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Abstract: Carbon dioxide is one of the most influential greenhouse gases affecting human life. CO2

data can be obtained through three methods: ground-based, airborne, and satellite-based observa-
tions. However, ground-based monitoring is typically composed of sparsely distributed stations,
while airborne monitoring has limited coverage and spatial resolution; they cannot fully reflect
the spatiotemporal distribution of CO2. Satellite remote sensing plays a crucial role in monitoring
the global distribution of atmospheric CO2, offering high observation accuracy and wide coverage.
However, satellite remote sensing still faces spatiotemporal constraints, such as interference from
clouds (or aerosols) and limitations from satellite orbits, which can lead to significant data loss.
Therefore, the reconstruction of satellite-based CO2 data becomes particularly important. This article
summarizes methods for the reconstruction of satellite-based CO2 data, including interpolation, data
fusion, and super-resolution reconstruction techniques, and their advantages and disadvantages, it
also provides a comprehensive overview of the classification and applications of super-resolution
reconstruction techniques. Finally, the article offers future perspectives, suggesting that ideas like
image super-resolution reconstruction represent the future trend in the field of satellite-based CO2

data reconstruction.

Keywords: carbon dioxide; interpolation; data fusion; super-resolution reconstruction

1. Introduction

Climate change is one of the most significant challenges for the planet’s future [1–3].
It has enormous ecological, social, and economic impacts across the globe, including an
increase in extreme weather events, rising sea levels, melting glaciers, reduced biodiversity,
and food security. Carbon dioxide (CO2) is one of the greenhouse gases with the most
significant impact on human life [4–6]. Continuing increases in CO2 concentrations will
significantly accelerate temperature rise [7–9]. The Earth’s annual carbon emissions have
exceeded its natural absorptive capacity, resulting in rising atmospheric CO2 concentra-
tions [10,11]. Over the past few decades, as the global economy and population have grown,
human activities have led to a steady rise in CO2 emissions, which are still increasing at
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a rate of more than 2 ppm/yr (ppm: parts per million, yr: year) [12]. If uncontrolled, the
global average CO2 concentrations are projected to exceed 415 ppmv (parts per million by
volume, meaning 415 volume units of CO2 per one million volume units of air) by 2030,
contributing to more extreme weather events.

In response to climate change, governments have set policies and targets for green-
house gas emissions reductions to keep CO2 levels at specific levels [13]. On 12 December
2015, 197 countries joined the Paris Agreement, which aimed to keep global temperatures
below 2 ◦C [14,15]. In September 2018, the United Nations Framework Convention on
Climate Change convened in Katowice, Poland. The conference aimed to develop rules and
guidelines for implementing the Paris Agreement and accelerate global action to reduce
emissions to meet the challenge of climate change [16]. To effectively control and reduce
CO2 emissions and achieve the double carbon target, carbon monitoring is first needed
to understand the characteristics and trends of the spatial and temporal distributions of
atmospheric CO2. However, the spatial distribution of CO2 is not uniform and is closely
related to human activities. Therefore, obtaining accurate CO2 monitoring data is essential
for understanding the spatial and temporal distribution characteristics of CO2.

Satellite carbon dioxide data reconstruction uses satellite observation data and an-
cillary data to infer and estimate the spatial distribution and spatial–temporal variations
in CO2 in the Earth’s atmosphere through data processing and analysis methods. The
method makes up for the shortcomings of satellite observation, improves the precision and
coverage of observation, and supports CO2 concentration data on a global scale.

Currently, there are three main ways to monitor CO2: ground based, airborne, and
satellite based.

Ground-based monitoring is one of the critical methods for obtaining the spatial and
temporal distributions of CO2 and is one of the older means of CO2 monitoring. In this
method, the carbon dioxide concentration is monitored in real-time by ground stations
or towers, such as the National Oceanic and Atmospheric Administration—Earth System
Research Laboratory (NOAA-ESRL) [17] and the Total Column Carbon Observing Network
(TCCON) [18]. This method has the advantage of high accuracy and high temporal resolu-
tion and therefore is often analyzed in comparison with results from satellite data inversion.
However, the global ground-based monitoring network consists of sparsely distributed
stations with limited coverage, low spatial resolution, and no real-time capability, so it
cannot fully reflect the spatial and temporal distributions of CO2 [19]. Therefore, in the late
1970s, airborne monitoring methods were introduced.

Airborne monitoring is a method of monitoring the CO2 concentration in the Earth’s
atmosphere in real-time [20–22]. Airborne refers to meteorological observations conducted
from platforms that are flying or floating in the air. This method has the advantages
of global coverage, high spatial and temporal resolution, long-term observation, and
uncrewed operation. It helps to understand climate and environmental change trends.
However, technical challenges, atmospheric disturbances, and calibration verification are
disadvantages that must be overcome to ensure data accuracy and validity.

Satellite-based monitoring is a real-time or continuous monitoring of the CO2 concen-
tration in the Earth’s atmosphere by launching a dedicated satellite in space and utilizing
high-resolution remote sensing technology [23–25]. Satellite monitoring has the advantages
of being free from time and space constraints, comprehensive coverage, stable observation,
long-term time series, and three-dimensional observation, and its observation accuracy is
gradually improving [26]. However, it costs the most and is limited by shortcomings such
as technical complexity, data processing challenges, and weather impacts, which need to be
addressed to maximize its monitoring potential.

With the launching of more and more carbon satellites, the work of validating a large
amount of CO2 data has gradually begun. At present, scholars mainly validate the accuracy
of CO2 products inverted by different satellites by combining real-time ground station data,
aircraft route measurement data, and model simulation data [27,28]. However, due to the
limitations of the validation methods, the calibration of satellite CO2 data usually focuses
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only on evaluating the data accuracy and the study of the temporal variation characteristics
of the errors, neglecting the characterization of the spatial distribution of the errors. In
addition, due to the existence of aerosols and the limitation of satellite orbit, there are a lot
of data missing in the process of satellite inversion, so the reconstruction of satellite CO2
data becomes particularly important [29].

To deeply discuss strategies for addressing uncertainties and errors in carbon satellite
data reconstruction, a comprehensive approach encompassing data processing, model
validation, and error correction is essential. Firstly, optimizing data calibration and noise
reduction techniques can enhance the quality of the raw observational data. Secondly,
improving retrieval algorithms, such as through multi-model validation and error propaga-
tion analysis, can increase the processing accuracy. Additionally, integrating multi-source
data and analyzing temporal sequences can enhance the spatial and temporal coverage of
observations, mitigating the impact of data gaps. Concurrently, combining ground vali-
dation and simulation experiments for model calibration ensures result reliability. Finally,
quantifying uncertainties through sensitivity analysis and statistical methods provides
confidence intervals for the data results. These measures collectively reduce uncertainties
and errors in the reconstruction process, thereby improving the accuracy and utility of
CO2 data.

In the field of carbon remote sensing, many researchers and scholars have summarized
the work of the time and published excellent review papers.

In 2015, Schimel et al. [30] assessed the current development of terrestrial ecosystems
and the carbon cycle through satellite observations. They presented the available satellite
remote sensing data products such as vegetation index, surface temperature, chlorophyll
fluorescence, land surface elevation, and their limitations. In addition, the article discusses
the applications of satellite remote sensing technology in monitoring the carbon cycle
and climate change and predicts future trends in satellite remote sensing technology and
data products. Those trends include improving data resolution and accuracy, enhancing
the real-time and spatial and temporal coverage of data, developing technologies such
as multi-source data fusion and machine learning, and strengthening the integration of
satellite observations with ground-based observations and model simulations to better
understand the dynamics of terrestrial ecosystems.

In 2016, Yue et al. [31] synthesized the latest research results and development trends
of space and ground-based CO2 concentration measurement technologies, outlining the
research progress of CO2 inversion algorithms, spatial interpolation methods, and ground-
based observation data. In addition, they elaborated on the latest research results of CO2
concentration measurement techniques and the application of these techniques in global
climate change and carbon cycle research and looked forward to future research directions.

In 2019, Xiao et al. [32] provided an overview of the terrestrial carbon cycle and carbon
fluxes. They outlined critical milestones in the remote sensing of the terrestrial carbon cycle
and synthesized the platforms/sensors, methods, research results, and challenges faced in
the remote sensing of carbon fluxes. In addition, they explored the uncertainty and validity
of carbon flux and stock estimates and provided an outlook on future research directions
for the remote sensing of the terrestrial carbon cycle.

In 2021, Pan et al. [33] assessed the ability of CO2 satellites to serve as an objective,
independent, and potentially low-cost and external data source while comparing the
significance of nighttime optical satellite data for proxy CO2 monitoring to distinguish the
importance of direct CO2 satellite monitoring.

In 2022, Kerimov et al. [34] reviewed the application of machine learning models to
greenhouse gas emissions estimation and modeling. They provided an overview of the
methodology for applying machine learning in greenhouse gas emissions estimation and
the main challenges faced.

As mentioned above, several past reviews have focused on CO2 monitoring, the
carbon cycle, and carbon emissions. Although these reviews have covered the outlook of
mapping the spatial and temporal distributions of CO2, they still lack content on CO2 data
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reconstruction methods. Therefore, a study focusing on satellite CO2 data reconstruction
methods is urgently needed to help researchers interested in this field understand the latest
developments in satellite CO2 data reconstruction.

This paper takes interpolation, data fusion, and super-resolution reconstruction as
the main topics, systematically combs the satellite CO2 data reconstruction methods, and
constructs high-resolution and high-precision CO2 data so that the readers can quickly
understand the research hotspots of CO2 spatial and temporal distributions.

The contributions of this paper include the following:
(1) This paper provides a comprehensive review of CO2 monitoring methods and

data sources.
(2) This paper describes in detail the comparative analysis of satellite CO2 data recon-

struction methods on the basis of limited CO2 measurement data, with interpolation, data
fusion, and super-resolution reconstruction as horizontal tasks, and traditional methods
and machine/deep learning methods as vertical tasks. Combining these two types of
analyses allows for a comprehensive evaluation and comparison of different CO2 data
reconstruction methods. To the knowledge of the authors of this paper, this is the first
review of CO2 reconstruction methods.

(3) This paper proposes the future development direction of satellite CO2 data recon-
struction, namely, CO2 data with a longer period, a larger spatial range, a higher spatial
resolution, and higher data accuracy can be obtained by super-resolution reconstruction
and other methods.

This paper is divided into four main parts. As shown in Figure 1, the first part
primarily introduces the research background and the necessity of reconstructing CO2 data.
Through a summary of previous reviews, it also summarizes the innovative aspects and
major contributions of this review. The second part discusses the monitoring methods
for CO2 and the sources of data. In this part, Citespace, a tool for visualization and
analysis of scientific literature, is used to visualize the development trend and research
focus in this field. The third part delves into the specific applications of interpolation
and data fusion methods in the reconstruction of CO2 data to achieve high-precision CO2
data reconstruction. The fourth part provides an in-depth exploration of super-resolution
reconstruction methods and offers suggestions for the future development of carbon dioxide
data reconstruction. The authors of this paper believe that this review will serve as an
important reference for the reconstruction of satellite-based CO2 data.

Figure 1. Schematic diagram of the structure of this paper.
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2. Data Sources and Analysis in the Field
2.1. Data Sources
2.1.1. Ground-Based Monitoring

Ground-based monitoring is an essential method for obtaining the spatial and tempo-
ral distributions of CO2. Major ground-based CO2 monitoring networks include WDCGG
(World Data Centre for Greenhouse Gases), GLOBALVIEW-CO2, NOAA-ESRL, COCCON,
and TCCON.

WDCGG, established by the World Meteorological Organization, focuses on the global
collection, storage, and sharing of greenhouse gas data. The WDCGG dataset includes
information from multiple sources: on one hand, it contains a substantial amount of in
situ measurement data from ground-based observation stations, which directly measure
atmospheric CO2 concentrations at the ground level; on the other hand, WDCGG also
integrates remote sensing data from satellite instruments, which measure atmospheric
CO2 concentrations above the ground stations. This integration of remote sensing data
complements ground-based observations by capturing a broader spatial distribution and
the vertical profiles of atmospheric CO2 concentrations.

GLOBALVIEW-CO2 is a dataset maintained by international collaborative organiza-
tions, aiming to provide CO2 measurement data on a global scale. This dataset primarily
consists of CO2 measurement data from ground-based observation stations, provided by
fixed stations located around the world, recording atmospheric CO2 concentrations at the
ground level. Unlike WDCGG, the GLOBALVIEW-CO2 dataset does not include remote
sensing data, relying solely on ground-based observations to monitor and analyze global
CO2 levels.

NOAA-ESRL is a research laboratory within the National Oceanic and Atmospheric
Administration of the United States. In climate change, NOAA-ESRL contributes to data
support through the Global Greenhouse Gas Reference Network [35,36]. The network
comprises 106 stations, primarily in developed countries, including 8 high-tower stations
and 4 baseline observatories. These stations provide discrete weekly CO2 sample collection,
continuous in situ CO2 measurements, and measurements of other gases. Data from NOAA-
ESRL are widely used to study temporal and spatial trends in global CO2 concentrations
and sources and sinks of CO2. In addition, NOAA-ESRL has developed the CarbonTracker
data assimilation system. The system utilizes continuous CO2 time series data from around
the globe in conjunction with Earth system models to infer global CO2 sources and sinks,
as well as CO2 uptake and release processes.

COCCON (Collaborative Carbon Column Observing Network) is a global observation
network focused on high-precision ground-based measurements of atmospheric green-
house gases, such as carbon dioxide and methane [37]. It aims to provide accurate column
concentration data to support and validate satellite observations, particularly in areas
where satellite measurements are affected by cloud cover or complex terrain. Using the
micro Fourier Transform Infrared Spectrometer, a portable and low-cost yet high-precision
instrument, COCCON measures the solar spectrum to determine the total column concen-
trations of CO2, CH4, and carbon monoxide. These measurements offer high temporal and
spatial resolution, making COCCON a valuable resource for calibrating satellite data, im-
proving climate models, studying the carbon cycle, and informing climate policy. Through
its global network, COCCON addresses gaps in satellite observations and plays a crucial
role in advancing greenhouse gas monitoring and climate change research.

TCCON, as a global CO2 observation network comprised of ground-based measure-
ment sites, has a key objective of providing comprehensive information on global CO2
concentration changes through high-precision and high-resolution measurements [38].
As shown in Figure 2, this network gathers observational sites from around the world,
spanning multiple countries and regions including North America, South America, Europe,
Asia, Australia, and Antarctica. Each site is equipped with high-precision ground-based in-
frared spectrometers. The measurement data from the TCCON network exhibit exceptional
accuracy and high temporal resolution, allowing for the provision of CO2 concentration
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change information at hourly or even shorter intervals for research purposes. These data
are also widely utilized to investigate important questions such as the spatial distribution of
CO2 in the atmosphere, seasonal variations, and variations among different regions [39,40].

Figure 2. Global TCCON site location distribution (https://tccondata.org/accessed on 1 Octo-
ber 2024).

While ground-based monitoring is a crucial means to understand changes in at-
mospheric CO2 concentrations, its advantages lie in high precision and high temporal
resolution. Therefore, it is often used for comparative analysis with satellite and airborne
data, particularly for validating satellite data retrieval results. However, this approach
also has some limitations, including limited spatial coverage. Ground monitoring stations
are sparsely distributed and cannot comprehensively cover the entire globe, especially in
remote and oceanic regions where monitoring data are relatively scarce. This limitation may
impact the accuracy of global CO2 concentration change analysis. In conclusion, accurately
depicting the spatiotemporal distribution of CO2 solely relying on ground observations
can be quite challenging.

2.1.2. Airborne Monitoring

Researchers have successfully supplemented ground-based monitoring with the use
of airborne monitoring methods. This approach involves measuring atmospheric CO2
concentrations and vertical distribution using commercial flights or specially equipped
research aircraft. It provides vital information about the distribution of CO2 and carbon
cycling in the atmosphere.

On the one hand, commercial flights typically use Automatic Air Sampling Equipment
or Continuous CO2 Measuring Equipment to collect air samples or continuously measure
CO2 concentrations. On the other hand, research aircraft can carry various instruments
to measure atmospheric CO2 concentration and vertical distribution, such as the Laser
Absorption Spectrometer [41] and the Infrared Absorption Spectrometer [42].

Airborne monitoring can provide high-resolution data because the aircraft can collect
information at different altitudes and times, resulting in more detailed spatiotemporal
information. Atmospheric CO2 monitoring has become an important part of the global
atmospheric monitoring network. More detailed data can be obtained through projects such
as the Integrated Aircraft Trace Gases Observation Network [43], the National Oceanic and
Atmospheric Administration (NOAA)’s European Laboratory for Atmospheric Research
Carbon Cycle Greenhouse Gas Aircraft Program, and NASA’s Airborne Greenhouse Gas
Emissions Observation System. IAGOS (In-service Aircraft for a Global Observing System)
is also a global program that utilizes sensors and instruments on commercial flights to

https://tccondata.org/
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measure atmospheric composition and meteorological parameters. IAGOS aims to collect
atmospheric data on a global scale by installing sensors on regular commercial flights to
supplement data from ground stations and satellite observations. IAGOS provides data on
the concentration of carbon dioxide in the upper atmosphere. These data can be used to
study the concentration and vertical distribution of CO2 in the atmosphere and to assess
the impact of global climate change.

Airborne monitoring also has some limitations. Firstly, the coverage and sampling
frequency of airborne monitoring are constrained by flight routes and schedules. Despite
the establishment of a global aviation monitoring network, the number of monitoring
stations and sampling frequencies remains limited due to factors such as cost. Additionally,
since airborne monitoring instruments are installed on commercial aircraft, they can be
influenced by factors such as weather, flight altitude, and aircraft type, which can affect the
accuracy and reliability of the monitoring data.

2.1.3. Satellite Monitoring

During the past two decades, continuous advances in sensor technology and inver-
sion methods have led to the maturation of satellite remote sensing for CO2 detection.
Optical sensors onboard satellites are widely used for atmospheric CO2 observations.
Currently, many satellites and instruments have been successfully launched into space,
including the Scanning Imaging Absorption Spectrometer for Atmospheric Component
Mapping (SCIAMACHY) [44], the Atmospheric Infrared Sounder (AIRS) [45], the Green-
house Gas Observing Satellite (GOSAT) [46], the Orbiting Carbon Observatory (OCO-2,
OCO-3) [47–49], and TanSat [50]. Future satellite launch programs for monitoring CO2 are
in the pipeline. Table 1 summarizes the CO2 monitoring satellites that have been launched
and those planned for launch until 2028 worldwide.

Table 1. Carbon dioxide monitoring satellites launched and planned (to be launched by 2028) globally.

Satellite/Spectrometer Country/Region Start of Operation End of Operation Orbit Altitude/km Precision/ppm Width/km Spatial Resolution

SCIAMACHY European Union 2002 2012 772 1–2 960 30 km
GOSAT Japan 2009 Operating in orbit 666 1–2 1000 10 km

GOSAT-2 Japan 2018 Operating in orbit 613 0.5–1 667 7 km
GOSAT-GW Japan 2024 Unlaunched 666 1–2 1000 2.5 km

OCO-2 America 2014 Operating in orbit 705 1 10.6 1.5 km
TanSat China 2016 Operating in orbit 700 1–4 20 2.5 km

Sentinel-5 European Union 2025 Unlaunched 8175 1 2715 7 km
FY-3D China 2017 Operating in orbit 836.4 1–4 1000 1–10 km
GF-5 China 2018 Operating in orbit 708 1–4 60 60 m
GF-5B China 2017 Operating in orbit 708 1–2 40 30 m

OCO-3 America 2018 Operating in orbit 394 1 16 1.5 km
Microcarb France 2025 Operating in orbit 650 0.5–1 13.5 2 km

MethaneSAT America 2024 Unlaunched 600 1–2 260 100 m
Metop-SGA European Union 2025 Unlaunched 830 1 2670 10 km
FengYun-3G China 2023 Operating in orbit 800 1–2 1000 1–10 km
GEOCARB America 2022 Operating in orbit 35,400 1.2 3000 10 km

DQ-01 China 2022 Operating in orbit 705 1–2 1000 1 km
CO2M European Union 2026 Unlaunched 602 0.7 >250 1 km
DQ-02 China 2025 Unlaunched 705 1 >100 1 km
MerLin France 2024 Operating in orbit 500 1–2 100 100 km

ASCENDS America 2025 Unlaunched 400 1–2 30 30 km
Carbon Mapper America 2024 Operating in orbit 400 1 18 30 m

GHGSat Canada 2016, 2020, 2021 Operating in orbit 520 4 12 25 m

Europe has been an early pioneer in satellite remote sensing for greenhouse gases.
On 28 February 2002, the European Space Agency (ESA) launched the Environmental
Satellite carrying the instrument SCIAMACHY. It had three observation modes: limb,
nadir, and occultation. It was the first satellite sensor capable of detecting changes in
boundary layer CO2 concentrations. SCIAMACHY confirmed the feasibility of measuring
near-surface CO2 concentrations in the near-infrared spectral range [51]. The retrieval
algorithm for SCIAMACHY involved a combination of radiative transfer models and
atmospheric inversion techniques to derive CO2 concentrations from the observed spectra.
This approach was critical in validating the satellite’s capability to detect CO2 variations at
different altitudes. Furthermore, ESA has initiated the European Copernicus anthropogenic
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CO2 monitoring mission. These satellites not only provide precise observations with
high resolution and high signal-to-noise ratios but also can simultaneously image various
parameters [52].

On 23 January 2009, Japan successfully launched the GOSAT satellite, becoming the
world’s first satellite specifically designed for the detection of atmospheric greenhouse
gases, including CO2 and CH4 [53]. GOSAT employs the Fourier Transform Spectroscopy
(FTS) method, which involves using a Michelson interferometer to capture spectral data
across a broad range of wavelengths. The retrieval algorithm processes these data using
radiative transfer models and inversion techniques to estimate CO2 and CH4 concentrations.
Following GOSAT, the GOSAT-2 satellite was successfully launched on 29 October 2018,
equipped with higher-performance sensors to provide more accurate greenhouse gas
concentration data. However, both GOSAT and GOSAT-2 had limitations in terms of their
ability to continuously sample the atmosphere due to their coarse spatial resolution. To
enhance the spatial coverage capability for atmospheric greenhouse gases, Japan initiated
the GOSAT-GW project, which adopted a grating-based spectral detection mode similar to
OCO, Sentinel-5, and TanSat.

The United States’ first carbon satellite, OCO, experienced a launch failure in 2009
due to a payload rocket malfunction. However, in July 2014, OCO-2 was successfully
launched [54]. NASA (National Aeronautics and Space Administration) released the initial
global CO2 concentration distribution maps for OCO-2 on 8 December 2014, covering
the period from 1 October 2014 to 11 November 2014. The retrieval algorithm for OCO-2
utilizes a combination of high-resolution spectroscopic measurements and advanced inver-
sion techniques to derive CO2 concentrations from the captured solar absorption spectra.
Following OCO-2, OCO-3 was successfully launched on 4 May 2019 and installed on the
International Space Station, continuing the CO2 observation mission. Compared to OCO-2,
OCO-3 has a larger observation range, meaning it can cover a wider swath of the Earth’s
surface in each orbit, and it operates in the orbit of the space station. Each orbit allows
for target and snapshot observations of any point at different times. Additionally, it can
provide continuous observations of CO2 and Solar-Induced Fluorescence data from dawn
to dusk within a day, significantly enhancing its observational capabilities for local and
point source targets [55].

Satellite resolution plays a crucial role in the remote sensing detection of point sources
such as power plants. To achieve this goal, commercial satellite companies in Canada and
the United States have initiated greenhouse gas satellite remote sensing programs with high
spatial resolution [56,57]. Canada’s GHGSat company has launched three satellites in 2016,
2020, and 2021. These satellites are capable of capturing greenhouse gas remote sensing
data with a resolution of 25 m and an accuracy of 4 ppm for Column-Averaged Dry Air
Mole Fraction of CO2 (XCO2) and 18 parts per billion for Column-Averaged Dry Air Mole
Fraction of CH4 (XCH4). This innovative solution provides high-precision estimation for
point source emissions. Meanwhile, Planet Labs, a private Earth imaging company based
in the United States, plans to launch two Carbon Mapper satellites in 2024. These satellites
will collect high signal-to-noise ratio spectral data with a resolution of 30 m, an 18 km
swath, and a range of 400–2500 nanometers. These data can provide high-precision XCO2
and XCH4 greenhouse gas scientific data, with the capability to detect emissions from
sources as small as 50 kg/h XCH4 and as large as 300 t/h CO2. This detection capability
is sufficient for effectively monitoring over 90% of the world’s coal-fired power plants,
making a significant contribution to greenhouse gas emission monitoring.

In recent years, China has made significant progress in the field of greenhouse gas
remote sensing detection. First, on 22 December 2016, China successfully launched its
first carbon satellite, TanSat, which has achieved a series of important results in global
atmospheric CO2 concentration and chlorophyll fluorescence monitoring, among other
aspects. The Institute of Atmospheric Physics of the Chinese Academy of Sciences, using
the carbon retrieval system IAPCAS (Institute of Atmospheric Physics Carbon Retrieval
Algorithm System), which was independently developed by their team, obtained XCO2
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from the TanSat satellite [58]. The IAPCAS retrieval algorithm integrates spectral data with
radiative transfer models to provide accurate CO2 measurements. Following that, on 15
November 2017, the Fengyun-3D (FY-3D) meteorological satellite was successfully launched
at the Taiyuan Satellite Launch Center. FY-3D carries the Greenhouse Gas Monitoring
Instrument, which measures global CO2 and CH4 column concentrations using shortwave
infrared interferometry. The retrieval algorithm for FY-3D processes interferometric data
to estimate greenhouse gas concentrations with high precision. Furthermore, on 9 May
2018, the Gaofen-5 (GF-5) satellite was successfully launched at the Taiyuan Satellite
Launch Center. The GF-5 satellite carries the Greenhouse Gases Monitor Instrument,
primarily designed for quantitative monitoring of the distribution and changes in CO2
and CH4 concentrations globally. The Chinese GF-5B satellite (Gaofen-5B), launched on 7
September 2021, is a crucial part of China’s high-resolution Earth observation system. It
features advanced remote sensing instruments, including multi-spectral, hyperspectral,
infrared, and ultraviolet sensors, for precise monitoring of the atmosphere, land, and
oceans. The retrieval algorithms for GF-5B are tailored to handle complex datasets from
these various sensors, ensuring accurate greenhouse gas measurements. In the future, the
Fengyun-3 No.08 polar-orbiting satellite is planned to be launched, which will carry a high-
spectral-resolution greenhouse gas monitoring instrument. This instrument will achieve
high-precision quantitative inversion of global atmospheric greenhouse gases through
continuous high-resolution measurements in the near-infrared and shortwave infrared
spectral bands. Here, high-resolution refers to the ability to distinguish and resolve fine
details within the spectral bands, enabling the accurate detection and analysis of trace
gas concentrations.

2.2. Datasets

Various datasets are used to measure and monitor global atmospheric CO2 concentra-
tions. Currently, researchers utilize ground-based, satellite, and other ancillary datasets.

(1) Ground-based datasets

Ground-based data refer to the continuous monitoring and recording of CO2 con-
centrations in the atmosphere by setting up meteorological stations, observatories, and
other equipment on the Earth’s surface. These datasets contain extensive observations of
atmospheric CO2 concentrations, typically on hourly, daily, monthly, or yearly time scales.
They cover variations in atmospheric CO2 concentrations across different regions globally.
Additionally, these data are usually maintained and published collectively by multiple
institutions and organizations. Data processing and quality control also undergo rigorous
standardization and calibration procedures. As shown in Table 2, there are currently three
main ground-based datasets: TCCON, WDCGG, and GLOBALVIEW-CO2.

TCCON sites use Fourier Transform Spectrometers (FTSs) to make hyperspectral
observations with a spectral resolution of 0.02 cm−1 and a temporal resolution of about
90 s. Spectral data are recorded for direct solar radiation in the 4000 cm−1 to 9000 cm−1

range. The spectra measured for CO2 include two CO2 weak absorption bands located
at 6220 cm−1 and 6339 cm−1, and one O2 absorption band located at 7885 cm−1. The
spectral data are standardized, stable, and obtained in continuous observation mode at
the TCCON site. The accuracy of the atmospheric XCO2 products inverted from the FTS
observation spectra reaches 0.8 ppm under clear or less cloudy conditions. The sites are
selected according to a uniform criterion, and most are located within 100 km of human
activity impacts.

WDCGG was established by the World Meteorological Organization and is dedicated
to the collection, storage, and sharing of greenhouse gas data on a global scale [59]. The
dataset includes various sources of data: first, ground-based observations, which involve
direct measurements at observation sites, such as the atmospheric CO2 concentration
measurements initiated by the Mauna Loa Observatory in Hawaii in 1958 [60]; second,
mobile observations, which include measurements from ships, aircraft, and high-altitude
balloons. These mobile platforms help capture spatial variations and vertical distribu-
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tions of atmospheric CO2 concentrations; and finally, the remote sensing of data involves
measurements of the atmosphere from satellite instruments, providing supplementary
information to ground-based and mobile observations. By the late 1970s, NOAA’s Global
Monitoring Division had conducted extensive measurements of atmospheric CO2 concen-
trations worldwide, encompassing both ground-based and mobile observations. In 1989,
the International Meteorological Organization established the Global Atmosphere Watch,
which now includes 51 countries that collectively establish observation sites and contribute
data, integrating ground-based, mobile, and remote sensing technologies to provide a
comprehensive view of atmospheric CO2 levels.

The GLOBALVIEW-CO2 dataset, provided by NOAA-ESRL, integrates observational
data from multiple stations worldwide, offering long-term CO2 concentration data [61].
This dataset is essential for researching atmospheric carbon cycling, climate change, and
identifying sources of CO2 emissions.

Table 2. Current major ground-based carbon observation datasets.

Database Brief Introduction Reference

TCCON TCCON is recognized as a standard network for CO2 [62]

WDCGG WDCGG focuses on the collection, management and
dissemination of observational data [63]

GLOBALVIEW-CO2
The observation platforms include ground-based stations,

tall towers, ships, and aircraft [64]

(2) Satellite datasets

Currently, the inversion of XCO2 using satellite shortwave infrared observations has
become the most effective method for obtaining CO2 data. This effectiveness refers to
the ability of satellite datasets to provide comprehensive, global coverage and frequent
observations, which ground-based or airborne datasets cannot achieve. Satellites can
monitor remote and inaccessible areas, offering a more complete and consistent picture of
CO2 distribution on a global scale. As shown in Table 3, the available satellite data include
ENVISAT (with SCIAMACHY), the GOSAT series, the OCO series, and TanSat, which
simultaneously provide XCO2 products from different inversion algorithms.

Table 3. Major satellite carbon observation datasets.

Product Name Algorithm Version Reference

SCIAMACHY WFMD WFM-DOAS V4.0 [65]
SCIAMACHY BESD DOAS-BESD V02.01.02 [66]

GOSAT ACOS ACOS V9r [67]
GOSAT SRFP RemoTeC V2.3.8 [68]
GOSAT NIES NIES V02.75 [69]
GOSAT OCFP UOL-FP V7.0 [70]
GOSAT-2 FP NIES V0104 [71]
TanSat OCFP UOL-FP V10 [72]
TanSat ACGS IAPCAS - [73]
OCO-2 ACOS ACOS V10r [74]

OCO-2 FOCAL FOCAL V9 [75]
OCO-3 ACOS ACOS V10r [76]

The SCIAMACHY spectral data employ three main algorithms to estimate the con-
centration of CO2 in the atmosphere [77]. These algorithms are the Differential Optical
Absorption Spectroscopy (DOAS) algorithm, the Weighting Function Modified DOAS
(WFM-DOAS) algorithm, and the Band-Enhanced Sensitivity Differential (BESD) algorithm.
The DOAS algorithm is based on the absorption characteristics of the spectrum. It utilizes
the absorption properties of different gas molecules at various wavelengths of light to infer
the concentrations of gases in the atmosphere. The WFM-DOAS algorithm builds upon the
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DOAS approach by considering the propagation path of light through the atmosphere. This
helps enhance measurement precision and also takes into account the vertical distribution
of gases in the atmosphere, which can impact the results. The BESD algorithm is particu-
larly useful for measuring low-concentration gases like methane and CO2. This method
relies on the absorption and emission characteristics of gas molecules in the atmosphere. By
measuring the spectral emissions from the atmosphere, it can estimate the concentrations
of methane and CO2. These algorithms collectively provide valuable tools for assessing
atmospheric gas concentrations, with each having its own strengths and applications.

The GOSAT is positioned in a sun-synchronous orbit at an inclination of 98◦ with an
orbit altitude of approximately 666 kilometers. It completes one orbit approximately every
100 min, resulting in a revisit time of once every three days, with its local time of overpass
being 13:00 [78]. The GOSAT satellite series includes GOSAT, GOSAT-2, and the planned
GOSAT-GW. GOSAT utilizes the Thermal And Near-infrared Sensor for Carbon Observa-
tion (TANSO)—FTS and the TANSO-2 OCC for measurements. GOSAT-2, on the other
hand, employs the TANSO-2 FTS-2 and TANSO-2 OCC-2 instruments for its observations.
Satellite data products are categorized into four levels. Level 1 includes raw data, such as
radiance measurements. Level 2 provides column-averaged concentrations of greenhouse
gases like CO2 and CH4. Level 3 aggregates data spatially and temporally into gridded
maps of gas concentrations. Level 4 comprises higher-level products, including model
outputs like regional CO2 flux data. These data level descriptions are consistent across the
GOSAT series, with each new satellite improving upon its predecessor’s capabilities.

The OCO series of satellites includes OCO-2 and OCO-3. OCO-2 is a NASA-sponsored
Earth observation satellite program whose primary goal is to detect CO2 column concentra-
tions with high accuracy, precision, and spatial resolution. OCO-2’s CO2 products offer
excellent precision and accuracy and can characterize CO2 sources, sinks, and regional vari-
ations. In 2014, OCO-2 was launched into a sun-synchronous EOSA-train orbit at 705 km,
becoming the first satellite in the A-train constellation. Each orbit has a period of 98.8 min,
with a transit time of 13:36 local time and a revisit period of 16 days. OCO-2 carries a
three-band grating imaging spectrometer to capture the solar reflected light spectrum in
the 0.765 µm, 1.61 µm, and 2.06 µm bands. The spectrometer collects eight consecutive ob-
servation images at a frequency of 3 Hz at the bottom of the sky, with each image covering
a 2 km by 1 km area on the Earth’s surface. OCO-3 is specialized in measuring gases such
as CO2 and methane in the atmosphere. The data products of the OCO series satellites are
divided into two levels: Level 1 and Level 2. Level 1 data products contain raw radiometric
and image data from OCO-2 and OCO-3. Level 2 data products mainly cover vertical
profiles of the CO2 column concentration and apparent absorption rate, which are crucial
for studying the global carbon cycle and climate change.

TanSat is China’s first satellite dedicated to observing CO2 from space. Launched
on 22 December 2016, TanSat was placed into a sun-synchronous orbit at an altitude
of 700 km with an inclination angle of 98.2◦, and its local overpass time is 13:30. The
satellite carries two main instruments: the Aerosol and Cloud Gas Sensor (ACGS) and the
Cloud and Aerosol Polarization Imager (CAPI). ACGS is a grating spectrometer designed
to record the solar backscatter spectra for retrieving CO2 and oxygen concentrations.
CAPI is a multi-band imaging spectrometer covering spectral ranges from ultraviolet
to near-infrared in five bands (365–408 nm, 660–685 nm, 862–877 nm, 1360–1390 nm,
and 1628–1654 nm). It is used to gather information about aerosols and clouds, with
the 660–685 nm and 1628–1654 nm bands specifically employed for scattering detection.
Using inversion algorithms developed by the Institute of Atmospheric Physics, Chinese
Academy of Sciences, data from the carbon satellite have been inverted to obtain global
CO2 distributions. Comparisons with observation data from TCCON at the Sudan Gurusha
and Karlsruhe stations indicate absolute biases of 2.1 ppm and 2.9 ppm, respectively [79].
Additionally, the ACOS (Atmospheric CO2 Observations from Space) XCO2 inversion
algorithm has been applied to retrieve CO2 column concentrations from the carbon satellite
data, yielding a product bias of 0.85 ppm [80]. Furthermore, the Department of Ecological
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and Environmental Informatics at the State Key Laboratory of Resources and Environmental
Information System in China has developed a carbon satellite inversion algorithm that
combines the SCIAMACHY radiative transfer model with optimization estimation methods.
Validation against TCCON data shows a bias of 2.62 ppm and a standard deviation of
1.41 ppm [81].

(3) Auxiliary datasets

The CO2-supporting datasets provide information at the national, regional, and city
levels, documenting emissions from sources such as coal combustion, oil, natural gas,
cement production, and iron and steel production. These datasets are instrumental in
analyzing climate change trends, formulating mitigation policies, and assessing national
progress in reducing emissions. Standard anthropogenic CO2 emission datasets, listed in
Table 4, are based on various methodologies and data sources.

Table 4. Common auxiliary datasets for CO2.

Specification CHRED PKU ODIAC EDGAR

Covering area China Global Global Global
Resolution Monthly/10 km Monthly/0.1 deg Monthly/1 km Monthly/0.1 deg

Uncertainty 8% 19% 17.5% 15%

Area source Population density, land
use, human activity

Population density,
Night-time light,

Vegetation
Night-time light Population density,

Night-time light

Reference Data developer [82] [83] [84]

The CHRED (China High Resolution Emission Database) is an energy consumption
database published by the China Energy Research Institute. It provides data on energy con-
sumption across various regions of China, supporting research on energy policy, regional
energy planning, and environmental analysis [85]. This dataset includes information on
energy consumption by provinces and prefecture-level administrative units, covering a
range of energy types such as coal, crude oil, natural gas, and electricity. It may also include
consumption data by different industries and uses, as well as related economic and envi-
ronmental indicators. Researchers, policymakers, and environmental protection agencies
can use the CHRED dataset to analyze energy consumption, environmental impacts, and
economic benefits across China.

A team of researchers from Peking University (PKU) has released a series of global
emissions inventory datasets that cover various pollutants and time scales [86]. The datasets
include global emissions data for CO2, CO, and PM2.5. These global emissions inventory
data were developed using a bottom–up approach, estimating pollutant emissions on a
pollutant-by-pollutant basis. The dataset has a spatial resolution of 0.1◦ by 0.1◦, providing
detailed geographic information, and covers the period from 1960 to 2014 with a monthly
temporal resolution. It represents 64 to 88 individual emission sources, encompassing
different sectors and fuel combinations.

The ODIAC (Open-Data Inventory for Anthropogenic Carbon dioxide) dataset esti-
mates anthropogenic CO2 emissions in various regions of the globe using satellite observa-
tions, energy statistics, and ground-based data [87]. With a resolution of 1 km, this dataset
can be used to study the spatial distribution, as well as temporal and spatial variations, and
trends in global carbon emissions [88].

The EDGAR (Emissions Database for Global Atmospheric Research) dataset provides
global anthropogenic emissions data with a resolution of 0.1◦ × 0.1◦, offering high accuracy,
spatial and temporal resolution, and timeliness [89].

Additionally, CARMA [90], WDI [91], MEIC [92], and CEADS [93] are standard
auxiliary CO2 datasets that enhance the transparency of global carbon emissions and
support mitigation actions. These datasets aggregate information from multiple sources,
including government reports, energy statistics, and other publicly available data.
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2.3. Citespace-Based Reconstruction Analysis of Satellite CO2 Data

Citespace is a tool for visualizing and analyzing scientific literature, primarily used
for studying knowledge evolution and academic collaboration networks within academic
fields [94,95]. It assists researchers in identifying research hotspots, key authors, field
collaborations, and trends in knowledge evolution, thereby facilitating academic research
and decision-making. In this section, Citespace 6.1.R2 is employed to visualize and analyze
literature related to global satellite CO2 data reconstruction and to review research on
satellite CO2 data reconstruction over the past 20 years, focusing on keyword mapping and
author contributions.

With the increase in CO2 emissions, satellite CO2 data reconstruction has become
widely utilized. Figure 3 illustrates that the number of papers in the field of satellite CO2
reconstruction has shown an overall increasing trend from 2005 to 2024, with the most
significant rise occurring between 2021 and 2022. This indicates that satellite CO2 data
reconstruction has garnered considerable attention in recent years and is highly valued
by scholars.
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Figure 3. Number of papers issued on satellite CO2 data reconstruction (total per year until May 2024).

This paper searched the Web of Science using the keywords “carbon dioxide” and
“reconstruction”, collecting about 1437 relevant articles from the past two decades. The
size of each circle in the keyword map is proportional to the frequency of the keyword.
The hierarchy of the circles represents the passage of time, with the circles moving from
the inside to the outside, indicating a progression from the past to the present. Red circles
highlight key nodes, demonstrating that the relevant literature in the field has attracted
significant attention. Connecting lines show associations between different keywords (data
source: Web of Science Core Collection).

As shown in Figure 4, the CO2 node is the most prominent and frequent keyword on
the map, followed by “satellite”, “remote sensing”, “reconstruction”, “assimilation”, and
“model”. These high-frequency keywords reflect the core concepts, key technologies, and
research directions in the reconstruction of satellite CO2 data, highlighting the hotspots
and concerns in the field. This information helps researchers gain a deeper understanding
of the field’s development trends and knowledge structure.

In the author mapping, as shown in Figure 5, authors such as Frederic Chevallier,
Tomohiro Oda, and others appear with high frequency in Citespace’s author mapping. The
high frequency of these authors reflects their academic reputation, leadership, collaborative
networks, and key innovations, as well as the significance of their academic contributions
and activities in the field of satellite CO2 data reconstruction. Readers can stay informed
about the research frontiers in this field by following the progress and work of these
prominent authors.
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Figure 4. Keyword mapping analysis of carbon satellite data reconstruction based on Citespace.

Figure 5. Author mapping analysis in the field of carbon satellite data reconstruction based on Citespace.

It can be observed from Figure 6 that China and the United States lead in paper
contributions. Compared to developing countries, developed nations have made more
rapid progress in the field of satellite remote sensing and have paid greater attention to
satellite CO2 data reconstruction, resulting in a higher volume of published papers. This
trend indicates that countries worldwide are focusing on advancing this field, highlighting
it as a significant area of development at the international level.
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Figure 6. Number of papers on CO2 in selected countries in the period January 2020 to May 2024.

3. Satellite CO2 Reconstruction Methods

Scholars have conducted CO2 data reconstruction studies across multiple satellites
and developed a series of high-precision CO2 datasets over extended periods, considering
the spatial and temporal coverage as well as the data accuracy of various CO2 satellites.

Interpolation is a method used to estimate information about a function’s value or
its derivative at discrete points. It involves estimating approximate values at other points
based on a finite number of known points. Interpolation techniques can be used to fill in
unobserved spatial data within a single image or unobserved temporal data across multiple
images over a fixed observation area. Kriging is a specific interpolation method that not
only utilizes known data points but also models the spatial correlation structure between
these points to make more accurate predictions. It achieves this by fitting a semivariogram
to quantify the spatial correlation and then using this model to appropriately weight the
known data points when estimating values at unknown locations. In CO2 data recon-
struction, Kriging can estimate CO2 concentrations at locations without measurements
by leveraging the spatial patterns observed in known data. However, not all CO2 data
reconstruction methods use Kriging. Some methods may employ other statistical or ma-
chine learning techniques that do not involve the spatial correlation modeling characteristic
of Kriging.

Data fusion is an information processing technique where computers analyze and
synthesize observational data from multiple sensors collected over time under specific
guidelines to perform decision-making or assessment tasks. It typically targets a specific
observation area and integrates information from sources such as satellite carbon remote
sensing, meteorological data, and Digital Elevation Models (DEMs) to address missing
spatiotemporal data.

In this section, interpolation and data fusion methods will be explored in depth to
enhance the spatial resolution of CO2 data, fill observational gaps, and improve data
accuracy. This approach will provide more comprehensive information and support for
CO2 concentration research and applications.

3.1. Data Reconstruction Based on Interpolation

Interpolation involves estimating values between several discrete data points using
specific methods. These data points are often collected over a defined time or spatial
range, though data may not be available at every point within that range. The goal of
interpolation is to fill in these gaps to create a more continuous and complete dataset.
It is important to note that interpolation methods generate estimates for unknown data
points rather than actual measurements. Consequently, the interpolation error should
be evaluated for each case, and the uncertainty of the data must be considered. Table 5
compares different interpolation techniques to provide a comprehensive understanding.
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In different interpolation methods, the local trend, the information of coordinates, and
the stratification have specific meanings. The local trend refers to systematic changes or
trends within a local area of data, which can be linear or nonlinear and are usually caused
by local factors rather than the overall trend of the data. The information of coordinates
refers to the specific spatial locations of data points, which are used to determine the spatial
relationships and distances between data points, and are fundamental for calculating spatial
correlation and performing interpolation. Stratification involves dividing data into multiple
subsets or layers based on certain criteria, such as geographic, geological, or statistical
characteristics. This method is particularly useful for areas with significantly different
characteristics, as the data within each layer may have distinct statistical properties and
spatial variability structures. During interpolation, stratification can enhance the model’s
accuracy and reliability by ensuring the data within each layer are more homogeneous
and consistent.

Table 5. Comparison of different Kriging interpolation methods.

Method
Univariable/

Multi-
Variable

Stationary/
Local Mean Local Trend Information of

Coordinates Stratification

SK Univariable Stationary No No No
OK Univariable Local No No No
UK Multi-variable Local Yes Yes No
SCK Multi-variable Stationary No No No
OCK Multi-variable Local No No No
PCK Multi-variable Local No No No

SCCK Multi-variable Stationary No No No
OCCK Multi-variable Local No No No

Kriging interpolation methods include several variants for estimating attribute values
at unknown locations. For example, Simple Kriging (SK) assumes that the attribute values
follow a normal distribution with a constant mean; Ordinary Kriging (OK) takes into
account local trends and semivariance functions; Universal Kriging (UK) is suitable for
cases with external trends. In Kriging interpolation methods, external trends refer to
systematic changes or trends present in the data, which are typically caused by known
external factors rather than random spatial variation. These external trends can be explained
and described by one or more known external variables. Simple Co-Kriging (SCK) and
Ordinary Co-Kriging (OCK) are suitable for multi-attribute interpolation, considering
covariance and local spatial trends, respectively. Probability Kriging (PCK) considers the
probability distribution of the attribute values. At the same time, Simple Collocated Co-
Kriging (SCCK) and Ordinary Collocated Co-Kriging (OCCK) are used in multi-attribute
contexts and consider correlations and local trends between attributes. The selection of the
appropriate Kriging method depends on the data characteristics and requirements and can
provide accurate and reliable spatial interpolation results.

In satellite CO2 reconstruction, Kriging interpolation is used in the field of carbon
satellite data reconstruction [96]. Interpolation methods based on discrete data points can
be used to fill in missing or blank parts of satellite observations to obtain a complete picture
of the CO2 distribution [97]. These methods utilize statistical properties and spatial correla-
tions between known observations to infer CO2 concentrations at unobserved locations.

In order to accurately reflect the spatial and temporal distributions of CO2, both
temporal and spatial interpolation are essential. However, capturing spatial and temporal
variability in satellite data reconstruction is challenging using only spatial interpolation
methods. In contrast, spatiotemporal interpolation methods can capture spatiotemporal
variability more accurately, and the model’s accuracy can be assessed by cross-validation
in space and time. Next, spatial interpolation and combined spatiotemporal interpolation
methods will be introduced.



Remote Sens. 2024, 16, 3818 17 of 54

3.1.1. Spatially Interpolated Data Reconstruction

Traditional statistical methods have widely utilized spatial Kriging interpolation to
generate XCO2 data products. However, interpolation methods that utilize only spatial
correlation do not consider the time-dependent structure of CO2 data. As a result, temporal
variations in dynamic CO2, including annual growth and seasonal cycles, need to be
adequately considered [98]. The following Table 6 lists the results obtained by researchers
in recent years in satellite data reconstruction using spatial interpolation methods.

Table 6. Papers related to spatial interpolation.

Method Year Contribution Reference

Ordinary Kriging 2008 Retrieved CO2 column abundances derived from GOSAT. [99]
Local Kriging 2012 Generated maps with high spatial and temporal resolution. [100]

Ordinary Kriging 2014 Addressed the issue of limited CO2 data provided by a
single satellite. [101]

Semantic Kriging 2020 Obtained more accurate reconstruction results of CO2. [102]

In 2008, Tomosada et al. [99] used a spatial statistical approach to obtain CO2 column
concentrations from GOSAT data. In 2012, Hammerling et al. [100] used a spatial interpola-
tion approach to generate maps at high spatial and temporal resolutions without the need
to use atmospheric transport models and estimates of CO2 uptake and emissions. In 2014,
Jing et al. [101] combined the GOSAT and SCIAMACHY satellite measurements to propose
a filling method to model the spatial correlation structure of the CO2 concentration to solve
the problem of limited CO2 data provided by a single satellite due to cloud effects, in order
to more accurately characterize the spatial and temporal distributions of atmospheric CO2
concentration. In 2020, Shrutilipi Bhattacharjee et al. [102] proposed a method to fill in the
spatial correlation structure of the modeled CO2 concentration based on the Kriging grid
interpolation method of the spatial interpolation technique, which interpolates the CO2
source points in the emission inventory and the types in the land use/cover information
with the CO2 column concentration separately, and then combines the interpolation results
of the two to obtain a more accurate prediction of the CO2 column concentration. Mean-
while, the researchers also demonstrated that the method can be applied to predict the CO2
column concentration in other regions.

Although spatial interpolation can be used to reconstruct satellite CO2 data to address
the problem of insufficient CO2 data, it has some limitations. First, interpolation methods
rely on estimating values between known measurement points, but they may introduce
errors, especially when data are sparse or when extrapolation beyond the range of measure-
ments is required. Second, interpolation methods do not accurately capture the true spatial
and temporal variability because they do not account for spatial and temporal autocorrela-
tions in the data. This can lead to the generation of biased or noisy maps, particularly in
situations where measurement points are sparse, resulting in a loss of information rather
than overly smooth fields. In contrast, spatiotemporal interpolation methods can better
address these issues.

3.1.2. Spatiotemporal Interpolation Data Reconstruction

Spatiotemporal interpolation methods can capture spatiotemporal variability more
accurately and can also be used to assess the accuracy of models by cross-validating
them in space and time. Additionally, spatiotemporal interpolation methods can utilize
multiple data sources, including satellite observations, ground-based observations, and
model simulations, to enhance spatiotemporal resolution and accuracy. However, these
methods primarily focus on estimating values between existing data points, whereas data
fusion methods aim to integrate data from different sources to create a more comprehensive
and consistent representation. Data fusion typically involves calibrating and merging
data sources to reduce systematic errors and improve the overall reliability of the results,
potentially providing higher precision and consistency when handling different types of
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data. The following Table 7 lists some excellent articles on satellite CO2 data reconstruction
using spatiotemporal interpolation methods in recent years for the readers’ convenience.

Table 7. Papers related to spatiotemporal interpolation.

Method Year Contribution Reference

Moving window block Kriging 2015 Created high spatiotemporal resolution maps from satellite data. [103]
Spatiotemporal prediction 2017 Generated global land mapping XCO2 data. [104]

Precision-Weighted Kriging 2020 Optimized the spatiotemporal correlation structure, improving the accuracy of
XCO2 weighting. [105]

Thin plate spline interpolation 2022 Interpolated monthly XCO2 from 2010 to 2018. [106]
Spatiotemporal geostatistics 2023 Generated a global land mapping XCO2 dataset. [107]

In 2015, Tadić et al. [103] proposed a flexible moving-window Kriging method, which
can serve as an effective technique for imputing missing data and reconstructing datasets.
This method was demonstrated to generate high spatial and temporal resolution maps
using satellite data, and its feasibility was validated using CO2 data from the GOSAT
satellite and the GOME-2 instrument. In 2017, Zeng et al. [104] employed spatiotemporal
geostatistical methods, effectively utilizing the spatial and temporal correlations between
observational data, to establish a global land-based mapping dataset of total CO2 amounts
from satellite measurements. They conducted cross-validation and verification at the
TCCON sites. The results revealed a correlation coefficient of 0.94 between the dataset and
observational values, with an overall bias of 0.01 ppmv.

Due to the limited spatial and temporal resolution of XCO2 concentrations, more data
sources must be available. If spatial and temporal interpolation is performed using fewer
observational data sources, the uncertainty of the interpolated data will increase signifi-
cantly. In the future, finding suitable data sources with high-quality, long-time series of
CO2 concentrations is another critical task. To create the longest possible XCO2 time series
and to improve the accuracy by utilizing multiple measurements when possible, Zhonghua
He’s team [105] developed an accuracy-weighted spatiotemporal Kriging method for inte-
grating and mapping XCO2 observed by multiple satellites, which fills in the data gaps
from multiple satellites and generates continuous global 1◦ × 1◦ spatiotemporally resolved
data every eight days from 2003 to 2016.

To better reconstruct the satellite CO2 data and to observe the spatiotemporal varia-
tions of CO2, an extended Gstat package was proposed. It reuses the spacetime class to
estimate the spatiotemporal covariance/half-variance model and performs spatiotemporal
interpolation. However, it is challenging to select reliable and reasonable semivariance
models and their parameters in spatiotemporal Kriging interpolation. Inappropriate choices
of models and parameters may lead to significantly inaccurate and inefficient interpolation
results. To better understand the multi-fractal scale behavior, Ma et al. [106] investigated
the characteristics of the multi-fractal scale behavior of the time series of atmospheric
XCO2 concentration in China from 2010 to 2018 in terms of spatial distribution. They
gained insights into the dynamical mechanisms of the CO2 concentration changes and
proposed an improved spatiotemporal interpolation method (spatiotemporal thin-plate
spline interpolation) to realize the spatiotemporal interpolation of the atmospheric XCO2
concentration. In 2023, Sheng et al. [107] generated a global terrestrial XCO2 dataset with a
grid resolution of 1◦ and a temporal resolution of 3 days, covering the period from 2009 to
2020 based on the spatiotemporal geostatistical method.

In summary, although interpolation methods can, to a certain extent, solve some of the
missing data problems and maintain the spatial continuity of the data, some interpolation
methods rely heavily on the number and quality of samples, meaning that they primarily
depend on the distribution and accuracy of existing data points to estimate values at
unmeasured locations. This can lead to several issues: firstly, if the number of samples is
insufficient, the interpolation results may not adequately reflect the true spatial variability of
the data, thereby reducing estimation accuracy. Secondly, if the sample quality is poor, these
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errors may be propagated into the interpolation results, further affecting their reliability.
Additionally, these methods sometimes neglect the spatial characteristics of the geographic
data, such as topographic variations or environmental conditions, which can lead to results
that do not accurately represent the real situation, causing discrepancies from the actual
data. In addition, due to the limitations of the data itself, interpolation reconstruction often
fails to improve the data accuracy significantly. Therefore, when applying interpolation
methods, it is necessary to carefully choose appropriate variants and parameters and make
adjustments and corrections according to the actual situation.

3.2. Data Reconstruction Based on Data Fusion

Data fusion combines data from different data sources, sensors, or observation meth-
ods to obtain more comprehensive, accurate, and reliable information [108].

Data fusion methods and techniques are diverse. Their advantage lies in their ability
to fully utilize information from multiple data sources, thereby increasing the accuracy
and confidence of the data while reducing uncertainty. Data fusion can also fill gaps and
compensate for deficiencies while providing more comprehensive spatial and temporal
coverage. The following Figure 7 shows the categorization of data fusion methods to
help readers understand better. In Figure 7, Vvting aggregates predictions from multiple
models by selecting the most frequent outcome, thereby enhancing accuracy through
consensus. Weighted voting refines this approach by assigning different weights to each
model’s predictions based on their accuracy, thus giving more influence to the more reliable
models [109].

Data fusion

Data-level fusion

Feature-level fusion

Decision-level fusion

Model-level fusion

Weighted averaging

Data fusion algorithms

Data fusion models

Feature selection

Feature weighting

Feature combination

Voting

Weighted voting

Learning-based methods

Ensemble learning 

Model fusion strategies

Model combination

Figure 7. Classification of data fusion methods.

Fusion methods are categorized into data-level fusion, feature-level fusion, decision-
level fusion, and model-level fusion. Data-level fusion enhances the coverage and credi-
bility of data by combining raw data from different sources. Feature-level fusion extracts
features from different data sources and improves the expressiveness of the data. Extracting
features means identifying and extracting variables or information that are useful for a
specific task. For example, in image data, this might include extracting edge, texture, or
shape features; in time series data, it could involve extracting trends, periodicities, or
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anomalies. The process of feature extraction typically includes steps such as data pre-
processing, feature selection, and feature calculation. Enhancing the expressiveness of
the data means integrating and optimizing features extracted from different data sources
to make the data more accurate in representing and reflecting the actual situation. This
can be achieved by increasing the detail and richness of the data, enabling subsequent
analyses or models to better capture the underlying patterns and complexities of the data.
Decision-level fusion integrates the decision results from different data sources to improve
the credibility of classification and decision-making. Model-level fusion integrates outputs
from different models to enhance overall model performance. First, different models may
excel at handling specific types of data or tasks, and by combining their outputs, we can
leverage each model’s strengths and address the weaknesses of individual models, im-
proving overall prediction accuracy and robustness. Second, a single model might overfit
the training data, leading to poor performance on new data. Model fusion helps mitigate
this risk by incorporating diverse learning strategies and perspectives, thus enhancing
generalization. Additionally, different models may react differently to noise and outliers
in the data; combining multiple models can reduce the errors introduced by any single
model and increase overall result stability. Finally, various models might use different
feature sets, algorithms, or training methods, and model fusion can effectively utilize these
diverse information sources to better handle complex data. In summary, model-level fusion
combines the strengths of multiple models to improve prediction accuracy and overall
model performance. Choosing the appropriate fusion method depends on the problem
requirements and the nature of the data.

In satellite CO2 reconstruction, due to the presence of heavy clouds (or aerosols)
and the limitation of satellite orbits, there is a large amount of missing data in satellite
inversion, which limits the study of global CO2 sources and sinks. Therefore, satellite
CO2 reconstruction using data fusion methods is a potential endeavor. Data fusion can
improve the spatial resolution and temporal coverage, increase the data precision and
accuracy, and enhance the spatial coverage. By integrating information from different data
sources, data fusion can generate more detailed, continuous, and comprehensive maps
of CO2 distribution, contributing to an in-depth understanding and study of the carbon
cycle process.

Data fusion can be performed based on statistics, modeling, and learning algorithms.
The choice of the specific method depends on the nature of the data, the purpose of the
fusion, and the application requirements. These three approaches are described below to
help understand satellite CO2 data reconstruction better.

3.2.1. Data Fusion Method Based on Statistics

The use of statistical-based data fusion methods is a commonly used data fusion
technique that integrates information from multiple data sources by applying statistical
principles and methods to obtain more accurate and reliable estimates. Table 8 shows the
results achieved by researchers in recent years in satellite CO2 data reconstruction using
statistics-based data fusion methods.

Table 8. Data fusion method based on statistics.

Method Year Contribution Reference

Ensemble Median Algorithm 2013 Generated a new dataset with seven inversion algorithms [110]
Physical data fusion 2014 Generated global land CO2 distribution map [111]

Spatiotemporal data-fusion 2014 Generated CO2 distribution maps with high spatiotemporal resolution [112]

Fixed Rank Kriging 2015 GOSAT and AIRS data were fused to obtain the near-surface CO2
concentration [113]

High-Precision Surface Albedo Model Data Fusion 2017 Obtained the global distribution of CO2 with higher accuracy [114]

Spatiotemporal Kriging 2023 Global spatiotemporal continuous XCO2 dataset from April 2009 to
December 2020 [107]
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In 2013, Reuter et al. [110] applied an ensemble median merging algorithm (EMMA)
and used grid-weighted averaging to fuse CO2 data, resulting in a new dataset. In 2014,
Jing et al. [111] fused measurements from GOSAT and SCIAMACHY and proposed a data
imputation method based on spatial correlation structures of CO2 concentrations. This
method enabled the creation of high-spatiotemporal-resolution global land CO2 distribution
maps. Hai et al. [112], in the same year, employed dimensionality reduction Kalman
smoothing and a spatial random effects model to merge CO2 observational data from
GOSAT, AIRS, and OCO-2 satellites. In 2015, Zhou et al. [113] introduced an improved
fixed-rank Kriging method based on GOSAT and AIRS data. The results demonstrated
a better correlation between the fused dataset and meteorological analysis data. In 2017,
Zhao et al. [114] introduced a method called High-Precision Surface Albedo Model Data
Fusion (HSAM-DF). This approach utilized geological–chemical model CO2 concentration
outputs as a driving field and ground-based CO2 concentration observations as accuracy
control conditions to merge two types of CO2 data. In 2023, Meng et al. [107] used XCO2
inversion data from GOSAT and OCO-2 to create a global continuous spatiotemporal
XCO2 dataset called “Mapping-XCO2”. Mapping-XCO2 revealed the spatiotemporal
characteristics of global XCO2 similar to those observed in the CarbonTracker model data.

Statistically based data fusion methods can derive spatial and temporal distributions
of XCO2. These distributions are more accurate, have higher resolution, and span longer
periods than the results generated based solely on a single satellite dataset.

3.2.2. Data Fusion Method Based on Model Simulation

Model-based simulation is a common approach to data fusion, mainly using chemical
transport models (CTMs) to simulate atmospheric CO2. CTMs can infer the distribution of
CO2 concentrations and fluxes in various regions of the globe and, at the same time, correct
the simulation results using observational data to improve their accuracy. Commonly used
CTMs include CarbonTracker and GEOS-Chem. They obtain optimized carbon flux and
CO2 concentration distributions in various regions of the globe by assimilating data such as
bottle-sampled CO2, continuous CO2 series from towers, and XCO2 detected by satellites.
These two commonly used chemical transport models are described in detail next.

(1) GEOS-Chem

GEOS-Chem is a global chemical transport model dedicated to simulating chemical
reactions and transporting substances in the atmosphere [115]. The model employs a
high-resolution, three-dimensional grid to reflect atmospheric changes in space and time
accurately. It fully accounts for many critical atmospheric processes, including radiation,
convection, turbulence, wet and dry deposition, and chemical reactions. GEOS-Chem
is particularly notable for its broad applications in atmospheric composition modeling,
generating simulations of gases such as CO2, CH4, CO, and isoprene with spatial and
temporal continuity. It has been extensively used to evaluate satellite-detected XCO2 data
as well as ground-based observations.

GEOS-Chem is a 3D Eulerian transport model with a spatial resolution of 4◦ × 5◦,
containing 47 vertical levels, with coverage extending from the surface to a height of
0.01 hectopascal. During assimilation, the model uses a four-dimensional variational
(4D-Var) approach by iterating the model’s equations to minimize the cost function J:

J(c) =
1
2

N

∑
i=1

( fi(c)− yi)
TS−1

o,i ( fi(c)− yi) +
1
2
(c − ca)

T(Sc
a)

−1(c − ca) (1)

where N is the number of time steps of the observation data, c is the optimized model
state, fi(c) is the observation data at the ith time step, yi is the observation operator, the
model state c is transferred to the observation space, So,i is the observation error covariance
matrix at the ith time step, ca is the background estimation, and Sc

a is the background error
covariance matrix.
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Before the reconstruction of satellite CO2 data, it is critical to assess the applicability
of chemical transport models in CO2 simulations through ground-based observations of
atmospheric CO2 and satellite-measured XCO2 [116]. Several studies have investigated the
contribution of terrestrial ecosystems to atmospheric CO2 concentrations through chemical
model simulations. In 2011, Feng et al. [117] evaluated the accuracy of a global chemical
transport model for CO2 simulations from 2003 to 2006 using ground-based observations,
aircraft measurements, and AIRS satellite data. In 2013, Lei et al. [118] compared and
assessed the spatial and temporal variations in atmospheric CO2 between June 2009 and
May 2010 using XCO2 from two datasets, GOSAT and GEOS-Chem, and analyzed the
CO2 differences between the Chinese land region and the U.S. land region to demonstrate
the satellite observations and model simulations’ rationality and uncertainty. In 2017, Li
et al. [119] evaluated regional chemical modeling simulations of CO2 concentrations in
2012 using GOSAT observations and ground-based measurements.

Due to limitations in data availability and precision, the spatiotemporal patterns of
XCO2 have not been well characterized at the regional scale. Researchers have utilized
XCO2 data from GOSAT to investigate the spatiotemporal patterns of XCO2 in the Chinese
region. They employed a high-resolution nested grid GEOS-Chem model to construct
XCO2 [120]. In 2017, Zhang et al. [121] compared the results of XCO2 derived from the
fusion of TCCON measurements with the GEOS-Chem model to the satellite observations.
They found that the global OCO-2 XCO2 estimates were closer to the HASM XCO2. The
primary methodological workflow can be seen in Figure 8.

TCCON
XCO2

GEOS-Chem
XCO2

HASM

High accuracy
XCO2 surface

Uncertainty analysis for
GOSAT and OCO-2 XCO2

Long-time
TCCON 

XCO2

Long-time
TCCON 

XCO2

GOSAT 
XCO2

Figure 8. Flowchart for obtaining high-precision XCO2 and evaluating the effectiveness of GOSAT
and OCO-2 satellite observations (Zhang et al. [121]).

GEOS-Chem is essential in atmospheric chemistry, air quality research, climate change,
and pollution management. However, CTM simulations require a higher level of cer-
tainty, primarily due to the limited knowledge of a priori fluxes, errors in the simulated
atmospheric transport processes, and inaccuracies in the observational CO2 data being
assimilated, particularly satellite-acquired data.

Errors in the representation of atmospheric transport in chemical transport models
have long been recognized as a major source of uncertainty in atmospheric CO2 inver-
sion analyses. Improving transport models is critical for enhancing the accuracy of CO2
inversions. Current efforts to improve model transport focus on two key areas: refining
the parameterization of unresolved transport, particularly in coarse offline CTMs, and
increasing the spatial and temporal resolutions of model simulations to better capture
atmospheric transport processes. As transport models evolve, it will be crucial to regularly
evaluate their ability to accurately represent large-scale atmospheric dynamics [122].
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(2) CarbonTracker

CarbonTracker is a CO2 measurement and modeling system developed by NOAA
to track CO2 sources and sinks globally [123]. The CarbonTracker model typically uses
the Transport Model 5 chemical transport model to simulate the atmospheric transport of
CO2 and other trace gases. It integrates ground-based observatories, airborne observations,
satellite observations, and model simulations to provide high-resolution estimates of CO2
concentration and spatial distribution through data assimilation techniques. The current
release is CarbonTracker 2022, which covers the period from January 2000 to December
2020 with global surface–atmosphere CO2 flux estimates.

In CO2 flux inversion, errors induced by atmospheric transport models can contribute
to the uncertainty in inferring surface fluxes, in addition to biases in XCO2 retrieval.
Furthermore, model grid cells are often relatively coarse and may have different representa-
tional capabilities compared to satellite observations. Therefore, analyzing the differences
between the simulated CO2 and satellite-derived results and assessing the uncertainty
in model transport outcomes is crucial. To better understand CO2 trends in the Asian
region, Farhan Mustafa and colleagues conducted a comparison in 2020 between XCO2
obtained from CarbonTracker and XCO2 obtained from GOSAT and OCO-2 satellite obser-
vations [124]. The results revealed good consistency between CarbonTracker and the other
two satellite datasets, allowing the use of any of these datasets to understand CO2 in the
context of carbon budgets, climate change, and air quality.

CarbonTracker reconstructs atmospheric carbon emission and absorption processes by
integrating multiple observations and simulation models. Satellite CO2 data are crucial in
this process, as they provide high temporal and spatial resolution observations that can
compensate for the lack of ground-based observations, monitor carbon emission sources
and sinks, and validate and improve models. However, due to the coarse spatial resolution,
XCO2 data extracted by CarbonTracker may not capture the spatial heterogeneity of CO2.

In the field of carbon dioxide reconstruction, in addition to commonly used physi-
cal models like GEOS-Chem and CarbonTracker, many other models are widely applied.
Numerical Weather Prediction (NWP) models, such as WRF, provide high-precision meteo-
rological background data and can be coupled with Chemical Transport Models (CTMs)
like CAMS (Copernicus Atmospheric Monitoring Service) to enhance the simulation of
CO2 transport [125,126]. Radiative Transfer Models (RTMs), such as MODTRAN and
SCIATRAN, simulate the propagation of light through the atmosphere, providing a crucial
foundation for satellite remote sensing inversion [127]. Additionally, General Circulation
Models (GCMs), like the GISS model, aim to simulate atmospheric circulation in the global
climate system and are often combined with CTMs for long-term climate analysis [128]. By
integrating observational data across varying temporal and spatial scales, these models
enable the accurate reconstruction of atmospheric CO2 distribution and trends, providing
essential scientific support for addressing climate change.

3.2.3. Data Fusion Method Based on Learning Algorithms

Data fusion methods based on learning algorithms belong to emerging technologies.
They utilize neural networks, integrated learning, Convolutional Neural Networks, Gen-
erative Adversarial Networks, and transfer learning to learn and fuse information from
multiple data sources automatically [129]. Learning algorithms are widely used in ac-
tion recognition [130], image enhancement [131,132], and semantic segmentation [133,134].
These methods reveal complex relationships between data by training on a large amount
of data, extracting feature representations, and merging information from different data
sources to obtain more accurate and comprehensive data fusion results [135].

Machine learning methods utilize existing observations and associated features as
inputs, and models are trained to learn data relationships to predict and fill in missing
data [136,137]. Deep learning methods, on the other hand, utilize deep neural network
models for satellite data reconstruction. These deep learning models have multiple hidden
layers to learn more advanced feature representations from the data [138–140]. The suc-
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cess of machine learning and deep learning methods in satellite CO2 data reconstruction
depends on adequate training data and appropriate feature engineering.

With the assistance of multi-source data, even simple multiple linear regression models
can obtain good fitting results. However, due to the complexity of CO2 transport processes
between terrestrial ecosystems, marine ecosystems, and the atmosphere, linear models face
the challenge of having an inadequate fitting ability. To overcome this challenge, studies
have been conducted in recent years to apply machine learning to derive continuous XCO2
distributions and to reconstruct satellite CO2 data. Table 9 summarizes the results of data
fusion methods based on learning algorithms achieved by researchers in satellite CO2 data
reconstruction in recent years.

Table 9. Data fusion method based on data fusion.

Method Year Contribution Reference

Multi-layer Perceptron 2019 Successfully filled the data gaps in satellite observations [141]
Compressive Sensing 2020 Combines GOSAT and OCO-2 XCO2 data [142]

Light Gradient Boosting Machine 2020 Reconstructed data gaps in the retrieved data from OCO-2 satellite [143]
Extreme Random Tree 2022 Proposed continuous atmospheric CO2 concentration reconstruction method [144]

Random Forest 2022 Reconstructed the daily variations of XCO2 with full spatial coverage in the
Beijing-Tianjin-Hebei region [145]

Geographically Weighted Neural Network 2022 Reconstructed the CO2 concentration product of OCO-2 and generated CO2
dataset for China [146]

Artificial Neural Network 2023 Derived monthly-scale contiguous XCO2 data across China from 2003 to 2019
with 0.25◦ resolution [147]

In 2019, Siabi et al. [141] employed a Multi-layer Perceptron (MLP) model to establish a
nonlinear relationship between OCO-2 satellite XCO2 and various data sources, successfully
filling the gaps in satellite observation data. In 2020, Phuong Nguyen et al. [142] creatively
combined compressed sensing and deep learning into a single framework to merge GOSAT
and OCO-2 XCO2 data. Compared to the original data, the fused dataset exhibited Root
Mean Square Errors ranging from 1.31 ppm to 4.12 ppm, enhancing the spatiotemporal
resolution of long-term analysis. He et al. [143] developed a LightGBM (Light Gradient
Boosting Machine)-based CO2 reconstruction model that achieved strong objective fitting
accuracy. This model filled gaps in OCO-2 inversion data for the Chinese region from
2015 to 2018, with a cross-validation R² of 0.95 and an RMSE (Root Mean Square Error) of
0.91 ppm.

In 2022, Li et al. [144] proposed a high spatial and temporal resolution and spatial and
temporal continuum method for reconstructing atmospheric CO2 concentration. As shown
in Figure 9, they integrated data from OCO-2 satellite observations by selecting environ-
mental factors that affect atmospheric CO2 concentration and used an extreme random tree
(ERT) model for training to determine the relationship between environmental factors and
the atmospheric CO2 concentration. With this method, they generated spatiotemporally
continuous atmospheric CO2 concentration data on a global continental scale. Validation
results show that these reconstructed CO2 data exhibit satisfactory performance.
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Figure 9. Schematic of the extremely randomized tree model for the estimation of CO2.
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In 2022, Wang et al. [145] successfully reconstructed the daily variation in the CO2
column concentration in the Beijing–Tianjin–Hebei region with full spatial coverage by
analyzing the sources of atmospheric CO2 and various factors affecting the spatial distri-
bution of CO2, using multi-source satellite data and a random forest model. Compared
with direct CO2 satellite observation data, these reconstructed CO2 data can achieve daily
global coverage and have richer application value. In addition, in 2022, Zhang et al. [146]
proposed an innovative geographically weighted neural network (GWNN) model by com-
bining a neural network model with a geographically weighted regression (GWR) model,
which can effectively capture the spatial heterogeneity of CO2 and further improve the
model’s accuracy.

There are a few longer time scales and more comprehensive studies of multiple
satellites in China. In 2023, Zhang et al. [147] planned to use machine learning techniques
to create a long-term, monthly XCO2 dataset with missing data filled in and analyze its
spatial and temporal variability in depth. As shown in Figure 10, the spatial gradient
of CO2 is not very significant due to its long lifetime in the atmosphere and continuous
accumulation. When dealing with XCO2 filled with missing data, it is more challenging
to construct a machine learning model, which requires careful consideration of its spatial
variation and influencing factors. To this end, Zhang et al. [147] utilized near-infrared
CO2 observation satellites, including SCIAMACHY, GOSAT, and OCO-2, as well as a
variety of auxiliary data such as emissions, vegetation, and meteorology. In a framework
based on Convolutional Neural Networks, deep convolution and attention mechanisms
are employed while focusing on the correlation between nearest neighbors. The specific
methodology is described below.

SCIMACHY
BESD-XCO2

GOSAT
ACOS-XCO2

OCO-2
ACOS-XCO2

Emission

Vegetation

Meteorology

CT Model

Monthly Mean

Regrid

Retrieval
Adjustment

Monthly Grid Testing Set Training Set

：Generate Prediction Set

Machine Learning Model Gap-filled XCO2 dataset

Predict

：Interpolation, training, prediction

Figure 10. The workflow of Zhang et al.’s [147] study.

(1) Data preprocessing

XCO(ij)
2 = ∑ wkXCO(k)

2 / ∑ wk (2)

where XCO(k)
2 is the XCO2 data in a given monthly grid, and wk is the inverse square of the

precision, which is the uncertainty in the standard deviation for the SCIAMACHY dataset
and the a posteriori error in XCO2 for GOSAT and OCO-2. Zhang et al. [147] chose data
with an ‘xco2_quality_flag’ value of 0 and excluded outliers of more than four times the
standard deviation each month.

In the CarbonTracker model, Zhang et al. [147] used auxiliary data to calculate XCO2
by employing 25 levels of CO2 profile data as constraints and reference values for the
machine learning model. In this process, they used a pressure weighting function, which is
formulated as follows:

XCO2 =
∑N

i=1 ciui∆pi

∑N
i=1 ci∆pi

, ∆pi = pi − pi−1 (3)
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ci =
1 − qi
gMdry

(4)

where pi and pi−1 are the bottom and top pressures of the i-th layer, respectively. ui is
the CO2 mixing ratio in the dry air of layer i. ci is the column density of dry air per unit
pressure. qi, g, and Mdry are the specific humidity, gravitational acceleration, and molar
mass of the dry air, respectively. To minimize discontinuities, monthly averaging was
performed by Zhang et al. [147]. Meanwhile, CT-XCO2 was used as a spatial constraint
only. Then, all auxiliary variables were aggregated to a resolution of 0.25◦ × 0.25◦. To
increase the resolution, bilinear interpolation was used.

(2) Machine learning model

In this study, to utilize the observed data, Zhang et al. [147] selected the first N
nearest-neighbor data points of each valid XCO2 data point and used the corresponding
XCO2 values as inputs. Meanwhile, to combine the influencing factors, they selected a
size of 7 × 7 in the region centered on each XCO2 observation. To handle the C auxiliary
variables, they designed a data block with dimensions (7, 7, 18), where 7 represents the
spatial dimensions of the data block and 18 represents the number of channels. Through
experiments, they found that Convolutional Neural Networks (CNNs) performed more
effectively with these high-dimensional data. Considering the different characteristics of
the channels, they concluded that a uniform convolutional kernel was not suitable and
decided to use depthwise separable convolution and attention mechanisms to achieve
better results.

As shown in Figure 11, Zhang et al. [147] proposed a machine learning network with
the structure shown below. This architecture first took a data block consisting of each
variable as input. A double convolution–activation operation was performed after channel
and spatial attention processing, followed by spreading. Distance and XCO2 values of N
points around each valid grid point were used as inputs. To integrate the time and latitude
variations, the time, latitude, and global CO2 background values were also introduced as
auxiliary inputs.

(3) Model training

Zhang et al. [147] used MAE (Mean Absolute Error) and RMSE as monitoring metrics
in model training. To assess the accuracy of the model, they randomly divided all valid
data and kept 30% of the whole dataset as the validation set, which was not involved in
training but was used to validate the model’s performance. Meanwhile, predictive ability
is also a critical assessment method. Zhang et al. [147] generated a long-term XCO2 dataset
using a model trained for prediction and evaluated it against satellite observations, model
simulations, and ground-based observations.
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Figure 11. The architecture of the machine learning model (Zhang et al. [147]).

Data fusion methods based on learning algorithms in satellite CO2 data reconstruc-
tion can significantly improve data accuracy and processing efficiency. For the carbon
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satellite data reconstruction methods, this paper provides a comparative analysis of the
reconstruction results (Table 10), making them easier for readers to further understand
and reference.

Table 10. Comparative analysis of the reconstruction results.

Spatial Resolution Accuracy Study Region Data Accessibility Reference

0.1◦ - Regional N [143]
0.01◦ 1.79 ppm Global N [144]
0.05◦ 1.68 ppm Regional N [145]
0.1◦ 1.66 ppm Regional N [146]

0.25◦ 0.96 ppm Regional N [147]

Based on the research conducted by the authors of this paper, it has been observed
that the currently popular deep learning algorithms are scarcely applied in the field of CO2
data fusion. As shown in Table 11, we compiled a list of deep learning algorithms that
can potentially be used in the field of data fusion, providing readers with a reference for
further exploration.

Table 11. The mainstream deep learning algorithms in data fusion.

Method Brief Introduction Reference

LSTM LSTM is a type of RNN designed to capture long-range dependencies in
sequential data [148]

Transformer Transformer is a neural network that revolutionized natural language
processing (NLP) [149]

Informer Informer is a deep learning model designed for time series forecasting tasks [150]

TimesNet TimesNet is a deep learning model that demonstrates exceptional performance
across various time series analysis tasks [151]

TiDE Long-term Forecasting with TiDE: Time series Dense Encoder [152]

In the field of CO2 data fusion, the vast majority of current research papers primarily
focus on the fusion of multiple data sources, with very limited mention of methods for the
fusion of multiple heterogeneous data sources. Multiple data source fusion predominantly
concerns the integration of data from the same data types, whereas the fusion of multiple
heterogeneous data sources comprehensively integrates data from different types and
characteristics. Therefore, in the domain of satellite CO2 data reconstruction, the fusion of
multiple heterogeneous data sources allows for a more comprehensive consideration of the
strengths and limitations of various data sources, ultimately providing more accurate and
reliable CO2 concentration information.

3.3. Summary of Satellite CO2 Reconstruction Methods

In the field of satellite CO2 data reconstruction, both interpolation methods and
data fusion methods play crucial roles. Interpolation methods are employed to address
missing data in the spatial and temporal dimensions, utilizing techniques such as Kriging
interpolation and temporal interpolation to fill in the gaps. Data fusion methods, on the other
hand, integrate CO2 concentration data from different sources, including satellite data, ground
station data, and model-generated data, thereby enhancing the spatiotemporal coverage and
accuracy of the data. This fusion can be achieved through combining satellite data with
ground station data, and model data with satellite data, as well as integrating data from
multiple sensors. Looking ahead, with the continuous advancement of technology, satellite
CO2 data reconstruction is expected to become more precise, comprehensive, and effective
in monitoring and understanding the spatiotemporal variations in CO2 concentration in the
Earth’s atmosphere.

4. Super-Resolution Reconstruction Methods

Image super-resolution reconstruction aims to reconstruct a natural and clear high-
resolution (HR) image from one or more low-resolution (LR) images. Image super-
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resolution algorithms can be broadly categorized into three groups based on their re-
search methods: interpolation-based super-resolution algorithms, reconstruction-based
super-resolution algorithms, and learning-based super-resolution algorithms [153].

In remote sensing, super-resolution reconstruction methods are widely used to en-
hance the detail and clarity of satellite images. These methods benefit various fields such
as geology, climatology, environmental science, agriculture, oceanography, and urban
planning [154–157]. In the following sections, we will elaborate on the three classification
methods of super-resolution reconstruction and discuss the application and potential of
super-resolution reconstruction technology in satellite CO2 data reconstruction.

4.1. Interpolation-Based Image Super-Resolution Algorithm

The interpolation method is a simple and fast image super-resolution algorithm that
effectively improves image resolution. Its classification topological framework is shown
in Figure 12. The two super-resolution reconstruction methods, traditional interpolation
and guided interpolation, are described below. Traditional interpolation methods (such as
nearest-neighbor, bicubic, and bilinear interpolation) are based on geometric calculations
of pixel values without involving image feature extraction and analysis. These methods
are generally faster but may be less effective in handling complex image structures; their
commonality is that they rely on straightforward mathematical operations based on pixel
values for interpolation. In contrast, guided interpolation methods (such as edge-guided,
gradient-guided, and wavelet transform interpolation) use specific image features (like
edges, gradients, or frequency components) to guide the interpolation process, thereby
enhancing the preservation of image details and edges. Their commonality lies in their
reliance on image feature analysis to improve the interpolation results. Table 12 compares
each reconstruction algorithm based on the interpolation method.

implicit method explicit method

Super-resolution reconstruction 
method based on interpolation

Traditional
interpolation

Guided
interpolation

Nearest neighbor 
interpolation

Bilinear 
interpolation

Bicubic 
interpolation

Based on edge 
information

Based on nonlocal 
averaging

Based on wavelet 
transform

Implicit method Explicit method

Figure 12. Classification of image super-resolution algorithms based on interpolation.

(1) Traditional interpolation algorithm

Traditional interpolation methods do not consider the structural information of the
image but are based on simple geometric operations of pixel values. For example, nearest-
neighbor interpolation directly assigns the grey value of the nearest pixel as the interpola-
tion result; bilinear interpolation calculates new pixel values through linear interpolation
based on the nearest four pixels; and bicubic interpolation uses more complex cubic inter-
polation functions to achieve smoother results.

Nearest-neighbor interpolation [158,159] assigns the grey value of the pixel closest in
Euclidean distance to the interpolating point as its interpolated grey value. The formula is
as follows:

G(i + u, j + v) = G(i + j) (5)

where u, v are floating point numbers in the [0, 1) interval, and G(i + j) is the pixel value of
the low-resolution image at (i, j).

Although nearest-neighbor interpolation is a simple interpolation algorithm with a
low level of complexity and ease of implementation, it tends to produce aliasing artifacts
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and discontinuities in image intensity. This is because it does not take into account the
influence of other neighboring pixels on the target interpolated point, especially when
applied to higher-resolution images. To address the issue of aliasing artifacts caused
by the neglect of interactions between adjacent pixels in nearest-neighbor interpolation,
researchers introduced bilinear interpolation [160–162].

The bilinear method primarily addresses the image interpolation problem by linearly
interpolating four adjacent pixel points in both vertical and horizontal directions. The
formula is as follows:

G(i + u, j + v) = (1 − u)(1 − v)G(i, j) + (1 − u)vG(i, j + 1)+

u(1 − v)G(i + 1, j) + uvG(i + 1, j + 1)
(6)

Although the bilinear interpolation method has improved the resolution of image
greyscale discontinuity problems, the interpolated image may still exhibit noticeable detail
degradation, especially when high-frequency information is severely affected.

Researchers extended bilinear interpolation to propose bicubic interpolation. Bicubic
interpolation expands the neighborhood from four adjacent pixels to sixteen adjacent
pixels and employs weighted averaging after applying cubic interpolation polynomials
for image interpolation and reconstruction. This method uses cubic polynomials as the
interpolation functions:

S(w) =


|w|3 − 2|w|2 + 1, 0 ≤ |w| ≤ 1

−|w|3 + 5|w|2 − 8|w|+ 4, 1 ≤ |w| ≤ 2
0, |w| ≥ 2

(7)

w is the weight or distance parameter used in the interpolation process. S(w) is a
piecewise cubic function that provides weights in different ranges depending on the value
of w. The interpolation formula is as follows:

G(i + u, j + v) = A · B · C (8)

wherein
A =

∣∣S(1 + u) S(u) S(1 − u) S(2 − u)
∣∣ (9)

B =

∣∣∣∣∣∣∣∣
G(i − 1, j − 1) G(i − 1, j + 0) G(i − 1, j + 1) G(i − 1, j + 2)
G(i + 0, j − 1) G(i + 0, j + 0) G(i + 0, j + 1) G(i + 0, j + 2)
G(i + 1, j − 1) G(i + 1, j + 0) G(i + 1, j + 1) G(i + 1, j + 2)
G(i + 2, j − 1) G(i + 2, j + 0) G(i + 2, j + 1) G(i + 2, j + 2)

∣∣∣∣∣∣∣∣ (10)

C =

∣∣∣∣∣∣∣∣
S(1 + v)

S(v)
S(1 − v)
S(2 − v)

∣∣∣∣∣∣∣∣ (11)

A is a row vector containing the values of the function S at the points 1 + u, u, 1 − u,
and 2 − u; B is a matrix containing the specific values of the function G around the points
(i, j); and C is a column vector containing the values of the function S at the points 1 + v, v,
1 − v, and 2 − v.

The double-cubic interpolation method fully considers the influence of each pixel on
the target interpolation point, which improves the reconstruction quality but increases the
computational complexity and volume significantly.

Because these algorithms are designed based on the assumption of local smoothness
in images, they may not perform well in regions with high-frequency information, such
as edges or textured areas, where pixel intensity changes are abrupt. In these regions,
traditional interpolation algorithms may fail to produce satisfactory results. Additionally,
as the magnification factor increases, issues like ringing artifacts and aliasing effects can
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arise. Therefore, researchers have proposed guided interpolation methods to address
these challenges.

(2) Guided interpolation algorithm

Guided interpolation methods utilize specific image information (such as edges or
gradients) to enhance the interpolation effects. For example, edge-guided interpolation
identifies edges in the image and aims to preserve their sharpness during interpolation;
gradient-guided interpolation uses gradient information to guide the process, ensuring
that areas with significant gradient changes (such as edges) are handled better; and wavelet
transform interpolation employs wavelet transforms to decompose the image and guide
interpolation using frequency domain information, thereby preserving more details.

Edge-guided interpolation methods [163–165] are primarily used to enhance edge
information in RGB (Red, Green, Blue) color images, addressing the perceptual impact of
human vision characteristics on image edges. Li et al. [163] introduced the edge-guided
NEDI (New Edge-Directed Interpolation) algorithm, which utilizes the local covariance of
edges in the LR image to reconstruct edge information similar to that in the HR image, thus
improving edge sharpening. However, this algorithm is computationally intensive and has
limited practical applications. Building on the NEDI algorithm, Zhang et al. [165] proposed
an adaptive interpolation method to optimize the structural information between LR and
HR images, leading to more comprehensive image structural and edge information.

Gradient-guided interpolation [166,167] uses first- and second-order gradient infor-
mation from the neighborhood to adjust gradient and pixel distributions. It combines
edge-guided interpolation with bicubic interpolation for image reconstruction.

Wavelet transform interpolation [168–170] leverages the wavelet transform’s ability to
capture local details. It decomposes image features into different scales for analysis, then
overlays and fuses these features, and uses wavelet inverse transform to enhance resolution.
Ford et al. [169] used one-dimensional wavelet signals for nonuniform image sampling
reconstruction, while Nguyen et al. [170] extended this approach to two-dimensional
signals and reconstructed LR images within a multi-resolution framework.

Most interpolation-based image super-resolution algorithms are relatively simple
and computationally efficient, but they cannot recover lost high-frequency details and
have limited accuracy. Therefore, interpolation-based super-resolution algorithms are
often used as preprocessing methods, where the interpolated image serves as the initial
super-resolution result, which is then combined with other methods to further enhance the
high-frequency information.

Table 12. Comparison of image reconstruction algorithms based on interpolation.

Algorithm Principle Computational
Complexity

Computational
Speed

Algorithmic
Flexibility Image Quality

Nearest-neighbor interpolation Traditional interpolation Low Fast Strong Poor
Bilinear interpolation Traditional interpolation Lower Faster Stronger Worse
Bicubic interpolation Traditional interpolation Medium Slow Weak Medium

Edge-directed interpolation Guided interpolation Medium Slow Stronger Better
Gradient-guided interpolation Guided interpolation High Slow Weaker Medium

Wavelet transform interpolation Guided interpolation High Slower Medium Better

4.2. Reconstruction-Based Image Super-Resolution Algorithm

Reconstruction-based super-resolution methods are widely used in image processing
and are primarily categorized into frequency domain and spatial domain approaches [171].
These methods reconstruct the high-resolution image by extracting necessary feature
information from multiple low-resolution images and estimating the HR image details.

4.2.1. Frequency Domain Method

Image super-resolution algorithms based on frequency domain reconstruction are
used to improve the resolution of images by eliminating spectral aliasing in the frequency
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domain. Patti et al. [172] first proposed to eliminate the spectral aliasing of LR images in
the Fourier transform frequency domain and Fourier transform of multiple LR images to
realize super-resolution image reconstruction. The frequency domain method improves
the computing speed and image accuracy. However, the frequency domain-based method
cannot utilize the a priori knowledge in the image null domain and is only suitable for
the overall translation and spatially invariant model, which makes it difficult to solve
the image noise problem. Thus, most of the research mainly focuses on studying image
super-resolution algorithms based on null domain reconstruction.

4.2.2. Spatial Domain Method

Image super-resolution algorithms based on spatial domain reconstruction can conve-
niently and flexibly incorporate various prior knowledge and use this prior information as
a constraint condition to ensure that the iterative solution process converges to an optimal
or local optimal solution. Spatial domain-based image super-resolution algorithms mainly
include nonuniform interpolation [173], iterative back-projection [174], convex set projec-
tion [175], and maximum a posteriori probability methods [176]. Table 13 comprehensively
presents the characteristics and performance of reconstruction-based image reconstruction
methods in terms of prior information dependence, the feasibility of unique solutions,
computational complexity, processing speed, algorithm flexibility, and reconstructed im-
age quality.

Table 13. Comparison of image reconstruction algorithms based on reconstruction.

Algorithm Prior Information Computational
Complexity

Computational
Speed

Algorithmic
Flexibility Image Quality

Frequency domain method Weak dependency Low Slow Weaker Poor
Nonuniform interpolation method Strong dependency Lower Slower Weak Medium
Iterative back-projection method Stronger dependency Medium Fast Weak Medium

Convex projection method Weaker dependency High Slower Stronger Better
Maximum a posteriori probability method Weaker dependency Higher Faster Stronger Better

(1) Nonuniform interpolation

The nonuniform interpolation method [173] works by fitting or interpolating the
feature information from nonuniformly distributed LR images to generate uniformly
distributed HR image features, thereby achieving super-resolution reconstruction. While
this algorithm is effective for reconstruction, it depends heavily on having sufficient a priori
information, which can limit its flexibility.

(2) Iterative inverse projection method

Irani et al. [174] proposed the iterative back-projection approach. The iterative back-
projection algorithm first estimates a high-resolution image x0 as the initial solution, then
generates a low-resolution image x0 by simulating noise interference, and finally projects
the difference between the real low-resolution image y and y0 back onto x0. The low-
resolution image y0 and the iterative image x1 are shown in Equation:

y0 = Hx0 + n (12)

x1 = x0 + HBP(y − y0) (13)

where y0 represents the simulated low-resolution image, H is the projection matrix, x0 is
the initial estimation of the high-resolution image, n represents noise, x1 is the final result
image obtained after the first iteration, HBP represents the back-projection matrix, and y
represents the actual observed low-resolution image after back-projection. To compare the
two images y and y0, if their values are equal, it indicates that the two images are the same,
and the iteration stops. If the values of y and y0 are not equal, the error between the two
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images needs to be back-projected onto x0, and x0 is updated and corrected accordingly.
This process continues until the error meets the desired criteria.

The iterative back-projection method addresses the issue of high dependence on a
priori information in super-resolution image reconstruction algorithms and effectively
improves the quality of the reconstructed images. However, it does not guarantee the
uniqueness of the reconstructed image.

(3) Projections onto Convex Sets

Stark and Oskoui [175] were the first to apply the Convex Projection Over the Union of
Sets (POCS) algorithm to image super-resolution reconstruction. The POCS method maps
the LR image into a set of HR images through interpolation, applies constraints based on
prior knowledge to this set, and then iteratively projects the initial value to find a solution
that satisfies the constraints. The iterative process of the convex set projection algorithm is
shown in the following equation:

Hi+1 = Pi · · · P1Hi (14)

where Hi+1 denotes the first i + 1 iteration of the high-resolution image, and P1 denotes
the projection matrix of any pixel point of the high-resolution image projected onto the
convex set.

The POCS algorithm can maintain the edge contour region relatively well. However,
the algorithm has high computational complexity, slow convergence speed, and strong
dependence on a priori information in each iteration.

(4) Maximum a posteriori probability method

Schultz and his team [177] introduced an algorithm based on maximum a posteriori
(MAP) estimation. The maximum a posteriori method treats the high-resolution image and
the low-resolution image as two random variables, framing the image super-resolution
reconstruction problem as a probability estimation problem to ultimately estimate the
final high-resolution image. The maximum a posteriori estimation algorithm process is as
follows. First, assume that the known image A is the original low-resolution image, image
B is the reconstructed high-resolution image, and fB is the objective function:

fB = argmaxBP(B | A) (15)

Equation (15) can be converted to Equation (16) below using the Bayesian formula:

fB = argmaxB
P(A | B)P(B)

P(A)
(16)

Finally, by simplifying using logarithmic operations, Equation (16) can be converted
into Equation (17) below:

fB = argminB[−log(P(A | B))− log(P(B))] (17)

where P(A|B) denotes the conditional probability corresponding to the high-resolution
image B, and P(B) denotes the a priori probability of the high-resolution image. MAP
estimation can effectively utilize the internal information of known images and produce
high-quality reconstructed images. However, its drawbacks include complexity, computa-
tional intensity, and the suboptimal handling of image details in the reconstructed result.

Reconstruction-based image super-resolution algorithms rely on solving the degra-
dation model. Many of these algorithms incorporate a priori distribution information
of the image as a constraint, which generally results in higher performance compared
to interpolation-based methods. However, the reconstruction process primarily utilizes
internal image information, which can lead to a lack of high-frequency details in the
reconstructed image.
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4.3. Learning-Based Image Super-Resolution Algorithm

Learning-based image super-resolution methods involve using machine learning
techniques on a database of low-resolution and high-resolution image pairs to model the
mapping relationship between these images. These methods can be categorized into four
main approaches: example based, neighborhood embedding based, sparse representation
based, and deep learning based. The first three categories are considered shallow learning
algorithms, while deep learning-based approaches represent a more advanced, complex
form of learning.

4.3.1. Shallow Learning-Based Image Super-Resolution Algorithm

Shallow learning-based image super-resolution algorithms utilize relatively simple
neural network structures to achieve high-quality reconstruction of low-resolution images.
These algorithms generally recover details by learning image features through convolu-
tion and pooling layers, and then map these features to a high-resolution image using
upsampling or inverse convolution operations. The primary shallow learning-based image
super-resolution methods include example-based learning, neighborhood embedding, and
sparse representation-based techniques.

(1) Example-based learning method

The example-based learning method as developed by Freeman and others relies on a
single-image reconstruction algorithm using Markov networks [178,179]. This approach
involves applying degradation operations to original high-resolution images to create a
training image feature library. It then learns prior information from these HR images to
recover high-frequency details and features. The process is as follows.

For each input low-resolution block y, the algorithm selects the 16 most similar high-
resolution blocks as distinct states of the hidden node x. The distribution is modeled as a
conditional probability distribution, which is formulated as follows:

P(x | y) =
1
Z ∏

i,j
Ψij(xi, xj)∏

i
Φij(xi, xj) (18)

where the compatibility functions Π and Ψ represent the relationships between the ad-
jacent nodes’ high-resolution blocks and between the same node’s high-resolution and
low-resolution blocks, respectively, with Z being a normalization constant. To define
compatibility functions, nodes in the sampled image ensure that high-resolution blocks
overlap with each other. Let i and j be two neighboring blocks, dl

ji be the 1st candidate

block for block i, and dm
ij be the mth candidate block for block j. If xl

i (the 1st candidate
block for node i) and xm

j have consistent pixels in their overlapping regions, they are

considered mutually compatible. Let yl
i be the corresponding low-resolution block for xl

i .
The compatibility matrix is defined as

ψ(xl
i , xm

j ) = exp−
∣∣∣dl

ji−dm
ij

∣∣∣2/2σ2
s (19)

Φ(xl
i , yi) = exp−|y

l
i−yi|2/2σ2

i (20)

where σs and σi represent noise parameters. The optimal high-resolution block is the block
that maximizes the probability in the Markov network. Belief Propagation is introduced
to iteratively calculate the probability distribution, and an approximate solution can be
obtained in 3 to 4 iterations.

Algorithms based on example learning can effectively utilize sample libraries to
increase the high-frequency information of an image. However, the amount of searching
needed in sample libraries is huge and computationally expensive. If there is a mismatch,
it can reconstruct details that do not match the overall characteristics of the image.
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(2) Neighborhood-based embedding method

The neighborhood embedding method involves solving the k-nearest-neighbor rep-
resentation coefficients of input low-resolution image blocks within the low-resolution
image block sample set [180]. Finally, these coefficients are used to linearly combine the
neighbors in the high-resolution image block sample set to obtain the corresponding output
high-resolution image block.

In 2004, Chang et al. [181] utilized the same local structural linear properties of LR
and HR images to obtain the weights of neighboring points for the final reconstructed
image, substantially avoiding the overfitting problem in the modeling process. Chang et al.
assumed that the low-resolution image chunks have similar local geometrical properties to
the corresponding high-resolution image chunks for the near-neighbor embedding-based
super-resolution reconstruction of the image. The low-resolution test image y is divided
into overlapping image blocks of size nn, and features are extracted to form a feature vector{

f q
y

}
, q = 1, 2 · · · Q, where Q is the total number of chunks of the LR test image. For each

of them, the following operation is performed.
Step 1: In the low-resolution feature vector

{
f p
ys

}
, p = 1, 2 · · · Ps of the training set, find

the K low-resolution nearest neighbors of f q
y based on the Euclidean distance

{
f p
ys ∈ Nq

}
,

where Nq denotes the set of K nearest neighbors.
Step 2: According to the LLE (Locally Linear Embedding) algorithm[182], a method

used for dimensionality reduction, data are mapped to a lower-dimensional space while
preserving the local relationships between the data points. It computes the reconstruction
weights wqp such that the reconstruction error εq is minimized and required to satisfy the
constraints ∑ f p

ys∈Nq
wqp = 1, and for any f q

ys /∈ Nq , wqp = 1. In Formula (21), the double

vertical bars denote the norm, used to measure the size or length of a vector or matrix:

εq =

∥∥∥∥∥∥ f q
y − ∑

f q
ys∈Nq

wqp f p
ys

∥∥∥∥∥∥
2

(21)

Step 3: Keeping the weights wqp unchanged, reconstruct the high-resolution block{
f q
x

}
using the K nearest-neighbor high-resolution training blocks

{
f p
xs

}
corresponding

to
{

f p
ys ∈ Nq

}
:

f q
x = ∑

Fp
ys∈Nq

wqp f p
xs (22)

For the
{

f q
x

}
, q = 1, 2 · · · , Q superimposed low-frequency portion, which is then

merged into the target high-resolution image x, local consistency and smoothing constraints
are imposed on the neighboring blocks by taking the mean value at the overlapping
pixels again.

Neighborhood embedding methods reduce the dependence of reconstructed images
on the sample set. However, the number of nearest neighbors is fixed and lacks flexi-
bility, which is prone to over-learning or under-learning phenomena, leading to blurred
reconstruction results.

(3) Sparse representation-based methods

The sparse representation method focuses on dictionary learning and sparse coding
as the core to realize a practical improvement in the image reconstruction efficiency and
reconstruction quality [183]. The sparse coding is used to represent the image blocks. Then,
the HR image block and LR image block are captured from the sample image to form an
ultra-complete dictionary. The sparse linear representation of the sample image is obtained
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according to the dictionary, and finally, the HR image is reconstructed according to the
sparse coefficients.

Yang et al. [184] proposed image super-resolution reconstruction based on sparse
representations, where low-resolution image blocks are considered to have sparse represen-
tations for an overcomplete dictionary composed of prototype signal atoms. The authors
used sparsity as a priori information to regularize the super-resolution reconstruction
problem by randomly selecting 100,000 pairs of original image blocks from training images
with similar statistical properties to be used as dictionaries Dl and Dh. Dl consists of
high-resolution blocks, and Dh consists of low-resolution blocks. The problem is described
as finding the sparsest representation of a low-resolution block yi under dictionary Dl . The
problem is summarized as follows:

min∥α∥0 s.t∥FDlα − Fyi∥2
2 ≤ ε (23)

where α represents the sparse representation of the low-resolution image block yi, ∥α∥0
represents the L0 norm, which is the number of nonzero elements in α, s.t. is the abbrevia-
tion for subject to, which means constrained by or satisfying the following conditions, F is
the feature extraction operator, and ε is the allowable error. Donoho [185] pointed out that
when α is sparse enough, it can be equivalently minimized using the L1 norm:

min∥α∥1 s.t∥FDlα − Fyi∥2
2 ≤ ε (24)

Introducing the Lagrange factor, the problem is described as

minλ∥α∥1 +
1
2
∥FDlα − Fyi∥2

2 (25)

The parameter λ balances the sparsity of the solution and the approximation to yi.
This is a linear regression problem involving the L1 norm. Once the optimal coefficients α∗

are determined, the HR block xi = Dhα∗ is computed.
Traditional sparse representation methods reconstruct image structures by indepen-

dently considering the sparsity of image blocks. This approach can lead to a loss in fine
texture details and spatial structural features. To address this issue, Timofte et al. [186] com-
bined neighborhood embedding with sparse coding, reducing computational complexity
while constraining the relationship between image blocks and their neighborhood infor-
mation. Li et al. [187] introduced a self-learning super-resolution algorithm that merges
nonlocal self-similarity with sparse coding, effectively reducing the model training time
and enhancing robustness. Zeng et al. [188] proposed using principal component analysis
and hierarchical clustering to train a dictionary model, which differs from traditional sparse
representation methods, aiming to improve the quality of reconstructed images.

The super-resolution reconstruction algorithm based on sparse representation avoids
the artificial selection of the number of nearest neighbors, resulting in better reconstruc-
tion effects. However, challenges remain in terms of algorithm efficiency and the rapid
acquisition of more compliant dictionaries from a large set of training images.

In conclusion, shallow learning-based image super-resolution algorithms offer ad-
vantages in computational efficiency and simplicity, making them suitable for specific
scenarios. However, they may require improvements for tasks involving complex texture
and detail reconstruction, for which deep learning methods are often more effective.

4.3.2. Deep Learning-Based Image Super-Resolution Algorithm

Deep learning-based image super-resolution algorithms employ deep neural network
architectures to achieve high-quality image reconstruction. These algorithms excel in
processing complex textures, preserving details, and generating high-resolution images
by leveraging the representation learning capabilities of deep learning. They provide
advanced solutions for image super-resolution reconstruction.
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In 2014, Dong et al. [189] made a groundbreaking contribution to the field by intro-
ducing deep learning techniques for image super-resolution. They developed the first
Convolutional Neural Network-based super-resolution model, called SRCNN (Super-
Resolution Convolutional Neural Network). While SRCNN improved the speed and
reconstruction quality compared to traditional methods, it faced challenges such as com-
putational complexity and slow training convergence due to its pre-upsampling model
architecture. Additionally, the relatively simple SRCNN structure struggled to fully utilize
contextual information in images.

(1) Inverse Convolution Layer

To address the high computational cost and complex real-time application issues of
SRCNN, Dong et al. [190] proposed an improved and accelerated model in 2016 called
FSRCNN (Fast SRCNN). FSRCNN includes a feature extraction layer, a contraction layer,
a nonlinear mapping layer, an expansion layer, and an inverse convolution layer. The
main improvement in FSRCNN is the replacement of the SRCNN pre-upsampling model
framework with a post-upsampling framework. Up-sampling is performed by the de-
convolutional layer at the end of the network, which helps to reduce the computational
complexity. Additionally, FSRCNN enhances the computational efficiency by modifying
feature dimensions and sharing parameters in the mapping layer, which also contributes to
the improved quality of the reconstructed image.

(2) Subpixel layer

To reduce computational complexity and enhance efficiency, Shi et al. [191] introduced
a fast and effective super-resolution network model called ESPCN (Efficient Sub-Pixel
CNN) in 2016. Like FSRCNN, ESPCN employs a post-upsampling framework. However, it
utilizes a sub-pixel convolutional layer for up-sampling the image. The ESPCN network
consists of a hidden layer with two convolutional layers and a sub-pixel convolutional layer.
Initially, it extracts features from the low-resolution input image using the hidden layers.
Subsequently, it reconstructs the high-resolution image through the sub-pixel convolutional
layer. This approach facilitates fast and efficient end-to-end learning, yielding better
reconstruction results compared to the FSRCNN model.

(3) Residual network

In 2016, He et al. [192] introduced the concept of a residual network (ResNet) to address
the degradation problem in deep Convolutional Neural Networks caused by excessively
deep architectures. They developed a ResNet structure by stacking multiple residual blocks
as illustrated in Figure 13. Residual networks utilize skip connections between residual
blocks to enhance the transfer of image feature information across layers and alleviate the
vanishing gradient issue in deep networks. However, since feature information extracted
by each residual block must pass through these skip connections to reach the subsequent
modules, it can become increasingly complex as it propagates deeper into the network.
This complexity might result in the loss of simpler features from earlier layers.

To address the challenges associated with residual networks, researchers have pro-
posed various novel architectures based on the original ResNet framework. In 2016,
Kim et al. [193] applied ResNet (Figure 14a) to image super-resolution, introducing the
Very Deep Super-Resolution (VDSR) network model. Recognizing the similarity in low-
frequency information between low-resolution and high-resolution images, VDSR used
residual learning to focus on high-frequency details. This approach significantly reduced
training time and improved training speed.

In 2017, Lim et al. [194] built upon the SRResNet structure [195] (Figure 14b) to develop
the Enhanced Deep Super-Resolution (EDSR) network. They made a notable improve-
ment by removing the batch normalization (BN) layers from the SRResNet architecture
(Figure 14c), which had previously compromised the image quality. The removal of BN
layers not only enhanced image quality but also reduced memory usage by approximately
40%, allowing for deeper networks with similar computational resources. Lim et al. also ad-
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dressed the training instability using residual scaling, leading to significant improvements
in image quality.
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Figure 13. Structure of the residual network.
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Figure 14. Four improved residual networks.

In 2018, Li et al. [196] introduced the Multi-Scale Residual Network (MSRN) to address
limitations in utilizing low-resolution image features and handling multi-scale tasks with a
single model. The MSRN incorporated Multi-Scale Residual Blocks (Figure 14d), which
combined ResNet with convolutional kernels of varying scales to capture diverse image
features. This design allowed MSRN to fuse local multi-scale features with global features,
enhancing the performance and quality of the reconstructed image.

In 2021, Lan et al. [197] observed that many CNN-based models did not fully exploit
low-level features, leading to suboptimal performance. To address this, they introduced two
new models: the Cascading Residual Network (CRN) and the Enhanced Residual Network
(ERN). The CRN featured a cascading mechanism with multiple locally shared groups to
improve feature fusion and gradient propagation, enhancing feature extraction efficiency.
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The ERN employed a dual global pathway structure to capture long-distance spatial
features from the input, resulting in a more robust feature representation. Both CRN and
ERN achieved comparable or superior performance to EDSR while using fewer parameters.

ResNet excels in extracting feature information from low-resolution input images in
super-resolution networks through both local and global residual learning. It effectively
addresses various training and gradient issues associated with very deep networks. Con-
sequently, many super-resolution network models have adopted the concept of residual
learning to enhance network performance. Additionally, subsequent super-resolution
models have integrated residual learning with other network design strategies to achieve
improved super-resolution reconstruction results.

(4) Attention mechanisms

As network structures deepen, residual networks may struggle to capture correlations
between the image space, structure, and texture. This often results in training focusing on
low-value image regions, which can degrade the quality of reconstructed images.

To address these challenges, several advancements have been made. In 2018, Hu
et al. [198] introduced the Squeeze-and-Excitation Network, which incorporates “squeeze-
and-excitation” blocks to model interdependencies between channels, enhancing fea-
ture learning capabilities. Zhang et al. [199] integrated channel attention mechanisms
(Figure 15) with residual networks to create deeper networks that reduce interference from
low-frequency information in LR images. They proposed the ResNet in ResNet residual
structure to bypass low-frequency information, adaptively scaling features in each channel
to improve the processing efficiency and model robustness. Woo et al. [200] developed
the Convolutional Block Attention Module by combining channel and spatial attention
modules, which strengthened the network’s ability to focus on crucial image regions.

In 2019, Dai et al. [201] introduced the Second-Order Attention Network, incorporat-
ing second-order channel attention mechanisms to capture feature correlations through
covariance normalization. This approach improved feature-related learning and expression
capabilities. Xu et al. [202] proposed a binocular image reconstruction algorithm guided by
a dual-layer attention mechanism and disparity attention mechanism, tailored to enhance
image quality under varying conditions. This method preserved fine details in under-
water images despite external factors. Lu et al. [203] further advanced high-frequency
image reconstruction by incorporating hybrid attention mechanisms and long–short skip
connections, which improved the edge information and texture structure.
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Figure 15. Channel attention mechanism.

Compared to other CNN-based network models, those utilizing attention mechanisms
differentiate between essential and less important regions in the image. By assigning
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higher weights to critical regions, these models enhance feature extraction and obtain more
effective image information.

(5) Recurrent Neural Networks

Recurrent neural networks (RNNs) can achieve infinite memory depth through suc-
cessive network updates [204]. In super-resolution, RNNs apply the same module multiple
times in a recursive manner, leveraging parameter sharing within the internal module. This
allows the network to learn higher-level features without introducing excessive parameters,
thereby enhancing network performance.

Kim et al. [205] introduced the DRCN (Deeply Recursive Convolutional Network)
algorithm, which utilizes RNNs for super-resolution image reconstruction. By repeatedly
applying convolution and recursion, DRCN continuously learns the differences between
low-resolution and high-resolution images. This approach enables image information to
circulate and recurse within the network, aiming to recover high-frequency image details
and address the challenge of increasing parameter counts. Han et al. [206] proposed the
DSRN (Dual-State Recurrent Network), viewing many deep super-resolution network
structures as finite expansions of single-state RNNs with various recursive functions. The
RNN structure in DSRN operates at different spatial resolutions, employing two recurrent
states for LR and HR spaces. Through a delayed feedback mechanism, it exchanges cyclic
signals between these spaces, effectively utilizing features from both domains to produce
the final reconstructed image.

In 2019, Li et al. [207] introduced the SRFBN (Super-Resolution Feedback Network),
an image super-resolution feedback network. SRFBN refines high-level information into
low-level representations and progressively generates the final HR image, achieving im-
proved performance with fewer parameters. As depicted in Figure 16, SRFBN employs
a feedback mechanism with hidden states in a constrained RNN. It also incorporates a
curriculum learning strategy, where target HR images of increasing reconstruction difficulty
are sequentially fed into the network for continuous iteration. This strategy allows the
network to gradually learn complex degradation models and adapt more effectively to
challenging tasks.

Feedback
block

Feedback
block

Feedback
block

Feedback
block

Unfold
in time

1t  2t  3t 
LR LR LRLR

SR 1SR 2SR 3SR

...

Figure 16. SRFBN feedback mechanism.

The characteristic of parameter sharing in RNNs enables them to learn higher-level
features without introducing excessive parameters. However, RNNs still face gradient
and training issues common to deep networks. To address these challenges, RNNs are
often integrated with advanced network designs and learning strategies, such as ResNet,
multi-supervised learning, and curriculum learning. These combinations help alleviate
gradient and training problems, leading to improved network performance.

(6) Generating Adversarial Networks

Super-resolution image reconstruction algorithms based on Generative Adversarial
Networks (GANs) have demonstrated excellent performance in terms of image reconstruc-
tion quality, network complexity, and computational speed. Adversarial methods in AI
have the advantage of generating high-quality and realistic images, making them particu-
larly effective in super-resolution image reconstruction. In 2014, Goodfellow et al. [208]
introduced the concept of Generative Adversarial Networks (Figure 17), depicted in the
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structure below. Figure 17 depicts a Generative Adversarial Network with two main com-
ponents: the generator and the discriminator. The generator converts low-resolution input
into high-resolution output, while the discriminator evaluates whether these outputs are
real or fake. If the discriminator deems the data real, the generator is successful; otherwise,
the generator needs improvement. This adversarial process continuously loops, allowing
the generator to progressively produce more realistic data. In 2017, Ledig et al. introduced
the SRGAN (Super-Resolution Generative Adversarial Network) algorithm, which was
pioneering in applying adversarial training to super-resolution image reconstruction. SR-
GAN employs a generator network to produce high-resolution images and a discriminator
network to distinguish between these reconstructed HR images and the original HR images.
The generator and discriminator are trained in an adversarial manner, which enhances
the reconstruction of fine image details. Unlike traditional methods that use Mean Square
Error loss, SRGAN utilizes a perceptual loss function. This approach improves the recovery
of image details, resulting in high-fidelity and high-quality reconstructed images.

Input(LR)

Generator

Discriminator

Real?

Output(SR)

Yes

No

Figure 17. Generative Adversarial Networks.

Although the SRGAN algorithm preserves more image detail features, the use of BN
layers in the network introduces a large number of parameters, consuming a significant
amount of runtime memory and potentially degrading network performance. In response
to this issue, Lim et al. [194] proposed the EDSR algorithm by removing the BN layers.
They found that this modification did not negatively impact network training, reduced the
number of network parameters, and improved the preservation of image texture informa-
tion. Wang et al. [209] introduced the Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN) algorithm to enhance network generalization. They employed residual
scaling to accelerate deep network training and reduce computational parameters. This
resulted in reconstructed HR images with richer texture features and colors that closely
resembled the original HR images. Shang et al. [210] improved the ESRGAN algorithm by
using small kernel convolutions instead of large filters for detail feature extraction. This
change maintained network performance while reducing computational complexity and
handling noisy input more effectively.

Overall, researchers have tried to apply super-resolution techniques in scenarios with
limited computational and storage resources by designing lightweight network models and
applying search methods. Although some methods have achieved performance improve-
ments, there is still a need to balance model performance and computational complexity.

4.4. Potential of Super-Resolution Reconstruction in Satellite CO2

After discussing various super-resolution reconstruction methods, we will specifically
explore their potential applications to carbon dioxide datasets, highlighting the unique
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challenges and opportunities these methods present in the field of climate monitoring.
Super-resolution reconstruction not only improves the spatial resolution of satellite meteoro-
logical images but also enables meteorologists and climate scientists to observe and predict
weather patterns, climate change, and precipitation distribution. It provides more reliable
data for meteorological disaster monitoring and climate modeling. Therefore, it is possible
to improve the spatial resolution of the data using image super-resolution reconstruction.

However, the application of super-resolution reconstruction methods to satellite CO2
reconstruction is limited primarily due to the complexity and sparsity of the data, challenges
of applying these algorithms to atmospheric science data, high-precision requirements,
computational costs, and the difficulty of cross-disciplinary applications. Super-resolution
techniques are mainly used in image processing, while satellite CO2 reconstruction involves
complex physical and chemical processes. Applying the super-resolution reconstruction
method to satellite CO2 data is a work with great potential, and the super-resolution recon-
struction method can construct a long series satellite CO2 dataset with high precision and
high resolution, which can provide vital data support for the better application of satellite
CO2 data to the study of the small-scale carbon source-sink pattern. At the same time,
we can combine super-resolution reconstruction techniques with multi-source heteroge-
neous data fusion techniques to provide more comprehensive, accurate, and reliable CO2
concentration information.

In 2022, Ru Xiang and colleagues [211] proposed a method using bicubic interpolation
to perform the super-resolution reconstruction of CO2 data from the GOSAT satellite to
enhance the spatial resolution and accuracy of the data. As shown in Figure 18, to objectively
and quantitatively evaluate the quality of the reconstructed results, high-precision in situ
measurement data are required. However, due to the limited and sparse distribution of
TCCON stations, it is not possible to provide CO2 measurements globally, especially in
regions such as oceans, deserts, polar areas, and other sparsely populated areas. Therefore,
additional high-precision OCO-2 satellite observation data are needed to assess the quality
of the reconstructed GOSAT data. Recognizing the spatial continuity of CO2 data, Ru
Xiang and colleagues performed preprocessing on the GOSAT data by filling the missing
pixel values with the average values of their surrounding 8 pixels. They then used bicubic
interpolation to reconstruct the GOSAT data. To better evaluate the reconstructed data at a
global scale, OCO-2 data were processed into data of different resolutions using Kriging
interpolation. The specific workflow was as follows.

OCO-2
L2 V9r XCO2
（2016.01-
2016.12）

TCCON
XCO2
（2016.01-
2016.12）

Grid statistics and 
kriging

OCO-2 data
with different

resolutions

GOSAT
L3 V0.95 XCO2
（2016.01-
2016.12）

Preprocessing

OCO-2 data
with different

resolutions

Bicubic 
interpolation

Errors of global mapped XCO2

Spatio-temporal variations of errors

Global spatio-temporal continuous 
XCO2 data

（Resolution of 0.5°×0.5° from 2016.01 
to 2016.12）

Evalution

Validation

Figure 18. Research process of reconstruction of GOSAT XCO2 observations using bicubic interpola-
tion [211].
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(1) Data preprocessing

Ru Xiang et al. employed a neighborhood mean method to fill in the missing data
in the GOSAT L3 XCO2 product. As shown in Figure 19, they used a combination of
gridded statistics and Kriging to generate OCO-2 XCO2 monthly-scale data at various
spatial resolutions. Addressing the temporal scale issue of TCCON data, they obtained
TCCON monthly-scale data for different sites by averaging the daily data.

1°× 1° 1°× 1°

Averaging Kriging
0.5°× 0.5°

1.25°× 1.25°

2.5°× 2.5°

Figure 19. Data preprocessing process [211].

(2) Super-resolution reconstruction with double cubic interpolation

Bicubic interpolation is a commonly used super-resolution method, producing better
interpolation results compared to bilinear interpolation or nearest-neighbor interpolation.
The value of a pixel point (x, y) can be obtained by taking the weighted average of the
sixteen nearest sampled pixels within a rectangular grid. This method requires the use of
two cubic polynomial interpolation functions, one for each direction. The XCO2 value of
the pixel after super-resolution reconstruction is calculated using the following formula:

PXCO2(x, y) =
4

∑
i=1

4

∑
j=1

uijG(xi, yi) (26)

where PXCO2(x, y) is the XCO2 value of pixel P after reconstruction, x, y are the coordinates
of pixel P, and G(xi, yi) is the value of the nearest pixel of pixel P at the corresponding
position in the original data. There are 16 pixels in total, and i and j are the indexes of these
16 pixels, uij representing the weight of the 16 pixels, respectively, which can be computed
by the following formula:

W(x)ij =


(a + 2)

∣∣x3
∣∣− (a + 3)

∣∣x2
∣∣+ 1, |x| ≤ 1

a
∣∣x3

∣∣− 5a
∣∣x2

∣∣+ 8a|x| − 4a, 1 < |x| ≤ 2
0, other

(27)

where W(x)ij denotes the weight of each pixel, and x denotes the distance of each pixel to
the corresponding position of pixel P in the original data. The double triple convolutional
interpolation kernel is typically configured with the parameter a set to −0.5, as this value
provides the best fit for the intended applications.

(3) Verification of the accuracy of GOSAT reconstruction results based on TCCON, OCO-2.

In the evaluation, the MAE, MSE, and Average Relative Error (AVER) are used to
describe the accuracy of data. The following formulas define them:

MAE(XCTCCON , XCSAT) =
1
n

n

∑
1

∣∣∣xTCCON
ci − xSAT

ci

∣∣∣ (28)
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MSE(XCTCCON , XCSAT) =
1
n

n

∑
1
(xTCCON

ci − xSAT
ci )2 (29)

AVER(XCTCCON , XCSAT) =
1
n
(

n

∑
1

∣∣∣∣∣ xTCCON
ci − xSAT

ci
xTCCON

ci

∣∣∣∣∣) (30)

where XCTCCON denotes the TCCON-measured XCO2 value, and XCSAT is the satellite-
observed XCO2 value at the corresponding TCCON site location.

The OCO-2 observations were preprocessed and then processed into XCO2 data at
different resolutions. The original and reconstructed GOSATs were evaluated using this
method. ME, MAE and RMSE were used to characterize the differences between the
original reconstructed GOSAT and OCO-2 with the following equations:

ME(XCOCO-2, XCGOSAT) =
1
n

n

∑
1

xOCO-2
ci − xGOSAT

ci (31)

MAE(XCOCO-2, XCGOSAT) =
1
n

n

∑
1

∣∣∣xOCO-2
ci − xGOSAT

ci

∣∣∣ (32)

RMSE(XCOCO-2, XCGOSAT) =

√
1
n

n

∑
1
(xOCO-2

ci − xGOSAT
ci )2 (33)

where XCOCO-2 denotes the XCO2 value of the preprocessed OCO-2 data, and XCGOSAT is
either the original GOSAT data or the reconstructed GOSAT data.

The reconstructed GOSAT data improved the resolution from 2.5◦ to 0.5◦. The mean
error in the reconstructed data for January 2016 was 1.335 ppmv, with no loss in preci-
sion compared to the original data. The errors in the original data caused errors in the
reconstructed data, and the average error had significant temporal variation.

The reconstruction of the GOSAT XCO2 data by the double cubic interpolation method
can improve the data resolution, but more is needed to improve the data accuracy effec-
tively. Due to the problem of the method itself, the accuracy of the reconstructed data
largely depends on the accuracy of the original data. The information contained in the
reconstructed results is also affected by the original data, which cannot produce additional
CO2 source or sink information, and there are some edge areas with missing data after
reconstruction. Ru Xiang et al. used the SRCNN network model to reconstruct the GOSAT
XCO2 data to improve the resolution and accuracy of the data.

The network structure of the model has three main layers, including three main
processes of resolution reconstruction: data feature extraction, nonlinear mapping, and the
final data reconstruction process. Unlike the SRCNN structure in the image domain, Ru
Xiang et al. used the low-resolution and low-precision GOSAT XCO2 data as the input to the
model. After undergoing the main processes of the model, the output is CO2 data with the
resolution and precision of OCO-2, involving both resolution and precision reconstruction.
The rest of the model structure is consistent with the standard SRCNN network model.

Therefore, the process of reconstructing GOSAT XCO2 data based on the SRCNN
model mainly includes feature extraction of the original GOSAT XCO2 data, mapping the
low-resolution and low-precision GOSAT features into high-resolution and high-precision
OCO-2 features, and reconstructing the data based on these features.

The model’s network structure does not involve an up-scaling or down-scaling process
for the data. The input to the model is the low-resolution GOSAT XCO2 data, which are
upsampled using bicubic interpolation to match the output resolution. Thus, the SRCNN
model focuses solely on improving the accuracy of the satellite CO2 data, requiring GOSAT
and OCO-2 XCO2 data with the same resolution. To address the size of training samples,
Ru Xiang and his team used bicubic-interpolated GOSAT XCO2 data (0.5◦) and prepro-
cessed OCO-2 XCO2 data (0.5◦) to obtain a larger training dataset. Through experimental
comparisons, they selected the ReLU activation function for the first two layers of the
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SRCNN model due to its good convergence speed and fitting performance, and the Adam
optimization algorithm as the model’s optimization method.

The results indicate that, compared to the original data, the data reconstructed by the
SRCNN model better preserve the distribution characteristics of the original data, although
the overall spatial continuity is not very high. When compared to OCO-2 data, the results
reconstructed by the SRCNN model exhibit higher data accuracy, with an improvement
of approximately 0.5 ppmv over the original data. The data with improved accuracy are
primarily distributed in the Southern Hemisphere.

With the continuous advancement of deep learning technology [212–214], the impor-
tance of satellite carbon dioxide reconstruction is becoming increasingly evident. In the
future, it will be possible to obtain high-resolution, gap-free, long-term XCO2 data, which
holds profound significance for the study and resolution of global environmental issues.

5. Summary and Outlook

Satellite CO2 data reconstruction work has a wide range of applications in today’s
society and has received significant attention from researchers in related fields. In order to
help beginners understand the satellite CO2 reconstruction methods and follow up on the
research hotspots, this paper summarizes the related research on satellite CO2 data recon-
struction, which aims to provide global CO2 concentration data by filling the gaps in the
satellite observations or increasing the accuracy and coverage of the observations. In this ar-
ticle, the authors first introduce the necessity of satellite CO2 data reconstruction, as well as
the monitoring methods and data sources for carbon dioxide. Secondly, the article discusses
the specific applications of interpolation and data fusion methods in the reconstruction
of CO2 data. Finally, the authors delve into the topic of super-resolution reconstruction
technology and its specific applications in the field of satellite CO2 data reconstruction.

In recent years, researchers have made significant achievements in CO2 data recon-
struction. Interpolation and data fusion methods have become the mainstream methods of
carbon satellite data reconstruction, and super-resolution reconstruction technology has
gradually developed in the field of data reconstruction. However, there are still many
challenges and directions to pursue in further research.

(1) Although interpolation can, to some extent, solve the problem of partially missing
data and ensure the spatial continuity of the data, part of the interpolation method overly
relies on the number and quality of sample points and ignores the geographic charac-
teristics of the data. Therefore, combining the interpolation and deep learning methods
is a future research hotspot. The fusion of multi-modal data, modeling uncertainty, and
adaptive interpolation methods will receive more attention to enhance the accuracy of
interpolation results.

(2) The reconstructed results of the data fusion method have an extended time cover-
age. However, the method needs to focus more on improving the data resolution, and the
reconstructed data often loses accuracy. Based on this, researchers can consider using mi-
gration learning to optimize and enhance the model in the sparse data region. Furthermore,
multi-source heterogeneous data fusion can comprehensively integrate different types and
characteristics of data sources, providing more comprehensive, accurate, and reliable CO2
concentration information, which is also a future trend in this field.

(3) The low resolution of satellite CO2 data makes them difficult to be directly applied
to the study of small-scale carbon sources and sinks. Therefore, the idea of image super-
resolution reconstruction is also one of the future trends.
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ACGS Aerosol and cloud gas sensor
ACOS Atmospheric CO2 observations from space
AIRS Atmospheric infrared sounder
BESD Building energy and sustainable design
BN Batch normalization
CAPI Cloud and aerosol polarization imager
CHRED China High Resolution Emission Database
COCCON Collaborative carbon column observing network
CRN Cascading Residual Network
CTM Chemical transport model
DOAS Differential optical absorption spectroscopy
DRCN Deep recursive convolutional network
DSRN Deep super-resolution network
EDGAR Emissions database for global atmospheric research
EDSR Enhanced deep super-resolution
EMMA Ensemble median algorithm
ENVISAT Environmental satellite
ERN Enhanced Residual Network
ERT Extreme random tree

https://tccondata.org/
https://gaw.kishou.go.jp/
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1111
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1111
https://www.iup.uni-bremen.de/sciamachy/
https://www.iup.uni-bremen.de/sciamachy/
https://www.iup.uni-bremen.de/deu/
https://search.earthdata.nasa.gov/
https://catalogue.ceda.ac.uk/
https://data2.gosat.nies.go.jp/
https://catalogue.ceda.ac.uk/
https://prdct.gosat-2.nies.go.jp/
https://catalogue.ceda.ac.uk/
http://www.cgga.org.cn/
https://search.earthdata.nasa.gov/
https://catalogue.ceda.ac.uk/
https://search.earthdata. nasa.gov
https://opendata.pku.edu.cn/dataverse.xhtml
https://db.cger.nies.go.jp/dataset/ODIAC/
https://meta.icos-cp.eu/collections/unv31HYRKgullLjJ99O5YCsG


Remote Sens. 2024, 16, 3818 46 of 54

ESA European space agency
ESPCN Efficient sub-pixel convolutional network
ESRL Earth system research laboratory
FTS Fourier transform spectrometers
GOSAT Greenhouse gases observing satellite
GWNN Geographically weighted neural network
GWR Geographically weighted regression
HR High-resolution
HSAM-DF High-precision surface albedo model data fusion
IAGOS In-service aircraft for a global observing system
IAPCAS Institute of atmospheric physics carbon retrieval algorithm system
LightGBM Light gradient boosting machine
LLE Locally linear embedding
LR Low-resolution
MAE Mean Absolute Error
MAP Maximum a posteriori
MSRN Multi-scale residual network
MLP Multi-layer perceptron
NASA National aeronautics and space administration
NOAA National oceanic and atmospheric administration
OCC Optical camera communication
OCCK Ordinary co-located co-Kriging
OCK Ordinary co-Kriging
OCO Orbiting carbon observatory
ODIAC Open-data inventory for anthropogenic carbon dioxide
PCK Principal component Kriging
PKU Peking university
POCS Projection onto convex sets
ppb Parts per billion
ppmv Parts per million by volume
ResNet Residual network
RMSE Root Mean Square Error
RNNs Recurrent neural networks
SCCK Simple co-located co-Kriging
SCIAMACHY Scanning imaging atmospheric absorption spectrometer
SCK Simple co-Kriging
SK Simple Kriging
SRCNN Super-Resolution Convolutional Neural Network
SRGAN Super-Resolution Generative Adversarial Network
TANSO Thermal and near-infrared sensor for carbon observation
UK Universal Kriging
WDCGG World Data Centre for Greenhouse Gases
TCCON Total carbon column observing network
VDSR Very deep super-resolution
XCO2 Column-averaged CO2 dry air mole fraction
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103. Tadić, J.M.; Qiu, X.; Yadav, V.; Michalak, A.M. Mapping of satellite Earth observations using moving window block kriging.
Geosci. Model Dev. 2015, 8, 3311–3319. [CrossRef]

104. Zeng, Z.C.; Lei, L.; Strong, K.; Jones, D.B.; Guo, L.; Liu, M.; Deng, F.; Deutscher, N.M.; Dubey, M.K.; Griffith, D.W.; et al. Global
land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics. Int. J. Digit. Earth 2017, 10, 426–456.
[CrossRef]

105. He, Z.; Lei, L.; Zhang, Y.; Sheng, M.; Wu, C.; Li, L.; Zeng, Z.C.; Welp, L.R. Spatio-temporal mapping of multi-satellite observed
column atmospheric CO2 using precision-weighted kriging method. Remote Sens. 2020, 12, 576. [CrossRef]

106. Ma, Y.; He, X.; Wu, R.; Shen, C. Spatial Distribution of Multi-Fractal Scaling Behaviours of Atmospheric XCO2 Concentration
Time Series during 2010–2018 over China. Entropy 2022, 24, 817. [CrossRef] [PubMed]

107. Sheng, M.; Lei, L.; Zeng, Z.C.; Rao, W.; Song, H.; Wu, C. Global land 1◦ mapping dataset of XCO2 from satellite observations of
GOSAT and OCO-2 from 2009 to 2020. Big Earth Data 2023, 7, 170–190. [CrossRef]

108. Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 704504, [CrossRef] [PubMed]
109. Kuncheva, L.I.; Rodríguez, J.J. A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 2014, 38, 259–275.

[CrossRef]
110. Reuter, M.; Bösch, H.; Bovensmann, H.; Bril, A.; Buchwitz, M.; Butz, A.; Burrows, J.; O’Dell, C.; Guerlet, S.; Hasekamp, O.; et al.

A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median
algorithm EMMA. Atmos. Chem. Phys. 2013, 13, 1771–1780. [CrossRef]

111. Jing, Y.; Shi, J.; Wang, T. Fusion of space-based CO2 products and its comparison with other available CO2 estimates. In Proceed-
ings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2363–2366.
[CrossRef]

112. Nguyen, H.; Katzfuss, M.; Cressie, N.; Braverman, A. Spatio-temporal data fusion for very large remote sensing datasets.
Technometrics 2014, 56, 174–185. [CrossRef]

113. Zhou, C.; Shi, R.; Gao, W. Data fusion of CO2 retrieved from GOSAT and AIRS using regression analysis and fixed rank kriging.
In Remote Sensing and Modeling of Ecosystems for Sustainability XII; SPIE: Bellingham, WA, USA, 2015; Volume 9610, pp. 315–323.

114. Zhao, M.; Yue, T.; Zhang, X.; Sun, J.; Jiang, L.; Wang, C. Fusion of multi-source near-surface CO2 concentration data based on
high accuracy surface modeling. Atmos. Pollut. Res. 2017, 8, 1170–1178.

115. Henze, D.K.; Hakami, A.; Seinfeld, J.H. Development of the adjoint of GEOS-Chem. Atmos. Chem. Phys. 2007, 7, 2413–2433.
[CrossRef]

116. Zhang, H.; Chen, B.; Xu, G.; Yan, J.; Che, M.; Chen, J.; Fang, S.; Lin, X.; Sun, S. Comparing simulated atmospheric carbon dioxide
concentration with GOSAT retrievals. Sci. Bull. 2015, 60, 380–386. [CrossRef]

117. Feng, L.; Palmer, P.I.; Yang, Y.; Yantosca, R.M.; Kawa, S.R.; Paris, J.D.; Matsueda, H.; Machida, T. Evaluating a 3-D transport model
of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys. 2011, 11, 2789–2803. [CrossRef]

118. Lei, L.; Guan, X.; Zeng, Z.; Zhang, B.; Ru, F.; Bu, R. A comparison of atmospheric CO2 concentration GOSAT-based observations
and model simulations. Sci. China Earth Sci. 2014, 57, 1393–1402. [CrossRef]

119. Li, R.; Zhang, M.; Chen, L.; Kou, X.; Skorokhod, A. CMAQ simulation of atmospheric CO2 concentration in East Asia: Comparison
with GOSAT observations and ground measurements. Atmos. Environ. 2017, 160, 176–185. [CrossRef]

120. Bie, N.; Lei, L.; He, Z.; Zeng, Z.; Liu, L.; Zhang, B.; Cai, B. Specific patterns of XCO2 observed by GOSAT during 2009–2016 and
assessed with model simulations over China. Sci. China Earth Sci. 2020, 63, 384–394. [CrossRef]

http://dx.doi.org/10.1002/asi.22968
http://dx.doi.org/10.1517/14712598.2014.920813
http://www.ncbi.nlm.nih.gov/pubmed/25077605
http://dx.doi.org/10.1080/01431161.2015.1011792
http://dx.doi.org/10.32614/RJ-2016-014
http://dx.doi.org/10.5194/acp-14-133-2014
http://dx.doi.org/10.1029/2011JD017015
http://dx.doi.org/10.3390/atmos5040870
http://dx.doi.org/10.1109/TGRS.2020.2985047
http://dx.doi.org/10.5194/gmd-8-3311-2015
http://dx.doi.org/10.1080/17538947.2016.1156777
http://dx.doi.org/10.3390/rs12030576
http://dx.doi.org/10.3390/e24060817
http://www.ncbi.nlm.nih.gov/pubmed/35741538
http://dx.doi.org/10.1080/20964471.2022.2033149
http://dx.doi.org/10.1155/2013/704504
http://www.ncbi.nlm.nih.gov/pubmed/24288502
http://dx.doi.org/10.1007/s10115-012-0586-6
http://dx.doi.org/10.5194/acp-13-1771-2013
http://dx.doi.org/10.1109/IGARSS.2014.6946946
http://dx.doi.org/10.1080/00401706.2013.831774
http://dx.doi.org/10.5194/acp-7-2413-2007
http://dx.doi.org/10.1007/s11434-014-0676-9
http://dx.doi.org/10.5194/acp-11-2789-2011
http://dx.doi.org/10.1007/s11430-013-4807-y
http://dx.doi.org/10.1016/j.atmosenv.2017.03.056
http://dx.doi.org/10.1007/s11430-018-9377-7


Remote Sens. 2024, 16, 3818 51 of 54

121. Zhang, L.L.; Yue, T.X.; Wilson, J.P.; Zhao, N.; Zhao, Y.P.; Du, Z.P.; Liu, Y. A comparison of satellite observations with the XCO2
surface obtained by fusing TCCON measurements and GEOS-Chem model outputs. Sci. Total Environ. 2017, 601, 1575–1590.
[CrossRef]

122. Byrne, B.; Baker, D.F.; Basu, S.; Bertolacci, M.; Bowman, K.W.; Carroll, D.; Chatterjee, A.; Chevallier, F.; Ciais, P.; Cressie, N.; et al.
National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci.
Data 2023, 15, 963–1004. [CrossRef]

123. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning
Models. arXiv 2020, arXiv:2007.03051.

124. Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-year comparison of CO2 concentration from
NOAA carbon tracker reanalysis model with data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [CrossRef]

125. Agustí-Panareda, A.; Barré, J.; Massart, S.; Inness, A.; Aben, I.; Ades, M.; Baier, B.C.; Balsamo, G.; Borsdorff, T.; Bousserez, N.;
et al. The CAMS greenhouse gas reanalysis from 2003 to 2020. Atmos. Chem. Phys. 2023, 23, 3829–3859. [CrossRef]

126. Ballav, S.; Naja, M.; Patra, P.K.; Machida, T.; Mukai, H. Assessment of spatio-temporal distribution of CO2 over greater Asia using
the WRF–CO2 model. J. Earth Syst. Sci. 2020, 129, 1–16. [CrossRef]

127. Khanipour, P.; Löffler, M.; Reichert, A.M.; Haase, F.T.; Mayrhofer, K.J.; Katsounaros, I. Electrochemical real-time mass spectrometry
(EC-RTMS): Monitoring electrochemical reaction products in real time. Angew. Chem. Int. Ed. 2019, 58, 7273–7277. [CrossRef]

128. Yuan, L.; Zhang, X.C.J.; Busteed, P.; Flanagan, D.C. Simulating the potential effects of elevated CO2 concentration and temperature
coupled with storm intensification on crop yield, surface runoff, and soil loss based on 25 GCMs ensemble: A site-specific case
study in Oklahoma. Catena 2022, 214, 106251. [CrossRef]

129. Gao, J.; Weng, L.; Xia, M.; Lin, H. MLNet: Multichannel feature fusion lozenge network for land segmentation. J. Appl. Remote
Sens. 2022, 16, 016513. [CrossRef]

130. Hu, K.; Jin, J.; Shen, C.; Xia, M.; Weng, L. Attentional weighting strategy-based dynamic GCN for skeleton-based action
recognition. Multimed. Syst. 2023, 29, 1941–1954. [CrossRef]

131. Hu, K.; Weng, C.; Zhang, Y.; Jin, J.; Xia, Q. An overview of underwater vision enhancement: From traditional methods to recent
deep learning. J. Mar. Sci. Eng. 2022, 10, 241. [CrossRef]

132. Hu, K.; Weng, C.; Shen, C.; Wang, T.; Weng, L.; Xia, M. A multi-stage underwater image aesthetic enhancement algorithm based
on a generative adversarial network. Eng. Appl. Artif. Intell. 2023, 123, 106196. [CrossRef]

133. Hu, K.; Zhang, E.; Xia, M.; Weng, L.; Lin, H. Mcanet: A multi-branch network for cloud/snow segmentation in high-resolution
remote sensing images. Remote Sens. 2023, 15, 1055. [CrossRef]

134. Lu, C.; Xia, M.; Lin, H. Multi-scale strip pooling feature aggregation network for cloud and cloud shadow segmentation. Neural
Comput. Appl. 2022, 34, 6149–6162. [CrossRef]

135. Hu, K.; Lu, M.; Li, Y.; Gong, S.; Wu, J.; Zhou, F.; Jiang, S.; Yang, Y. A Federated Incremental Learning Algorithm Based on Dual
Attention Mechanism. Appl. Sci. 2022, 12, 10025. [CrossRef]

136. Hu, K.; Wu, J.; Li, Y.; Lu, M.; Weng, L.; Xia, M. Fedgcn: Federated learning-based graph convolutional networks for non-euclidean
spatial data. Mathematics 2022, 10, 1000. [CrossRef]

137. Ji, H.; Xia, M.; Zhang, D.; Lin, H. Multi-Supervised Feature Fusion Attention Network for Clouds and Shadows Detection. ISPRS
Int. J. Geo-Inf. 2023, 12, 247. [CrossRef]

138. Chen, K.; Xia, M.; Lin, H.; Qian, M. Multi-scale Attention Feature Aggregation Network for Cloud and Cloud Shadow
Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16.

139. Dai, X.; Xia, M.; Weng, L.; Hu, K.; Lin, H.; Qian, M. Multi-Scale Location Attention Network for Building and Water Segmentation
of Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–19.

140. Hu, K.; Li, M.; Xia, M.; Lin, H. Multi-scale feature aggregation network for water area segmentation. Remote Sens. 2022, 14, 206.
[CrossRef]

141. Siabi, Z.; Falahatkar, S.; Alavi, S.J. Spatial distribution of XCO2 using OCO-2 data in growing seasons. J. Environ. Manag. 2019,
244, 110–118. [CrossRef] [PubMed]

142. Nguyen, P.; Shivadekar, S.; Laya Chukkapalli, S.S.; Halem, M. Satellite Data Fusion of Multiple Observed XCO2 using Compressive
Sensing and Deep Learning. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing
Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2073–2076. [CrossRef]

143. He, C.; Ji, M.; Li, T.; Liu, X.; Tang, D.; Zhang, S.; Luo, Y.; Grieneisen, M.L.; Zhou, Z.; Zhan, Y. Deriving Full-Coverage and
Fine-Scale XCO2 Across China Based on OCO-2 Satellite Retrievals and CarbonTracker Output. Geophys. Res. Lett. 2022,
49, e2022GL098435. [CrossRef]

144. Li, J.; Jia, K.; Wei, X.; Xia, M.; Chen, Z.; Yao, Y.; Zhang, X.; Jiang, H.; Yuan, B.; Tao, G.; et al. High-spatiotemporal resolution
mapping of spatiotemporally continuous atmospheric CO2 concentrations over the global continent. Int. J. Appl. Earth Obs.
Geoinf. 2022, 108, 102743. [CrossRef]

145. Wang, W.; He, J.; Feng, H.; Jin, Z. High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in
Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 10853. [CrossRef]

146. Zhang, L.; Li, T.; Wu, J. Deriving gapless CO2 concentrations using a geographically weighted neural network: China, 2014–2020.
Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103063. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2017.06.018
http://dx.doi.org/10.5194/essd-15-963-2023
http://dx.doi.org/10.3390/rs12152498
http://dx.doi.org/10.5194/acp-23-3829-2023
http://dx.doi.org/10.1007/s12040-020-1352-x
http://dx.doi.org/10.1002/anie.201901923
http://dx.doi.org/10.1016/j.catena.2022.106251
http://dx.doi.org/10.1117/1.JRS.16.016513
http://dx.doi.org/10.1007/s00530-023-01082-1
http://dx.doi.org/10.3390/jmse10020241
http://dx.doi.org/10.1016/j.engappai.2023.106196
http://dx.doi.org/10.3390/rs15041055
http://dx.doi.org/10.1007/s00521-021-06802-0
http://dx.doi.org/10.3390/app121910025
http://dx.doi.org/10.3390/math10061000
http://dx.doi.org/10.3390/ijgi12060247
http://dx.doi.org/10.3390/rs14010206
http://dx.doi.org/10.1016/j.jenvman.2019.05.049
http://www.ncbi.nlm.nih.gov/pubmed/31112875
http://dx.doi.org/10.1109/IGARSS39084.2020.9323861
http://dx.doi.org/10.1029/2022GL098435
http://dx.doi.org/10.1016/j.jag.2022.102743
http://dx.doi.org/10.3390/ijerph191710853
http://dx.doi.org/10.1016/j.jag.2022.103063


Remote Sens. 2024, 16, 3818 52 of 54

147. Zhang, M.; Liu, G. Mapping contiguous XCO2 by machine learning and analyzing the spatio-temporal variation in China from
2003 to 2019. Sci. Total. Environ. 2023, 858, 159588. [CrossRef]

148. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
149. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. In Proceedings of the 35th Conference on Neural

Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021; Volume 34, pp. 15908–15919.
150. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence

Time-Series Forecasting. arXiv 2020, arXiv:2012.07436. [CrossRef]
151. Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis.

arXiv 2022, arXiv:2210.02186.
152. Das, A.; Kong, W.; Leach, A.; Sen, R.; Yu, R. Long-term Forecasting with TiDE: Time-series Dense Encoder. arXiv 2023,

arXiv:2304.08424.
153. Li Yunhong, Wang Zhen, Zhang Kaibing, Zhang Weichuan, Yan Yadi. Survey on example learning-based single image super-

resolution technique. Comput. Eng. Appl. 2018, 54, 13–21.
154. Yin, Y.; Robinson, J.; Zhang, Y.; Fu, Y. Joint super-resolution and alignment of tiny faces. In Proceedings of the AAAI Conference

on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12693–12700.
155. Huang, Y.; Zheng, F.; Wang, D.; Jiang, J.; Wang, X.; Shao, L. Super-Resolution and Inpainting with Degraded and Upgraded

Generative Adversarial Networks. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI-20, Yokohama, Japan, 11–17 July 2020; Bessiere, C., Ed.; International Joint Conferences on Artificial Intelligence
Organization: Bremen, Germany, 2020; pp. 645–651. [CrossRef]

156. Wang, Z.; Jiang, K.; Yi, P.; Han, Z.; He, Z. Ultra-dense GAN for satellite imagery super-resolution. Neurocomputing 2020,
398, 328–337. [CrossRef]

157. Gao, G.; Yu, Y.; Xie, J.; Yang, J.; Yang, M.; Zhang, J. Constructing multilayer locality-constrained matrix regression framework for
noise robust face super-resolution. Pattern Recognit. 2021, 110, 107539. [CrossRef]

158. Blu, T.; Thévenaz, P.; Unser, M. Linear interpolation revitalized. IEEE Trans. Image Process. 2004, 13, 710–719. [CrossRef]
159. Tao, H.; Tang, X.; Liu, J.; Tian, J. Superresolution remote sensing image processing algorithm based on wavelet transform and

interpolation. Proc. SPIE 2003, 4898, 259–263.
160. Nayak, R.; Patra, D. Image interpolation using adaptive P-spline. In Proceedings of the 2015 Annual IEEE India Conference

(INDICON), New Delhi, India, 17–20 December 2015; pp. 1–6.
161. Zhou, D.; Shen, X.; Dong, W. Image zooming using directional cubic convolution interpolation. IET Image Process. 2012, 6, 627–634.

[CrossRef]
162. Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981,

29, 1153–1160. [CrossRef]
163. Li, X.; Orchard, M.T. New edge-directed interpolation. IEEE Trans. Image Process. 2001, 10, 1521–1527. [PubMed]
164. Dai, S.; Han, M.; Xu, W.; Wu, Y.; Gong, Y. Soft edge smoothness prior for alpha channel super resolution. In Proceedings of the

2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.
165. Zhang, X.; Wu, X. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Trans. Image

Process. 2008, 17, 887–896. [CrossRef] [PubMed]
166. Jing, G.; Choi, Y.K.; Wang, J.; Wang, W. Gradient guided image interpolation. In Proceedings of the 2014 IEEE International

Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1822–1826.
167. Sun, J.; Xu, Z.; Shum, H.Y. Image super-resolution using gradient profile prior. In Proceedings of the 2008 IEEE Conference on

Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
168. Rasti, P.; Lüsi, I.; Demirel, H.; Kiefer, R.; Anbarjafari, G. Wavelet transform based new interpolation technique for satellite image

resolution enhancement. In Proceedings of the 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing
Technology, Yogyakarta, Indonesia, 13–14 November 2014; pp. 185–188.

169. Ford, C.; Etter, D. Wavelet basis reconstruction of nonuniformly sampled data. IEEE Trans. Circuits Syst. II Analog. Digit. Process.
1998, 45, 1165–1168. [CrossRef]

170. Nguyen, N.; Milanfar, P. A wavelet-based interpolation-restoration method for superresolution (wavelet superresolution). Circuits
Syst. Signal Process. 2000, 19, 321–338. [CrossRef]

171. Liu, Y.; Zhu, L.; Lim, K.; Li, Y.; Wang, F.; Lu, J. Review and prospect of image super-resolution technology. J. Front. Comput. Sci.
Technol. 2020, 14, 181–199.

172. Patti, A.J.; Sezan, M.I.; Tekalp, A.M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture
time. IEEE Trans. Image Process. 1997, 6, 1064–1076. [CrossRef]

173. Nasonov, A.V.; Krylov, A.S. Fast super-resolution using weighted median filtering. In Proceedings of the 2010 20th International
Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2230–2233.

174. Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP Graph. Model. Image Process. 1991, 53, 231–239. [CrossRef]
175. Stark, H.; Oskoui, P. High-resolution image recovery from image-plane arrays, using convex projections. JOSA A 1989,

6, 1715–1726. [CrossRef] [PubMed]
176. Banham, M.R.; Katsaggelos, A.K. Digital image restoration. IEEE Signal Process. Mag. 1997, 14, 24–41. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2022.159588
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.24963/ijcai.2020/90
http://dx.doi.org/10.1016/j.neucom.2019.03.106
http://dx.doi.org/10.1016/j.patcog.2020.107539
http://dx.doi.org/10.1109/TIP.2004.826093
http://dx.doi.org/10.1049/iet-ipr.2011.0534
http://dx.doi.org/10.1109/TASSP.1981.1163711
http://www.ncbi.nlm.nih.gov/pubmed/18255495
http://dx.doi.org/10.1109/TIP.2008.924279
http://www.ncbi.nlm.nih.gov/pubmed/18482884
http://dx.doi.org/10.1109/82.718832
http://dx.doi.org/10.1007/BF01200891
http://dx.doi.org/10.1109/83.605404
http://dx.doi.org/10.1016/1049-9652(91)90045-L
http://dx.doi.org/10.1364/JOSAA.6.001715
http://www.ncbi.nlm.nih.gov/pubmed/2585170
http://dx.doi.org/10.1109/79.581363


Remote Sens. 2024, 16, 3818 53 of 54

177. Schultz, R.R.; Stevenson, R.L. Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 1996,
5, 996–1011. [CrossRef]

178. Freeman, W.T.; Pasztor, E.C.; Carmichael, O.T. Learning low-level vision. Int. J. Comput. Vis. 2000, 40, 25–47. [CrossRef]
179. Freeman, W.T.; Jones, T.R.; Pasztor, E.C. Example-based super-resolution. IEEE Comput. Graph. Appl. 2002, 22, 56–65. [CrossRef]
180. Glasner, D.; Bagon, S.; Irani, M. Super-resolution from a single image. In Proceedings of the 2009 IEEE 12th International

Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 349–356.
181. Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004;
Volume 1, p. I.

182. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
183. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010,

19, 2861–2873. [CrossRef]
184. Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution as sparse representation of raw image patches. In Proceedings of

the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
185. Donoho, D.L. For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest

solution. Commun. Pure Appl. Math. 2006, 59, 797–829. [CrossRef]
186. Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In

Proceedings of the Computer Vision–ACCV 2014, Singapore, 1–5 November 2014; Cremers, D., Reid, I., Saito, H., Yang, M.H.,
Eds.; Springer: Cham, Switzerland, 2015; pp. 111–126.

187. Li, J.; Wu, J.; Deng, H.; Liu, J. A self-learning image super-resolution method via sparse representation and non-local similarity.
Neurocomputing 2016, 184, 196–206. [CrossRef]

188. Zeng, T.; Du, F. Image Super-Resolution Reconstruction Based on Hierarchical Clustering. Acta Opt. Sin. 2018, 38, 0410004.
[CrossRef]

189. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of
the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Cham,
Switzerland, 2014; pp. 184–199.

190. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland,
2016; pp. 391–407.

191. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

192. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

193. Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.
[CrossRef]

194. Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July
2017; pp. 1132–1140. [CrossRef]

195. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [CrossRef]

196. Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale Residual Network for Image Super-Resolution. In Proceedings of the Computer
Vision—-ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer:
Cham, Swizterland, 2018; pp. 527–542.

197. Lan, R.; Sun, L.; Liu, Z.; Lu, H.; Su, Z.; Pang, C.; Luo, X. Cascading and enhanced residual networks for accurate single-image
super-resolution. IEEE Trans. Cybern. 2020, 51, 115–125. [CrossRef]

198. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

199. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y.R. Image Super-Resolution Using Very Deep Residual Channel Attention
Networks. arXiv 2018, arXiv:1807.02758.

200. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521.
201. Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings

of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 11057–11066. [CrossRef]

202. Xu, Y.B.; Dong, Y. Binocular image super resolution reconstruction algorithm guided by multi-attention mechanism. Electron.
Meas. Technol. 2021, 44, 103–108.

203. Zheng, H.; Liu, C. Multiscale feature reuse mixed attention network for image reconstruction. J. Image Graph. 2021, 26, 2645–2658.

http://dx.doi.org/10.1109/83.503915
http://dx.doi.org/10.1023/A:1026501619075
http://dx.doi.org/10.1109/38.988747
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1109/TIP.2010.2050625
http://dx.doi.org/10.1002/cpa.20132
http://dx.doi.org/10.1016/j.neucom.2015.07.139
http://dx.doi.org/10.3788/AOS201838.0410004
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.182
http://dx.doi.org/10.1109/CVPRW.2017.151
http://dx.doi.org/10.1109/CVPR.2017.19
http://dx.doi.org/10.1109/TCYB.2019.2952710
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2019.01132


Remote Sens. 2024, 16, 3818 54 of 54

204. Yi-Yue, Y.; Qian, F.; Ding-Sheng, W. A prediction model for time series based on deep recurrent neural network. Comput. Technol.
Dev. 2017, 27, 35–38.

205. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645.

206. Han, W.; Chang, S.; Liu, D.; Yu, M.; Witbrock, M.; Huang, T.S. Image Super-Resolution via Dual-State Recurrent Networks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 1654–1663.

207. Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 3862–3871.

208. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2 (NIPS’14),
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

209. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; Leal-Taixé,
L., Roth, S., Eds.; Springer: Cham, Swizterland, 2019; pp. 63–79.

210. Shang, T.; Dai, Q.; Zhu, S.; Yang, T.; Guo, Y. Perceptual extreme super-resolution network with receptive field block. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19
June 2020; pp. 440–441.

211. Xiang, R.; Yang, H.; Yan, Z.; Mohamed Taha, A.M.; Xu, X.; Wu, T. Super-resolution reconstruction of GOSAT CO2 products using
bicubic interpolation. Geocarto Int. 2022, 37, 15187–15211. [CrossRef]

212. Dai, X.; Chen, K.; Xia, M.; Weng, L.; Lin, H. LPMSNet: Location Pooling Multi-Scale Network for Cloud and Cloud Shadow
Segmentation. Remote Sens. 2023, 15, 4005. [CrossRef]

213. Jiang, S.; Lin, H.; Ren, H.; Hu, Z.; Weng, L.; Xia, M. MDANet: A High-Resolution City Change Detection Network Based on
Difference and Attention Mechanisms under Multi-Scale Feature Fusion. Remote Sens. 2024, 16, 1387. [CrossRef]

214. Li, Y.; Weng, L.; Xia, M.; Hu, K.; Lin, H. Multi-Scale Fusion Siamese Network Based on Three-Branch Attention Mechanism for
High-Resolution Remote Sensing Image Change Detection. Remote Sens. 2024, 16, 1665. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/10106049.2022.2096699
http://dx.doi.org/10.3390/rs15164005
http://dx.doi.org/10.3390/rs16081387
http://dx.doi.org/10.3390/rs16101665

	Introduction
	Data Sources and Analysis in the Field
	Data Sources
	Ground-Based Monitoring
	Airborne Monitoring
	Satellite Monitoring

	Datasets
	Citespace-Based Reconstruction Analysis of Satellite CO2 Data

	Satellite CO2 Reconstruction Methods
	Data Reconstruction Based on Interpolation
	Spatially Interpolated Data Reconstruction
	Spatiotemporal Interpolation Data Reconstruction

	Data Reconstruction Based on Data Fusion
	Data Fusion Method Based on Statistics
	Data Fusion Method Based on Model Simulation
	Data Fusion Method Based on Learning Algorithms

	Summary of Satellite CO2 Reconstruction Methods

	Super-Resolution Reconstruction Methods
	Interpolation-Based Image Super-Resolution Algorithm
	Reconstruction-Based Image Super-Resolution Algorithm
	Frequency Domain Method
	Spatial Domain Method

	Learning-Based Image Super-Resolution Algorithm
	Shallow Learning-Based Image Super-Resolution Algorithm
	Deep Learning-Based Image Super-Resolution Algorithm

	Potential of Super-Resolution Reconstruction in Satellite CO2

	Summary and Outlook
	Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
	References 

