H, SERPINA4, CLSPN, IKZF2 

and TM6SF2) 
g) Co-occurred in autophosphorylation and neurogenesis modules with other novel interactors of GPX4 (FUT5 and ZNF197) and genes whose perturbation 

leads to differential expression of GPX4 (NTRK1 and DNMT3L) 

FUT5 a) Showed expression-based clustering with GPX4 due to elevated expression in the testis 

b) Co-occurred in extracellular organization/cartilage development modules with other novel interactors of GPX4 (EGR4 and ZNF197) and with SD-associated 

genes (COL2A1 and TRPV4) and novel interactors of SD-associated genes (SPDYA, MST1, DRD2, KMT2D, GP5, LY6H, SERPINA4, CLSPN, IKZF2 

and TM6SF2) 

c) Co-occurred in autophosphorylation and neurogenesis modules with other novel interactors of GPX4 (EGR4 and ZNF197) and genes whose perturbation 

leads to differential expression of GPX4 (NTRK1 and DNMT3L) 
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GAMT a) An intermediate interactor connecting GPX4 with the ciliary protein TERF1 

b) GAMT mice mutants shared 4 phenotypes with GPX4 mice mutants decreased body weight: decreased body weight, oligozoospermia, reduced male fertility 

and postnatal lethality 

c) Co-occurred with GPX4 and its other novel interactors (APBA3 and GTF2F1), and with potential SMDS-associated genes (RPS19) and/or their novel 

interactors (NEDD8, PSMD8, XRCC1 and DXO) in a cellular oxidant detoxification module 

GTF2F1 a) An intermediate interactor of GPX4 and PAM16, a Megarbane type SMD gene associated with metaphyseal cupping and platyspondyly 

b) A known interactor of ABL1, mutations in which leads to underexpression of KIAA0586, a gene associated with Joubert syndrome (which shares several 

phenotypes with SMDS) 
c) An intermediate interactor of GPX4 and two targets (AHR and CSNK2A1) of resveratrol, a drug currently in clinical trials for skeletal dysplasias 

d) Connected via CTDSP1 to a novel interactor of the (potentially) SMDS-associated ARTN called LDB1, mutations in which lead to patterning defects 

e) Co-occurred with GPX4 and its other novel interactors (APBA3 and GAMT), and with potential SMDS-associated genes (RPS19) and/or their novel 

interactors (NEDD8, PSMD8, XRCC1 and DXO) in a cellular oxidant detoxification module 

f) Co-occurred along with other novel interactors of GPX4 (GTF2F1) and novel interactors of SD-associated genes (RXRB, SLC48A1 and SF3A2) in an 

epithelial morphogenesis module 

g) Co-occurred with other novel interactors of GPX4 (APBA3) and novel interactors of genes associated with phenotypically similar bone dysplasias 

(DNASE1L1) in a toxic substance response module 

MATK a) Showed expression-based clustering with GPX4 due to elevated expression in brain tissues 

b) Co-occurred in an adenylate cyclase-activating GPCR signaling module along with other novel interactors of GPX4 (EGR4 and ZNF197) and with potential 

SMDS-associated genes (ARTN and AGRP) and/or their novel interactors (CHRNB4, PSG9, TONSL, CAMK4, FCGBP, DIO1 and DHODH) 
c) Co-occurred in a fetus-specific extracellular organization/cartilage development modules with other novel interactors of GPX4 (FUT5 and ZNF197) and 

with SD-associated genes (COL2A1 and TRPV4) and novel interactors of SD-associated genes (SPDYA, MST1, DRD2, KMT2D, GP5, LY6H, SERPINA4, 

CLSPN, IKZF2, TM6SF2, CD3G, FICD, NPTX1 and RASGRP4) 

ZNF197 a) An intermediate interactor of GPX4 and the myocarditis-associated VHL 

b) An intermediate interactor of GPX4 and IARS2, an arrhythmia-and X-linked spondyloepimetaphyseal dysplasia-associated gene (the latter is a bone 

dysplasia phenotypically similar to SMDS) 

c) A known interactor of TRIM28, mutations in which leads to underexpression of IFT140, a gene associated with Joubert syndrome (which shares several 

phenotypes with SMDS) 

d) ZNF197 mice mutants shared the phenotype, reduced male fertility, with GPX4 mice mutants 

e) Recruited by VHL to inhibit HIF1A transcriptional activity. Speculation: GPX4 exerts its inhibitory activity on VEGFA, a critical component of the VEGF 

signaling pathway that is known to play a role in bone development, via its direct interaction with the ZNF197-VHL complex. Perturbed GPX4 activity in 

SMDS may remove this inhibitory effect and promote abnormal VEFGA protein expression and bone development 

f) Co-occurred in an adenylate cyclase-activating GPCR signaling module along with other novel interactors of GPX4 (MATK and EGR4) and with potential 

SMDS-associated genes (ARTN and AGRP) and/or their novel interactors (CHRNB4, PSG9, TONSL, CAMK4, FCGBP, DIO1 and DHODH) 
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 g) Co-occurred in extracellular organization/cartilage development modules with other novel interactors of GPX4 (EGR4 and ZNF197) and with SD-associated 

genes (COL2A1 and TRPV4) and novel interactors of SD-associated genes (SPDYA, MST1, DRD2, KMT2D, GP5, LY6H, SERPINA4, CLSPN, IKZF2 

and TM6SF2) 

h) Co-occurred in a humoral immune response module along genes associated with bone dysplasia that are phenotypically similar to SMDS (IHH) and novel 

interactors of bone dysplasia genes (TEX28, HHIPL2, SUSD4 and SLC30A10) 

i) Co-occurred in a fetus-specific lipid storage/reactive oxygen species biosynthetic process module with novel interactors of bone dysplasia genes (CCL20, 

AMDHD2, HHIPL2 and SLC30A10) 

j) Co-occurred in autophosphorylation and neurogenesis modules with other novel interactors of GPX4 (EGR4 and FUT5) and genes whose perturbation leads 

to differential expression of GPX4 (NTRK1 and DNMT3L) 

4 
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genes), pachygyria (133 genes; cerebral cortex malformation characterized by a fewer 

number of abnormally wide gyri), metaphyseal cupping (18 genes), platyspondyly (109 

genes), abnormal scapula morphology (4 genes) and abnormality of the ribs (85 genes). 

 
Interactome of GPX4 and other genes potentially associated with SMDS 

 
The human sperm contains 648 short exon-sized sequences called sperm RNA elements 

corresponding to a range of unique coding and non-coding transcripts, the presence of which 

may increase the likelihood of live birth through natural conception in idiopathic infertile 

couples.29 A sperm RNA element that was mapped to GPX4 contained an SMDS-associated 

variant.29 The DisGeNET26 database lists 6 additional SMDS-associated genes extracted from 

this work by the BeFree30 text mining system (i.e. other than GPX4 which had a gene-disease 

association or GDA score of 0.72), namely, AGRP (agouti related neuropeptide), ARNTL 

(aryl hydrocarbon receptor nuclear translocator like), ARTN (artemin), LOH19CR1 (loss of 

heterozygosity, 19, chromosomal region 1), PSD4 (pleckstrin and Sec7 domain containing 4) 

and RPS19 (ribosomal protein S19) (GDA score = 0.01). BeFree employs a kernel-based 

approach based on morphosyntactic and dependency information to identify gene-disease 

associations.30 We extracted the PPI network that connects these 6 genes (candidates) to GPX4 

(target) through shortest paths as well as their own interactors (Fig. 1), and found that GPX4 

connects to AGRP, ARNTL, ARTN, PSD4 and RPS19 through 22 intermediate interactors 

including 10 novel interactors (i.e. those revealed by computationally predicted PPIs in this 

work). These novel interactors include 6 novel interactors of GPX4 (APBA3, EGR4, GAMT, 

GTF2F1, MATK and ZNF197), a direct interactor of ARTN (LDB1), a direct interactor of 

AGRP (UPP1) and 2 novel intermediate interactors connecting GPX4 with AGRP (VHL and 

GHRL). 

 
This interactome was enriched in genes associated with myocarditis (P-value = 5.33E-04, 

odds ratio = 55.8, genes: VHL and GPX4), atrial septal defect (P-value = 0.016, odds ratio = 

3.37, genes: USP9X, SMAD4, GPX4, RPS19 and EP300) and platyspondyly (P-value = 

0.018, odds ratio = 5.38, genes: GPX4, SMAD4 and TONSL). Myocarditis-associated VHL 

was connected to GPX4 via ZNF197. Platypondyly-associated TONSL was predicted to be a 

novel interactor of RPS19. 
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Using the HumanBase toolkit,27 we isolated the functional modules enriched in the 

interactome containing the intermediate interactors connecting GPX4 to the additional 6 

potential SMDS-associated genes, as well as the direct known and novel interactors of these 6 

genes. We extracted tissue-specific functional modules containing genes specific to the human 

fetal tissue and tissue-naive (or ‘global’) modules containing genes playing identical roles 

across the tissues. Fetus-specific modules were examined based on the assumption that 

modules putatively active in the fetal tissue may be relevant to the congenital and neonatal 

underpinning of SMDS. A cellular oxidant detoxification module was identified in both 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Interactions of GPX4 with other genes speculated to be associated with 

Sedaghatian type spondylometaphyseal dysplasia. This network diagram shows the shortest 

paths connecting the genes from the DisGeNET database (dull green colored nodes) identified 

through text mining to GPX4. Nodes depict proteins and edges depict PPIs. Red and light blue 

colored nodes denote novel and known interactors respectively. Red and light blue colored edges 

denote novel and known PPIs respectively. Purple colored arrows indicate genes associated with 

cardiac defects, whereas green colored arrows indicate those associated with skeletal defects. 
 

 

 

global (M4: Q-value = 2.15E-03) and fetus-specific (M3: Q-value = 2.77E-03) contexts. GPX4 

and 3 of its novel interactors (APBA3, GAMT and GTF2F1), RPS19 and 3 of its novel 

interactors (NEDD8, PSMD8 and XRCC1) and a novel interactor of AGRP called DXO were 
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detected in the global functional module. The fetus-specific module did not contain DXO, but 

instead contained a novel interactor of ARTN called LDB1. The adenylate cyclase-activating 

G-protein coupled receptor signaling pathway was detected both as a global (M3: Q-value = 

4.25E-04) and fetus-specific (M2: Q-value = 3.4E-04) module. 3 novel interactors of GPX4 

(EGR4, MATK and ZNF197), 3 novel interactors of RPS19 (CHRNB4, PSG9 and TONSL), 2 

novel interactors of ARNTL (CAMK4 and FCGBP), ARTN and its novel interactor DIO1, 

and AGRP and its novel interactor DHODH were detected in the global module. The fetus- 

specific module did not contain AGRP and DHODH, but instead contained VHL, a novel 

intermediate interactor between GPX4 and AGRP. Cell growth (M1: Q-value = 2.38E-04) and 

response to redox state (M2: Q-value = 2.38E-04) were detected only as global modules. The 

cell growth module contained 2 novel interactors of ARNTL (EIF4G2 and MSH2) and a novel 

interactor of ARTN (TUBGCP3). The redox state response module contained a novel 

interactor of AGRP called UPP1. N-terminal peptidyl–lysine acetylation (M1: Q-value = 

1.21E-04)/histone acetylation (M1: Q-value = 2.84E-04) and regulation of DNA metabolic 

process (M4: Q-value = 7.84E-04) were detected only as tissue-specific modules. A novel 

interactor of ARNTL (TRIM22) and a novel interactor of AGRP (RNF19A) belonged to the 

acetylation module, whereas MSH2 and TUBGCP3 that were earlier detected in the cell 

growth module, seemed to also belong to the DNA metabolic process module. 

 
Interactome of GPX4 and genes associated with other spondylometaphyseal dysplasias 

 
We curated genes associated with other types of SDs from a comprehensive review on genetic 

skeletal disorders31 in order to map their connections to GPX4 in the human interactome. 

Specifically, this included a set of 9 genes associated with Kozlowski type SMD (TRPV4), 

spondyloenchondrodysplasia (ACP5), odontochondrodysplasia (TRIP11), Sutcliffe/corner 

fractures type SMD, (FN1 and COL2A1), SMD with severe genu valgam/Schmidt type SMD 

(COL2A1), SMD with cone-rod dystrophy (PCYT1A), SMD with retinal degeneration/axial 

SMD (CFAP410), dysspondyloenchondromatosis (COL2A1), achondrogenesis type 1A 

(TRIP11), schneckenbecken dysplasia (SLC35D1 and INPPL1) and opsismodysplasia 

(INPPL1). We extracted the shortest paths connecting these 9 genes (candidates) to GPX4 

(target). GPX4 shared 93 intermediate interactors with these 9 genes, including 26 novel 

interactors (Fig. 2). These novel interactors included 4 direct interactors of GPX4 (APBA3, 

GTF2F1, MATK and ZNF197), 2 of CFAP410/C21orf2 (COL6A1 and 
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COL6A2), 3 of TRIP11 (ASB2, EPS8 and SERPINA4), 2 of ACP5 (EPOR and SF3A2), 2 of 

SLC35D1 (MACF1 and VCAM1), 2 of PCYT1A (PAK2 and RUBCN), 1 each of FN1 

(CREB1), TRPV4 (RXRB) and COL2A1 (DCN) and 8 intermediate interactors (RPS6KA2, 

PELI2, THRA, STAT5A, SKIC, TNFSF10, PLAT and PPP2CB). GPX4 was more closely 

connected with the genes associated with Kozlowski type SMD (TRPV4), 

odontochondrodysplasia, achondrogenesis type 1A (TRIP11), Sutcliffe type SMD (FN1), 

SMD with cone-rod dystrophy (PCYT1A), schneckenbecken dysplasia and opsismodysplasia 

(INPPL1). 

 

 
Figure 2: Interactions of GPX4 with genes associated with other spondylometaphyseal 

dysplasias. This network diagram shows the shortest paths connecting GPX4 with the genes 

associated with Kozlowski type SMD, spondyloenchondrodysplasia, odontochondrodysplasia, 

Sutcliffe/corner fractures type SMD, SMD with severe genu valgam/Schmidt type SMD, SMD with 

cone-rod dystrophy, SMD with retinal degeneration/axial SMD, dysspondyloenchondromatosis, 

achondrogenesis type 1A, schneckenbecken dysplasia and opsismodysplasia (orange colored nodes). 

Nodes depict proteins and edges depict PPIs. Red and light blue colored nodes denote novel and 

known interactors respectively. Red and light blue colored edges denote novel and known PPIs 

respectively. Purple and green arrows indicate genes associated with cardiac and skeletal defects 

respectively. 

 

This interactome was enriched in genes associated with arrhythmia (P-value = 0.041, odds 

ratio = 1.88, genes: TAB2, COL4A1, HSPG2, FLNC, CALM1, GPX4, CBL, VHL, GSN and 

TGFB1), cardiorespiratory arrest (P-value = 9.25E-03, odds ratio = 13.38, genes: COL2A1 
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and GPX4), myocarditis (P-value = 4.64E-03, odds ratio = 19.11, genes: GPX4 and VHL), 

metaphyseal cupping (P-value = 5.9E-03, odds ratio = 3.68, genes: GPX4, PCYT1A, 

INPPL1, TRIP11, MMP13 and COL2A1), platyspondyly (P-value = 4.98E-13, odds ratio = 

10.43, genes: GPX4, PCYT1A, INPPL1, TRIP11, MMP13, COL2A1, HSPG2, SPARC, 

BGN, COMP, COL1A1, COL9A2, COL9A3, CSF1R, TRPV4, COL1A2 and SMAD4) and 

abnormal ribs (P-value = 8.9E-03, odds ratio = 3.93, genes: GPX4, PCYT1A, HSPG2, 

TRPV4 and SMAD4). 

 
We examined the functional modules enriched in this interactome, which contained the 

intermediate interactors connecting GPX4 to the genes associated with other SDs, and the 

known and novel interactors of these genes. Three pairs of closely related modules were 

detected in global and fetal contexts: blood vessel development (M1: Q-value = 9.6E- 

06)/positive regulation of cell migration (M1: Q-value = 2.77E-06), extracellular organization 

(M3: Q-value = 3.53E-04)/cartilage development (M3: Q-value = 2.72E-03) and regulation of 

cysteine-type endopeptidase activity involved in apoptotic process (M6: Q- value = 6.68E-

03)/execution phase of apoptosis (M4: Q-value = 6.75E-04). Three unique global modules 

were identified: leukocyte tethering or rolling (M2: Q-value = 3.7E-05), response to 

bacterium (M4: Q-value = 6.4E-03) and morphogenesis of an epithelium (M5: Q- value = 

6.57E-03). Four unique fetus-specific modules were identified: cellular component 

maintenance (M2: Q-value = 3.39E-04), actin filament organization (M5: Q-value = 1.36E- 

03), negative regulation of intrinsic apoptotic signaling pathway (M6: Q-value = 2.51E-03) 

and regulation of protein catabolic process (M7: Q-value = 1.05E-02). 3 novel interactors of 

GPX4 (EGR4, FUT5 and ZNF197) co-occurred with 10 novel interactors of genes associated 

with other SD genes (SPDYA, MST1, DRD2, KMT2D, GP5, LY6H, SERPINA4, CLSPN, 

IKZF2 and TM6SF2) and 2 SD genes themselves (COL2A1 and TRPV4) in the extracellular 

organization/cartilage development modules in both global and fetus-specific contexts. The 

global module additionally contained the novel interactors THRA and ADAM23, and the 

fetus-specific module contained MATK (a novel interactor of GPX4), CD3G, FICD, NPTX1 

and RASGRP4. 2 novel interactors of GPX4 (APBA3 and GTF2F1) co-occurred with 3 novel 

interactors of SD-associated genes (RXRB, SLC48A1 and SF3A2) in the epithelial 

morphogenesis (global) module. APBA3, a novel interactor of GPX4, co-occurred with 2 

novel interactors of SD-associated genes (RXRB and SF3A2) in the protein catabolic process 

(fetus-specific) module. 
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Interactome of GPX4 and genes associated with disorders sharing phenotypic similarity 

with SMDS 

 

We employed Phenogrid from the MONARCH toolkit28 to identify the diseases that were 

most phenotypically similar to SMDS. The phenogrid algorithm identifies the common 

phenotypes between two given diseases. It then assesses the information content in each of 

these phenotypes (gene and disease associations) to assign a specific strength to the similarity 

observed between the diseases. Seven bone dysplasias appeared to be sharing more than 70% 

phenotypic similarity with SMDS, namely, X-linked spondyloepimetaphyseal dysplasia 

(77%), acrocapitofemoral dysplasia (75%), A4 type SMD (75%), Dyggve-Melchior-Clausen 

disease (74%), autosomal recessive Megarbane type SMD (73%), metaphyseal 

acroscyphodysplasia (72%) and X-linked Dyggve-Melchior-Clausen disease (71%). We 

checked whether genetic associations were available for these 7 dysplasias in DisGeNET.26 4 

of them appeared to have been either causally linked or correlated with a few genes, namely, 

X-linked spondyloepimetaphyseal dysplasia with BGN and IARS2, acrocapitofemoral 

dysplasia with IHH, Dyggve-Melchior-Clausen disease with DYM and autosomal recessive 

Megarbane type SMD with PAM16. Next, we extracted the shortest paths connecting these 5 

genes (candidates) to GPX4 (target). GPX4 was found to be connected to these 5 genes 

through 13 intermediate interactors including 5 novel interactors, namely, 3 novel interactors 

of GPX4 (APBA3, GTF2F1 and ZNF197) and 2 novel interactors of DYM (EPG5 and 

MAPK4) (Fig. 3). 

 
This interactome was enriched in genes associated with arrhythmia (P-value = 0.042, odds 

ratio = 3.05, genes: TGFB1, IARS2, GPX4 and ELN), cardiorespiratory arrest (P-value = 

5.9E-04, odds ratio = 54.2, genes: COL2A1 and GPX4), cerebellar hypoplasia (P-value = 

8.63E-03, odds ratio = 4.95, genes: BMP4, EPG5, GPX4 and DAG1), agenesis of corpus 

callosum (P-value = 1.88E-03, odds ratio = 5.65, genes: BMP4, EPG5, GPX4, PTCH1 and 

DAG1), metaphyseal cupping (P-value = 3.73E-05, odds ratio = 45.18, genes: GPX4, 

COL2A1 and PAM16), platyspondyly (P-value = 5.9E-09, odds ratio = 19.9, genes: GPX4, 

COL2A1, PAM16, BGN, DYM, SMAD4, COL1A1 and COL1A2) and abnormal ribs (P- 

value = 3.8E-03, odds ratio = 9.57, genes: GPX4, SMAD4 and PTCH1). Arrhythmia- 

associated IARS2 is associated with X-linked spondyloepimetaphyseal dysplasia and 

separated from GPX4 only by 3 edges and 5 intermediate interactors (including 2 novel 
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interactors of GPX4, namely, APBA3 and ZNF197). EPG5, the gene associated with 

cerebellar hypoplasia and corpus callosum agenesis, is a novel interactor of DYM, a Dyggve- 

Melchior-Clausen disease gene, and is an intermediate interactor connecting DYM to GPX4. 

PAM16, associated with metaphyseal cupping and platyspondyly, is a Megarbane type SMD 

gene, and is separated from GPX4 only by 3 edges and 2 intermediate interactors (including 

the novel interactor of GPX4, GTF2F1). Both BGN associated with X-linked 

spondyloepimetaphyseal dysplasia and DYM associated with Dyggve-Melchior-Clausen 

disease were separated from GPX4 by 3 edges, and appeared to be linked to platyspondyly. 

 
 

 

Figure 3: Interactions of GPX4 with genes associated with bone dysplasias sharing 

phenotypic similarity with Sedaghatian type spondylometaphyseal dysplasia. This network 

diagram shows the shortest paths connecting GPX4 with the genes associated with X-linked 

spondyloepimetaphyseal dysplasia, acrocapitofemoral dysplasia, Dyggve-Melchior-Clausen 

disease and autosomal recessive Megarbane type SMD (pink colored nodes). Nodes depict 

proteins and edges depict PPIs. Red and light blue colored nodes denote novel and known 

interactors respectively. Red and light blue colored edges denote novel and known PPIs 

respectively. Purple, green and orange arrows indicate genes associated with cardiac, skeletal and 

brain defects respectively. 
 

 

 

Five modules were detected in both global and fetus-specific contexts from the interactome: 

skeletal system development (global M1: Q-value = 2.76E-06)/embryo 

development/gastrulation (fetus-specific M1: Q-value = 2.28E-04), lipid storage (global M2: 
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Figure 4: Interactions of GPX4 with genes whose perturbation is known to affect GPX4 

expression. This network diagram shows the shortest paths connecting GPX4 with the genes 

collected from the Knockdown Atlas (black colored nodes), whose perturbation (DNMT3L 

knockdown/AHR knockout/JUN mutation/NTRK1 overexpression) is known to cause 

underexpression/overexpression of GPX4. Note that only the PPIs of the 4 perturbed genes that are 

most closely connected to GPX4 are shown here. Nodes depict proteins and edges depict PPIs. Red 

and light blue colored nodes denote novel and known interactors respectively. Red and light blue 

colored edges denote novel and known PPIs respectively. Purple arrows indicate genes associated 

with heart defects. 
 

 

Q-value = 1.69E-04)/reactive oxygen species biosynthetic process (fetus-specific M2: Q- 

value = 9.17E-04), humoral response (global M3: Q-value = 2E-03 and fetus-specific M3: Q- 

value = 1.28E-03), cellular response to toxic substance (global M4: Q-value = 2.59E-03 and 

fetus-specific M4: Q-value = 3.76E-03) and membrane organization (global M5: Q-value = 

8.47E-03 and fetus-specific M6: Q-value = 6.29E-03). We noted another embryo development 

module that was fetus-specific and enriched for neurogenesis (M5: Q-value = 0.01). GPX4 

and 2 of its novel interactors (APBA3 and GTF2F1) co-occurred with a novel interactor of a 

gene associated with a bone dysplasia (DNASE1L1) in the toxic substance response module in 

both global and fetus-specific contexts. 1 novel interactor (AMDHD2) and 2 novel interactors 

(CDIP1 and C1orf115) uniquely occurred in this module in global and fetus-specific contexts 

respectively. ZNF197, a novel interactor of GPX4, co-occurred with 4 novel interactors of 

bone dysplasia genes (TEX28, HHIPL2, SUSD4 and SLC30A10) and a bone dysplasia gene 

itself (IHH) in the global humoral immune response module. ZNF197 
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also co-occurred with 4 novel interactors of bone dysplasia genes (CCL20, AMDHD2, 

HHIPL2 and SLC30A10) in the fetus-specific lipid storage/reactive oxygen species 

biosynthetic process module. 

 
Interactome of GPX4 and genes whose perturbation affects GPX4 expression 

 
Using the Knockdown Atlas from the BaseSpace Correlation Engine software suite,32 we 

compiled a list of 136 genes whose perturbation, in the form of gene 

knockout/knockdown/mutation/overexpression, significantly affects GPX4 expression. We 

extracted the shortest paths connecting these 136 genes (candidates) to GPX4 (target). Out of 

the 136 genes, 4 were closely connected to GPX4, namely, AHR, DNMT3L, JUN and 

NTRK1, through 33 intermediate interactors including 9 novel interactors (Fig. 4). These 

novel interactors included all the 7 novel interactors of GPX4 (APBA3, EGR4, FUT5, 

GAMT, GTF2F1, MATK and ZNF197) and 2 intermediate interactors (MAPK13 and 

SUMO1). Mutations in JUN lead to GPX4 underexpression, whereas DNMT3L knockdown, 

AHR knockout and NTRK1 overexpression lead to GPX4 overexpression. This interactome 

was enriched in genes associated with cardiorespiratory arrest (P-value = 3.2E-03, odds ratio 

= 23.06, genes: GPX4 and KIT) and myocarditis (P-value = 1.52E-03, odds ratio = 32.9, 

genes: GPX4 and VHL). 

 
Telomere maintenance/organization was detected both as global (M1: Q-value = 1.16E-04) 

and fetus-specific (M1: Q-value = 1.84E-06) modules. Positive regulation of neurogenesis 

was also detected in global (M7: Q-value = 5.88E-03) and fetal (M5: Q-value = 5.34E-03) 

contexts. 6 additional global modules were detected: cellular response to retinoic acid (M2: 

Q-value = 1.73E-03), detoxification (M3: Q-value = 1.73E-03), peptidyl-threonine 

phosphorylation (M4: Q-value = 1.73E-03), regulation of cellular protein localization (M5: 

Q-value = 3.5E-03), DNA replication (M6: Q-value = 5.35E-03) and protein 

autophosphorylation (M8: Q-value = 1.14E-02). 3 additional fetal modules were detected: 

negative regulation of myeloid cell differentiation (M2: Q-value = 1.33E-04), transforming 

growth factor beta receptor signaling pathway (M3: Q-value = 3.25E-04) and positive 

regulation of endopeptidase activity (M4: Q-value = 7.27E-04). 3 novel interactors of GPX4 

(EGR4, FUT5 and ZNF197) co-occurred with 2 perturbed genes (NTRK1 and DNMT3L) in 

the protein autophosphorylation global module and in the neurogenesis module that was 

detected in both global and fetus-specific contexts. 
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Tissue-elevated gene clusters in the integrated GPX4 landscape 

 
We merged the interactomes described in the previous sections to construct an integrated 

GPX4 functional landscape containing 342 genes and 461 edges. Then, we sought to isolate 

clusters of genes showing high expression in specific tissues from this integrated interactome. 

For this, we generated a data matrix of genes (columns) versus 53 tissues (rows) extracted 

from GTEx; the cells in the matrix contained log transformed median TPM (transcripts per 

million) values of gene expression. Principal component analysis (PCA) was used to capture 

systematic variations underlying this matrix. Using Clustvis,33 single value decomposition 

(SVD) with imputation was applied to this matrix to extract principal components that explain 

the variance in gene expression observed across the tissues. Unit variance scaling was applied 

across the matrix. PC1 and PC2 explained 75.1% and 9.6% of the total variance. The log-

transformed TPM values were then converted to normalized Z-scores. Z-scores indicate the 

number of standard deviations that separate a given TPM value from the mean. This matrix of 

Z-scores was then subjected to hierarchical clustering based on Pearson’s correlation 

coefficients and the average linkage method. 

 
GPX4 showed high expression in brain tissues and testis. Guo et al. has reported that the 

human brain and testis exhibit the highest similarity in gene expression patterns among a 

group of 17 tissues.34 This has been attributed to (a) shared biochemical pathways mediated 

by exocytotic processes and similar receptors between brain and testis tissues, and (b) the 

involvement of these tissues in human speciation, as a result of which the same set of genes 

may have been recruited and their expression patterns maintained in both the tissues by 

evolutionary mechanisms.35 We detected a group of 59 genes that clustered with GPX4 and 

showed high expression in brain tissues and/or testis with/without elevated expression in 

EBV-transformed lymphocytes and spleen (Fig. 5). This cluster included 2 novel interactors 

of GPX4 that showed high expression in brain tissues, namely, EGR4 and MATK, and FUT5 

that showed high expression in testis. Additionally, 5 genes showed elevated expression in 

both brain and testis tissues (HHIPL2, MSI1, COL2A1, MATN1 and MTNR1A (novel 

interactors shown in bold italics and disease-associated genes shown in bold), 4 genes in only 

testis (CHRNB4, SPDYA, MAGEC1 and RBL1.1), 8 genes in testis, lymphocytes and spleen 

(CDKN2A, CLSPN, MSH2, BLOC1S2, DUSP10, KPNA2, PARP1 and UCHL5) and 39 

genes in only brain tissues (ADAM23, CAMK4, CBS, CDIP1, CHST6, DLG2, DRD2, 
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Figure 5: Clustering analysis of genes in the integrated GPX4 interactome. Variations in the 

expression values of the genes in the integrated GPX4 interactome across 53 tissues have been 

represented here in the form of a heatmap. The integrated GPX4 interactome contains the shortest 

paths connecting GPX4 to other genes speculated to be associated with Sedaghatian type 

spondylometaphyseal dysplasia, genes associated with other spondylometaphyseal dysplasias and 

phenotypically similar bone dysplasias. Normalized Z-scores were computed based on the –log10 

transformed TPM (transcripts per million) values. Z-scores are computed based on the number of 

standard deviations that separate a given logTPM value from the mean. Clustering was performed 

using the hierarchical clustering method with average linkage. The dendrograms were derived 

from the clustering analysis based on computation of Pearson correlation coefficients between the 

data points. Four gene clusters were detected, namely, a cluster with elevated expression in brain 

tissues and/or testis with/without elevated expression in EBV-transformed lymphocytes and 

spleen, another cluster showing elevated expression in whole blood and/or spleen with/without 

elevated expression in EBV-transformed lymphocytes, and separate liver-elevated and small 

intestine-elevated clusters. 
 

 

 

GOLM1, LY6H, MAPK4, NPTX1, SUSD4, ARL6IP1, CACNA1A, CALM1, CHAD, 

COL9A2, COL9A3, DDR1, FEZ1, FGF12, FRS3, GPM6A, HHIP, HID1, HSP90AA1, 

JPH3, MAG, MAP7, MAPK9, MAPT, MBP, MC4R, PACSIN1, PDIA2, SPP1, TAC1, 

TERF2IP and YWHAE). 



 

196  

GAMT, a novel interactor of GPX4, showed high expression in the liver, together with a 

cluster of 15 other genes (DHODH, SERPINA4, SLC30A10, TM6SF2, AMBP, APCS, 

APOB, CRP, HRG, LPA, MST1, NR0B2, ORM2, PLG and TMPRSS6) (Fig. 5). 8 genes 

showed elevated expression in the small intestine (IHH, CCL20, FCGBP, HNF4G, MEP1A, 

MEP1B, POU5F1 and REG3A) (Fig. 5). A cluster of 38 genes showed elevated expression in 

whole blood and/or spleen with/without elevated expression in EBV-transformed lymphocytes 

(PSD4, GPR65, IL10RA, FCGR2B, GCA, ITGA4, ITGB7, LCK, LRG1, LYN, MAP2K6, 

MX1, NCF2, PDE6G, PTK2B, SRGN, TNF, VCAM1, CD3G, RASGRP4, UPP1, C1QA, 

C5AR1, CD4, CSFR1, CTSD, CXCR6, DISC1, ELANE, FASLG, GZMM, HCK, HYAL1, 

ITGA2B, KLRK1, MMP9, NCR1 and TYROBP) (Fig. 5). 

 
Enrichment of the brain-elevated genes in axon development, regulation of trans-synaptic 

signaling, regulation of ion transmembrane transport, protein localization to mitochondrion 

and neural nucleus development was statistically significant before applying multiple 

hypothesis correction. The same was true in the case of DNA recombination, aging, 

regulation of cyclin-dependent protein kinase activity, regulation of DNA metabolic process, 

mitotic cell cycle phase transition and extrinsic apoptotic signaling pathway for testis- 

elevated genes, and cell fate commitment, in utero embryonic development, epithelial cell 

proliferation, mRNA transcription, toxin transport and mesenchymal cell proliferation for 

small intestine-elevated genes. Enrichment of liver-elevated genes in platelet degranulation 

and regulation of response to wounding, and lymphocyte/whole blood/spleen-elevated genes 

in leukocyte differentiation, leukocyte migration, stress-activated protein kinase signaling 

cascade, adaptive immune response, B cell activation, regulation of inflammatory response 

and phagocytosis remained statistically significant after multiple hypothesis correction. 

 
We separately inspected the interactome containing the intermediate interactors connecting 

the 4 genes (AHR, DNMT3L, JUN and NTRK1) whose perturbation affects GPX4 

expression, to GPX4, and the known and novel interactors of these 4 genes. We identified a 

group of 9 testis-elevated genes that clustered with GPX4 (novel interactors shown in bold 

italics and perturbed genes shown in bold): FUT5, MX1, PDE6G, NCR1, MAGEC1, 

SUMO4, NTRK1, MSX2 and FKBP4. 
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Interconnections of GPX4 and genes associated with Joubert syndrome with Jeune 

asphyxiating thoracic dystrophy 

 

From our Phenogrid analysis, we had noted that Joubert syndrome with Jeune asphyxiating 

thoracic dystrophy (JATD) showed 64% phenotypic similarity with SMDS. The 

developmental disorders shared pathophenotypes such as agenesis of corpus callosum, 

generalized hypotonia, cerebellar hypoplasia and atrial septal defects. Joubert syndrome with 

JATD shows an amalgamation of several key traits associated with Joubert syndrome such as 

ataxia-inducing brain stem malformations, hypotonia and cognitive impairment, and skeletal 

traits characteristic of JATD such as a narrow thorax that leads to respiratory failure, and rib, 

limb and metaphyseal dysplasia.36 We sought to identify whether GPX4 was closely 

connected to the genes associated with Joubert syndrome with JATD. 3 genes, namely, 

IFT140, KIAA0586 and CSSP1, which were known to be linked to Joubert syndrome with 

JATD were extracted from DisGeNET26, and the shortest paths connecting these genes 

(candidates) to GPX4 (target) were identified. IFT140, KIAA0586 and CSSP1 appeared to 

share 48 intermediate interactors including 14 novel interactors with GPX4 (Fig. 6a). The 

novel interactors included 4 novel interactors of IFT140 (TRAP1, TELO2, IL32 and 

DNAJA3), 1 novel interactor of KIAA0586 (DACT1), 5 novel interactors of GPX4 (APBA3, 

GAMT, GTF2F1, MATK and ZNF197) and 4 intermediate interactors (KPNA5, SP100, 

SNRPC and MAPK13). Additionally, we identified 2 genes from this interactome whose 

perturbation led to underexpression of Joubert syndrome-associated genes (Fig. 6a). It was 

interesting to note that these genes (TRIM28, ABL1 and BCR1) were known interactors of 

the novel interactors (ZNF197, GTF2F1 and APBA3) that we had predicted for GPX4. 

Knockout of TRIM28 led to the underexpression of IFT140, whereas mutations in ABL1 and 

BCR1 led to the underexpression of KIAA0586. 

 
Since GPX4 showed close interconnections with the Jourbert syndrome-associated gene 

IFT140, which is also a ciliary protein, we checked whether GPX4 showed similar 

interconnections with other ciliary proteins. For this, we examined the shortest paths 

connecting 165 ciliary proteins37 to GPX4. The ciliary protein that showed the closest 

interconnection with GPX4 was TERF1 (Fig. 6b). GAMT, a novel interactor of GPX4, and 

PRDX6, a known interactor of GPX4, acted as intermediate interactors between GPX4 and 

TERF1. Overall, GPX4 appeared to be connected to TERF1 through 13 intermediate 
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interactors, including 4 novel interactors of GPX4 (APBA3, GAMT, GTF2F1 and MATK), 1 

novel interactor of TERF1 (LYN) and 2 intermediate interactors (TRIP10 and SP100). 

 

b 
 

 

 

 

 

 

Figure 6: Interactions of GPX4 with ciliary proteins and genes associated with Jourbert 

syndrome. (a) shows the shortest paths connecting 3 genes associated with Joubert syndrome 

with Jeune asphyxiating thoracic dystrophy collected from the DisGeNET database (light orange 

colored nodes) to GPX4; two genes whose perturbation affects GPX4 expression (black colored 

nodes) and 3 genes (nodes with yellow colored borders) whose perturbation affects 2 Joubert 

syndrome-associated genes, IFT140 and KIAA0586, can also be found in this network. (b) 

shows the shortest paths connecting the ciliary protein TERF1 to GPX4. Nodes depict proteins 

and edges depict PPIs. Red and light blue colored nodes denote novel and known interactors 

respectively. Red and light blue colored edges denote novel and known PPIs respectively. 

 

Detoxification was detected both as a global (M4: Q-value = 1.26E-03) and fetus-specific 

(M4: Q-value = 1.68E-03) module. Other enriched global modules included positive 

regulation of cell development (M1: Q-value = 1.18E-03), positive regulation of actin 

filament bundle assembly (M2: Q-value = 1.18E-03), regulation of G1/S transition of mitotic 

cell cycle (M3: Q-value = 1.18E-03), regulation of JAK-STAT cascade (M5: Q-value = 

1.26E-03), response to growth factor (M6: Q-value = 1.32E-03), regulation of proteasomal 

protein catabolic process (M7: Q-value = 1.84E-03) and establishment of protein localization 

of organelle (M8: Q-value = 1.94E-03). Other enriched fetus-specific modules included 

regulation of binding (M1: Q-value = 4.62E-05), cellular response to organonitrogen 

compound (M2: Q-value = 8.91E-04) and telomere capping (M3: Q-value = 1.05E-03). 

a 
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Repurposable drugs for SMDS 

 
We adopted two approaches to identify drugs that may be tested in SMDS from the 

interactome of SMDS-associated genes compiled from the DisGeNET26 database (i.e. GPX4, 

AGRP, ARNTL, ARTN, LOH19CR1, PSD4 and RPS19). In our first approach, we followed 

the established methodology of comparing drug-induced versus disease-associated differential 

expression profiles.38 For this, we used a software suite called BaseSpace Correlation Engine 

(https://www.nextbio.com).39,40 This data analysis platform was used because it allows users to 

study the effect of diseases and/or drugs on thousands of pre- processed publicly available 

gene expression datasets and has helped to identify drug candidates for diseases such as 

schizophrenia41 (currently undergoing clinical trials42,43) and mesothelioma44 in the past. We 

constructed the SMDS drug-protein interactome that showed the drugs that target any protein 

in the SMDS interactome. 36 drugs targeted 16 proteins in the interactome, including 5 novel 

interactors (PSMD8, XRCC1, DHODH, GHRL and VHL). We selected 4 gene expression 

datasets, namely, tibial growth plate hypertrophic zone - Cog mice (chondroplasia) versus 

wildtype littermates, tibial growth plate hypertrophic zone - Schmid mice (chondroplasia) 

versus wildtype littermates (GSE3062845), skin fibroblasts - Schimke immuno-osseous 

dysplasia cell line SD60 versus healthy control and skin fibroblasts - Schimke immuno-

osseous dysplasia cell line SD8 versus healthy control (GSE3555146). Then, we compiled a list 

of chemical compounds whose differential gene expression profiles (drug versus no drug) 

were negatively correlated with at least one of the 4          dysplasia-associated differential gene 

expression datasets (disease versus control). Following this methodology, we identified 7 

drugs negatively correlated with chondroplasia and 10 drugs with immune-osseous dysplasia. 

Although in each case some genes were differentially expressed in the same direction for both 

the drug and disorder, the overall effect on the entire transcriptome had an anti-correlation. 

Altogether, we identified 11 drugs as potential candidates that may be tested against SMDS in 

clinical trials (Fig. 7a), namely, anakinra, colchicine, dactinomycin, dexamethasone, 

fluorouracil, gemcitabine, imatinib, sirolimus, sorafenib, tretinoin and vincristine. Anakinra 

targets GHRL, a novel intermediate interactor between GPX4 and AGRP. Dexamethasone 

targets 2 potential SMDS-associated genes, RPS19 and LOH19CR1, and RARA, a known 

interactor of another SMDS-associated gene called ARNTL. Sorafenib targets a known 

interactor of GPX4 (MAPK13), a known interactor of ARNTL (HIF1A) and a novel 

intermediate interactor connecting GPX4 to 

https://www.nextbio.com/
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a 

AGRP (VHL). Both fluorouracil and gemcitabine target SMAD4, a known intermediate 

interactor connecting GPXE4 to PSD4, and XRCC1, a novel interactor of the SMDS- 

associated RPS19. 
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Figure 7: Drug-protein interactome of GPX4. (a) shows the drugs targeting the proteins in 

the interactome connecting GPX4 to other genes putatively associated with Sedaghatian type 

spondylometaphyseal dysplasia. Green colored nodes and edges depict drugs and drug-protein 

interactions respectively. Repurposable drugs identified through comparative transcriptomic 

analysis have been shown as dark green colored nodes with bold labels. (b) shows the 

interconnections of GPX4 with 3 targets (nodes with yellow colored borders) of resveratrol. 

Red and light blue colored nodes denote novel and known interactors respectively. Red and 

light blue colored edges denote novel and known PPIs respectively. 
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In our second approach, we compiled a list of drugs that are currently labelled for or are in 

phase I/II/III clinical trials for different forms of skeletal dysplasias,47 and identified their 

protein targets from Drug Bank.48 This yielded a list of 56 proteins targeted by 8 drugs, 

namely, etidronic acid, risedronic acid, denosumab (osteogenesis imperfecta), resveratrol 

(pseudoachondroplasia), carbamazepine (Schmid type metaphyseal dysplasia), asfotase alfa 

(hypophosphatasia), burosumab (X-linked hypophosphatemia) and N-acetylcysteine 

(diastrophic dysplasia). We examined the shortest paths connecting each of these protein 

targets to GPX4 and isolated the targets that showed the closest interconnections with GPX4. 

3 targets of resveratrol – AHR, CSNK2A1 and APP – appeared to be connected to GPX4 via 

single intermediate interactors (Fig. 7b). Specifically, both AHR and CSNK2A1 were found 

to be connected to GPX4 via GTF2F1, a novel interactor of GPX4, whereas APP was 

connected via a known (MAPK13) and a novel (APBA3) interactor of GPX4. We also found 

that resveratrol induced an expression profile that is negatively correlated with the profile of 

the Schimke immuno-osseous dysplasia cell line SD60 mentioned before. 

 
Discussion 

 
SMDS is a severely under characterized skeletal dysplasia driven by GPX4 mutations. In 

order to expand the functional landscape of this rare and lethal disorder, and expedite the 

formulation of intervention strategies, we constructed both disease-centric and gene-centric 

neighborhood networks of GPX4, augmented with novel interactors predicted by the HiPPIP 

algorithm. Three disease-centric networks were constructed for GPX4, namely, in relation 

with other putative SMDS-associated genes, SD-associated genes and genes associated with 

phenotypically similar disorders (Fig. 1-3). The GPX4-centric network was constructed to 

show the interconnections of GPX4 with genes whose perturbation has been known to affect 

GPX4 expression (Fig. 4). Our key findings from these networks were that they were 

enriched with/contained genes (a) linked to several SMDS pathophenotypes, (b) belonging to 

tissue-naïve and fetus-specific functional modules, and (c) showing elevated expression in 

brain and/or testis similar to GPX4. Additionally, we identified 12 drugs that target the 

neighborhood network of GPX4 and induce gene expression profiles negatively correlated 

with those associated with chondroplasia and immune-osseous dysplasia. 

 
We used ‘co-membership with GPX4 or its novel interactors in an enriched functional 

module’ as a criterion to filter genes for experimental dissection of SMDS. Firstly, an 
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integrated network containing the repurposable drugs and the shortest paths of putative 

SMDS-associated genes, SD-associated genes, genes associated with phenotypically similar 

disorders and GPX4-affecting genes to GPX4 (collectively referred to as ‘core genes’ 

henceforth) was constructed. Next, subnetworks containing intermediate PPIs of the genes 

occurring (along with GPX4 or its novel interactors) in functional modules and the core genes 

were isolated (Fig. 8). Shared phenotypes may reflect interactome-level relationships or 

similarities in gene function.49 In order to facilitate phenotypic-guided investigations of GPX4, 

we identified 26 genes from these subnetworks that shared at least one phenotype associated 

with GPX4 (as per data from Mammalian Phenotype Ontology50; see Supplementary File 1): 

ADAM23, AGRP, CAMK4, CLSPN, COL2A1, DHODH, DIO1, DNMT3L, DRD2, IHH, 

IKZF2, KMT2D, LDB1, NTRK1, RASGRP4, RPS19, RXRB, 

SLC30A10, SPDYA, THRA, TONSL, VHL, XRCC1 and three novel interactors of GPX4 

(EGR4, GAMT and ZNF197). LDB1, CAMK4, XRCC1, EGR4 and VHL shared the most 

number of phenotypes with GPX4. 

 
EGR4, which was predicted as a novel interactor of GPX4, is a transcription factor that has 

been shown to regulate hind brain development in Xenopus.51 Mice with conditionally deleted 

XRCC1 (a novel interactor of RPS19) exhibited cerebellar ataxia characterized by reduction in 

the number of cerebellar neurons and abnormal spike activity in Purkinje cells.52 LDB1 is a 

novel interactor of ARTN (a putative SMDS-associated gene). It interacts with the novel 

interactors of GPX4 (EGR4 and GTF2F1) via two intermediate interactors (DNMT3L and 

CTDSP1). LDB1 is an adaptor protein that serves as a critical component of transcription 

complexes and is involved in the differentiation of various cell types (e.g. hematopoietic 

cells).53 Mutant mice lacking this gene exhibit a range of developmental defects including 

nterior-posterior patterning, cardiac and foregut defects.53 LDB1 has also been shown to 

influence another gene, LMX1B, mutations in which have been linked to a skeletal dysplasia 

called the Nail-Patella syndrome.54 Accumulation of oxidized lipids leads to a process called 

‘ferroptosis’, an iron-dependent/caspase-independent form of apoptosis. Since GPX4 inhibits 

the accumulation of oxidized lipids by catalyzing their reduction, GPX4 inactivation is critical 

for ferroptosis. ATF2, a transcription factor that can be found in the adenylate-cyclase 

activating GPCR signaling pathway module (Fig. 8a), has been known to inhibit ferroptosis 

when activated by the JNK1/2 pathway.55 Both MAPK13 (a known interactor of GPX4) and 

CAMK4 (a novel interactor of ARNTL, a putative SMDS-associated gene) have been known 
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Figure 8: Functional modules with GPX4. The figure shows network diagrams for eight 

functional modules containing GPX4 or its novel interactors. The network nodes have been 

annotated as per the legend shown on the right side. 
to 

activate ATF2.56,57 The exact nature of the functional interaction (e.g. activation/ inhibition) 

between GPX4 and MAPK13 is unclear. However, if one assumes that GPX4 may inhibit 

ferroptosis through some indirect action on ATF2, it may be speculated that MAPK13 needs 

to be activated by GPX4 before it activates ATF2 and influences the inhibition of ferroptosis; 
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note that ATF2 may be independently activated by CAMK4.58 Perturbation of GPX4 activity 

may remove its activational effect on MAPK13, and facilitate ferroptosis. VHL is a known 

interactor of ZNF197, a novel interactor of GPX4 (Fig. 8c). GPX4 has been shown to have an 

inhibitory effect on elevated VEGFA,59 which is generally activated by HIF1A. VHL recruits 

ZNF197 to inhibit HIF1A transcriptional activity.60 Hence, it may be speculated that GPX4 

exerts its inhibitory activity on VEGFA, via its direct interaction with the ZNF197-VHL 

complex. Perturbed GPX4 activity may remove this inhibitory effect on ZNF197-VHL and 

promote abnormal VEFGA protein expression. Since VEGF signaling is a critical regulator of 

bone development,61 abnormal VEGFA expression may influence the development of skeletal 

pathophenotypes. Drugs exploiting these potential functional associations of GPX4 on 

ferroptosis (via MAPK13) and bone development (via ZNF197) could be examined in the 

context of SMDS. Several other genes in the functional modules have been associated with 

other dysplasias. Mutations in RPS19 (Fig. 8f) and TONSL (Fig. 8a) have been associated 

with hip dysplasia and Sponastrime dysplasia respectively,62,63 and KMT2D (Fig. 8h) with 

Kabuki syndrome.64 RXRB (Fig. 8b) has a regulatory effect on COL2A1, which has been 

linked to chondrodysplasia, Stickler syndrome and otospondylomegaepiphyseal dysplasia.65 

 
We identified 23 genes from the network interconnecting Joubert syndrome-associated genes 

to GPX4 (Fig. 6a), which shared at least one phenotype with GPX4 (Supplementary File 2). 

Most phenotypes were shared by KIT, TRIM28, SNRPC, VHL, CACNA1A, JUN, APP, 

ABL1 and a novel interactor of GPX4 (GAMT). Additionally, we identified more than 50 

genes that showed similar tissue expression patterns as GPX4 and connected GPX4 to other 

SMDS-associated genes, SD-associated genes and genes whose perturbation affected GPX4 

expression. Experimental studies on the mechanistic connections of such genes to GPX4 may 

provide insights into SMDS etiology. 

 
Comparative transcriptome analysis revealed 11 drugs that induced expression profiles 

negatively correlated with profiles associated with chondroplasia and immune-osseous 

dysplasia (Fig. 7a). Limited availability of relevant transcriptomic datasets prompted us to 

use the datasets of these two dysplasias, although they may exhibit etiological distinction 

from SMDS. We additionally shortlisted resveratrol as a potential drug that may be tested in 

SMDS due to the proximity of its targets to GPX4 (Fig. 7b); resveratrol is currently in phase 
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II trials for pseudoachondroplasia (ClinicalTrials.gov identifier: NCT03866200). The effect 

of these proposed drugs should be examined in appropriate models. 

 
In summary, our study provides a GPX4-centric network-level view of SMDS, a functional 

landscape that will allow biologists to prioritize genes, functional modules and drugs for 

therapeutic interventions in SMDS. 

 
Methods 

 
Compilation of gene lists and prediction of novel interactions 

 
SMDS-associated genes, genes associated with X-linked spondyloepimetaphyseal dysplasia, 

acrocapitofemoral dysplasia, Dyggve-Melchior-Clausen disease, autosomal recessive 

Megarbane type SMD and genes associated with Joubert syndrome (with JATD) were 

compiled from the DisGeNET26 database. Genes associated with Kozlowski type SMD, 

spondyloenchondrodysplasia, odontochondrodysplasia, Sutcliffe/corner fractures type SMD, 

SMD with severe genu valgam/Schmidt type SMD, SMD with cone-rod dystrophy, SMD with 

retinal degeneration/axial SMD, dysspondyloenchondromatosis, achondrogenesis type 1A, 

schneckenbecken dysplasia and opsismodysplasia were curated from Warman et al.31 Genes 

whose perturbation (gene knockout/knockdown/mutation/overexpression) affects GPX4 were 

collected from Knockdown Atlas (BaseSpace Correlation Engine software suite32). Novel 

PPIs of the proteins encoded by these genes were predicted using the HiPPIP model that we 

developed.66 Each protein (say N1) was paired with each of the other human proteins say, 

(M1, M2,…Mn), and each pair was evaluated with the HiPPIP model.66 The predicted 

interactions of each of the proteins were extracted (namely, the pairs whose score is 

>0.5, a threshold which through computational evaluations and experimental validations was 

revealed to indicate interacting partners with high confidence). Previously known PPIs were 

collected from HPRD (Human Protein Reference Database,22 version 9) and BioGRID 

(Biological General Repository for Interaction Datasets,23 version 3.4.159). The interactome 

figures were created using Cytoscape.67 

 
Network analysis using LENS 

 
LENS (Lens for Enrichment and Network Studies of human proteins) was used to extract the 

shortest paths in the human interactome connecting the various sets of genes compiled in this 

https://clinicaltrials.gov/ct2/show/NCT03866200
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study to GPX4. LENS is a web-based tool that may be used to identify pathways and diseases 

that are significantly enriched among the genes submitted by users.33 The LENS algorithm 

finds the nearest neighbor of each gene in the interactome and includes the intermediate 

interactions that connect them. LENS then computes the statistical significance of the overlap 

of genes in the network and genes with annotations pertaining to pathways, diseases, drugs 

and GWASs, and reports a P-value computed from Fisher’s exact test. 

 
Identification of functional modules 

 
Functional gene modules were extracted using the HumanBase toolkit27 

(https://hb.flatironinstitute.org/). HumanBase uses shared k-nearest-neighbors and the 

Louvain community-finding algorithm to cluster the genes sharing the same network 

neighborhoods and similar GO biological processes into functional modules. The P-values of 

the terms enriched in the modules are calculated using Fisher’s exact test and Benjamini– 

Hochberg method. 

 
Gene expression analysis 

 
Gene expression profiles of 53 postnatal human tissues were extracted from GTEx.68 Principal 

component analysis (PCA) and hierarchical clustering were used to capture relationships 

among the genes in the various networks constructed in our study (which connect GPX4 to 

other SMDS-associated genes, SD-associated genes and genes whose perturbation affects 

GPX4 expression). Log-transformed transcripts per million (TPM) values were assembled into 

a data matrix containing tissues as rows and genes as columns. PCA was performed with a 

web-based tool called ClustVis (https://biit.cs.ut.ee/clustvis/).33 The data matrix was pre-

processed such that 70% missing values were allowed across the rows and columns. The 

log(TPM) values in the matrix were centered using the unit variance scaling method, in which 

the values are divided by standard deviation so that each row or column has a variance of one; 

this ensures that they assume equal importance while finding the components. The method 

called singular value decomposition (SVD) with imputation was used to extract principal 

components. In this method, missing values are predicted and iteratively filled using 

neighbouring values during SVD computation, until the estimates of missing values converge. 

The data matrix of tissues (rows) and genes (columns) was subjected to hierarchical clustering 

using the tool called Heatmapper 

https://hb.flatironinstitute.org/
https://biit.cs.ut.ee/clustvis/
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(http://www.heatmapper.ca/)69 to identify tissue-based grouping patterns of genes. Pairwise 

distances in the data matrix were calculated using Pearson correlation and closely linked 

clusters were identified using the average linkage method. Dendrograms were generated by 

merging tissues with the smallest distance first, and those with larger distances later. In the 

average linkage method, the average distance of all possible pairs is considered while 

clustering. 

 
Identification of repurposable drugs 

 
The list of chemical compounds whose gene expression profiles correlated negatively with 4 

dysplasia expression datasets were compiled using the BaseSpace correlation software 

(https://www.nextbio.com) (List 1), namely, tibial growth plate hypertrophic zone - Cog mice 

(chondroplasia) versus wildtype littermates, tibial growth plate hypertrophic zone - Schmid 

mice (chondroplasia) versus wildtype littermates (GSE3062845), skin fibroblasts - Schimke 

immuno-osseous dysplasia cell line SD60 versus healthy control and skin fibroblasts - 

Schimke immuno-osseous dysplasia cell line SD8 versus healthy control (GSE3555146). 

Next, we identified drugs that targeted at least one gene in the interactome of SMDS- 

associated genes (GPX4, AGRP, ARNTL, ARTN, LOH19CR1, PSD4 and RPS19) using 

Drug Bank (list 2).48 We then compared list 1 and list 2 to identify the drugs that not only 

target proteins in the interactome but are also negatively correlated with the selected gene 

expression profiles. 
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Data and materials availability 

 
Cytoscape files containing the interactomes shown in Figs. 1-4, Fig. 6, Fig. 7, and Fig. 8 have 

been made available as Supplementary Files 3-6 respectively. 

 

Supplementary files 

 
Supplementary File 1: Functional modules enriched in the networks of putative SMDS- 

associated genes, SD-associated genes, genes associated with phenotypically similar disorders 

and GPX4-affecting genes, and the mouse phenotypes shared by genes belonging to these 

modules. 

 
Supplementary File 2: Functional modules enriched in the network of genes associated with 

Joubert syndrome (with Jeune asphyxiating thoracic dystrophy), and the mouse phenotypes 

shared by genes belonging to these modules. 

 
Supplementary File 3: Cytoscape files containing the networks shown in Figs. 1-4. The 

networks contain mappings of known (light blue edges) and novel PPIs (red edges) and of 

known (light blue nodes) and novel interactors (red nodes). The legend for the other nodes 

are the same as that given in the corresponding figures. 

 
Supplementary File 4: Cytoscape files containing the networks shown in Fig. 6. The 

networks contain mappings of known (light blue edges) and novel PPIs (red edges) and of 

known (light blue nodes) and novel interactors (red nodes). The legend for the other nodes 

are the same as that given in the corresponding sub-figures. 

 
Supplementary File 5: Cytoscape files containing the networks shown in Fig. 7. Green 

colored nodes and edges depict drugs and drug-protein interactions respectively. Red and 
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light blue colored nodes denote novel and known interactors respectively. Red and light blue 

colored edges denote novel and known PPIs respectively. 

 
Supplementary File 6: Cytoscape files containing the networks shown in Fig. 8. The legend 

for the nodes and the edges are the same as that given in the corresponding sub-figures. 
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8. Potentially repurposable drugs for schizophrenia identified from its interactome 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., Srilakshmi Chaparala, and Madhavi K. Ganapathiraju. Potentially 

repurposable drugs for schizophrenia identified from its interactome. Scientific reports 9, no. 

1 (2019): 1-14. 

 

Summary of this chapter 

 

In this chapter, I describe the pipeline for interactome-based drug repurposing pipeline using 

schizophrenia (SCZ) as an example. I extracted the drugs from the SCZ drug-protein interactome. 

I then performed comparative transcriptome analysis of drug-induced versus SCZ-associated gene 

expression profiles using the BaseSpace Correlation Engine software suite, a data analysis 

platform used to study the effect of diseases and drugs on publicly available gene expression data. 

I subsequently examined the twelve drugs shortlisted in this manner for their biological validity 

using a series of functional enrichment tests and correlation with clinical data. This analysis 

resulted in evidence supporting the biological validity of 9 out of the 12 drugs. This work led to the 

testing of cromoglycate as adjunctive therapy for SCZ and acetazolamide for treatment-resistant 

SCZ (ClinicalTrials.gov NCT04887792, NCT03794076), which demonstrated the potential 

translational value of the drugs identified using the integrated computational approach adopted in 

this study. 

 

Contribution to this chapter (85%) 

 

• Designed the study and developed the methodology of the project, including the correlation 

analysis of drugs against disease and further bioinformatics analyses  

• Curated all the datasets, performed all the analyses, and derived the conclusions (note that the 

first version of the shortlisted drugs was produced by the second author, Srilakshmi Chaparala, 

after which I updated this list by re-performing the correlation analysis) 

• Conceptualised and wrote the manuscript and prepared all the figures, tables and 

supplementary files
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Potentially repurposable drugs for 
schizophrenia identified from its 
interactome 

Kalyani B. Karunakaran1, Srilakshmi Chaparala2 & Madhavi K. Ganapathiraju2,3
 

We previously presented the protein-protein interaction network of schizophrenia associated genes, 
and from it, the drug-protein interactome which showed the drugs that target any of the proteins 
in the interactome. Here, we studied these drugs further to identify whether any of them may 
potentially be repurposable for schizophrenia. In schizophrenia, gene expression has been described 
as a measurable aspect of the disease reflecting the action of risk genes. We studied each of the 
drugs from the interactome using the BaseSpace Correlation Engine, and shortlisted those that 
had a negative correlation with differential gene expression of schizophrenia. This analysis resulted 
in 12 drugs whose differential gene expression (drug versus normal) had an anti-correlation with 
differential expression for schizophrenia (disorder versus normal). Some of these drugs were already 
being tested for their clinical activity in schizophrenia and other neuropsychiatric disorders. Several 
proteins in the protein interactome of the targets of several of these drugs were associated with various 
neuropsychiatric disorders. The network of genes with opposite drug-induced versus schizophrenia- 
associated expression profiles were significantly enriched in pathways relevant to schizophrenia 
etiology and GWAS genes associated with traits or diseases that had a pathophysiological overlap with 
schizophrenia. Drugs that targeted the same genes as the shortlisted drugs, have also demonstrated 
clinical activity in schizophrenia and other related disorders. This integrated computational analysis 
will help translate insights from the schizophrenia drug-protein interactome to clinical research - an 
important step, especially in the field of psychiatric drug development which faces a high failure rate. 

 
 

Schizophrenia is a complex disorder with a cumulative impact of variable genetic effects coupled with environ- 
mental factors1. The Schizophrenia Working Group of the Psychiatric Genomics Consortium (PGC) had iden- 
tified 108 genetic loci that likely confer risk for schizophrenia. Prior to this, around 25 genes were being studied 
for their association with the disorder2. While the role of genetics has been clearly validated by the genome-wide 
association studies (GWAS), the functional impact of the risk variants is not well understood. Several of the 
schizophrenia genes, especially those implicated by the GWAS have unknown functions and/or pathways. To 
discover the functional role of these genes, and promote discovery of novel therapeutics, we had carried out a 
computational analysis of the protein-protein interactions (PPI) network, or the interactome, of schizophrenia 
associated genes3. The schizophrenia interactome, comprising 101 schizophrenia genes and about 1,900 PPIs, 
provided valuable results highlighting the functions and pathways tied to schizophrenia genes through their 
protein interactome3. A valuable result from this study was the drug-target interactome that showed a total of 524 
drugs targeting 53 proteins in the schizophrenia interactome. Many of these drugs were labeled for therapeutic 
value for nervous system as expected, but there were several drugs that were labeled for other anatomical systems 
in the human body. 

As drug approvals for psychiatric indications have been facing a high failure rate in the last few years4, it 
would be beneficial to study whether these drugs that target proteins from the schizophrenia interactome could 
be repurposed for treatment of schizophrenia. Finding alternate uses for approved drugs would be optimal, and 
such uses are being found in recent years5–7. 

Diseases are often considered to be driven by an abnormal or perturbed expression of a multitude of genes 
which together constitute unique differential (gene) expression signatures (DES)8–12. Drugs administered to treat 
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these diseases often revert the expression of these genes to their normal levels13,14. DES for disease versus nor- 
mal are quantified using gene expression analysis based on microarrays and RNA sequencing methods, and are 
deposited in online repositories, which make the data freely available for integrated computational analyses15. 
Similarly, DES for drug-treated versus untreated is made available through Connectivity Map (CMAP)16. In order 
to analyze the suitability of these drugs for repurposing, we build over the results from our previous work on 
schizophrenia interactome discovery and analysis3, utilizing large transcriptomic databases such as CMAP and 
Gene Expression Omnibus (GEO), and employing a bioinformatics data analysis software suite named BaseSpace 
Correlation Engine17. The approach of repurposing drugs based on the negative correlation of drug-induced ver- 
sus disease-associated gene expression profiles has resulted in some valuable results in the past. Topiramate, an 
anti-convulsant drug used in the treatment of epilepsy, was identified to be potentially repurposable for inflam- 
matory bowel disease (IBD), based on the negative correlation of drug-induced profiles extracted from CMAP 
and disease-associated profile from GEO18. They further validated the efficacy of this drug in a rodent model of 
IBD18. 

Many genes harboring variants associated with schizophrenia, such as DTNBP1, DAOA, NRG1 and RGS4, 
show differential gene expression in post-mortem brain samples obtained from schizophrenia patients compared 
with normal controls19. In schizophrenia, it has been pointed out that the effect of genetic variants may, in fact, 
be reflected on gene expression rather than on the structure of the proteins coded by these genes20. Gene expres- 
sion has been described as a ‘psychiatric endophenotype’ in schizophrenia19. A psychiatric endophenotype may 
broadly be defined as a measurable phenotype, namely, any neuroanatomical, physiological, psychological, bio- 
chemical or molecular aspect of brain function, having some definitive disease-associated genetic component, 
and contributing to a larger behavioral trait such as ‘cognitive dysfunction’ or ‘psychosis’ underlying a complex 
disorder such as schizophrenia19. The ‘definitive genetic component’, in this case, could be a set of disease sus- 
ceptibility genes harboring sequence variants affecting the expression of the susceptibility genes themselves, or a 
set of genes differentially expressed in patients compared with healthy subjects. These genes may uncover novel 
pathways underlying some behavioral trait contributing to disease etiology. For example, it was recently shown 
that expression of genes associated with immunological processes vary with cognitive performance in familial 
schizophrenia21. So, our method to identify repurposable drugs may be tested on schizophrenia, in which differ- 
ential gene expression plays a critical role. 

Results 
In our prior work3, we presented 524 drugs that target any of the proteins in the Schizophrenia Interactome3. We 
pruned this large list of drugs by comparing differential expression profiles induced by drug to profiles associated 
with schizophrenia, using our in silico protocol, and shortlisted drugs that had a negative correlation between 
these expression profiles22. We carried out bioinformatics analysis on the shortlist of drugs identified thus, to 
answer the following questions on their biological validity to schizophrenia (see Fig. 1): Have any of these drugs 
been considered for clinical trials? Are the genes targeted by these drugs associated with neuropsychiatric dis- 
orders? Are the genes with opposite expression in drug versus schizophrenia associated with morphological or 
physiological phenotypes of the mammalian nervous system? Do other drugs targeting the same genes as the 
shortlisted drugs show clinical activity in neuropsychiatric disorders? Are any genes in the PPI network of the 
genes targeted by the shortlisted drugs associated with neuropsychiatric disorders? Are any genes in the PPI 
network of genes with opposite expression in drug versus schizophrenia involved in pathways relevant to schiz- 
ophrenia? Are they also GWAS genes associated with traits or diseases having a pathophysiological overlap with 
schizophrenia? These questions were based on the fact that genes associated with traits related to the nervous 
system and genes linked to neuropsychiatric disorders have been shown to converge in specific co-expression 
modules, indicating shared genetic basis and disease mechanisms23. Drugs used for treatment of a neuropsychi- 
atric disorder may be repurposable for schizophrenia by virtue of shared genes and mechanisms. Each of these 
sources of information is assessed separately in parallel, highlighting which of the drugs have multiple sources of 
supporting information. 

We followed an established approach to identify drugs that have opposite differential expression to the dif- 
ferential expression of schizophrenia (i.e., genes over-expressed in schizophrenia are under-expressed by drug 
treatment and vice versa)8. We identified such drugs using the BaseSpace Correlation Engine software suite, a 
data analysis platform used to study the effect of diseases and/or drugs on publicly available gene expression 
data17. This analysis resulted in 12 drugs. Although in each case, there are some genes that are differentially 
expressed in the same direction for both the drug and disorder, the overall effect on the entire transcriptome has 
an anti-correlation, leading to 12 drugs as potential candidates for further studies (Table 1 and Fig. 2). The top 5 
drugs by the score of anti-correlation are cromoglicic acid, bepridil, acetazolamide, dimenhydrinate, cinnarizine, 
of which bepridil and dimenhydrinate may be excluded due to their side-effects related to nervousness and hal- 
lucinations (see Table 1), thus leaving cromoglicic acid, acetazolamide and cinnarizine as top candidates. There 
were 30 drugs indicated for schizophrenia in DrugBank24. 23 out of these occur in the schizophrenia drug-protein 
interactome (77%). We checked the overlap of drugs indicated for other diseases to infer the specificity of this 
result, namely, coronary heart disease (25%), lung cancer (50%), diabetes (33%), chronic kidney disease (0%), 
post-traumatic stress disorder (75%) and bipolar disorder (66%). As expected, there was a larger overlap with 
neurological disorders compared to other unrelated disorders. 50% overlap with lung cancer drugs may be 
explained by the large number of drug targets implicated in cancers, and their vital role in numerous basic cellu- 
lar functions. Eleven of these did not have relevant datasets in BaseSpace, or even though a negative correlation 
was found, the p-value was insignificant for schizophrenia gene expressions studies. Of 23 known schizophrenia 
drugs – six of them, namely, clozapine, haloperidol, molindone, perphenazine, amitriptyline and nortriptyline, 
had negative correlation with schizophrenia and 6 others had a positive correlation with schizophrenia. Sources 
of datasets in which differential expression is observed is listed in Data File 1. 
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Figure 1. Graphical abstract depicting the steps taken in this study to assess the biological validity of the 
shortlisted drugs. Drugs were extracted from the schizophrenia drug-protein interactome and screened for 
negative correlation of drug-induced versus disease-associated gene expression profiles. Drugs shortlisted in 
this manner were further checked for their toxicity, and eliminated if they were found to have harmful side 
effects. The targets of the remaining drugs and their network of protein-protein interactions were checked for 
their association with schizophrenia (SCZ)/other neuropsychiatric disorders (NPDs) using DisGeNET. Genes 
with opposite expression in drug-induced versus disease-associated profile were analyzed for their association 
with nervous system phenotypes (Mammalian Phenotype Ontology). Their networks were analyzed for 
enrichment of SCZ-associated pathways/GWAS traits. Apart from this, it was checked whether the shortlisted 
drugs are already being tested against NPDs (NIH Clinical Trials), and whether other drugs with the same 
targets show clinical activity in NPDs. Different sources of supporting information are shown by lines of 
different colors. Each of the drugs is also tagged with little squares of colors of corresponding supporting 
information. For example, amiloride is supported by “genes in network associated with neuropsychiatric 
disorders” (blue) and “in clinical trials for neuropsychiatric disorders” (bright pink). Acetazolamide, cinnarizine 
and tetracycline each are supported by 3 sources of supporting information. 

 

 

Acetazolamide. The protein targets of acetazolamide are carbonic anhydrases (CA*) and aquaporin (AQP1). 

We collected known and computationally predicted PPIs of these targets of acetazolamide and queried the 
DisGeNet25 database whether any of the proteins in this interaction network are associated with neuropsy- 
chiatric disorders. While Fig. 2 shows the protein targets only from schizophrenia interactome, Fig. 3 shows the 
network of all protein targets (orange colored nodes) of acetazolamide and their PPIs. Nineteen genes within this 
network are associated with various neuropsychiatric disorders (nodes with green border in Fig. 3; Data File 2): 
AQP1 and CA2, which are acetazolamide targets, DAXX, EPHB2, HSPD1, SLC4A3, SLC9A1, SRC, TCF4, TNK2, 
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Drug 

 

 

 

 
Drug class 

 

 
 
Original 
therapeutic 
purpose(s) 

 

 
Pharmacokinetic 
details: dosage 
form, delivery 
route, half-life 

 

 

 

 
Toxicity 

 
Correlation 
with all 
data types, 
Overall 
correlation 
score 

Correlation 
with SCZ 
gene 
expression 
study, 
Correlation 
score 

 

 

 

 
Bs1 

 

 

 

 
Bs2 

 

 
Bs1 
& 
Bs2 
up 

 

 
Bs1 
& 
Bs2 
down 

 

 
Bs1 
up & 
Bs2 
down 

 
Bs1 
down 
& 
Bs1 
up 

 

 

 

 
 

Amitriptyline 

 

 

 

 

Dibenzo- 
cycloheptenes 

 

 
 

Major depressive 
disorder and 
anxiety disorders, 
treatment of 
secondary 
depression in 
schizophrenia 

 

 

 

 

Tablet, oral, 
25 hours 

Abnormally low 
blood pressure, 
confusion, 
convulsions, 
dilated pupils 
and other eye 
problems on 
overdosing, 

and withdrawal 
symptoms 
including 
gastrointestinal 
disturbances, 
anxiety, and 
insomnia 

 

 

 

 
 

Negative, 76 

 

 

 

 

Negative, 
100 

 

 

 
 

HL60 

cells + amitriptyline, 
12.8 uM _vs_ DMSO 
vehicle 

 

 

 

Hippocampus 
tissues from 
schizophrenia 
patients _vs_ 
normals 

 

 

 

 
 

9 

 

 

 

 
 

3 

 

 

 

 
 

19 

 

 

 

 
 

31 

 

 

 

 
Haloperidol 

 

 

 

 
Alkyl-phenyl- 
ketone 

Schizophrenia 
and other 
psychoses, 
delusional 
disorders, 
ballism, and 
Tourette 
syndrome, 
adjunctive 
therapy in mental 
retardation, 
chorea associated 
with Huntington’s 
disease 

 

 

 

 
Solution/tablet, 
oral, 24 hours 

 
Cardiovascular 
effects, 
extrapyramidal 
symptoms, tardive 
dyskinesia, 
neuroleptic 
malignant 
syndrome, 
hematologic 
effects 

 

 

 

 
Negative, 70 

 

 

 

 
Negative, 68 

 

 

 
HL60 

cells + haloperidol, 
10 μM vs. DMSO 

vehicle 

 

 
Prefrontal 
cortex 
Brodmann 
area 46 of 

schizophreniacs 
with short DOI 
vs. helathy 
controls 

 

 

 

 
3 

 

 

 

 
6 

 

 

 

 
30 

 

 

 

 
1 

 
 

Molindone 

 
Indoles and 
derivatives 

Schizophrenia, 
other psychoses 
and aggressive 
type of 
undersocialized 
conduct disorder 

 
Tablet, oral, not 
available 

 
 

Not available 

 
 

Negative, 76 

 
 

Negative, 57 

 
MCF7 + molindone, 

12.8 μM vs. DMSO 
vehicle 

Hippocampus 
tissues from 
schizophrenia 
patients _vs_ 
normals 

 
 
22 

 
 
23 

 
 
174 

 
 
21 

 

 
Clozapine 

 

 
Dibenzo- 
diazepines 

 
Atypical 
antipsychotic 
drug used in 
schizophrenia 

 

 
Tablet, oral, 4 to 
12 hours 

 
 

Black-box 
warning for 
agranulocytosis 

 

 
Negative, 59 

 

 
Negative, 
100 

 
 

HL60 cells + clozapine, 
10 μM vs. DMSO 

vehicle 

Prefrontal 
cortex 
Brodmann 
area 46 of 

schizophreniacs 
with short DOI 
vs. helathy 
controls 

 

 
10 

 

 
23 

 

 
101 

 

 
2 

 

 

 

 

 
 
Nortriptyline 

 

 

 

 

 

Dibenzo- 
cycloheptenes 

 
Clinical 
depression, 
treatment of 
depressive 
symptoms in 
schizophrenia 
(dose 
adjustments 
are necessary 
to safely use 
the drug in 

schizophrenia, as 
it has been shown 
to exacerbate 
psychosis) 

 

 

 

 

 

Capsule, oral, 
26 hours 

Cardiac 
dysrhythmias, 
severe 
hypotension, 
shock, congestive 
heart failure, 
pulmonary 
edema, 
convulsions, and 
CNS depression, 
including coma 
on overdosing, 
and withdrawal 
symptoms include 
gastrointestinal 
disturbances, 
anxiety, and 
insomnia 

 

 

 

 

 
 

Negative, 50 

 

 

 

 

 
 

Negative, 89 

 

 

 

 
 
HL60 

cells + nortriptyline, 
13.4 uM _vs_ DMSO 
vehicle 

 

 

 

 

Hippocampus 
tissues from 
schizophrenia 
patients _vs_ 
normals 

 

 

 

 

 
 

6 

 

 

 

 

 
 
6 

 

 

 

 

 
 
26 

 

 

 

 

 
 
3 

 

 
Perphenazine 

 

 
Phenothiazines 

 
Schizophrenia 
and the manic 
phases of bipolar 
disorder 

 

 
Tablet, oral, 8 to 
12 hours 

 
Stupor or coma, 
convulsive 
seizures in 
children 

 

 
Negative, 80 

 

 
Negative, 
100 

 
HL60 

cells + perphenazine, 
10 μM vs. DMSO 

vehicle 

Prefrontal 
cortex 
Brodmann 
area 46 of 

schizophreniacs 
with short DOI 
vs. helathy 
controls 

 

 
4 

 

 
7 

 

 
78 

 

 
7 

 
 

Acetazo- 
lamide 

 
 

Thiadiazole 
sulfonamides 

 
Glaucoma, 
mountain 
sickness 

 
 

Tablet, oral, 3 to 
9 hours 

 

 
Not available 

 

 
Negative, 76 

 
 

Negative, 
100 

 
MCF7 

cells + acetazolamide, 
18 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
67 

 

 
38 

 

 
95 

 

 
119 

 
 

Alendronate 

 
Bisphos- 
phonates 

 
 

Osteoporosis 

 
Tablet, oral, 10 
years 

 
Damage of 
oesophagus 

 
 

Negative, 68 

 
 

Negative, 57 

Heart of 

rats + ALENDRONIC 
ACID at 138 mg-kg-d 
in CMC by oral gavage 
5d _vs_ vehicle 

Associative 
striatum 
tissues from 
schizophrenia 
patients _vs_ 
normals 

 
 

1 

 
 
14 

 
 
12 

 
 

8 

Continued 
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Drug 

 

 

 

 
Drug class 

 

 
 
Original 
therapeutic 
purpose(s) 

 

 
Pharmacokinetic 
details: dosage 
form, delivery 
route, half-life 

 

 

 

 
Toxicity 

 
Correlation 
with all 
data types, 
Overall 
correlation 
score 

Correlation 
with SCZ 
gene 
expression 
study, 
Correlation 
score 

 

 

 

 
Bs1 

 

 

 

 
Bs2 

 

 
Bs1 
& 
Bs2 
up 

 

 
Bs1 
& 
Bs2 
down 

 

 
Bs1 
up & 
Bs2 
down 

 
Bs1 
down 
& 
Bs1 
up 

 

 
Alfacalcidol 

 

 
Vitamin D and 
derivatives 

 

 
Vitamin D 
supplement 

 

 
Capsule, oral, not 
available 

 

 
Hypercalcemia 

 

 
Negative, 46 

 

 
Negative, 
100 

 
Liver of rats + 

ALFACALCIDOL at 
043 mg-kg-d in CMC 
by oral gavage 1d _vs_ 
vehicle 

Prefrontal 
cortex 
Brodmann 
area 46 - 
schizophrenics 
with short DOI 

_vs_ healthy 
controls 

 

 
22 

 

 
120 

 

 
125 

 

 
25 

 

 
Amiloride 

 
 

Aminop- 
yrazines 

 
Hypertension, 
heart failure, 
edema 

 
 

Tablet, oral, 6 to 
9 hours 

 
Dehydration 
and electrolyte 
imbalance 

 

 
Negative, 58 

 

 
Positive, 66 

 
HL60 cells + amiloride, 

13.2 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
36 

 

 
26 

 

 
14 

 

 
18 

 

 
Antazoline 

 
 

Phenylben- 
zamines 

 
Nasal congestion, 
allergic 
conjunctivitis 

 
Liquid, 
opthalmic, not 
available 

 

 
Not available 

 

 
Negative, 60 

 

 
Negative, 91 

 
HL60 cells + antazoline, 

13.2 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
5 

 

 
10 

 

 
10 

 

 
24 

 

 
Bepridil 

 
 

Phenylben- 
zamines 

 

 
Angina 

 
 
Tablet, oral, 24 to 
50 hours 

 
Gastrointestinal 
problems, 
dizziness,asthenia, 
nervousness 

 

 
Negative, 77 

 

 
Negative, 40 

 
HL60 cells + bepridil, 
10 uM _vs_ DMSO 
vehicle 

Neural 
progenitors 
derived from 
donor stably 
expressing GFP 

- schizophrenia 

_vs_ normal 

 

 
36 

 

 
51 

 

 
73 

 

 
68 

 

 
Cinnarizine 

 
 

Diphenyl- 
methanes 

 
 

Motion sickness, 
vertigo 

 
 

Tablet, oral, 3 to 
4 hours 

 

Drowsiness, 
skin problems, 
lethargy, 
movement 
problems 

 

 
Negative, 64 

 
 

Negative, 
100 

 
HL60 

cells + cinnarizine, 
10.8 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
20 

 

 
15 

 

 
21 

 

 
57 

 
 

Cromoglicic 
acid 

 

 
Chromones 

 
Asthma 
prophylaxis, 
aerosol 

 
 

Solution, oral, 

1.3 hours 

 
Cough, nasal 
congestion, 
nausea, sneezing 
and wheezing 

 

 
Negative, 84 

 

 
Negative, 64 

 
MCF7 

cells + cromoglicic acid, 
7.8 uM _vs_ DMSO 
vehicle 

Neural 
progenitors 
derived from 
donor stably 
expressing GFP 

- schizophrenia 

_vs_ normal 

 

 
15 

 

 
18 

 

 
36 

 

 
13 

 

 
Danazol 

 
 

Estrane 
steroids 

 

Endometriosis, 
fibrocystic 
breast disease, 
hereditary 
angioedema 

 
 
Capsule, oral, 
24 hours 

 

 
Not available 

 

 
Negative, 61 

 
 

Negative, 
100 

 
HL60 cells + danazol, 

11.8 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
173 

 

 
335 

 

 
460 

 

 
1264 

 
 

Dimenhy- 
drinate 

 
 

Diphenyl- 
methanes 

 
 

Motion sickness, 
nausea 

 
Solution, 
intramuscular or 
intravenous, 1 to 

4 hours 

 
Delerium, 
hallucinations, 
excitement 

 

 
Negative, 64 

 

 
Negative, 50 

 
HL60 cells + 

dimenhydrinate, 
8.6 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
22 

 

 
10 

 

 
35 

 

 
6 

 
Miconazole 

 
Benzylethers 

Antifungal 
medication 
used in vaginal 
infections 

 
Tablet, buccal, 
not available 

Oral toxicity 
in mice at 

LD50 = 3800 mg/ 

kg 

 
Negative, 60 

 
Negative, 50 

HL60 

cells + miconazole, 
9.6 uM _vs_ DMSO 
vehicle 

Hippocampus 
tissues from 
schizophrenia 
patients _vs_ 
normals 

 
11 

 
19 

 
66 

 
20 

 

 
Tetracycline 

 

 
Tetracyclines 

 

Antibiotic used 
in acne, cholera, 
brucellosis, 
plague, malaria, 
and syphilis 

 
 

Capsule, oral, 6 

to 12 hours 

 
Oral toxicity 
in mice at 

LD50 = 808 mg/kg 

 

 
Negative, 49 

 
 

Negative, 
100 

 
HL60 

cells + tetracycline, 
8.4 uM _vs_ DMSO 
vehicle 

Whole 
blood from 

schizophrenic 
patients 

_vs_ healthy 
controls_ 
GPL6947 

 

 
26 

 

 
20 

 

 
44 

 

 
149 

 

Table 1. Details of known schizophrenia drugs and drugs identified as potentially repurposable for 

schizophrenia: Pharmacokinetic information is collected from DrugBank (www.drugbank.ca). Known 

schizophrenia drugs are shown in italics. 
 

 

TRAF1, TRAF2, MTUS2, PICK1, GRM3, OLR1, TBP, PML and FOS, giving credence to the consideration that 
it has a potential application to schizophrenia. Acetazolamide has been shown to have high inhibitory activity 

against human CA2 (hCA II), the ubiquitous cytosolic enzyme (inhibition constant, Ki = 12 nM) and human CA7 
(Ki = 2.5 nM), the brain-specific form of the enzyme26. Human CA2 was found to be catalytically highly active 
(defined in terms of Kcat/Km for CO2 hydration described by two ionizations at pKa 6.2 and 7.5, with a maximum 

http://www.drugbank.ca/
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Figure 2. Drugs potentially repurposable for schizophrenia: The network highlights the shortlisted drugs that 
may be potentially repurposed for schizophrenia. The shortlisted drugs are shown as round nodes colored 
in dark green, and other drugs are shown as light green nodes. FDA approved drugs are shown with purple 
borders. Drugs with purple labels are in clinical trials for schizophrenia. Schizophrenia genes are square nodes 
colored in dark blue, known interactors are colored in light blue and novel interactors in red. 

 

 

approaching 8 × 107 M−1 s−1)27. Kcat/Km for human CA2 is 1.5 × 108 27. The increase in extracellular pH which 
accompanies neural activity is generated by the exchange of external H+ for cytosolic Ca2+. This process, and its 
impact on the glutamate receptors, NMDARs, has been shown to be regulated by CA14 in the synaptic microen- 
vironment28. On these lines, it is interesting to note that CA3 has been predicted to be a novel interactor of the 
glutamate receptor, GRM3, mutations in which have been associated with schizophrenia29. 

We assembled the network of PPIs of genes that are differentially expressed by each of the shortlisted drugs 
and carried out network and enrichment analysis using a tool called LENS30. The networks of genes found to be 
differentially expressed in acetazolamide, antazoline and cinnarizine, having an anti-correlation in schizophrenia, 
were shown to be enriched in ubiquitination and proteasome degradation pathways (Data File 3). The ubiquitin 
proteasome system has been identified as an important pathway in several genetic studies of neuropsychiatric dis- 
orders including Alzheimer’s disease, Parkinson’s disease, psychosis and bipolar disorder31. Many gene expression 
studies performed on blood collected from schizophrenia patients, and on post-mortem samples of hippocampus, 
prefrontal cortex and temporal cortex of patients have pointed at abnormalities in the ubiquitin proteasome path- 
way, which targets protein for degradation in the cell31. Moreover, reduced protein ubiquitination, reduced levels 
of ubiquitin and ubiquitin-like activases and ligases, were identified in a region of the brain called the left superior 
temporal gyrus in schizophrenia patients31. Left superior temporal gyrus, the volume of which has been shown to 
decrease in schizophrenia patients, is involved in the development of auditory hallucinations and thought process 
abnormalities seen in schizophrenia31. Interestingly, acetazolamide which has been shown to mediate diuretic 
effects through its action on AQP1, induces AQP1 ubiquitination, and a proteasome inhibitor reversed its down- 
regulatory action on AQP132. RAD51AP1 and AQR are novel interactors of the calcium channel CACNA1C and 
the nicotinic receptor CHRNA7 respectively in the schizophrenia interactome, found to have an anti-correlated 
expression in schizophrenia and acetazolamide treatment. It has been shown that UAF1, an interaction partner 
of USP1 deubiquitinating enzyme, associates with RAD51AP1, which interacts with RAD51 to mediate homol- 
ogous recombination repair33. NEDD4-1, an ubiquitin ligase, has been shown to promote the sorting of newly 
synthesized calcium voltage gated channels for proteasomal degradation34. Suppression of AQR in HepG2, a liver 
cancer line, has been shown to inhibit protein ubiquitination35. It has been shown that the expression of nicotinic 
receptors on the cell surface is regulated by the ubiquitin proteasomal system36. The networks of genes found to be 
differentially expressed in alfacalcidol and tetracycline, having an anti-correlation in schizophrenia, were shown 
to be enriched in the neutrophil degranulation pathway (Data File 3). Degranulating activity of neutrophils has 
been attributed to dysfunctional permeability of the blood-brain barrier in schizophrenia37. 



 

222  

 
 

 
 

Figure 3. Network of PPIs among targets of acetazolamide: The network shows protein-protein interactions 
that connect the targets of acetazolamide, which are shown as orange colored nodes. Nodes that connect 
these target genes are shown as grey colored nodes. Nodes with light green borders are genes associated with 
neuropsychiatric disorders. Novel interactions are shown as red edges and known interactions as blue edges. 

 

 

Network of genes which were differentially expressed in acetazolamide and had an anti-correlation with schiz- 
ophrenia were found to be significantly enriched for association to rheumatoid arthritis (Data File 3). Recently, 
the reduced prevalence of rheumatoid arthritis observed in schizophrenia patients was attributed to SNPs (single 
nucleotide polymorphisms) in the HLA region that conferred differential risk for schizophrenia and rheumatoid 
arthritis38. The interactomes of schizophrenia and rheumatoid arthritis genes also showed a significant overlap 
even outside of HLA genes, and shared common pathways38. 

 

Alfacalcidol. Alfacalcidol targets the protein VDR which was found to be overexpressed in whole blood 

obtained from schizophrenic patients compared to healthy controls (fold change (FC) = 2.21, p-value = 0.0037)39. 
The network of genes differentially expressed in alfacalcidol was enriched in GWAS genes associated with inflam- 
matory bowel disease (Data File 3). The incidence of schizophrenia has been shown to be high in patients with 
immune-mediated inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis and multiple 
sclerosis40. 

 

Amiloride. With our focus on candidate drugs for repurposing (i.e. those that exhibited a negative correlation to 

schizophrenia but are not currently labeled for this use), we queried the ClinicalTrials.gov database (https:// 
clinicaltrials.gov/) and found that amiloride is being tested in clinical trials for its efficacy in attention deficit 
hyperactivity disorder. 

We analyzed the PPI network of proteins targeted by the drug amiloride (Fig. 4), despite its positive corre- 
lation with schizophrenia gene expression because its overall correlation with a range of schizophrenia data- 
sets was negative, and because of the biological characteristics of its targets. The protein targets of amiloride are 
ASIC1, ASIC2, AOC1, SLC9A1, PLAU, SCNN1A, SCNN1B, SCNN1G and SCNN1D (orange nodes in Fig. 4). 
The network of PPIs among these targets of amiloride shows that 12 genes, including ASIC2, AOC1 and PLAU, 
which are amiloride targets, NEDD4, STX1A, MAPK1, HECW1, DAO, CSNK2A1, LASP1, SMG6 and PICK1 
are associated with various neuropsychiatric disorders (nodes with green border in Fig. 4; Data File 2). ASIC2 
was a computationally predicted interactor of the gene SMG6, structural variants in which have been associated 
with schizophrenia or bipolar disorder in a Spanish population41,42. SMG6 is located in the chromosomal region 
17p13.3, linked to lissencephaly, a neuronal migration disorder arising from incomplete neuronal migration to 
the cerebral cortex during gestation, and characterized by an absence of normal convolutions in the cerebral 
cortex and an abnormally small head (or microcephaly)42,43. ASICs (acid-sensing ion channels) are members of 
the epithelial Na+ channel (ENaC) family of ion channels, expressed in the nervous system44. It was shown in 
a study that ASIC2 is not expressed at the cell surface of high grade glioma (brain tumor) cells and this may 
be responsible for the constitutively activated inward Na+ current, which promotes increased cell growth and 

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Figure 4. Network of PPIs among targets of amiloride: The network shows protein-protein interactions 
that connect the targets of amiloride, which are shown as orange colored nodes. Nodes that connect these 
target genes are shown as grey colored nodes. Nodes with light green borders are genes associated with 
neuropsychiatric disorders. Novel interactions are shown as red edges and known interactions as blue edges. 

 

 

migration in these cells44. In such glioma cells, compounds such as glycerol and the transcriptional regulator, 
sodium 4-phenylbutyrate, were shown to inhibit the constitutively activated inward Na+ current and reduce cell 
growth and migration44. These compounds were shown to induce the movement of ASIC2 to the plasma mem- 
brane, and prevent the active inward current through negative regulatory mechanisms, reducing the ability of 
glioma cells to proliferate and migrate44. 

Antazoline. The networks of genes found to be differentially expressed in antazoline having an anti-

correlation in schizophrenia, were shown to be enriched in ubiquitination and proteasome degradation path- ways 
(Data File 3). The network of genes differentially expressed in antazoline, and with an opposite expression in 
schizophrenia, was significantly enriched in GWAS genes associated with brain connectivity (Data File 3). 
Abnormal interactions between brain networks have been pointed out to be an important contributing factor in 
schizophrenia etiology45. 

Cinnarizine. The networks of genes found to be differentially expressed in cinnarizine having an anti-

correlation in schizophrenia, were shown to be enriched in ubiquitination and proteasome degradation pathways 
(Data File 3). We checked whether any of the genes having anti-correlated expression on cinnarizine treatment 
and in schizophrenia were associated with mammalian phenotype ontology (MPO) terms related to various 
morphological or physiological aspects of the nervous system (http://www.informatics.jax.org/)46. It was found 
that mutations in 13 genes were associated with relevant MPO terms, namely, AHI1, ENTPD1, IFNGR1, 
NAP1L1, NPTN, PIK3CA, PKN2, PRKDC, PTGS2, RBM12, SEC. 23 A, SS18L1 and UBE3A. Two of these genes, 
IFNGR1 and AHI1, both linked to ‘abnormal depression-related behavior’, are predicted to have a novel inter- 
action between them. Depressive symptoms have been observed in schizophrenia patients47. IFNGR1 has been 
found to be necessary for the induction of IDO, the tryptophan synthesizing enzyme, which plays a role in depres- 
sive behavior, induced by inflammation47. AHI1 is associated with susceptibility to schizophrenia and autism47. 
Mice lacking neuronal expression of AHI1 had reduced levels of tyrosine kinase receptor B and a depressive phe- 
notype, which was alleviated by antidepressants and overexpression of TRKB47. BDNF/TRKB signaling has been 
shown to play a key role in depression. Altered BDNF/TRKB signaling in the prefrontal cortex, hippocampus and 
nucleus accumbens has been shown to give rise to depressive phenotype induced by inflammation48. Another 
gene, UBE3A, was associated with increased dopamine and serotonin levels, abnormal brain wave pattern, cer- 
ebral cortex morphology, dendrite morphology, GABA-mediated receptor currents, long term potentiation and 

http://www.informatics.jax.org/
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Figure 5. Cinnarizine and its targets in the schizophrenia interactome: The drug cinnarizine is shown 
here with the proteins it targets from the schizophrenia interactome. 4 additional proteins (BBS5, DRD1, 
HRH2 and SLC6A15) and 3 additional drugs (loratadine, clozapine and famotidine) that are relevant to the 
hypothesis are also shown. Cinnarizine, targets 3 schizophrenia genes and 2 novel interactors which constitute 
calcium channels, and histamine & dopamine receptors. Since histamine antagonists are known to reduce 
dopamine levels through their action on dopamine receptors, and calcium channel antagonists are known to 
reduce dopamine neurotransmission, the HRH1, DRD2 and calcium channel antagonist, cinnarizine, may be 
repurposable for schizophrenia. Another shortlisted drug, antazoline, is not part of the reasoning presented 
here even though it is an HRH1 antagonist. Schizophrenia genes are shown as dark blue colored nodes, novel 
interactors are red colored nodes and genes relevant to the hypothesis, which are not in the schizophrenia 
interactome, are shown as grey colored nodes. 

 

 

nervous system electrophysiology. Yet another gene, NPTN, was linked to abnormal synaptic transmission in the 
central nervous system and abnormal dendritic spine morphology. 

The network of genes differentially expressed in cinnarizine was enriched in GWAS genes associated with 
inflammatory bowel disease (Data File 3). 

We queried Drug Bank24 to find drugs that targeted the same genes as the shortlisted drugs, and checked 
whether they demonstrated any clinical activity in schizophrenia or other neuropsychiatric disorders.  
Risperidone, nimodipine, nilvadipine, flunarizine, nifedipine, cannabidiol and clozapine target the same genes as 
cinnarizine. Flunarizine (targeting CALM1, CACNA1H) showed good efficacy and tolerability for the treatment 
of schizophrenia49. Nifedipine (which targets CALM1, CACNA1H) enhanced learning and memory in schizo- 
phrenic patients with tardive dyskinesia50. Cannabidiol (which targets CACNA1H) shows beneficial effects as an 
adjunctive drug along with existing anti-psychotic medication in schizophrenia51. Risperidone (targeting DRD2) 
is used to treat schizophrenia, bipolar disorder, and irritability in autistic patients52–54. Nimodipine (CACNA1C) 
has been found effective for treating resistant bipolar mood disorder55. Nilvadipine (CACNA1C) was found 
to be effective in treatment of schizophrenia56. Clozapine (targeting HRH1) is effective in treatment-resistant 
schizophrenia57. 

Cinnarizine targets CACNA1H which is found to be overexpressed in neural progenitor cells differentiated 
for 2 days from induced pluripotent stem cells of schizophrenia patients versus healthy subjects (FC = 3.1227, 

p-value = 4.10E-20)58. Cinnarizine targets HRH1, which has been linked to schizophrenia etiology. It also targets 
CACNA1C, associated with bipolar disorder, schizophrenia and depressive disorder, and CACNA1H, associ- 
ated with epilepsy and autism. It targets DRD2, linked to bipolar disorder, schizophrenia, depressive disorder, 
Parkinson’s disease and attention deficit hyperactivity disorder. 

Cromoglicic acid. Cromoglicic acid is being tested in clinical trials for its efficacy in Alzheimer’s disease. It 

has been reported that cromoglicic acid in combination with ibuprofen reduces the levels of amyloid-beta pro- 
tein levels, a pathological biomarker in Alzheimer’s disease, and promotes a neuroprotective state by activating 
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microglia and inducing phagocytosis of amyloid-beta proteins59. Based on this work, cromoglicic acid has been 
considered for further study by our clinical collaborators and is currently in clinical trials (ClinicalTrials.gov 
Identifier: NCT03794076). 

Danazol and miconazole. Danazol and miconazole target ESR1 and NOS3, both associated with 

Alzheimer’s disease. NOS3 was also identified as a potential target for schizophrenia based on its druggability, 
membership in schizophrenia-related biological pathways and differential expression in schizophrenia60. 

Tetracycline.  Minocycline, a broad spectrum tetracycline antibiotic (where tetracycline is one of the short- 

listed drugs), has been shown to be effective as an adjunctive drug, improving the effect of antipsychotic drugs 
in schizophrenia61. Tetracycline targets PRNP, linked to depressive disorder, Huntington disease-like 1 and 
Alzheimer’s disease. The network of genes differentially expressed in tetracycline was enriched in GWAS genes  
associated with inflammatory bowel disease (Data File 3). 

In summary, clinical trial data, network-based analyses and literature review support the biological validity 
of 9 out of the 12 drugs proposed to be repurposable for schizophrenia, namely, acetazolamide, alfacalcidol, ami- 
loride, antazoline, cinnarizine, cromoglicic acid, danazol, miconazole and tetracycline. 

Discussion 
In this section, we discuss cinnarizine and alfacalcidol further due to abundant evidences in literature pointing at 
their potential utility as repurposable drugs for schizophrenia. 

Cinnarizine, an HRH1 (histamine receptor H1), DRD2 (dopamine receptor D2) and calcium channel antag- 
onist commonly used to treat motion sickness, may be re-purposed to treat symptoms of schizophrenia (see Fig. 
5)62. Histamine receptors are highly expressed in brain regions associated with the higher cognitive func- tions 
disturbed in schizophrenia63. Leu49Ser mutation in HRH1 was associated with susceptibility to schizo- 
phrenia64. Schizophrenia patients have elevated levels of n-tele-methylhistamine, a histamine metabolite, in their 
cerebrospinal fluid and reduced HRH1 binding in their frontal cortex and cingulate gyrus65. According to the 
revised dopamine hypothesis of schizophrenia, hyperactive dopamine transmission in the mesolimbic areas such 
as the ventral tegmental area and ventral striatum including nucleus accumbens contribute to disease etiology66. 
Many studies have demonstrated a crosstalk between the dopaminergic and the histamine neuron systems. 
Compounds acting at histamine receptors have been shown to modulate extracellular striatal dopamine levels67. 
Enhanced release of neuronal histamine was observed on DRD2 activation and in methamphetamine or 
phencyclidine-induced animal models of schizophrenia68,69. Histamine antagonists inhibit behavioral sensi- 
tization arising from increased levels of extracellular dopamine69–72. The fact that refractory schizophrenia may 
be treated with clozapine, an HRH1 antagonist, indicates that extra-dopaminergic systems, namely, the hista- 
mine neuron system, contribute to schizophrenia etiology57,69. Clozapine also exhibits strong affinity to dopa- 
minergic receptors and decreases hyperactivity of the mesolimbic dopaminergic pathway by blocking 5-HT2A 
(5-hydroxytryptamine receptor 2A)66. Famotidine, an HRH2 antagonist, significantly reduced psychotic symptoms 
in schizophrenia patients73. The examples of clopazine and famotidine indicate that a drug such as cinnarizine 
acting as a DRD2 and HRH1 antagonist may serve to alleviate psychotic symptoms arising from the interplay 
of dopaminergic and histamine neuron systems. Cinnarizine prevents vesicular uptake of dopamine74. It shows 
antagonistic activity at the calcium channel, CACNA1C, whose reduced levels attenuate the function of the 
mesolimbic dopaminergic pathway and impair behavioral responses to dopamine stimulants75. Calcium chan- 
nel antagonists reduce neurotransmission of dopamine76. Even though our computational analysis supports the 
repurposing of cinnarizine to treat schizophrenia symptoms, its clinical utility can only be validated after exper- 
iments in pre-clinical models such as cell lines or animal models, and in clinical trials. Being an anti-histamine, 
cinnarizine causes drowsiness and its anti-dopaminergic activity may induce Parkinsonism and depression77. 
HRH1, targeted by cinnarizine, was predicted to interact with the schizophrenia gene NAB2. NAB2 modifies the 
induction of DARPP-32, which modulates the response to dopamine in striatal neurons78. HRH1 has also been 
predicted to interact with BBS5, a ciliary protein. BBS5 interacts with DRD1 and is involved in translocating 
DRD1 out of the cilia in response to dopamine receptor agonists, thereby implicating neuronal cilia in dopamine 
signaling79. BBS5 was predicted to interact with SLC6A15, which is enriched in striatal DRD2 neurons and inhib- 
ited by loratadine, an HRH1 antagonist80,81. 

The drug alfacalcidol, an analog of vitamin D, commonly used as a vitamin D supplement, or to treat con- 
ditions involving imbalance in calcium metabolism such as hypercalcemia and imbalance in bone metabolism 
such as osteoporosis, may be potentially re-purposed to treat dopaminergic symptoms in schizophrenia, possibly 
in combination with dopamine receptor antagonists such as clozapine82,83. Deficiency of vitamin D exerting its 
effects through VDR (vitamin D receptor) has been observed in schizophrenia patients84. Dopaminergic aspects of 
schizophrenia etiology as proposed by the dopamine hypothesis of schizophrenia may, at least in part, be treated 
by vitamin D supplementation66. In a study based on 9,114 subjects from the Northern Finland 1966 birth cohort, 
vitamin D supplementation in the first year of life was associated with reduced risk of schizophrenia in males85. 
Several studies have noted an interplay between vitamin D and dopaminergic systems86. VDR is highly expressed 
in brain regions associated with schizophrenia, namely, the hippocampus, prefrontal cortex and dopaminergic 
neurons in substantia nigra of rats and humans87. During early stages of development, VDR is expressed in the 
mesencephalon precisely at the time when monoamine cells differentiate to dopaminergic cells and dopamin- 
ergic systems are innervated86. Mice pups with vitamin D deficiency have reduced levels of the enzyme COMT 
(catechol-O-methyltransferase), which converts the dopamine metabolite DOPAC (3,4-Dihydroxyphenylacetic 
acid) into HVA (homovanillic acid) and affects the dopamine turnover86. In rats with vitamin D deficiency, the 
effect of MK-801, an NMDA (N-methyl-D-aspartate) receptor antagonist which indirectly activates dopaminergic 
activity and also induces hyperlocomotion in animals, was found to be attenuated with the use of haloperidol, a 
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DRD2 (Dopamine Receptor D2) anatgonist88. In SH-SY5Y cells routinely used to model neural functions, VDR 
overexpression resulted in increased dopamine levels, overexpression of TH (tyrosine hydroxylase) which is an 
enzyme involved in the production of the precursor of dopamine called L-DOPA and overexpression of DRD2 
whose increased activity has been noted in schizophrenia models, among other regulatory effects on genes asso- 
ciated with the dopaminergic system89,90. On treatment of these SH-SY5Y cells with calcitriol, a biologically active 
form of vitamin D, increased levels of dopamine metabolites such as HVA, increased COMT levels and reduced 
DRD2 expression were observed90,91. Even though there are several studies supporting the efficacy of vitamin 
D supplementation in treating schizophrenia symptoms85,92, several groups have argued that these studies were 
irreplicable and that randomized controlled trials in larger cohorts would be necessary to ascertain its clinical 
utility, if any93. 

In this study, we shortlisted several drugs potentially repurposable for schizophrenia based on the negative 
correlation of drug-induced versus disease-associated gene expression profiles. Even though this approach has 
resulted in some valuable results in the past, it has several limitations. The gene expression profiles analyzed in 
this study were induced by drugs in cancer cell lines16, and not in cell lines relevant to schizophrenia. The biolog- 
ical validity of our study will be strengthened if we perform our analysis with gene expression profiles induced 
by drugs in neuronal cell lines such as SH-SY5Y, in patient-derived induced pluripotent stem cells or in animal 
models of schizophrenia. However it is to be noted that such data has been shown to be valuable for repurpos- 
ing drugs even for non-cancer diseases. Specific examples include repurposing of topiramate, an anti-epileptic 
drug, for inflammatory bowel disease18, repurposing of drugs for schizophrenia94 and repurposing of drugs for 
bipolar disorder95. These studies show that the drug-induced profiles generated in non-neural cells and deposited 
in CMAP are amenable to analysis involving neuropsychiatric disorders. Our future analysis will also focus on 
interrogating gene expression datasets of larger sample sizes. In summary, we showed that the drugs repurposable 
for schizophrenia may be identified from the schizophrenia drug-protein interactome based on gene expression 
profiles induced by the drug versus associated with the disease, and augmented our findings with clinical trial 
data, network-based analyses, and literature review. Through this study, we disseminate this list of drugs poten- 
tially repurposable drugs for schizophrenia to the scientific community so as to enable clinical translation of these 
results. 

Methods 
Identification of potentially repurposable drugs using BaseSpace correlation engine. In an ear- 
lier work, we constructed the protein-protein interaction network of schizophrenia genes, and then identified the 
drugs that target any of the proteins in this interactome3. Several of these drugs were known to have therapeutic 
value for nervous system, but there were several drugs that targeted other anatomical systems in the human 
body3. In this work, as a mechanism of shortlisting drugs for further analysis, we selected those that targeted more 
than two proteins in the schizophrenia interactome or those that target proteins that are also targeted by many 
drugs. While the first criterion helps in selecting drugs with the capacity to exert several pharmacological actions, 
a feature that is critical to targeting a disease as multifactorial as schizophrenia, the second criterion may point 
in the direction of highly druggable targets. For identifying repurposable drugs, it is essential that we tap into 
undiscovered regions of the PPI network. So, we also included drugs targeting novel proteins predicted to inter- 
act with known schizophrenia-associated genes96. Next step involved identifying the drugs that have opposite 
differential expression to the differential expression of schizophrenia (i.e., genes over-expressed in schizophrenia 
are under-expressed by drug treatment and vice versa). We studied each of these drugs in comparison to gene 
expression profiles of schizophrenia by using the software suite called BaseSpace (http://www.nextbio.com/b/ 
nextbio.nb). BaseSpace Correlation Engine is used to study the effect of diseases and/or drugs on publicly avail- 
able gene expression data17. Bioset 1 (‘BS1’) or a particular cell line, tissue or blood sample in which differential 
expression by drug has been studied was compared with a bioset 2 (‘BS2’), another cell line, tissue or blood sample 
in which differential expression in schizophrenia patients was studied. A correlation score is generated by the tool 
based on the strength of the overlap or enrichment, between the two biosets. Additional statistical criteria such 
as correction for multiple hypothesis testing are applied and the correlated biosets are then ranked by statistical 
significance. A numerical score of 100 is assigned to the most significant result, and the scores of the other results 
are normalized with respect to the top-ranked result. We excluded drugs with unacceptable levels of toxicity or 
undesirable pharmacokinetics. 

Network analysis using LENS.    LENS (Lens for Enrichment and Network Studies of human proteins) is a 

web-based tool which may be used to identify pathways and diseases that are significantly enriched among the 
genes submitted by users30. The LENS algorithm finds the nearest neighbor of each gene in the interactome and 
includes the intermediate interactions that connect them. LENS then computes the statistical significance of the 
overlap of genes in the network and genes with annotations pertaining to pathways, diseases, drugs and GWASs, 
and reports a p-value computed from Fisher’s exact test. 

Shortlisted drugs which are being tested in clinical trials against various neuropsychiatric disorders were 
identified from NIH Clinical Trials (https://clinicaltrials.gov/). 

Differential expression of the novel interactor VDR in whole blood obtained from schizophrenia patients was 
identified from GSE3848539, and that of CACNA1H in induced pluripotent stem cells of schizophrenia patients 
was identified from GSE9287458. 

Association of the various genes in the network of PPIs among targets of the shortlisted drugs was identified 
from DisGeNET, a database that integrates human gene-disease associations from expert curated databases and 
text-mining derived associations25. 

Drugs that targeted the same genes as the shortlisted drugs were identified from DrugBank (https://www. 
drugbank.ca/)24. 

http://www.nextbio.com/b/nextbio.nb
http://www.nextbio.com/b/nextbio.nb
https://clinicaltrials.gov/
https://www.drugbank.ca/
https://www.drugbank.ca/
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Data Availability 
Data sharing is not applicable to this article as no datasets were generated during the current study. Source of data 
that was analyzed in this study has been described in Methods and Data File 1. 
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9. Generalized and social anxiety disorder interactomes show distinctive overlaps with 

striosome and matrix interactomes 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., Satoko Amemori, N. Balakrishnan, Madhavi K. Ganapathiraju, and Ken-

ichi Amemori. Generalized and social anxiety disorder interactomes show distinctive overlaps with 

striosome and matrix interactomes. Scientific reports 11, no. 1 (2021): 1-25. 

 

Summary of this chapter 

 

In this chapter, I demonstrate the methodology to examine the unifying and differentiating biological 

themes underlying related disorders, using five anxiety disorder subtypes (generalized anxiety 

disorder, social anxiety disorder, obsessive-compulsive disorder, specific phobia, and panic 

disorder). I assembled anxiety disorder interactomes containing experimentally determined protein-

protein interactions (PPIs). I found that the genes co-occurring across these interactomes were 

enriched for expression in the striatum, suggesting a potential relationship between anxiety disorders 

and striatal gene dysfunction. The disorder interactomes were refined based on their intersection 

with two striatal compartments, striosome, and matrix. The striosome and matrix interactomes were 

constructed by mapping genes differentially expressed in these compartments in various species to 

their human orthologues. Specific anxiety disorder interactomes showed significant and distinctive 

overlaps with the striosome and matrix interactomes. Principal component and hierarchical clustering 

analyses provided insights into the aetiological differentiation of the disorders. Systematic gene 

expression analysis with the interactomes constrained to contain only those genes shared with 

striatal compartment interactomes revealed a bifurcation of the anxiety disorders. Enrichment 

patterns of the genes in specific brain regions and signalling pathways influenced this bifurcation. 

The study suggested that the functionally distinct striatal systems constituted by the striosome and 

matrix may contribute to the development of anxiety disorders. 

 

Contribution to this chapter (75%) 

 

• Designed the study and developed the methodology of the project, including interactome 

construction and all the components of comparative interactome analysis, namely, transcriptomic 

analysis, signalling pathway analysis, principal component and hierarchical clustering analysis 

• Curated all the datasets, performed all the analyses, and derived the conclusions  

• Conceptualised and wrote the manuscript and prepared all the figures, tables and supplementary 

files
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OPEN Generalized and social anxiety 
disorder interactomes show 
distinctive overlaps with striosome 
and matrix interactomes 
Kalyani B. Karunakaran1, Satoko Amemori2, N. Balakrishnan1, Madhavi K. 
Ganapathiraju3,4 & Ken‑ichi Amemori2

 

Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated 
genes. We constructed the protein–protein interaction networks (interactomes) of six anxiety disorders 
and noted enrichment for striatal expression among common genes in the interactomes. Five of these 
interactomes shared distinctive overlaps with the interactomes of genes that were differentially 
expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social 
anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome 
and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder 
interactomes constrained to contain only those genes that were shared with striatal compartment 
interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate 
cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our 
results indicate that the functionally distinct striatal pathways constituted by the striosome and the 
matrix may influence the etiological differentiation of various anxiety disorders. 
 
 

Anxiety is a mental state evoked in anticipation of a potential threat. Individuals may either exhibit acute levels of 
anxiety in response to an immediate threat or persistent levels of heightened anxiety (trait anxiety) in non- 
threatening situations as part of a ‘neurotic’ personality trait1. While both these non-pathological forms of anxiety 
may have evolved to protect the individual from potential dangers, the latter predisposes the individual to a range 
of anxiety disorders (ADs), depression, or both2. ADs, including generalized anxiety disorder (GAD), social anxiety 
disorder (SAD), specific phobia, post-traumatic stress disorder (PTSD) and obsessive–compulsive disorder (OCD), 
affect 284 million people (63% females, 2.5–7% variation by country), and are among the most prevalent mental 
health and neurodevelopmental disorders (WHO and IHME, 2017)3. About 31% of U.S. adults experience at least 
one AD during their lifetime1,4. ADs exhibit substantial familial aggregation with 30–50% heritability5,6, and about 
50% comorbidity of various AD types7. Despite the discovery of several genes associated with these disorders through 
linkage8,9 and genome-wide association studies10–14, the neurobiological implications of their genetic architectures 
remain elusive. 
Several factors may reflect the distinct etiologies of various ADs, including different diagnostic definitions, 
regionally-specific neural activity and region-specific gene expression in the brain. By definition, SAD symptoms 
are conditional and ‘externally’ provoked by exposure to social situations15. In contrast, GAD is ‘internally’ provoked 
in the absence of any apparent anxiety-inducing event15. Regionally-specific neural activity has been associated with 
these disorders. For example, pregenual anterior cingulate cortex (ACC) of GAD patients showed hyperactivity 
correlated with their treatment responses16, whereas bilateral amygdala showed hyperactivity in response to 
emotional stimuli in SAD patients17. Neural activity patterns within specific brain regions and among 
anatomically/functionally connected regions may underlie cognitive and emotional states in anxiety and  can be 
correlated with transcriptional profiles18–24. It is thus possible that psychiatric morbidities such as ADs that are 
strongly driven by specific brain regions or networks would exhibit abnormalities in region-specific 
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transcriptional signatures. Although anxiety-linked regional gene expression has been examined in post-mortem human brain tissues, blood 
samples and pharmacogenomic animal models25–29, the functional consequences of such regional specificities remain unclear. In the 
current study, we examined ADs within the mechanistic framework of the protein–protein interaction (PPI) network (or the ‘interactome’), 
which has revealed higher- order relationships in the genetic structures of complex disorders30–33. 
Protein–protein interactions (PPIs) drive the cellular machinery by facilitating a variety of biological processes, including signal 
transduction, the formation of cellular structures and enzymatic complexes. The effect of genetic mutations and abnormal gene expression 
may affect proteins and PPIs, posing deeper implications for disease development, such as multiple pathophenotypes that cannot be 
attributed to a single genotype in a disease34. Such effects can be explained through the analysis of the interactome, which allows 
examination of shared genetics, biological pathways and symptomatology30–33. 
We constructed the interactomes for six types of ADs (GAD, SAD, OCD, specific phobia, panic disorder and PTSD interactomes) using 
genes associated with each AD in biomedical literature as starting points. We identified the transcriptional profiles that characterized each of 
the anxiety disorder interactomes (ADIs) by computing the enrichment of the genes contained in these ADIs for high/moderate 
expression in specific human brain regions (Fig. 1a-c). For example, enrichment of a specific ADI for ACC-expressed genes was 
determined by comparing the distribution of ACC-expressed genes in that ADI against the background distribution of ACC-expressed 
genes among all the genes expressed in the brain. We then performed principal component and hierarchical clustering analyses to 
characterize region-wise expression patterns of ADIs and delineate AD groups (Fig. 1d). We observed that the genes that commonly co-
occur in all the ADIs were strikingly enriched for expression in the striatum. We conducted a detailed interactome-based analysis of two 
striatal subdivisions called striosomes and matrix. The striatum is the primary input of the basal ganglia and is critical to motor control 
and motivated behaviors35. The striatum itself is histologically and neurochemically segregated into the striosome (or patch) and matrix 
compartments, which have differential gene expression signatures, anatomical connections and developmental patterns36. Striosomes 
are labyrinthine structures found embedded within the extra-striosomal matrix37. Striosomes express elevated levels of the µ-opioid 
receptors (MORs) in rodents38 and Kv4 potassium channel subunit (KChIP1) in primates37, whereas matrix expresses elevated levels of 
calbindin39, somatostatin40, encephalin41 and acetylcholinesterase42. Striosomes are preferentially innervated by cortical areas implicated 
in limbic and evaluative processes such as the caudal orbitofrontal cortex (cOFC), pregenual anterior cingulate cortex (pACC)43–45 in 
primates, and prelimbic cortex (PL) in rodents46. The medium spiny neurons (MSNs) in the striosome and matrix send projections to the 
substantia nigra pars reticulata and the external and internal segments of the globus pallidus, but only striosome MSNs have projections to 
the dopamine neurons in substantia nigra pars compacta47,48. 
It is noteworthy that both the striatal subdivisions are preferentially innervated by regions that may govern various aspects of anxiety. 
Both striosomes and the matrix arise from progenitor cell populations constituting the lateral ganglionic eminence47. However, striosomal 
neurons migrate out into the striatum from the lateral ganglionic eminence earlier than the matrix47. The functions of striosomes and matrix 
are yet to be fully eluci- dated. Nevertheless, studies have implicated them in reward-guided decision making and motivational conflict 
during cost–benefit decision making44,46,49–51, and demonstrated their differential involvement in Huntington’s disease52, Parkinson’s 
disease53, motor stereotype54, and drug addiction47. Interestingly, the striosome/matrix interactomes (SMIs), assembled using genes 
differentially expressed in the striosome and the matrix, showed preferential overlap with specific ADIs. Further, the genes shared between 
specific ADIs and SMIs showed discrete expression patterns, which allowed us to cluster the various ADs. Our findings implicate striatum 
as one of the focal points of etiological differentiation of ADs by showing that region-specific expression patterns underlying these disorders 
emerge only when the ADIs are constrained to include those genes that are shared with the SMIs. 

Results 
Expression of ADI genes in brain regions. Genes associated with six types of ADs (from ref55 Fig. 1. Suggested scheme for exploring 
a suspected anxiety disorder), namely, PTSD, OCD, GAD, SAD, specific phobia and panic disorder, were extracted from DisGeNET56 

(Supplementary Table S1). Note that (a) DisGeNET cata- logs gene-disease associations described in animal models such as rats and mice, 
in addition to those described in human studies, and (b) many of the genes cataloged in DisGeNET may not share a causal relationship 
with the disease, and may instead only be associated with disease susceptibility or endophenotypes. Using RNA- sequencing data of 13 
postnatal human brain regions obtained from GTEx57, we attempted to identify whether these genes were enriched for expression in a 
specific brain region in a statistically significant manner. Genes with high/medium expression (transcripts per million (TPM) ≥ 9) in these 
13 brain regions that were not house- keeping genes (from Human Protein Atlas58) were considered. For the enrichment analysis, we 
computed the distribution of genes expressed in a specific brain region among AD-associated genes and compared it with the background 
distribution of genes expressed in this particular brain region among all the genes that were assayed for expression in any brain regions. 
Statistically significant expression in a particular brain region was computed using a hypergeometric test (see Methods). No significant 
enrichment was found for any brain regions among AD-associated genes. This led us to examine these genes from the perspective of 
anxiety disorder interactomes (ADIs). This framework allowed us to include a larger number of genes in the enrichment analysis and 
examine AD-associated regions in the context of other mechanistically linked genes. 
To assemble the network of PPIs (i.e., interactome) for each type of AD, we collected known PPIs from Human Protein Reference Database 
(HPRD)59 and the Biological General Repository for Interaction Datasets (BioGRID)60. The GAD, SAD, PTSD, specific phobia, OCD, 
and panic disorder interactomes (Supplementary Data S1) were constructed in this manner (see Methods). The ADIs showed significant 
enrichment in several of 
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Figure 1. Methodology to identify regional specificity of ADs in the brain. (a) Genes associated with six types of ADs were compiled 
(depicted as red nodes), and (b) their protein interactomes assembled by curating the interactions of the proteins encoded by them with 
other proteins (i.e. interactors depicted as cyan colored nodes in the network diagram). These protein–protein interactions or PPIs are 
depicted as edges in the network. (c) The enrichment of the individual ADIs with genes showing medium/high expression (TPM ≥ 9) in 
specific brain regions were computed, and the statistical significance of these enrichments were calculated as negative logarithm of p 
values (i.e. –log10P). TPM = transcripts per million. (d) Principal component analysis (PCA) was performed to identify specific grouping 
patterns from the data matrix of –log10P of enrichment of each ADI in specific brain regions. Principal components which explain a large 
percentage of the variance observed across this data matrix were identified, and the component loadings denoting the correlation of the 
original variables (− log10P of specific brain regions) with the principal components were examined to interpret the observed patterns. 
The data matrix was also subjected to hierarchical clustering to delineate closely related groups of ADs. In the heat map, regions were 
colored according to the z-scores indicating their mean enrichment in the ADI. The z-scores indicate the number of standard deviations 
that separate a given p value from the mean. High z-scores correspond to high enrichment for the specific region. 
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Figure 2. Principal component analysis and clustering analyses of the ADIs based on enrichment patterns in the brain failed to capture 
putative regional specificities and clusters of the ADs. (a) PCA was performed with the p values of enrichment of the ADI genes in 
13 brain regions compiled from GTEx. p values were transformed to − log10P values and a data matrix with brain regions (rows) and 
ADs (columns) (represented as a heatmap in (c)) was constructed out of these log-transformed values. Unit variance scaling was 
applied across this matrix. SVD with imputation was used to extract the principal components (PCs). Component scores (n = 6) 
corresponding to PC1 and PC2 explaining 82.6% and 14.7% of the total variance were plotted along X and Y axes respectively. (b) 
Component loadings of 13 dimensions, i.e. brain regions, contributing to PC1 and PC2 shown in (a) were plotted along X and Y axes 
respectively. Relatively equal and moderate contribution of all the brain regions, except the cerebellum and the cerebellar hemisphere, 
shows that ~ 97% of the variance captured by PC1 and PC2 plotted in (a) may not have reflected regional specificities of the ADs. 
(c) Variations in region-wise enrichment of ADI genes (computed based on GTEx data) are represented in the form of a heatmap. p values 
indicating statistical significance of enrichment were converted into − log10P values. Each cell in the heatmap depicts a normalized z-score 
derived from a − log10P value corresponding to a brain region. Z-scores indicate relative enrichment of specific brain regions in an ADI and 
are computed based on the number of standard deviations that separate a given p value from the mean. Clustering was performed using the 
hierarchical clustering method with average linkage. The dendrograms were derived from the clustering analysis based on computation of 
Pearson correlation coefficients between the data points. The region-wise enrichment profile of specific phobia seems to be distinct from 
that of OCD, GAD, panic disorder, SAD and PTSD, which were all identified to be closely related. Clusters among the latter five disorders 
were not distinctive. The clustered heatmap was created using Heatmapper (http://www.heatmapper.ca/). 

the 13 brain regions extracted from GTEx57. First, we performed enrichment analyses to determine whether genes in ADIs tend to be 

overrepresented in a specific brain region. P values indicating the statistical significance of the overlap between the interactomes and genes 
expressed in specific brain regions were computed based on the hypergeometric test (see Methods). P value < 0.05 after multiple test 
adjustments using the Benjamini–Hochberg method was considered to be significant. 
We then sought to understand whether the specific values indicating the significance of enrichment of the ADIs in the brain regions 
revealed any underlying clustering patterns in terms of regional specificities among the ADs themselves. For this, we generated a data 
matrix of ADIs (columns) versus brain regions (rows); each cell contained the negative of log-transformed p values. Single value 
decomposition (SVD) with imputation was applied to this matrix to extract principal components that explain the variance observed with 
region-wise enrichment of gene expression across the ADs. Principal component analysis (PCA) is used to capture systematic variations 
underlying datasets. Unit variance scaling was applied across the matrix. Six principal components were extracted from the matrix, out of 
which PC1 and PC2 explained 82.6% and 14.7% of the total variance (Fig. 2a). PTSD and specific phobia seemed to be separated from 
GAD, OCD, SAD and panic disorders (Fig. 2a). The latter four had low component scores, and clusters among them were not apparent 
(Fig. 2a). The log- transformed p values of enrichment in each brain region were then converted to normalized z-scores. Z-scores 
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indicate the number of standard deviations that separate a given p value from the mean. This matrix of z-scores was then subjected to 
hierarchical clustering based on Pearson’s correlation coefficients and the average linkage method (Fig. 2c). OCD, GAD, panic disorder, 
SAD and PTSD were depicted as being closely related compared with specific phobia (Fig. 2c). Two factors seemed to differentiate the 
five ADs from specific phobia: (a) their lower enrichment in the cerebellum and the spinal cord, and (b) their higher enrichment in cortical 
regions such as the frontal cortex and the ACC (compared with specific phobia). 
Next, we sought to identify specific brain regions that were relatively more influential than others in delineating the specific pattern of 
clustering observed among the ADs. To this end, we examined component loadings that have contributed to PC1 and PC2. Component 
loadings are values depicting the correlation of the original variables in our data matrix—negative log of p value of enrichment for specific 
brain regions—with each of the extracted principal components. On plotting the component loadings of the brain regions for PC1 and PC2 
across X and Y axes, we noticed that almost all of the brain regions were moderately correlated with PC1 and PC2 and contributed relatively 
equally to them (Fig. 2b). Hence, although the PC plot of ADs explained ~ 97% of the variance observed in region-wise enrichment (Fig. 
2b), it may not have captured region specificities underlying the ADs, except for the ability of cerebellar structures, spinal cord and cortical 
regions to differentiate specific phobia from OCD, GAD, panic disorder, SAD and PTSD. The same pattern of moderate correlation of most 
of the component loadings with PC1 and PC2 and their equivalent contribution to the principal components was observed with a larger set 
of 26 brain regions extracted from Allen Brain Atlas (genes that are not housekeeping genes and have logRPKM > 2, where RPKM is Reads 
Per Kilobase per Million mapped reads, were considered) (Supplementary Fig. S1). 

Potential striatal association of ADIs. We checked the overlap among the six ADIs. Thirty-six genes were found to be shared among 

all the interactomes (Supplementary Table S2). These genes were found to be enriched only in striatal genes, i.e., genes with high/medium 
expression in the caudate nucleus, putamen and the nucleus accumbens (all at p value = 0.0187) (based on data extracted from GTEx), 
suggesting a potential relationship between ADs and striatal gene dysfunction. 
Early developmental mechanisms controlled by genetic susceptibility factors and gene-environment inter- actions may modulate the 
response pattern of an individual to threat stimuli5. Genes involved in establishing neuronal connectivity in the adult brain are often 
regulated by genes that specify the neuronal identity and brain regionalization during the early stages of brain development. We reasoned 
that the striatum-enriched genes that co-occur in all the ADs could be closely connected with genes that set up the cellular and molecular 
architecture of the striatum during early developmental stages, namely, transcriptional regulators and signaling transduction molecules 
controlling neuronal development and neurotransmission61. Specifically, these genes are DLX1-6, GSX2, EBF1, ISL1, FOXP1/2, DRD1/2, 
GNAL, ADCY5, PPP1R1B, STEP and RASGRP261. We indeed observed that these genes involved in striatal development were closely 
interconnected with our striatum-enriched genes (Supplementary Fig. S2). Several anxiety-associated genes had direct interactions with 
striatal development genes, such as PRKCA with ADCY5 and DLX3, and ESR1 with ISL1 (Supplementary Fig. S2). We found this network to 
be enriched in dorsal thalamus genes (p value = 0.0143) in addition to striatal genes (p value = 0.0016) (based on data extracted from Allen 
Brain Atlas). These results imply that the striatum is critical for ADs from the perspective of their interactomes. 

Distinctive overlaps of ADIs and SMIs. Striatum is composed of two neurochemically segregated compartments called the striosomes 

and the matrix, which are characterized by their distinct gene expression profiles47. We analyzed these structures from an interactome 
perspective. We compiled the list of genes differentially expressed in the striosomes and the matrix compartments (Supplementary Table S3) 
of various species (rat, mouse, ferret, cat, monkey and human)47, and mapped them to their human orthologs. From enrichment analysis 
using Gene Ontology terms, we noted that some genes differentially expressed in the striosomes (HTR2A, HTR2C, CHRM1-5 and DRD4) 
were involved in the serotonergic signaling pathway (p value = 2.12E−10); human striosomes are known to be enriched in serotonin 
receptors62. Some genes differentially expressed in the matrix neurons (CDH8, CDK5, CNR1, HTR2A and SLC17A6) were found to be 
involved in the glutamatergic synaptic transmission (p value = 1.93E−5). We examined whether the interactome of the genes differentially 
expressed in either of these striatal compartments were significantly enriched in each of the ADIs. 
Computation of overlaps among the ADIs revealed that they themselves do not segregate into any groups (Fig. 3a). However, specific 
ADIs showed significant and distinctive overlaps (Fig. 3b and Table 1) with the striosome/matrix interactomes (SMIs) (Supplementary 
Data S2). The striosome interactome (SI) shared 28% of its constituent genes with the GAD interactome (227 genes out of a total of 810 SI 
genes) (p value = 1.31E−4) (i.e. out of the total number of 810 genes present in SI, 227 genes were also found in the GAD interactome) and 
53% (427/810) of genes with the OCD interactome (p value = 5.21E−8). These genes shared with the SI account for 38% (227/595) and 25% 
(427/1718) of the genes in the GAD and OCD interactomes, respectively. Out of the 1718 genes in the OCD interactome, 639 were not 
shared with any other ADI. 17.5% of these 639 (112/639) genes were shared with the SI (p value = 2.27E−7) (overlap between OCD and 
SI is illustrated in the form of a network diagram in Supplementary Fig. S3). Genes shared between OCD and SI showed high enrichment 
for genes associated with human motor and behavioral stereotypes (Human Phenotype Ontology63) (Supplementary Note S1). This 
observation is in line with the findings of a study that demonstrated the ability of excessive activation in the striosomes (compared with the 
matrix) to predict the degree of drug-induced motor stereotypy in rats54; both the activation ratio and drug-induced stereotypy have been 
shown to be under the regulation of cholinergic interneurons in the striatum64–66. The matrix interactome (MI) shared 14.35% (30/209) of its 
constituent genes with the SAD interactome (p value = 8.23E−3). The MI shared 23% (48/209) of its constituent genes 
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Figure 3. ADIs showed preferential and statistically significant overlaps with either SI or MI. (a) The number of proteins shared among 
ADIs is shown as a Venn diagram. (b) The number of common proteins shared between a particular ADI and SMIs assembled from the 
genes differentially expressed in striosome/matrix was computed. − log10P values derived from this analysis are shown as bars in the figure. 
Overlaps with p value < 0.05 (i.e. − log10P > 1.3) after correction for multiple hypotheses were considered to be statistically significant. *, ** 
and *** corresponds to p value < 0.05, p value < 0.01 and p value < 0.001 respectively. Four out of the 5 ADIs shown in the figure shared 
statistically significant and exclusive overlaps with either the SI (OCD and GAD) or the MI (SAD and phobia). While the panic disorder 
interactome shared statistically significant overlaps with both of the striatal compartments, the overlap shared with the MI was more 
statistically significant than that shared with the SI. From (a), it is clear that the ADIs themselves do not segregate into any groups. 
However, (b) shows that they exhibit preferential overlap with SMIs. For example, (a) shows that the OCD interactome shares 186 genes 
with the SAD interactome, whereas (b) clarifies that the OCD and SAD interactomes exhibit preferential overlaps with the striosome and 
MIs respectively. The Venn diagram tool provided as part of the Bioinformatics & Evolutionary Genomics toolkit was used to create the 
Venn diagram (http://bioinformatics. psb.ugent.be/webtools/Venn/). 
 

 

 
with the phobia interactome (p value = 0.0154). The genes shared with the MI account for 11% (30/266) and 7.5% (48/634) of the genes in the 
SAD and phobia interactomes. 32.5% (68/209, p value = 0.012) and 26% (212/810, p value = 0.025) of genes found in MI and SI respectively 
were also found in the panic disorder interactome. In addition to striatum-expressed genes, thalamus-expressed genes were enriched in the 
network of striatal developmental regulators and anxiety-associated genes (Supplementary Fig. S2). Unlike striatal sub-compartments, 
molecularly distinct subdivisions of the thalamus did not show any preferential association with any ADI (Supplementary Methods and 
Supplementary Note S2). 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Overlap between Interactomes and the P value of significance Strisome Interactome (810 genes) Matrix Interactome (209 genes) 

Generalized anxiety disorder interactome (595 genes) 227 (1.31E−04) n.s 

Obsessive compulsive disorder interactome (1718 genes) 427 (5.21E−08) n.s 

Panic disorder interactome (773 genes) 212 (0.025) 68 (0.012) 

Social anxiety disorder interactome (266 genes) n.s 30 (8.23E−03) 

Specific phobia interactome (634 genes) n.s 48 (0.0154) 

Table 1. Overlap of the anxiety disorder and striatal subcompartment interactomes. The table shows the statistics of the overlaps 
shared between the five anxiety disorder interactomes and the interactomes of the striatal subdivisions. 
 

 

 

In summary, each ADI shared a statistically significant overlap with SMIs, i.e., the GAD interactome shared an overlap with the SI, OCD with 
SI, phobia with MI and SAD with MI. Although panic disorder showed significant overlaps with SI and MI, the statistical significance of the 
overlap with MI was higher than that of the overlap with SI. These results raised the possibility that gene dysfunction occurring in striosomes 
could underlie the symptoms of GAD and OCD, whereas matrix dysfunction could underlie SAD and phobia. Hence, five groups of shared 
genes contributing to statistically significant overlaps of ADIs with SMIs (referred to as ‘AD-SMIs’ henceforth) were delineated from this 
analysis, namely, GAD-striosome, OCD-striosome, SAD-matrix, phobia-matrix and panic-matrix. We focused on these five AD-SMIs 
speculating that they would allow us to probe the etiological differentiation of these ADs in terms of their affiliation to one of the two 
striatal compartments. 

Expression of AD‑SMI genes in brain regions. Studies have noted a substantial overlap between functional connectivity and gene co-

expression patterns within and between cortical and striatal networks18–23. Functional connectivity can be defined as a temporal correlation 
between brain regions, often derived from co-activated fMRI signals at resting state67. Co-expression patterns are derived from Pearson and 
Spearman cor relations that assess the transcriptional similarity of genes. Based on this, we speculated that testing the regional expression 
patterns of AD-SMIs may reveal brain regions showing expression of these shared genes and perhaps, exhibiting functional connectivity with 
the striatal compartments and governing key anxiety traits. However, it is important to note that (a) the validity of this speculation is 
supported only for a limited number of brain networks, and (b) the degree and the nature of the interaction between transcriptional 
similarity and functional connectivity are yet to be fully elucidated23. We thus examined the expression patterns of AD-SMIs (e.g., genes 
shared between GAD interactome and SI) in the brain. 
Lists of genes expressed in 13 postnatal human brain regions were extracted from GTEx57, and their enrichment in each of the five AD-
SMIs was systematically computed using the hypergeometric test (see Methods). Multiple brain regions showed significant enrichment in 
each of these groups. Following this, we used the negative of log-transformed p values denoting the significance levels of enrichment as 
input data for PCA. Five principal components were extracted, and from this, we selected PC1 and PC2, explaining 58.6% and 27.5% of 
the variance observed with region-wise enrichment in gene expression to interpret the AD groupings. Notably, we observed that OCD, 
GAD, SAD, and panic disorder exhibited clearer patterns of clustering when the overlap with striatal compartments was taken into 
consideration (Fig. 4a) compared to when this overlap was not taken into consideration (Fig. 2a). Next, we generated a heat map of z-scores 
derived from the log-transformed p values and employed Pearson correlation and average linkage method to identify clusters of ADs. Firstly, 
we observed two main clusters (Fig. 4c): the first cluster included SAD-matrix and panic-matrix, and the second cluster included GAD-
striosome and a sub-cluster consisting of OCD-striosome and phobia-matrix. The occurrence of GAD-striosome and OCD-striosome in 
the same cluster (Fig. 4c) is supported by previous observations link- ing striatal stimulation and striatal beta oscillation to a key feature in 
OCD called cognitive inflexibility, which manifested as a repetitive pattern of a major symptom observed in GAD called pessimistic 
valuation50. Secondly, with the introduction of striatal subdivisions in our analysis with AD-SMIs (Fig. 4c), we were able to delineate the 
clustering of caudate nucleus and putamen, and nucleus accumbens and ACC, a pattern that was not clear with ADIs (Fig. 2c). This 
demonstrates the biological validity of our approach. Additionally, it is notable that the spinal cord did not influence the clustering of the AD-
SMIs (Fig. 4c). 
Further, we plotted the correlation of the component loadings with PC1 and PC2 to assess whether the observed pattern of clustering 
reflected regional specificities (Fig. 4b). It was observed that some brain regions had an uneven influence over the clustering pattern when 
overlap with striatal compartments was taken into consideration (Fig. 4b), namely, ACC, amygdala, hippocampus, nucleus accumbens, 
putamen and caudate, compared to when the striatal overlap was not taken into consideration (Fig. 2b). Heightened reactivity in the 
first three regions has been associated with clinical anxiety68. We identified two groups of brain regions that may more or less act as 
functional units to influence the etiology of these two purported ‘types’ of ADs (Fig. 4c): (1) amygdala and hippocampus and (2) ACC and 
nucleus accumbens. They are referred to here as ‘functional units’ by virtue of them being tight clusters in the dendrogram, and only in 
terms of their potential contribution towards anxiety etiology (see Supplementary Discussion). Higher enrichment of SAD-matrix and panic-
matrix in the amygdala and hippocampus may have segregated them from the cluster of GAD-striosome, OCD-striosome and phobia-matrix 
that showed lower enrichment in these same regions (Fig. 4c). Relatively higher enrichment of GAD-striosome in ACC and nucleus 
accumbens may have led to its segregation from the 
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Figure 4. Principal component analysis and clustering analyses of AD-SMIs revealed uneven influence of key brain regions linked to 
anxiety etiology and distinct AD groups. (a) PCA was performed with the p values of enrichment of genes that co-occur in specific ADIs 
and SMIs. As observed in Fig. 5, specific ADIs share discrete and distinct statistically significant overlaps with either SI or MI, namely, 
GAD and striosome, OCD and striosome, phobia and matrix, SAD and matrix, and panic disorder and matrix. The enrichment of these 

genes among those exhibiting high/medium expression in 13 brain regions (TPM > 9) compiled from GTEx was checked. The 
statistical significance of region-wise enrichment was computed as p values. These values were transformed to − log10P values, which 
were then assembled into a data matrix containing brain regions as rows and ADs as columns (represented as a heatmap in Fig. (c)). Unit 
variance scaling was applied across this matrix. Single value decomposition (SVD) with imputation was used to extract the principal 
components (PCs). Component scores of GAD-striosome, OCD-striosome, phobia-matrix, SAD-matrix and panic disorder- matrix (n = 
5) corresponding to PC1 and PC2 explaining 58.6% and 27.5% of the total variance were plotted along X and Y axes respectively. (b) 
Component loadings of 10 dimensions, i.e. brain regions, contributing to PC1 and PC2 shown in (a) were plotted along X and Y axes 
respectively. In contrast with the pattern of component loadings of brain regions observed in Fig. 2b, PCA with genes shared between 
ADIs and SMIs appears to have captured uneven influences of several brain regions such as the ACC, amygdala, hippocampus, nucleus 
accumbens, putamen and caudate on the grouping patterns of ADs. (c) Variations in region-wise enrichment of genes (computed from 
GTEx data) shared between ADIs and SMIs are represented in the form of a heatmap. Specifically, normalized z-scores computed based 
on the –log10 transformed p values, indicating the statistical significance of enrichment of GAD-striosome, OCD-striosome, phobia-
matrix, SAD-matrix and panic disorder-matrix, are shown in the figure. Z-scores indicate relative enrichment of specific brain regions 
in the gene sets and are computed based on the number of standard deviations that separate a given p value from the mean. Clustering 
was performed using the hierarchical clustering method with average linkage. The dendrograms were derived from the clustering 
analysis based on computation of Pearson correlation coefficients between the data points. Two main clusters were detected among the 
ADs. SAD and panic formed one cluster. OCD and phobia formed a sub-cluster within the second main cluster. GAD was an outgroup 
to the sub-cluster of OCD and phobia. The clustered heatmap was created using Heatmapper (http://www.heatmapper.ca/). 

sub-cluster of OCD-striosome and phobia-matrix (Fig. 4c). Based on this analysis, we constructed ‘brain maps’ for two categories of ADs, 
namely, those sharing interactome overlaps with striosome and with matrix (Fig. 5). We examined whether the AD-SMIs were enriched 
for expression in 23 postnatal human brain regions and three transitory fetal structures (lateral ganglionic eminence, medial 
ganglionic eminence and rhombic lip) available in Allen Brain Atlas69. PCA showed that the clustering among the ADs was clearer 
when overlap with the striatal compartments was taken into consideration (Fig. 6a) compared with when this overlap was not taken 
into consideration (Supplementary Fig. S1a). Despite using a more diverse and numerous dataset, hierarchical clustering revealed the 
preservation of the grouping of GAD-striosome with OCD-striosome and SAD-matrix with panic-matrix, both of which appeared as 
sub-clusters within the main cluster in this analysis; phobia was detected as an outgroup to this main cluster (Fig. 6c). Two groups of 
brain structures seemed to be highly influential in this clustering (Fig. 6c): (1) medial ganglionic eminence (MGE) and lateral 
ganglionic eminence (LGE) and (2) parietal neocortex. LGE is a source of striatal projection neurons and gives rise to both striosomes and 
matrix neurons70. MGE populates cortical layers and differentiates into interneurons71. The segregation of the sub-clusters of GAD-
striosome and OCD-striosome from SAD-matrix and panic-matrix could have stemmed from the higher enrichment of LGE and 
MGE in the former group compared with the 

http://www.heatmapper.ca/
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Figure 5. Map of focal brain regions in various ADs. The figure shows brain regions that may be linked to the etiology of two 
categories of ADs, namely, those with striosomal (green boxes) affiliation and those with matrix (red boxes) affiliation, in terms of 
interactome overlaps. The regions in the ‘brain map’ of each AD was colored according to the normalized z-score for that region 
indicating its mean enrichment in the ADI. This was computed using data from GTEx as shown in Fig. 4c. Prominent involvement of 
ACC in generalized anxiety disorder (d) and that of amygdala and hippocampus in social anxiety disorder (a) can be noted. The brain 
section image is a royalty-free stock illustration (ID: 1401181217) downloaded from Shutterstock titled ‘Human Brain Anatomy Sagittal 
Section with Labels, 3D Rendering’. 
 

 

latter group (Fig. 6c). It was interesting to note that phobia-matrix showed high enrichment for LGE and MGE similar to GAD-striosome 
and OCD-striosome (Fig. 6c), which may explain their occurrence in the same clus ter in Fig. 4c and hint at shared etiology rooted in 
perturbations of genes expressed during the early stages of striosome-matrix compartment specification. Phobia-matrix had a lower 
enrichment for parietal cortex (and CGE which clustered together) compared to GAD-striosome and OCD-striosome. GAD-striosome 
showed exclusive enrichment for ACC (Fig. 6c). Lastly, we examined the correlation of component loadings with PC1 
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Figure 6. Principal component analysis and clustering analyses of AD-SMIs based on a larger expression dataset recapitulated the AD 
groups and revealed embryonic structures potentially relevant to anxiety etiology. 
(a) PCA was performed with the p values of enrichment of genes that co-occur in specific ADIs and SMIs. The enrichment of these genes 
among those expressed across 26 brain regions compiled from Allen Brain Atlas having log(RPKM) > 2 was checked. The statistical 
significance of region-wise enrichment was computed as p values. These values were transformed to − log10P values, and then assembled into 
a data matrix containing brain regions as rows and ADs as columns (represented as a heatmap in (c)). Unit variance scaling was applied 

across this matrix. Single value decomposition (SVD) with imputation was used to extract the principal components (PCs). Component 
scores of GAD-striosome, OCD-striosome, phobia-matrix, SAD-matrix and panic disorder- matrix (n = 5) corresponding to PC1 and PC2 
explaining 84.1% and 6.6% of the total variance were plotted along X and Y axes, respectively. (b) Component loadings of 24 dimensions, 
i.e., brain regions, contributing to PC1 and PC2 shown in (a) were plotted along X and Y axes, respectively. This figure recapitulates 
findings from GTEx data (Fig. 4c) with data from Allen Brain Atlas, namely, observation of clearer grouping patterns among ADs when 
the striatal overlap is taken into consideration and uneven contribution of multiple brain regions to these patterns such as medial 
ganglionic eminence, lateral ganglionic eminence and parietal cortex. (c) Variations in region-wise enrichment of genes between ADIs 
and SMIs are represented in the form of a heatmap. Specifically, normalized z–scores computed based on the –log10 transformed p values, 
indicating the statistical significance of enrichment of GAD-striosome, OCD-striosome, phobia-matrix, SAD-matrix and panic disorder-
matrix, are shown in the figure. Z-scores indicate relative enrichment of specific brain regions in the gene sets and are computed based on 
the number of standard deviations that separate a given p value from the mean. Clustering was performed using the hierarchical clustering 
method with average linkage. The dendrograms were derived from the clustering analysis based on the computation of Pearson correlation 
coefficients between the data points. Clustering of GAD with OCD and SAD with panic disorder seen with GTEx data in Fig. 4c is 
recapitulated here. Phobia was identified as a separate cluster altogether. The clustered heatmap was created using Heatmapper 
(http://www.heatmapper.ca/). 

and PC2, which captured 90.7% of the variance observed in region-wise enrichment of gene expression. This ascertained the fact that the 
observed pattern of clustering was unevenly influenced by regional specificities that become apparent when overlap with striatal 
compartments is taken into consideration (Fig. 6b). These regional specificities were not observed when the striatal overlap was not 
considered (Supplementary Fig. S1b). From this detailed analysis, we can confirm that regional specificities underlying the various ADs 
are revealed only when discrete subnetworks of their interactomes that contain genes differentially expressed in the striosome/ matrix and 
their interactors are examined. Since functional connectivity and gene expression are correlated in the brain18–23, this raises the possibility 
that the etiology of specific ADs may be rooted in the discrete functional connections of specific striatal sub-compartments with other brain 
regions, such as the ACC and amygdala, that govern traits specific to these ADs. 

 

Signaling pathways enriched in key brain regions influential in the grouping of ADs. We isolated the gene sets that were 

responsible for the enrichment of the AD-SMIs in the four brain regions—amygdala, hippocampus, ACC and nucleus accumbens—that 
were presumably more influential than the other brain regions (Fig. 4b) in producing the grouping pattern seen in Fig. 4a,c, i.e., the genes 
that were responsible for the 

http://www.heatmapper.ca/
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Figure 7. Neuronal synaptic signaling pathways enriched among genes expressed in influential brain regions recapitulated the AD 
groups. Gene sets in GAD-striosome, OCD-striosome, phobia-matrix, SAD-matrix and panic-matrix showing moderate/high expression 
in the four key brain regions (i.e., amygdala, hippocampus, ACC and nucleus accumbens) were selected. The KEGG pathways enriched 
in them were then identified. 
(a) PCA was performed with the p values of enrichment of five neuronal synaptic signaling pathways in each of these gene sets, namely, 
cholinergic, dopaminergic, GABAergic, glutamatergic and serotonergic signaling pathways. These values were transformed to –log10P 
values and were then assembled into a data matrix containing pathways as rows and the gene sets as columns (represented as a 
heatmap in (c)). Unit variance scaling was applied across this matrix. Single value decomposition (SVD) with imputation was used to 
extract the principal components (PCs). Component scores of gene sets from GAD-striosome, OCD-striosome, 
phobia-matrix, SAD-matrix and panic disorder-matrix (n = 5) corresponding to PC1 and PC2 explaining 64.8% and 24.2% of the total 
variance were plotted along X and Y axes respectively. Genes in GAD-striosome, OCD- striosome, phobia-matrix, SAD-matrix and panic-
matrix that were involved in at least one of the five neuronal synaptic signaling pathways, and showed expression in at least one of the four 
brain regions that were influential in producing the pattern seen in Fig. 4a,c, recapitulated the AD groups seen in Fig. 4a,c. (b) 
Component loadings of 5 dimensions, i.e. signaling pathways, contributing to PC1 and PC2 shown in (a) were plotted along X and Y axes 
respectively. The loading value of the dopaminergic signaling pathway indicated that it had high influence over the observed grouping 
pattern. GABAergic and glutamatergic signaling pathways seemed to 
have a moderate influence. (c) Pathway enrichment of these gene sets are represented in the form of a heatmap. Specifically, normalized z-
scores computed based on the –log10 transformed p values, indicating the statistical significance of pathway enrichment of these gene sets, 
are shown in the figure. The dendrograms were derived from hierarchical clustering analysis based on the computation of Pearson 
correlation coefficients between the data points. The clustered heatmap was created using Heatmapper (http://www.heatmapper.ca/). 
 

p values of enrichment used for generating Fig. 4a and Fig. 4c. For example, the gene set for GAD-striosome contained the genes shared 
between GAD-striosome and the four brain regions, i.e., the genes which co-occurred in GAD interactome and SI, and showed expression 
in at least one of the four brain regions. For a particular AD-SMI, the same set of genes was found to be expressed across the four brain 
regions, which led us to consider them together in the corresponding gene set. The signaling pathways (KEGG72) that were significantly 
enriched (p value after multiple test adjustment < 0.05) in each of these gene sets were identified using WebGestalt73. A data matrix of the 
enriched pathways (rows) and disorder-striatal compartment combinations (columns) was created; each cell contained −log10P of 
enrichment of each pathway. Firstly, on PCA and clustering analysis of this matrix, we observed that five neuronal synaptic signaling 
pathways, namely, the cholinergic, dopaminergic, GABAergic, glutamatergic and serotonergic signaling pathways, could produce a 
grouping pattern (Fig. 7a, c) similar to that shown in Fig. 4a and Fig. 4c. Out of these, the dopaminergic signaling pathway had a very high 
influence on the grouping pattern, and the GABAergic and glutamatergic signaling pathways had a moderate influence (Fig. 7b). Based 
on this, we speculated that the conservative set of genes co-occurring in each of the AD-SMIs and expressed in the four connected limbic 
structures are those that influence dopamine signaling. Secondly, we noted that when all the enriched pathways were considered, phobia-
matrix clustered alongside SAD-matrix and panic-matrix (Supplementary Fig. S4), and not with GAD-striosome and OCD-striosome. 
Collectively, the gene sets that were examined, as discussed above, contained 84 genes (Fig. 8). Out of these, 12 were known to be associated 
with ADs (CDH2, DLG4, DRD1, GRIK2, MAPT and NTRK2 associated with OCD, NTRK3 with OCD and panic disorder, ADORA2A 
with panic disorder and specific phobia, GAD1 with GAD and panic disorder, NPY with GAD, panic disorder and specific phobia, GAD2 
with GAD, OCD and panic disorder, and DRD2 with GAD, OCD, SAD and specific phobia). These genes were used as starting points for 
interactome construction in our study. The rest of the 72 genes, including three genes that were differentially 

http://www.heatmapper.ca/
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Figure 8. Network layout of the genes expressed in the influential brain regions in the AD-SMIs. The network diagrams show the genes 
having moderate/high expression in the four brain regions that were highly influential in identifying the disorder groups shown in Fig. 4c, 
namely, amygdala, hippocampus, ACC and nucleus accumbens. These genes have been highlighted in (a) OCD interactome, (b) GAD 
interactome, (c) phobia interactome, (d) panic disorder interactome and (e) SAD interactome. In each of the network diagrams, green 
colored nodes depict genes associated with the particular AD. Red colored nodes indicate genes differentially expressed in 
striosomes/matrix that shows interactome overlap with the given AD; (a) OCD and (b) GAD shows interactome overlap with striosome, 
whereas (c) phobia, (d) panic disorder and (e) SAD show overlap with matrix. Orange colored nodes indicate genes that are associated 
with the particular AD as well as differentially expressed in the striatal compartment. Black colored nodes are intermediary genes 
interconnecting the AD genes. The majority of the red and black colored nodes shown in the diagrams, i.e. genes that are yet to be studied 
in the context of human ADs, have already been linked to anxiety-like/repetitive/perturbed social behavior in animal models and 
humans (see Table 2). The validity of these genes as candidates for further investigation of anxiety mechanisms is supported by this 
evidence and their proximity in the interactome to genes that have been previously associated with human ADs (i.e., green colored 
nodes). The network diagrams were created using Cytoscape (version 3.7.2). 
 

 

expressed in striosomes/matrix (GRIA2, HTR2C and PCDH10)47, have not been studied so far in the context of human ADs. However, 
59 (82%) of these genes have already been linked to anxiety-like/linked behavior/ physiological states, repetitive behavior or perturbed 
social behavior through gene knockout, differential gene expression/methylation studies in animal models and genetic variant studies in 
humans (see evidence from 
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each of these studies in Table 2). This demonstrates the validity of our interactome-based method due to two reasons: we (a) identified 
other genes that were previously studied in animal models of anxiety using an unbiased approach from the ADIs, and (b) showed that they 
were closely connected to the genes associated with human ADs, thereby providing a mechanistic framework to study these putative anxiety-
associated genes in the future. 

Discussion 
Neuroimaging, neurochemical and gene-based approaches have provided valuable insights on neurobiological and genetic themes 
underlying AD etiology9,103–105. Regional neural activity has been correlated with anxiety traits such as pessimistic valuation and negative 
affectivity associated with facial expression16,17. Since resting- state functional connectivity in the brain shares substantial overlap with 
correlated regional gene expression patterns18–23, perturbed region-specific transcriptional signatures could underlie cognitive and 
emotional states in anxiety24. In order to capture the complexity of neuropsychiatric phenotypes, such transcriptional signatures need to be 
examined within an interactomic framework, in which the effect of a perturbed gene spreads in the protein interactome and affects other 
proteins and the biological processes mediated by them. We thus reasoned that perturbations in region-specific transcriptional profiles may 
be reflected in the interactome and could underlie region-specific activity in ADs. Several studies have identified higher-order biological 
relationships existing among genes from the functional landscape of the interactome30–33. In this study, we adopted a data- driven 
interactome and transcriptome-based approach to elucidate common and distinctive neurobiological themes underlying six types of ADs. 
Clustering of ADIs based on the region-specific expression of their constituent genes failed to reveal any clustering among OCD, GAD, 
SAD and panic disorder. Moreover, analysis of component loadings correlated with PC1 and PC2 revealed that this approach failed to 
capture regional specificities underlying the ADs (Fig. 2b and Supplementary Fig. S1b). Therefore, contrary to our speculation, the 
clustering of ADs was not directly evident at the level of their interactomes (Fig. 2c). It was evident only after filtering out genes that 
showed no overlap with the interactomes of genes specifically expressed in striatal compartments called the striosome and the matrix (Figs. 
4c, 6c) and retaining only those genes that did show an overlap (Fig. 3). 
In our study, striatum-expressed genes, which are closely connected to modulators of striatal development, were found to co-occur in all 
the ADIs (Supplementary Fig. S2). Genes active in the serotonergic synapse (KEGG72) were enriched (p value = 1.75E−07) among these 36 
genes, namely, APP, GNAI2, GNAI3, GNB5, KCNJ9, MAPK1, MAPK3, PRKCA and SLC6A4 (serotonin transporter). The fact that selective 
serotonin reup- take inhibitors (SSRIs) function as broad-spectrum drugs across ADs (and the highly co-morbid major depressive disorder)106, 
led us to prioritize striatum as a focal region, with potential involvement in neurodevelopmental underpinnings of AD1. Two factors seemed 
to support this suspicion: striatum is (a) anatomically and function- ally connected to brain regions that have been extensively studied in the 
context of anxiety, such as the amygdala, hippocampus and the prefrontal cortex107, and (b) involved in key cognitive processes impaired in 
ADs, such as attention, motivation, fear conditioning and reward prediction error107. The main finding in this direction was that each of 
the ADIs, except the PTSD interactome, shared a preferential and statistically significant overlap with the striosome/matrix interactomes 
(i.e., SMIs) (Fig. 3). 
We then attempted to cluster the ADs based on the region-specific expression of genes overlapping between the ADIs and the SMIs (i.e., 
AD-SMIs). This revealed clearer clustering patterns among the disorders (Fig. 4c and Fig. 6c), which seemed to be influenced by regional 
specificities, with some brain regions showing a strong correlation with PC1 and PC2 (Fig. 4b and Fig. 6b). The enrichment patterns of AD-
SMIs in specific brain regions may reflect the related brain circuitry, which produces heightened responses to triggers and sequentially 
generates anxiety (see Supplementary Discussion)108. The same set of genes contributed towards the enrichment of each of the AD-SMIs 
across the four regions that were highly influential in AD-SMI clustering, namely, amygdala, hippocampus, ACC and nucleus accumbens. 
This may reflect the concerted roles (a) of these regions in the limbic circuit or (b) of neuronal synaptic signaling pathways across these 
regions (Fig. 7). Another reason could be the inclusion of any gene with high/moderate rather than tissue-specific expression in the 
expression profile of each region (see Supplementary Discussion). 
Our results point to a scenario wherein the functionally distinct striatal pathways constituted by the striosome and the matrix, act as ‘diverging 
points’ for the etiological differentiation of various ADs. Genetic perturbations associated with a specific AD may (a) modulate the 
interactome in one of the two compartments or even their progenitor populations, such as LGE (Fig. 6c), (b) influence their functional 
connectivity with other regions and (c) govern the ‘route’ of development of key anxiety traits. GAD- and OCD-associated traits generated 
in this manner may include internally generated ruminations (involving the phenomenon of interoceptive awareness109), cognitive rigidity50 

and pessimistic valuation44,49, controlled by ACC, which targets the striosome compartment44. SAD-associated traits may include heightened 
emotional responses to neutral stimuli and excessive emotional contextualization during social information processing, controlled by the 
amygdala that collates information from the sensorimotor cortices110, which in turn targets the matrix compartment. The behavioral traits 
characteriizing striosome- and matrix-associated ADs could also arise from differential responses of these striatal compartments to 
reinforcement contingencies111 and differential involvement in resolving motivational conflicts112. Both these paradigms are intricately tied 
to anxiety etiology and influenced by dopamine circuits. We noted that the dopaminergic signaling pathway may be highly influential (Fig. 
7b) in producing the AD-SMI clustering seen in Fig. 4a,c. Therefore, it is possible that the bifurcation in ADs may stem from differential 
dopamine dynamics, namely, differential electrically evoked dopamine release113, dopamine levels114, dopaminergic innervation114 and 
modulation of state transitions in the striatal compartments115, and the preferential striosomal projection to dopaminergic neurons in 
substantia nigra pars compacta116. GABAergic and glutamatergic signaling were noted to be moderately influential in AD-SMI clustering 
(Fig. 7b). The role of our three key neuronal synaptic 



 

244  

 
 

Gene GAD- 
striosome 

OCD- 
striosome 

Phobia- 
matrix 

Panic- 
matrix 

SAD- 
matrix 

Evidence 

ADORA2A      AD-associated gene from DisGeNET 

CDH2      AD-associated gene from DisGeNET 

DLG4      AD-associated gene from DisGeNET 

DRD1      AD-associated gene from DisGeNET 

DRD2      AD-associated gene from DisGeNET 

GAD1      AD-associated gene from DisGeNET 

GAD2      AD-associated gene from DisGeNET 

GRIK2      AD-associated gene from DisGeNET 

MAPT      AD-associated gene from DisGeNET 

NPY      AD-associated gene from DisGeNET 

NTRK2      AD-associated gene from DisGeNET 

NTRK3      AD-associated gene from DisGeNET 

ACTN2      Differential gene expression (fold change = 1.5, p 
value = 0.005) in the amygdala of restrained 
C57BL/6J mice versus the amygdala of non- 
restrained C57BL/6J mice assessed by dark/light 
exploration test and elevated plus maze.74 

Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

ADORA1      Increased occurrence of the GG genotype of the 
ADORA1 rs2228079 polymorphism in Gilles de la 
Tourette syndrome patients having obsessive 
compulsive disorder/behavior (p value = 0.021) 
and depression (p value = 0.032) as co- 

morbidities.76 Differential expression in the 
prefrontal cortex (dorsolateral) of obsessive- 
compulsive disorder patients versus healthy 
controls.75

 

ANKS1B      Differential hydroxymethylation and correlated 
gene expression in mice region in mice exposed to 
early life stress with later anxiety behaviors.77 

Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

Continued  
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AP2A2      Differential methylation in prenatally stressed 
young bull calves compared with control bull 

calves.78 Differential expression in the prefrontal 
cortex (dorsolateral) of obsessive-compulsive 
disorder patients versus healthy controls.75

 

APC      APC knockout mice exhibited repetitive behaviors, 
reduced social interest (autistic traits), learning and 
memory deficits compared with wild type 
littermates.79

 

BCAR1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

CABP1      CABP1 knockout mice tested for hippocampal- 
dependent spatial and fear-related memories 
exhibited a mild anxiety phenotype as assessed by the 
open-field test.80 Differential expression in the 
prefrontal cortex (dorsolateral) of obsessive- 
compulsive disorder patients versus healthy 
controls.75

 

CALY      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

CBS      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

CCND1      Differential expression in the prefrontal cortex 

(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

CDC25B      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

CMTM5      Differential gene expression after stress exposure in 
healthy adults with a reported history of childhood 
adversity compared with a matched control group 
without adverse childhood experiences.81

 

CRMP1      CRMP1 knockout mice tested for development of 

schizophrenia symptoms exhibited anxiety- related 
behavior as assessed by the elevated plus maze 
test.82 Differential expression in the prefrontal 
cortex (dorsolateral) of obsessive- compulsive 
disorder patients versus healthy controls.75

 

CSF1R      Male mice models of adult-onset leukodystrophy 
with axonal spheroids and pigmented glia (ALSP) 
with heterozygous mutation in CSF1R exhibit 
depression and anxiety-like behaviour.83

 

Continued  
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DDR1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 

patients versus healthy controls.75
 

DOK5      Differentially regulated in the blood, hemibrain and 
spleen of mice subjected to a social-stress model of 
PTSD.84 Differential expression in the prefrontal 
cortex (dorsolateral) of obsessive- compulsive 
disorder patients versus healthy controls.75

 

EFNB2      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

EPB41L1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 

patients versus healthy controls.75
 

FEZ1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

GABRA1      Increased anxiety in a mouse model of Wolfram 
syndrome has been linked to reduced expression of 
GABRA1 in the frontal cortex and temporal lobe.85

 

GNAI3      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

GNAO1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

GPRASP1      Differential gene expression (fold change = − 1.6, p 
value = 0.006) in the amygdala of restrained 
C57BL/6J mice versus the amygdala of non- 
restrained C57BL/6J mice assessed by dark/light 

exploration test and elevated plus maze.74 

GPRASP2      Mice with GPRASP2 deletion displayed behaviour 
relevant to autism spectrum disorder in three-
chamber social arena test, social dyadic test, tube test 
for social dominance, perturbed innate social 

behaviour in nest building test and increased 
stereotypical behaviour.86

 

GRIA1      Mice with deleted GRIA1 show a distinct anxiety 
phenotype in elevated O-maze and dark–light box 
tests.87 Differential expression in the prefrontal 
cortex (dorsolateral) of obsessive-compulsive 
disorder patients versus healthy controls.75

 

Continued  
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GRIN1      Mice with non-synonymous mutation in GRIN1 
showed abnormal social interactions and abnormal 

anxiety-like behaviors in light/dark transition and 
the elevated plus maze tests.88 Differential 
expression in the prefrontal cortex (dorsolateral) of 
obsessive-compulsive disorder patients versus 
healthy controls.75

 

HOMER1      Mice with overexpressed HOMER1A in the basal 
and lateral amygdala exhibit impaired fear 
conditioning and autism-like social impairment.89

 

HRH3      Mice with deleted HRH3 exhibited reduced anxiety 
in the elevated plus and zero mazes involving 
exploratory behaviour and avoidable anxiety-
provoking stimuli, and enhanced acoustic startle 
responses in the presence of unavoidable anxiety-

provoking       stimuli.90 Differential 
expression in the prefrontal cortex (dorsolateral) of 
obsessive-compulsive disorder patients versus 
healthy controls.75

 

HSPA1A      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

HTR2C      HTR2C knockout mice exhibited reduced anxiety-
like behavior in elevated zero maze and open field 
tests.91

 

IKBKB      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

KCNF1      Differential gene expression in the ventromedial 
prefrontal cortex (fold change = 1.4, p value = 
0.004), amygdala (fold change = 1.8, p value = 
0.007) and hippocampus (fold change = 2, p value 
= 0.008) of restrained C57BL/6J mice versus the 
amygdala of non-restrained C57BL/6J mice 
assessed by dark/light exploration test and elevated 
plus maze.74

 

LRP8      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

MAP1A      Sex-dependent differential regulation of MAP1A 
expression in male mice upon prenatal exposure to 
stress suspected to be associated with anxiety- like 
behaviors.92 Differential expression in the 
prefrontal cortex (dorsolateral) of obsessive- 
compulsive disorder patients versus healthy 
controls.75

 

MAP3K10      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75
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MAPK10      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 

patients versus healthy controls.75
 

MAPK11      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

MARK1      Autism spectrum disorder associated genetic 
variants; MARK1 overexpression in the prefrontal 
cortex of postmortem brain samples of autistic 
patients.73 Differential gene expression in the 
ventromedial prefrontal cortex (fold change = 1.3, p 
value = 0.005) of restrained C57BL/6J mice versus 
the amygdala of non-restrained C57BL/6J mice 
assessed by dark/light exploration test and elevated 
plus maze.74 Differential expression in the 

prefrontal cortex (dorsolateral) of obsessive- 
compulsive disorder patients versus healthy 
controls.75

 

MAST1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

MPDZ      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

NCAM1      Mice with homozygous (NCAM−/−) and 
heterozygous (NCAM+/−) mutations in NCAM 
exhibited anxiety-like behavior in a light/dark 

avoidance test.94
 

NLGN3      Male mice lacking NLGN3 were socially 
submissive to their wild-type littermates; this social 
submission correlated with increased anxiety in 
these mice.95 Differential expression in the 
prefrontal cortex (dorsolateral) of obsessive- 
compulsive disorder patients versus healthy 
controls.75

 

NLRP1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

NTM      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

NYAP1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

PACSIN1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

PCDH10      Mice lacking a copy of PCDH10 (Pcdh10+/−) 
exhibited reduced social approach behavior, but no 
anxiety-like or repetitive behaviors.96
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PRKCA      Genetic variant mapped to PRKCA rs4790904 was 
found to be significantly associated with PTSD.97 

Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

PRKCD      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

PRKCE      Mice with deleted PRKCE showed reduced 

anxiety-like behaviour.98
 

PRKCG      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

RXRA      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

SHC2      Differentially regulated in the blood, hemibrain and 
spleen of mice subjected to a social-stress model of 
PTSD.84 Differential expression in the prefrontal 
cortex (dorsolateral) of obsessive- compulsive 
disorder patients versus healthy controls.75

 

SNCA      mRNA and protein abundance levels of SNCA 
were twice as high in the hippocampus of the 
anxious LEW (Lewy) rats when compared to SHR 
(spontaneously hypertensive) rats; anxiety was 

measured using open field, light/dark box and 
elevated plus maze tests.99 44% increase in protein 
abundance levels of SNCA was noted in the 
striatum of anxious LEW rats.99

 

SPP1      Differential expression in mice that underwent 
social stress for 13 days.100

 

SRA1      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 
patients versus healthy controls.75

 

SRC      Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive-compulsive disorder 

patients versus healthy controls.75
 

STX1A      STX1A mRNA expression was significantly higher 
in the lymphocytes of drug-naive high functioning 
autism patients compared with controls.101 

Differential expression in the prefrontal cortex 
(dorsolateral) of obsessive- compulsive disorder 
patients versus healthy controls.75

 

TMEM159      Genetic variants in TMEM159 linked to brain 
arousal in the resting state.102

 

Table 2. Genes present in AD-SMIs that were expressed in the four key brain regions influential in producing the grouping pattern of 
ADs (shown in Fig. 4a,c). A colored cell indicates the presence of the particular gene in the corresponding AD-SMI. The final column 
presents the literature evidence supporting the potential role of the given genes in anxiety etiology. 
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signaling pathways is well-supported in anxiety studies (see Supplementary Discussion). Further investigations are necessary to delineate 
their roles in the association between ADs and the striatal compartments. 
Our speculation on the potential effects of genetic perturbations on AD etiology is valid when they are examined as neurodevelopmental 
disorders, i.e., under the assumption that ADs develop when genetic risk factors affect the formation of neural circuits that mediate anxiety 
and subsequently modulate their responsiveness to anxiety-inducing events117. However, a converse scenario is also conceivable, wherein 
anxious behavior and adverse events alter gene expression via epigenetic mechanisms and modulate the neural circuits and susceptibility to 
ADs (e.g., the genes NR3C1118 and FKBP5119 undergo stress-induced epigenetic alterations)120. Hence, it is important to note that our results 
do not illustrate any cause-and-effect relationships among genetic perturbations, disrupted neural circuits/signaling pathways and ADs. 
The PTSD interactome was excluded from our analysis as it did not show any distinctive overlap with either the striosome or matrix 
interactomes. However, we noted that its mechanism could be mostly, if not entirely, different from the other ADs. Corroborating previous 
studies121, the PTSD interactome showed the highest enrichment for the hippocampus followed by the striatum, substantia nigra and 
amygdala, a pattern that was not shown by any other AD (Fig. 2c). This may justify its placement in a separate group (trauma and stress-
related disorders) in DSM-5, unlike the case of OCD, which has been placed in a separate group (OCD and related disorders) despite its 
etiology being very closely related to the other ADs. 
Specific phobia clustered independently from GAD, SAD, OCD, panic disorder and PTSD in the analysis with ADIs, which was performed 
without taking the striatal subdivisions into consideration (Fig. 2c). Lower enrichment of cortical regions, including the frontal cortex and 
ACC, and higher enrichment for the spinal cord and the cerebellum could differentiate specific phobia from the rest of the ADs. However, 
ADI clustering with the inclusion of the striosome-matrix division led to its grouping with OCD, characterized by lower enrichment for the 
amygdala and hippocampus compared with SAD and panic disorder (Fig. 4c). Analysis with a dataset containing a larger number of regions 
again isolated specific phobia from the rest of the ADs (Fig. 6c). This isolation was characterized by a high enrichment of three transitory 
fetal structures—LGE, MGE and upper rhombic lip—and the cerebellum and the striatum, compared with the rest of the ADs. Together, 
these results seem to indicate (a) the etiological distinction of specific phobia from the other ADs, possibly driven by the spinal cord and 
the cerebellum, and (b) a possible association with GAD and OCD during the early stages of striosome- matrix specification, as indicated 
by its affiliation to LGE, a focal region in this process. 
We used an interactome-driven model to examine the interrelatedness of ADs, using AD-associated genes as starting points. Our study (a) 
demonstrates the validity of the protein interactome as a data integration platform, (b) provides evidence supporting the role of the striatum 
in AD etiology and (c) proposes striosome- matrix specification as a key process with the potential to explain the neurodevelopmental 
origins of ADs. However, our study has several limitations, and our results should be interpreted with caution. Firstly, we used cross-
species data (in addition to human data) as starting points for the construction of ADIs and SMIs (after mapping it to orthologous human 
data). This cross-species approach is necessary to connect research in animal models to human ADs and gather a systems-level view of the 
multiple biological levels that affect AD etiology (gene, local and global neuronal circuitry and behavior). Nevertheless, it is not advisable 
to draw direct transcriptomic/proteomic/phenotypic equivalences between humans and animal models unless the biological levels are 
comprehensively characterized in all the species, and a clear equivalence of factors defining a condition such as ‘anxious behavior’ is 
demonstrated in both the species122. Secondly, the reliability of our ADIs could be limited by the variability in differential AD diagnosis 
across a large number of studies (compiled by DisGeNET) from which the AD-associated genes were extracted. Challenges to the differential 
diagnosis of ADs include the high comorbidity of ADs, their comorbidity with other psychiatric disorders such as major depressive disorder, 
bipolar disorder and schizophrenia, and their occurrence with a range of other conditions such as substance use disorders, asthma, thyroid 
disease and complex partial seizures120. Thirdly, our ADIs are static networks, which do not incorporate data at various levels of granularity 
(cell, tissue and organism) or spatiotemporal points. Therefore at this stage, the interactome model will not be able to account for the 
complex and dynamic events that influence AD development, ranging from genetic mutations and PPI perturbations to gene-environment 
interactions, and the varying developmental trajectories of anxiety symptoms. Lastly, further investigations are necessary to characterize 
anxiety as an emergent property driven by specific neural circuits or neural mass effects. Our study proposes striatum and its subdivisions 
as one of the several candidate regions that may be prioritized for anxiety research. 
In summary, our study reveals distinctive interactome overlaps shared between different ADs and striatal compartments and a bifurcation 
among ADs that are influenced by key anxiety-associated regions and neuronal signaling pathways. Our study proposes striatum as one of 
the focal regions for future AD research. 

Methods 
Compilation of genes associated with ADs. Genes associated with six types of ADs (from ref55 Fig. 1. Suggested scheme for 
exploring a suspected anxiety disorder), namely, post-traumatic stress disorder (PTSD), obsessive–compulsive disorder (OCD), generalized 
anxiety disorder (GAD), social anxiety disorder (SAD), spe cific phobia and panic disorder were extracted from DisGeNET56. A gene-disease 
association score ≥ 0.01 was chosen to ensure that at least one publication has linked the gene in question with the disease. Note that ‘associa- 
tion’ of a gene with an AD here does not imply ‘causality’ in most cases, and may only indicate an association with disease susceptibility 
or behavioral endophenotypes of diseases. We compiled a list of 33 genes for GAD, 109 genes for PTSD including chronic PTSD, 134 
genes for OCD including obsessions, OCD behaviour, OCD trait and OCD personality, 22 genes for SAD, 22 genes for specific phobia 
including claustrophobia and toco- phobia, and 93 genes for panic disorder including panic disorder with agoraphobia (Supplementary 
Table S1). 
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Construction of interactomes. Protein–protein interactions (PPIs) in the human interactome were compiled from Human Protein 

Reference Database (HPRD)59 and the Biological General Repository for Inter- action Datasets (BioGRID)60 using the Cytoscape plugin, 
Bisogenet123. The network building options were: organism—Homo sapiens, biorelation type—protein–protein interaction, data sources—
BioGRID and HPRD, method—input nodes and its neighbors upto a distance of 1. The extracted interactomes included direct interac tors of 
genes associated with the specific AD and intermediate interactors connecting AD-associated genes. This resulted in the GAD interactome 
with 595 genes and 3517 PPIs, SAD interactome with 266 genes and 887 PPIs, PTSD interactome with 2119 genes and 19,687 PPIs, specific 
phobia interactome with 634 genes and 4799 PPIs, OCD interactome with 1718 genes and 15,359 PPIs and panic disorder interactome with 
773 genes and 4261 PPIs (Supplementary Data S1). The interactomes were visualized using Cytoscape124. 

 

Construction of striosome and matrix interactomes. Genes differentially expressed in striosome and matrix compartments of the 

striatum were compiled from Table 1 of Graybiel et al.47 In cases where the genes were from other species, the corresponding human genes 
were retrieved from the Homologene database (https:// www.ncbi.nlm.nih.gov/homologene), these genes were mapped to their human 
homologs (taxon id: 9606). This yielded 49 and 19 striosome and matrix genes, respectively (Supplementary Table S3). The striosome and 
matrix interactomes with 827 genes and 6274 PPIs, and 213 genes and 779 PPIs respectively were then assembled from the human 
interactome (Supplementary Data S2), as explained before in the case of ADIs. 

 

Gene expression enrichment in brain regions. We checked the enrichment of AD-SMI genes among genes expressed in specific 

brain regions. RNA-Seq data from the brains of adult donors was extracted from GTEx57. Genes with high or medium expression 
(transcripts per million (TPM) ≥ 9) in 13 brain regions were included, provided that they were not housekeeping genes, i.e. genes detected 
in all the tissues with transcripts per million ≥ 1, as identified in the Human Protein Atlas58. TPM is a metric for quantifying gene expression; 
it directly measures the relative abundance of transcripts. 9638 genes were considered as housekeeping genes. A gene matrix transpose 
(GMT) file was created with amygdala (1953 genes), ACC-BA24 (2269 genes), caudate nucleus (2229 genes), cerebellar hemisphere (3978 
genes), cerebellum (3968 genes), cortex (2706 genes), frontal cortex-BA9 (2872 genes), hippocampus (1949 genes), hypothalamus (2374 
genes), nucleus accumbens (2464 genes), putamen (1892 genes), spinal cord-cervical c-1 (2408 genes) and substantia nigra (1949 genes). 
For an independent analysis, a GMT file with genes having log(Reads Per Kilobase per Million mapped reads) > 2 in 26 brain regions, 
that are not housekeeping genes, were compiled from Allen Brain Atlas69. This included amygdaloid complex (4278 genes), anterior 
(rostral) cingulate (medial prefrontal) cortex (7022 genes), caudal ganglionic eminence (4303 genes), cerebellar cortex (4580 genes), 
cerebellum (4563 genes), dorsal thalamus (4271 genes), dorsolateral prefrontal cortex (4570 genes), hippocampus (hippocampal formation) 
(4713 genes), inferolateral temporal cortex -area TEv, area 20 (7436 genes), lateral ganglionic eminence (4448 genes), medial ganglionic 
eminence (4395 genes), mediodorsal nucleus of thalamus (4503 genes), occipital neocortex (4457 genes), orbital frontal cortex (4617 
genes), parietal neocortex (4443 genes), posterior (caudal) superior temporal cortex-area 22c (4558 genes), posteroventral (inferior) 
parietal cortex (4475 genes), primary auditory cortex (core) (4540 genes), primary motor cortex-area M1, area 4 (4545 genes), primary 
motor-sensory cortex (4488 genes), primary somatosensory cortex-area S1, areas 3,1,2 (4520 genes), primary visual cortex-striate cor- tex, 
area V1/17 (4528 genes), striatum (4628 genes), temporal neocortex (4384 genes), upper (rostral) rhombic lip (4480 genes) and ventrolateral 
prefrontal cortex (4575 genes). 
The GMT files served as inputs for a gene over-representation analysis (GSEA) based on the hypergeometric distribution. In this method, 
the p value is computed from the probability of k successes in n draws (without replacement) from a finite population of size N containing 
exactly k objects with an interesting feature. 

 
 𝑃 (𝑋 = 𝑘) =
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𝑘

)(𝑁−𝐾
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)

(𝑁
𝑛

)
 

N = Total number of genes expressed in any brain regions. K = number of genes expressed in a particular brain region. n = number of genes 
co-occurring in an ADI and SMIs. k = number of common genes between K and n (genes co-occurring in an ADI and SMIs, that are also 
expressed in a particular brain region). Enrichment ratio is computed as the ratio of k/n and K/N. 

 

Signaling pathway enrichment in brain regions. WebGestalt was used to compute the distribution of genes involved in a specific 

signaling pathway in the gene sets that were responsible for the enrichment of the AD-SMIs in highly influential brain regions, and 
compare it with the background distribution of genes belonging to this pathway among all the genes associated with any pathway in the 
selected database (KEGG72)73. Statistical significance of the enrichment was computed using Fisher’s exact test, and corrected using the 
Benja- mini–Hochberg method for multiple test adjustment. 

 

Principal component analysis. Principal component analysis (PCA) was used to capture relationships between the ADIs, and between 

AD-SMIs. Negative log-transformed p values indicating the statistical significance of enrichment of various brain regions in ADIs/AD-
SMIs were assembled into a data matrix containing brain regions as rows and ADs as columns; each cell in the matrix contained a −log10P 
value. PCA was per- formed with a web-based tool called ClustVis (https://biit.cs.ut.ee/clustvis/)125. The data matrix was pre-pro- 

https://www.ncbi.nlm.nih.gov/homologene
https://www.ncbi.nlm.nih.gov/homologene
https://biit.cs.ut.ee/clustvis/)
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cessed to include only those rows and columns that contained less than 70% missing values. The –log10P values in the matrix were further 
centered using the unit variance scaling method, in which the values are divided by standard deviation so that each row or column has a 
variance of one; this ensures that they assume equal importance while finding the components. The method called singular value 
decomposition (SVD) with imputation was used to extract principal components. In this method, missing values are predicted and 
iteratively filled using neighbouring values during SVD computation, until the estimates of missing values converge. The number of principal 
components computed was equal to the number of column dimensions in the data matrix, i.e. the number of ADIs or gene sets shared 
between ADIs and SMIs, in our case. PCA essentially transformed our original variables (–log10P) into uncorrelated variables called 
principal components. These principal components were ranked in the descending order of the percentage of total variance explained by 
them. We extracted the first two components, i.e. PC1 and PC2, and plotted the component scores of each tissue on a 2D plane to capture the 
angle of most variability and delineate grouping patterns based on approximated distances between the scores. Scores corresponding to 
PC1 and PC2 were plotted along the X and Y axes respectively. 
After an initial assessment of potential clusters, we extracted factor/component loadings corresponding to all the brain regions that 
contributed to the selected principal components. Component loadings are correlation coefficients between the variables in rows and the 
factors (i.e. PC1, PC2 etc.). The squared value of a component loading gives the percentage of the variance explained by a particular original 
variable, and essentially its contribution to the principal components. We plotted the loading of each brain region corresponding to PC1 (X-
axis) and PC2 (Y-axis) to examine their influence on the grouping patterns observed on the PC plot. 

Clustering analysis. The data matrix of brain regions (rows) and ADIs or AD-SMIs (columns) was subjected to hierarchical clustering 

using the tool called Heatmapper (http://www.heatmapper.ca/)126, in order to check whether the grouping patterns observed in the PC plot 
are valid. Pairwise distances in the data matrix were calculated using Pearson correlation and they were ‘linked’ using the average linkage 
method. Dendro- grams were generated by merging tissue samples with the smallest distance first, and those with larger distances later. In 
the average linkage method, the average distance of all possible pairs is considered while clustering127. 

Data availability 
ADIs and SMIs analyzed in this study have been made available as Supplementary Data S1 and Supplementary Data S2, respectively. 
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Summary of this chapter 

 

In this chapter, I demonstrate the methodology to examine the target networks of drugs to elucidate 

patterns predictive of their clinical activity. To identify the potential mechanisms of adverse drug 

reactions (ADRs) within comorbid diseases, I systematically examined six pairs of comorbid 

diseases, three pairs of non-comorbid diseases, and their FDA-approved drugs. The relative risk of 

comorbidity was proportional to disease network similarity measures, showing that disease networks 

contained comorbidity patterns. I compiled four categories of drugs for each disease pair based on 

their clinical activity, and constructed four corresponding drug target networks (DTNs). I then 

examined the DTNs for enrichment among genes involved in disease protein-protein interaction 

(PPI) networks, tissue-specific expression, and pathways. Using principal component analysis and 

downstream analyses, I identified specific disease protein sets, pathways, and tissues closely related 

to each of the four DTNs. I found that the target networks of disease A drugs not contraindicated in 

disease B were affiliated with the disease B network, associated pathways and tissues, while the 

target networks of disease A drugs contraindicated in disease B were affiliated with the disease A 

network, related pathways and tissues. These correlations indicated that the aetiological associations 

between the two comorbidities could play an active role in their therapeutic alleviation. The study 

concluded that examining DTN enrichment in pathways, tissues, and PPI networks of comorbid 

diseases can provide valuable insights into drug safety and efficacy in comorbid conditions. 
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• Curated all the datasets, performed all the analyses, and derived the conclusions  
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files
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Abstract 

 
Adverse drug reactions (ADRs) are leading causes of death and drug withdrawals and frequently co- 

occur with comorbidities. However, systematic studies on the effects of drugs in comorbidities are 

lacking. Drug interactions with the cellular protein-protein interaction (PPI) network give rise to 

ADRs. We selected 6 comorbid disease pairs, identified the drugs used in the treatment of the 

individual diseases ‘A’ and ‘B’– 44 drugs in anxiety and depression, 128 in asthma and hypertension, 48 

in chronic obstructive pulmonary disease and heart failure, 58 in type 2 diabetes and obesity, 58 in 

Parkinson’s disease and schizophrenia, and 84 in rheumatoid arthritis and osteoporosis – and 

categorized them based on whether they aggravate the comorbid condition. We constructed drug target 

networks (DTNs) and examined their enrichment among genes in disease A/B PPI networks, expressed 

across 53 tissues and involved in ~1000 pathways. To pinpoint the biological features characterizing 

the DTNs, we performed principal component analysis and computed the Euclidean distance between 

DTN component scores and feature loading values. DTNs of disease A drugs not 
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contraindicated in B were affiliated with proteins common to A/B networks or uniquely found in the B 

network, similarly regulated common pathways, and disease-B specific pathways and tissues. DTNs of 

disease A drugs contraindicated in B were affiliated with common proteins or those uniquely found in 

the A network, differentially regulated common pathways, and disease A-specific pathways and 

tissues. Hence, DTN enrichment in pathways, tissues, and PPI networks of comorbid diseases will help 

identify drugs contraindications in comorbidities. 

Keywords: comorbidities, drugs, adverse drug reactions, drug contraindications, drug target networks 

 

1. Introduction 

 
Comorbidity is the phenomenon in which one or more diseases co-exist with a primary disease in 

patients. Comorbidities are the norm rather than exceptions among chronic conditions and pose a 

significant threat to the physical and psychosocial wellbeing of patients [1]. Comorbidities increase 

with age, and the risk of mortality increases with the number of comorbidities. A longitudinal study 

(1992-2006) has shown that the mortality risk increased by 25% in patients with 3-4 chronic 

comorbidities and by 80% in those with 5 or more comorbidities, both in comparison with individuals 

having no chronic conditions [2]. The prevalence of comorbidities increases from 10% in 0-19 year- 

olds to 78% in individuals aged 80 or more [3]. The prevalence of comorbidity in women of age 

groups of 18-44 years, 45-64 years, and ≥65 years was 68%, 95%, and 99% and in men, it was 72%, 

89%, and 97% [4]. As per the US National Comorbidity Survey Replication (NCS-R) survey, 73.8- 

98.2% of the respondents reported having at least one comorbid condition along with a primary 

condition [1]. The most striking finding from this report was that the estimates of individual disease 

burden based on the respondents’ perception of their health condition decreased substantially when  

adjusted for comorbidity [1]. This effect was particularly magnified for neurological disorders, chronic 

pain, anxiety disorders, major depressive disorder, and diabetes, all of which contribute immensely to 

the global disease burden [1]. For example, anxiety disorders collectively affect 284 million people 

(63% females, 2.5-7% variation by country) around the world, and are among the most prevalent mental 

health and neurodevelopmental disorders (WHO and IHME, 2017) [5]. 

Disease comorbidity may increase the likelihood of experiencing adverse drug reactions [6-8]. Drugs that 

are beneficial in the treatment of one disease may aggravate or even cause comorbid conditions, giving 

rise to adverse drug reactions, e.g. beta-blockers that treat hypertension and heart disease may aggravate 

asthma [6], trimethoprim and sulfamethoxazole to treat AIDS may increase the patient’s susceptibility 

to Stevens-Johnson syndrome and toxic epidermal necrolysis [7]; malaria patients with AIDS and 

osteoarthritis treated with artemisinin based combination antimalarial therapy were 3 times more likely 

to experience adverse side effects [8]. Serious adverse drug reactions constitute the 
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fourth leading cause of death in the U.S. with 100,000 deaths per year, and about 2 million patients in 

the U.S. experiencing adverse drug reactions per year [9]. Patient fatalities have led to the withdrawal of 

19 drugs from the U.S. market during 1998-2007 [9]. These aspects highlight the importance of re- 

examining drug design, and the need to develop drugs in light of disease mechanisms governing 

comorbidities. 

Network medicine is an integrative framework for examining the mechanistic effects of disease- 

associated genes within the context of the human protein-protein interaction (PPI) network (or the 

‘interactome’) [10]. The emerging network medicine paradigm in systems biology has prompted  

systematic data-driven investigations of the effects of drugs on diseases. It captures the essence of the 

Fourth Paradigm, i.e. Data-Intensive Scientific Discovery [11, 12]. This framework allows data 

capture and combines theory and computation to facilitate the translation of biological data into 

biologically insightful and clinically actionable results. The primary applications of this framework are 

uncovering disease-associated genes, identifying biomarkers that will improve disease screening, clinical 

diagnosis, and patient stratification, and prioritizing drug targets and pathways for therapeutic 

intervention [12]. 

Drugs that target proteins may perturb the PPI network to elicit the intended therapeutic response or an 

unintended adverse event or side effect [13]. The extensive interconnectivity of the network 

components suggests that perturbations at the genomic or proteomic level that affect PPIs may disrupt 

cellular functions and affect other proteins in the neighborhood network, posing deeper implications for 

several aspects of the disease such as comorbidity and phenotypic responses to drugs [10]. 

Although the side effects or adverse events precipitated by drugs in specific diseases have been 

investigated within the framework of the PPI network [14-19], the effects of multiple drugs and their 

contraindications on comorbid conditions remain largely unexplored. Some studies have provided key 

insights on the influence of disease-associated PPI networks, biological pathways, and tissues on drug 

action. Pairs of drugs used for the same disease have shown significant adverse events when the 

network modules of their protein targets overlap with each other or with a network of disease- 

associated genes (‘overlapping exposure’, statistical significance p-value ≤ 0.007), e.g. the anti- 

hypertensive drug nadroparin increased hyperkalemia, an adverse effect of spironolactone, another 

anti-hypertensive drug [20]. The targets of both cancer and non-cancer drugs were enriched by 1.8 

folds among tissue-specific proteins (p-value = 2E-06), and this enrichment became magnified to 2.3 

folds when the targets of non-cancer drugs were considered alone [21]. Drugs that are currently in the 

market are twice as likely to act on tissue-specific proteins than on housekeeping proteins [22]. 
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In this study, we attempt to elucidate the mechanisms underlying drug contraindications in pairs of 

comorbid diseases. Our findings suggest the relationship between the PPI networks of disease- 

associated proteins and drug targets, and the pathway membership and tissue specificity of the drug 

target networks as critical biological factors influencing adverse drug reactions in comorbidities. 

2. Methods 

 
2.1 Compilation of drugs indicated for specific diseases 

 

The Drug Bank database [23] (version 5.1.8) was used to compile the lists of drugs indicated for each of 

the 14 diseases. After compiling these lists, we used the TWOSIDES database [24] (version 0.1) – a 

publicly available database of drugs and associated adverse events – to categorize these drugs with 

respect to their effects on the disease pairs, specifically, (a) drugs effective in disease A and not 

contraindicated in disease B, (b) drugs effective in disease B and not contraindicated in disease A, (c) 

drugs effective in disease A and contraindicated in disease B, and (d) drugs effective in disease B and 

contraindicated in disease A. Drugs associated with specific adverse effects (belonging to (c) and (d)) 

were identified using their ‘condition concept names’ (descriptions of adverse events). The lists of the 

condition concept names used for identifying the drugs belonging to the 4 groups for each of the 

disease pairs can be found in Additional File 1: Table S1, and the drug lists can be found in 

Additional File 2: Table S2. 

2.2 Construction of drug target protein-protein interaction (PPI) networks 

 
The proteins targeted by the drugs (Additional File 3: Table S3) belonging to the 4 categories were 

retrieved from the Drug Bank database [23] using the DGIdb (drug gene interaction database) web 

portal [25]. The PPIs of these drug targets in the human interactome were compiled from Human 

Protein Reference Database (HPRD; version 9) [26] and the Biological General Repository for 

Interaction Datasets (BioGRID; version 4.3.194) [27] using the Cytoscape plugin, Bisogenet [28]. The 

network building options were: organism - Homo sapiens, biorelation type - protein-protein 

interaction, data sources - BioGRID and HPRD, method - input nodes and its neighbors upto a 

distance of 1. 

2.3 Compilation of disease-associated genes 

 
The genes associated with each of the 14 diseases in the 3 non-comorbid pairs and 6 comorbid pairs were 

compiled from the DisGeNET database [29] (version 7). The non-comorbid pairs were (I) Multiple 

sclerosis (DisGeNET ID: C0026769) – Peroxisomal disorders (C0282528), (II) Schizophrenia 

(C0036341) – Rheumatoid arthritis (C0003873), (III) Asthma (C0004096) – 
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Schizophrenia (C0036341). The comorbid pairs were (IV) Anxiety (C0003467) – Depression 

(C0011570), (V) Asthma (C0004096) – Hypertension (C0085580), (VI) Chronic obstructive 

pulmonary disorder (COPD) (C0024117) – Heart failure (C0018801), (VII) Type 2 diabetes 

(C0011860) – Obesity (C0028754), (VIII) Rheumatoid arthritis (C0003873) – Osteoporosis 

(C0029456) and (IX) Parkinson's disease (C0030567) – Schizophrenia (C0036341) (Additional File 4: 

Table S4). 100 top-ranking genes associated with each of the diseases were curated based on their gene-

disease association scores (GDA). Although the range of the GDA scores among the 100 top- ranking 

genes varied across our selected diseases (multiple sclerosis (0.11-0.5), peroxisomal disorders (0.01-

0.32), schizophrenia (0.43-0.9), rheumatoid arthritis (0.33-0.7), asthma (0.29-0.7), anxiety (0.1- 0.5), 

mental depression (0.34-0.6), essential hypertension (0.03-0.063), chronic obstructive airway disease 

(0.11-0.9), heart failure (0.3-0.6), non-insulin-dependent diabetes mellitus (0.4-1), obesity (0.4-1), 

osteoporosis (0.13-0.9) and Parkinson’s disease (0.23-0.7)), a minimum GDA of ≥ 0.01 was chosen to 

ensure that at least one publication has linked the gene in question with the disease. Note that 

‘association’ of a gene with a disease here does not imply causality in most cases and may only 

indicate an association with disease susceptibility or an endophenotype. 

1.4 Construction of disease protein-protein interaction (PPI) networks 

 
The PPI networks of the proteins encoded by the disease-associated genes were assembled by extracting 

their protein interactors from the PPI repositories BioGRID [27] and HPRD [26] using BisoGenet [28] and 

the network building options specified before. The input nodes for the construction of each of the 

disease networks were the 100 top-ranking genes compiled from the DisGeNET database. 

2.5 Calculation of network similarity measures 

 

Matching node ratio (NM) was measured as the ratio of the total number of common nodes shared 

between the two PPI networks of a comorbid pair and the total number of unique nodes in the two 

disease networks [30]. 

𝑁𝑀 =
𝐴𝑛 ∩ B𝑛

𝐴𝑛 ∪ 𝐵𝑛
 

(1) 

 
An = Number of nodes in the PPI network of disease A 

 
Bn = Number of nodes in the PPI network of disease B 
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Matching link ratio (LM) was measured as the ratio of the total number of common links (i.e. edges) 

shared between the two PPI networks of a comorbid pair and the total number of unique links in the two 

disease networks [30]. 

(2) 

𝐿𝑀 =
𝐴𝑙 ∩ B𝑙

𝐴𝑙 ∪ 𝐵𝑙
 

Al = Number of links in the PPI network of disease A 

 
Bl = Number of links in the PPI network of disease B 

 
The same formula shown above was also used to calculate the matching link ratio for common links of 

path length 2 and path length 3. Links of specific path lengths were retrieved using the Cytoscape 

application called NetworkAnalyzer [31, 32]. 

2.6 Calculation of comorbid associations 

 

Relative risk (RRAB) measures comorbidity by comparing the observed prevalence of a pair of 

comorbid diseases (A and B) in the population with the expected number, which is calculated based on 

the prevalence of the individual diseases A and B in the population. 

 

𝑅𝑅𝐴𝐵 =
𝑁𝐴𝐵𝑁

𝑁𝐴𝑁𝐵
                                                                                                     (3) 

 

 
NA = Total number of patients diagnosed with disease A 

 
NB = Total number of patients diagnosed with disease B 

 
NAB = Total number of patients diagnosed with both disease A and disease B 

 
N = Total number of patients in the population 

 

For the calculation of relative risks of disease pairs, we downloaded the HuDiNe dataset 

(http://sbi.upf.edu/data/hudine/) containing processed hospital claims data of 13,039,018 U.S. 

individuals who had applied for support from the U.S. Medicare program during 1990-1993 [33]. 

Comorbidity data was available for five out of our six comorbid disease pairs and two out of the three 

non-comorbid pairs in HuDiNe. Specifically, data was not available for Anxiety – Depression and 

Multiple sclerosis – Peroxisomal disorders. Hence, NA, NB and NAB were extracted for seven out of the 

nine disease pairs. The diseases were specified in the form of their ICD-9 codes (at three digits level): 

asthma (ICD-9: 493), hypertension (ICD-9: 401), type 2 diabetes (ICD-9: 250), obesity (ICD- 

http://sbi.upf.edu/data/hudine/)
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9: 278), chronic obstructive pulmonary disease (ICD-9: 496), heart failure (ICD-9: 428), Parkinson’s 

disease (ICD-9: 332), schizophrenia (ICD-9: 295), rheumatoid arthritis (ICD-9: 714) and osteoporosis 

(ICD-9: 733). The population size N was considered to be 13,039,018, i.e. the total number of 

individuals represented in the HuDiNe dataset. 

2.7 Pathway enrichment analysis 

 

WebGestalt [34] was used to compute the distribution of genes involved in specific signalling 

pathways in the drug target networks, and compare it with the background distribution of genes 

belonging to this pathway among all the genes associated with any pathway in the selected database 

(Reactome) [35]. Statistical significance of the enrichment was computed using Fisher's exact test and 

corrected using the Benjamini-Hochberg method for multiple test adjustment. 

2.8 Gene expression enrichment analysis 

 

The enrichment of the drug target networks in genes expressed in specific tissues was computed using 

RNA-sequencing data from 53 postnatal human tissues extracted from GTEx [36] (version 8). Genes 

with high or medium expression (transcripts per million (TPM) ≥ 9) in 53 tissues were included, 

provided that they were not housekeeping genes, i.e. genes detected in all the tissues with transcripts 

per million ≥ 1, as identified in the Human Protein Atlas [37]. TPM is a metric for quantifying gene 

expression; it directly measures the relative abundance of transcripts. The GMT files served as inputs for 

a gene over-representation analysis (GSEA) based on hypergeometric distribution. The following GWAS 

datasets were selected in TSEA-DB [38] for identification of disease-specific tissues (trait IDs are given 

in parentheses): anxiety (4679), depression (5315), chronic obstructive pulmonary disease (571), heart 

failure (5333), asthma (5259), hypertension (169), type 2 diabetes (4628), obesity (1031), 

Parkinson’s disease (4607), schizophrenia (5215), rheumatoid arthritis (4614) and osteoporosis (746). 

 
BaseSpace Correlation Engine (https://covid-19.ce.basespace.illumina.com/c/nextbio.nb) was used to 

identify the correlations between the gene expression profile induced by maprotiline in PC3 cells 

(Broad Connectivity Map (CMAP 2.0) [39]), the expression profile associated with major depressive 

disorder and generalized anxiety disorder (GSE98793 [40]) and the expression profile of adrenal 

cortex. The software uses a non-parametric rank-based approach to compute the extent of enrichment of a 

particular set of genes (or ‘bioset’) in another set of genes [41]. 

2.9 Principal component analysis 

 
Principal component analysis (PCA) was used to capture relationships between the drug target 

networks and the disease networks/biological pathways/tissues. For each disease pair, negative log- 
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transformed p-values indicating the statistical enrichment of the disease networks/biological 

pathways/tissues in the 4 drug target networks were assembled into a data matrix containing disease 

networks/biological pathways/tissues as rows and drug target networks as columns; each cell in the 

matrix contained a –log10P value. Following the established approach [42], log transformation was 

performed to reduce the influence of extreme values on the obtained PCs. PCA was performed with a 

web-based tool called ClustVis (https://biit.cs.ut.ee/clustvis/) [43]. The data matrix was pre-processed 

such that 70% missing values were allowed across the rows and columns. The –log10P values in the 

matrix were further centred using the unit variance scaling method, in which the values are divided by 

standard deviation so that each row or column has a variance of one; this ensures that they assume equal 

importance while finding the components. The method called singular value decomposition (SVD) 

with imputation was used to extract principal components. In this method, missing values are predicted 

and iteratively filled using neighbouring values during SVD computation, until the estimates of missing 

values converge. The factor/component loadings corresponding to the disease 

networks/pathways/tissues that contributed to the selected principal components were also extracted. 

Component loadings are correlation coefficients between the variables in rows and the factors (i.e. 

PC1, PC2 etc.). The squared value of a component loading gives the percentage of the variance 

explained by a particular original variable, and essentially its contribution to the principal components. 

Finally, for each of the disease pairs, the Euclidean distance between the principal component scores 

of each of the drug target networks were computed for all the component loading values pertaining to 

the particular biological modality. This resulted in a list of the specific disease protein 

sets/pathways/tissues that may be closely related to each of the different drug target networks. 

2. Results 

 
To identify potential mechanisms of adverse drug interactions within comorbid diseases, we 

systematically studied pairs of comorbid diseases (‘disease A’ and ‘disease B’) and their FDA- 

approved drugs. We separated the drugs into two groups, namely, disease A drugs that are (a) 

contraindicated and (b) not contraindicated in disease B, and disease B drugs that are (c) 

contraindicated and (d) not contraindicated in disease A We then constructed the interactomes of the 

proteins targeted by these drugs and examined these drug target interactomes in the context of three 

biological factors, namely, (i) proteins exclusive to interactomes of diseases A and B and those that are 

in their intersection, and (ii) biological pathways and (iii) tissues associated with these drug target 

interactomes. 

Specifically, we selected three pairs of non-comorbid diseases as negative controls and six pairs of 

comorbid diseases for our analysis. The non-comorbid pairs were: (I) Multiple sclerosis – Peroxisomal 

disorders [44], (II) Schizophrenia – Rheumatoid arthritis [45-47], (III) Asthma – 
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Schizophrenia [48]. The comorbid pairs were (IV) Anxiety – Depression [49], (V) Asthma – 

Hypertension [50, 51], (VI) Chronic obstructive pulmonary disorder (COPD) – Heart failure [52, 53], 

(VII) Type 2 diabetes – Obesity [54, 55], (VIII) Rheumatoid arthritis – Osteoporosis [56] and 

(IX) Parkinson's disease – Schizophrenia [57]. 

 
The drugs indicated for use in each of the diseases were retrieved from Drug Bank (version 5.1.8) [23]. 

For each pair, we categorized the drugs into the four groups (a-d) mentioned earlier, based on their 

clinical activity in the diseases, collected from the TWOSIDES database (version 0.1) [24], a 

compendium of drugs and their contraindications (see Additional File 2: Table S2). Drugs 

contributing to specific adverse effects were collected by manually selecting relevant ‘condition  

concept names’ (Additional File 1: Table S1). For example, to identify the anxiolytic drugs that may cause 

depression, the condition concept names, depression, major depression, depressive symptom, 

depression suicidal, depression postoperative, postpartum depression, depressive delusion, and 

agitated depression, were selected. The list of anxiolytic drugs was then compared with the list of 

drugs associated with these condition concept names. The matching drugs were compiled into groups ‘a’ 

and ‘c’, for example, “drugs effective in anxiety and contraindicated in depression”. Similarly,  groups 

‘b’ and ‘d’ drugs were compiled. The proteins targeted by the drugs belonging to groups a and b were 

retrieved by querying the Drug Bank database through the DGIdb drug-genee interaction database) 

web portal [25] (see Additional File 3: Table S3). Finally, the protein-protein interaction (PPI) 

networks of the drug targets were assembled by extracting their protein interactors from the PPI 

repositories BioGRID [27] (version 4.3.194) and HPRD [26] (version 9) using a Cytoscape plugin 

called BisoGenet [28]. 

The methodology of our study is illustrated in Fig. 1. To characterize the 4 classes of drug target networks 

(DTNs), we examined 3 types of data that may reflect their biological profiles, namely (i) disease PPI 

networks, (ii) biological pathways and (iii,) tissue gene expression. Specifically, we conducted gene 

overrepresentation analyses based on hypergeometric distribution to check the enrichment of the DTNs 

among proteins that are unique to/shared between networks of disease A and disease B, genes showing 

high/moderate expression in 53 tissues across the human body, and proteins involved in ~1000 biological 

pathways. Overlaps computed in this manner with each of the 3 types of biological data were considered to 

be statistically significant at p-value < 0.05 after multiple test adjustments with the Benjamini-Hochberg 

method. 

As a first step towards identifying the specific biological data modalities (disease 

subnetworks/pathways/tissues) that were relatively more ‘closer’ to each of the different types of  

DTNs in terms of Euclidean distance, we generated a data matrix of the DTNs (columns) versus the 
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Figure 1: Framework for characterizing the drugs that target comorbid disease pairs. Our 

methodology to characterize drug target networks (DTNs) contained seven steps: (a) Retrieval of the 

drugs indicated for use against each of the diseases using Drug Bank and their categorization into four 

groups based on their clinical activity in the comorbid diseases, namely, disease A drugs not 

contraindicated in disease B, disease B drugs not contraindicated in disease A, disease A drugs 

contraindicated in disease B and disease B drugs contraindicated in disease A. (b) Identification of the 

proteins collectively targeted by the drugs in each of the groups by querying Drug Bank through DGIdb. 

(c) Construction of DTNs using the protein targets as input nodes and assembling their immediate 

neighbors in the human protein-protein interaction network up to a distance of 1, based on data from the 

PPI repositories BioGRID and HPRD. (d) Performing gene enrichment analysis with the four DTNs 
(corresponding to each of the disease pairs) in 3 biological data types: (d1) disease protein-protein 

interaction networks, (d2) tissue gene expression and (d3) biological pathways. (e) Generation of a data 

matrix containing the enriched disease protein sets/tissues/pathways as rows, DTNs as columns and log-

transformed p-values in each of the cells, and using the matrix as an input for principal component 

analysis. (f) Extraction of component loading values of each of the enriched disease protein 

sets/tissues/pathways that correspond to each of the principal components. (g) Calculation of the 

Euclidean distance between the principal component scores of each of the DTNs and the component 

loading values of the disease protein sets/tissues/pathways. These steps resulted in the identification of 

the top disease protein sets, tissues and pathways that were closely associated with each of the DTNs. 

Databases: BioGRID (Biological General Repository for Interaction Datasets), DGIdb (Drug Gene 
Interaction database), DisGeNET (Disease Gene association NETwork), Drug Bank, GTEx (Genotype-

Tissue Expression), HPRD (Human Protein   Reference   Database),   Reactome,   TSEA-DB   (Tissue-

Specific   Enrichment Analysis DataBase) and TWOSIDES. Abbreviations: DTN – Drug Target 

Network, PCA – Principal Component Analysis and TPM – Transcripts Per Million. 
 

various members of the biological data modality (rows) (for example, for the data modality ‘disease 

subnetwork’, the members would be ‘common to both the networks’, ‘unique to disease A network’ 
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and ‘unique to disease B network’ and for the data modality ‘tissue’, the members would be  

‘amygdala’, ‘aorta’, ‘lungs’ etc.). Each cell contained the negative of log-transformed p-values. –log10 

transformed p-values have been used as inputs for PCA in previous studies [58, 59]. Following the 

established approach [42], log transformation was performed to reduce the influence of extreme values 

on the obtained PCs. Single value decomposition (SVD) with imputation and unit variance scaling was 

applied to this matrix to extract principal components that explained the variance observed with each 

of the data modalities across the DTNs. Principal component analysis (PCA) has been applied to 

matrices containing gene-level association scores in several studies [59]. PCA is primarily used to 

capture systematic variations underlying datasets. All the principal components generated after this 

analysis were considered for our study, since they may together reveal underlying clustering patterns 

among the different DTNs. Following this, we extracted the component loading values of each of the 

members of the different data modalities, which correspond to each of the principal components 

representing the relationships among the DTNs. Component loadings are values depicting the correlation 

of the original variables in our data matrix — negative log of p-values of enrichment for specific 

disease subnetworks/pathways/tissues — with each of the extracted principal components. Lastly, we 

calculated the Euclidean distance between the principal component scores of each of the DTNs 

specifically in the context of each data modality and all the corresponding component loading values. 

This yielded a list of the specific disease subnetworks/pathways/tissues that are presumably closely 

related to each of the different DTNs. 

3.1 Disease network similarity and comorbid associations 

 

Relative risk is an experiential measure of comorbidity as it compares the observed prevalence of a pair 

of comorbid diseases in the population with the expected number, which is calculated based on the 

prevalence of the individual diseases in the population. We then explored whether this information was 

embedded in the disease networks, i.e., whether the relative risk of comorbidity of the disease pairs 

would be reflected in the similarity of the disease networks. For each of the comorbid pairs, we 

computed four established network similarity measures, namely, matching node ratio (NM) for all the 

nodes shared between the two disease networks, and the matching link ratio (LM) [30] for all the (i) 

shared links (i.e. edges), (ii) shared links of path length 2 (connecting two nodes via one intermediate 

node) and (iii) shared links of path length 3 (connecting two nodes via two intermediate nodes) 

between the two disease networks. 

We computed the relative risk for each of the disease pairs observed in hospital claims data of  

13,039,018 U.S. individuals who had filed for support from the Medicare program during the period of 

1990-1993, made available as the HuDiNe dataset [33]. The ICD-9 codes corresponding to pairs of 
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diseases diagnosed as primary and secondary conditions, along with the number of individuals who 

were diagnosed with diseases A or B or both (NA, NB and NAB, respectively) were available (see 

Methods). Comorbidity data was available for five out of our six comorbid disease pairs (i.e. except for 

Anxiety – Depression) and two out of the three non-comorbid pairs (i.e. except for Multiple sclerosis – 

Peroxisomal disorders in HuDiNe. 

 

Figure 2: Comparison of disease network similarity measures and comorbid associations. 

The graph shows the relationship between relative risk (black data points) and four measures of 

network similarity, namely, matching node ratio (green data points), matching link ratio of all 

shared edges (red data points), matching link ratio of all shared 

 

For each of the diseases considered, the top 100 genes associated with the disease were curated from 

the DisGeNET database (version 7) [29] based on their gene-disease association (GDA) scores (see 

Additional File 4: Table S4). The GDA score ranges from 0 to 1 and is computed for a gene based on 

the number of publications supporting its association with the disease, and the number and types of 

database sources (levels of curation (expert-curated/computationally-predicted) and the model 
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organisms in which the association was validated). The 100 top-ranking genes collected in this manner 

were used as starting points for the construction of disease networks. Here also, the network is assembled 

by extracting PPIs from BioGRID and HPRD using a Cytoscape plugin BisoGenet, similar to assembling 

of DTNs. Then, we systematically conducted network overlap analyses with each of the 9 disease pairs 

and identified the proteins (a) shared between the two disease networks, (b) unique to disease A and (c) 

unique to disease B (Table 1). 

Table 1: Overlap of the disease networks. The table shows the statistics of the overlaps shared between the 

two diseases in each of the nine disease pairs that were examined in our study. 

 

Disease pair # Proteins 

in disease A 

network 

# Proteins 

in disease B 

network 

# 

Share d 

protei 

ns 

p- 

value 

of 

overl 
ap 

Odds 

ratio of 

overla 
p 

% Shared 

proteins in 

disease A 

network 

% Shared 

proteins in 

disease B 

network 

Multiple sclerosis 
(A) – Peroxisomal 

disorders (B) 

2418 727 284 5.97E 
-70 

2.9 12% 39% 

Schizophrenia (A) – 

rheumatoid arthritis 
(B) 

2662 2424 918 6.86E 
-208 

2.56 34.5% 38% 

Asthma (A) – 
Schizophrenia (B) 

3041 2662 1084 1.36E 
-228 

2.41 36% 41% 

Anxiety (A) – 
Depression (B) 

3342 3054 1732 1.86E 
-628 

3.06 52% 57% 

Asthma (A) – 
Hypertension (B) 

3041 2515 1371 1.85E 
-500 

3.23 45% 54.50% 

Chronic obstructive 

pulmonary disease 
(A) –heart failure 

(B) 

3736 2922 1505 3.12E 
-371 

2.48 40% 51.50% 

Type 2 diabetes (A) 

– 
Obesity (B) 

2471 2490 1232 3.66E 

-503 

3.6 50% 49% 

Rheumatoid arthritis 
(A) – osteoporosis 

(B) 

2424 3681 1206 1.30E 
-270 

2.43 50% 33% 

Parkinson’s disease 
(A) – schizophrenia 

(B) 

3200 2662 1232 2.88E 
-310 

2.6 38.50% 46% 

 

 

The relative risk between diseases was proportional to the matching node and link ratios (Fig. 2). The 

control disease pairs showed low relative risks and smaller disease network overlaps, whereas three out 

of five comorbid disease pairs showed high relative risks and larger network overlaps, namely, Asthma 

– Hypertension, COPD – Heart failure and Type 2 diabetes – Obesity. However, this trend was not 

seen in the comorbid pairs, Rheumatoid arthritis – Osteoporosis and Parkinson’s disease – 

Schizophrenia. Specifically, their higher relative risks (compared with other comorbid pairs), were not 
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accompanied by a corresponding increase in the network overlaps. ~85% of the human interactome 

awaits experimental discovery [60]. Hence, two factors may have led to the underestimation of the 

network overlaps. Firstly, the inherent incompleteness of these disease networks [60]. Secondly, the 

tendency of incomplete networks to exhibit small overlaps [60]. 

3.2 Druggability of disease networks 

 
Next, we tested the potential of each of the disease subnetworks to be acted upon by drugs or their 

susceptibility to pharmacological modulation (druggability), by examining their enrichment among a 

group of 4,463 proteins deemed to be druggable [61], similar to the approach followed in a previous 

study [62]. These proteins are bound with high affinity at specific binding sites by drugs that follow 

the Lipinski's ‘rule-of-five’, i.e. orally bioavailable drugs with specific molecular characteristics that 

influence their pharmacokinetic ability to enter systemic circulation and act on their target sites 

(Table 2) [63]. 

Table 2: Overlaps of the disease protein sets with druggable targets. –log10P values computed for each 

of the nine tested disease pairs using a hypergeometric test. The –log10P values indicate the statistical 

significance of the overlaps shared by each of the disease protein sets (top column headings) with a group of 

4463 druggable proteins. *, ** and *** indicate low, medium and high levels of statistical significance.  ,    

and      indicate non-significant overrepresentation, non-significant underrepresentation and significant 

underrepresentation respectively. 

 

Disease pairs Common to both the 

networks 

Unique to disease 

A network 

Unique to disease B 

network 

Multiple sclerosis (A) – peroxisomal 
disorders (B) 

7.38** 19.52*** 2.09* 

Schizophrenia (A) – Rheumatoid 
arthritis 

13.26** 14.36*** 2.4* 

Asthma (A) – schizophrenia (B) 19.18*** 9.41** 0.89 
 

Anxiety (A) – Depression (B) 5.57** 0.001   
 12.05*** 

Asthma (A) – Hypertension (B) 31.34*** 3.19* 9.59** 

Chronic obstructive pulmonary disease 
(A) – heart failure (B) 

34.73*** 1.06  
 9.16** 

Type 2 diabetes (A) – Obesity (B) 18.65*** 1.47* 7.05** 

Rheumatoid arthritis (A) – Osteoporosis 
(B) 

21.96*** 7.17** 1.97* 

Parkinson's disease (A) – Schizophrenia 
(B) 

19.93*** 0.27 
 0.3 

 

 

 
We found that the proteins shared between the two diseases were the most significantly enriched for 

druggable targets in 5 out of the 6 tested comorbid pairs (Table 2). In case of the sixth pair, namely 
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anxiety and depression, the proteins that are exclusive to the depression network were found to be 

more enriched for druggable targets. In 2 out of the 5 disease pairs that shared many common drug 

targets, the drug target proteins were significantly enriched in G protein-coupled receptor activity (p- 

value <0.05) (Table 3). 

Table 3: Enrichment of Gene Ontology molecular functions among druggable targets and 

proteins unique to the depression network. The odds ratio of enrichment of two specific Gene 

Ontology molecular functions among druggable proteins, proteins unique to the depression network 

and proteins common to the anxiety and depression networks have been shown. p-values indicating the 

statistical significance of these enrichments have been shown in parentheses. Note that druggable 

proteins show higher enrichment for transmitter-gated channel activity compared to G protein-coupled 

peptide receptor activity, in terms of odds ratio of enrichment. The overrepresentation of a more 

druggable class (glutamate-gated Ca2+ channel activity) among proteins unique to the depression network 

(and not among the common proteins) would have altered the enrichment pattern for anxiety and 

depression in comparison with other the disease pairs (as shown in Table 2). 

 

 
Protein sets Gene Ontology 

Molecular Function 

4463 druggable proteins 

– odds ratio (p-value) 

Proteins common to 

anxiety and depression 

networks – odds ratio (p- 

value) 

Proteins unique to 

depression network – 

odds ratio (p-value) 

Transmitter-gated channel 

activity 

4.2 (< 1E-15) 8.65 (0.037) - 

G protein-coupled peptide 

receptor activity 

3.8 (< 1E-15) 3.6 (6.6E-03) 10.46 (9.3E-07) 

 

 
Based on these observations and the finding in the previous section that relative risk varies in tandem 

with network similarity measures, we speculated that contraindications in comorbidities may arise 

from drug action on druggable proteins shared between the networks of comorbid diseases (Table 2). 

This led to two corollaries: (i) the target networks of the group ‘a’ and ‘c’ drugs (effective in disease A 

and contraindicated in disease B or vice versa) may show the highest enrichment for the 

proteins/pathways/tissues shared between the two disease networks and (ii) the target networks of the 

groups ‘b’ and ‘d’ drugs (effective in disease A and not contraindicated in disease B or vice versa) 

may show the highest enrichment for proteins/pathways/tissues unique to disease A (or B 

respectively). 
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3.3 Disease networks and drug target networks 

 
To test these corollaries, we systematically computed the overlaps between three groups of disease 

proteins, namely, proteins that are (a) common to disease A and disease B networks, (b) unique to 

disease A network and (c) unique to disease B network, and four classes of DTNs, namely, target 

networks of drugs effective in disease A and (a) contraindicated and (b) not contraindicated in disease B, 

and target networks of drugs effective in disease B (c) contraindicated and (d) not contraindicated in 

disease A (Table 4); previous studies have examined the overlaps between the PPI networks of drug 

targets and disease-associated proteins [20, 64]. For each of the six disease pairs, we created a data 

matrix of DTNs (columns) versus disease subnetworks (rows), which contains -log(p-values) 

indicating the statistical significance of these enrichments. This data matrix was used as the input for 

PCA. In order to identify the specific disease subnetworks that were the nearest to each of the DTNs, we 

calculated the Euclidean distance between the PC scores of each of the DTNs across all the extracted 

axes and the corresponding component loading values of all the disease subnetworks across these axes 

(following the methodology depicted in Fig. 1). By counting the two disease subnetworks that were the 

closest to each of the different DTNs, we identified two predominant patterns. 

In 10 out of the 12 cases, the DTNs of drugs used for a specific disease and not contraindicated in a 

comorbid condition were found to be closest/second closest to the proteins uniquely found in the 

network of the comorbid condition. Additionally, in 9 out of the 12 cases, they were closest/second 

closest to the proteins shared between the networks of both the diseases. In contrast, the DTNs of 

drugs used for a specific disease and contraindicated in a comorbid condition were found to be 

closest/second closest to the proteins uniquely found in the network of the disease for which these drugs 

were primarily used in 8 out of the 12 cases. Additionally, in 9 out of the 12 cases, they were 

closest/second closest to the proteins shared between the networks of both the diseases. 

These observations led us to speculate two scenarios. Firstly, disease A drugs that are not 

contraindicated in disease B may target proteins unique to the disease B subnetwork involved in 

mechanisms that are either inconsequential/beneficial for disease B, but whose modulation is certainly 

beneficial for the treatment of disease A. Alternatively, they may target common mechanisms that are 

dysregulated in a similar manner in both the diseases and pharmacologically modulate them in a 

similar direction. Secondly, disease A drugs may become contraindicated in disease B when they target 

either (a) common mechanisms that are pharmacologically oppositely modulated in a manner that 

benefits disease A but aggravates disease B or (b) mechanisms unique to disease A that aggravate 

disease B. Additionally, we hypothesized that biological processes such as signalling pathways that 

function at a higher level than disease subnetworks could be regulating the action of drugs under 

comorbid conditions. 



  

273  

Table 4: Overlaps of the disease protein sets with the four classes of drug target networks.– 

log10P values computed for each of the nine tested disease pairs using a hypergeometric test. The – 

log10P values indicate the statistical significance of the overlaps shared between each of the disease 

protein sets (top column headings) and the target networks of the four classes of drugs (row headings). 

*, ** and *** indicate low, medium and high levels of statistical significance. ,    and     indicate 

non-significant overrepresentation, non-significant underrepresentation and significant 

underrepresentation respectively. 

 

MULTIPLE SCLEROSIS (A) 

AND PEROXISOMAL 

DISORDERS (B) 

Common to multiple 

sclerosis (A) and 

peroxisomal disorders (B) 
networks 

Unique to multiple 

sclerosis network 

(A) 

Unique to 

peroxisomal 

disorders network 
(B) 

DTN of drugs effective in multiple 
sclerosis (A) 

113.15** 247.78*** 24.52* 

DTN of drugs effective in 
peroxisomal disorders (B) 

19.56*** 9.78** 1.6* 

RHEUMATOID ARTHRITIS (A) 

AND SCHIZOPHRENIA (B) 

Common to rheumatoid 

arthritis (A) and 

schizophrenia (B) 
networks 

Unique to 

rheumatoid arthritis 

network (A) 

Unique to 

schizophrenia 

network (B) 

DTN of drugs effective in 

rheumatoid arthritis (A) and not 

contraindicated in schizophrenia (B) 

202.91*** 76.56* 82.54** 

DTN of drugs effective in 
schizophrenia (B) and not 

contraindicated in rheumatoid 
arthritis (A) 

198.8*** 17.71* 120.54** 

DTN of drugs effective in 

rheumatoid arthritis (A) and 
contraindicated in schizophrenia (B) 

235.72*** 157.11** 119.54* 

DTN of drugs effective in 

schizophrenia (B) and 

contraindicated in rheumatoid 
arthritis (A) 

257.06*** 48.54* 207.08** 

SCHIZOPHRENIA (A) AND 
ASTHMA (B) 

Common to asthma (B) 
and schizophrenia (A) 
networks 

Unique to asthma 
network (B) 

Unique to 
schizophrenia 
network (A) 

DTN of drugs effective in 

schizophrenia (A) and not 

contraindicated in asthma (B) 

0.71** 0.75 
 1.5*** 

DTN of drugs effective in asthma (B) 

and not contraindicated in 

schizophrenia (A) 

6.6*** 0.99** 0.64* 

DTN of drugs effective in 

schizophrenia (A) and 
contraindicated in asthma (B) 

5.12** 0.32* 7.3*** 

DTN of drugs effective in asthma (B) 

and contraindicated in schizophrenia 
(A) 

8.98*** 3.2** 0.25 
 

ANXIETY (A) AND 

DEPRESSION (B) 

Common to anxiety (A) 
and depression (B) 
networks 

Unique to anxiety 

network (A) 

Unique to 

depression network 
(B) 
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DTN of drugs effective in anxiety 
(A) and not contradicated in 

depression (B) 

42.51*** 0.63 
 10.51* 

DTN of drugs effective in depression 

(B) and not contraindicated in 

anxiety (A) 

221.32*** 0.32 
 24.98* 

DTN of drugs effective in anxiety 
(A) and contraindicated in depression 
(B) 

70.77*** 1.03  
 20.96* 

DTN of drugs effective in depression 
(B) and contraindicated in anxiety 
(A) 

259.82*** 29.51** 17.05* 

ASTHMA (A) AND 

HYPERTENSION (B) 

Common to asthma (A) 

and hypertension (B) 

networks 

Unique to asthma 

network (A) 

Unique to 

hypertension 
network (B) 

DTN of drugs effective in asthma 
(A) and not contradicated in 

hypertension (B) 

385*** 21.29** 7.93* 

DTN of drugs effective in 
hypertension (B) and not 
contraindicated in asthma (A) 

423*** 3.01   
 6.77* 

DTN of drugs effective in asthma 

(A) and contraindicated in 

hypertension (B) 

571*** 30.17* 0.45 
 

DTN of drugs effective in hypertension 
(B) and contraindicated 
in asthma (A) 

351*** 104.14** 58.71* 

CHRONIC OBSTRUCTIVE 

PULMONARY DISEASE (A) 

AND HEART FAILURE (B) 

Common to chronic 
obstructive pulmonary 
disease (A) and heart 
failure (B) networks 

Unique to chronic 
obstructive 
pulmonary disease 
network (A) 

Unique to heart 

failure network (B) 

DTN of drugs effective in chronic 

obstructive pulmonary disease (A) 

and not contraindicated in heart 
failure (B) 

279.3*** 17.47* 43.59** 

DTN of drugs effective in heart 

failure (B) and not contraindicated in 

chronic obstructive pulmonary 
disease (A) 

8.03*** 0.63 
 0.67 

 

DTN of drugs effective in chronic 

obstructive pulmonary disease (A) 

and contraindicated in heart failure 
(B) 

255.32*** 33.88** 15.83* 

DTN of drugs effective in heart 

failure (B) and contraindicated in 

chronic obstructive pulmonary 
disease (A) 

314*** 8.92* 55.19** 

TYPE 2 DIABETES (A) AND 

OBESITY (B) 

Common to type 2 

diabetes (A) and obesity 
(B) networks 

Unique to type 2 

diabetes network 
(A) 

Unique to obesity 

network (B) 

DTN of drugs effective in diabetes 
(A) and not contraindicated in 
obesity (B) 

140.81*** 11.69* 1.16 
 

DTN of drugs effective in obesity 
(B) and not contraindicated in 

diabetes (A) 

18.56*** 0.73 
 2.59* 

DTN of drugs effective in diabetes 232.99*** 27.39** 10.93* 
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(A) and contraindicated in obesity 
(B) 

   

DTN of drugs effective in obesity 
(B) and contraindicated in diabetes 
(A) 

54.79*** 0.32  
 21.27* 

RHEUMATOID ARTHRITIS (A) 

AND OSTEOPOROSIS (B) 

Common to rheumatoid 
arthritis (A) and 

osteoporosis (B) networks 

Unique to 
rheumatoid arthritis 

network (A) 

Unique to 
osteoporosis 

network (B) 

DTN of drugs effective in 
rheumatoid arthritis (A) and not 
contradicated in osteoporosis (B) 

219.6*** 17.51* 30.9** 

DTN of drugs effective in 
osteoporosis (B) and not 
contraindicated in rheumatoid 
arthritis (A) 

908* 126.08   
 2118*** 

DTN of drugs effective in 

rheumatoid arthritis (A) and 
contraindicated in osteoporosis (B) 

272.65*** 16.29* 68.31** 

DTN of drugs effective in 

osteoporosis (B) and contraindicated 
in rheumatoid arthritis (A) 

255.5*** 0.29  
 237.99* 

PARKINSON’S DISEASE (A) 

AND SCHIZOPHRENIA (B) 

Common to Parkinson's 

disease (A) and 

schizophrenia (B) 
networks 

Unique to 

Parkinson's disease 

network (A) 

Unique to 

schizophrenia 

network (B) 

DTN of drugs effective in 

Parkinson's disease (A) and not 
contradicated in schizophrenia (B) 

83.25*** 15.5** 6.6* 

DTN of drugs effective in 

schizophrenia (B) and not 
contraindicated in Parkinson's 
disease (A) 

72.82*** 15.97** 6.73* 

DTN of drugs effective in 
Parkinson's disease (A) and 
contraindicated in schizophrenia (B) 

25.51*** 4.25** 4* 

DTN of drugs effective in 

schizophrenia (B) and 

contraindicated in Parkinson's 
disease (A) 

156.68*** 103.63** 7.87* 

 

 

3.4 Biological pathways and drug target networks 

 
We identified the pathway associations of the DTNs using the gene set analysis toolkit called 

WebGestalt [34]. WebGestalt computes statistical significance enrichment of a functional group (e.g., a 

Reactome pathway) in an input gene list using Fisher's exact test using the Benjamini-Hochberg 

method for multiple test adjustment. For each of the 6 disease pairs, a data matrix of DTNs (columns) 

versus Reactome pathways (rows) containing corresponding enrichments was used as inputs for PCA, 

and the Euclidean distance between the PC scores of each of the DTNs across all the extracted axes 

and the corresponding component loading values of all the pathways across these axes were computed. 

For each of the disease pairs, we retrieved the top-10 pathways closest to each of the DTNs 
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out of all the pathways enriched in the DTNs (Additional Files 5-10: Figures S1-S6). Confirming our 

earlier suspicions, we noted that disease A DTN classes without contraindications in disease B were 

nearest to pathways possibly underlying both the diseases or uniquely associated with B, which are 

similarly regulated, i.e. upregulated or downregulated together, in the two comorbid diseases. On the 

other hand, disease A DTN classes with contraindication in disease B were nearest to pathways 

underlying both the diseases or unique to disease A that are differentially regulated, i.e. upregulated in 

one disease and downregulated in the other or vice versa. 

 

Figure 3: Pathways associated with the target networks of anxiety and depression drugs. The 

component loading values shown in the figure correspond to component scores of 4 drug target 

networks (DTNs) of anxiety and depression along PC1 and PC2, which explain 41.6% and 33.1% 

of the total variance respectively. The top-10 pathways that appeared to be highly related to each 
of the 4 DTNs, which were obtained after computing the Euclidean distance between the 

component loading values and the component scores, are shown as square-shaped data points for 

the DTN of drugs effective in anxiety and not contraindicated in depression, diamond-shaped data 

points for the DTN of drugs effective in depression and not contraindicated in anxiety, triangle-

shaped data points for the DTN of drugs effective in anxiety and contraindicated in depression and 

cross-mark-shaped data points for the DTN of drugs effective in depression and contraindicated in 

anxiety. ‘G α(12/13) signaling events’ and ‘muscarinic acetylcholine receptors’ shown here are 

among the top-10 pathways associated with anti-anxiety drugs that are not contraindicated in 

depression. The drug maprotiline shown in Fig. 4 corroborates this by showing antagonistic 

activity on adrenergic and muscarinic acetylcholine receptors. Similarly, serotonin receptors are 
associated with anti-depressants that are not contraindicated in anxiety; flupentixol and 

mirtazapine corroborate this by showing antagnostic activity on serotonin receptors. 
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Figure 4: Network diagram showing the relationship between the targets of 

maprotiline, flupentixol and mirtazapine, and genes associated with anxiety and 

depression. The different families of receptors and transporter proteins targeted by 

maprotiline, flupentixol and mirtazapine and their interactions with the proteins encoded 

by anxiety (disease A) and/or depression (disease B) associated genes have been shown. 

Note that maprotiline (an anti-anxiety (disease A) drug not contraindicated in depression 

(disease B)) targets a higher number of proteins associated uniquely with depression in 

the adrenergic, serotonergic and cholinergic systems, which is in line with our 

observation that disease A drugs that are not contraindicated in disease B are closely 

associated with proteins uniquely found in the disease B network (i.e. depression in this 

specific example). Serotonin receptors  were found to be associated in our analysis with 

depression drugs not contraindicated in anxiety; antagonistic activity on serotonin 

receptors is shown by two such drugs shown in the diagram (flupentixol and 

mirtazapine). 

 

 

G alpha (12/13) signalling events’ and ‘muscarinic acetylcholine receptors’ were identified among the 

top-10 pathways that were close to anxiety drugs not contraindicated in depression in our study (Fig. 3). 

Adrenergic receptor signalling could be regulated via G α(12/13); Gα12 and Gα13 have been shown to 

mediate alpha-1 adrenergic receptor-induced JNK activation in rat cardiomyocytes [65]. The  drug 

maprotiline was among our list of anxiety drugs without contraindications in depression (Fig. 

4). Corroborating this, clinical data suggested that the drug is effective in alleviating anxiety symptoms 

co-occurring with depression [66]. Maprotiline acts an inhibitor of SLC6A2 (sodium- dependent 

noradrenaline transporter) and inhibits noradrenaline reuptake in the brain. It also acts as an 
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antagonist to alpha-1 adrenergic receptors (ADRA1A, ADRA1B and ADRA1D) and alpha-2 

adrenergic autoreceptors and heteroreceptors (ADRA2A, ADRA2B and ADRA2C), and enhances central 

noradrenergic and serotonergic functions, which have been linked to alleviation of anxiety and 

depression [67]. Maprotiline also acts as a weak antagonist to muscarinic acetylcholine receptors 

(CHRM1, CHRM2, CHRM3, CHRM4 and CHRM5); enhanced cholinergic signaling has been linked to 

both anxiety and depression [68]. It is notable that maprotiline targets a higher number of proteins 

associated uniquely with depression (ADRA2A, HTR2C, SLC6A2 and CHRM2) in the adrenergic, 

Figure 5: Pathways associated with the target networks of Parkinson’s disease and 

schizophrenia drugs. The component loading values shown in the figure correspond to component 

scores of 4 drug target networks (DTNs) of Parkinson’s disease (PD) and schizophrenia (SCZ) 
along PC1 and PC2, which explain 47.3% and 38.2% of the total variance respectively. The top-10 
pathways that appeared to be highly related to each of the 

4 DTNs, which were obtained after computing the Euclidean distance between the component 
loading values and the component scores, are shown as square-shaped data points for the DTN of 

drugs effective in PD and not contraindicated in SCZ, diamond-shaped data points for the DTN of 

drugs effective in SCZ and not contraindicated in PD, triangle-shaped data points for the DTN of 

drugs effective in PD and contraindicated in SCZ and cross-mark- shaped data points for the DTN 

of drugs effective in SCZ and contraindicated in PD. Dopamine receptors are among the top-10 

pathways associated with PD drugs contraindicated in SCZ. Corroborating this, the drugs levodopa 

and ropinirole shown in Fig. 6 stimulate dopaminergic receptors to alleviate Parkinsonian 

symptoms, but at the risk of inducing a hyperdopaminergic state conducive to the SCZ 

development. 

 

 

serotonergic and cholinergic systems (Fig. 4). It targets only one receptor associated with both anxiety 

and depression (HTR2A), and no gene uniquely associated with anxiety (Fig. 4). These observations 

are in line with our findings with the overlap of DTNs with disease subnetworks, i.e. DTNs of disease A 

drugs that are not contraindicated in disease B (e.g. maprotiline) are closely associated with proteins 

uniquely found in the disease B network (i.e. depression in this specific example). Since 



  

279  

maprotiline has been discontinued from usage since 2020 in U.S. [69], note that we are citing this 

drug only as a demonstrative example. Drugs acting on the serotonergic system is known to be 

effective in both short-term and long-term treatment of patients with major depressive disorder and 

anxiety disorders [70]. ‘Serotonin receptors’ was identified among the top-10 pathways that were close 

to depression drugs not contraindicated in anxiety (Fig. 3). This may suggest the broad- spectrum 

efficacy of drugs acting on serotonin receptors in both the conditions. Two such drugs in our study 

displayed antagonistic activity on serotonin receptors – flupentixol [71] and mirtazapine [72] (both 

acting on HTR2A and HTR2C) – and have been used to treat depression accompanied by anxiety 

symptoms (Fig. 4). 

 

Figure 6: Network diagram showing the relationship between the targets of levodopa and ropinirole and 

genes associated with Parkinson’s disease and schizophrenia. The specific dopamine receptors targeted by 

levodopa, ropinirole and flupentixol and their interactions with the proteins encoded by Parkinson’s disease 

and/or schizophrenia associated genes have been shown. Note that levodopa and ropinirole are used in the 

treatment of Parkinson’s disease (disease A), but contraindicated in schizophrenia (disease B), and flupentixol is 

used in the treatment of schizophrenia, but contraindicated in Parkinson’s disease. Note that levodopa and 

ropinirole target a higher number of dopamine receptors associated uniquely with Parkinson’s disease, which 

supports our finding that disease A drugs that are contraindicated in disease B are closely associated with proteins 

uniquely found in the disease A network (i.e. Parkinson’s disease in this specific example). 

 

The pathway ‘dopamine receptors’ was found to be close to PD drugs contraindicated in SCZ (Fig. 5), 

indicating that the enhancement in dopamine levels brought about by PD drugs may in fact induce 
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SCZ, which has been linked to a hyperdopaminergic state [57]. The dopamine agonists belonging to this 

group of PD drugs have been shown to induce psychosis, namely, levodopa (acting on DRD1, DRD2, 

DRD3, DRD4 and DRD5) and ropinirole (DRD2, DRD3 and DRD4) (Fig. 6) [73, 74]. It is notable 

that levodopa and ropinirole target a higher number of dopamine receptors associated uniquely with 

Parkinson’s disease (DRD1 and DRD2) (Fig. 6). It targets only one dopamine receptor (DRD3) uniquely 

associated with schizophrenia (Fig. 6). These observations are in line with our findings with the 

overlap of DTNs with subnetworks, i.e. DTNs of disease A drugs that are contraindicated in disease B 

(e.g. levodopa and ropinirole) are closely associated with proteins uniquely found in the disease A 

network (i.e. Parkinson’s disease in this specific example). 

3.5 Tissues and drug target networks 

 
Using RNA-sequencing data of 53 postnatal human tissues obtained from GTEx [36] (version 8), we 

attempted to identify whether the four DTN classes showed any tissue-specific patterns. Genes with 

high/medium expression (transcripts per million (TPM) ≥ 9) in these 53 tissues, which were not 

housekeeping genes (as per the Human Protein Atlas [37]), were considered. For DTNs of each disease 

pair, we computed the distribution of genes expressed in a specific tissue among the DTN genes and 

compared it with the background distribution of genes expressed in this tissue among all the genes that 

were assayed for expression in any of the 53 tissues. We generated a data matrix of DTNs (columns) 

versus tissues (rows) containing the negative of log-transformed p-values and performed PCA with this 

matrix as the input. We calculated the Euclidean distance between the PC scores of each of the DTNs 

and the component loading values of all the tissues. For each of the disease pairs, we retrieved the top-

10 tissues that were nearest to the four DTNs (Additional Files 11- 16: Figures S7-S13). Following this, 

we employed the tissue-specific enrichment analysis database (TSEA-DB)[38] to retrieve the top-3 

tissues that may be preferentially affiliated with the diseases in each of the pairs. TSEA-DB is a 

reference database for information on disease-associated tissues, specifically, the tissues in GTEx that 

show significant enrichment of genes harbouring diseases- associated variants compiled from the 

GWAS catalog [38]. We checked whether the top-3 tissues associated with each of the diseases in a 

disease pair (according to TSEA-DB) appeared among the list of tissues identified to be nearest to each 

of the 4 DTNs pertaining to this disease pair in our analysis. Out of the 11 tissues identified to be closer 

to the target networks of drugs used for a specific disease and not contraindicated in a comorbid 

condition, 6 were found to be associated with the comorbid condition as per TSEA-DB, whereas 3 

were associated with the specific disease for which the drugs were used and 2 were associated with the 

disease as well as the comorbid condition. 

Conversely, out of the 9 tissues identified to be closer to the target networks of drugs used for a 

specific disease and contraindicated in a comorbid condition, 5 were found to be associated with the 
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specific disease, whereas 3 were associated with the comorbid condition in which the drugs were 

contraindicated and one was associated with the disease as well as the comorbid condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Tissues associated with the target networks of anxiety and depression drugs. The 

component loading values shown in the figure correspond to component scores of 4 DTNs of 

anxiety and depression along PC1 and PC2, which explain 90.7% and 6.5% of the total variance 

respectively. The tissues that were exclusively associated with each of the 4 DTNs among the top-

ten tissues that were identified to be highly related to the DTNs, after computing the Euclidean 

distance between the component loading values and the component scores, are shown as square-

shaped data points for the DTN of drugs effective in anxiety and not contraindicated in depression, 
diamond-shaped data points for the DTN of drugs effective in depression and not contraindicated 

in anxiety, triangle-shaped data points for the DTN of drugs effective in anxiety and contraindicated 

in depression and cross-mark-shaped data points for the DTN of drugs effective in depression and 

contraindicated in anxiety. The tissues shown in circular and rectangular boxes were also identified 

to be highly specific to anxiety and depression respectively by TSEA-DB (due to a significant 

enrichment of anxiety/depression-associated variants). Note that adrenal cortex, which was 

identified to be associated with anti-anxiety (disease A) drugs that are not contraindicated in 

depression (disease B), is a tissue enriched with depression (i.e. disease B) associated variants. This 

corroborates our finding that disease A drugs that are not contraindicated in disease B are affiliated 
with disease B-specific tissues. 

 

 

These percentages obtained with a low number of tissues suggest cautious interpretation. Nevertheless, 

these results seem to corroborate our previous findings with disease subnetworks and biological 

pathways. Specifically, the networks of disease A drugs that are not contraindicated for disease B 

seemed to be nearest to tissues preferentially affiliated with disease B. This could indicate that these 

tissues could be equally important to the pathophysiology of disease A and its therapeutic alleviation 

(as they might be to these same aspects of disease B), despite showing a high enrichment for genes 

harbouring disease B-associated variants. For example, the adrenal gland was detected as a tissue highly 

specific to depression by TSEA-DB. In our analysis, this tissue appeared to be nearest to 
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the DTN of anxiety drugs that were not contraindicated in depression (Fig. 7), indicating that targeting 

of the adrenal gland may be vital to treat anxiety without aggravating comorbid depressive symptoms. 

The adrenal gland is an organ in the endocrine system that secretes the cortisol hormone, following the 

activation of the hypothalamic-pituitary-adrenal (HPA) axis by psychological stressors [75]. Several 

studies support the role of the adrenal gland as a focal point for depression. The adrenal gland exhibits a 

70% increase in its volume in depressed individuals before successful anti-depressant treatment as well 

as in comparison with their matched controls [76, 77]. The cortisol hormone secreted by the adrenal 

gland, upon stress-induced activation of the HPA axis, has been linked to depressive symptoms in 

humans and monkeys. Increased cortisol levels have been positively correlated with depressive 

behaviour in rhesus macaques [78]. Enhanced cortisol secretion has been observed in depressive 

individuals [79], and has been proposed to (a) increase susceptibility to depression [80] and (b) be 

correlated with the stress experienced by depressed individuals [81]. 

Hyperactivation of the HPA axis has been noted in generalized anxiety disorder [82]. Treatment with 

selective serotonin reuptake inhibitors (SSRIs) has been shown to reduce HPA hyperactivity in both 

depressed patients and patients with generalized anxiety disorder [83-85]. Therefore, it is possible that 

anti-anxiety drugs that do not aggravate depressive symptoms target the adrenal gland, which produces 

the cortisol hormone, an effector or ‘endpoint’ of the HPA axis that seems to be regulated in a similar 

manner in depression as well as anxiety. We performed comparative transcriptome analysis of disease-

associated, tissue-associated and drug-induced gene expression profiles using the BaseSpace 

Correlation Engine to analyse this hypothesis. BaseSpace Correlation Engine software suite is a data 

analysis platform that is used to study the effect of diseases and drugs on publicly available gene 

expression data [86]. 

As mentioned in the previous section, maprotiline was found among our list of anti-anxiety drugs that are 

not contraindicated in depression; clinical data supports its utility in the treatment of anxiety symptoms 

associated with depression [66]. The differential gene expression (DGE) profile induced by maprotiline 

(12.8 µM) in PC3 cells (Broad Connectivity Map (CMAP 2.0) [39]) was negatively correlated with the 

profile identified in the blood samples of patients with major depressive disorder patients (MDD) with 

generalized anxiety disorder (GAD) versus MDD patients without GAD (GSE98793 [40]) (Fig. 8a). 

This negative correlation of maprotiline with MDD/GAD could illustrate the fact that drugs administered 

to treat diseases often revert the expression of perturbed disease- associated genes to their normal 

levels [87, 88]. Secondly, the MDD/GAD profile was negatively correlated with the expression profile 

of adrenal gland cortex (Fig. 8a), indicating that this tissue could be critical to disease alleviation. 

Maprotiline-induced DGE profile was positively correlated with the profile of adrenal gland (Fig. 8a), 

indicating that maprotiline-mediated MDD/GAD alleviation may be dependent on adrenal gland, i.e. the 

reversal of MDD/GAD-associated expression 
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profile induced by maprotiline could occur in the adrenal cortex. We then asked whether the genes 

differentially expressed in each of these profiles converged on a common set of biological processes. 

Specifically, we identified the top-10 Gene Ontology (GO) biological processes enriched among the 

genes differentially expressed in (i) MDD/GAD versus maprotiline (in different directions), (ii)  

MDD/GAD versus adrenal cortex (in different directions) and (iii) maprotiline versus adrenal cortex (in 

the same direction). We then used the web-based tool called NaviGO [89] to group these 30 enriched 

biological processes into functionally cohesive networks based on semantic similarity measures of GO 

terms. Two such functional networks not only had top-scoring edges between the GO terms, but also 

contained GO terms enriched among all the three differential expression profiles (Fig. 8b, c). One 

network contained four GO terms associated with protein folding (Fig. 8b), and another network 

contained eleven GO terms representing cell cycle events (Fig. 8c). Interestingly, ‘protein 

Figure 8: Relationship between MDD/GAD, maprotiline and adrenal cortex at transcriptomic and 

biological process levels. (a) Correlation of differential gene expression profiles associated with a comorbid 

condition (major depressive disorder and generalized anxiety disorder), a drug (maprotiline) and a tissue (adrenal 

cortex). –log10(p-values) indicating the overlap of the expression profiles have been shown; red and green colors 

indicate negative and positive correlations between the profiles respectively. Significant overlap was found 

among the genes that are upregulated in patients with both major depressive disorder (MDD) and generalized 

anxiety disorder (GAD) and downregulated on treating PC3 cells with maprotiline (p-value = 7.4E-06), among 
the genes that are upregulated in MDD/GAD patients and downregulated in adrenal cortex (p-value = 8.4E-28), 

and among the genes that are downregulated on treating PC3 cells with maprotiline and downregulated in adrenal 

cortex (p-value = 0.034). (b, c) The functional networks of the Gene Ontology biological processes related to 

(b) protein folding and (c) cell cycle events that were enriched in the three expression profiles. The GO terms 

associated with each of the expression profiles have been shown using different node colors. The thickness of the 

edges corresponds to the Resnik semantic similarity score for GO terms (greater the thickness of the edges, 

greater is the similarity between the linked GO terms). 

folding’, ‘cyclin D associated events in G1’ and ‘G1 phase’ were independently retrieved among our 

top-10 Reactome pathways found to be nearest (in terms of Euclidean distance) to the DTN of anti- 

depressants that are not contraindicated in anxiety. Together, these results suggest that adrenal cortex 
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may be preferentially targeted by drugs such as maprotiline that produce beneficial effects in anxiety as 

well as in depression, and that their actions may converge on protein folding and cell cycle processes. 

Note that maprotiline has been discontinued from usage [69] and is only being cited here as a 

demonstrative example.  

On the other hand, the networks of disease A that are contraindicated for disease B seemed to be 

nearest to tissues preferentially affiliated with disease A. This could indicate that these disease A- 

specific tissues may play a role in producing beneficial effects in disease A, while producing 

deleterious effects in disease B. For example, spleen was detected as a tissue highly specific to 

rheumatoid arthritis. The primary functions of this lymphoid organ are blood filtration, recycling of 

iron from old blood cells and generation of adaptive immune responses against bacterial, fungal and 

viral infections [90]. However, spleen has also been shown to act as a reservoir of osteoclast precursor 

cells, which upon resorption into bones, differentiate into osteoclasts.[91] Splenomegaly (enlargement of 

the spleen) has been noted in 5-10% and 52% of rheumatoid arthritis patients in separate studies (based 

on physical examination and imaging studies respectively) [92-94]. Rheumatoid arthritis patients are 

also prone to developing spontaneous splenic ruptures [95]. In our analysis, spleen was identified to be 

nearest (in terms of Euclidean distance) to the DTN of rheumatoid arthritis drugs that were contraindicated 

in osteoporosis (Fig. 9). This seemed to indicate that spleen mediated opposite effects in rheumatoid 

arthritis and osteoporosis. Anecdotal evidence seemed to support this conjecture. While splenectomy 

seemed to improve rheumatoid arthritis in a patient [96], it seemed to inhibit (a) attenuation of 

osteoporosis in a rat model [97] and (b) fracture healing in patients [98]. 

Table 5 summarizes the general conclusions of our study. We discovered that the DTNs of disease A drugs 

that are not contraindicated for a disease B may be nearest (in terms of Euclidean distance) to 

(a) proteins that are either uniquely found in the PPI network of disease B or shared between the PPI 

networks of disease A and disease B, (b) biological pathways that are associated with B or are 

commonly active in both the diseases, and are regulated in the same direction in both the diseases and 

(c) tissues showing a high enrichment of disease-B associated variants and thereby preferential 

affiliation with the etiology of disease B, while also being important to the pathophysiology and 

treatment of disease A (Table 5). On the other hand, disease A drugs that are contraindicated for a 

disease B may be nearest to (a) proteins that are either uniquely found in the PPI network of disease A or 

are shared between the PPI networks of disease A and disease B, (b) biological pathways that are 

associated with disease A or are commonly active in both the diseases, and are regulated in an 
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opposing manner in both the diseases and (c) tissues showing a high enrichment of disease A- associated 

variants and thereby preferential affiliation with the etiology of disease A, and mediating opposing effects in 

disease A and disease B (Table 5). 

 

 
 

Figure 9: Tissues associated with the target networks of rheumatoid arthritis and osteoporosis drugs. 

Component loading values of 39 tissues associated with the drug target networks (DTNs) of rheumatoid arthritis 

(RA) and osteoporosis to PC1 and PC2 have been plotted along the X and Y axes respectively. PCA was performed 
with the p-values of enrichment of the tissues significantly associated (p-value < 0.05) with the DTNs of RA and 

osteoporosis. These values were transformed to –log10P values, which were then assembled into a data matrix 

containing tissues as rows and DTNs as columns. Unit variance scaling was applied across this matrix. Single 

value decomposition (SVD) with imputation was used to extract the principal components (PCs). The component 

loading values shown in the figure correspond to component scores of 4 DTNs along PC1 and PC2 that explain 

89% and 6% of the total variance respectively. The tissues that were exclusively associated with each of the 4 

DTNs among the top-ten tissues that were identified to be highly related to the DTNs, after computing the 

Euclidean distance between the component loading values and the component scores, are shown as square-shaped 

data points for the DTN of drugs effective in RA and not contraindicated in osteoporosis, diamond-shaped data 
points for the DTN of drugs effective in osteoporosis and not contraindicated in RA, triangle-shaped data points 

for the DTN of drugs effective in RA and contraindicated in osteoporosis and cross-mark-shaped data points for 

the DTN of drugs effective in osteoporosis and contraindicated in RA. The tissues shown in circular and 

rectangular boxes were also identified to be highly specific to RA and osteoporosis respectively by TSEA-DB (due 

to a significant enrichment of RA/osteoporosis-associated variants). Note that spleen, which was identified to be 

associated with rheumatoid arthritis (disease A) drugs that are contraindicated in osteoporosis (disease B), is a 

tissue enriched with rheumatoid arthritis (i.e. disease A) associated variants. This corroborates our finding that 

disease A drugs that are contraindicated in disease B are affiliated with disease A-specific 

 

Table 5: Disease network, pathway and tissue-level characterization of drugs that are 

contraindicated/not contraindicated in comorbid conditions. A ✓ has been used to indicate the 
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close affiliation of a specific category of drug target network with specific disease protein sets, 

disease-associated pathways and tissues. 

 

Drug target 
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 ✓ 
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✓  ✓  
 

✓  ✓  
 

 

 
3. Discussion 

 
Despite the increased prevalence of adverse drug reactions in comorbidities, knowledge on the 

mechanistic basis of drug contraindications in such conditions is limited. In our study, we attempted to 

characterize the biological profiles of the target networks of drugs used in specific diseases that are either 

contraindicated or not contraindicated in a comorbid disease. We sought to provide an integrated 

interactome, pathway and tissue level view of the drug target networks. 

The first key finding in our study was that the relative risk of comorbidity between diseases was 

proportional to their network similarity measures (Fig. 2). The four network similarity measures along 

with the relative risk were low in the case of our three negative control pairs, namely, Multiple 

sclerosis – Peroxisomal disorders, Schizophrenia – Rheumatoid arthritis, and Asthma – Schizophrenia. 

This confirmed that these were indeed non-comorbid pairs. The network similarity measures and 

relative risk were higher in the case of Anxiety – Depression, Asthma – Hypertension, Chronic 

obstructive pulmonary disorder – Heart failure, Type 2 diabetes – Obesity, Rheumatoid arthritis – 

Osteoporosis, and Parkinson's disease – Schizophrenia, confirming that they were comorbidities. 

However, these measures do not follow the same trend in the case of the comorbid pairs. The higher 

relative risks of Rheumatoid arthritis – Osteoporosis and Parkinson's disease – Schizophrenia 

(compared with the other comorbid pairs) were not accompanied by a corresponding increase in the 

network similarity measures. Several factors may explain these variations in our analysis. Firstly, it has 

been shown that relative risk overestimates the comorbid associations between rare diseases and 

underestimates the associations between highly prevalent diseases [43]. The number of cases in the 

HuDiNe database for Rheumatoid arthritis – Osteoporosis and Parkinson’s disease – Schizophrenia are 

24629 and 5439 respectively, which can be classified as rare occurrences when 
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compared with the other comorbid pairs. Additional File 17: Figure S14 shows the relationship of the 

relative risks of the nine pairs of diseases with the individual prevalence of the diseases and the 

prevalence of the disease pairs as comorbidities. Secondly, the human interactome is a progressively 

developing network with ~85% remaining to be discovered. Therefore, the inherent incompleteness of 

the human PPI network, sampling biases introduced as a result of the selective discovery of PPIs, and the 

tendency of such incomplete networks to exhibit small overlaps [60] could have led to the 

underestimation of the network overlaps. Our second key finding was that druggable proteins were 

highly enriched among the proteins shared between the networks of two comorbid diseases (Table 2). 

Based on these results, we speculated that drug action on targets shared between the two diseases may 

give rise to contraindications in comorbidities. Interestingly, this hypothesis was only partially 

supported in our study. 

The major finding in this respect was that the target network of the drugs used in the treatment of a 

specific disease A and contraindicated in a comorbid disease B showed preferential affiliation to 

proteins shared between the PPI networks of both the diseases or proteins uniquely found in the PPI 

network of the disease A, pathways shared by the two diseases or pathways associated with the disease 

A and tissues specifically associated with disease A (Table 5). As explained before, this was contrary to 

our hypothesis that these target networks would be preferentially affiliated with common mechanisms 

underlying the two diseases. This hypothesis was based on the assumption that adverse events stem 

from drugs inducing opposite pharmacological effects in comorbid diseases by targeting effectors that are 

shared between the two diseases. However, our findings indicate that mechanisms underlying the 

pathology of disease A may contribute to contraindications in the comorbid disease B. Although further 

studies are required to examine the basis of this finding, it seems to indicate that the possibility of 

contraindications may be high when disease A drugs are highly specific to disease A in terms of the 

targeted PPI network, pathway and tissue. Instead, rational drug development should take into account 

the causative and correlational influences of the other comorbid conditions (disease B) that co-exist 

with disease A. 

The target network of the drugs used in the treatment of a specific disease A and not contraindicated in 

a comorbid disease B showed preferential affiliation to proteins shared between the PPI networks of 

both the diseases or proteins uniquely found in the PPI network of the comorbid disease B, pathways 

shared between the two diseases or pathways associated with the comorbid disease B and tissues 

specifically associated with the comorbid disease B (Table 5). This was contrary to our expectation 

that these target networks would be preferentially affiliated with biological modalities pertaining to 

disease A. This conjecture was based on the assumption that for a drug to be specifically active against a 

specific disease A without aggravating a comorbid disease B, it had to reverse the 
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phenotypes specifically associated with disease A. In this model, phenotypes of disease B were 

considered as ‘off-targets’ in line with the principles of conventional pharmacology, in which  

unintended effects of the drugs were attributed to interaction with pathways that may not be 

consequential to the pathology of disease A (i.e. pathways relevant to disease B) [13]. Our findings on 

the contrary indicate that the mechanisms underlying the pathology of the comorbid disease B may 

contribute to the therapeutic alleviation of disease A. Although further investigations may be necessary 

to dissect the basis for this observation, it is possible that an etiological association between the two 

diseases may cause their emergence or development to be interdependent. Specifically, future studies 

should concentrate on 3 etiological models of comorbidity [99], namely, the direct causation model, the 

associated risk factors model and the heterogeneity model. Disease B could be directly responsible for 

causing disease A in the ‘disease causation model’. The comorbidity of disease A and disease B may 

arise from the correlation of the risk factors of disease B with the risk factors of disease A in the 

‘associated risk factors model’. On the other hand, comorbidity in the ‘heterogeneity model’ may arise 

not from the correlation of the risk factors associated with disease A and disease B, but from the 

capacity of the risk factors of disease A to cause disease B and vice versa. On applying the disease 

causation model to our findings, one may speculate that drugs targeting the proteins uniquely found in 

the disease B PPI network, and the pathways and tissues associated with disease B may alleviate 

disease A without aggravating disease B. The associated risk factors and heterogeneity models in this 

scenario would imply that the risk factors of disease B would influence the development of disease A 

directly, or through correlation with the risk factors of disease A. This model can be illustrated for 

genetic risk factors of disease B with the capacity to influence disease A. For example, the alterations in 

such genes would have led to pathway perturbations in specific tissues, which if counteracted by the 

drugs, may lead to alleviation of disease A. 

Despite disease A drugs contraindicated in disease B and disease A drugs not contraindicated in 

disease B showing preferential affiliation with disease A and disease B respectively, it was clear, at least 

in the case of the drug target and disease network analysis, that both these categories also showed 

affiliation with proteins shared between the two diseases (Table 5). This is in line with the speculation 

that both beneficial and adverse outcomes of drug treatment may arise from shared effectors and 

pathways, and that it may be difficult to delineate the separate mechanisms underlying the two outcomes 

[13]. Future analysis should focus on biological variables with the potential to differentially affect the 

functions of such shared proteins, specifically their cellular, pathway and tissue landscapes. 

Our current approach has some limitations. Firstly, our study is based on 6 pairs of diseases that were 

selected based on literature survey. Ideally, future studies must be expanded to include all the known 
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pairs of comorbid disorders. Secondly, our analysis did not take the overlaps among the drug target 

networks into account; this would have allowed us to identify the network configurations of disease A 

– disease B – disease A drug not contraindicated in disease B – disease B drug not contraindicated in 

disease A. Secondly, although we were able to support our findings by citing evidence based on the 

known clinical activity of specific drugs, further investigations with the six comorbid disease pairs are 

essential to confirm the validity of our findings. These should focus on large-scale analysis of patient 

treatment data collected from observational studies and functional assays in animal models of human 

comorbidities. 

In summary, our findings suggest that studies driven by biological modalities that influence comorbidities, 

such as disease PPI networks, pathways and tissue-specificity, are essential for rational drug development 

and minimization of adverse events. The results from our study have therapeutic applications and may 

directly benefit future assessments of drug contraindications in individuals with comorbidities. 

4. Conclusions 

 
We observed that the target networks of disease A drugs that were not contraindicated in disease B were 

mostly affiliated with the disease B network, and pathways and tissues associated with disease 

B. On the other hand, the target networks of disease A drugs that were contraindicated in disease B 

were affiliated with the disease A network, and pathways and tissues associated with disease A. This 

could indicate that etiological associations between the two diseases could play an active role in their 

therapeutic alleviation. In summary, our findings suggest that the enrichment patterns of drug target 

networks in pathways, tissues and the PPI networks of comorbid diseases will help identify drugs 

with/without contraindications in comorbidities. 
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11. General discussion 

The discovery of concepts and technologies with increased capacity to explain the complexity of 

human diseases and therapeutics gradually led to the emergence of network biology in the early 

2000s. Subsequently, network biologists focused on elucidating the organizational principles of 

disease-associated genes and drug targets in the human interactome and their implications on 

higher phenomena such as cross-disorder relationships and drug interactions (Barabási et al., 2011, 

Barabasi and Oltvai, 2004, Yıldırım et al., 2007, Cheng et al., 2019, Ulitsky and Shamir, 2007, Kelley 

and Ideker, 2005, Paci et al., 2021, Goh et al., 2007, Hidalgo et al., 2009, Costanzo et al., 2016). 

Although the studies conducted thus far have led to significant advancements in network biology, 

there are five critical issues highlighted in section 1.4 (Fig. 7) that have remained unaddressed by 

these studies and subsequent research (Sharma et al., 2015a, Sharma et al., 2018, Sun et al., 2009, 

Sakai et al., 2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a). These issues 

include the lack of an integrated conceptual framework that incorporates network formalisms to 

examine interactomes, insufficient exploration of interactomes leading to a scarcity of biological and 

clinical insights from network biology studies (Sun et al., 2009, Sharma et al., 2015a, Sharma et al., 

2018, Sakai et al., 2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a), the 

failure to consider the biological contexts of molecular interactions (Goh et al., 2007, Hidalgo et al., 

2009), inadequate addressing of the sparseness of the human interactome (Kotlyar et al., 2015, Hopf 

et al., 2014, Emamjomeh et al., 2014a, Garzón et al., 2016, You et al., 2013, Jia et al., 2015, Li and 

Ilie, 2017, Deng et al., 2003, Raja et al., 2013) and the necessity to develop methods for establishing 

correlational relationships between disease interactomes and DTNs (Goh et al., 2007, Cheng et al., 

2019). The interactomic framework proposed in this thesis provides a comprehensive approach to 

overcome these limitations. 

 

First, this framework assembles a comprehensive set of analytical methods in the form of a standard 

pipeline to examine disease interactomes and DTNs. The network-based frameworks proposed in 

previous studies focused solely on identifying the local neighbourhoods of disease-associated genes 

using topological parameters of the human interactome alone (Sharma et al., 2015a, Sharma et al., 

2018) or in combination with real-world datasets (Sun et al., 2009), such as differential expression 

profiles in patients, and validating the identified disease modules by demonstrating their enrichment 

for disease-associated biological modalities (Sharma et al., 2015a, Sharma et al., 2018, Sun et al., 

2009). These frameworks did not provide novel actionable biological information. Other research 

groups only employed parts of these frameworks to characterise the network modules of other 

diseases (Sakai et al., 2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a). As 

such, the frameworks, in their entirety, remained unused in the context of other disorders. 

Additionally, although one of these frameworks attempted to examine the overlap of the disorder of 

interest with other related disorders in the interactome (Sharma et al., 2015a), this characterization 

was limited to finding a shared sub-network and the biological processes underlying this sub-

network. It did not involve a comprehensive assessment of the common sub-network, the sub-

networks unique to each disease, the various biological factors influencing their common aetiology, 

and their etiological diversification. This thesis addressed these shortcomings by proposing a unified 

framework containing two separate modules that will help analyse disease interactomes and DTNs 

individually and in relation to one another. 

 

Second, the pipeline helped derive critical insights into disease biology and reposition existing drugs 
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for new therapeutic uses. Third, the framework proposed novel approaches to extract higher-level 

cross-disorder and cross-DTN relationships, which led to significant biological and clinical insights. In 

the upcoming two sections, I discuss the wealth of biological insights into individual disorders 

(section 11.1) and higher-level cross-disorder relationships (section 11.2) generated using the 

pipeline. Following this, I discuss the repurposable drugs identified from individual disease 

interactomes (section 11.3) and the factors underlying drug action elucidated from examining cross-

DTN relationships (section 11.4). Fourth, the integration with disease-associated multi-omics 

datasets allowed the identification of context-sensitive interactomes and demonstrated the validity of 

the interactome as a data integration model (section 11.5). Lastly, the framework circumvented the 

sparsity of the interactomes by adding computationally predicted PPIs (section 11.6).  

 

11.1 Towards a better understanding of complex disease biology: the interactomic framework 

provided novel insights into the mechanisms underlying multiple disorders 

In Chapters 2-7, explorative analyses using the framework helped gain new insights into a specific 

subtype of a congenital heart disease, two rare cancers, two viral infections, a skeletal disorder, and 

several neurological and neuropsychiatric disorders (Fig. 15). The successful implementation of the 

framework across these six classes of diseases demonstrates its potential generalizability to other 

specific disorders and disorder classes in the future.  

 

Figure 15: The biological insights gained into the mechanisms of multiple disorders using the 
interactomic framework. The main findings from the analysis of the following interactomes have 
been listed in the boxes: the interactome of hypoplastic left heart syndrome, a congenital heart 
disease subtype (Chapter 3), malignant pleural and peritoneal mesotheliomas (Chapter 4 and 
Chapter 5), the host proteins targeted by SARS-CoV-2, the causative agent for COVID-19 (Chapter 
6), genes associated with the skeletal disorder Sedaghatian type spondylometaphyseal dysplasia or 
phenotypically/aetiologically related disorders and its causative gene GPX4 (Chapter 7) and finally 
multiple neurological and psychiatric disorders (Chapter 2). The figure was created in Microsoft 
PowerPoint. 
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11.1.1 Insights into the biology of a heart disease 

Hypoplastic left heart syndrome or HLHS is a complex congenital heart disease affecting 1 in 5,000 

newborns (Gobergs et al., 2016). It manifests as underdevelopment of the structures on the left side 

of the heart, namely, atresia or critical stenosis of the mitral or aortic valves and hypoplasia of the left 

ventricle, ascending aorta, and aortic arch (Gobergs et al., 2016). Until 30 years ago, infants born 

with this condition died within the first few weeks of life, and HLHS accounts for 23% of the deaths 

occurring in the first week of life due to cardiac abnormalities (Gobergs et al., 2016, Šamánek et al., 

1989). Surgical palliative techniques and post-operative care have significantly improved survival, 

with 60-70% of HLHS neonates surviving for at least five years following repair (Hamzah et al., 2020, 

d’Udekem et al., 2014, Alsoufi et al., 2015). However, mortality is highest in the first year of life, with 

30% of infants dying or requiring a heart transplant before they are one year old (Siffel et al., 2015). 

The interactomic framework helped address a key issue pertaining to HLHS biology.  

 

HLHS likely has a strong genetic basis and could have a multigenic aetiology, as indicated by its high 

familial aggregation with other left ventricular outflow tract obstructive defects and evidence from a 

large-scale mutagenesis screen in mice (McBride et al., 2009) and clinical studies (McBride et al., 

2005). Exome sequencing studies (Zaidi et al., 2013) and studies involving genome sequencing and 

genome-wide screening by comparative genomic hybridization helped identify HLHS-associated 

variants (Theis et al., 2021, Reuter et al., 2020, Verma et al., 2016, Gill et al., 2009, Theis et al., 

2020, Homsy et al., 2015). However, despite the recovery of genes associated with HLHS, an 

integrative approach to elucidate their functional consequences is still lacking. Chapter 3 details the 

discovery and analysis of a cohesive HLHS interactome seeded by more than 70 HLHS-associated 

genes discovered in mutant mouse models (Liu et al., 2017, Li et al., 2015). It provided crucial 

insights into the comorbidities of HLHS, including the network proximity of diabetes, Alzheimer’s 

disease, and liver carcinoma-associated genes to HLHS genes, suggesting a mechanistic basis for 

their comorbidity with HLHS (Becerra et al., 1990, Bagge et al., 2018, Komatsu et al., 2019, Kogiso 

and Tokushige, 2020) and the tissue-specificity of the interactome genes for sites of extracardiac 

anomalies (placenta, liver, and brain) (Jones et al., 2015, Weinberg and Bolande, 1970, Marino et 

al., 2012, Hinton et al., 2008). The HLHS interactome also shared significant overlaps with the 

interactomes of ciliopathy- and microcephaly-associated genes, with the shared genes enriched for 

involvement in intellectual disability/developmental delay and neuronal death pathways, respectively. 

These intersections supported two clinical observations: (i) the increased burden of ciliopathy 

variants in HLHS patients with developmental delay (Geddes et al., 2017) and (ii) the prevalence of 

neurological abnormalities among HLHS patients with microcephaly (Hangge et al., 2013). In 

summary, this study provided evidence for the utility of the HLHS interactome in investigating various 

HLHS comorbidities and the functional consequences of the genes harbouring HLHS-associated 

mutations. These results can directly inform and catalyse future investigations on the molecular basis 

of HLHS and biomedical studies seeking to improve clinical interventions in HLHS. 

 

11.1.2 Insights into the biology of cancers 

Chapter 4 and Chapter 5 examined the pleural and peritoneal mesothelioma subtypes that affect 

the lining of the lungs and the abdominal cavity, respectively. Mesothelioma is a rare and aggressive 

cancer that originates from the mesothelial lining of several internal organs and the thoracic and 

abdominal cavities (Carbone et al., 2019a). Malignant pleural mesothelioma (MPM) accounts for 
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90% of malignant mesotheliomas, has a short median survival of approximately 1 year (Lang-

Lazdunski, 2018), and is associated with asbestos exposure. After exposure, it has a long latency 

period and is conclusively diagnosable only after reaching the invasive phase (Wang et al., 2004). In 

contrast with MPM, where asbestos exposure characterises 80% of the cases, only 8% of peritoneal 

mesothelioma cases have a history of asbestos exposure (Robinson and Lake, 2005). Malignant 

peritoneal mesothelioma (MPeM) was more apparent among patients with a history of abdominal 

surgeries rather than asbestos exposure (Carbone et al., 2019b). MPeM has a higher median 

survival rate than MPM (31 months versus 14 months) (Amin et al., 2018). Two factors warrant 

urgent investigations into the molecular mechanisms underlying the two cancers: (i) their fatality and 

(ii) the limited therapeutic options, namely, pemetrexed eliciting modest clinical responses and 

disease stabilization (Carbone et al., 2019b).  

 

MPM tends to cluster in families and occurs only in a small fraction of the population exposed to 

asbestos (Bueno et al., 2016). Additionally, MPeM appears to be associated with germline mutations 

more frequently than MPM (Carbone et al., 2019b). Therefore, studies suggest the involvement of a 

genetic component in both cancers. Most studies examine only a handful of mesothelioma-

associated genes, such as BAP1, CDKN2A, and NF2, despite the steady generation of multi-omics 

datasets of both these cancers. Addressing the lack of a framework for unifying these multi-omics 

datasets, both Chapter 4 and Chapter 5 aimed to demonstrate the validity of the interactome as an 

integrative framework. Encouragingly, in Chapter 4, genetic variant, transcriptomic, and proteomic 

data pertaining to MPM supported 85.65% of proteins in the MPM interactome. Similarly, in Chapter 

5, differential gene expression in pre-clinical models and human tumour specimens of MPeM 

supported 75.6% of proteins in the MPeM interactome. This showed that both the MPM and MPeM 

interactomes with disease-associated proteins and their interacting partners will help biologists, 

bioinformaticians, and clinicians to piece together an integrated view of how mesothelioma-

associated genes from various studies are functionally linked. 

 

An explorative analysis of the MPM interactome in Chapter 4 helped derive valuable insights into the 

aetiology of MPM. Experimental validation of five computationally predicted PPIs, BAP1-PARP3, 

KDR-ALB, PDGFRA-ALB, CUTA-HMGB1, and CUTA-CLPS, based on their proximity to MPM-

associated genes and their biological relevance helped generate testable hypotheses for future 

studies. The MPM interactome also showed significant enrichments for cancer-related pathways, 

such as NF-κB signalling, PI3/AKT signalling, VEGF signalling, and natural killer cell signalling, 

providing further insights into the molecular underpinnings of MPM. Most importantly, the interactome 

had highly significant overlaps with ten MPM-related multi-omics datasets, including MPM-associated 

genetic variants, genes differentially expressed or methylated in MPM or upon asbestos exposure, 

genes correlated with lung cancer prognosis, and exosome-derived proteins in malignant 

mesothelioma cell lines. Forty-eight computationally predicted interactors of MPM genes had three or 

more pieces of biological evidence, indicating their suitability for future studies. 

 

The explorative analysis in Chapter 5 shed light on the functional underpinnings of MPeM aetiology. 

Two findings supported the splenomegaly seen in BAP1 knockout mice resulting from the expansion 

of myeloid cells in the spleen (Dey et al., 2012). Firstly, the human orthologues of mouse genes with 

elevated expression in the spleen and the thymus – both extramedullary haematopoietic sites that 

regulate lymphoid cells outside the bone marrow – showed significant enrichment in the interactome. 



General Discussion  

303  

Secondly, the interactome contained haematopoiesis as a functional module. Chromosome 

segregation was the most enriched functional module in the interactome, consistent with the 

observation that 56% of the MPM-associated seed genes underwent chromosomal events leading to 

cancer. Transcriptional deregulation seemed critical to MPeM aetiology, as suggested by the related 

functional modules in the interactome, such as covalent chromatin modification. The interactome 

contained ‘positive regulation of IL-6 production’ as a functional module, which was relevant since 

MPeM patients show elevated expression of an anti-apoptotic factor called survivin (BIRC5) induced 

by the cytokine IL-6 (Zaffaroni et al., 2007). As previously stated, germline mutations are more 

prevalent among peritoneal than pleural mesothelioma patients (Carbone et al., 2019b). These 

mutations may predispose MPeM patients to multiple other cancers (Carbone et al., 2019b). In line 

with this, the interactome showed significant enrichment of genes with their expression positively 

correlated with specific clinical outcomes in other cancers. Lastly, the study revealed extensive 

overlap between the MPM and MPeM interactomes and interconnections between the genes 

associated with both diseases, indicating a common aetiology (discussed further in section 11.5). 

 

11.1.3 Insights into the biology of viral infections 

Chapter 6 demonstrates the use of the interactomic framework in exploring the biology of viral 

infections. The study involved analysing the host proteins targeted by the viruses and the 

neighbourhood network surrounding them. COVID-19, caused by SARS-CoV-2 (Rothan and 

Byrareddy, 2020), emerged as a global pandemic in 2020. Viral infections elicit a cascade of 

interactions among multiple genes and proteins in the host cell. This complex network can either 

restrict viral replication in host cells or get hijacked by the virus for its perpetuation. Several COVID-

centric network biology studies (Kumar et al., 2020, Gysi et al., 2020, Zhou et al., 2020b) presented 

the analysis of the ‘known PPI neighbourhood’ of the host proteins targeted by SARS-CoV-2 (Gordon 

et al., 2020), i.e., an incomplete interactome consisting of only experimentally verified PPIs. Contrary 

to this, in Chapter 6, this neighbourhood is augmented with 1,941 computationally predicted PPIs. 

The study presents a fuller version of the host protein interactome, facilitating the discovery of 

previously unknown disease mechanisms and the characterisation of under-studied host proteins 

through functional associations of their predicted interactors. 

 

The host protein interactome provided valuable insights into COVID-19 biology. The interactome 

shared large and statistically significant overlaps with SARS-CoV- and SARS-CoV-2-induced 

transcriptional profiles, indicating its biological validity. It also unveiled computationally predicted 

interactions between SARS-CoV-2-modulated host proteins and protein biomarkers with varied 

expression across the different stages of COVID-19 identified in independent studies. The 

interactome revealed genes with elevated expression in the lungs (the target tissue of the virus), the 

spleen (that regulates the host immune responses), and the brain and the heart (target tissues of co-

morbidities among COVID-19 non-survivors) as novel interactors of the host proteins. Furthermore, it 

revealed topologically connected modules involved in various cellular processes. These included 

modules of cilium organization, nuclear transport, ribonucleoprotein complex biogenesis, endosomal 

transport, and epigenetic regulation of gene expression. The interactome showed enrichment for 

subcellular locations and cellular processes that could act as potential targets of SARS-CoV-2. For 

example, SARS-CoV-2-modulated host proteins shared several common interactors with ciliary 

proteins. The discovery of a novel interaction between the host protein NUP98 and CHMP5, a ciliary 

protein, and its role as a connector of two critical functional modules led to the hypothesis that this 
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interaction may activate an IFN-stimulated pathway with the potential to interfere with viral budding. 

These findings highlight the importance of investigating the function of cilia as viral entry points and 

modulators of viral infections and suggest potential targets for the development of therapeutics. 

Lastly, the interactome showed significant enrichments for genes associated with metabolic, 

neurological, developmental, and vascular disorders, and cancers. For example, the proteins linked 

to hypertension and diabetes, two common co-morbidities of COVID-19 non-survivors (Fang et al., 

2020, Sidaway, 2020), directly interacted with host proteins. 

 

11.1.4 Insights into the biology of a skeletal disorder 

Chapter 7 unravelled the mechanisms underlying a rare and lethal skeletal dysplasia known as 

spondylometaphyseal dysplasia, Sedaghatian type or SMDS, caused by mutations in a single gene, 

GPX4. Although some initial studies described the clinical presentation of SMDS (Sedaghatian and 

Opitz, 1980, Opitz et al., 1987, Peeden Jr et al., 1992, Elçioglu and Hall, 1998, Koutouby et al., 2000, 

English et al., 2006) and characterised GPX4 mutations (Smith et al., 2014, Aygun et al., 2012), 

much about the disorder remained unexplored. The study probed the neighbourhood network of 

GPX4, exploring its connections with three sets of SMDS-centric genes and a set of GPX4-centric 

genes. The SMDS-centric networks included the shortest paths between GPX4 and other genes 

putatively associated with SMDS in the DisGeNET database (Piñero et al., 2016), the genes linked to 

other skeletal dysplasias, and the genes linked to disorders with similar phenotypes as SMDS. The 

gene-centric network, on the other hand, identified the shortest paths between GPX4 and genes that 

impact GPX4 expression when knocked out, knocked down, mutated, or overexpressed. Analysis of 

these networks revealed their enrichment for genes showing elevated expression in the brain, testis, 

or both, a pattern seen with GPX4. They also showed enrichment for genes associated with various 

SMDS pathophenotypes and specific functional modules active in tissue-naive and foetus-specific 

contexts. Lastly, the study identified seven novel interactors of GPX4, namely, APBA3, EGR4, FUT5, 

GAMT, GTF2F1, MATK, and ZNF197. Literature evidence suggested their biological relevance to 

GPX4 and SMDS. Overall, the study expanded our understanding of SMDS, providing a network-

level view of its underlying mechanisms and allowing researchers to prioritise genes and functional 

modules for potential therapeutic innovations. 

 

11.1.5 Insights into the biology of neurological and neuropsychiatric disorders 

Chapter 2 helped derive valuable insights into functional underpinnings of a range of neurological 

and neuropsychiatric disorders.  

 

Given the frequent co-occurrence of neurological and neuropsychiatric phenotypes with ciliopathies 

(Guo et al., 2015, Louvi and Grove, 2011, Marley and von Zastrow, 2012, Alvarez Retuerto et al., 

2008, Higginbotham et al., 2012, Torri et al., 2010, Marley and von Zastrow, 2010, Kamiya et al., 

2008), there is a growing recognition of the crucial role played by the cilium in various aspects of 

nervous system development and function (Lee and Gleeson, 2011, Louvi and Grove, 2011, 

Guemez-Gamboa et al., 2014). To elucidate the underlying mechanisms of nervous system 

phenotypes associated with ciliopathies, in Chapter 2 a systems-level investigation of the cilia 

interactome was conducted. The interactions of primary and motile ciliary proteins – experimentally 

verified or computationally predicted – constituted the cilia interactome. Genetic and transcriptomic 

datasets and functional interactions in signalling pathways ascertained the biological validity of the 
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interactome. The cilia interactome overlapped extensively with the interactomes of seven 

neuropsychiatric and neurological disorders assembled from human genes harbouring disease-

associated mutations in GWA studies. These disorders included SCZ, attention-deficit hyperactivity 

disorder, major depressive disorder, bipolar disorder and ASDs, Alzheimer's disease and 

Parkinson’s disease. The cilia interactome also overlapped with genes differentially expressed in six 

of these disorders, highlighting its potential significance in the pathogenesis of these conditions. As a 

case study, this chapter shows the intersection of three gene sets in a specific interactomic 

subspace, i.e., human ageing-associated genes, Alzheimer’s disease-associated genes, and ciliary 

genes. Integration of this sub-network with multi-omics data revealed the potential role of ciliary sonic 

hedgehog signalling in hippocampal neurogenesis and memory deficits in Alzheimer’s disease 

(Mufson et al., 2015, Smith et al., 2000, Jessberger et al., 2009, Breunig et al., 2008, Whitfield and 

Chakravarthy, 2009). The interactome was found to be significantly associated with cellular pathways 

related to neuropsychiatric processes and contained proteins targeted by approximately 100 drugs 

used to treat nervous system disorders. Lastly, the study proposes several novel hypotheses for 

examination in future studies. These relate to the involvement of ciliary PPIs in neuropsychiatric 

disorders, primary ciliary dyskinesia, hydrocephalus, ciliogenesis, and ciliary membrane receptor 

trafficking. Overall, the cilia interactome suggested that ciliary defects play a role in neuropsychiatric 

processes. It is a valuable resource for investigating the potential therapeutic targets for neurological 

and neuropsychiatric disorders. 

 

11.2 Uncovering disease-disease relationships: a novel methodology to examine cross-

disorder relationships and its relevance in disease classification and multi-scale disease 

modelling 

In Chapter 9, the methodology detailed in section 1.5.2.2 to examine cross-disorder relationships 

helped derive critical insights into the aetiological differentiation of various anxiety disorder subtypes 

(Fig. 16), namely, generalised anxiety disorder (GAD), social anxiety disorder (SAD), obsessive-

compulsive disorder (OCD), specific phobia, panic disorder (PD) and post-traumatic stress disorder 

(PTSD). Studies have noted a substantial overlap between functional connectivity and gene co-

expression patterns within and between cortical and striatal networks (Anderson et al., 2018, 

Richiardi et al., 2015, Wang et al., 2015, Krienen et al., 2016, Patania et al., 2019, Mills et al., 2018). 

These findings gave rise to the central premise of the study, i.e., testing the regional expression 

patterns of the anxiety disorder interactomes may reveal brain regions governing key anxiety traits. 

Clustering the anxiety disorder interactomes based on the region-specific expression of their 

constituent genes failed to unravel any groups among the disorders. Moreover, analysis of 

component loadings correlated with PC1 and PC2 revealed that this approach did not capture 

regional specificities underlying the anxiety disorders. Therefore, contrary to our speculation, 

disorder groupings were not directly evident at the level of their interactomes.  

However, genes co-occurring across these interactomes showed remarkable enrichment for 

expression in the striatum. This enrichment suggested a potential relationship between anxiety 

disorders and striatal gene dysfunction and presented an opportunity to refine the interactomes 

based on their intersection with the interactomes of two striatal compartments, striosomes and 

matrix. Notably, specific anxiety disorder interactomes showed significant and distinctive overlaps 

with the striosome and matrix interactomes, indicating that the striatal compartments could act as 

diverging points for the aetiological differentiation of various anxiety disorders. Anxiety disorder 
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groupings became apparent when the interactomes were restricted to include only genes intersecting 

with the striatal compartment interactomes, supporting this notion. Exploration of these sub-networks 

through systematic gene expression analysis revealed a branching pattern among the disorders: 

[GAD, OCD], [SAD, PD] and [specific phobia]. Their expression patterns in specific brain regions, 

including the anterior cingulate cortex, the nucleus accumbens, the amygdala, and the hippocampus, 

influenced these groupings, as did their involvement in the dopaminergic signalling pathway. The 

results indicated that the functionally distinct striatal circuits constituted by the striosome and the 

matrix could govern the development of anxiety disorders (Fig. 16). Although further investigations 

are necessary to characterise anxiety as an emergent property driven by specific neural circuits, our 

study proposes striatum and its subdivisions as candidate regions for anxiety research. 

Several findings from the study also inform disorder categorisation. For example, the PTSD 

interactome did not show distinctive overlaps with the striosome or matrix interactomes. However, 

the results indicated that its mechanism could be mostly, if not entirely, different from the other 

anxiety disorders. Corroborating previous studies (Joshi et al., 2020), the PTSD interactome showed 

the highest enrichment for the hippocampus followed by the striatum, substantia nigra, and 

Figure 16: The aetiological distinctions of anxiety disorders associated with different striatal 
compartments. Genetic perturbations associated with a specific anxiety disorder may modulate the 
interactome in one of the two striatal compartments (striosome and matrix) or even their progenitor 
populations, influence their functional connectivity with other regions, and govern the route of 
development of critical anxiety traits. Generalised anxiety disorder- and obsessive-compulsive 
disorder-associated traits generated in this manner may include internally generated ruminations 
(involving the phenomenon of interoceptive awareness), cognitive rigidity, and pessimistic valuation, 
controlled by the anterior cingulate cortex, which targets the striosome compartment. Social anxiety 
disorder- and panic disorder-associated traits may include heightened emotional responses to neutral 
stimuli and excessive emotional contextualization during social information processing, controlled by 
the amygdala that collates information from the sensorimotor cortices, which, in turn, targets the 
matrix compartment. The behavioural traits characterizing striosome- and matrix-associated anxiety 
disorders could also arise from differential responses of these striatal compartments to reinforcement 
contingencies and differential involvement in resolving motivational conflicts. The figure was created 
in Microsoft PowerPoint. 
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amygdala, a pattern not seen with any other anxiety disorder. These regional specificities may justify 

its placement in a separate group (i.e., trauma and stress-related disorders) in the Diagnostic and 

Statistical Manual of Mental Disorders, unlike the case of OCD, which has been placed in a distinct 

group (i.e., OCD and related disorders) despite its close aetiological relationship with other anxiety 

disorders, as suggested by our results. 

The methodology of Chapter 9 can be adapted to uncover distinct subgroups and converging 

themes within other sets of disorders. It will facilitate the transformation of large amounts of disease-

associated genetic data into cross-disorder network relationships. These relationships could help 

refine disease classification systems and offer a perspective grounded in the genetic structures of 

diseases in the 'lumping' versus 'splitting' debate in disorder categorization (Thaxton et al., 2022). 

Furthermore, the value of multi-scale disease modelling is becoming increasingly clear (Totah, 2016, 

Anderson et al., 2018, Richiardi et al., 2015, Wang et al., 2015, Krienen et al., 2016, Patania et al., 

2019, Mills et al., 2018). In this context, the analytical approach proposed in the thesis proves helpful 

by condensing the multigenic complexities of diseases into single data points using multivariate 

techniques (as detailed in section 1.5.2.2). This approach simplifies the exploration of the various 

levels of biological organization that contribute to disease aetiology, as seen in Chapter 9 with 

regional gene expression patterns, signalling pathways, local neuronal circuitries, and functional 

connectivity patterns in the brain. 

11.3 Discovering new disease indications for existing drugs: the interactome provided 

candidate repurposable drugs for multiple disorders 

Three approaches were employed for drug repurposing (Fig. 17). The first approach, as exemplified 

in Chapter 8 (Fig. 17a; detailed earlier in Fig. 12) for the treatment of SCZ, involved conducting 

comparative transcriptomic analysis followed by a series of network analyses and correlation with 

clinical trial data. The advantage of combining the comparative transcriptomic analysis approach with 

the interactomic framework is that it allows identification of sub-networks that demonstrate 

Figure 17: The three approaches used for drug repurposing. a. Comparative transcriptomic 
analysis of drugs identified from the disease-associated drug-protein interactome is followed first by 
network analysis of the targets of repurposable drugs and the genes with opposite expression in 
drug- versus disease-associated expression profiles, and then, compared with clinical trial results. b. 
Comparative transcriptomic analysis of drugs is followed by correlation with diverse disease-
associated datasets, and utilization of information on drug activity from animal models and clinical 
trials. c. The targets of drugs that are being tested in clinical trials or are already in use for related 
disorders are examined for their proximity to disease-associated genes. The figure was created in 
Microsoft PowerPoint. The network diagram was created in Cytoscape. 
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interconnections between the drug targets and disease-associated proteins in the human 

interactome. These sub-networks could be used to investigate the mechanistic basis for the negative 

correlation observed between the drugs and the disease at the transcriptomic level. For example, in 

Chapter 8, the network analysis showed that the protein targets of acetazolamide were embedded in 

a network containing genes associated with various neuropsychiatric disorders, indicating that it 

could be potentially used in SCZ. Additionally, signalling pathways dysfunctional in SCZ were 

enriched in the network of genes that show a negative correlation in acetazolamide-induced and 

SCZ-associated expression profiles. In Chapter 7, an analysis of specific functional modules 

containing GPX4 suggested that the drugs (identified from the repurposing analysis) that exploit the 

functional associations of GPX4 with ferroptosis, mediated via the gene MAPK13, and with bone 

development, mediated via the gene ZNF197, could be examined for clinical utility in the context of 

SMDS.  

 

The above approach has to be adjusted based on the varying availability of disease-associated 

datasets. The thesis proposes two alternate approaches for drug repurposing. The first of these 

approaches, as described in Chapters 4-7, is applicable for cases wherein disease-associated multi-

omics datasets are available as necessary (Fig. 17b). This approach involved identifying 

repurposable drugs through comparative transcriptomic analysis and assessing their validity through 

correlation with disease-associated multi-omics datasets and drug activity in clinical settings and 

animal models (Table 1). In several of these Chapters, the latter set of correlations has helped 

ascertain the validity of the repurposing approach. For example, in Chapter 5, more than 70% of the 

repurposable drugs for MPeM identified using comparative transcriptome analysis are effective 

against peritoneal mesothelioma, pleural mesothelioma, peritoneal metastasis or primary peritoneal 

cancer in clinical trials, animal models or cell lines. The second approach involves examining the 

network proximity of drug targets to identify repurposable drugs when disease-associated datasets 

are unavailable (Fig. 17c). In Chapter 7, the unavailability of SMDS-associated datasets prompted 

the use of the datasets of two related, albeit potentially aetiologically distinct, skeletal dysplasias for 

comparative transcriptomic analysis, namely, chondroplasia and immune-osseous dysplasia. In this 

scenario, a supplemental method involved identifying the drugs – in use or clinical trials against 

different forms of skeletal dysplasias (Marzin and Cormier-Daire, 2020) – with targets closely 

connected to GPX4 (the disease-associated gene). This analysis helped show that the targets of the 

drug resveratrol – earlier identified using comparative analysis with the expression profile of immuno-

osseous dysplasia – interacted with GPX4 via intermediate interactors. 

 
Table 1: The details of the drug repurposing analysis involving comparative transcriptomic analysis and 
additional validation criteria. 
 

Chapter Disorder Drug dataset Disease dataset Validation criteria of 
repurposable drugs 

Chapter 4 Malignant 
pleural 
mesothelioma  
(MPM) 
interactome 

Differential 
transcriptomes of 
drugs targeting the 
MPM interactome from 
Connectivity Map 

Differential expression 
profiles in lung cancer 

Affected genes of high 
differential expression in 
pleural mesothelioma tumours 
or cell lines (GSE51024(45) 
and GSE2549(46)), or 
underwent prior clinical testing 
in lung cancer 

Chapter 5 Malignant 
peritoneal 
mesothelioma 

Differential 
transcriptomes of 
drugs targeting the 

Differential expression 
profiles of peritoneal 
mesothelioma 

Effectiveness against 
peritoneal/pleural 
mesothelioma and/or 
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(MPeM) 
interactome 

MPeM interactome 
from Connectivity Map 

(Fridlender et al., 
2012, Kim et al., 2006, 
Blackshear et al., 
2014) 

peritoneal metastasis/primary 
peritoneal cancer in clinical 
trials, animal models or cell 
lines. 

Chapter 6 SARS-CoV-2-
modulated host 
protein 
interactome 

Differential 
transcriptomes of 
drugs targeting the 
host protein 
interactome from 
Connectivity Map 

Differential expression 
profiles of four SARS 
datasets and one 
COVID-19 dataset 
(Blanco-Melo et al., 
2020a, Reghunathan 
et al., 2005) 

Effectiveness in COVID-19 
clinical trials; broad-spectrum 
antiviral properties; proven 
activity against SARS-CoV-2 
or SARS-CoV/MERS-CoV in 
cell-based assays. 

Chapter 7 SMDS 
interactome 
(constructed 
using GPX4 
and other 
genes with 
putative 
disease 
associations) 

Differential 
transcriptomes of 
drugs targeting the 
SMDS interactome 
from Connectivity Map 

Differential expression 
profiles of 
chondroplasia and 
immune-osseous 
dysplasia (Cameron et 
al., 2011, Baradaran-
Heravi et al., 2012) 

Examination of the drug 
targets in their PPI network 
and functional modules 

Chapter 8 Schizophrenia Differential 
transcriptomes of 
drugs targeting the 
SCZ interactome from 
Connectivity Map 

Differential tissue or 
blood sample 
transcriptomes of SCZ 
patients 

Examination of the biological 
properties and the PPI 
networks of (i) the targets of 
repurposable drugs and (ii) 
genes with opposite 
expression in drug- versus 
disease-associated expression 
profiles; biological properties 
of other drugs with the same 
targets; correlation with NIH 
Clinical Trials data. 

 
Although the comparative transcriptome approach has resulted in some valuable results in the past, 

it has several limitations. The CMAP drug-associated gene expression profiles analysed in Chapters 

4-8 were induced in cancer cell lines (Lamb et al., 2006) and not in cell lines relevant to 

mesothelioma, COVID-19, SMDS, or SCZ. For increased biological validity, analyses should involve 

gene expression profiles induced by drugs in neuronal cell lines such as SH-SY5Y, in patient-derived 

stem cells, or animal models for SCZ, human pleural/peritoneal cancer cell lines or animal models for 

mesothelioma or in human bronchial epithelial cells or human lung cancer cell lines for COVID-19. 

However, previous studies show that drug data in cancer cell lines is valuable for repurposing drugs 

for non-cancer diseases. Specific examples include repurposing topiramate, an anti-epileptic drug, 

for inflammatory bowel disease (Dudley et al., 2011), SCZ drugs (Zhao and So, 2018), and bipolar 

disorder drugs (Kidnapillai et al., 2018).  

 

Altogether, the thesis proposed multiple approaches for drug repurposing based on the interactomic 

framework and demonstrated their efficacy for five disorders. The selection of the two repurposable 

drugs identified in Chapter 8 for clinical trials (Nimgaonkar, 2019, Nimgaonkar, 2022), namely, 

acetazolamide and cromoglycate, supports the validity of the approaches. Further investigations of 

the repurposable drugs identified in Chapters 4-8 for mesothelioma, COVID-19, SMDS, and SCZ 

(Fig. 18) could help advance clinical translation for these diseases. 

 

Understanding the precise mechanisms of the action of repurposable drugs through experimental 

investigations is crucial to optimise their therapeutic potential. Additionally, utilizing appropriate 

model systems, such as animal or in vitro models, can provide valuable insights into drug efficacy 
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and safety. It is also imperative to consider potential side effects and evaluate the overall safety 

profile of repurposable drugs. Although the thesis does not include any pre-clinical study on the 

drugs identified in the chapters described above, Appendix section 14.2 can be used as a template 

(detailed in section 1.5.1.6) to examine the activity of the repurposable drugs in neurological and 

psychiatric disorders.  

 

Appendix section 14.2 explores the potential of Convolvulus pluricaulis (CP), a crude drug extract, 

in treating cognitive impairments characteristic of Alzheimer's disease. It examines the 

acetylcholinesterase (AChE) inhibitory activity of CP in a zebrafish model of cognitive impairment 

induced by scopolamine. CP is a perennial herb with anti-amnesiac and anxiolytic properties and 

contains alkaloids, anthocyanins, coumarins, flavonoids, phytosterols, and triterpenoids (Nahata et 

al., 2009, Bihaqi et al., 2011, Malik et al., 2016, Bihaqi et al., 2009). Biochemical, bioinformatics, and 

behavioural tests reveal that CP inhibits AChE in a manner similar to the positive control isoxazole 

(AChE inhibitor). CP improves avoidance response retention in adult zebrafish compared to 

isoxazole. Isoxazole directly binds Ser203 of the catalytic triad on the human AChE, which catalyses 

the breakdown of acetylcholine. The active components of CP – scopoletin and kaempferol – were 

found to bind to another amino acid of the catalytic triad, the anionic subsite of the catalytic centre, 

i.e., His447, and the peripheral anionic site. CP combined with scopolamine enhances AChE 

inhibition and depletes ACh levels, similar to isoxazole combined with scopolamine. However, both 

combinations have adverse effects on the peripheral cholinergic system. In summary, Appendix 

section 14.2 suggests investigating CP for alleviating cognitive deficits in Alzheimer's disease. 

 

11.4 Uncovering the disease-associated factors underlying drug interactions: a novel 

methodology to examine cross-drug target network relationships 

Figure 18: The repurposable drugs identified using the interactomic framework. The drugs 
identified as repurposable candidates for the following five disorders have been listed in the boxes: 
schizophrenia (Chapter 8), malignant pleural mesothelioma (Chapter 4), malignant peritoneal 
mesothelioma (Chapter 5), COVID-19 (Chapter 6) and spondylometaphyseal dysplasia (Chapter 7). 
The figure was created in Microsoft PowerPoint. 
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In Chapter 10, the methodology detailed in section 1.5.2.4 helped identify the potential mechanisms 

of adverse drug reactions (ADRs) in comorbid diseases, i.e., pairs of comorbid diseases (‘disease A’ 

and ‘disease B’), and their FDA-approved drugs. The study examined three pairs of non-comorbid 

diseases (negative controls) and six pairs of comorbid diseases. The four categories of drugs 

compiled for each disease pair based on their clinical activity included disease A drugs that are (i) 

contraindicated and (ii) not contraindicated in disease B, and disease B drugs that are (iii) 

contraindicated and (iv) not contraindicated in disease A. The study – which examined the four 

corresponding DTNs for each disorder pair – produced three key findings (Table 2). 

 
Table 2: Disease network, pathway and tissue-level characterization of drugs that are contraindicated/not 

contraindicated in comorbid conditions. A tick mark (✓) has been used to indicate the close affiliation of a specific 

category of drug target network with specific disease protein sets, disease-associated pathways, and tissues. Disease 

PPI protein sets, pathways and tissues that are common to disease A and disease B, unique to disease A and unique to 

disease B have been marked in tables a, b, and c, respectively.  

 

a. 

Drug target networks Disease PPI 
protein sets 

common to A 
and B 

Pathways 
common to 

A and B 

Tissues 
common to 

A and B 

Disease A drugs not contraindicated in Disease B ✓ ✓ ✓ 

Disease A drugs contraindicated in Disease B ✓ ✓ ✓ 

b. 

Drug target networks Disease PPI 
protein sets 
unique to A 

Pathways 
unique to A 

Tissues 
unique to A 

Disease A drugs not contraindicated in Disease B 
   

Disease A drugs contraindicated in Disease B ✓ ✓ ✓ 

c.  

Drug target networks Disease PPI 
protein sets 
unique to B 

Pathways 
unique to B 

Tissues 
unique to B 

Disease A drugs not contraindicated in Disease B ✓ ✓ ✓ 

Disease A drugs contraindicated in Disease B 
   

 

First, disease B-associated PPI networks, pathways, and tissues showed enrichment for the DTNs of 

disease A drugs not contraindicated in disease B. This finding was contrary to the expected 

preferential affiliation of these DTNs with biological modalities of disease A, assuming that for a drug 

to be specifically active against disease A without aggravating a comorbid disease B, it had to 

reverse the phenotypes associated with disease A. In this model, phenotypes of disease B were 

considered as ‘off-targets’ in line with the principles of conventional pharmacology, in which 

unintended effects of the drugs were attributed to interaction with pathways inconsequential to 

disease A pathology (i.e., the signalling pathways relevant to disease B) (Chan and Loscalzo, 2012). 

Our findings to the contrary indicate that the mechanisms underlying the pathology of the comorbid 

disease B may contribute to the therapeutic alleviation of disease A. Two disorders can emerge and 

develop interdependently based on etiological associations. Future studies should concentrate on 

such etiological models of comorbidity (Valderas et al., 2009). For example, the risk factors of 

disease B could either influence disease A development directly or through correlation with the risk 

factors of disease A, according to the ‘heterogeneity’ and ‘associated risk factors’ models, 
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respectively (Valderas et al., 2009). This model could explain why our study connected disease B-

associated PPI networks, pathways, and tissues with disease A drugs not contraindicated in disease 

B. For example, the alterations in disease B-associated genes may perturb pathways in specific 

tissues, whose counteraction by disease A drugs could help alleviate the symptoms of disease A. 

 

Second, disease A-associated PPI networks, pathways, and tissues showed enrichment for the 

DTNs of disease A drugs contraindicated in disease B. Although further studies are required to 

examine the basis of this finding, it suggests that contraindications may arise when drugs used in 

disease A are highly specific to the biological modalities associated with disease A, i.e., disease A-

associated PPI network, pathway, and tissue. Therefore, rational drug development should involve 

causative and correlational influences of comorbid conditions (i.e., disease B).  

 

Third, supporting previous findings, both categories of drugs used to treat primary conditions 

(whether contraindicated or not in a comorbid condition) showed enrichment for proteins shared 

between the two disease networks, and it could be challenging to delineate the separate 

mechanisms underlying the two outcomes. Historically, drug design relied on findings from studies 

that described genetic and pharmacological modulation of specific targets and pathways, which 

elicited measurable changes in pathophenotypes (Chan and Loscalzo, 2012). This framework 

suggested that side effects arise from unintended manipulation of ‘off-targets’ in signalling pathways 

unrelated to the disease. However, both beneficial and adverse outcomes of drug treatment in 

complex disorders (and their distinct pathophenotypes) may arise from shared effectors and 

pathways, albeit active in varied combinations in specific cells and tissues (Chan and Loscalzo, 

2012). Future analysis should focus on biological variables that differentially affect the functions of 

such shared proteins, e.g., their cellular, pathway, and tissue landscapes. 

 

In summary, the findings suggest that the pathway membership and the tissue-specificity of the 

DTNs and their overlap with disease PPI networks will influence contraindications in comorbidities. 

Examining these biological modalities is critical for rational drug development and minimizing 

adverse events. The results from the study have therapeutic applications and could directly benefit 

future assessments of drug contraindications in individuals with comorbidities. The methodology of 

the study can be applied to examine distinct comorbid pairs or to all known pairs of comorbid and 

non-comorbid disorders. 

 

The generalisability of the methodologies that helped derive the results detailed in section 11.3 and 

section 11.4 – namely, the repurposable drugs and the relationship of drug action with disease-

associated biological factors – holds promise for their integration into the clinical developmental 

pipeline, as shown in Fig. 6. Information on drug safety and drug efficacy for the majority of 

repurposable drugs will be available from studies involving preclinical models and early-stage trials. 

Therefore, the findings from drug repurposing efforts could directly inform phase I trials focused on 

evaluating drug safety and phase II trials examining drug efficacy. The integration of multi-omics 

datasets with DTNs, as seen in Chapter 10, plays a pivotal role in unravelling the mechanisms 

underlying the action of drugs. Such comprehensive analyses will help characterise their therapeutic 

and non-therapeutic effects during phase I trials. They will also help understand the factors 

regulating drug efficacy in phase II trials. 
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11.5 The interactome as an integration platform: revealing the biological themes underlying 

heterogeneous, sparse and cross-species disease-associated gene sets 

The primary benefit of the interactome framework over the GWA framework lies in its ability to 

integrate disease-associated data from diverse sources. This thesis highlights this integration power 

in three distinct ways.  

 

First, the network framework helped localise the heterogeneous genetic structures of several 

diseases to specific interactomic subspaces and reveal the broad biological themes underlying them. 

The HLHS study in Chapter 3, the mesothelioma studies in Chapter 4 and Chapter 5, and the 

COVID-19 study in Chapter 6 contain striking examples. To seed the HLHS interactome, we used 74 

genes harbouring HLHS-associated mutations identified from eight independent HLHS mutant 

mouse lines (Liu et al., 2017, Li et al., 2015). Notably, none of the mouse lines shared any HLHS-

associated variations. Our study defined a coherent network of HLHS genes consisting of 248 known 

interactors and 377 novel interactors of 72 HLHS genes. Genes constitutively expressed in all the 

tissues or 'housekeeping' genes comprised more than 60% of the network, including 51% of the 

HLHS-associated seed genes. This preponderance of housekeeping genes in the HLHS interactome 

suggested that the genetic heterogeneity in the HLHS mouse lines stemmed from the limited 

transmission of mutations in these genes regulating essential cellular functions, whose perturbation 

may result in lethality or reduction in reproductive fitness (Zaidi and Brueckner, 2017).  

 

In Chapter 4 and Chapter 5, diverse gene sets derived from genetic, transcriptomic, and 

pharmacological datasets helped construct the interactomes of two mesothelioma subtypes, i.e., 

MPM and MPeM. The subtypes differ in their association with germline mutations, history of 

asbestos exposure, and post-operative complications (Robinson and Lake, 2005) and have different 

median survival rates (Amin et al., 2018). However, in Chapter 5, we showed that 989 genes co-

occurred commonly in MPM and MPeM interactomes, which is an approximately 3-fold higher 

enrichment of high statistical significance than expected. Further, this sub-network contained an 

intricately interconnected network of PPIs containing 38 MPM- and MPeM-associated seed genes. 

These results helped define a shared interactomic subspace underlying the two distinct 

mesothelioma subtypes showing genetic and environmental heterogeneity.  

 

In the COVID-19 study in Chapter 6, 332 host proteins interacting with SARS-CoV-2 viral proteins 

were used to construct the SARS-CoV-2-modulated host protein interactome (Gordon et al., 2020). 

This protein set had limited congruence with the genes differentially expressed upon SARS-CoV-2 

infection in the A549 cell line (Blanco-Melo et al., 2020b). However, on the development of the host 

protein interactome, it became clear that despite an overlap of only two genes between the datasets, 

several differentially expressed genes were direct interactors of several host proteins, and 808 

intermediate interactors connected 108 differentially expressed genes with 285 host proteins. 

Furthermore, analysis of the shared interactomic space of the two datasets revealed the enrichment 

of several immune-related pathways. Similarly, SARS-CoV (Pfefferle et al., 2011) and SARS-CoV-2 

shared only four host targets. However, interactome analysis showed that several host proteins 

targeted by SARS-CoV-2 directly interacted with several host proteins targeted by SARS-CoV. 

Additionally, intermediate interactors connected 29 SARS-CoV-modulated host proteins with 249 

SARS-CoV-2-modulated host proteins. Lastly, this shared interactomic space showed enrichment for 
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proteins localised to the mitochondria and involved in regulating mitochondrion organization and 

mitophagy, suggesting that these viruses could commonly target the mitochondria (Khan et al., 

2015). It is important to note that integrative frameworks like the interactome are particularly 

essential during global health crises such as COVID-19. In these scenarios, generating clinically 

actionable results is possible only by examining shared biology with other viral agents by rapidly 

integrating emerging and existing multi-omics disease data. 

 

Second, in addition to integrating heterogeneous data, the interactome model can reveal the broader 

genomic context of a disease, even when only a limited number of disease-associated genes are 

known, as seen with GPX4 in Chapter 7. This ability becomes particularly valuable for Mendelian 

disorders, as demonstrated in this chapter. Specifically, exploring the interdependencies between the 

causative gene and other genes with potential disease associations within the interactome will help 

comprehend the phenotypic complexity of the disorder. 

 

Lastly, the starting point for interactome construction could be any accessible cross-species genetic 

data mapped to orthologous human data, e.g., the ciliary proteins derived from Chlamydomonas 

proteome data (Pazour et al., 2005) in Chapter 2, the genes differentially expressed in the two 

striatal compartments of various species (rat, mouse, ferret, cat, monkey, and human) (Crittenden 

and Graybiel, 2011) in Chapter 9, and the HLHS-associated genes recovered from a large-scale 

mouse mutagenesis screen (Liu et al., 2017, Li et al., 2015) in Chapter 3.  

 

Independent validation of the disease interactomes using multi-omics human disease data is crucial 

to ascertain their biological relevance, given the heterogeneous, and (as highlighted above) often 

cross-species, origins of the seed disease-associated genes. In Chapters 2-6, the interactomes and 

related multi-omics datasets intersected with high statistical significance (Table 3), helping to retrieve 

context-sensitive sub-networks from the disease interactomes. These intersections confirmed the 

biological validity of the interactomes for two reasons. Firstly, the discovery of genes previously 

associated with the disease in other multi-omics studies within the interactomic landscape was 

unbiased. Secondly, these genes were closely connected to the curated set of genes that seeded 

the disease interactome. These close connections indicated the presence of interdependent 

functional relationships in the form of signalling pathways and cellular processes, often previously 

described in experimental investigations of the disease. 

 
Table 3: The multi-omics datasets used for interactome validation split into 4 data types, namely, genetic, 
transcriptomic, methylation and proteomic data. 
 

Chapter Interactome Genetic dataset Transcriptomic 
dataset 

Methylation 
dataset 

Proteomic 
dataset 

Chapter 2 Ciliary protein 
interactome 

Regulators of the 
ciliary sonic 
hedgehog 
pathway identified 
in a CRISPR 
genetic 
screen(Breslow et 
al., 2018) 

Genes differentially 
expressed in 
bronchial biopsies of 
primary ciliary 
dyskinesia patients 
(Geremek et al., 
2014), gene 
expression datasets 
of patients with MDD 
(Lanz et al., 2015), 
SCZ (Maycox et al., 
2009), BD (Harris et 

n/a Proteome isolated 
from the primary 
cilia of mouse 
kidney cells 
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al., 2008), ASD (Kong 
et al., 2012), 
Alzheimer’s disease 
(Miller et al., 2013), 
Parkinson’s disease, 
and non-syndromic 
intellectual disability  

Chapter 3 Hypoplastic left 
heart syndrome 
interactome 

n/a Genes differentially 
expressed in 
cardiomyocytes 
differentiated from the 
induced pluripotent 
stem cells of HLHS 
patients (Yang et al., 
2017, Theis et al., 
2020) and in the 
HLHS-affected right 
ventricle of patients 
(Ricci et al., 2012) 

n/a n/a 

Chapter 4 Malignant 
pleural 
mesothelioma 
interactome 

n/a Differential 
transcriptomic 
datasets of tumours 
(and control adjacent 
tissues), either 
partitioned into 
subtypes or not 
(Crispi et al., 2009, 
Suraokar et al., 2014) 
and in comparison 
with etiologically 
different thoracic 
tumours (De Rienzo 
et al., 2013) 

Differential 
methylation 
profiles in 
tumours versus 
normal adjacent 
tissues 
(Christensen et 
al., 2009) 

Proteomes in 
cancer cell lines 
and tissues 
(Greening et al., 
2016, 
Großerueschkamp 
et al., 2017) 

Chapter 5 Malignant 
peritoneal 
mesothelioma 
interactome 

n/a Differential gene 
expression profiles of 
pre-clinical models 
and human cancer 
cell lines and tumour 
specimens (Fridlender 
et al., 2012, Kim et 
al., 2006, Blackshear 
et al., 2014, Shukla et 
al., 2009, Dragon et 
al., 2015) 

n/a n/a 

Chapter 6 SARS-CoV-2-
modulated host 
protein 
interactome 

n/a Gene expression 
profiles induced by 
SARS-CoV-2 in 
human cell lines 
(Blanco-Melo et al., 
2020b) and COVID-
19 patients (Carapito 
et al., 2021, 
Arunachalam et al., 
2020) 

n/a Protein 
biomarkers 
isolated from 
COVID-19 
patients (Messner 
et al., 2020) 

 

11.6 Circumventing the sparseness of the interactome: the need to augment the existing 

network with computationally predicted interactions 

In Chapters 2-7, PPIs predicted using the HiPPIP computational model augmented the disease 

interactomes. The addition of these new PPIs helped link disease-associated genes across various 
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high-throughput studies in novel ways and gain novel insights into disease biology as described in 

section 11.1 and the functional associations of under-characterised proteins such as GPX4 (Chapter 

7). Chapter 6 contains a specific example of how the addition of predicted PPIs helped gain 

additional biological insights. With the inclusion of novel PPIs, 323 proteins in the SARS-CoV-2-

modulated host protein interactome could be organised into 21 topological modules, whereas without 

novel PPIs, 199 proteins could be organised into 18 modules. The inclusion of novel PPIs yielded a 

higher scaled modularity score compared to excluding them. Importantly, the incorporation of novel 

PPIs revealed additional topological modules enriched for specific biological functions, such as cilium 

organisation, which were not identified using known PPIs alone. Overall, the integration of novel PPIs 

significantly improved our understanding of COVID-related biological processes by unveiling hidden 

modules. 

 

The disease interactomes in each of these chapters have been made available as downloadable files 

in various formats (Cytoscape and Excel files) to facilitate their investigation in conjunction with 

transcriptomic/proteomic data. Seventeen of the PPIs predicted by this model have been tested 

experimentally and shown to be true PPIs, namely, 8 PPIs validated by Co-IP (Zhu et al., 2014, 

Ganapathiraju et al., 2016), 5 PPIs validated by in vitro pull-down and mass spectrometry (Chapter 

4) and 4 PPIs validated by co-localization (Ganapathiraju et al., 2016). Although large-scale 

experimental confirmation is necessary to ascertain the reliability of the predicted novel PPIs in each 

of the disease interactomes in Chapters 2-7, studies indicate that HiPPIP outperforms other state-of-

the-art algorithms in PPI prediction (Dunham and Ganapathiraju, 2022).The novel PPIs predicted by 

HiPPIP show only limited overlap with recently released interactome maps (Luck et al., 2020b, 

Huttlin et al., 2020) (Chapter 6). This could be due to the distinct nature of the various high-

throughput biotechnological methods employed in interactome mapping, with each capturing different 

portions of the interactome due to their complementary strengths (Luck et al., 2020b). Therefore, 

there is a clear need to develop more comprehensive approaches that encompass both experimental 

and computational methods to effectively map disease interactomes. Furthermore, Chapters 2-7 

explored the intersections between different sets of disease-associated genes and proteins identified 

using various mapping techniques. While the overlap between these sets was marginal, extensive 

interconnections were discovered through direct and intermediate interactors, which were either 

experimentally determined or computationally predicted. This finding underscores the value of 

combining different techniques and utilising computational methods to construct an integrated view of 

the disease interactome.  
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11.7 Thesis overview and conclusion 

The advancements in disease gene discovery leading up to the post-genomic era and the progress 

in drug discovery leading up to the systems therapeutics era, naturally led to the emergence of 

network biology concepts (Barabási and Albert, 1999, Albert and Barabási, 2002, Jeong et al., 2001, 

Barabási et al., 2011, Barabasi and Oltvai, 2004). These concepts offered a better understanding of 

the complex mechanisms underlying disease development and manifestation. Despite significant 

advancements in network biology, the formalisms failed to get incorporated into conventional disease 

and drug investigations due to the lack of an integrated conceptual framework to examine 

interactomes (Sun et al., 2009, Sharma et al., 2015a, Sharma et al., 2018, Sakai et al., 2011, Lim et 

al., 2006, Ganapathiraju et al., 2016, Malavia et al., 2017a). Previous studies also failed to 

adequately explore the complex web of molecular interactions underlying diseases, resulting in a 

lack of biologically insightful and clinically actionable results (Sun et al., 2009, Sharma et al., 2015a, 

Sharma et al., 2018, Sakai et al., 2011, Lim et al., 2006, Ganapathiraju et al., 2016, Malavia et al., 

2017a). The biological contexts of the molecular interactions, e.g., the tissue-level and cellular 

contexts, were not considered in the analyses, limiting the biological relevance of several network 

biology studies (Goh et al., 2007, Hidalgo et al., 2009). Additionally, due to the challenges involved in 

experimental validation of PPIs, the human interactome remains incomplete, requiring alternative 

computational methods to fill the gaps (Kotlyar et al., 2015, Hopf et al., 2014, Emamjomeh et al., 

2014a, Garzón et al., 2016, You et al., 2013, Jia et al., 2015, Li and Ilie, 2017, Deng et al., 2003, 

Raja et al., 2013). Furthermore, the higher-level aspects of disease causation and drug action, 

encoded within the genetic structures of diseases, such as cross-disorder relationships and the 

biological factors influencing drug interactions in multiple disorders (Goh et al., 2007, Cheng et al., 

2019), have received relatively less attention due to a lack of easily adaptable conceptual advances. 

 

My thesis addressed these five limitations by introducing a conceptual framework to investigate 

disease interactomes and DTNs, individually and in relation to each other. This framework provided 

valuable insights into the biological mechanisms underlying specific disorders and the relationships 

between multiple diseases, including heart diseases, cancers, viral infections, skeletal disorders, and 

neurological and psychiatric disorders. Its success in these six disease classes showcases its 

potential applicability to other diseases in the future. The methodology outlined in the thesis to 

extract disease-disease relationships can be adapted to uncover subgroups and common themes 

among different disorders and refine the categorisation of diseases based on their genetic structures. 

It involved reframing the multigenic complexities of diseases into multivariate data analytical 

problems, facilitating the study of various biological levels and their contributions to disease 

aetiology. Furthermore, the framework yielded clinically actionable results, such as repurposable 

drugs for a psychiatric disorder, two cancers, COVID-19, and a skeletal disorder, and insights into 

how the aetiological associations between six pairs of comorbidities affect drug action in these 

diseases. The methodologies that helped extract these results will provide valuable insights into drug 

safety and efficacy, highlighting their potential for integration into the clinical development pipeline. 

Lastly, the framework allowed the extraction of context-specific sub-networks from the interactomes 

by intersecting them with disease-associated multi-omics datasets. In this process, the framework 

additionally demonstrated its ability to integrate diverse, sparse, and cross-species disease-

associated genetic data. It also incorporated computationally predicted PPIs into the existing network 

of experimentally verified interactions to overcome the limitations of interactome sparseness. 
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In summary, the thesis proposes a comprehensive interactome-based framework to uncover hidden 

patterns within the polygenic architecture of diseases. This framework involves piecing together an 

integrated view of disease interactomes and DTNs at various levels of biological organisation. The 

effectiveness of the framework has been ascertained in multiple disorders. Therefore, it can be 

adapted in future studies to model disease biology and drug action using emerging multi-omics 

disease data and advance our understanding of many diseases and their treatment.
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12 Future work 

The rapidly emerging disease-associated multi-omics data will require interpretation to understand 

their functional implications on diseases using integrative frameworks, such as the human interactome. 

This thesis addresses the central problem of the lack of an integrated conceptual framework to 

examine such multi-omics data. The transformation of the proposed pipeline into a fully automated 

computational pipeline will help resolve the historical outpacing of functional interpretation of data by 

novel data generation (Woodsmith and Stelzl, 2017) to some extent. This transformation will enable 

the generation of biological insights into disease mechanisms and the identification of repurposable 

drugs from this data.  

 

The strategies described in the thesis will help investigate the polygenic landscape of Mendelian 

disorders with complex phenotypes, which are not accounted for by current theories focusing on their 

monogenic underpinnings, in future studies. This examination will contribute to a more nuanced 

understanding of the regulatory gene neighbourhoods of single causative genes. Although the studies 

in this thesis described the extraction of biologically active sub-networks from disease interactomes 

for further examination, future studies should adopt a better approach, which involves stratifying the 

PPIs based on the level of disease-associated evidence associated with them, the individual genes 

coding for the interacting proteins, or the proteins themselves. Furthermore, the interactomes should 

be able to model dynamic events that affect disease development, such as PPI perturbations and 

gene-environment interactions. Additionally, integrating large-scale spatial and temporal 

transcriptomic data into the interactome will help identify hidden regional and developmental modules 

that influence disease development. Future works will expand the methodology for comparative 

interactome analysis to more groups of disorders and focus on revealing their relationships, potentially 

prompting re-evaluations of current disease classifications. The findings on the effects of aetiologically 

related conditions on the clinical activity of drugs can inform the drug repurposing methodology. This 

integrated perspective will help identify candidate drugs with minimal risk of adverse events and a 

reduced tendency to worsen comorbid conditions in future studies. 

 

Interactome analysis is a valuable tool for gaining biological insights into neuropsychiatric disorders by 

bypassing the various levels in the linear paradigm of biological discovery (Totah, 2016). Hence, 

highlighting the need to integrate the proposed pipeline into routine examinations of the genetic 

structures of psychiatric disorders will be another focal point for future works. Finally, the interactomic 

framework can contribute to our preparedness for viral diseases with the potential to expand into global 

pandemics, such as COVID-19. Analysing pan-viral interactomes (as shown in (Ghavasieh et al., 

2021)) – incorporating both experimentally verified and computationally predicted PPIs of virus-

modulated host proteins – will help us understand the proximity of virus families and the shared and 

unique themes underlying their host invasion mechanisms. It will also help us pre-emptively discover 

new drugs or reposition existing drugs for viral diseases. 
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14. Appendix 
 
 
14.1 Workflow for interactome-based framework to translate disease genetic data into 

biological and clinical insights 

 

14.1.1 Compilation of disease-associated genes and construction of disease interactomes 

 

An overview of the methods in this section has been presented in Appendix – Fig. 1. 

 

In the case of monogenic disorders exhibiting complex phenotypes unexplained by a single known 

causative gene, the initial step involves compiling two sets of disease-associated genes.  

 

1. The first set comprises genes proximal to the known causative gene. To accomplish this, input 

the gene symbol into the Knockdown Atlas feature of the Illumina BaseSpace Correlation Engine 

software suite (http://www.illumina.com/basespacecorrelationengine) (Kupershmidt et al., 2010). 

This tool systematically compiles genes that, when subjected to knockout, knockdown, mutation, 

or overexpression, result in the upregulation or downregulation of the causative gene expression. 

For technical guidance on using the Correlation Engine, refer to 

https://sapac.illumina.com/products/by-type/informatics-products/basespace-correlation-

engine.html. Note that BaseSpace Correlation Engine is a licensed software. 

 

2. The second gene set includes genes proximal to the disease phenotype. This set comprises 

three subsets.  

Appendix – Figure 1: Workflow for disease gene compilation and disease interactome construction. The 
workflow has been divided into two sections, one for single gene disorders and another for complex disorders with 
polygenic aetiology. 

https://sapac.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
https://sapac.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
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a. The first subset encompasses genes putatively associated with the disease, identified by the 

BeFree text mining algorithm (Bravo et al., 2015) retrievable from the DisGeNET database 

(https://www.disgenet.org/home/) (Piñero et al., 2015). DisGeNET compiles information on 

disease-associated human genetic variations, genetic associations in model organisms, 

disease-related differential gene expression, post-translational modifications, and gene-

dependent responses to therapeutics. Input the disease name into the search field and 

download “Evidences for GDAs” as an XLSX file. Sort the results in the “original DB” field to 

obtain genes identified by the BeFree algorithm. BeFree utilises a kernel-based approach 

based on morphosyntactic and dependency information to identify potential gene-disease 

associations from MEDLINE abstracts (Bravo et al., 2015).  

b. To compile the second subset, gather disorders aetiologically related to the disease in 

question based on expert advice. Utilise the DisGeNET database to compile genes associated 

with these related disorders, employing a gene-disease association (GDA) score of ≥ 0.7 from 

the “Evidences for GDAs” file. The GDA score considers factors like the number of supporting 

publications, types and number of database sources, and validations in model organisms. A 

stringent GDA threshold of ≥ 0.7 is typically used to select disease-associated genes from the 

DisGeNET database.  

c. The third subset can be compiled using the Phenogrid feature from the MONARCH toolkit 

(https://monarchinitiative.org/) (Cacheiro et al., 2019), identifying disorders sharing >70% 

phenotypic similarity with the disease in question. Please refer to (Mungall et al., 2017), to 

learn how to use Phenogrid. The phenogrid algorithm identifies the common phenotypes 

between two given diseases. It then assesses the information content in each of these 

phenotypes (gene and disease associations) to assign a specific strength to the similarity 

observed between the diseases. 

 

In total, one will be able to compile four gene sets: one causative gene-centric set and three 

phenotype-centric sets.  

 

3. Subsequently, use the web-based tool LENS (http://severus.dbmi.pitt.edu/LENS/) to extract four 

separate networks containing the shortest path lengths in the human interactome connecting the 

causative gene to each of the four gene sets. Export these four networks to Cytoscape 

(https://cytoscape.org/) (Smoot et al., 2011) as SIF or XLSX files. For guidance on using LENS, 

refer to (Handen and Ganapathiraju, 2015). Note that LENS contains experimentally validated 

PPIs from BioGRID (https://thebiogrid.org/) (Stark et al., 2006) and HPRD (http://www.hprd.org/) 

(Keshava Prasad et al., 2009) databases, as well as predicted PPIs using the HiPPIP algorithm 

(Ganapathiraju et al., 2016). 

 

4. For complex disorders with polygenic architectures, compile information on genes harbouring 

disease-associated variants from the GWAS catalogue (https://www.ebi.ac.uk/gwas/) (Buniello et 

al., 2019). Download the GWAS dataset (All associations v1.0.2 - with added ontology 

annotations, GWAS Catalog study accession numbers and genotyping technology) as a TSV file. 

Select the specific complex disorder in the field Disease/Trait and compile both Reported Genes 

and Mapped Genes with variants at levels suggestive of genome-wide significance (p-value < 1E-

05) or those reaching genome-wide significance (p-value < 1E-08). 

 

https://www.disgenet.org/home/
https://monarchinitiative.org/
http://severus.dbmi.pitt.edu/LENS/
https://cytoscape.org/
https://thebiogrid.org/
http://www.hprd.org/
https://www.ebi.ac.uk/gwas/
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5. If GWAS information is unavailable, one of three alternative approaches can be employed.  

a. Firstly, use the DisGeNET database to compile genes with GDA ≥ 0.7 identified through 

candidate gene or targeted sequencing approaches (“Evidences for VDAs” file). 

b. Secondly, employ Ingenuity Pathway Analysis (IPA) software 

(https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-

visualization/qiagen-ipa/) to search for the disease name and retrieve genes causally related 

to the disease (Krämer et al., 2014). IPA retrieves genes from the Ingenuity Knowledge Base, 

which includes approximately 5 million experimentally curated findings from biomedical 

literature or other databases. Note that IPA is a licensed software. 

c. Thirdly, based on advice from experts in disease biology, compile disease-associated genes 

from individual publications. 

 

6. The resulting gene set, compiled through one of the above four approaches, serves as the 

starting point to seed disease interactomes. Assemble interactomes by extracting PPIs of 

proteins encoded by disease-associated genes from the PPI repositories BioGRID and HPRD 

using the Cytoscape plugin, BisoGenet (Martin et al., 2010) 

(https://apps.cytoscape.org/apps/bisogenet). Ensure the network building options used in 

BisoGenet are set to organism - Homo sapiens, biorelation type - protein-protein interaction, data 

sources - BioGRID and HPRD, and method - input nodes and their neighbours up to a distance of 

1. 

 

14.1.2 Disease interactome validation using multi-omics patient datasets  

 

An overview of the methods in this section has been presented in Appendix – Fig. 2. 

 

The subsequent phase involves validating the constructed disease interactomes. To achieve this, 

differential gene expression and methylation datasets from patients can be utilised.  

 

1. Employ the Curated Studies feature of the BaseSpace Correlation Engine to select relevant 

transcriptomic and methylation datasets from the Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2012). This feature allows one to examine pre-

processed publicly available gene expression datasets from GEO.  

 

2. Once the pertinent study is chosen, users can incorporate differentially expressed genes from the 

selected study into the Meta Analysis feature of the Correlation Engine.  

 

3. Subsequently, upload a text file containing the list of interactome genes and check the 

intersection of this list with the differentially expressed/methylated genes.  

a. For transcriptomic studies, genes with a fold change >2 and <1/2 are considered significantly 

overexpressed and underexpressed, respectively, at a p-value < 0.05.  

b. For methylation studies, genes with methylation values >1 and <1 are regarded as 

hypermethylated and hypomethylated, respectively, at a p-value < 0.05. 

 

https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://apps.cytoscape.org/apps/bisogenet
https://www.ncbi.nlm.nih.gov/geo/
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4. If available, one can assess the overlap with proteomic and external genetic datasets (i.e., those 

that are not utilised during the interactome construction), obtained from independent publications. 

Compile a list of differentially expressed proteins, derived from computations described in the 

publications, and genes reported to harbour genetic variants along with their corresponding 

evidences (i.e., proteomic/genetic evidence). Organise this information as an XLSX file and 

import it into the Cytoscape file containing the network as a Table. Subsequently, mark these 

evidences as Node Attributes. Utilise the Filter function in Cytoscape to identify the number of 

genes in the interactome with proteomic/genetic evidence. 

 

5. Upon retrieving the number of intersecting genes, a hypergeometric p-value calculator (e.g., 

https://systems.crump.ucla.edu/hypergeometric/index.php) can be employed to compute the 

statistical significance of the overlap of differentially expressed/methylated genes with 

interactome genes. Input the four parameters (N, M, s, k) into the calculator as described below. 

In the hypergeometric test, the p-value is derived from the probability of k successes in s draws 

(without replacement) from a finite population of size N containing exactly M objects with an 

interesting feature: 

 

𝑃(𝑋 = 𝑘) =
(𝑀

𝑘
)(𝑁−𝑀

𝑠−𝑘
)

(𝑁
𝑠 )

        

       

N = Total number of genes assayed in the experiment (retrieve this number from the GPL file 

attached to the selected study in GEO; the GEO platform file describes the list of genes assessed 

Appendix – Figure 2: Workflow for disease interactome validation. The workflow outlines analyses with 
transcriptomic and methylation datasets. Note that genetic and proteomic datasets can also be used for validation, as 
detailed below. 

https://systems.crump.ucla.edu/hypergeometric/index.php
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in the experiment) 

M = Number of differentially expressed/methylated genes 

s = Number of genes in the interactome 

k = Number of common genes between K and s (differentially expressed/methylated genes in the 

interactome) 

 

6. Alternatively, the cumulative distribution function (CDF) of the hypergeometric distribution can 

also be calculated using Microsoft Excel:  

IF(k>=((s*M)/N),1-HYPGEOM.DIST(k-1,s,M,N,TRUE),HYPGEOM.DIST(k,s,M,N,TRUE)).  

a. The formula assesses whether the observed value, k, exceeds or equals the expected 

threshold value for enrichment calculated as (s*M)/N. If k surpasses this threshold, the 

cumulative probability is calculated using HYPGEOM.DIST(k-1, s, M, N, TRUE). If k is below 

the threshold, the cumulative probability is calculated using HYPGEOM.DIST(k, s, M, N, 

TRUE).  

b. The expected threshold for enrichment represents the expected number of successes in a 

sample of size s drawn from a population of N items, containing M successes.  

c. The direction of enrichment is calculated as IF(k=expected,"match",IF(k<expected,"de-

enriched","enriched")). This formula categorises the relationship between the observed value 

k and the expected value, i.e. (s*M)/N. It indicates whether k matches the expected value, is 

lower than expected (de-enriched), or is higher than expected (enriched).  

d. The fold change of enrichment (or enrichment ratio) is calculated as 

IF(k<expected,expected/k,k/expected). The formula quantifies the magnitude of change 

between the observed value k and the expected value. It expresses how many times greater 

or smaller k is compared to the expected value. If k is less than the expected values, the fold 

change is calculated as expected/k. If k is greater than the expected value, the fold change is 

calculated as k/expected.   

 

14.1.3 Disease interactome characterisation 

 

An overview of the methods in this section has been presented in Appendix – Fig. 3. 

 

For functional and phenotypic enrichment analyses, utilise WebGestalt (https://www.webgestalt.org/) 

(Liao et al., 2019). WebGestalt is a comprehensive web-based tool designed for gene set enrichment 

analysis and functional annotation of large gene lists. Offering a wide range of analysis options, 

including Gene Ontology (GO) analysis, pathway analysis (e.g., KEGG and Reactome), and disease 

enrichment (e.g., OMIM and DisGeNET) analysis, WebGestalt assists researchers in uncovering 

biological insights from high-throughput omics data through its user-friendly interface. Additionally, it 

provides interactive visualisations to aid in the interpretation of enrichment results. 

 

1. Prepare the list of interactome genes, ensuring they are in a compatible format such as official 

gene symbols or Entrez Gene IDs. 

https://www.webgestalt.org/
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2. Open the WebGestalt website in your web browser. To learn how to use WebGestalt, refer: 

https://www.webgestalt.org/WebGestalt_2019_Manual.pdf  

 

3. Choose the type of analysis to perform, such as GO analysis, pathway analysis, or disease 

enrichment analysis using the Functional Database feature. 

 

4. Upload your gene list to WebGestalt by either copying and pasting into the provided text box or 

uploading a file. 

 

5. Choose the reference database for enrichment analysis, considering options like the entire 

genome, custom gene sets, or pre-defined gene sets based on specific databases. 

 

6. Adjust parameters including statistical method for multiple testing correction, significance 

threshold, and minimum number of genes required for significance. Consider the appropriate 

settings based on the size of your input gene list and the desired stringency of the analysis. 

 

7. Initiate the analysis by clicking Submit. WebGestalt will compute enrichment based on your data 

and parameters. 

 

8. Review the enriched categories (GO terms, pathways, etc.) along with p-values and enrichment 

scores. Focus on significantly enriched categories, typically those with adjusted p-values below 

your chosen threshold. 

 

9. Explore interactive visualisations provided by WebGestalt. These include: (i) bar charts ranked 

based on the enrichment scores of the enriched biological annotations and coloured based on 

Appendix – Figure 3: Workflow for disease interactome characterisation. The workflow has been divided into 
three sections, namely, functional enrichment analyses, phenotypic enrichment analyses and sub-network analyses. 
Note that the former two analyses are performed using WebGestalt, whereas the latter is performed using three 
separate toolkits. 

https://www.webgestalt.org/WebGestalt_2019_Manual.pdf
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levels of FDR-corrected p-values, (ii) scatter plots that help explore the enriched annotations 

based on both the enrichment scores and FDR-corrected p-values associated with them, and (iii) 

enrichment maps that help explore relationships between enriched categories and visualise sub-

networks, e.g., for GO enrichments. 

 

10. Download results table containing enriched categories and statistics in TXT format for further 

analyses. 

 

For sub-network analyses of the interactome, one can use NetBox, HumanBase and ReactomeFiViz 

for the detection of topological, functional and regulatory modules, respectively. 

 

NetBox (Liu et al., 2020) is a computational algorithm designed for identifying topological modules 

within PPI networks; refer to 

https://bioc.ism.ac.jp/packages/3.16/bioc/vignettes/netboxr/inst/doc/netboxrTutorial.html for technical 

assistance on using NetBox. It employs a community detection approach to partition the network into 

cohesive modules based on network topology, thereby revealing functional units or complexes within 

the interactome. These modules represent groups of proteins that exhibit dense connectivity and are 

likely to participate in similar biological processes or pathways. By uncovering these modules, 

NetBox facilitates the exploration of protein interactions and their role in cellular functions, disease 

mechanisms, and drug discovery. 

 

1. To begin, obtain the PPI network data representing the human interactome. This data can be 

obtained from publicly available databases such as BioGRID and HPRD (as well as STRING or 

IMEx). 

 

2. Next, clean and preprocess the PPI network data to eliminate low-confidence interactions, 

duplicate entries, and non-human proteins if present. 

 

3. Format the pre-processed PPI network data into a suitable file format compatible with NetBox 

(e.g., edge list, adjacency matrix). 

 

4. Execute the NetBox algorithm using the prepared input data. Configure parameters such as the 

resolution parameter (gamma) to control the granularity of module detection. Specify the desired 

number of modules or allow NetBox to automatically determine the optimal number based on 

network topology. 

 

5. Retrieve the identified topological modules generated by the NetBox algorithm. Each module 

represents a cohesive group of proteins with dense intra-module connectivity and potentially 

shared biological functions. 

 

6. Analyse the properties of the identified modules, such as their size, density, and internal 

connectivity. 

 

7. Conduct functional enrichment analysis on the proteins within each module to elucidate the 

biological processes, molecular functions, and cellular components overrepresented within the 

https://bioc.ism.ac.jp/packages/3.16/bioc/vignettes/netboxr/inst/doc/netboxrTutorial.html
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modules. This can be achieved using tools for functional enrichment analysis such as 

WebGestalt. 

 

8. Visualise the topological modules using network visualisation tools such as Cytoscape to gain 

insights into their structure and connectivity patterns. 

 

9. Validate the functional implications of the modules through literature review, comparison with 

experimental results, and integration with omics data. 

 

In the HumanBase toolkit (https://hb.flatironinstitute.org/) (Krishnan et al., 2016), community 

detection is utilised to identify cohesive gene clusters by combining an input gene list with a relevant 

tissue selection. These clusters comprise genes that share local network neighbourhoods, thus 

creating functional modules. Functional modules are delineated using tissue-specific networks, which 

utilise extensive data collections to forecast gene interactions and link genes with specific GO 

biological processes. Specifically, HumanBase employs shared k-nearest-neighbours and the 

Louvain community-finding algorithm to cluster genes sharing similar network neighbourhoods and 

Gene Ontology biological processes into functional modules. The p-values of the terms enriched in 

the modules are calculated using Fisher’s exact test and the Benjamini-Hochberg method. The 

modules discovered by this approach hold the potential to encompass higher-order, tissue-specific 

functionalities. 

 

1. To commence, choose the analysis type specific to functional modules and input the list of 

interactome genes. Select particular tissue-specific co-expression networks (e.g., nervous 

system) or the global tissue-naïve co-expression network for mapping the interactome genes.  

 

2. Retrieve the identified functional modules generated by the co-expression network analysis. 

These modules represent groups of genes with correlated expression patterns and are likely to 

participate in similar biological processes or pathways. Adjust tissue-specific networks or 

parameters such as minimum module size as necessary. 

 

3. Analyse the properties of the identified functional modules, including module size, density, and 

functional coherence. Explore the biological significance of the modules by examining the 

enrichment of Gene Ontology terms. These results, including the module membership details of 

the interactome genes, can be exported in TSV format. 

 

4. The detected modules can be mapped to the Cytoscape file of the interactome, and the network 

topology, node attributes, and connectivity patterns can be explored to gain insights into module 

structure. 

 

ReactomeFIViz (https://apps.cytoscape.org/apps/reactomefiplugin) (Wu et al., 2014) is a Cytoscape 

plugin designed to explore and visualise functional interaction networks derived from the Reactome 

database (https://reactome.org/) (Croft et al., 2014). Integrating molecular interaction data with 

pathway information from Reactome, ReactomeFIViz enables users to identify regulatory modules 

and functional interactions within biological pathways. By capitalising on the extensive biological 

knowledge encoded in Reactome, ReactomeFIViz empowers researchers to uncover complex 

https://hb.flatironinstitute.org/
https://apps.cytoscape.org/apps/reactomefiplugin
https://reactome.org/
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regulatory relationships and gain insights into the functional organisation of biological systems. 

 

1. Begin by launching Cytoscape, an open-source platform for visualising and analysing biological 

networks. Install the ReactomeFIViz plugin within Cytoscape by navigating to the Cytoscape App 

Store, searching for ReactomeFIViz, and installing the plugin. The plugin provides access to the 

extensive collection of pathway information and molecular interactions in Reactome. 

 

2. Choose the Gene Set/Mutation Analysis function of ReactomeFIViz, input the list of interactome 

genes, and under FI network construction parameters, select Fetch FI Annotations and Use 

Linker Genes, if necessary.  

 

3. Visualise the retrieved functional interaction networks using built-in visualisation tools of 

Cytoscape. Explore network topology, node attributes, and functional annotations to gain insights 

into regulatory relationships within the pathway. 

 

4. Analyse the regulatory modules to uncover key regulatory relationships and functional 

associations within the pathway. Interpret the results in the context of existing biological 

knowledge and experimental data. Perform additional analyses or validations on the identified 

regulatory modules, such as functional enrichment analysis using WebGestalt. 

 

14.1.4 Identification and validation of repurposable drugs 

 

An overview of the methods in this section has been presented in Appendix – Fig. 4. 

 

1. First, identify drugs targeting at least one protein in the disease interactome by accessing 

DrugBank (https://go.drugbank.com/) (Wishart et al., 2008) via WebGestalt (i.e., perform an 

enrichment analysis of the interactome with Drug Bank as the Functional Database). Utilise the 

Redundancy Reduction feature in WebGestalt to prioritise drugs exhibiting highly significant 

overlaps with the interactome. This feature employs an affinity propagation algorithm, clustering 

sets of genes in the interactome targeted by specific drugs using the Jaccard index as the 

similarity metric. It identifies a representative for each cluster, ensuring that only individual drugs 

targeting a statistically significant number of proteins in the interactome are prioritised for further 

analysis. 

 

2. For comparative transcriptomic analysis of drug-induced (from Connectivity Map 

https://www.broadinstitute.org/connectivity-map-cmap (Subramanian et al., 2017)) versus 

disease-associated expression profiles (from GEO), leverage BaseSpace Correlation Engine. 

This tool allows users to study the impact of diseases and/or drugs on thousands of pre-

processed publicly available gene expression datasets. Refer to the protocol described in 

(Chattopadhyay and Ganapathiraju, 2017) to obtain the list of drugs whose expression profiles 

are negatively correlated with disease-associated expression profiles. The Correlation Engine 

https://go.drugbank.com/
https://www.broadinstitute.org/connectivity-map-cmap
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generates a correlation score based on the strength of the overlap between the drug and disease 

datasets. Statistical criteria, including correction for multiple hypothesis testing, are applied, and 

correlated datasets are ranked by statistical significance. A numerical score of 100 is assigned to 

the most significant result, and other scores are normalised with respect to this top-ranked result. 

 

3. In cases where specific disease differential expression profiles are unavailable, use expression 

profiles of aetiologically related disorders. 

 

4. Identify the intersection of drugs identified in steps 1 and 2 to pinpoint drugs targeting proteins in 

the interactome while also exhibiting negative correlation with the disease. 

 

5. Subsequently, assess the validity of the shortlisted drugs through two approaches. If clinical trial 

data is available for the disease in the NIH Clinical Trials database (https://clinicaltrials.gov/), 

check whether a clinical trial is underway or has been successfully completed by filling the 

Intervention/Treatment field with the name of the shortlisted drug and the Condition/Disease field 

with the name of the disease. Additionally, check whether literature evidence supports the 

efficacy of the shortlisted drugs in preclinical animal models or cell lines. 

 

6. In case such clinical data is unavailable, conduct a series of gene set and network analyses to 

evaluate the validity of the shortlisted drugs. Compile the targets of the shortlisted drugs from 

Appendix – Figure 4: Workflow for repurposable drug identification. The most important component of this 
workflow is comparative transcriptomic analysis of drug and disease profiles, which will be followed by validation 
analyses. 

https://clinicaltrials.gov/
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DrugBank and subject them to functional and phenotypic enrichment analyses as outlined in 

section 14.1.3. Similarly, perform these analyses with the targets and their first-order interactors 

(i.e., drug target networks), and also with the specific genes displaying anti-correlated expression 

in drug versus disease expression datasets and their network. 

 

14.1.5 Comparative disease interactome analysis 

 

An overview of the methods in this section has been presented in Appendix – Fig. 5. 

 

To compile disease-associated genes and construct the disease interactome, follow the steps 

outlined in section 14.1.1. The steps for comparative interactome analysis have been elucidated in 

relation to the biological modality of regional gene expression in the human brain. Specifically, the 

procedure has been detailed with respect to addressing the question of how one can derive 

subgroupings among specific psychiatric disorders based on the regional expression patterns of their 

interactomes in the brain.  

 

1. Begin by preparing four transcriptomic datasets in the form of gene matrix transposed (GMT) 

files.  

a. Download the BrainSpan Atlas dataset (https://www.brainspan.org/static/download.html; file: 

RNA-Seq Gencode v10 summarised to genes) (Hawrylycz et al., 2012) and identify genes 

with logRPKM > 2 in 26 brain regions that are not housekeeping genes (RPKM = Reads Per 

Kilobase per Million mapped reads). This entails identifying 9,638 genes 

(https://www.proteinatlas.org/humanproteome/tissue/housekeeping) detected in all tissues 

Appendix – Figure 5: Workflow for comparative disease interactome analysis. The workflow includes 
contingencies for situations where a particular biological modality fails to uncover disorder subgroupings. 

https://www.brainspan.org/static/download.html
https://www.proteinatlas.org/humanproteome/tissue/housekeeping
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with TPM ≥ 1, as specified by the Human Protein Atlas (TPM = Transcripts Per Million) 

(https://www.proteinatlas.org/) (Uhlén et al., 2015). The GMT file will include data from various 

brain regions: amygdaloid complex (3,231 genes), anterior (rostral) cingulate (medial 

prefrontal) cortex (5,362 genes), caudal ganglionic eminence (3,677 genes), cerebellar cortex 

(3,542 genes), cerebellum (3,601 genes), dorsal thalamus (3,410 genes), dorsolateral 

prefrontal cortex (3,473 genes), hippocampus (hippocampal formation) (3,628 genes), 

inferolateral temporal cortex – area TEv, area 20 (7,000 genes), lateral ganglionic eminence 

(3,698 genes), medial ganglionic eminence (3,678 genes), mediodorsal nucleus of thalamus 

(3,442 genes), occipital neocortex (3,790 genes), orbital frontal cortex (3,506 genes), parietal 

neocortex (3,724 genes), posterior (caudal) superior temporal cortex – area 22c (3,443 

genes), posteroventral (inferior) parietal cortex (3,369 genes), primary auditory cortex (core) 

(3,437 genes), primary motor cortex – area M1, area 4 (3,431 genes), primary motor-sensory 

cortex (3,628 genes), primary somatosensory cortex – area S1, areas 3,1,2 (3,402 genes), 

primary visual cortex-striate cortex – area V1/17 (3,436 genes), striatum (3,557 genes), 

temporal neocortex (3,611 genes), upper (rostral) rhombic lip (3,528 genes) and ventrolateral 

prefrontal cortex (3,467 genes). 

b. Download RNA-seq data from the brains of adult donors available in GTEx 

(https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression; file: 

GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz) (Consortium, 2015). 

Include genes with high or medium expression (TPM ≥ 9) in 13 brain regions in the GMT file, 

excluding housekeeping genes. The brain regions include: amygdala (1,953 genes), anterior 

cingulate cortex-BA24 (2,269 genes), caudate nucleus (2,229 genes), cerebellar hemisphere 

(3,978 genes), cerebellum (3,968 genes), cortex (2,706 genes), frontal cortex-BA9 (2,872 

genes), hippocampus (1,949 genes), hypothalamus (2,374 genes), nucleus accumbens 

(2,464 genes), putamen (1,892 genes), spinal cord-cervical c-1 (2,408 genes) and substantia 

nigra (1,949 genes). 

c. Create a third GMT file using genes showing high expression in each of 516 prenatal brain 

structures relative to other structures (Hawrylycz et al., 2012). Collect these expression 

profiles from 4 human prenatal samples spanning 4 time points from the Harmonizome 

database (download from: 

https://maayanlab.cloud/Harmonizome/dataset/Allen+Brain+Atlas+Prenatal+Human+Brain+Ti

ssue+Gene+Expression+Profiles) (Rouillard et al., 2016). 

d. Lastly, compile a GMT file containing the genes highly expressed in each of the 232 structures 

available in the Allen Brain Atlas microarray dataset (Hawrylycz et al., 2012) relative to others, 

as described by (Rouillard et al., 2016), in the form of a GMT file (https://human.brain-

map.org/static/download; files to be downloaded: H0351.2001, H0351.2002, H0351.1009, 

H0351.1012, H0351.1015, H0351.1016). Normalised microarray data will be available for 

29,130 genes from the brains of six healthy donors (IDs 9861, 10021, 12876, 14380, 15496 

and 15697), each dissected into 363-946 samples – yielding a total of 3702 samples – from 

13 areas in the brain, namely, cerebellum, cerebral nuclei, diencephalon, frontal lobe, insular 

cortex, limbic lobe, medulla oblongata, midbrain, occipital lobe, parietal lobe, pons, temporal 

lobe and white matter. Note that the (i) probes matching multiple genes should be excluded, 

(ii) if the same gene has been detected by multiple probes, the expression levels should be 

averaged across the probes, and (iii) 232 brain regions (414 when the samples from the left 

https://www.proteinatlas.org/
https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
https://maayanlab.cloud/Harmonizome/dataset/Allen+Brain+Atlas+Prenatal+Human+Brain+Tissue+Gene+Expression+Profiles
https://maayanlab.cloud/Harmonizome/dataset/Allen+Brain+Atlas+Prenatal+Human+Brain+Tissue+Gene+Expression+Profiles
https://human.brain-map.org/static/download
https://human.brain-map.org/static/download
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and right hemispheres are treated separately) should be grouped into 13 brain areas based 

on the structured vocabulary used in Allen Brain Atlas to classify them. 

 

2. Perform an overrepresentation analysis to determine the enrichment of different disease 

interactomes for brain regions in each of the four transcriptomic datasets.  

a. Upload each of the four GMT files using the Functional Database feature in WebGestalt, 

upload each of the interactome gene lists under the Gene List section, select the reference set 

as genome and adjust the Advanced Parameters as per requirements (e.g. adjust the 

maximum number of genes for a category depending on the gene list sizes in the GMT files).  

b. Choose the multiple test adjustment procedure as Benjamini-Hochberg and retrieve the 

statistical significances as FDR-corrected p-values for every brain region represented in the 

transcriptomic dataset (which will depend on the varying number of sampled brain regions 

across the four datasets). 

 

3. Compile negative log-transformed p-values of regional enrichments into a data matrix with brain 

regions as rows and the disorders as columns. 

 

4. Use the ClustVis web-based tool for principal component analysis, inputting the data matrix for 

analysis. To learn how to use ClustVis, refer to (Metsalu and Vilo, 2015). 

a. Pre-process the data matrix by excluding rows and columns with more than 70% missing 

values, and centre the –log10P values using unit variance scaling. 

b. Apply the singular value decomposition (SVD) method with imputation to extract principal 

components, predicting and filling missing values iteratively. 

c. Transform original variables (–log10P) into uncorrelated variables (principal components), 

ranking them by the percentage of total variance explained. 

d. Plot component scores (possibly PC1 and PC2 explaining majority of the observed expression 

variance) of each tissue on a 2D plane, with PC1 on the X-axis and PC2 on the Y-axis. 

e. Conduct an initial assessment of potential clusters based on the plotted component scores. 

For independent validation of the detected clusters, the data matrix can be hierarchically 

clustered using Morpheus (https://software.broadinstitute.org/morpheus/) (Starruß et al., 

2014). Pairwise distances in the data matrix can be calculated using Pearson correlation and 

closely linked clusters can be identified using the average linkage method. 

f. Extract factor/component loadings corresponding to brain regions contributing to selected 

principal components. 

g. Plot the loading of each brain region on the X-axis (PC1) and Y-axis (PC2) to analyse their 

influence on grouping patterns. 

h. Analyse results, interpret patterns, and draw conclusions regarding the relationships between 

brain regions and disorders based on the contribution to principal components. 

 

5. If no cross-disorder relationships are detected, use the Advanced Merge Function in the Tools 

section of Cytoscape (specifically, the intersection function) to extract the common sub-network 

shared across the disorder interactomes. Check for the enrichment of shared genes for specific 

brain regions using Webgestalt following the same procedure detailed above. 

 

https://software.broadinstitute.org/morpheus/
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6. If significant leads are found, check whether potential points for aetiological diversification can be 

identified (e.g., histochemically delineable region sub-compartments). 

 

7. Compile marker genes for region sub-compartments if available from individual publications, then 

construct their respective interactomes using the procedures described in section 14.1.1. 

 

8. Check whether the sub-compartment interactomes show preferential intersections with the 

disorder interactomes based on hypergeometric tests, as described in section 14.1.2. 

 

9. If they do, use these intersecting subnetworks for principal component analysis and to detect 

cross-disorder relationships. Repeat the steps described above. 

 

10. If this fails, examine the enrichment of disorder interactomes for other biological modalities (e.g., 

signalling pathways) and repeat the above procedure. 

 

14.1.6 Comparative drug target network analysis  

 

An overview of the methods in this section has been presented in Appendix – Fig. 6. 

 

The steps for conducting comparative drug target network analysis will be explained in the context of 

drug contraindications in comorbidities. Specifically, the process has been outlined to address how 

different biological factors influence the target networks of drugs used for a primary condition, 

whether it is contraindicated or not, in a comorbid condition. 

 

Appendix – Figure 6: Workflow for comparative drug target network analysis. This workflow will help identify the 
biological modalities underlying target networks of drugs with different outcomes in clinically related diseases. 
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1. Compile genes associated with comorbid disease pairs (test disease sets) and non-comorbid 

disease pairs (negative control disease pairs) using the procedures detailed in section 14.1.1. 

 

2. Assemble PPI networks for disease-associated genes using HPRD and BioGRID databases as 

described in section 14.1.1. Utilise the Cytoscape plugin, Bisogenet, with specified options 

including organism (Homo sapiens), biorelation type (protein-protein interaction), data sources 

(BioGRID and HPRD), and method (input nodes and their neighbours up to a distance of 1). 

 

3. Utilise the Drug Bank database to gather lists of drugs indicated for each disease in both the 

comorbid and non-comorbid pairs.  

 

4. Employ the TWOSIDES database (https://www.tatonettilab.org/resources/nsides/) (Tatonetti et 

al., 2012) to categorise drugs based on their effects on disease pairs. Group drugs into four 

categories: (a) drugs for disease A that are contraindicated and (b) not contraindicated for 

disease B, as well as (c) drugs for disease B that are contraindicated and (d) not contraindicated 

for disease A. Identify drugs associated with specific adverse effects using condition concept 

names in the TWOSIDES database. For instance, to identify anxiolytic drugs that may cause 

depression, select the condition concept names depression, major depression, depressive 

symptom, depression suicidal, depression postoperative, postpartum depression, depressive 

delusion, and agitated depression. The list of anxiolytic drugs (compiled from the Drug Bank 

database) can be compared with the list of drugs associated with these condition concept names. 

The matching drugs can be compiled into groups ‘a’ and ‘c’, for example, “drugs effective in 

anxiety and contraindicated in depression”. Groups ‘b’ and ‘d’ drugs can be compiled in a similar 

manner. 

 

5. Compile proteins targeted by drugs from the Drug Bank database by querying the DGIdb web 

portal (https://old.dgidb.org/) (Griffith et al., 2013). Assemble drug target networks (DTNs) 

containing the drug targets and their first-order interactors. Compile PPIs of drug targets from 

HPRD and BioGRID using Bisogenet with the same options as for disease network construction. 

 

6. To characterise the four DTNs associated with each disease pair, examine three types of data: (i) 

disease PPI networks, (ii) biological pathways, and (iii) tissue gene expression. 

a. For each disease pair, calculate the overlaps of the four DTNs with proteins that are (a) 

common to both disease A and disease B networks, (b) unique to disease A network, and (c) 

unique to disease B network using the Advanced Merge Functions in the Tools section of 

Cytoscape. Then, add these protein subsets into a GMT file and use it to compute their 

enrichment for the four DTNs associated with respective disease pairs using WebGestalt, and 

retrieve FDR-corrected p-values (p-values corrected for multiple hypotheses using the 

Benjamini-Hochberg method). 

b. Use WebGestalt to compute the distribution of genes involved in specific signalling pathways 

(functional database: Reactome) in the DTNs. Retrieve FDR-corrected p-values for the 

enrichment of the pathways in the four DTNs associated with each disease pair. 

c. Use the GTEx database to compute the enrichment of DTNs for genes expressed in specific 

tissues and retrieve FDR-corrected p-values. Create GMT files for hypergeometric tests in 

WebGestalt. GTEx contains RNA-sequencing data from 53 postnatal human tissues. Genes 

https://www.tatonettilab.org/resources/nsides/
https://old.dgidb.org/
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showing high or medium expression (TPM ≥ 9) in specific tissues can be included in the 

analysis, provided they are not housekeeping genes, i.e., those detected in all tissues with 

TPM ≥ 1, as described in the Human Protein Atlas. 

 

7. Use PCA to capture relationships of the four DTNs for each disease pair based on enrichment in 

disease sub-networks, biological pathways, and tissues. 

a. Perform PCA using ClustVis (https://biit.cs.ut.ee/clustvis/) (Metsalu and Vilo, 2015) with a data 

matrix containing DTNs (columns) versus the specific disease protein sets, pathways, or 

tissues (rows). For example, for the data modality 'disease protein set', the rows would be 

'common to both networks', 'unique to disease A network', and 'unique to disease B network', 

while for the data modality 'tissue', the members would be 'amygdala', 'aorta', 'lungs', etc. 

Each cell will contain -log10 transformed p-values, indicating the enrichment of a disease 

protein set/pathway/tissue in a specific DTN. 

b. Pre-process the data matrix for missing values and apply log transformation and unit variance 

scaling, as described in section 14.1.5. 

 

8. All generated PCs can be considered for further analysis, and the PC scores of the DTNs can be 

used to identify their grouping patterns. 

 

9. Extract the component loading values denoting the weights of each biological modality on the 

PCs. Component loadings depict the correlation of the original variables (-log10P values) in our 

data matrix with each of the extracted PCs. Their magnitudes can be used to assess the 

influence of different biological modalities on the 4 DTNs separated along the PCs. 

 

10. Calculate the Euclidean distance between the PC scores of each of the DTNs and the 

corresponding component loadings of the biological modalities (see code deposited in Github: 

https://github.com/KalyaniBindu/Interactome-Frameworks/blob/main/euclidean-distance.txt) This 

will yield a list of specific disease protein sets/pathways/tissues closely related to each of the 4 

DTNs associated with each disease pair. 

 

11. To interpret the relevance of specific disease protein sets and pathways to specific target 

networks of drugs with particular clinical activity, seek expert advice. For interpretation of tissues 

closely related to specific DTNs with different clinical outcomes, identify tissues enriched with 

disease-specific single nucleotide polymorphisms using TSEA-DB 

(https://bioinfo.uth.edu/TSEADB/) (Jia et al., 2020), a reference database for information on 

disease-associated tissues from GTEx and GWAS catalogue. Retrieve the top-3 tissues showing 

significant enrichment for disease-associated variants for each disease from TSEA-DB and 

compare these results with tissues obtained from the Euclidean distance analysis. 

 

Github page: https://github.com/KalyaniBindu/Interactome-Frameworks 

 
 
 
 
 
 

https://biit.cs.ut.ee/clustvis/
https://bioinfo.uth.edu/TSEADB/
https://github.com/KalyaniBindu/Interactome-Frameworks


Appendix  

359  

 
14.2 Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, 

scopolamine and their combination in zebrafish 

 

The experimental chapter is based on the following peer-reviewed publication: 

Karunakaran, Kalyani B., Anand Thiyagaraj, and Kirankumar Santhakumar. Novel insights on 

acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in 

zebrafish. Natural Products and Bioprospecting 12, no. 1 (2022): 1-15. 

 

Summary of this chapter 

 

In this chapter, I demonstrate how preclinical studies in animal models can be conducted to test the 

efficacy of a candidate drug and the mechanisms underlying its pharmacological actions, using a crude 

drug for Alzheimer’s disease as an example. I investigated the anti-acetylcholinesterase (AChE) 

effects of Convolvulus pluricaulis (CP) on the biochemical and behavioural deficits induced by 

scopolamine in zebrafish, using isoxazole as a positive control for AChE inhibition. I used Ellman's 

assay, Karnovsky staining, and hydroxylamine methods to quantify AChE activity and acetylcholine 

levels in 168 hours post-fertilization larvae. I performed molecular docking of human AChE with the 

active components of CP (scopoletin and kaempferol) to elucidate their inhibitory mechanisms. I 

performed the passive avoidance response test to examine avoidance response acquisition in adult 

zebrafish. I used the wrMTrck software to examine the locomotor patterns of the larvae. CP-treated 

larvae showed similar AChE inhibition patterns as those treated with isoxazole. CP also improved the 

retention of avoidance response in adult zebrafish compared with isoxazole and elicited specific 

locomotor responses in the larvae. CP's active components bound to different residues in the catalytic 

site and the peripheral anionic site of the human AChE. Combining CP with scopolamine significantly 

increased AChE inhibition and depleted ACh levels in larvae, similar to isoxazole. Overall, the study 

proposed the examination of CP for its ability to modulate cognitive deficits in Alzheimer’s disease. 

 

Contribution to this chapter (85%) 

 

• Designed the study and developed the methodology of the project, including zebrafish rearing, 

embryo collection, plant extract preparation, standardisation of lethal concentration, Ellman's 

assay, Karnovsky staining, hydroxylamine assay, passive avoidance response test, assessment 

of larval locomotor activity and protein‑small molecule rigid body docking 

• Performed all the experimental and bioinformatic analyses, and derived the conclusions  

• Conceptualised and wrote the manuscript and prepared all the figures, tables and supplementary 

files 
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Karunakaran et al. 

Natural Products and Bioprospecting (2022) 12:6 

https://doi.org/10.1007/s13659-022-00332-5 

Natural Products and 
Bioprospecting 

 
 

Novel insights on acetylcholinesterase 
inhibition by Convolvulus pluricaulis, 
scopolamine and their combination in 
zebrafish 

Kalyani Bindu Karunakaran1, Anand Thiyagaraj2 and Kirankumar Santhakumar2,3* 

 

 

1 Introduction 
Alzheimer’s disease (AD) is a progressive neurodegen- 

erative disorder characterized by memory loss, behavioral 

changes, and impaired cognition  and  language [1]. Around 

two-thirds of dementia cases have been attributed to AD, 

and it has an estimated prevalence of 10–30% in the 

population aged 65 years and more [1]. AD has a long pre-

clinical phase of around 20 years and the average survival 

time for a person diagnosed with 

the disease is 8–10 years [2]. The two most distinctive 

hallmarks of AD are the accumulation of amyloid-beta plaques 

in the brain and the aggregation of tau proteins into 

neurofibrillary tangles within neurons [1]. Accumulation of 

amyloid-beta plaques leads to widespread non- specific 

degeneration of neurons, which in turn, affects various 

neurotransmitter systems including the cholinergic, 

monoaminergic, and glutamatergic systems [1]. Cognitive 

deficits seen in AD such as impaired memory and learning are 

often attributed to depleted levels of the 

   neurotransmitter acetylcholine (ACh) in the basal fore- 

*Correspondence: kirankus@srmist.edu.in 
3 Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM 

Institute of Science and Technology, Kattankulathur 603 203, India 

Full list of author information is available at the end of the article 

brain cholinergic system, which is involved in arousal, 

memory coding, and storage and retrieval of working memory 

[3]. Therefore, maintaining substantial levels of 
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ACh in the neuronal synapses of the cholinergic system may 

be integral to rescuing these cognitive deficits [4]. 

Depleted ACh levels could result from the dramatic loss 

of cholinergic neurons in the basal forebrain, reduced 

cholinergic innervation to the hippocampus and neocortex, 

reduced levels of the enzyme choline acetyltransferase 

(ChAT), and increased activity of the enzyme 

acetylcholinesterase (AChE) [2, 5–8]. AChE and ChAT 

modulate the levels of ACh in the central and peripheral 

cholinergic systems [2]. AChE catalyzes the breakdown of 

ACh into acetate and choline, while ChAT synthe sizes ACh 

from choline and acetyl-CoA. ACh catabolism mediated by 

AChE serves two purposes. Firstly, it allows ACh to be 

continually replenished through the reuptake of choline into 

the synaptic knob. Secondly, it prevents neuronal 

hyperexcitability arising from enhanced ACh levels at the 

neuronal synapse [9]. However, excessive AChE activity may 

cause cataclysmic degradation of ACh leading to cognitive 

effects in AD patients such as memory impairment. Drugs 

such as donepezil, rivastigmine, and galantamine, which 

reversibly inhibit AChE by forming hydrolyzable 

carbamylated compounds with it, are widely used for 

symptomatic alleviation of AD [10–15]. Unfortunately, the 

cognitive benefit that they confer lasts only for ~ 2 years. Their 

actions on the peripheral cholinergic system produce side 

effects such as gastrointestinal disturbances, convulsions, 

nausea, vomiting,  bradycardia, and muscle weakness, further 

limiting their efficacy [16]. Despite these disadvantages, a 

small section of the people treated with these drugs experience 

cognitive improvement [17], and a vast majority of people 

experience a delay of cognitive decline by 6–9 months [1]. 

Cholinesterase inhibitors increase the synaptic residence 

time of ACh and enhance postsynaptic cholinergic 

signaling [2, 18]. The exact mechanism by which this 

enhanced signaling translates into improved cognitive and 

behavioral effects remains undiscovered. Characterization 

of this mechanism may help us discover drugs that 

modulate the dementia component of AD more effectively. 

Detailed studies that dissect the nature of AChE inhibition 

and describe the influence of ACh receptor binding, ChAT 

activity, and enzyme localization on AChE activity are 

required for this characterization. Monitoring behavioral 

and locomotor responses to drug compounds in an 

appropriate model system, and studying the docking of 

active components of these drug com pounds on AChE will 

provide insights into the nature of            AChE inhibition. 

The structure of human AChE has been characterized 

using chemical and kinetic studies. The active site of the 

enzyme contains two subsites. The breakdown of ACh into 

acetate and choline is catalyzed within the esteratic subsite 

[19]. This subsite contains the catalytic triad 

of three amino acids, namely, serine (Ser203), histidine 

(His447), and glutamate (Glu334) [20, 21]. The anionic 

subsite is a choline-binding pocket and interacts with the 

charged quaternary amine of ACh, cationic substrates, and 

inhibitors [19]. Apart from these, AChE also contains a 

distinct ‘peripheral’ anionic site at the active site entrance. 

This site has been implicated in substrate inhibition and 

allosteric regulation of ACh hydrolysis at the esteratic 

subsite [22]. 

Zebrafish (Danio rerio) is primarily used as a genetic model 

system for studying developmental and   disease processes. 

They have biochemical and behavioral responses comparable 

to mammalian systems, making them suitable for drug testing. 

They exhibit comparable brain macro-organization, cellular 

morphology, neuromediator systems, and sensitivity to several 

classes of neurotropic drugs [23]. Localization of  

cholinoceptive (i.e. AChE-immunoreactive) neurons, 

cholinergic (i.e. ChAT-immunoreactive) neurons and AChE 

activity are well characterized in zebrafish [24]. AChE is the 

solitary cholinesterase in zebrafish [25]. AChE expression is 

initially found in 4 hours post-fertilization (hpf) embryos, 

and increases by 210-folds in 144 hpf larvae [26]. The 

16 hpf embryos exhibit abrupt movements, reflecting 

spontaneous ACh release at the developing synaptic junctions. 

AChE is expressed in somites and several bilateral clusters in 

the presumptive brain at this stage. 21 hpf larvae become 

sensitive to touch stimulus and exhibit uncoordinated 

movements less frequently [26]. 27 hpf larvae show 

coordinated escape movements induced by tactile stimuli [27]. 

AChE localizes as large clusters in the epiphysis, forebrain, 

midbrain, hindbrain, and the seven rhombomeres at this stage. 

The 168 hpf (free-swimming) larvae exhibit the fully mature 

pattern of AChE activity [28]. 

Convolvulus pluricaulis (CP) is a perennial herb that has 

been previously studied for its anti-amnesiac and anxiolytic 

properties in rodents [29–32]. Aqueous CP extract has 

shown significant AChE inhibition in the cortex and 

hippocampus of male Wistar rats with scopolamine-

induced cognitive impairment [30]. Two active components 

of CP, namely, scopoletin and scopolin, have significantly 

reduced scopolamine-induced amnesia in a dose-dependent 

manner in mice [31]. CP, in combination with rivastigmine, 

has inhibited aluminium-induced                             elevation of AChE activity 

in rats [32]. 

In this study, we studied the inhibitory mechanism of CP 

in zebrafish with scopolamine-induced cognitive 

impairment using biochemical assays, behavioral tests, and 

bioinformatics methods. CP showed higher avoidance 

response retention than isoxazole (positive control for AChE 

inhibition) in adult zebrafish. It exhibited inhib itory activity 

in the same regions as that of isoxazole in 
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168 hpf larvae and a concentration-dependent increase in this 

activity when used in combination with scopolamine. Two 

constituents of CP (scopoletin and kaempferol) were bound by 

active as well as allosteric sites of human AChE. Overall, our 

study proposes further investigations of CP as a modulator 

of cognitive brain function. 

2 Results and discussion 

2.1 Optimization of treatment concentrations 

The binomial response (death/no death) of 24 hpf embryos 

to Convolvulus pluricaulis (CP) was recorded over 48 h, 

and the concentration-probits curve was plotted to 

determine lethal concentration (LC50) [33]. For 

CP, LC50 was determined to be 0.4708 ± 0.089 mg/mL 

(Fig. 1). Scopolamine (SCOP), an anti-cholinergic ligand that 

prevents the binding of ACh to its receptor [34], was     used to 

induce cognitive impairment in zebrafish; this is a well-

established pharmacological model of cognitive 

impairment. SCOP has been shown to impair both retention 

of learned response and acquisition of passive avoidance 

response in zebrafish; these cognitive deficits were rescued 

by the AChE inhibitor physostigmine [35]. Isoxazole 

(ISOX) was used as the positive control for AChE  inhibition 

[36]. Several ISOX derivatives have exhibited inhibitory 

activity in vitro against AChE isolated from electric eel, rat 

brain, and human serum [37]. Molecular docking studies 

with AChE extracted from electric eel [38] and their ability 

to rescue scopolamine-induced amnesia in mice [39] further 

ascertained the utility of these compounds as AChE 

inhibitors. Concentrations of SCOP and ISOX were 

determined for 25 larvae (i.e. 

40 mg of tissue), based on an estimated 200 µM of SCOP and 

31.2 mM ISOX for fishes weighing ~ 1.2 g [35, 40, 41]. The 

least toxic concentrations of the compounds were chosen 

for  the treatment of 25 larvae, namely 

6.68 μM for SCOP, 1.04 mM of ISOX, and 0.38 mg/mL for 

CP. The larvae were treated with the AChE inhibitor one 

hour before SCOP treatment. 

 
2.2 The activity of Convolvulus pluricaulis in zebrafish 

larvae and adults 

The effect of CP on AChE activity and ACh levels in 168 

hpf zebrafish larvae treated with SCOP was stud ied using 

Ellman’s assay and the hydroxylamine method (Fig. 2). We 

also employed the Karnovsky  staining method  for  qualitative  

analysis  of  AChE  activity  in 168 hpf larvae [42]. The ACh 

level in untreated control 

larvae was found to be 87.86 ± 1.61 µM. Karnovsky stain- 

ing revealed a mature pattern of AChE activity in these 

larvae (Fig. 3A). On treatment with the AChE inhibitor, 

ISOX, the level only slightly increased to 88.33 ± 3.12 µM, 

and the inhibitory activity was found to be 13.48% ± 1.92 

(p-value = 1.97E−02). Clearance of the Karnovsky stain 

was interpreted as AChE inhibition.  Visual inspection 

revealed that ISOX showed AChE inhibition in the 

myelencephalon and the  somites  containing  sensory 

interneurons and motor neurons (Fig. 3C). With CP, the 

inhibitory level was 9.76% ± 2.94 and the ACh level was at 

79.83 ± 13.44 µM, which was not significantly different from 

the levels in untreated larvae. However, CP also 

showed stain clearance in the myelencephalon and the   somites 

(Fig. 3D). Overall, the pattern of clearance shown by ISOX and 

CP in these regions seemed to be similar (Fig. 3C, D), 

indicating that CP may exert an inhibitory 

        effect comparable to that of the positive control. 

Using the wrMTrck software optimized for zebrafish, we 

inspected the locomotor patterns of the larvae treated with the 

different test compounds (Fig. 4) [43, 44]. Visual inspection 

revealed that the movement patterns of larvae treated with 

individual compounds such as ISOX, SCOP, and CP were 

distinguishable from the paths of untreated control larvae 

(Fig. 4A–C, E). The overlapping paths of the treated larvae 

compared to the non-overlapping paths of control larvae 

indicated inadequate sensory reception and motor control in 

the treated larvae. We had found the inhibitory activity of 

CP to be localized to the mye- 

Fig. 1 Lethal concentration (LC50) of Convolvulus pluricaulis. The 

graph depicts the relationship between probit mortality and the 

concentration of Convolvulus pluricaulis (CP) (depicted as solid circles). 

The binomial response (death/no death) of 24 hpf embryos exposed 

to the plant extract was recorded over 48 h. The solid line represents 

the third-order polynomial equation that modeled the responses, 

i.e. y = 8.54x3 + 1.61x2 + 0.55x + 5.31, where y is 5.00 probits. LC50 of 

0.4708 ± 0.089 mg/ml was obtained by calculating the inverse log 

  value of x, and standard error as (log LC84 − log LC16)/√2N  

lencephalon and the somites containing small sensory 

interneurons and large motor neurons (Fig. 3). Myelen- 

cephalon regulates the anti-predatory escape response in 

zebrafish larvae, the stimuli for which are conveyed by the hair 

cells of the lateral line system innervated by large motor 

neurons [45]. This C-start startle escape response regulated by 

Mauthner cells in the zebrafish hindbrain is modulated by a 

form of non-associative memory called 
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habituation [46]. As expected, we found abnormal body 

bends and deregulated coordination of motor responses in 

CP-treated larvae (Fig. 4E). This also shows that CP can 

enter and act on the lateral line system of zebrafish larvae, 

producing abnormal locomotor responses, and thereby 

limiting its value as a therapeutic candidate for cognitive 

impairment in AD. However, further studies are required to 

examine these motor responses in detail. 

A passive avoidance response test was used to test the 

acquisition of avoidance response in adult zebrafish. As 

expected, SCOP-treated adults failed to acquire the response 

(p-value = 8.2E−03) (Fig. 5A). ISOX-treated fishes  showed  

greater  acquisition  of  response  com- 

pared with untreated fishes during the training session (p-

value = 3.55E−02)  but  did  not  retain  the  memory in  the  

test  session  (Fig.  5B).  Although  CP-treated 

fishes showed lower acquisition of response than con- trol 

during the training session, they showed higher retention of 

memory than isoxazole in the test session (p-value < 

1E−04), indicating that CP may be superior to the positive 

control in memory retention (Fig. 5B). 

We studied the binding of the two active components of 

CP—scopoletin, and kaempferol—on human AChE using 

molecular docking (SwissDock [47], see Sect. 4). The crystal 

structure of  human  AChE  was  extracted from PDB ID: 

4PQE (Fig. 6 and Table 1). In the absence of its substrate ACh, 

AChE was bound by the positive control ISOX at its catalytic 

site—specifically at Ser203 

 
[20, 21]—with a binding energy of − 14.03. When AChE was 

bound by ACh at its primary binding site Hsd405 in the 

choline-binding pocket, ISOX was found at Ser203 with a 

lower binding energy of − 14.11. Scopoletin (an active 

component of CP) was found to bind to Glu313 (via 

tropane, the central structure of scopoletin), the site bound 

by SCOP (Fig. 6B, C and Table 1). Scopoletin also establishes 

contact with His447 of the catalytic triad [20, 21] and Glu202 

in the peripheral anionic site (Table 1). Kaempferol was 

found to bind to Glu202 and Tyr72 in the peripheral anionic 

site (Fig. 6B, D and Table 1). 

The binding mode of scopoletin on AChE—specifically, its 

ability to occupy the ACh-binding anionic sub- site (in the 

catalytic center)—suggests that it may act as a competitive 

inhibitor of ACh. This observation is sup- ported by previous 

studies that demonstrated its AChE inhibitory activity in vitro 

[31, 48] and ability to increase extracellular ACh 

concentration in rat brains to a level comparable to that of 

galantamine [48],  a  compound often used as a positive control 

for AChE inhibition. However, scopoletin may enhance ACh 

levels via mechanisms other than AChE inhibition, such as 

agonistic activity on nicotinic ACh receptors, which increases 

ACh release from synaptosomes [49]. Although our results 

indicate that competitive inhibition of AChE by scopoletin 

may increase ACh levels, further investigations may be 

necessary to elucidate the exact mechanisms. Besides, the 

disease-modifying effects of scopoletin possibly 
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mediated by its additional interactions with the peripheral 

anionic and esteratic sites of the enzyme also need to be 

examined further. Unlike scopoletin, kaempferol (a 

flavonoid) may allosterically modulate the conformation of 

the catalytic triad or block ACh entry into the active site of 

the enzyme by binding to the peripheral anionic site as a 

non-competitive inhibitor, a feature exhibited by flavonoids 

[50]. Kaempferol has been shown to strongly inhibit AChE 

in a previous study [51]. Overall, in contrast with the 

positive control ISOX that only acts on the catalytic triad, the 

active components of CP may bind to the choline-binding 

pocket and the peripheral anionic site and mediate both 

competitive and non-competitive modes of inhibition. 

It must be noted that our docking analysis was limited to 

only two phytoconstituents of CP (scopoletin and 

kaempferol) that have shown anti-AChE activity in sepa rate 

studies. A more comprehensive analysis including alkaloid, 

anthocyanin, triterpenoid and phytosterol com- ponents of 

CP [52] should be conducted to fully characterize the AChE 

inhibitory activity of CP. 

2.3 The inhibitory activity of scopolamine in zebrafish 

larvae 

An inhibitory activity of 11.68% ± 2.28 was noted in SCOP-

treated  larvae  compared  to  untreated  larvae 

(p-value = 3.61E−02); the ACh level was 86.54 ± 4.90 µM (Fig. 

2). This was supported by qualitative analysis for AChE 

activity as well (Fig. 3B). To the best of our knowl- 

edge, our study is the first to report the AChE inhibitory 
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activity of SCOP in zebrafish. However, several studies in the 

past have demonstrated the AChE inhibitory activity of 

SCOP or its analogs in other animal models. Cholinergic 

ligands such as atropine, hyoscyamine, and gallamine have 

been known to show inhibitory activity on AChE [53, 54]. 

For example, atropine—which is structurally similar to 

SCOP—inhibits AChE in the presence of low 

concentrations of acetylthiocholine iodide (Ki = 4 × 10–3) 

[53]. It was shown in guinea pigs that SCOP administered at a 

concentration of 1.94 µg/h for 6 days inhibited red blood 

cell AChE by 18.7% ± 3.7 and plasma cholinester- 

ase by 44.1% ± 3.1 [54]. SCOP showed competitive AChE 

inhibition at a concentration of 0.25 × 10–2 M and mixed type 

AChE inhibition at a concentration of 0.5 × 10–2  M in 

synaptosomal fractions isolated from rat brain [55]. 

Using molecular docking, we found that, in the absence of 

ACh, AChE was bound by SCOP at Gly234 and Thr238 in the 

peripheral anionic site with a binding energy of 223.762, 

the former residue being the one that mediates the inhibitory 

effect of galantamine, an AChE inhibitor [56]. In the 

presence of a single molecule of ACh at Hsd405, SCOP 

established hydrogen bonds with Glu313, the same site with 

which atropine interacts at a bind- 

ing  energy  of  − 4.475.  Atropine  is  structurally  identi- 

cal to SCOP, except for a highly reactive epoxide group that 

the latter bears. These epoxides are highly reactive 

(compared to simple ethers) because of their ring strain. 

Nucleophilic attack of the electrophilic C in the C–O bond 

causes the ring to open. The energy of a simple epoxide, 

ethylene oxide, changes from − 8.95 to 181.04, after 

protonation [57]. In the presence of ACh molecules at the 

primary (Hsd405) and secondary (Phe295) sites (Fig. 7C, 

D), the binding energy of SCOP and AChE is 

219.043 (Fig. 7B, E). SCOP may be primed to be bound by 

AChE after protonation of the epoxide group. This hypothesis 

should be validated through a dynamic simulation of the 

binding of SCOP to AChE. Nevertheless, our data indicate that 

the AChE inhibitory activity of SCOP may be mediated via its 

binding to the two ACh-binding sites, the anionic subsite of 

the catalytic center and the peripheral anionic site. 

2.4 The combinatorial effect of Convolvulus pluricaulis 

and scopolamine 

A combination of ISOX and SCOP (ISOX + SCOP) increased 

the inhibitory activity of AChE to 68.45% ± 0.5 (p-value < 

1E−04) compared to either of their inhibitory activities in 

isolation (Fig. 2). Similarly, a combination of CP and SCOP 

(CP + SCOP) increased the inhibitory activity to 62.5% ± 6.065 

(p-value = 9.3E−03) compared to their inhibitory activities in 

isolation (Fig. 2). To investigate the combinatorial effect of 

ISOX + SCOP and CP + SCOP 
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further, we increased the concentration of these com- 

pounds in tandem (Fig. 8). The increase in inhibitory 

activity with increasing concentrations was significant in CP 

+ SCOP (p-value < 1E−02), but not in ISOX + SCOP (Fig. 8). 

Hence, CP, and not ISOX, seemed to significantly 

enhance AChE inhibition in a synergistic and concen- 

tration-dependent manner with SCOP. Contrary to an 

expected increase in ACh levels in this scenario, a signifi- 

cant drop in ACh level (p-value < 1E−03) was noted with CP 

+ SCOP (Fig. 8). The drop in ACh levels in the differ- ent 

concentrations of ISOX + SCOP and CP + SCOP was 

significant compared to untreated control (Fig. 8). SCOP, 

which is synergistically inhibiting AChE together with CP, may 

be rendered unavailable for binding with the ACh receptor. In 

this scenario, the ACh pool enhanced as a result of the 

inhibitory activity mediated by CP + SCOP 

may be rapidly depleted through its binding with the ACh 

receptor. SCOP has been previously shown to decrease 

cerebral ACh levels by 31% at a concentration of 0.63 mg/ kg 

[58]. It has also been noted that SCOP is more potent than 

atropine in reducing ACh levels [58]. Further experi- ments are 

necessary to test our speculations. 

We studied the locomotor patterns of larvae treated with 
ISOX + SCOP and CP + SCOP. Larvae treated with ISOX + 
SCOP covered increased distances in comparison with ISOX- 
treated larvae (p-value = 8.25E−02) (Fig. 9). 

Larvae treated with SCOP had executed a whirling motion 

in an uncoordinated direction with high speed over a short 

distance (Fig. 4B). This locomotor type, known as 

corkscrew swimming, is commonly observed as part of a 

seizure phenotype [59]. This would have arisen from the 

inhibitory activity of SCOP in sensory 
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Table 1 Details on critical interactions of acetylcholinesterase with isoxazole, scopolamine and active components of Convolvulus 

pluricaulis, namely, scopoletin and kaempferol, and the central structure of scopoletin (tropane alkaloid) 

Target Ligand Hydrogen bond forming residues  Binding energy 
 

AChE Acetylcholine Hsd 405 − 13.5878 

AChE + acetylcholine Acetylcholine Phe 295 − 12.2174 

AChE Isoxazole Ser 203 − 14.0329 

AChE + scopolamine Isoxazole Phe 295 − 12.7298 

AChE + scopolamine Isoxazole Hsd 405 − 12.9197 

AChE + acetylcholine Isoxazole Ser 203 − 14.1166 

AChE + acetylcholine Isoxazole Phe 295 − 12.7298 

AChE + acetylcholine + scopolamine Isoxazole Ser 203 − 13.9634 

AChE Scopolamine Gly 234, Thr 238  223.762 

AChE + isoxazole Scopolamine Lys 53 226.227 

AChE + acetylcholine Scopolamine Glu 313 223.469 

AChE + acetylcholine + acetylcholine Scopolamine Glu 313 219.043 

AChE + acetylcholine + isoxazole Scopolamine Glu 313 222.987 

AChE + acetylcholine + acetylcholine Atropine Glu 313 − 4.475 

AChE Galantamine Glu 313 0.951452 

AChE Galantamine Lys 53, Glu 185 6.7258 

AChE + acetylcholine + acetylcholine + scopolamine Isoxazole Ser 203 − 14.1095 

AChE Scopoletin Glu 313 23.1182 

AChE Scopoletin His 447 (HSP) 17.3092 

AChE Scopoletin Glu 202 17.3475 

AChE Tropane alkaloids Glu 313 − 16.981 

AChE Kaempferol Glu 202, Tyr 72 10.6597 

 

interneurons and motor units, rendering cholinergic 

transmission uncoordinated at the cholinergic synapse. In 

ISOX + SCOP and CP + SCOP, this whirling motion 

characteristic of SCOP added up to the locomotor reper toire 

of the treated larvae (Fig. 4D, F). Larvae treated with 

ISOX + SCOP (Fig. 4D) executed a zigzag motion often 

produced in response to alarming stimuli (chemical cue in 

our case) [59]. However, ISOX + SCOP-treated adults 

seemed to exhibit boldness, a behavior often accom- 

panied by an increased approach towards novel objects 

[59]. They spent more time in the central portion of the tank 

than the peripheral areas compared to untreated and ISOX-

treated adults (Additional file 1: Fig. S1). This could indicate 

that distinct behavioral repertoires characterize the different 

life stages of the zebrafish. Never- 

theless,  ISOX + SCOP  and  CP + SCOP  disrupt  motor 

response patterns characteristic of specific stages of life. 

We studied the binding of ISOX and SCOP on AChE 

using molecular docking. When AChE was bound by SCOP 

at Glu313 in the choline-binding pocket, ISOX was bound 

by the enzyme at the primary and secondary ACh binding 

sites at a higher energy of − 12.91 to − 12.72. However, in the 

presence of ACh at Hsd405, SCOP was bound by the 

enzyme at Glu313 and ISOX at Ser203 with a lower binding 

energy of − 13.96. An even lower 

 
binding energy of − 14.1 was observed with AChE binding 

two molecules of ACh at Hsd405 and Phe295 (Fig. 7C, D and 

Table 1), SCOP at Glu313 and ISOX at Ser203 (Fig. 7B, F 

and Table 1), indicating that this configuration of ISOX + 

SCOP at the various subsites in the catalytic center may be 

responsible for its synergistic activity on the enzyme. Similar 

studies should also be conducted with CP + SCOP to elucidate 

their mechanism of inhibition. 

3 Conclusions 

This study was undertaken to gain new mechanistic 

understanding into the modes of AChE inhibition of CP, 

known to have anti-AChE activity. CP-treated 168 hpf lar vae 

showed a similar pattern of AChE inhibition (in the 

myelencephalon and somites) as that of the larvae treated with 

the AChE inhibitor ISOX, which was used as a positive 

control. Additionally, CP improved the retention of avoidance 

response in adult zebrafish compared with ISOX. ISOX was 

found to directly bind Ser203 of the cata- lytic triad on the 

human AChE. The active components of CP—scopoletin and 

kaempferol—were found to bind to His447 of the catalytic 

triad, the anionic subsite of the catalytic center, and the 

peripheral anionic site. Unexpectedly, SCOP, which was used 

in our study to induce cognitive 
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Fig. 7 Binding of isoxazole and scopolamine to acetylcholinesterase. A, B Various pockets on acetylcholinesterase to which its substrate 

acetylcholine, isoxazole and scopolamine were bound, C Acetylcholine at Hsd405, the primary binding site, in the choline-binding pocket, D 

Acetylcholine at Phe295, the secondary binding site, near the catalytic site, E Scopolamine at Glu313 in the choline-binding pocket, F Isoxazole 

binding Ser203, a catalytic triad residue 
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impairment in zebrafish, showed AChE inhibition in 168 

hpf larvae, possibly mediated via the anionic subsite of the 

catalytic center and the peripheral anionic site, as 

indicated by docking studies with human AChE. Inter- 

estingly, CP + SCOP significantly increased AChE inhibi tion 

and depleted ACh levels compared with untreated 

        larvae, a pattern that was also observed albeit in a statis- 

tically non-significant way in ISOX + SCOP. Abnormal motor 

responses were observed individually with ISOX and CP, and 

in their combinations with SCOP, indicative of undesirable 

effects on the peripheral cholinergic system. Our study 

proposes the examination of CP, SCOP, and CP + SCOP as 

potential AChE inhibitors for their ability to modulate cognitive 

deficits in Alzheimer’s disease. 

 

4 Materials and methods 

4.1 Collection of zebrafish embryos 

Adult wild-type zebra fish were maintained in tanks as per 

standard conditions [60]. Spawning was set up every 5 to 6 

days in large troughs, usually 2 to 3 h after feeding. 
Fig. 9 Distance covered by the larvae treated by the test 

compounds. Histograms of the distances covered by untreated, 

scopolamine (SCOP)-treated, isoxazole (ISOX)-treated, Convolvulus 

pluricaulis (CP)-treated, ISOX   SCOP-treated, and CP   SCOP-treated 

larvae. Three independent experiments were conducted with each of 

the treatment conditions. *, **, and *** indicate p-value < 0.5, < 0.01 

and < 0.001 of two-tailed unpaired t-test for untreated versus test 

groups (unless indicated otherwise) respectively 

The natural mating ratio of zebrafish is 1 female:2 males. 

Females and males were housed for spawning either in this 

ratio or in equal numbers. Fertilization occurs in the early 

hours of the morning. Eggs were collected at the 4 hours 

post-fertilization (hpf) stage and transferred to large Petri 

plates containing the E3 medium (1–5 mM NaCl, 0.17 mM 

KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 

 

 

                        

                                

                                

                            

groups respectively 
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10–5% Methylene Blue). The developmental stage of the 

embryos was observed under a microscope [60]. Embryos 

showing asynchronies in development stages and abnormal 

development (detectable after 10 hpf) were segregated from 

the rest. Dead embryos were separated every 4 h. Swimming 

larvae at 168 hpf were used for this study. 

 
4.2 Preparation of plant extract 

An aqueous solution of the root of Convolvulus pluri- 

caulis (CP) was prepared by agitating 2 g of macerated root in 

100 ml of distilled water at 150 rpm at room temperature for 

24 h. The solution was clarified by filtration, frozen overnight 

at – 20 °C, and lyophilized for 18 h to obtain 18.5 mg of the 

extract. 

 
4.3 Determination of lethal concentration, 50% (LC50) 

of the plant extract 

24 hpf embryos were treated with the plant extract in 96 well 

plates according to Zebrafish Embryo Toxicity Test (ZFET) 

Protocol Standards [61]. ZFET allows assessment of the 

phenotypes manifested by fish embryos on treatment with 

chemicals. The lethal dose for a plant prepara tion is the 

particular concentration at which half of the embryos 

treated with the preparation are alive. Binomial response 

(death/no death) of 24 hpf embryos to CP was recorded over 

48 h and concentration-probits mortality curve was plotted 

to determine LC50 [33]. 

 
4.4 Ellman’s assay 

Ellman’s assay is a spectrophotometric method that 

quantifies AChE activity in terms of μ moles of acetylthi- 

ocholine iodide (ATCh-I) hydrolyzed per minute per mg of 

the plant preparation [62]. A key player in this assay is the 

DTNB reagent also known as Ellman’s reagent. The 

mechanism by which it quantifies the amount of substrate 

hydrolyzed is depicted below: 

 

 
The reagents for Ellman’s assay included 0.1 M phos- 

phate buffer saline (PBS) at pH 7.0, 0.075 M acetylthi- 

ocholine iodide (ATCh) as substrate, and 0.01 M DTNB 

(dithiobis-(2-nitrobenzoic acid)), prepared by dissolving 

39.6 mg in 10 ml phosphate buffer (0.1 M) at pH 7.0 and 

adding 15 mg of sodium bicarbonate. The digestion buffer 

was prepared by adding 20 mM Tris/HCl at pH 7.0, 

5 mM EDTA and 1% Triton X-100. Embryos were euth- 

anized using a mixture of 1 mL of clove oil and 9 mL of 

absolute ethanol. 1 mL of this solution was then dissolved in 

50 mL of tap water. This solution was then transferred to a 

Petri dish with 20 embryos to be euthanized. 15–25 embryos 

were suspended in 150–250 µL digestion buffer (20 mM 

Tris/HCl pH 7.0, 5 mM EDTA, 1% Triton X-100) and 

homogenized by pipetting the suspension in and out. The 

homogenate was centrifuged at 1500 rpm for 15 min. The 

supernatant diluted in 0.1 M phosphate buffer at pH 

7.0 was used as the enzyme (AChE) source. A blank reac tion 

mixture was prepared with the phosphate buffer, substrate, 

plant extract solutions at specific concentrations, and DTNB 

reagent. Test reaction mixtures were prepared with the 

phosphate buffer, substrate, enzyme source, plant extract 

solutions at specific concentrations, and DTNB reagent. 

Absorbance was measured at 412 nm. 

 
4.5 Hydroxylamine method for acetylcholine estimation 

Hydroxylamine reacts in a strongly alkaline medium 

with the substrate (ACh) forming acetohydroxamic 

acid and methanol. Acidification of this mixture with 

HCl and the addition of Fe3+ ions result in a red-brown 

complex, ACh-acetohydroxamic product, which can be 

detected through colorimetry [63]. The solutions used for 

this assay included 2 M aqueous hydroxylamine 

hydrochloride,  3.5  M  aqueous  potassium  hydroxide, 

conc.  HCl/H2O  (in  1:2  ratio),  0.37  M  Fe3+  (as  ferric 

nitrate or ferric chloride) in aqueous 0.1 M HCl and a 

standard aqueous solution of 4 mM. Embryos were 

euthanized and washed. 15–25 embryos were sus- pended 

in 150–250 µL digestion buffer and homogenized by 

pipetting the suspension in and out. The homogenate was 

centrifuged at 1500 rpm for 15 min. The supernatant 

diluted in 0.1 M phosphate buffer at pH 7.0 served as the 

source for the enzyme (AChE) and the substrate (ACh). The 

blank reaction mixture was prepared with the phosphate 

buffer and  the  enzyme and substrate source. Test reaction 

mixtures were pre- pared with the phosphate buffer, the 

enzyme and substrate source, and the plant extract solution 

at specific concentrations. The reaction mixture was 

vigorously mixed with aqueous hydroxylamine 

hydrochloride and aqueous potassium hydroxide in the ratio 

of 1:1. The rapid change in pH stops hydrolysis. The 

resulting mixture was then mixed for 2 min to allow conver- 

sion of ACh to acetohydroxamic acid. The pH was then 

changed to 1.2 by adding conc. HCl/H2O and aqueous ferric 

nitrate or ferric chloride. Absorbance was measured at 540 

nm. The concentration of ACh was calculated  using  its  

molar  absorption  coefficient  (Ɛ(Ach, 

540 nm, 25 °C) = 785 M−1 cm−1). 
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4.6 Karnovsky’s direct coloring thiocholine method 

for cholinesterases 

Karnovsky’s staining method was used for the visualiza tion 

of localized AChE activity [42]. The mechanism by which 

this staining method generates a color reaction in response 

to AChE activity is depicted below: 

AChE source (embryos) 

This software was used to study the locomotor patterns of 

treated larvae and calculate their average speed, distance, 

and body bend. Videos of 3 larvae swimming in a Petri dish 

were shot in a dark chamber by placing them on a light 

source. The videos were 3 min long; 2 min was allowed for 

acclimatization and 1 min for test response. 

Acetylthiocholine (substrate) −→ Acetic acid + Thiocholine 
 

Ferricyanide 
  

Fe3+ 
  Thiocholine 

−→ Ferrocyanide Fe2+ 

    

Copper   Cu2+   + Ferrocyanide → Copper ferrocyanide (brown precipitate) 

 
 

The working solution of  the  stain  normally  contains 60 

mM sodium acetate, 5 mM sodium citrate, 4.7 mM copper  

(III)  sulfate,  0.5  mM  potassium  ferricyanide, 

1.7 mM acetylthiocholine iodide, and distilled water. 

However, since this composition failed to stain the embryos 

even after repeated trials and the use of freshly prepared 

solutions, we had to optimize the staining solution. Copper 

ions inhibit acetylcholinesterase and cause neurotoxicity in 

zebrafish [64]. Based on this, we hypothesized that decreasing 

the concentration of copper sulfate in the staining solution may 

remove or alleviate any inhib itory effect that it may have on 

the enzyme. We stained the embryos with staining solutions 

containing 4.7 mM (the  original  concentration  in  the  

Karnovsky  method), 

4.5 mM, and 4.3 mM of copper sulfate. No staining was 

observed in embryos treated with the solution contain- ing 

4.7 mM copper sulfate. Faint staining was observed with 4.5 

mM copper sulfate. The expected intensity and pattern of 

staining were observed with 4.3 mM of cop- per sulfate. 6.8 

g of sodium acetate, 12.905 g of sodium citrate, and 12.4845 g 

of cupric sulfate, each dissolved in 100 mL distilled water, 

8.231 g of potassium ferricyanide in 50 ml distilled water, and 

0.72295 g of acetylthiocholine iodide in 5 mL distilled water 

were used to prepare 

0.5 M stock solutions for Karnovsky’s staining. 1 mL of 

paraformaldehyde (PFA) was used to fix 10 embryos in a vial. 

Before staining the embryos, PFA was removed from the vials. 

The embryos were washed with 1× PBS solution thrice for 5 

min each. The embryos were then incu- 

bated in the stain. After 3 h, the stained embryos were washed 

thrice with 1× PBS-Tween (prepared by dissolving 140 µl of 

Tween 20 in 14 mL 1× PBS) and inspected under the 

microscope. 

 
4.7 Assessment of larval locomotor activity 

The settings of wrMTrck, a freely available ImageJ plugin 

originally developed  for  examining  multiple  behavioral 

parameters in the nematode Caenorhabditis elegans, have 

been optimized in our lab for zebrafish larvae [43]. 

4.8 Passive avoidance response test 

Adult zebrafish treated with a test compound was trans- 

ferred to an experimental chamber. This chamber con- 

sisted of a dark compartment and a lit compartment 

separated by a movable door. The fish was placed in the dark 

chamber and allowed to acclimatize for 3 min. After this, the 

door was opened. A stone was dropped in front of the fish 3 

s after it crosses the door. The stone served as the shock 

stimulus in this scenario. Crossing time estimated as the time 

taken by the fish to cross the door from the moment the door 

was opened was recorded after every such ‘trial’. Three 

such trials made up ‘one training session’ for the acquisition 

of the avoidance response. Two hours after a training session, 

a ‘test session’ consist ing of a single trial was conducted to 

assess the extent of learned avoidance response retention. 

The fish was exposed to the test compound in the 

experimental cham ber during both sessions [35]. 

4.9 Protein‑small molecule rigid body docking 

The crystallographic structure of human AChE was collected 

from the PDB database (PDB ID: 4PQE) [65]. 4PQE has 

been widely used as a model for human AChE in molecular 

docking studies  [66–69].  Dock ing on human AChE (PDB 

ID: 4PQE) was performed using SwissDock [47].  Before  

docking,  this  structure was prepared—by repairing 

incomplete residues, deleting water  molecules,  adding  

hydrogen  atoms, and assigning partial charges—using the 

‘Dock Prep’ function in UCSF Chimera [70]. The 3D 

structures of the ligands were collected from the ZINC  

database [71], namely, acetylcholine (ZINC3079336), 

isoxazole (ZINC1420779), scopolamine (ZINC100196329), 

atropine (ZINC100009278), galantamine (ZINC491073), 

scopoletin/buxuletin (ZINC57733), and kaempferol 

(ZINC3869768). SwissDock generates  binding  poses of the 

ligands in the vicinity of target cavities and computes the 

summation of various types of energy. The docked poses 

of the ligands were visualized and 
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curated using the ‘View Dock’ function in Chimera. Docked 

poses with minimal binding energy  were  chosen for further 

examination. Note that our AChE model (4PQE) neither had 

modified residues nor any ligands associated with it. We 

selected such a structure in order to perform an exploratory 

analysis with our ligands of interest, and detect different 

binding poses in  all  pos sible binding pockets within AChE. 

Despite employing the ‘blind docking’ approach, we were able 

to replicate key binding interactions, for example,  (i)  the  

interaction of ACh with Phe 295, which determines substrate 

specificity of the acyl pocket [72], and (ii) the binding of 

atropine and scopolamine—which are structurally identical—

to the same residue (Glu 313). All the inter- actions reported 

in Figs. 6B–D, 7B–F and Table 1 fall within the range of 

hydrogen bonding limit  (< 2.5  Å) [73]. 
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Additional file 1: Figure S1. Time spent by adult fishes in each of the 
three areas of the tank. Adult zebrafish treated with test compound(s) 

were transferred to an experimental chamber divided equally into three 

areas and the extent of lateralization in swimming was measured as time 
spent in each of the three areas (shown as histograms). Areas 1 and 3 are 

peripheral, whereas area 2 is central. The time spent in the three areas 

was determined by analyzing 3 min long videos. 2 min was allowed for 
acclimatization and 1 min for test response. The fish was either untreated 

or treated with scopolamine (SCOP), isoxazole (ISOX), and ISOX    SCOP. 

The fish was exposed to 200 µM of SCOP and/or 31.2 mM of ISOX. 
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Appendix 14.3 – Table 1: Protein-protein interaction (PPI) databases. The table shows the list of 23 databases that contain PPI 
information, along with data on 26 other related biological modalities. A coloured cell indicates that a particular biological modality is 
documented in the specific PPI database. Abbreviations: GO: Gene Ontology; PTM: post-translational modification; MeSH: medical 
subject headings. 
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