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ABSTRACT: Attention-based decoder models were used to generate libraries of novel inhibitors for the HMG-Coenzyme A
reductase (HMGCR) enzyme. These deep neural network models were pretrained on previously synthesized drug-like molecules
from the ZINC15 database to learn the syntax of SMILES strings and then fine-tuned with a set of ∼1000 molecules that inhibit
HMGCR. The number of layers used for pretraining and fine-tuning was varied to find the optimal balance for robust library
generation. Virtual screening libraries were also generated with different temperatures and numbers of input tokens (prompt length)
to find the most desirable molecular properties. The resulting libraries were screened against several criteria, including IC50 values
predicted by a dense neural network (DNN) trained on experimental HMGCR IC50 values, docking scores from AutoDock Vina
(via Dockstring), a calculated quantitative estimate of druglikeness, and Tanimoto similarity to known HMGCR inhibitors. It was
found that 50/50 or 25/75% pretrained/fine-tuned models with a nonzero temperature and shorter prompt lengths produced the
most robust libraries, and the DNN-predicted IC50 values had good correlation with docking scores and statin similarity. 42% of
generated molecules were classified as statin-like by k-means clustering, with the rosuvastatin-like group having the lowest IC50
values and lowest docking scores.

1. INTRODUCTION
Inhibition of the HMG-Coenzyme A reductase (HMGCR)
enzyme is the primary target for reduction of blood cholesterol.1

Though there are many popular options for these drugs (a major
class of which is called statins), research into new inhibitors
continues.2 One modern approach for the creation of novel
drugs such as statins is the generation of virtual screening
libraries that can be evaluated in silico quickly to arrive at
promising candidates for synthesis and further testing. In this
work, several variations on a generative, pretrained (GPT),
attention-based decoder model are tested for their ability to
generate robust virtual screening libraries for use in the process
of drug design. Attention-based decoders3 or transformer-
decoders, are most well-known for being the machine learning
(ML) model behind OpenAI’s products, such as ChatGPT.4

Bagal et al. developed a transformer-decoder model for
generating libraries of molecules, MolGPT,5 though it is unclear
if there is any pretraining in that model. In that work, the authors
train the transformer-decoder to replicate a molecule starting
from a SMILES string and a set of properties. The trained model
is then used as a generative tool to create libraries of molecules

with specific properties. Thus, in order to create a library for a
specific purpose, such as inhibition of HMGCR, one would
request a library with molecules that have the properties of statin
drugs, such as log P, etc. Yang et al., on the other hand, use a
transformer-based encoder with transfer learning to develop a
generative model and apply it to the generation of BRAF
inhibitors.6 The authors then screened the molecules with
docking calculations and synthetic accessibility scores (SAS) to
support the libraries generated with their method. Tysinger et al.
used a transformer-based encoder−decoder to design a model for
hit expansion, or finding variations on a given scaffold.8 Their
model was found to be highly generalizable to a range of targets.
Previous efforts to develop generative models for screening

libraries largely used recurrent neural networks. Urbina et al.7
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recently developed a RNN-based model that also incorporated
retrosynthetic analysis and fragment analysis to create libraries
of lead molecules. Another type of model that can be used for
library generation is a variation on the convolutional neural
network, the PixelCNN. Noguchi and Inoue recently developed
a PixelCNN-based model that can build libraries from a target
fragment, allowing for more directed searching of chemical
space.9

The current work, which uses a transformer-decoder, explores
the effects of temperature and prompt length on molecular
generation. Temperature refers to how each successive atom in a
molecular structure is chosen. At temperature zero, the most
probable next atom is chosen based on what the model has
learned. At higher temperatures (which for these models often
run from zero to two or so), themost probable next atommay be
chosen, but there is also a chance that a less probable next atom is
chosen. While this may affect that percentage of valid molecular
structures generated by a model, it increases the chemical space
that is explored. Prompt length refers to how themodel begins to
build a molecular structure. Generation may be started with a
single atom or may be stated with a full scaffold. In this work, the
generation is started with the first n atoms (for various values of
n) from a randomly chosen molecule (a seedmolecule), and the
generated molecule is then rejected if it simply recreates the
seed, ensuring that novel molecules are generated. This work is
unique in the area of ML-based molecule generation in that it
simultaneously explores three variables in the ML process:
transfer-learning strategy, prompt length, and temperature, and
the resulting data set shows how different combinations of these
variables result in higher and lower quality libraries of generated
molecules.
In order to evaluate the generated libraries, various virtual

screening techniques must be used. In the current work, a deep
neural network (DNN) is trained to predict IC50 values of
molecules in the HMGCR enzyme. Samizo and Kaneko have
used a variety of ML techniques to screen molecules that are
effective inhibitors of HMGCR.10 For example, they used

various linear regression methods, support vector regression
methods, decision trees, random forests, and gradient-boosting
methods with RDKit and Mordred descriptors to predict IC50
values for HMGCR inhibitors. Khoa et al. compared classical
scoring functionals for binding affinity of ligands to HMGCR to
ML-based scoring functions and found that the classical
functions outperformed the ML functions.11 The ML models
used in their work not only included random forest and gradient-
boosting methods like the work of Samizo and Kaneko but also
included neural network and DNN-based methods. This work
also screens libraries by searching for fragments and evaluating
the similarity to known statins. Moorthy et al. performed QSAR
modeling of the inhibitory power of ligands for HMGCR and
found that the polar functional groups and fragments were
crucial for the inhibitory activity of the molecules.12 In this work,
the generated libraries are screened for the presence of various
polar (and nonpolar) moieties, which are present in known
statins.

2. METHODS
2.1. Dense Neural Network for Predicting IC50 Values.

A data set of all compiled HMGCR inhibitors was downloaded
from BindingDB.org.13 Data were filtered to remove duplicates,
outliers, and null values, and to include only those entries with a
specific IC50 value, i.e., values with > or < were excluded. This
resulted in a data set of 905 inhibitor SMILES strings and
corresponding IC50 values in units of nanomolar (nM). This
data set will be referred to as the BDB905 data set in the rest of
this work. The molecule SMILES strings were featurized with
Mordred descriptors14 as implemented in Deepchem.15 Morgan
Fingerprints and RDKit descriptors16 were also tested but not
used in production. The Mordred descriptors were reduced
from 1613 features to 75 features using principle component
analysis as implemented in Scikit Learn.17 IC50 values (in nM)
ranged from 0.16 nM to over 109 nM, and so they were
transformed with the natural log function for the fitting process

Figure 1. (a) SkipDense block and (b) DNN featuring SkipDense blocks.
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(called ln-IC50 here), leading to a much smaller range (−2 to
about 13) that could be fit more easily.
The BDB905 data set was fit using a modified form of the

DenseNet architecture18 wherein the network is made of blocks
(referred to here as SkipDense blocks), each containing n dense
layers and an optional skip connection from the block input to
the block output, essentially allowing the block input to skip that
block entirely while a second copy of the input progresses
through the block as normal (Figure 1). DenseNet has been
shown to have excellent performance for nonlinear fitting.18 The
models used here had a normalization layer (for RDKit
descriptors only; for Mordred descriptors, normalization was
performed prior to PCA reduction), one, two, or three
SkipDense blocks, and a dense output layer. The models were
trained with the Adam optimizer and used a learning rate of
0.002, an l2 regularization constant of 0.01, 400 nodes per layer,
and 4 dense layers per block. LeakyReLU activation was used on
all dense layers except the output, which used linear activation.
The BDB905 data set was split into training and validation

sets (90/10 split), and models were trained for 150 epochs. The
mean absolute error was used as the loss function for
optimization, and the training and validation scores were
calculated for each model trained. Eight models were trained
and evaluated: 1 SkipDense block with a skip, 1 SkipDense block
with no skip, 2 SkipDense blocks with skips in both, 2 SkipDense
blocks with no skips, 2 SkipDense blocks with no skip in the first
and a skip in the second, 2 SkipDense blocks with a skip in the
first and no skip in the second, 3 SkipDense blocks with no skip
in the first and skips in the second and third, and 3 SkipDense
blocks with no skip in the first and third blocks and a skip in the
second block. Since the models had similar losses and scores, a
set of four statin molecules was used as a “fine-tuning” of sorts to
select the final model for production. These four statins,
cerivastatin, simvastatin, atorvastatin, and rosuvastatin (which
are part of the training set), have known IC50s of 3.54, 2.74,
1.16, and 0.16 nM, respectively.19 The predicted IC50 scores for
these four molecules were extracted from each trained model so
that their accuracy and relative ordering could be used as a final
criterion to select the best model. These four relative IC50
values were used as the four compounds have well-established
relative efficacies that have been verified clinically, and so the
model’s ordering of these can provide a “final check” of the
model’s accuracy. With training/validation scores of 0.90+/
0.80+ (see Table 1), it is believed that the accuracy of predicted
IC50 values for any of these models will be high, regardless of
ordering.

2.2. Pretrained Attention-Based Decoders for Drug-
like Molecules. A data set of 40,000 molecular SMILES strings
was downloaded from the in vitro data set at ZINC15,20 which
consists of substances that are reported or inferred active at 10
μM or less in binding assays. The in vitro data set is the second-
to-lowest classification of biogenic molecules in ZINC15,
meaning that while every compound in the data set has a
measured or inferred bioactivity via some binding assay (these
can vary greatly in the data set), they have not necessarily been
tested in vivo, and they may or may not be FDA-approved or
world drugs. This also means that the data set does contain some
FDA-approved drugs and does contain some drugs that have
been tested in vivo. Overall, this data set will be considered drug-
like and will be referred to as the ZN1540K data set in the rest of
this work. SMILES strings were tokenized using the
SmilesTokenizer from DeepChem15 and the vocabulary file
provided at their GitHub page.21 Tokenized SMILES strings

were then padded with padding tokens ([PAD]) to the length of
the longest SMILES string in the data set. Inputs for each
tokenized SMILES string were created as strings with a length of
one less than the longest SMILES string in the data set, missing
the final token. Ground truth for each SMILES string was the
same as the input string but shifted by one, i.e., missing the first
token and including the last token.
The ZN1540K data set was then used to pretrain four

attention-based decoder models, which we will refer to as
Generative pretrained (GPT)models. EachGPT consisted of an
input layer, one to four transformer blocks, and a dense output
layer (Figure 2). The general structure of this model was adapted
from a text-based decoder.22 The transformer block used 256
nodes in the dense layers, ReLU activation in the first dense
layer, and a dropout rate of 10%. Attention layers in the
transformer blocks all used 4 attention heads and a key
dimension of 256. The embedding layer had a dimension of 256,
and the output dense layer had a dimension of 85 [the size of the
vocabulary for the combined ZN1540K and ChEMBL1081 (see
below) data sets] and used SoftMax activation to generate token
probabilities. The training of the GPT models used the Nadam
optimizer and sparse categorical cross-entropy for the loss
function.

2.3. Transfer Learning for HMGCR Inhibitor Generat-
ing Models. A data set of all HMGCR inhibitors was
downloaded from ChEMBL.23 As this data set was used to
train the GPT models on SMILES strings, all entries could be
used, regardless of whether they had a valid IC50 value and
accounted for 1081 unique SMILES strings. We will refer to this
data set as the ChEMBL1081 data set for the rest of this work.
This data set is distinct from the BDB905 data set used above,
despite having some overlap. In order to estimate this overlap,
the SMILES for both data sets were converted to canonical
SMILES using RDKit and compared against each other. While
canonical SMILES can still differ between two algorithms, in this
case all were generated by the same algorithm. Only 124
canonical SMILES strings were found to be common between
the two data sets. To further emphasize the difference between

Table 1. Loss (MAE, nM) and R2 Scores for Training and
Validation Sets of the BDB905 Data Set with Various DNN
Modelsa

model
training
loss

validation
loss

training
score

validation
score

known
MAE

1 block, skip = false 0.8693 1.3471 0.92 0.85 5.83
1 block, skip = true 0.8616 1.4267 0.92 0.82 4.95
2 blocks,
skip = true, true

0.8040 1.4208 0.92 0.82 4.60

2 blocks,
skip = false, false

0.8996 1.3859 0.92 0.86 3.72

2 blocks,
skip = false, true

0.8834 1.3713 0.89 0.84 3.52

2 blocks,
skip = true, false

0.8540 1.3669 0.92 0.84 3.35

3 blocks,
skip = false, true,
true

0.9060 1.3920 0.91 0.84 6.58

3 blocks,
skip = false, true,
false

0.8770 1.4157 0.92 0.85 5.69

2 blocks,
skip = false, true*

0.8100 1.3200 0.92 0.84 4.19

aThe final column is the MAE in nM against four experimental statin
values: cerivastatin, simvastatin, atorvastatin, and rosuvastatin.
*indicates a retrained model.
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the two, the BDB905 data set had 905 entries with a well-defined
IC50 value, that is, 905 values with an implied “=” after all “<”
and “>” values were removed. The ChEMBL1081 data set only
had 232 entries with an “=” for the IC50 value, with 868 entries
having “NaN” (the rest did not have IC50 values). When the
IC50 value distributions for both data sets are examined, the
values in the ChEMBL1082 data set had ∼190 values less than
100 nM, while the BDB905 data set had over 600 values less than
100 nM. The BDB905 data set also had values up to and past
100,000 nM, meaning that it had ∼two-thirds active and ∼one-
third relatively inactive examples for the DNN to learn from,
which is crucial. The ChEMBL1082 data set had values only up
to 90,000 nM. The two separate data sets were used to provide
more data diversity to the process.
The ChEMBL1081 data set was used to generate four models.

In Section 2.2, it was specified that four GPT models were
trained with one, two, three, and four transformer blocks.
Additional transformer blocks were added to each of the initial
GPTmodels so that they all had a total of four blocks. The added
blocks were then trained on the ChEMBL1081 data set, while
the weights for the pretrained blocks were frozen. For example:
the GPTwith 2 transformer blocks had the weights for those two
blocks frozen. Two more blocks were added, and the new 4-
block model was trained with only the weights for the two new
blocks and the output dense layer trainable. All layer details were
the same as in Section 2.2 and this training also used the Nadam
optimizer and sparse categorical cross-entropy for the loss

function. Pretrained blocks were frozen to allow only the newly
added blocks to learn from the ChEMBL1081 data set.
The first of the resulting four models was referred to as NoX

(no blocks transferred, all four blocks pretrained, none trained
on the ChEMBL1081 data set). This model serves as a control,
as it was trained on 40,000 drug-like molecules, but had no
specific HMGCR training. The next three models were referred
to as the 1X, 2X, and 3X models, having one, two, or three
pretrained blocks transferred, and three, two, and one blocks
fine-tuned on the ChEΜBL1081 data set. Finally, a fifth model
with four transformer blocks was trained only on the
ChEMBL1081 data set, with no transferred blocks. This was
referred to as the SO models (statin-only). All five models were
trained for an additional 50 epochs with all weights on all blocks
trainable, allowing cooperativity between the blocks, which had
before been divided into “drug-like” blocks and “statin-only”
blocks. These fully optimized models were referred to as the
NoXALL, 1XALL, 2XALL, and 3XALL models.
A subset of the ChEMBL1081 data set was created containing

only those molecules with known IC50 values. This yielded a set
of 232 molecules with experimental IC50 values (referred to as
the ChEMBL232 data set in the rest of this work) and was used
as a control/comparison for the DNN-predicted IC50 values.
This comparison may be found in Table 2.

2.4. Generation of Molecule Libraries. All models were
used to generate molecule libraries for the virtual screening. In
the proof-of-concept models, molecules were generated by
feeding each model a “seed” or prompt of 12 input tokens and
asking it to predict the most likely next token in the sequence
(called temperature = 0 molecule generation). This was done 80
times per seed, so that the resulting molecules consisted of 92
tokens each. Each model was fed 1000 12-token prompts, with
the hope of generating 1000molecules in each library. The seeds
were generated by taking a random sample of 1000 (or, later,
5000) molecules from the combined ZN1540K and
ChEMBL1081 data sets, tokenizing them, and choosing the
first 12 tokens in each. Once generated, each token sequence was
transformed back to a SMILES string for further analysis.
The library generation process was repeated with a higher

“temperature” of 0.5 using a multinomial-like sampling strategy.
Higher temperature, in this case, means that each token selected
to add to the seeds is not necessarily the most probable next
token but possibly a token of lesser likelihood. When the model
is queried for the next most likely token, it does not just give the
single token but provides the probability for every token in the
vocabulary (85 total tokens for this work). In a temperature of 0
molecule generation, the token with the highest probability is
chosen, but if the temperature is not zero, some other token is
chosen. Higher temperature generation was performed by taking
the probability distribution that the next token, t, given by the
model will be the i-th vocabulary word, f i(t), and transforming it
according to

Figure 2. (a) Transformer block with a multihead attention layer and
(b) GPT model used in this work.

Table 2. Average Properties of the Docking Subset of the Training Data Setsa

IC50 (nM) QED score (kcal/mol) % similarpairs % fluoro-phenyl % decalin % similar simvastatin % similar atorvastatin

BDB905 93 0.46 −7.95 54.84 72.92 9.62 18.76 65.74
ChEMBL1081 60 0.39 −7.90 29.72 57.26 9.13 10.37 53.11

aIC50 is given as calculated by the DNN. For comparison, the BDB905 average experimental IC50 is 91 nM, and the ChEMBL1081 average
experimental IC50 is 40 nM (only 232 compounds in this library had IC50 reported). % of molecules in the training data sets with given fragments
and % of molecules with Tanimoto similarity to known statins of 0.25 or greater.
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and then using this PD(t) as the probability function for the
Numpy random.choice tool. The token selected by this process
was then added to the seed for a total of 92 tokens. The libraries
generated with the fivemodels from Section 2.3 are referred to as
1K12S libraries, where 12 is the number of seed tokens or
prompt length. Thus, for the five fully trained models, the
resulting libraries are NoXA1K12S (No Xfer-learning, All-layers
trained, 1K prompts, and 12 Seeds tokens), 3XA1K12S (3 Xfer-
learning layers, All-layers trained, 1K prompts, and 12 Seeds
tokens), etc.
After the proof-of-concept, 1000 prompt library was tested,

three more libraries were created for each of the five models at
two temperatures (0.0 and 0.5), leading to 30 total libraries.
These libraries had 5000 prompts each and had prompt lengths
of six, nine, or 12 tokens. These libraries are referred to as 5KnS
libraries, where n is the prompt length. Thus, for the five fully
trained models in Section 2.3, the resulting libraries are
NoXA5K12S (No Xfer-learning, All-layers trained, 5K prompts,
and 12 Seed tokens), 3XA5K12S (3 Xfer-learning layers, All-
layers trained, 5K prompts, and 12 Seed tokens), etc.

2.5. IC50 Prediction, Docking, Quantitative Estimate
of Druglikeness, ADME Properties, Substructure Search-
ing, and Tanimoto Similarity. Several strategies were used to
screen the generated libraries. First, the DNN from Section 2.1
was used to predict an IC50 value for each molecule. The
predicted IC50 values were used to separate the libraries into
two sets: all molecules were included in a subset referred to here
as “refined”, and if the predicted IC50 value for a molecule was
less than 1000 nM, that molecule was also added to a “docking”
subset. All molecules in the docking subset were then docked in
the HMGCR binding site using the Dockstring24 package for
Python. This package accepts a SMILES string as input and then
prepares the molecule by protonating it at a pH of 7.4 using
Open Babel,25 generating a conformation using ETKG from
RDKit,16 optimizing the structure with MMFF94, and
computing charges for all atoms using Open Babel, all while
maintaining any stereochemistry in the original SMILES string.
The prepared molecule is then docked into the protein binding
site using AutoDock Vina26 with default values of exhaustive-
ness, binding modes, and energy range. The prepared HMGCR
binding site from the DUD-E database27 was used for docking.
Poses were visualized with PyMOL.
RDKit16 was used to calculate various ADME properties,

including molecular weight, calculated log P (A Log P),
hydrogen bond acceptors and donors (HBA andHBD), number
of rotatable bonds, number of aromatic rings, polar surface area,
and number of alerts for undesirable moieties. These properties
were also used to calculate the quantitative estimate of
druglikeness (QED),28 which uses a fit of ADME properties
to predict how drug-like a molecule will be. As the QED value is
a function of the ADME properties, only the QED is reported
here, with the rest of the ADME properties available in the
Supporting Information. RDKit was also used to search for
several substructures from known statin drugs: the atorvastatin
pharmacophore (3,5-dihydroxypentanoic acid, which binds to
ASP 671, LYS 672, and LYS 673 in HMGCR), the HMG
coenzyme-A pharmacophore, a fluorophenyl ring, a methane-
sulfonamide group (both found in type-2 statins), and a butyryl
group and decalin ring (both found in type-1 statins). Absolute

numbers and percentages of these substructure in the libraries
are reported. The two most compelling substructures and
similarities are reported here, and the rest are available in the
Supporting Information.
Morgan fingerprints29 (radius of 2, so roughly equivalent to

extended connectivity fingerprints of diameter 4) were used to
find Tanimoto similarity30,31 for several sets of molecules. First,
the average similarities of all of the molecules in each library
were calculated by averaging the pairwise similarity between all
unique sets of molecules; therefore, for a library of n molecules,
there were n(n− 1)/2 unique similarity values. This was used as
a measure of the amount of variation in each library. The average
similarities were also calculated between all molecules in each
library and a set of six statin molecules: atorvastatin,
rosuvastatin, fluvastatin, simvastatin, lovastatin, and pravastatin.
The first three in this set are well-known type-2 statins, and the
last three are well-known type-1 statins. This type of similarity to
know actives is often used as a screening criteria.
In order to use similarity as a screening criteria, a benchmark

must be established, with the fingerprint and similarity method
being used. In order to do this, the BDB905 data set, which
contained 905 experimental IC50 values, was examined. The
molecules in the data set were sorted by IC50 values from lowest
to highest, and the average similarity for each set of 5
consecutive molecules was calculated, i.e., the average similarity
was found for molecules 1−5, 6−10, 11−15, etc., with the
rationale that if the molecules have similar activity, then their
similarity may correlate with that.31 Figure 3 shows the

distribution of similarities for this data set. The range that
occurredmost was∼0.25, meaning that more sets of 5molecules
with similar IC50 values have similarities of ∼0.25 than any
other value. It is worth noting that higher values most often
correspond to lower IC50 groupings. For example, the highest
similarity, 0.72, corresponded to the 11 to 15 grouping, which
had an average IC50 value of 0.72 nM, and the second highest
similarity, 0.57, corresponded to a grouping with an average
IC50 of 1.22 nM. The lowest similarity, on the other hand, 0.12,
corresponded to two groupings with average IC50 values of
7180 and 749,800 nM. Thus, in this work, 0.25 is used as the

Figure 3. Distribution of average Morgan fingerprint-based Tanimoto
similarities of the BDB905 data set, taken from a list of the molecules
sorted by IC50 values and taken 5 at a time.
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cutoff value for similarity: if the similarity is 0.25 and above,
there is a chance of similar activity.
The final set of unique, submicromolar molecules was

analyzed for ease of synthesis using the SAS, which breaks
molecules down by fragments and uses fragment information
from the ChEMBL database to estimate ease of synthesis.32 This
method has been found to agree with expert analysis with an R2
value of 0.89.

3. RESULTS AND DISCUSSION
Figure 4 summarizes the procedure for generating libraries,
refining them, and screening them. Each step is discussed below.

3.1. DNN for IC50 Results. Table 1 shows the training
results for the DNN models with various configurations of the
SkipDense blocks. Loss values are less informative, as they are all
fairly close; therefore, R2 scores are a better indicator of the
accuracy of the model. The validation sets lagged the training
sets by about 0.08 (8%) on average, but the smallest gap between
training and validation was for the 2-block model, with no skip in
the first block and a skip in the second block (2BFT). The values
here may be compared with the HMGCR predictive IC50
models of Samizo and Kaneko, who found a R2 of 0.728 for their
test data using their best 2D model, a gradient boosting model,
and R2 of 0.772 for their test data using their best 3D model, a
Gaussian process regression model. The best validation data
(called test data in their work) R2 value here, 0.86, is
considerably more accurate than that in their work. The
considerably simpler QSAR predictive HMGCR IC50models of
Moorthy et al. have R2 values for their test data of 0.78 to 0.83,
closer to the values obtained in this work.12 A secondary
criterion considered for model accuracy was how the models
treated a subset of known statins: cerivastatin, simvastatin,

atorvastatin, and rosuvastatin all have well-known IC50 values.
The MAE for these molecules with each model is given in Table
1. The 2BFT model had the second smallest MAE for these test
statins. The ordering that the models gave these predicted
statins was also studied. The experimental values are in the order
cerivastatin > simvastatin > atorvastatin > rosuvastatin. The
“one block with skip” model was the only one to get the ordering
correct, but it had a larger variance than other models. The
2BFT model was able to get three out of four correct in the
ordering. For these reasons, the 2BFT model was retrained on
the same data for the same number of epochs with different
starting random conditions (initial weights, etc.). This
reoptimization produced the lowest loss values of all the trials,
raised the difference between training and validation scores
slightly, and raised the known MAE slightly, but it also achieved
correct ordering of the known statins. This model was used for
all subsequent predictions of IC50 values. While all possible
combinations of skip and no skip were tested for models with 1
and 2 SkipDense blocks. When testing models with 3 SkipDense
blocks, no improvement was found in loss or R2 for the first two
3-block models tested, and the MAE for the known statins was
larger than that for 2-block models, so no further testing of 3-
block models was carried out.

3.2. Properties for Training Data Sets. The DNN and
GPT training sets (ChEMBL1081 and BDB905) were analyzed
for the same properties as the generated virtual screening
libraries, DNN-predicted IC50, QED, and docking score, as well
as for the presence of several moieties and similarity to known
statins. Table 2 shows the average properties for docking subsets
of the two training sets (those molecules with predicted IC50
less than 1 μm) as well as the average experimental IC50 for the
BDN905 data set. More properties are available in the
Supporting Information. The BDB905 docking subset had a

Figure 4. Workflow for generating libraries.

Figure 5. Fragments from known statins.
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low predicted IC50 value of 93 nM, comparable to the
experimental average of 91 nM. Likewise, the ChEMBL1081
data set had a predicted value of 40 nM, compared to the
experimental average of 60 nM. QED for both training sets was
low, 0.46 and 0.39. Despite statins favoring low log P values, the
average A log P values were both 4.00. Both had about 9
rotatable bonds, but while the BDB905 data set had about 55%
similar pairs, the ChEMBL1081 data set only had 30% similar
pairs. Both sets had similar average docking scores of −7.95 and
−7.90. For reference, the docking scores for six known statins,
executed with the same method, are −8.3 for atorvastatin, −8.5
for rosuvastatin, −8.6 for fluvastatin, −7.6 for simvastatin, −7.6
for lovastatin, and −7.1 for pravastatin. The average docking
score for the three type-2 statins (first three) is −8.5, and the
average for the three type-1 statins is −7.4. The overall average
docking score for the six statins is−7.95, which is exactly what is
reported here for these data sets.
Figure 5 shows the six fragments searched for in the virtual

screening libraries. Table 2 shows the % of molecules in the
training data sets that contain each fragment (fragments not
included here are in the Supporting Information). The type-2
statin fragments are present in much larger proportions (50−
70%) compared to the type-1 fragments (10−15%), and so it
will be expected that the libraries generated from these data sets
will reflect this distribution. Finally, the percent of molecules
with a greater than 0.25 Tanimoto similarity to known statins is
also shown in Table 2 (statin similarities not included here are in
the Supporting Information). Again, there is a much larger
proportion of the type-2 statins (atorvastatin and rosuvastatin,
55−65%) compared to simvastatin, a type-1 statin (10−20%).
Pearson correlation coefficients were calculated for different

combinations of properties of the two training data sets. Note
that for these and all subsequent correlation analyses, the natural

log of the IC50 was used rather than the IC50, in order to make
the values more tractable. Pearson coefficients can vary from−1
to 1, indicating negative and positive correlation, and generally
values from 0 to ±0.3 are considered weaker correlations, values
from ±0.3 to ±0.5 are considered medium−strength correla-
tions, and values from ±0.5 to ±1 are considered stronger
correlations, though two-tailed t tests with 95% confidence (p =
0.05) were performed on the correlations to determine statistical
significance. If the calculated t-score is greater than the value
from the t-distribution table,33 then the correlation is significant,
i.e., the null hypothesis that correlation is zero is disproved. Both
data sets had weak/medium correlation between ln-IC50 and
docking score (0.24 and 0.26 for BDB905 and ChEMBL1081,
respectively) and slightly stronger correlation between docking
score and number of aromatic rings (−0.39 and −0.32). t tests
show that the ln-IC50/score correlations were statistically
significant, as were the score/aromatic ring correlations. Other
correlations were either very weak (docking score with QED) or
inconsistent between the data sets, though several of them had
statistically significant correlations. A comprehensive table of
correlations and t-scores is included in the Supporting
Information.

3.3. GPT Models for Producing Virtual Screening
Libraries: Training. Four transformer (or attention-based
decoder) models were pretrained on the 40,000 SMILES strings
in the ZN1540K data set. They were trained to reproduce the
input SMILES strings, or essentially, they were trained on the
language of SMILES strings for drug-like molecules. The
training results for these four models are shown in Table 3.
The pretrained blocks were optimized for 75 epochs, except for
the 2X pretrained blocks, whose loss stopped changing by 50
epochs. The trained weights for these models were then frozen
for the next step of the process. Note that the NoXmodel, which

Table 3. Number of Epochs and Losses (Sparse Categorical Cross-Entropy) for the GPT Models Pretrained on the ZN1540K
Data Set and the Fine-Tuned on the ChEMBL1081 Data Set

model pretraining blocks pretraining epochs pretraining loss blocks added fine-tuning epochs fine-tuning loss

NoX 3 75 0.0843 1 25 0.0792
1X 1 75 0.1311 3 150 0.0529
2X 2 50 0.0996 2 125 0.0696
3X 3 75 0.0843 1 100 0.1054
SO 0 4 50 0.0716

Table 4. Number of Molecules Generated by Each Model at T = 0.0 with Duplicates and Seeds Removeda

T = 0.0 molecules generated % after removing duplicates % after removing seeds % IC50 < 1000 nM %

NoX 5K12S 4466 89.32 2288 45.76 1966 39.32 147 2.94
5K9S 4558 91.16 1392 27.84 1237 24.74 80 1.6
5K6S 4688 93.76 469 9.38 436 8.72 33 0.66

3X 5K12S 3586 71.72 1767 35.34 1584 31.68 148 2.96
5K9S 3943 78.86 1122 22.44 1022 20.44 92 1.84
5K6S 4375 87.5 989 19.78 891 17.82 36 0.72

2X 5K12S 3349 66.98 1624 32.48 1457 29.14 146 2.92
5K9S 3634 72.68 1063 21.26 973 19.46 98 1.96
5K6S 4589 91.78 401 8.02 365 7.3 43 0.86

1X 5K12S 2837 56.74 1267 25.34 1110 22.2 102 2.04
5K9S 3316 66.32 867 17.34 781 15.62 69 1.38
5K6S 4227 84.54 358 7.16 324 6.48 31 0.62

SO 5K12S 1763 35.26 690 13.8 545 10.9 62 1.24
5K9S 2466 49.32 541 10.82 455 9.1 52 1.04
5K6S 4213 84.26 261 5.22 231 4.62 21 0.42

a% is relative to 5000. Model designations are explained in Sections 2.3 and 2.4.
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had all 4 transformer blocks trained on the ZN1540K data set
and had no fine-tuning applied, was optimized in two stages: 3
blocks were trained for 75 epochs, and then a fourth block was
added and trained while the pretrained weights were frozen. Also
note that the SO model had no pretraining. The other three
models then had one, two, or three extra blocks added, and the
new blocks were trained on the ChEMBL1081 data set while the
pretrained blocks had frozen weights. The 1X model, which has
3 blocks trained on the ChEMBL1081 data set, needed the most
epochs to reach loss-stability. As could be predicted, the 2X
model, with two blocks being trained on the ChEMBL1081 data
set needed fewer epochs, and the 3X model, with only 1 block
being fine-tuned, needed the fewest epochs of training. The SO
mode, which was training all four blocks on the ChEMBL1081
data set, needed only 50 epochs of training, owing to the fact that
it had much less data to fit to four full blocks worth of weights
(note that there are about 4.2 million parameters per block).
The final models reached similar losses, except 3X, which was a
bit higher. The 3Xmodel was retrained to ensure this was not an
error, and similar values were obtained the second time.

As proof-of-concept, the trained models were fed 1000
prompts with 12 seed tokens each to potentially generate 1000
molecule libraries. Those results are reported in the Supporting
Information.

3.4. GPT Models with Varying Numbers of Seed
Tokens and 5000 Prompts. Thirty new libraries were
generated by feeding 5000 prompts with either six, nine, or 12
seed tokens to the five models. Tables 4 and 5 show the numbers
of valid molecules generated (and percentages) for the T = 0.0
and T = 0.5 models. For a molecular generative model, a primary
question is: can they generate a robust library of molecules?
Table 4 shows the numbers of valid molecules generated by each
fully trained model at T = 0.0, along with how many were
duplicates and how many simply replicated the seed molecules.
As with the 1000 prompt proof-of-concept model (see
Supporting Information), the percentage of valid molecules
generated (out of 5000 prompts) decreased from the NoX
models to the SO models due to the models having fewer layers
trained on the ZN1540K data set. In every case, though, the
percentage of valid molecules increased when going from 12 to 9
to 6 seed tokens. This increase was modest for the NoX models

Table 5. Number of Molecules Generated by Each Model at T = 0.5 with Duplicates and Seeds Removeda

T = 0.5 molecules generated % after removing duplicates % after removing seeds % IC50 < 1000 nM %

NoX 5K12S 4220 84.4 3827 76.54 3497 69.94 288 5.76
5K9S 4306 86.12 3660 73.2 3447 68.94 284 5.68
5K6S 4414 88.28 3445 68.9 3321 66.42 326 6.52

3X 5K12S 3538 70.76 2272 45.44 2079 41.58 197 3.94
5K9S 3889 77.78 1733 34.66 1610 32.2 156 3.12
5K6S 4375 87.5 989 19.78 891 17.82 111 2.22

2X 5K12S 3379 67.58 2066 41.32 2005 40.1 197 3.94
5K9S 3686 73.72 1572 31.44 1458 29.16 155 3.1
5K6S 4426 88.52 989 19.78 904 18.08 139 2.78

1X 5K12S 2738 54.76 1550 31.00 1384 27.68 142 2.84
5K9S 3247 64.94 1359 27.18 1248 24.96 140 2.8
5K6S 4170 83.4 912 18.24 826 16.52 133 2.66

SO 5K12S 1588 31.76 809 16.18 655 13.1 77 1.54
5K9S 2373 47.46 790 15.8 690 13.8 92 1.84
5K6S 3797 75.94 656 13.12 581 11.62 98 1.96

a% is relative to 5000. Model designations are explained in Sections 2.3 and 2.4.

Table 6. Number of Molecules with IC50 under 1 μM That Overlap between Different Libraries, T = 0.0a

T = 0.0,
IC50 < 1000 nM NoX 3X 2X 1X SO

5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S

NoX 5K12S 147
5K9S 61 80
5K6S 24 26 33

3X 5K12S 0 0 0 148
5K9S 0 0 0 43 92
5K6S 0 0 0 9 18 36

2X 5K12S 0 0 0 29 13 5 146
5K9S 0 0 0 11 21 9 39 98
5K6S 0 0 0 6 11 16 11 24 43

1X 5K12S 0 0 0 19 8 1 25 11 2 102
5K9S 0 0 0 7 15 5 10 16 7 32 69
5K6S 0 0 0 1 6 10 2 6 11 8 15 31

SO 5K12S 0 0 0 18 10 2 23 9 4 21 8 2 62
5K9S 0 0 0 8 13 4 9 13 6 7 11 4 22 52
5K6S 0 0 0 2 5 6 3 7 8 0 3 6 4 10 21

aModel designations are explained in Sections 2.3 and 2.4.
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(about 4%). The percent validity increases from 89 to 94% for
the T = 0.0 libraries and from 84 to 88% for the T = 0.5 NoX
libraries with 12 tokens, showing that the percentage of valid
molecules can be increased with a smaller training data set by
varying prompt length rather than using a larger training library.
This increase was more dramatic for the SO models, going from
35 to 84% (T = 0.0) and from 32 to 76% (T = 0.5) valid
molecules by changing prompt length. This increase in stable
molecules generated can be attributed to the freedom the
models have to generate molecules when starting with a shorter
prompt: longer prompts can force a model to use a scaffold (or
partial scaffold) that is not necessarily compatible with the
learned patterns. A drawback, though, to the shortened prompts
is that more duplicate molecules are generated. Tables 4 and 5

show that while about half of valid, generated molecules are
duplicates for the 12 seed token models, up to 90% of valid,
generated molecules are duplicates in the 6 seed token models at
T = 0.0. For the 6 seed token, T = 0.5 models, though, the
number is a slightly smaller ∼75%. Finally, when the seed
molecules are removed from the libraries (the molecules from
which the seed tokens were drawn), the number of molecules
decreases more modestly, with∼10% being seed molecules. The
molecules with predicted IC50 values below 1 μm are then
selected for the “docking” subset libraries, leaving only 1−3% of
the original 5000 molecules for the T = 0.0 libraries and 2−7%
for the T = 0.5 libraries, showing that overall the higher
temperature models end up producing more desirable
molecules. It should be noted that while the models with no

Table 7. Number of Molecules with IC50 under 1 μM That Overlap between Different Libraries, T = 0.5a

T = 0.5,
IC50 < 1000 nM NoX 3X 2X 1X SO

5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S 5K 12S 5K 9S 5K 6S

NoX 5K12S 288
5K9S 41 284
5K6S 46 56 326

3X 5K12S 0 0 0 197
5K9S 0 0 0 44 156
5K6S 0 0 0 29 42 111

2X 5K12S 0 0 0 22 18 22 197
5K9S 0 0 0 18 27 23 41 155
5K6S 0 0 0 22 29 51 39 49 139

1X 5K12S 0 0 0 27 20 17 24 19 21 142
5K9S 0 0 0 16 30 24 21 28 29 34 140
5K6S 0 0 0 15 27 43 19 26 50 30 50 133

SO 5K12S 0 0 0 28 20 16 21 21 20 23 16 13 77
5K9S 0 0 0 21 28 26 20 31 30 20 22 22 30 92
5K6S 0 0 0 14 21 34 17 25 38 13 17 34 20 31 98

aModel designations are explained in Sections 2.3 and 2.4.

Table 8. Average Properties of the Docking Subset of the 5 K, T = 0.5 Libraries Generated by Each Modela

T = 0.5,
IC50 < 1000 nM IC50 (nM) QED score (kcal/mol) % similar pairs % fluoro-phenyl % decalin % similar simvastatin % similar atorvastatin

NoX 5K12S 384 0.29 −7.92 2.00 5.00 2.08 1.04 29
5K9S 398 0.30 −7.75 3.00 4.00 1.41 0.35 18
5K6S 397 0.29 −7.80 3.00 6.00 2.45 1.23 30

393 0.29 −7.82 2.67 5.00 1.98 0.87 25.39
3X 5K12S 324 0.41 −7.58 62.00 16.00 11.17 28.93 10.08

5K9S 281 0.41 −7.59 61.00 13.00 12.82 33.33 13.80
5K6S 195 0.38 −7.76 58.00 5.00 9.91 44.14 22.31

267 0.40 −7.64 60.33 11.33 11.30 35.47 15.40
2X 5K12S 243 0.39 −7.70 65.00 15.00 11.68 30.96 11.72

5K9S 254 0.38 −7.67 56.00 14.00 10.97 30.32 12.75
5K6S 195 0.40 −7.69 65.00 15.00 10.79 40.29 19.88

231 0.39 −7.69 62.00 14.67 11.14 33.86 14.78
1X 5K12S 250 0.39 −7.60 45.00 12.00 11.97 33.10 12.23

5K9S 243 0.39 −7.62 57.00 10.00 10.71 40.71 18.08
5K6S 195 0.40 −7.64 70.00 12.00 11.28 45.11 24.42

229 0.39 −7.62 57.33 11.33 11.32 39.64 18.24
SO 5K12S 248 0.42 −7.44 25.00 13.00 16.88 31.17 14.80

5K9S 232 0.41 −7.50 33.00 13.00 15.22 35.87 15.29
5K6S 129 0.41 −7.77 54.00 12.00 14.29 53.06 32.11

203 0.41 −7.57 37.33 12.67 15.46 40.03 20.73
aPercent of library molecules with a given fragment, and percent of library molecules with Tanimoto similarity to known statins of 0.25 or greater.
Bold italic rows show an average of the three models above them. Model designations are explained in Sections 2.3 and 2.4.
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fine-tuning (NoX) generate more molecules with submicromo-
lar IC50 values, these sets have a higher average IC50 than the
fine-tuned models (Table 8), meaning their values are clustered
closer to 1 μM rather than 1 nM.
The 30 libraries in Tables 4 and 5 comprise 3695 total

generated molecules with IC50 under 1 μm; 1160 of these were
generated by the T = 0.0 models, and 2535 were generated by
theT = 0.5models. Of the 3695molecules, there are 2183 unique
molecules (59%), meaning that they exist in only one of the 30
libraries and are not duplicated in any of the other 29 libraries.
Tables 6 and 7 show the number of molecules that are
duplicated between each library. For both T = 0.0 and 0.5, the
libraries generated with no transfer learning (NoX) have no
overlap with any of the transfer-learning libraries or with the SO
libraries. This indicates that the transfer learning with only
∼1000 molecules was sufficient to change the models
significantly from the base model. For the T = 0.0 libraries,
the largest overlap with other model/libraries (i.e., 3X models
with 2X, 1X, SO models, etc.) is always with libraries with the
same number of seed tokens, i.e., three X5K9S has its largest
overlap with 2X5K9S, 1X5K9S, etc. This reiterates the fact that
allowing the models to freely generate from a lower number of
seeds leads tomore duplication. The secondmost overlap comes
from the next-closest, highest library. For example, for 3X5K9S,
the greatest overlap with a 2X library is with 2X5K9S, but the
second greatest overlap is with 2X5K12S, and the least overlap is
with the 2X5K6S library.
The results for the T = 0.5 libraries in Table 7 show different

behaviors from the T = 0.0 libraries. Not only do the T = 0.05
libraries produce more viable, submicromolar molecules than
the T = 0.0 libraries, they also have less consistent overlap
patterns. The largest overlap is not always with a library with the
same number of seed tokens (see 2X5K6S overlapping with the
SO libraries, for example). This is attributable to the less
deterministic nature of the T = 0.5 generation process.

As the T = 0.5 models have been shown to produce more
robust libraries than theT = 0.0 models, only data for the T = 0.5
libraries will be shown here. The T = 0.0 information can be
found in the Supporting Information. Table 8 shows the average
properties for the 15 T = 0.5 5 K libraries (more properties are
available in the Supporting Information). The average IC50
values for these libraries generally reflect the trends in the 1 K
libraries (Supporting Information), except that in the 5 K
libraries, the IC50 values decrease monotonically with
decreasing number of pretrained layers, with the SO5K6S T =
0.05 library having a very low 129 nM average IC50 (due to a
more statistically significant sample). These data clearly show
that less-pretrained layers lead to more statin-like molecules.
The NoX libraries have IC50 averages 60−100 nM higher than
any fine-tuned library. The 5 K libraries also have a fairly
consistent QED value of 0.39/0.40 (agreeing with the
ChEMBL1081 training set’s value of 0.39), while the 1 K
libraries varied between 0.4 and 0.45. This is most likely due to
the 5 K libraries sampling a larger portion of the chemical space
than the 1 K libraries. Average molecular weights also agree with
the 1 K libraries, with values between about 475 and 485 g/mol.
The averageA log P values for the 5 K libraries are lower than the
1 K libraries in all cases, and molecular weights are slightly
higher, which may explain the fact that docking scores are
slightly lower for the 5 K libraries as well, since docking scores
tend to favor larger molecular weights.26 All docking scores are
between the averages for type-1 and type-2 statins found in this
work (−8.5 and −7.4 kcal/mol, respectively). Numbers of
rotatable bonds are also slightly higher, again likely owing to
larger molecular weights as well. In all cases, the T = 0.5 libraries
have a higher percentage of similar pairs, though in the T = 0.0
libraries, the ones with more seed tokens have a larger percent
similar pairs, and for T = 0.5, the ones with fewer seed-tokens
have a larger percent similar pairs. Overall, between the T = 0.0
and T = 0.5 libraries, most properties are similar, but the T = 0.5
libraries have lower average IC50 values for all models. Further,

Table 9. Pearson Correlation Coefficients for Various Properties of the Docking Subset of the 5 K Libraries Generated by Each
Model at T = 0.5a

T = 0.5, IC50 < 1000 nM ρ(ln-IC50/score) ρ(ln-IC50/QED) ρ(ln-IC50/ALogP) ρ(score/QED) ρ(score/rings)

NoX 5K12S 0.02 0.14 −0.16 0.31 −0.59
5K9S 0.00 0.13 −0.27 0.31 −0.60
5K6S 0.04 0.04 −0.22 0.40 −0.68

0.02 0.10 −0.22 0.34 −0.62
3X 5K12S 0.34 0.14 −0.17 0.09 −0.44

5K9S 0.40 0.13 −0.29 0.00 −0.40
5K6S 0.56 0.29 −0.39 0.12 −0.64

0.43 0.19 −0.28 0.07 −0.49
2X 5K12S 0.22 0.15 −0.17 0.16 −0.34

5K9S 0.38 0.14 −0.25 0.17 −0.39
5K6S 0.61 0.22 −0.27 0.21 −0.64

0.40 0.17 −0.23 0.18 −0.46
1X 5K12S 0.32 0.23 −0.06 0.15 −0.50

5K9S 0.54 0.25 −0.27 0.12 −0.63
5K6S 0.66 0.35 −0.31 0.17 −0.73

0.51 0.28 −0.21 0.15 −0.62
SO 5K12S 0.47 −0.01 −0.17 0.08 −0.60

5K9S 0.45 0.18 −0.20 0.19 −0.53
5K6S 0.55 0.14 −0.35 0.22 −0.71

0.49 0.10 −0.24 0.16 −0.61
aScore = docking score; rings = number of aromatic rings. Bold italic rows show an average of the three models above them. All statistically
significant correlations are underlined. Model designations are explained in Sections 2.3 and 2.4.
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in the T = 0.5 libraries, the IC50 decreases with decreasing
prompt length in every model except the NoX model, which has
nearly constant, much higher IC50 values for all prompt lengths,
suggesting that the lack-of fine-tuning is expressed more in
higher temperatures. The T = 0.5 models also generate more
unique, submicromolar molecules, and so the higher temper-
ature option appears more favorable.
Table 8 shows the percentage of each T = 0.5 library that

contains the four fragments common in HMGCR inhibitors
(fragments not included here are in the Supporting
Information). The percentages for all libraries are generally
higher than what was found for the 1 K libraries, with the NoX
model producing 3−13% ofmolecules containing the fragments.
These percentages increase considerably in all of the transfer-
learning libraries for the atorvastatin pharmacophore, from∼2%
in the T = 0.0 NoX libraries to 30−35% in the T = 0.0 transfer-
learning libraries. The T = 0.5 libraries start with a higher
percentage of this fragment (11%) but the transfer-learning
libraries increase to 40−54%. Fluorophenyl also starts with a low
percentage in the NoX libraries (1−3% for T = 0.0 and 0.5) and
increases to 40−60% with transfer learning. The butyryl
fragment starts with about 4% in the T = 0.0 NoX libraries,
increases modestly to 6−9% with transfer learning, and starts
with 13% in the T = 0.5 NoX library and decreases for all
transfer-learning libraries. The decalin fragment start with 0 and
5% in the T = 0.0 and T = 0.5 NoX libraries and increases to 10−
20% with transfer learning. Type-2 statin-like molecule frag-
ments are clearly present in larger fractions than the type-1
statin-like molecule fragments. This is further reflected in the
percent Tanimoto similarity to statins, also shown in Table 8
(statin similarities not included here are in the Supporting
Information). The NoX libraries have very little similarity to the
statins at 0−2%, while the transfer learning libraries have 10−
20% similarity to simvastatin (type-1) and 30−40% similarity to
atorvastatin and rosuvastatin (type-2 statins).
Table 9 shows Pearson correlation coefficients for several

properties of the 5 K libraries at T = 0.5. The higher temperature
model has proven to generate more robust libraries, and so it is
the focus of this discussion, but the same information for T = 0.0
can be found in the Supporting Information. For the 3X-, 2X-,
and 1X-based libraries, the ln-IC50/docking score correlation
always increases monotonically with decreasing numbers of seed
tokens, going from moderate correlation with 12S to strong
correlation with 6S. This indicates the 6S models are better able
to generate viable HGMCR inhibitors than the 9S and 12S
models. TheNoX libraries have inconsistent correlations for this
pair of properties, and the SO libraries show moderate

correlations that fluctuate between 0.40 and 0.50. t tests showed
that the ln-IC50/score correlation was statistically significant in
almost every instance for the transfer-learning libraries, although
not for the NoX-based libraries. The only other property pair
shown here that has consistent correlation is docking score with
the number of aromatic rings, which is supported by t tests that
show these correlations are statistically significant. This is a
moderate-to-strong inverse correlation that almost always
increases with decreasing number of seed tokens. More
correlations and t-test outcomes are shown in the Supporting
Information, including correlations between ln-IC50 and
atorvastatin similarity and docking score and atorvastatin
similarity, both of which have a medium-to-strong correlation
and are statistically significant.

3.5. Cluster Analysis of Molecules Generated in the 5 K
Libraries. In order to analyze the chemical space sampled by the
2183 unique molecules with submicromolar IC50 values, they
were separated into 10 clusters using k-means cluster analysis in
SciKitLearn.17 RDKit descriptors were used as features for the
cluster analysis, and 3, 5, and 10 cluster groups were tested, with
10 resulting in the most meaningful groupings. Mordred
descriptors were also tested as features for clustering with 5
and 10 cluster groups, but this did not result in a satisfactory
classification. A set of six known statins was then classified into
the existing 10 clusters. Table 10 shows some properties for the
10 cluster groups as well as the known statins in each group or, if
the group does not have a representative statin, the general class
of molecules to which the group is most similar.
Groups 4, 5, and 9 have a lower mean IC50 value than the

other groups, but because these molecules were classified into
clusters via an unsupervised learning method, the mean can be
susceptible to outliers. Thus, the median value may be more
informative. Groups 4, 5, and 9 do have considerably lower
median IC50 values than the other groups, with group 5 having
the lowest value, but the median values show that group 3 is also
below the other groups. Groups 0, 1, 4, 5, 8, and 9 have lower
docking scores than the other groups (−7.5 to −8 kcal/mol),
but groups 0, 1, and 8 have high median and mean IC50 values.
Thus, from this analysis, it can be concluded that groups 4, 5, and
9 are the best candidates for HMGCR inhibitors, and indeed,
when the known statins are classified into the cluster groups, the
three type-2 statins are in groups 4, 5, and 9. All three type-1
statins fall into group 3, which also has a lower IC50 value. The
relative IC50 and docking score values for these groups make
sense, as the type-2 statins are generally more potent than type-1
statins, and rosuvastatin (group 5) is the most potent statin.

Table 10. Properties of the 10 Groups Found by Classifying the 2183 Unique Submicromolar Molecules Found via the GPT
Modelsa

number of molecules mean IC50 (nM) median IC50 (nM) mean score (kcal/mol) mean QED known statin or related class

group 0 340 352 296 −7.56 0.15 flavonoids
group 1 236 432 432 −7.40 0.50 steroids
group 2 254 469 457 −6.52 0.53 miscellaneous
group 3 403 289 149 −6.84 0.40 Simvastatin, Lovastatin, Pravastatin
group 4 307 143 19 −7.51 0.45 Fluvastatin
group 5 58 154 9 −7.98 0.34 Rosuvastatin
group 6 74 274 215 −6.39 0.17 polyalkenes/terpenoid
group 7 129 382 289 −6.17 0.10 oligopeptides
group 8 228 470 402 −7.71 0.34 flavonoid/quinolone
group 9 154 105 13 −7.53 0.23 Atorvastatin

aThe last column lists known statins classified into each group or the general class of molecules the group most resembles.
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When the 30 libraries are classified into these groups
individually, the breakdown of what types of molecules comprise
each library can be seen. The Supporting Information shows
exact counts for molecules in each group for every library, and
Figure 6 shows the % of molecules for each transfer-learning
approach in each group for T = 0.5. The values in Figure 6 are
averaged over prompt length, since they do not vary greatly or
consistently for the 6, 9, and 12 token prompts. It can be seen
that the NoX libraries have the most molecules in group 0, with
high percentages in groups 1 and 2, and the second highest peak
in group 8. None of these groups are statin-like, and in fact,
almost half of the NoX libraries are flavonoid-like. By contrast,
all of the libraries with transfer learning have their peaks in
groups 3, 4, and 9: all statin-like groups. In general, all of the
transfer-learning libraries have similar behavior, which is distinct
from the NoX libraries. Interestingly, the transfer-learning
libraries have relatively low percentages for the rosuvastatin-like
group (3−6%, group 5), but the NoX libraries have only 1% for
group 5, so the transfer learning does have an effect on that
group. The same figures for the T = 0.0 libraries are presented in
the Supporting Information and largely follow the same patterns.
Two-tailed t tests with 95% confidence (p = 0.05) were

performed to assess whether the groups could be deemed
independent of each other based on the mean IC50 values and
the standard deviations. Group 3 (type-1) is independent of
groups 4, 5, and 9 (all type-2), but groups 4, 5, and 9 were shown
to not be statistically different. This makes sense as all three
groups represent type-2 statins. Interestingly, group 6 was shown
to be statistically the same as group 3, despite having a
considerably lower mean IC50 and docking score. Groups 1, 2,
and 8 were shown to be statistically similar as were groups 0 and
7. There are 307, 58, and 154 molecules in groups 4, 5, and 9,
meaning there are about 519 potential type-2 statin molecules in
the libraries, and there are 403 molecules in group 3, meaning
there are about 403 potential type-1 statins in the libraries. This
means that about 24% of the total unique molecules are type-2
statin-like molecules and about 18% are type-1 statin-like
molecules, so overall 42% of the generated molecules have
potential to be good HMGCR inhibitors and statin-like.
Figure 7 shows a representative molecule from each statin-

containing group (groups 3, 4, 5, and 9) with the lowest IC50
values, while Figure 8 shows a representative molecule from each
of the other groups. It is clear why the known statins (Figure 9)
were classified into each group.Many group 3molecules contain

the decalin and the butyryl group characteristics of type-1
statins, while some have the atorvastatin pharmacophore (3,5-
dihydroxypentanoic acid) and others have the simvastatin
pharmacophore (4-hydroxytetrahydro-2H-pyran-2-one). Mole-
cules from groups 4, 5, and 9 almost always contain a
fluorophenyl group, indicative of type-2 statins. Group 4 is
distinguished by having a carbon−carbon double bond either
adjacent to or in close proximity to the pharmacophore (usually
3,5-dihydroxypentanoic acid); group 5 is distinguished by
almost always having a methyl sulfonamide group; and group 9
has the 3,5-dihydroxypentanoic acid pharmacophore connected
to a pyrrole group.
It can be seen in Figure 8 that groups 3 and 6 are not

structurally similar, despite the t-test showing that their IC50
values are statistically similar. Group 6 is distinguished by long
conjugated chains (polyalkenes) not present in group 3. Groups
0 and 8 do appear structurally similar (both are flavonoid-like),
though the t-test showed them to be statistically different; group
8 could be classed as quinolone derivatives. Groups 0 and 7 were
shown to be statistically similar, and structurally they both
contain molecules with many polar groups, but group 7
molecules are primarily oligopeptide-like and group 0 molecules
are flavonoids. Groups 1, 2, and 8 were shown to be statistically
similar, but structurally, group 1 is steroid-like, group 8 is
flavonoid/quinolone-like, and group 2 molecules appear to be a
grouping of various “polar” molecules. Overall, the cluster
analysis, supported by Table 10 and Figures 7 and 8, shows that
the GPT model does sample a wide variety of chemical spaces.
While 42% of molecules are at least somewhat “statin-like”,
molecules with submicromolar IC50 values are found from the
flavonoid, terpenoid, steroid, quinolone, oligopeptide families,
and 254 molecules (∼12%) miscellaneous/unclassifiable
molecules were also found to have submicromolar potency.

3.6. Docking Poses for Selected Molecules. Docking
poses for the molecules from groups 3, 4, 5, and 9 (the statin-like
groups) with the lowest IC50 values are shown in Figure 10. In
all cases, the pharmacophore forms hydrogen, ion-dipole, or
ion−ion bonds with Lys672 and Asp 671 as the natural substrate
HMG-Coenzyme A does. However, while the molecule groups
3, 5, and 9 form hydrogen bonds with Asn315 and Glu119, the
molecule from group 4 only forms a bond with Asn315, and it
appears strained. The group 4 molecule also sits in the active site
differently, with the bulk of the molecule pointed out of the
binding site, while the groups 3, 5, and 9 molecules sit more

Figure 6.Average percentage of molecules in each k-means cluster group for each of the screening libraries with T = 0.5 (averaged over prompt length;
the same table for T = 0.0 can be found in the Supporting Information).
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tightly in the whole active site. This may influence the fact that
group 4 has a higher median IC50 value and a higher docking
score than the other type-2 groups. Docking poses for the top
molecules from the other six groups as well as poses for six
known statins are available in the Supporting Information.

3.7. Synthetic Accessibility Score. The final set of 2183
unique submicromolar molecules was assessed for ease of
synthesis using the SAS32 implemented in RDKit. In this scoring
scheme, a value of 1 indicates relatively simple estimated
synthesis, and a value of 10 indicates a very difficult/impossible
synthesis. Figure 11 shows the histogram of SAS values for the
set classified into 50 bins. The distribution is roughly Gaussian,
with a mean of 4.4, a median of 4.4, and a standard deviation of
0.9. For comparison, the set of six statins, including atorvastatin,

rosuvastatin, fluvastatin, simvastatin, lovastatin, and pravastatin
has an average SAS of 4.0, with the highest value belonging to
simvastatin at 4.7 (although in practice, this statin is only a
synthetic modification of a natural product,34 so the true
synthetic ease of making simvastatin is likely lower), and the
lowest belonging to atorvastatin and fluvastatin at 3.3. There is
no correlation between SASs and predicted IC50 values,
meaning that potent molecules are no more difficult or easy to
synthesize than less potent molecules (Figure 11).

4. CONCLUSIONS
It has been shown that pretraining of transformer-decoder-based
ML models and fine-tuning/transfer learning can be good
strategies for creating libraries of molecules for virtual screening

Figure 7. Representative molecules from the 3 k-means clusters associated with known statins. Molecule shown has the lowest IC50 value in each
group.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01309
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

M

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c01309/suppl_file/ci4c01309_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01309?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01309?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01309?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c01309?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01309?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 8. Representative molecules from groups 0, 1, 2, 6, 7, and 8 with the lowest IC50 values.

Figure 9. Structures of six known statins.
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for activity for a particular enzyme. Having more pretrained
layers in the generative model leads to more stable models and
produces a higher percentage of valid molecules, but having
more fine-tuned layers in the model leads to molecules more
suited to the enzyme (lower IC50 values and presence of more
desired moieties). The percentage of valid molecules can also be
increased by varying the prompt length, with the increase as
large as 50% of the total (from 35 to 85% of valid molecules by
decreasing prompt length). Correlation analysis shows that the
best correlation between predicted ln-IC50 values and docking
scores is produced by the 1X models, which have one pretrained
layer and 3 fine-tuned layers. This implies that the best behavior
for themodels may require a baseline of general learning but that
the bulk of the model can be fine-tuned. Shorter prompt lengths
also result in better ln-IC50/docking correlations in all cases but
one.

The higher temperature model produces more “refined”
molecules and more submicromolar molecules. The higher
temperature model also produces a higher proportion of
molecules with the desired fragments and produces molecules
with higher Tanimoto similarity to known statins. At the higher
temperature, the smallest prompt length (6 seed tokens)
produces molecules with the lowest average IC50 values, the
lowest average docking score (with one exception), the strongest
correlation between predicted IC50 and docking score, the
highest proportions of desired fragments, and the highest
proportions of molecules similar to known statins. Thus, the 1X
model with 6 seed tokens at T = 0.5 is recommended as the best
model to generate libraries for virtual screening. K-means
clustering using RDKit descriptors was also effective at
separating the generated molecules into the different types of
statin as well as other molecule classes, allowing an easy method
of choosing the most promising candidates for further testing.

Figure 10. Lowest energy docking poses in HMGCR for the molecules from groups 3, 4, 5, and 9 with the lowest predicted IC50 values.

Figure 11. (left) Distribution of the SAS for the set of 2183 unique submicromolar molecules generated by all libraries and (right) SAS versus
predicted IC50 values (nM) for the same molecule set.
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Reading. All work was completed with freely available software,
and data can be accessed with freely available software: Python
and all libraries can be accessed with Anaconda (https://www.
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The following data is provided as Supporting Information
for this article, as well as in the data repository at the
University of Reading: raw data tables for the properties of
the “docking” libraries shown here as well as some
properties for the larger “refined” libraries. Further
properties are shown, including additional fragment
analysis, similarity analysis, and more correlations, as
well as results of t tests for statistical significance (XLSX)
Analysis of 1K libraries, including information on
molecules generated, properties, and correlations (PDF)
CSV files of all generated libraries are provided, along with
a TKinter-based GUI for exploring the libraries. Docking
poses for molecules from each cluster group with the
lowest IC50 value are provided, as well as poses for six
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