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Abstract
Rett syndrome (RTT) is a monogenic rare disorder that causes severe neurological problems. In

most cases, it results from a loss-of-function mutation in the gene encoding methyl-CPG-binding

protein 2 (MECP2). Currently, about 900 uniqueMECP2 variations (benign and pathogenic) have

been identified and it is suspected that the different mutations contribute to different levels of

disease severity. For researchers and clinicians, it is important that genotype–phenotype infor-

mation is available to identify disease-causing mutations for diagnosis, to aid in clinical manage-

ment of the disorder, and to provide counseling for parents. In this study, 13 genotype–phenotype

databases were surveyed for their general functionality and availability of RTT-specific MECP2

variation data. For each database, we investigated findability and interoperability alongside prac-

tical user functionality, and type and amount of genetic and phenotype data. Themain conclusions

are that, as well as being challenging to find these databases and specific MECP2 variants held

within, interoperability is as yet poorly developed and requires effort to search across databases.

Nevertheless, we found several thousand online database entries forMECP2 variations and their

associated phenotypes, diagnosis, or predicted variant effects, which is a good starting point for

researchers and clinicians whowant to provide, annotate, and use the data.

K EYWORDS
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1 INTRODUCTION

Rett syndrome (RTT; MIM# 312750) is one of 5,000–8,000 known

rare diseases that together have been identified as affecting 6%–8%

of the world's population. Approximately 80% of these diseases have

a genetic origin (Council Recommendation on an action in the field of

rare diseases (2009/C 151/02), Recital 5). Most of these diseases are

caused by pathological variants in one single, disease-specific gene. In

the case of RTT, this is in MECP2, an important regulator of neuronal

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in anymedium, provided

the original work is properly cited.

c© 2018 The Authors.HumanMutation published byWiley Periodicals, Inc.

development and function (Ehrhart et al., 2016; Lyst & Bird, 2015).

At the present time, around 900 unique variations in MECP2 have

been identified (Gold, Krishnarajy, Ellaway, & Christodoulou, 2018).

To help distinguish between pathological and neutral genetic variants

(Hunter et al., 2016), scientists and clinicians collect genetic data and

corresponding phenotypic information and make this information

available in databases, which can be used for research and prognostic

purposes. In this respect, RTT serves as an example for any monogenic

rare disease where, due to the limited number of individuals, a better

914 wileyonlinelibrary.com/journal/humu HumanMutation. 2018;39:914–924.
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understanding of the disease can be reached through combining data

from different databases that may be housed at different institutions

and in different countries. In recent years, the European Union's

policy on rare diseases (e.g., Directive 2011/24/EU) has recognized

the value of sharing information, knowledge and expertise, and

has generated a number of initiatives to encourage pan-European

collaboration, for example, through the creation of European Refer-

ence Networks (ERNs) such as Intellectual disability TeleHealth And

Congenital Anomalies (ITHACA), the ERN focused on rare congenital

malformations and rare intellectual disability in which RTT is placed

(https://ec.europa.eu/health/sites/health/files/ern/docs/ernithaca_

factsheet_en.pdf).

Generally, there are different types of databases for rare diseases:

(1) Patient registries, containing i.a. patient data, genetic data, pheno-

type descriptions and information on medication. These are not nor-

mally open to the public. There are several data platforms, for example,

RD-connect, which host patient registries with controlled access.

(2) Genetic data repositories, for example, EGA (European Genome-

Phenome Archive). These have been increasing in number since next-

generation sequencing (NGS), and especially whole exome sequencing

(WES), has been used as a clinical standard for the diagnosis of rare

disorders and other suspected genetic disorders. (3) Genotype–

phenotype databases that combine genetic data (e.g., DNA sequences,

variants, genotypes) with phenotypic data. (4) Databases that

store general information about genes, proteins, metabolites, their

interactions and their mutation specific aberrations.

It is within this context that rare disease registries and databases

have also been recognized by the European Union as “key instruments

to develop clinical research in the field of rare diseases, to improve

patient care and healthcare planning” (https://ec.europa.eu/health/

rare_diseases/policy/registries_en).

This study focusses on the genotype–phenotype databases. Several

such databases have been developed and will be discussed here.

The fundamental goal of these databases is to collect and provide

access to data and knowledge to promote research into the func-

tional and pathogenic significance of genetic variants (Brookes &

Robinson, 2015; Johnston & Biesecker, 2013). Critical for accurate

analysis is the ability to distinguish between the disease-causing alleles

and the abundance of benign variants or less important functional

variants that co-occur in both normal and disease-affected individuals.

One consequence of the increased power of NGS—often used for

gene panels, WES, and whole genome sequencing (WGS)—is the

increased danger of incorrect assignment of pathogenicity, when

compared with single gene analysis. For instance, a typical WES (e.g.,

in the context of suspected diagnosis of a rare monogenic disorder)

may uncover up to 25,000 variants (Gilissen, Hoischen, Brunner, &

Veltman, 2012). Elucidation of just a handful of pathogenic variants

from the resulting thousands continues to be a major challenge in

spite of the availability of standardized software solutions. The most

effectiveway to start distinguishing benign frompathogenic variants is

based on population frequencies of variants. In this approach, all vari-

ants occurring in the population at higher frequencies than the disease

prevalence are considered benign. From the many recent initiatives to

collect exomevariants of individualswithout clear disease phenotypes,

the Exome Aggregation Consortium (ExAC) is the largest, containing

more than 60,000 exomes (Exome_Aggregation_Consortium, Lek, &

MacArthur, 2015). In general, the population frequency information

will reduce the number of candidate (pathogenic) mutations to a

couple of hundred (Gilissen et al., 2012). Further prioritization can

then take place by employing tools such as PolyPhen and SIFT (Sorting

Intolerant From Tolerant). Ensembl's Variant Effect Predictor tool

(Lelieveld, Veltman, & Gilissen, 2016) makes these aforementioned

classic approaches available; it also includes a number of newer

methods to distinguish between pathogenic, implicated, associated,

damaging, and deleterious variants, and/or those of unknown sig-

nificance among the remaining variants. These next steps in the

prioritization process are summarized by Lelieveld et al. (2016). The

challengeof distinguishing disease-causing sequence variants from the

many potentially functional variants in any human genome recently

promptedMacArthur et al. (2014) to propose guidelines for investigat-

ing causality of sequence variants in human disease. The proper setup

and use of databases is one of the key issues they identified in order to

be able to upload, store and find pathogenic and benign variants.

The results of the analysis of disease-causing variants also provides

vital information, not just for scientists and researchers who are seek-

ing to further knowledge andunderstanding of certain diseases, but for

clinicians to make the correct diagnosis and provide genetic counsel-

ing and patient care. State of the art genotype–phenotype databases

are of particular value, and among these, the so-called locus-specific

mutation databases (LSDBs) (e.g., LOVD (Fokkema et al., 2011)) have

served diagnosticians for many years by facilitating the interpreta-

tions of genetic variants (Brookes & Robinson, 2015; Johnston &

Biesecker, 2013). In addition to the LSDBs, a variety of other (clini-

cally relevant) databases with a focus on genotype–phenotype rela-

tionships has emerged in recent years (Lelieveld et al., 2016) and the

need to integrate information from these databases has also gener-

ated many initiatives. The RD-Connect project provides a platform

for the rare disease community to find and share data and tools

(Thompson et al., 2014). It includes a pipeline to harmonize variant

annotation of rare disease genomes (Laurie et al., 2016), registries

of rare disease registries and biobanks (Gainotti et al., submitted),

and bioinformatics tools. It is developed in collaboration with infras-

tructures such as ELIXIR (https://www.elixir-europe.org/), BBMRI-

ERIC (https://www.bbmri-eric.eu/ (Mayrhofer, Holub, Wutte, & Litton,

2016)), the infrastructure consortium for biobanks, and the Global

Alliance for Genomics and Health (GA4GH, https://genomicsand

health.org). The creationofGA4GH in2013 represents oneof themost

prominent large-scale initiatives in this area. The goals and progress of

this groupwere published recently (GA4GH, 2016)

To support both clinicians and researchers, we present in this article

an overview of a number of current genotype–phenotype databases.

We evaluate their general structure and function for use in biomedical

research, especially for researchers/clinicians who want to find “their”

mutation or intend to find a database inwhich to store their genotype–

phenotype data. We give an indication of the findability and interop-

erability, the practical user functionality (up and download functions),

the type and quantity of genotype and phenotype data available, and

provide suggestions for future improvement.
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2 MATERIALS AND METHODS

2.1 Selection of databases

The databases and meta/integrated databases in this survey were

selected according to the following criteria:

1. The database contains genetic variation and associated phenotypic

information (genotype–phenotype databases);

2. The genetic data are available in a processed form to enable a direct

search for variations in a specific gene, region, or disease (e.g., in

the HGVS or reference SNP (rs) format, an identifier given by the

database dbSNP);

3. The database is available online (with orwithout prior registration);

4. The database is available in English.

We do not claim complete coverage of all available databases; we

focus on those which were findable online using search engines (e.g.,

Google) or listed in FairSharing.org (formerly knownasBioSharing.org)

or other meta-databases (RD-connect, bioCADDIE). We evaluated

as a separate category certain meta or integrated databases, which

in themselves contain no new or unique information, but instead

try to integrate information from others. However, a number of

RTT-specific databases, akin to patient registries, were not included

in our evaluation as they require membership of the consortium and

an agreement to input data to the database, or they grant permission

on a case-by-case basis when the request to access data is part of a

specific research project with prior approval from a medical ethical

board. In some instances, a minimal level of data is accessible to qual-

ified researchers through already existing data-sharing rules. These

include the database associated with the longitudinal, population-

based Australian Rett Syndrome Study (AussieRett) (https://rett.

telethonkids.org.au/about/aussierett/, (Downs & Leonard, 2013)),

the International Rett Syndrome Database (InterRett) (https://rett.

telethonkids.org.au/about/interrett/, https://interrett.ichr.uwa.edu.

au//output/index.php, (Louise et al., 2009)), the Rett Database Net-

work (https://www.rettdatabasenetwork.org, (Grillo et al., 2012)), and

the database generated by the US Rett Syndrome Natural History

Study (NHS) (https://www.rettsyndrome.org/research/clinical-trials/

natural-history-study) (Neul et al., 2014). These databases generally

contain cross-sectional and longitudinal natural history data that

has been directly acquired from or input by individuals and their

families, either by families completing a questionnaire or through

direct examination of the individual by a clinician experienced in RTT.

Such methods of data collection differ from the genotype–phenotype

databases of interest in this article.

2.2 Assessment of database properties and

functions

2.2.1 Aspects of FAIR

The FAIR metrics are not yet fully developed (Schultes et al., in prepa-

ration) but as several of these aspects are interesting for the purposes

of our evaluation we checked whether each database meets the basic

FAIR principles described by Wilkinson et al. (2016). These principles

define that data is: (i) *findable* if data or meta data are assigned

unique identifiers, described with rich metadata, and registered or

indexed in a searchable resource; (ii) *accessible* if the data are retriev-

able by their identifiers via a standardized communication protocol,

the protocol itself is open, free, universally implementable and allows

authentication and authorization, whilst, to prevent data being lost,

metadata continues to be accessible even when the data is no longer

available; (iii) *interoperable* if a suitable language for knowledge pre-

sentation and an established vocabulary (e.g., ontologies) are used,

and, ideally, the (meta)data include references to other data; and (iv)

*reusable* if a clear and accessible data usage license is available, the

data are correctly and sufficiently described using domain-relevant

community standards, and data origin and history are included.

2.2.2 Upload and download functions

To investigate user functionality, we looked especially at the upload

and download functions of each database. The upload functions were

typically found in separate “submit” pages or information was given on

how or to whom the data should be sent. For download functionality

we checked whether we could manually download search results, for

example, a list ofMECP2 variants, and which formats were possible for

this. Additionally, we looked for the API description (if available).

2.2.3 Form of genetic and phenotypic data

Each databasewas investigated for the form inwhich genetic variation

(e.g., HGVS or rs) and phenotype information (e.g., diagnosis, predicted

pathogenicity scores, HPO terms etc.) is stored.

2.3 Assessment of RTT/MECP2 specific content

2.3.1 Total numbers ofMECP2 variants in the database

The total number of entries for (unique) MECP2 variants, or variants

which are associated with RTT, was assessed in each database (status

March 2018).

2.3.2 Availability of five selected test variants

To examine the coverage ofMECP2 variants in more detail, fiveMECP2

mutations were selected and used to perform test searches within

each database (Table 1). We decided upon three “classical” variants:

first, a well-known and well-described mutation—an MBD hotspot

mutation—published by Zappella, Meloni, Longo, Hayek, & Renieri

(2001) and reviewed by Lyst & Bird (2015); and, second and third

respectively, two of the most frequently reported nonsense and mis-

sense mutations. Finally, two mutations that were discovered more

recently by WES and WGS: a 23 bp deletion in the C-terminus of

MECP2, reported by Rauch et al. (2012) after performing WES in a

girl displaying a RTT-phenotype; and, an intra-exonic deletion, taken

from Gilissen et al. (2014), after WGS in a person described as hav-

ing severe intellectual disability (IQ<50), a commonly reported clinical

phenotype of RTT (Zoghbi, 2016). The appearance of each of these five

mutations in the selected databases was investigated.

 10981004, 2018, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.23542 by T
est, W

iley O
nline L

ibrary on [01/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://FairSharing.org
https://rett.telethonkids.org.au/about/aussierett/
https://rett.telethonkids.org.au/about/aussierett/
https://rett.telethonkids.org.au/about/interrett/
https://rett.telethonkids.org.au/about/interrett/
https://interrett.ichr.uwa.edu.au//output/index.php
https://interrett.ichr.uwa.edu.au//output/index.php
https://www.rettdatabasenetwork.org
https://www.rettsyndrome.org/research/clinical-trials/natural-history-study
https://www.rettsyndrome.org/research/clinical-trials/natural-history-study
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fhumu.23542&mode=


TOWNEND ET AL. 917

TABLE 1 MECP2mutations selected for test database searches

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

Source MBDhotspot
mutation from
(Zappella et al.,
2001)

Frequently
reported
nonsense
mutation

Frequently
reported
missense
mutation

WES variant from (Rauch
et al., 2012)

WGS variant from (Gilissen
et al., 2014)

Genomic level
(GRCh37)a

g.153296882G>A g.153296777G>A g.153296363G>A g.153296093_153296115del g.153295929_153296514del

RNA level
(NM_004992.3)

c.397C>T c.502C>T c.916C>T c.1200_1222del c.765_1350del

Protein level p.(Arg133Cys) p.(Arg168*) p.(Arg306Cys) p.(Pro401Argfs*8) p.(Lys256Asnfs*31)

aThe current genome build at the time of writing this article is GRCh38, but most databases were using GRCh37. ForMECP2, there is a difference ranging
from735 to 659 kbp.

3 RESULTS

We identified nine standalone databases and four meta/integrated

databases for evaluation (Table 2) and collected information by

exploring their content.We checked for general database features and

RTT-specific entries. In detail, we analyzed (a) the FAIR status, (b) the

upload and download possibilities, (c) form of phenotype and genotype

information, (d) the total number of entries relating to theMECP2 gene

or RTT, and (e) the coverage for the chosenMECP2mutations.

3.1 Database properties

3.1.1 Aspects of FAIR

In general, the genetic variation or location databases were easier to

find than the RTT-specific ones. Using Google as the search engine

for “Rett syndrome database” only RettBase (Christodoulou, Grimm,

Maher, & Bennetts, 2003; Krishnaraj, Ho, & Christodoulou, 2017)

or excluded databases such as InterRett and the Rett Syndrome

Database Network (both of which do not allow direct online access to

genotype–phenotype information) were immediately findable—and

several publications about RTT databases (e.g., about the Italian Rett

database and biobank (Sampieri et al., 2007)). Using more generic

terms like “genotype phenotype database” dbGAP (which is an archive

for genotype–phenotype studies), DECIPHER and DisGeNET were

found. Amore specific search result was yielded usingmeta-databases

for biomedical databases. Seven of the databases were findable

on FairSharing.org using the tags “rare disease”, “genetic variation”,

or “phenotype”. Others were mentioned in previous publications

(Lelieveld et al., 2016) or found through personal recommendation

within the scientific community. Considering findability of variants

within the database, most offered the possibility to search for vari-

ants using at least one of the nomenclatures recommended by the

guidelines of the HGVS for genome, RNA or protein changes, or by

rs identifiers. The Korean Mutation Database provided no option to

search for specific variants, only searches by disease (or disease iden-

tifier) were possible. In most cases the databases investigated were

publicly accessible; several, however, restricted access to members

only (e.g., parts of Café Variome) or were commercial databases with

pay to view content (HGMD) (Table 3).

FAIRness, for human users, was hindered by a variety of factors.

For example, while many databases provided a search function, one of

the core aspects of “F”—that data records are uniquely identified—was

frequently overlooked by providers. Often, there was found to be

a preference for embedded javascript/AJAX “reveals” of otherwise

unidentified data, and/or incremental drill-down searches until only

one result remained. Furthermore, impediments to the “I” and “R”

elements of FAIRness—Interoperability and Reusability—were evi-

dent in the sparse use of ontological terms, use of ontological terms

without indicating their source ontology, and lack of easy-to-find

citation information for individual data points within aggregate data.

On the positive side of FAIRness for humans, however, the terms of

data access and re-use, for example, licensing and use for further

studies, were reasonably well implemented in most databases. Not all

data could be accessed and reused but the terms and conditions of use

were clearly presented and a contact person or consortiumwas given.

FAIRness for machines was not evaluated, as, in most cases, the

data providers made little or no effort to support automated accessi-

bility or interoperability. The notable exception was DisGeNET, with

its adoption of nanopublications (data structures that link data, data-

provenance and citation-related information in a manner that can eas-

ily be interpreted by machines (Mons et al., 2011)), and provision of a

SPARQL (SPARQL Protocol and RDFQuery Language) query interface

for these nanopublications (Fu et al., 2015). Where available, a link to

each database's API is given in Table 3.

3.1.2 Up and download functionality

It was possible to download or export search results as txt, CSV, RDF,

XML, or other formats in ClinVar, EVS, EVA, ExAC, Café Variome,

dbSNP, dbVAR, and DisGeNET (Table 3). For DECIPHER, the export-

ing of data to a file was possible upon request, and in HGMD for

paying users. Several databases were found to encourage and accept

data submission and provide upload functions or submission contacts.

However, others were more restricted in this. For example, DisGeNET

retrievesdata fromother (curated) databases anddoesnot allowdirect

upload, EVS and ExAC have a defined list of sources (e.g., projects)

from which the data is provided, and HGMD has its own data retrieval

pipeline.

3.1.3 Genotype and phenotype information format

Currently, there are two major forms in which genetic variants

are given in databases: HGVS nomenclature and rs identifier. Four
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TABLE 2 Overview of databases included in the review

Database and link Contact
How to cite (literature
reference for database) Short description

RTT-specific database

RettBase Prof. John Christodoulou and
Rahul Krishnaraj

Christodoulou et al. (2003) Specific focus on RTT.
Database of genetic information about RTT
patients.

Containsmutation information aboutMECP2 as
well as CDKL5 and FOXG1which cause
different syndromes (formerly named Rett-like
syndromes).

Databases for genetic variations and phenotype information for diseases in general

KMD
KMDRett Syndrome (Korean
Mutation Database)

Contact via KCDC (Korea Centre
for Disease Control and
Prevention)

– Genotype-disease database.
Collection of disease-causing variants in genes.

ClinVar
ClinVar (MECP2)

Mail Landrum et al. (2016) Genotype–phenotype database.
Focus on disease-causing variants in genes.

HGMD “professional” Contact (via publicWebsite) Stenson et al. (2017) Commercial genotype–phenotype database

Databases for all kinds of genetic variations and phenotype information

LOVD
LOVD3.0MECP2 (LeidenOpen
Variation Database)

MECP2 curator: Henk van
Kranen

Fokkema et al. (2011) Genetic variants database.
Locus/gene specific, all genes.

DECIPHER (DatabasE of genomiC
varIation and Phenotype in
Humans using Ensembl
Resources)

Mail Firth et al. (2009) Genotype–phenotype database.
All genes.

EVS
EVS (MECP2) (Exome Variant
Server)

Mail – Genetic variants database.
Originally those which contribute to heart, lung
and blood disorders. Now open to all genes,
linked to dbSNP and dbGAP.

ExAC Browser (Exome Aggregation
Consortium)

Github
Mail

Lek et al. (2016) Database/project to collect and harmonize whole
exome sequencing data.

Allows search for variants at certain locations or
single genes, and direct search for variants.

dbSNP (NCBI Short Genetic
Variations database)
dbSNP (MECP2)

Mail Kitts et al. (2013) Genetic variation database.
Collection of single nucleotide polymorphism
(SNP) and an effect predictor score.

Integrated/meta-databases and genome browsers

dbVAR
dbVAR (MECP2)

Mail Lappalainen et al. (2013),
Phan et al. (2016)

Database for genomic structural variations,
including indels, mobile element insertions,
duplications, inversions, translocations, and
complex chromosomal arrangements.

EVA (European Variation Archive) Mail – Variant browser.
Allows search for variants of specific locations or
genes.

Cafe Variome Mail Lancaster et al. (2015) Meta-database for genetic variants,
genotype-phenotype databases.

Links to 1000Genomes Project, dbSNP,
Diagnostic Variants, DiagnosticMutation
Database, The Frequency of Inherited
Disorders Database, Finnish Disease, FORGE
Canada Consortium, PhenCode, UniProt,
HumanGeneMutation Database,
Locus-specific Databases.

Freely available, but some of the linked databases
content is only available after registration.

DisGeNET Mail Pinero et al. (2015, 2017) Database for gene-disease and variant-disease
associations.

Imports data from curated databases like
Uniprot, ClinVar, GWASCatalog, and so on.
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TABLE 3 Description of database structure and information types

Database
↑Up- and↓Download of dataAPI (if
available) Phenotype information available Genotype information available

RettBase ↑ Submission of data bymail possible
↓No download function,Web
interface

No API or similar

Information onwhether RTT or not,
distinguishes between classical,
atypical, preserved speech, and
forme fruste RTT, mental
retardation (not Rett), Autism

According to HGVS change on the
mRNA/cDNA level, RefSeq
NM_004992 unless stated
otherwise

KMD ↑ Submission of data by registered
users

↓No download function,Web
interface

No API or similar

Diagnosedwith RTT using the
OMIM identifier (=RTT/RTT
preserved speech variant)

According to HGVS change on the
mRNA/cDNA level and RefSeq

ClinVara ↑ Possible, detailed submission
templates and instructions
available

↓Download/export of search results
in form of text files or UI lists
possible

API available here

Information onwhether Pathogenic
or not, Diagnosis, for example,
RTT, Autism, X-linkedmental
retardation

According to HGVS change on the
mRNA/cDNA level (mostly) and
RefSeq

HGMD “professional” ↑Not possible, HGMDhas its own
data acquisition resources

↓Download and export possible (for
registered paying users)

UMLS (ontology)
HPO (ontology)
OMIM
SNOMEDCT
MeSH

Descriptive: e.g. 11 kb deletion in
exon 1–2, HGVS format in the
detailed description

LOVDa ↑Upload possible after registration
with Submitter clearance

↓Download of complete database
possible, not for specific
genes/search results, API available
for LOVD2.0, for LOVD3.0 under
construction

Variant effect predictor: “+”
indicating the variant affects
function, “+?” probably affects
function, “-” does not affect
function, “-?” probably does not
affect function, “?” effect
unknown, “.” effect not classified.

According to HGVS change on the
mRNA/cDNA, DNA and protein
level and RefSeq

DECIPHER ↑Open upload, bulk upload
templates

↓Web interface, and “Anonymised
consentedDECIPHER data can be
made available in the form of a
downloadable encrypted file from
a secure server under a data access
agreement. Please see the section
on data access agreement on the
Data Sharing page.”

API available here

Detailed phenotype description,
using HPO annotations

According to HGVS change on the
mRNA/cDNA level and Ensemble
ID of transcript used (includes
RefSeq)

EVS ↑Data is exclusively fromNHLBI GO
Exome Sequencing Project (ESP)

↓Bulk download files, download of
specific gene variant information
search results as text or VCF

NoAPI or similar

Variant effect prediction by
PolyPhen2

According to HGVS on the
mRNA/cDNA and protein level, rs
IDs

ExACBrowser ↑No upload possible, ExAC includes
data from a list of projects

↓ Export of variation table as CSV
possible

API available here

Variant effect prediction:
Consequence of variation, for
example, intronic variation, and
consequence of protein aa change

rs IDs, genomic position, RefSeq and
allele

dbSNPa ↑ Submission possible either directly
or via EVA, dbGAP or ClinVar

↓ Possible, “Send to file” function for
search results, batch query
function for machine readability

API at NCBI variant reporter

Variant effect prediction,
consequences like, for example,
intronic variation, and
consequence of phenotype, for
example, increased susceptibility
to diseases, is given. No RTT
mutations are yet available.

rs IDs, HGVS (mRNA/cDNA)

dbVARa ↑ Possible, no clinical data (ClinVar),
no sensitive data (dbGAP)

↓”Send-to-file” function
API at NCBI variant reporter

Clinical Assertion:
pathogenic/uncertain significance

rs ID and allele

(Continues)
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TABLE 3 (Continued)

Database
↑Up- and↓Download of dataAPI (if
available) Phenotype information available Genotype information available

EVAa ↑Open to everyone, submission
guidelines

↓ Free - Export function (CSV), API
available here

Variant effect prediction by
PolyPhen2/SIFT

rs IDs and allele

Cafe Variome ↑Upload direct to Café Variome
“hosted” or “in-a-box”

↓ Export of search results in different
formats (CSV, html, LOVD…)

API available here

dbSNP: “phenotype” column, no
entries

HGMD: no phenotype data
Locus specific: no phenotype data
PhenCode: phenotype entry for 1/5
of entries: Diagnosis (RTT, X-linked
mental retardation)

Uniprot: same as PhenCode

dbSNP: HGVS (mRNA/cDNA) allele
and RefSeq,

HGMD: no variant data visible
Locus specific: HGVS (mRNA/cDNA)
allele and RefSeq

PhenCode: HGVS (mRNA/cDNA),
Reference links to original data
source,

Uniprot: HGVS (mRNA/cDNA),
reference links to UniProt ID

DisGeNETa ↑No submission, adding of data by
text mining and other databases

↓Download of search results
possible in different formats
(download page here), provides a
SPARQL endpoint

Diagnosis rs IDs

aFindable at FairSharing.org.

databases give only the rs ID (three of them include the respective

allele), seven (including all Café Variome entries) only HGVS, and two

both (Table 3).

The extent to which phenotype information is given was found

to vary between the different databases (Table 3). Generally, there

is a distinction between diagnosis-based information (six databases

out of 13), phenotype (two, including HPO annotation), and predicted

pathogenicity scores (PolyPhen/SIFT) (six). For example, ClinVar and

PhenCode (PhenCode available via Café Variome) give the clinical

diagnosis (e.g., RTT) including variants (e.g., RTT, preserved speechvari-

ant) while genetic variant databases provide other information. For

example, LOVD, showswhether a variant is pathogenic (severe (+/+) or
minor (−/+)) or not (−/−) based on the PolyPhen score; this is also the
case in EVS. DECIPHER andHGMDprovide detailed phenotypic infor-

mation which is properly annotated using an ontology (HPO). HGMD

in fact provides several options (diagnosis andphenotype).With regard

to the RTT-specific databases, a search of RettBase yielded only infor-

mation on the diagnosis (with variants), but no details about the asso-

ciated phenotype (e.g., epilepsy, scoliosis, medication).

3.2 RTT-specific information

3.2.1 Total number ofMECP2 entries

The greatest number was MECP2 entries were found in RettBase

(4738) (Table 4). dbSNP and LOVD both offer around 4500 entries

(4229 and 4588), ClinVar 1145.Most other databases offer a few hun-

dred MECP2 entries. EVS, EVA, dbSNP, dbVAR, ClinVar, and the ExAC

Browser exchange information. DisGeNET imports information from

ClinVar, so provides nothing new (Table 2).

3.2.2 Availability of the five test variants

We used the mutations listed in Table 1 to perform a test search in the

selected databases. The first three mutations, which are well known,

and in literature well-described mutations (c.397C>T, c.502C>T, and

c.916C>T) were found most abundantly, with over 400 entries in

almost all databases. The fourth (c.1200_1222del) was not found at all,

and the fifth (c.765_1350del) was found only twice, in LOVD (MECP2

gene homepage) and HGMD. These last two are derived from NGS

studies indicating that the data submission pipelines of this data to

genotype-phenotype databases are not yet that well established.

4 DISCUSSION

In this study, we surveyed currently available genotype–phenotype

databases using MECP2 variants in RTT as a test case. We assessed

the database structures and functionality and gave an overview of the

available data onRTT,MECP2 variants and their associated phenotypic

data, with the aim of enabling data producers and data users to select

a databasewhich fits bestwith their needs to store, look up, and re-use

available data.

4.1 Limited availability ofMECP2 gene variants in
databases

Our modest inventory of five different MECP2 variants, of which two

were derived from NGS data, underscores the need for further har-

monization and integration of gene variant information from differ-

ent sources. Through a simple survey, we have shown that coverage of

five selected variants of theMECP2 gene in the databases under inves-

tigation depends upon both their frequency and how long they have

been known. This should not be regarded as a criticism of the indi-

vidual databases for not containing all possible mutations, but rather

as an argument for building a better infrastructure for integration of

novel genome sequencing data into databases and improvement of

interoperability, similar to that offered by the Beacon project in rela-

tion to genomic data. This example of limited coverage in a variety
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TABLE 4 Number of database entries forMECP2 or RTT in general and five specific variants (status March 2018). Number: variant present in
this number,+ variant present, displayedwithout details,− variant not found

Database

Total number of
MECP2 variant
entries

Variant 1
c.397C>T
missense

Variant 2
c.502C>T
nonsense

Variant 3
c.916C>T
missense

Variant 4
c.1200_1222del

Variant 5
c.765_1350del

RettBase 4738 (897 unique) 217 363 246 − −

KoreanMutation Database 35 1 1 1 − −

ClinVar 1145 1 13 13 − −

HGMD “professional”a 975 − + + − +

LOVD3.0MECP2 4588 (807 unique) 197 335 218 − +

DECIPHER 203 6 4 2 − −

EVS 117 − − − − −

ExAC 599 − − − − −

dbSNPa,b,c 4229 + + + − −

dbVARc 469 + + + − −

EVA 378 + + + − −

Cafe Variome – dbSNPa 500 − 1 1 − −

Cafe Variome – PhenCode 809 1 1 1 − −

Cafe Variome –UniProt 71 1 − 1 − −

Cafe Variome –HGMDa 249 − − − − −

Cafe Variome – Locus-specific Databases 10 − − 1 − −

DisGeNETb + + + + − −

adbSNPand theCaféVariome request to dbSNPprovided different numbers forMECP2entries, the same applies for LOVDandHGMD.As theCaféVariome
link uses the public version of HGMD the exact variants are not shown.
bSearch was done via rs number which does not give the exact variation, only position.
cThe numbers for dbSNP and dbVAR are fromNCBI's Variation Viewer forMECP2 (GRCh37.p13).

of databases illustrates the fact that despite much progress in NGS,

genomic and clinical data are still mainly collected and studied in silos

by gene or disease, institution or country. Such a finding is consistent

with previous observations (Akle, Chun, Jordan, & Cassa, 2015) and

others in the Matchmaker Exchange Special Issue (Human Mutation,

Special Issue: The Matchmaker Exchange October 2015, Volume 36,

Issue 10, Pages i–iii, 915–1019). It can be explained by several factors,

including: regulatory data-privacy requirements which inhibit secure

data sharing across institutions and countries; poor rewarding of peo-

plewho collect ormake individual contributions to data collection; and

the incompatibility of file formats and nonstandardized tools and ana-

lytical methods (GA4GH, 2016). It is also worth noting that new NGS-

derived variants may often be “hidden” in the published literature, for

example, within a cohort identified by a broad diagnosis of intellectual

disability (Gilissen et al., 2014), without specific reference being made

(e.g., to RTT and/orMECP) in the title or abstract of an article. As a con-

sequence, many variants may not be picked up by database curators

when trawling the literature for new additions. It is neither the inten-

tion nor the recommendation of this article that one database should

collect and provide all data but it would be helpful if data could be inte-

grated and findable in such a way that a researcher does not have to

search multiple databases to look for one specific variant. In general,

adherence to FAIR principles and GA4GH guidelines promise a major

improvement.

4.2 Need for better sharing of data

(interoperability!) within and between RTT-relevant

databases

All of the databases tested in this study are accessible byWeb browser

(Graphical User Interface, GUI) but not all of them allow download of

search results. The lack of a proper API or download function limits

data exchangewithindifferent databaseswhich leads to the conclusion

that the interoperability of these databases is currently rather poor.

Making databases interoperable is of particular value as we found that

approaches to several databases may be required in order to locate

information about a specific mutation and/or to find all of the avail-

able phenotypic information. If these databases were generally able

to share and exchange data with each other (as some already do, e.g.,

DisGeNET—ClinVar, RettBase—LOVD), or meta-databases were avail-

able to simultaneously approach several databases through a single

search function, the search for information would bemuch easier.

There is a general problem with multiple entries of the same

patients or patient groups. Tracing back the submission to the same

author/research group can but may not mean that this is the same

patient cohort. As we saw in our database survey, the phenotypic data

entry varies greatly, such that multiple entries of the same patient

would not automatically be recognized as being the same data. Using

data about a patient more than once can lead to statistical bias,

especially in the field of rare diseases. For this reason, we would
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encourage the use of registry identifiers (e.g., ID-cards) or privacy pre-

serving record linkage (PPRL).

Patient data laws worldwide do not necessarily forbid uploading

genetic and phenotypic data to databases (as long as no personal

information is also shared), but medical doctors are not always aware

of what is permissible, and may opt to “play safe” by not upload-

ing data at all. Information and training for people who actually

produce the data (nonbioinformaticians) would, therefore, be helpful.

One such example is that started with the ELIXIR training platform

(https://www.elixir-europe.org/platforms/training), Bring Your Own

Data Workshops (BYOD https://www.dtls.nl/fair-data/byod/), and

several other initiatives.

Generally, there is a lack of time and funding to upload and main-

tain data. Here, we would encourage the community to make manda-

tory the publishing of datasets alongside the publishing of a research

article, as was startedwith gene-specific information (seeNucleic Acid

Research Instructions to Authors (Walker, Soll, Deutscher, Platt, &

Weiner, 1983)) and continued with raw transcriptomics data (jour-

nals require upload on databases like GEO or ArrayExpress before

publishing), and also to integrate the data in such a way that one

study needs to be uploaded only once and is then findable on other

platforms (such as BioStudies (McEntyre, Sarkans, & Brazma, 2015)).

Some positive steps are already being taken in this direction as many

European and national grants now require a data management plan

for new projects that will allow for sustainability after the project

ends.

These problems are not new but were, in fact, flagged up almost

10 years ago when the HVP was initiated (Cotton et al., 2008). At

that time, the late Dick Cotton recognized the need to “collect,

curate and make accessible information on all genetic variations

affecting human health,” and since then, many additional initiatives

have been started. To date, the most active and promising of these

is the founding of the Global Alliance for Genomics and Health

(GA4GH) in 2013. This offers a similar vision and complementary

philosophy and approach, with active Working groups and demon-

stration projects such as the Matchmaker Exchange and Beacon

project.

Another issue relates to the knowledge aggregation sites, reposi-

tories and in-house databases which require the owner's agreement

to input or download data from the database or grant permission on

a case-by-case basis when the request to access data is part of a spe-

cific research project with prior approval from amedical ethical board.

Such databases as the US NHS, Rett Database Network, InterRett,

AussieRett, and the Dutch Rett Database (Maastricht) are emerging

and there is a need to think about ways to connect them. For a start,

each entity must make sure that:

1. their database is populated by relevant and useful data (accurate,

up to date), which brings with it implications for data maintenance

and sustainability;

2. these data are findable and accessible, whichmay require reconsid-

eration of their access policy; and,

3. their database provides GUI and API infrastructure for connection

with others.

One option could be to use locally installable versions (instances) of

genotype-phenotype databases as offered by LOVD, or PhenomeCen-

tral (Phenotips). These in-house databases allow collection of patient

data and support (ontology) annotations of genetic and phenotype

information. Apart from supporting local data collection, exporting and

sharing of (non-patient specific!) meta-data can be made possible in a

second step.

4.3 The importance of being FAIR

In our study,we found that,with regard to findability and interoperabil-

ity of genotype–phenotype databases in particular, there is still much

to be done. There are initiatives thatwork on overcoming this problem.

The Beacon project of GA4GH is an initiative that seeks to link molec-

ular data by creating a common searchable infrastructure—the so-

called beacons. At the moment about 70 databases/data-sources con-

tribute to this. Currently, it is only possible to look for single nucleotide

changes—for example, a test search in Beacon for our mutation 1 (X:

153296882 G>A) yielded 13 hits. The search for small, specific inser-

tions/deletions is currently being implemented but is not yet func-

tional for all databases (personal communication). The RD-connect

and Orphanet platforms also provide data—in as much as they link

to registries and biobanks, which might have information about the

disease. For RTT, the RD-connect catalogue lists three registries: the

Italian National Rare Disease Registry, RaDiCo-GenIDA, and the Rett

Database Network (none of which provide directly available online

genetic and phenotypic data and were not, therefore, included in our

survey).

4.4 The importance of collecting detailed

phenotypic information

Among the genetic variants of MECP2, there are those that cause

RTT, those that cause mild intellectual disability, and there are neu-

tral/benign variants. Among the disease-causing forms, there are

severe and mild variants of typical/classical RTT and atypical RTT, for

example, preserved speech variant (Zappella et al., 2001). An underly-

ingminimal set of core and supporting criteriamust be fulfilled in order

for a clinical diagnosis of RTT to be given (Neul et al., 2010). Despite

this, however, both classical and atypical forms display a broad range of

phenotypes. To name but a few of the characteristics of the syndrome,

some individuals with RTT cannot walk while many do, and most

develop scoliosis or epilepsy but not all. Among those with epilepsy,

there is no single antiepileptic treatment that works for all, indicat-

ing for example, different physiological roots, although practice pref-

erences and availability of specific agents may also affect the choice of

medications. Mood and character of individuals vary greatly, too. It is

clear that RTT is a complex syndrome with multiple factors—including

levels of X-inactivation, genomic, epigenetic, and other environmental

influences—affecting its phenotypic presentation. Currently, there are

several approaches to capture the phenotype realized in the databases

we investigated:

1. By diagnosis: RTT- or disease-specific databases especially, give

the information that the carrier of this MECP2 mutation has been
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diagnosed with RTT (or others) (RettBase, ClinVar, Café Vari-

ome/PhenCode, DisGeNET, HGMD). In some cases, the diagnosis is

even linked to an identifier (OMIM,MeSH, DOID).

2. A detailed description of the phenotype is given—but without diag-

nosis (DECIPHER, HGMD).

3. The effect of the genetic variation is given as measured/observed

or predicted (e.g., using PolyPhen2) molecular biological

consequences (LOVD, ExAC, dbSNP) or phenotype “damaging”

effect (EVS).

To cover the richness of medical observation, we strongly encour-

age the collection of detailed phenotype descriptions of genetic

variations. One way to contribute to a more detailed elucidation of

phenotypes is throughencouraging a clearer use of termswhich should

include the use of ontologies, identifiers andminimal information stan-

dards (Lapatas, Stefanidakis, Jimenez, Via, & Schneider, 2015). In

this respect, the application of HPO terms is widely advocated

within the rare disease field/community, as illustrated by the GA4GH

recommendation on this topic (see https://genomicsandhealth.org/

working-groups/our-work/phenotype-ontologies). This is where

population-based/epidemiological studies such as the US NHS and

AussieRett, both of which track and record the longitudinal natural

history of RTT, couldmake amajor contribution in the future.

Finally, we would like to stress two things. First, we recognize that

any work such as we are recommending to further develop, main-

tain and integrate existing databases does not come without costs

attached. However, we believe that each of the databases we have

investigated in this study is of value and should be well-supported and

well-funded in order to maximize use of the data and yield maximum

long-term benefits. Second, we recognize that diseases are rarely truly

monogenic. All genes function in an environment of other gene prod-

ucts, including their variations (epistasis). In addition to classic exam-

ples, such as PKU (Scriver &Waters, 1999) and Cystic Fibrosis (Gallati,

2014), this was recently illustrated in the cancer field with the added

value of gene expression data to established oncogenic driver muta-

tions (Voest & Bernards, 2016). A similar argument was put forward

by McArthur and colleagues when they advocated for the inclusion of

RNA-seq to increase the diagnostic yield within the field of rare dis-

eases (Cummings et al., 2017). This phenomenon may also be trans-

lated to RTT with MECP2 mutations as major “drivers”. To read and

interpret a disease-causing variantwithin the individual's genetic envi-

ronment will be one of themajor challenges in the future.
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