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Abstract: The Architecture, Engineering, and Construction (AEC) industry faces significant global
challenges, including frequent project delays, budget overruns, and inadequate stakeholder collabora-
tion. To address these issues, Value Engineering (VE) and Building Information Modeling (BIM) have
been increasingly used in large-scale, complex construction projects. Although many studies high-
light the benefits of integrating VE with BIM, its full practical potential has not yet been realized. This
study aims to investigate the integration of VE and BIM within a Common Data Environment (CDE)
to improve decision making and project outcomes. A comprehensive framework was developed,
consisting of four interconnected modules: (1) Creating the CDE, (2) Developing the BIM Model,
(3) Implementing Value Engineering, and (4) Conducting a Value Engineering Study. Central to this
framework is the introduction of the VEIDEA” data bank, a structured system based on the Omni-
Class classification, which stores and organizes VE ideas. Additionally, the framework incorporates
the Analytical Hierarchy Process (AHP) to automate the evaluation phase, assisting designers and
VE teams in making data-driven decisions on design alternatives. Empirical results from a case study
of an office building show significant cost savings, with a 20% reduction in reinforced concrete (RC)
slab costs and a 39% reduction in flooring material costs. These findings demonstrate the potential
for integrating VE and BIM to enhance cost-effectiveness and overall project performance. This study
offers a novel approach to optimizing project collaboration, decision making, and efficiency in the
AEC industry.

Keywords: value engineering (VE); building information modeling (BIM); common data environment
(CDE); VE idea bank; analytic hierarchy process (AHP); construction projects

1. Introduction

The Architecture, Engineering, and Construction (AEC) industry is undergoing a
profound digital transformation, largely driven by the need for greater efficiency, cost-
effectiveness, and enhanced project value [1]. Project value is often measured as the ratio
between functionality and cost, a critical factor in construction activities that are frequently
plagued by budget overruns and delays [2]. To address these challenges and improve
project outcomes, two methodologies—Value Engineering (VE) and Building Information
Modeling (BIM)—have garnered significant attention in recent literature.
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Value Engineering has long been recognized as a systematic and innovative approach
for enhancing project value by reducing costs while optimizing performance [3]. It involves
a multidisciplinary team that evaluates project requirements, generates alternatives, and se-
lects the most efficient solutions to achieve desired functionalities at minimal cost. A review
of VE literature highlights that its success is closely tied to effective communication and
structured collaboration among project stakeholders, which underscores the importance of
coordinated activities for achieving optimal outcomes.

Similarly, Building Information Modeling (BIM) is heralded as a transformative tech-
nology within the AEC industry, known for its capacity to produce comprehensive digital
representations of buildings [4]. BIM facilitates improved planning, design, construction,
and operation processes, significantly boosting efficiency and productivity, particularly
during the design phase. Despite its recognized advantages, BIM adoption, especially
among small and medium-sized enterprises (SMEs), faces several barriers that need to be
carefully considered for broader implementation [5].

The integration of VE and BIM presents a valuable opportunity to advance project
management practices in the AEC sector. While both methodologies have proven benefits
individually, the synergistic potential of integrating them remains underexplored. Few
studies have examined the combined effects of VE and BIM on construction projects, and
there is a noticeable lack of frameworks guiding their effective integration [6,7]. This gap
represents a critical opportunity for advancing both research and practical applications in
the field.

In response to this research and practice gap, this study aims to develop a compre-
hensive framework for integrating VE and BIM within a Common Data Environment
(CDE) to optimize construction project outcomes. The proposed framework will offer AEC
professionals a structured approach for applying VE in conjunction with BIM, ultimately
enabling better cost management and enhanced project performance. By bridging the gap
between the theoretical potential of these methodologies and their practical implementa-
tion, this study seeks to provide practitioners with the tools necessary to fully leverage the
benefits of VE–BIM integration. Moreover, the framework is expected to lay the foundation
for future research and development, contributing to significant advancements in project
management practices within the construction industry.

In the following section, a bibliometric analysis of VE–BIM integration will be pre-
sented, providing a comprehensive overview of the current research. Subsequently, the
fundamental concepts of Value Engineering, BIM, classification systems, and the applica-
tion of a Common Data Environment (CDE) in construction projects will be introduced.
Then, the proposed framework for BIM-based Value Engineering within a CDE, which
is the core this research, will be explained in detail. Finally, a case study will be used to
demonstrate the application of the proposed framework process.

2. A Bibliometric Analysis of VE–BIM Integration

A bibliometric analysis was conducted using Visualization of Similarities Viewer
(VOSviewer) to create bibliometric maps, focusing on the integration between VE and
BIM. Keyword co-occurrence analysis of the data was retrieved from the Scopus database.
The analysis was used to identify the emerging related topics. The analysis included all
keywords available in the retrieved publications, and a threshold of five was set as the
minimum number of keywords. A total of 22 of the 582 keywords met the criteria. Figure 1
shows the network of high-frequency keywords. The network shows that the keyword
“Building information modeling” is the most significant node, followed by the keywords
“Value engineering” and “Architectural design”. These keywords are commonly associated
with keywords such as “Construction Projects”, “Project Management”, “Cost Estimating”,
“Budget Control”, and “Information Management”. This suggests that VE and BIM are
frequently used in these research areas. Consequently, BIM integration can help manage
the construction project’s cost and information. This analysis provides a foundational
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understanding of the current research landscape, guiding the focus of our study and
highlighting the critical areas where VE–BIM integration can contribute significantly.
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3. Value Engineering

Value Engineering (VE) is a structured methodology aimed at optimizing project
value by enhancing function or performance while minimizing costs. In the Architecture,
Engineering, and Construction (AEC) industry, VE is traditionally implemented through a
multi-phase job plan that examines project elements to identify cost-saving opportunities
without compromising functionality. The VE process follows the Society of American
Value Engineers (SAVE) standard job plan, consisting of five interdependent phases: in-
formation, function analysis, creativity, evaluation, and development, culminating in the
presentation phase. Each phase builds on the previous one, ensuring a thorough analysis
that systematically addresses the project’s functional requirements [8]. The data collected
during the information phase is especially crucial, as it informs all subsequent phases of
the VE study. By systematically applying VE, project teams can enhance overall project
quality, performance, safety, and durability [9].

In VE, value is defined as the ratio between function and cost, and three primary
approaches are used to optimize it. The Accepted Approach involves increasing function
while maintaining a constant cost or reducing costs without sacrificing functionality. The
Negotiable Approach allows for some flexibility, accepting a slight increase in cost for
a significant improvement in function or tolerating a slight reduction in function for
substantial cost savings. The Ideal Approach, considered the most desirable, seeks to
simultaneously reduce costs and improve functionality, thereby maximizing value on both
fronts [9].
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4. The Concept of BIM

Building Information Modeling (BIM), initially conceptualized by Charles M. Eastman
in the 1980s and 1990s, is a process that integrates geometric and process-related informa-
tion to facilitate collaborative project management throughout the lifecycle of a construction
project [10]. Also referred to as Building Information Management [11], BIM provides a dig-
ital representation of all building characteristics and associated data, allowing stakeholders
to access and update information in real time. This integrated approach not only captures
the physical geometry of building components but also their functional parameters [12]. As
team members refine the model based on design changes and project specifications, BIM
ensures that accurate data are available before the construction phase. The finalized BIM
model enables precise quantity take-offs, component counts, construction scheduling, and
spatial analysis, offering a comprehensive data repository that informs decision making
throughout the project [13].

4.1. BIM Implementation in the Construction Industry

BIM has revolutionized construction practices by improving collaboration, reducing
design errors, and streamlining documentation. Its primary goal is to optimize project
outcomes by minimizing costs, shortening timelines, reducing waste, and enhancing overall
quality and productivity. The versatility of BIM allows it to be implemented at all stages of a
project, enabling stakeholders—including owners, consultants, and contractors—to manage
various aspects of construction more efficiently. Owners can better comprehend the project
scope, while consultants use BIM for analysis, design, and development. Contractors
benefit from BIM’s capabilities in project planning and management [14].

To address challenges such as integrating BIM models created by different project
participants, a BIM-enabled lifecycle information management framework is proposed [15].
This framework coordinates the dynamic and fragmented data flows throughout the project
lifecycle, ensuring that the information is consistent and aligned with different project phases.
Figure 2 demonstrates the detailed application of BIM in lifecycle information management,
highlighting how it streamlines data integration and enhances project coordination.
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BIM’s intelligent management capabilities are particularly valuable in complex con-
struction projects, helping to manage stakeholder expectations and mitigate risks such as
cost overruns and delays [16]. Its emphasis on feedback loops and precision makes it a
critical tool for successful project management, as it allows for the seamless transfer of data
among stakeholders and supports the development of comprehensive solutions [17].

4.2. Benefits of BIM Implementation for Value Engineering

In recent years, leading firms in the Architecture, Engineering, and Construction (AEC)
industry have recognized the benefits of BIM, transitioning from traditional Computer-
Aided Design (CAD) systems to BIM technology [18]. BIM’s collaborative capabilities
across multiple disciplines have enhanced its value as a tool for optimizing construction
projects. When combined with Value Engineering (VE), BIM provides significant benefits by
improving project efficiency, enhancing decision making, and optimizing costs. By offering
a comprehensive representation of a building’s physical and functional characteristics,
BIM aligns with VE’s objectives of maximizing project value through cost reduction and
performance improvement [19].

The main benefit of BIM implementation is its ability to provide an accurate three-
dimensional (3D) geometrical representation of a building within an integrated data envi-
ronment [12]. Some of the key benefits of using BIM for Value Engineering include:

• Enhanced collaboration and communication: BIM improves interaction among project
stakeholders, ensuring that all team members work with the most current information [20].

• Increased efficiency and productivity: by reducing rework during the construction
phase, BIM enhances overall project productivity [21].

• Sustainability and waste reduction: BIM facilitates the selection of sustainable materi-
als and reduces material waste, contributing to environmentally friendly practices [22].

• Integrated tracking systems: BIM enables the creation of tracking systems to analyze
workplace behavior and improve efficiency [23].

• Dynamic data integration: by incorporating existing conditions, sensor measurements, and
control signals, BIM enhances the analysis of building operations and maintenance [24].

• Improved decision making: BIM’s ability to identify design and construction issues
early in the process improves overall decision making and reduces risks.

4.3. BIM Level of Development (LOD)

The Level of Development (LOD) refers to the degree of detail and reliability of the
geometric and semantic information in a BIM project. This concept reflects the incremental
availability of data throughout the design stages. The LOD plays a critical role in BIM
execution plans (BEP) [25], and it is often a contractually binding specification in construc-
tion projects [26]. The American Institute of Architects (AIA) introduced the LOD in 2008,
defining five levels, ranging from LOD 100 (Conceptual Design) to LOD 500 (As-Built).
In 2013, the BIM-Forum working group expanded on the AIA definitions by introducing
LOD 350, and it continues to update these specifications annually. Table 1 summarizes the
different LOD levels as defined by the BIM-Forum.

Table 1. BIM Levels of Development [27].

Level of Development
(LOD) Description

LOD 100
(Conceptual Design) Model elements are represented graphically in a generic representation.

LOD 200
(Schematic Design)

The model elements are represented as a generic object with approximate
quantities, location, shape, size, and orientation.

LOD 300
(Detailed Design)

Model elements are precisely modeled with their exact quantities, location, shape,
size, and orientation.
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Table 1. Cont.

Level of Development
(LOD) Description

LOD 350
(Construction Documentation) Including the interfaces between all the building systems.

LOD 400
(Fabrication and Assembly)

The model includes information related to detailing, fabrication,
assembly, and installation.

LOD 500
(As-Built)

The model elements are verified representations of the construction site in terms of
quantities, location, shape, size, and orientation.

5. Classification Systems for Construction Projects

Efficient communication and information management are critical for successful ex-
ecution of construction projects. Classification systems play a pivotal role in organizing
the vast amounts of data generated throughout a project’s lifecycle, enabling easy access to
essential information and facilitating collaboration among project participants.

A well-structured classification system brings order to otherwise disorganized project
data, allowing stakeholders to retrieve, filter, and present information in a way that makes
sense to the recipient. This is particularly important in the context of BIM and VE, where
data must be organized and accessible to support informed decision making.

The OmniClass classification system has been widely adopted in the construction
industry to organize project information across various categories. Its primary application
is to provide a structured classification for electronic databases and software, thereby
enhancing data utilization within these resources [28]. The compatibility of OmniClass
with other classification systems, such as MasterFormat and UniFormat, further extends its
utility, allowing for seamless integration of multiple data sources into BIM models [29].

In this study, the OmniClass classification system served as the backbone for the
VEIDEA data bank. This data bank organizes Value Engineering (VE) ideas using Omni-
Class’s structured tables, such as Table 13 (Spaces by Function), which is shown in Figure 3,
Table 21 (Elements), Table 22 (Work Results), and Table 41 (Materials). By categorizing VE
ideas within this framework, the VEIDEA data bank allows for targeted searches and the
efficient retrieval of relevant design alternatives during the VE process. This structured
approach not only saves time but also ensures that past VE ideas are readily accessible for
integration into ongoing projects.
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The use of OmniClass within a Common Data Environment (CDE) further enhances
the ability to manage and coordinate project information across all stakeholders. By aligning
data organization with lifecycle stages and project requirements, OmniClass supports a
more cohesive and efficient project management process. This integration ensures that all
project participants have access to the most up-to-date information, reducing the risk of
miscommunication and facilitating better decision making throughout the project lifecycle.

6. Leveraging CDE in Construction Projects

The Common Data Environment (CDE) serves as a centralized platform for managing
and sharing information across the lifecycle of construction projects [30]. The workflow of
the CDE in Figure 4 illustrates the various statuses of information containers.
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1. The Work-in-Progress (WIP) state.
2. The Shared state.
3. The Published Documentation state.
4. The Archive states.

In the context of integrating Building Information Modeling (BIM) and Value Engi-
neering (VE), the CDE plays a critical role in enhancing collaboration, streamlining data
management, and improving decision making processes among all project stakeholders.
The CDE facilitates seamless communication and coordination among diverse project
teams by providing a single source of truth for all project-related information [31]. This
centralized repository ensures that every stakeholder has access to the most current and
accurate data, reducing the risk of miscommunication and enabling real-time collaboration.
By integrating BIM models and VE data within the CDE, project teams can work together
more effectively and share updates and revisions in a controlled and transparent manner.

One of the key advantages of utilizing a CDE in construction projects is its ability to
support the Value Engineering process. A CDE enables the structured storage and retrieval
of VE ideas, particularly when combined with classification systems such as OmniClass.
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During the VE study phase, team members could easily access historical data, evaluate
previous VE alternatives, and implement the most cost-effective solutions in the BIM model.
This integration not only saves time but also enhances the quality of decision making by
providing a comprehensive view of all available options.

The CDE also streamlines the workflow of construction projects by automating several
key processes. For instance, the CDE can facilitate the automatic updating of BIM models
with VE adjustments, ensuring that all design changes are reflected in real time. This
dynamic approach allows for the continuous monitoring of project progress and enables
the early identification of potential issues, which can be addressed proactively.

Moreover, the CDE’s ability to manage complex datasets and support multi-criteria
decision making tools such as the Analytic Hierarchy Process (AHP) ensures that project
teams can prioritize alternatives based on comprehensive evaluations. This systematic
decision making approach is crucial for optimizing project outcomes and aligning them
with client requirements and project objectives.

7. The Proposed Framework for BIM-Based Value Engineering Within a Common Data
Environment (CDE)

The proposed framework integrates Building Information Modeling (BIM) with Value
Engineering (VE) within a Common Data Environment (CDE), focusing on enhancing
project outcomes by improving decision making, reducing costs, and ensuring that project
goals align with client requirements. This framework was specifically designed to be
implemented during the pre-construction phase, where the impact of design decisions
is most significant. In the pre-construction phase, it is crucial that the stakeholders and
design teams work cooperatively to prevent common design issues, such as changes in
design, clashes between elements, constructability problems with the proposed design, and
inadequate 2D drawings [32].

The proposed framework was implemented in a prototype model developed to sup-
port the VE team in evaluating and ranking different design alternatives for project com-
ponents using multi-attribute criteria. Aside from the 3D geometrical model, it uses AHP
to assist the VE team in evaluating competing alternatives. The project BIM model was
created using Autodesk software (Revit 2024) and was used to create the 3D model and
extract the required project data. The proposed method is intended to assist VE team
members in performing the evaluation process with relative ease and in less time. Further-
more, it enables them to understand the consequences of alternative changes visually and
numerically. Figure 5 summarizes the framework implementation sequence.

The framework was structured into four main modules, as shown in Figure 6. Each
addresses a critical aspect of the VE–BIM integration process within a CDE:

1. Module 1—Creating the CDE: The first module involves establishing a CDE to serve
as the single source of truth for all project-related information. The CDE securely
stores all documents, BIM models, and VE ideas, ensuring that stakeholders can access
the most current data. This centralized repository not only facilitates collaboration
but also supports the efficient management and retrieval of information throughout
the lifecycle of the project.

2. Module 2—Design BIM Model Development: The second module focuses on develop-
ing a detailed BIM model up to LOD 300, incorporating all necessary geometric and
semantic data. This model serves as the foundation for VE analysis and is enriched
with parameters related to the OmniClass classification system. By integrating these
classifications into the BIM, the framework enhances the ability to conduct targeted
searches and apply relevant VE ideas.

3. Module 3—Value Analysis/Engineering Model: In this module, the VE team uses
the BIM model and CDE to evaluate and rank different design alternatives based on
multi-criteria decision making. The Analytical Hierarchy Process (AHP) is employed
to automate the evaluation, allowing for the systematic comparison of alternatives.
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The VEIDEA data bank, which stores past VE ideas, is a key resource in this process,
enabling the team to leverage historical data to inform the current decisions.

4. Module 4—Value Engineering Study: The final module streamlines the VE study
by utilizing integrated BIM and CDE resources. The VE team can easily access all
the necessary information, generate innovative alternatives, and assess the impact
of the proposed changes on the project’s overall value. The framework’s use of BIM
visualization tools enhances the team’s ability to understand and refine design options
before construction begins.
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The goal is to select the most appropriate alternative by considering multi-attribute
criteria that satisfy the owner requirements and project objectives. Each module has a
dedicated subsection that explains its functions in detail.

7.1. Module 1: Creating the CDE

Module 1’s framework is illustrated in Figure 7. It begins with establishing a Common
Data Environment (CDE) and uploading all the documents relevant to the project. The CDE
functions as a single source of truth for all project information, offering secure document
storage and digitalized repositories for all documents relevant to the project, including
PDFs, spreadsheets, and AutoCAD Drawing (dwg) files. This centralized repository
facilitates accessible and organized project information for all participants. The following
is a list of project information essential for VE studies.

• Contract documents.
• Project scope and specifications.
• Site plans and surveys.
• Geotechnical reports.
• Cost estimates and budgets.
• Expected project schedule and critical milestones.

In contrast, the VE Idea data bank (VEIDEA) is designed to store and manage VE ideas.
The VEIDEA can be created by combining traditional/existing VE ideas with OmniClass
classification. The data bank will include general and detailed information about VE ideas.
VEIDEA consists of two sections of VE idea information: general and detailed.

• General information includes the idea number, idea contents, date, VE study areas,
and the advantages and disadvantages of each idea.

• The detailed information consists of OmniClass classification values related to each
idea classified by Elements, Space by Function, Work Results, and Materials.
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All project information and documents, along with VEIDEA, are stored in the CDE
for easy access by all project parties. The proposed system enables users to input detailed
search parameters based on the OmniClass classification system, in accordance with BIM
objects. Through this functionality, VE teams can conduct targeted searches and retrieve
past design ideas relevant to the specific parameters of the project under consideration. This
process would substantially reduce the time and effort required to sort past design ideas
compared with existing systems. Figure 8 illustrates the process of creating the VEIDEA.
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7.2. Module 2: Design BIM Model Development

Three-dimensional BIM models allow users to visualize objects and structures in a
three-dimensional format. This representation enhances the users’ comprehension of the
project and minimizes the chances of misrepresenting elements. The 3D views enable the
VE team to preview the project before construction. This will assist the VE team members
in generating a significant number of innovative ideas. In the second module (Figure 9),
the 3D BIM model progresses through different levels of development, starting with LOD
100 (Conceptual Design), advancing to LOD 200 (Schematic Design), and finally reaching
LOD 300 (Detailed Design). The design team must determine the LOD required [33]. Once
the model reaches LOD 300, it should contain the following:

• Detailed 3D modeling of building components.
• Accurate placement and sizing of components.
• Coordination between trades (Architecture, Structural, and MEP).
• Complete clash detection and resolution.
• Construction sequencing.
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Revit 2025 software provides OmniClass classification only for Table 23 (products in its
system), and it is necessary to categorize the predefined OmniClass, which can integrate the
BIM model with the VEIDEA data bank as specific parameters into BIM objects—creating
new shared parameters that include four new parameters (Table 13—Space by Function,
Table 21—Elements, Table 22—Work Results, and Table 41—Materials), as illustrated in
Figure 10. This process produces a text file containing the four new parameters of data that
can be shared between multiple BIM models and projects.

Upon completion of the process, the new parameter and its associated values can
be integrated into the BIM model as a shared parameter by editing the corresponding
Revit families. Revit families constitute the core of the internal data structure of the Revit
model. Every parametric object is part of a family. Families are classified into two types:
(1) System Families and (2) Component Families. Only Component Families can be created,
customized, and stored in an external library to facilitate exchange and sharing across
different projects or teams.



Appl. Sci. 2024, 14, 9807 13 of 33

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 37 
 

ated, customized, and stored in an external library to facilitate exchange and sharing 
across different projects or teams. 

 
Figure 10. The newly added shared parameter. 

Using “Family Editor”, the new parameter could be added to the BIM objects. An 
example of a concrete column family is presented in Figure 11 to illustrate the addition of 
the four new parameters and their related values according to OmniClass classification. 
OmniClass classification values were manually assigned to each of the BIM objects 
through their families. After importing the modified family into our BIM model, new 
parameters and their related values were assigned to their elements. Figure 12 presents a 
concrete column property after including the new parameters in the BIM model, which 
can be used later in the VE process. 

Figure 10. The newly added shared parameter.

Using “Family Editor”, the new parameter could be added to the BIM objects. An
example of a concrete column family is presented in Figure 11 to illustrate the addition of
the four new parameters and their related values according to OmniClass classification.
OmniClass classification values were manually assigned to each of the BIM objects through
their families. After importing the modified family into our BIM model, new parameters
and their related values were assigned to their elements. Figure 12 presents a concrete
column property after including the new parameters in the BIM model, which can be used
later in the VE process.
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Capitalizing on the benefits of OmniClass values previously incorporated into the
model, the final step in this module entails integrating cost data into the BIM model for all
elements. This process is facilitated by establishing a connection between the cost database
and the CSI MasterFormat values incorporated in each model element, as mentioned in the
literature review. Table 22—Work Results represents the MasterFormat classification that
categorizes the work results in the form of numbers and titles [34].

To streamline this process, all components of the BIM model were extracted and
exported as MS Excel files. This file contains the element ID, all OmniClass parameter
values, and cost data, which were initially left blank. Subsequently, the exported Excel file
was linked with the cost database developed based on the CSI MasterFormat (Figure 13).
Finally, the cost data were incorporated into an exported Excel file and reimported into
the 3D model (Figure 14). The process of extracting the data from the Revit model and
importing the modified data to it again is automated using the “Import” and “Export”
add-in functionalities integrated into the BIM model, as illustrated in Figure 15.
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The process of adding cost data to the 3D BIM model increases the dimensionality of
the model to the fourth dimension (4D). Four-dimensional (4D) modeling offers significant
advantages during the design phase, enabling visualization and automatic cost calculations
for the alternatives under consideration. BIM models provide precise quantity takeoffs and
component schedules at each project design stage. Consequently, the cost estimate for each
alternative can be calculated. Accordingly, the virtual environment (VE) team will gain a
comprehensive understanding of the outcomes of their proposed modifications.
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Upon completion of Module (2), the primary deliverable will be a comprehensive de-
sign BIM model enriched with the cost data and OmniClass parameter values, as presented
in Figure 16.
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7.3. Module 3: Value Analysis/Engineering Model

Module (3) depends mainly on the design of the BIM generated by Module (2), as
illustrated in Figure 17. During the design development phase, the established VEIDEA
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data bank was linked to the BIM model, which contains pre-assigned OmniClass parameter
values for all elements. This enabled a facilitated search for past VE ideas stored in the
VEIDEA data bank related to any specific object within the BIM model. To refine the search
criteria for retrieving relevant VE ideas, various search parameters, including Elements,
Space by Function, Work Results, and Materials, must be utilized. After reviewing the
ideas, the selected idea was implemented by directly modifying the BIM model. This
module allows the design team to systematically integrate past VE ideas into the ongoing
design development process. Consequently, this proactive approach potentially reduces the
need for extensive design changes that may occur after design completion. Additionally,
this approach helps comprehend the designs through 3D visualization and enhances the
effectiveness of VE implementation.
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Figure 17. Module (3) framework.

An add-in was developed and installed in the BIM to facilitate the implementation of
this module. The VE–BIM integration add-in’s objective is to facilitate design enhancement
by utilizing the VEIDEA data bank. The dashboard interface is displayed upon select-
ing the VE–BIM integration add-in (1 in Figure 18). Four OmniClass search parameters
can be selected on the left to adjust the classification level to retrieve relevant VE ideas
(2 in Figure 18). In our case, “Element” and “Space by Function” are selected, with their
corresponding descriptions assigned as “Floor Decks, Slabs, and Toppings” and “Office
Spaces”, respectively, as illustrated in 3 in Figure 18. Subsequently, VE ideas are filtered
according to previously assigned search parameters. The resulting VE idealist comprises
concepts related to modifying the reinforced concrete (RC) slab type and its associated
advantages and disadvantages (4 in Figure 18). The user/designer may accept the preferred
ideas and reject others at this stage. This process significantly reduces time expenditure
during the VE workshop, as the VE team can exclude previously reviewed and decided
ideas from further consideration.

This module serves as an essential tool for the design team, facilitating a comprehen-
sive review of previous Value Engineering ideas and incorporating them into the design
development phase. This module enables a proactive approach to design optimization.
This systematic incorporation of VE principles early in the design process leads to the
following conclusions:

• Reduce the risk of design modifications in later stages.
• Reduce iteration cycles.
• Enhance the design process.
• Improve the final design’s value.
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7.4. Module 4: Value Engineering Study

The implementation of Value Engineering relies on the VE team’s collective expertise
and innovative thinking. The purpose of the proposed methodology is not to remove hu-
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man creativity, but the main objective is to facilitate the execution of the Value Engineering
study, which will save time and effort. The objectives of this study are as follows:

• Assist the user in going through the Value Engineering job plan systematically.
• Reducing the amount of paperwork during the Value Engineering study as the model

carries out all the calculations, such as quantity takeoff, cost calculation, and evaluation.
• Reduce the timing and execution of the VE workshop studies.
• Saving the data in an organized way makes it easy to retrieve any information.

The VEIDEA data bank will contain the previous ideas and the new ones generated
during the study, which will be available for the user to retrieve at any time. The Value
Engineering process is implemented by following a particular job plan. Following the
phases of the Value Engineering study in their order is very important because they are
based on each other according to this sequence, as illustrated in Figure 19.
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The VE process commenced with the formation of the VE team. The first step in the
Value Engineering job plan is the information gathering phase. The aim is to collect all
relevant project information. To facilitate this task, the CDE emerges as a single platform
for streamlining document management across the project lifecycle. The CDE contains
all the project information and grants the VE team secure and global access to the project
information through cloud-based storage facilitated by appropriate permissions. The
function analysis phase begins by using the Functional Analysis System Technique (FAST)
to define the project scope and clarify the essential functions that must be maintained. Ideas
are then generated, and the best ones are selected for further development.

A limitation of the proposed framework is its inability to directly consider the effect of
structural design modifications on the other elements of the building under study. Specifically,
changes to the primary structural elements, such as the slab type, may require adjustments
to the secondary elements, such as the column and foundation dimensions, along with their
reinforcement values. While the framework optimizes the primary structure, these secondary
element modifications must be redesigned and modified by the designer.

7.5. Criteria Assessment and Automated Evaluation of Alternatives

The proposed framework introduces an integrated model to facilitate value-driven
decision making among generated alternatives for owners, professional designers, and
VE team members. The AHP is employed as a tool for multiple-criteria decision making
(MCDM). The AHP technique was implemented in two stages. Initially, the criteria were
evaluated against one another to determine their relative weights. Subsequently, the alter-
natives were evaluated against each criterion to generate a score for each alternative. The
weighting of the criteria was defined based on user preferences. The evaluation phase of
alternatives is implemented by comparing the criteria, comparing the alternatives versus
each criterion, and designing to help stakeholders choose the best design alternative. Crite-
ria weights are determined by the pairwise comparison matrix of the relative importance
of the criteria [35]. Therefore, some criteria are not measurable, and the criteria weights are
estimated based on the importance of the criteria in the design process. The model was
developed using the AHP as a dynamic decision making tool and the choice of appropriate
decision for design alternatives. According to the information and drawings created in the
BIM model, the model provides multi-standard decision making solutions, as follows:
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• Choose the appropriate design alternative from a possible set of alternatives.
• Classification and prioritization of alternatives in accordance with the criteria.
• Describes the impact of specific criteria on performance alternatives.

Figure 20 illustrates the evaluation process using the AHP.
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The goal of the framework is to select the most appropriate alternative by considering
multi-attributed criteria that satisfy owner requirements and project objectives by leverag-
ing the benefits of BIM and a CDE. Finally, Figure 21 shows the tools used to enhance the
Value Engineering process.
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8. Case Study Application

This section presents a practical application of the proposed framework through a com-
prehensive case study to illustrate its features and capabilities. The process begins in the
pre-construction phase at the beginning of the design phase. The case study focuses on an office
building project with the objective of finding the most suitable alternative for the building by
trying different structural and architectural designs through an evaluation process.

The building comprises nine floors (basement, ground, and seven typical floors), as
illustrated in Figure 22. The project information is as follows:

• The project is located in the new administrative capital, Cairo, Egypt.
• The footprint area is 5371 m2.
• The total built-up area is 37,358 m2.
• The construction works start in 2022.
• The project’s duration is 22 months.
• The contract price is EGP 147 million (about USD 6 million).
• The structural system of the building was cast in situ using reinforced concrete flat slabs.
• The foundation system has isolated footings.
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8.1. Creating CDE and Design BIM Model Development

Autodesk Construction Cloud was selected as the CDE. Figure 23 shows all the project
documents uploaded to the CDE. All project disciplines, such as structural, architectural,
and MEP design teams, have access to the CDE. In addition, the VE–BIM integration add-in
software, including the VEIDEA data bank as an Excel file, will be uploaded to the CDE.
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During the design phase, all the design teams used the BIM environment and its tools.
Revit 2024 was used to create the building’s 3D model (architectural and structural) until
an LOD of 300 was reached. Figures 24 and 25 illustrate the architectural and structural 3D
models of the project, respectively.
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Figure 25. A 3D structural BIM model of the project (LOD 300).

After finishing the 3D design model, the four new shared parameters related to the
OmniClass classification (Table 13—Space by Function, Table 21—Elements, Table 22—
Work Results, and Table 41—Materials) were inserted into the BIM model, and their related
values according to the OmniClass classification were added manually by the user for all the
elements in the model. After incorporating OmniClass values, the cast data were imported
into the BIM model. Finally, the VE–BIM integration add-in software was installed in the
BIM model, as shown in Figure 26.
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8.2. Value Analysis/Engineering Model

Table 2 presents a summary of the search results after using the add-in and applying the
search parameters, as illustrated in Section 7.3. At this stage, the user/designer may accept
the preferred ideas and reject others. The project is primarily a conventional office building
with spans ranging from 5 to 8 m. Consequently, the implementation of post-tensioned
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(PT) slabs instead of a flat slab (FS) system is highly recommended. The user/designer can
virtually select the required slab element to implement the chosen VE idea (PT slab) and
modify the BIM model by selecting “Apply accepted idea”.

Table 2. The search results of past VE ideas.

Idea Contents VE Study Area Advantages Disadvantages Action

Using post-tension
slabs (PT) instead of
flat slab system (FS)

Structural Reducing cost by using less
concrete and reinforcement

Requires detailed
structural analysis Accepted

Using precast slabs
instead of flat slab

system (FS)
Structural Faster construction time

Higher initial costs for
molds and

transportation
Rejected

Using hollow core slabs
instead of flat slab

system (FS)
Structural Lighter weight compared to

solid slabs
Limited flexibility for

irregular shapes Rejected

Using a waffle slab
system instead of a flat

slab system (FS)
Structural

Efficient material use,
reducing overall
concrete volume

Complex formwork,
increasing construction

time and cost
Rejected

The original design is a flat slab (FS) with 250 mm thickness. The estimated slab cost is
approximately EGP 5,874,000 (USD 239,755). The second alternative is a post-tension slab
(PT slab) with a slab thickness of 220 mm. The estimated slab cost is approximately EGP
4,724,400 (USD 192,832). The cost calculation for each system is presented in Table 3.

Table 3. Typical floor slab results and comparison.

Flat Slab PT. Slab

Slab thickness (ts mm) 25 22

Slab area (m2) 3760 3760

Concrete volume (m3) 940 827

Concrete unit cost (EGP/m3) 1200 1200

Reinforcement weight (ton) 113 62

Reinforcement rate (Kg/m3) 120 75

Tendon rate (Kg/m2) — 4

Reinforcement unit cost
(EGP/ton) 42,000 42,000

Tendon unit cost (EGP/m2) — 75

Total cost 5,874,000 4,724,400

Cost difference (EGP) 1,149,600

Saving percentage % 20%

The modification of the slab type/system necessitates a comprehensive reassessment
of the entire structural framework. As the slab thickness is reduced, the designer must
consider these modifications and redesign both the foundation and vertical elements. This
optimization process ensures structural integrity and efficiency and maximizes the benefits
of the initial Value Engineering decision.

8.3. Value Engineering Study

A Value Engineering study will be conducted according to the standardized proce-
dures established by SAVE International. Furthermore, this study will be enhanced by
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exploiting the advantages afforded by BIM technology and the implementation of the CDE.
This integrated approach aims to streamline the Value Engineering process. The process
begins when the VE team starts gathering data and decides to generate innovative ideas
aligned with the project objectives.

8.3.1. Pre-Workshop Phase

The focus of the pre-workshop phase is to establish a clear communication line between
the project manager and designer to acquire all the necessary information related to the
project and select a VE team with experience related to the project scope of work. The
project is described in detail in Section 8.

8.3.2. VE Job Plan (Workshop Stage)

The workshop phase involves a structured job plan to identify opportunities to im-
prove a project’s value while ensuring compliance with project objectives and adherence to
project constraints. The VE job plan consists of the following six systematic steps.

8.3.3. Information Phase

At this stage, all project information and specifications are provided to the VE team
through access to the CDE cloud (Figure 23). This centralized repository facilitates seamless
collaboration and ensures that the team has ready access to all project data, where it can
comprehensively review the project data, drawings, and specifications to gain a thorough
understanding of the project’s purpose and objectives. The following information is provided:

• Project contract documents.
• Design BIM models and project drawings (architectural and structural drawings).
• Project specifications.
• Bill of quantities.
• Project cost.
• Project schedule.
• Soil investigation report.

8.3.4. Function Analysis Phase

The Function Analysis Systems Technique (FAST) diagram graphically illustrates
the interrelationships of project functions and is often invaluable in accomplishing this
understanding. Figure 27 shows the FAST diagram of the case study.
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8.3.5. Alternatives Generation Using VE–BIM Integration in the Creativity Phase

In this phase, BIM integration serves as a comprehensive repository for all essential
information regarding the alternatives. This integration facilitates the development of cost-
effective alternatives that fulfill essential functions. The VE team uses the VE–BIM integration
add-in to access and search the VEIDEA data bank for relevant VE ideas. “Element”, “Work
Results”, and “Space by Function” are selected, with their corresponding descriptions assigned
as “Tile Flooring”, “Flooring”, and “Office Spaces”, respectively. Figure 28 illustrates the
parameters and their corresponding descriptions used to search for flooring material ideas. The
action for the displayed ideas was assigned as “Pending Evaluation”.
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Figure 28. Search results for flooring material ideas.

For each proposed alternative, a distinct BIM model was generated. These alternatives
were evaluated in the subsequent phase. In this case, alternatives for changing the flooring
material are as follows:

• Porcelain tile (original design).
• Ceramic tile.
• Terrazzo tile.

The action status of ideas reviewed during the Value Analysis/Value Engineering
phase was recorded and displayed. If the designer had already made a decision regarding
an idea, the decision was stored and appeared in the action field adjacent to the idea.

A key advantage of BIM integration is the ability to perform accurate quantity take-
off. The BIM model facilitates the extraction of precise cost data for each alternative, as
illustrated in Figure 29.
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8.3.6. Evaluation of Generated Alternatives

The evaluation phase is implemented using AHP, which is designed to help the user
identify an alternative suitable for the design and prioritize alternatives based on predefined
criteria. The evaluation is implemented by comparing the criteria and alternatives with
each criterion to help choose the best alternative.

The user is asked to enter all general project information required for this study, such as
the project name, project type, project description, and interest rate. The user is also asked
to define/select the evaluation criteria, which is an essential component of the evaluation
process. The defined criteria for this case study are Funding Capabilities, Construction Time,
Durability, Constructability, Availability of Material, Safety, and Aesthetics, as presented in
Figure 30. The user proceeds to the next step by entering the suggested alternatives based
on the ideas displayed by the VE–BIM integration add-in used in the previous phase.
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The pairwise comparison evaluation was started by establishing the weight of the
selection criteria. Criteria weights were determined using a pairwise comparison matrix.
Initially, the criteria were compared to each other, and then alternatives were compared
against each criterion to generate a score for each alternative, as shown in Figure 31.
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The standard 1–9 scale was used in the pairwise comparisons, and the relative scale
for measurement is presented in Table 4.

Table 4. Scale of measurement for AHP [36].

Intensity of
Importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective

3 Weak importance of one over another Experience and judgment slightly favor one activity
over another
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Table 4. Cont.

Intensity of
Importance Definition Explanation

5 Essential or strong
importance

Experience and judgment strongly favor one activity
over another

7 Very stronger strong importance An activity is strongly favored, and its dominance is
demonstrated in practice

9 Absolute importance The evidence favoring one activity over another is of the
highest possible order of affirmation

2, 4, 6, 8 Intermediate values between the
two adjacent judgments When compromise is needed

Figure 32 presents the user-input importance levels for each criterion, and Figure 33
displays the calculated weights derived from these inputs.
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A Consistency Ratio (CR) for the criteria matrix is automatically computed to en-
sure the reliability of the weighting process. The consistency is determined by using the
eigenvalue λ to calculate the consistency index (CI). Consistency Ratios (CRs) are used to
measure the consistency of the judgments. Random index values (RIs) are presented in
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Table 5. The acceptable amount for a CR does not exceed 0.10. If it is more, then the matrix
is inconsistent. The following formulas are used to calculate CI and CR.

CI = (λ − n)/(n − 1) (1)

CR = CI/RI (2)

where λ is the average of the obtained values by dividing the elements of all priorities’
matrices by the priorities vector.

Table 5. Random consistency (RI) [35].

Matrix Size (n) 1 2 3 4 5 6 7 8 9 10

Random Index (RI) 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

The resulting CR of 0.072 falls below 0.10, as shown in Figure 34, thus indicating
acceptable consistency in the pairwise comparisons.
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Next, the user inputs alternative pairwise comparison values for each criterion. The
model then automatically applies the comparison procedure and evaluates the consistency
of the comparisons. To complete the pairwise comparison process, the final score for each
alternative is calculated. These comprehensive scores, which synthesize the evaluations
across all criteria, are shown in Figure 35, and the most suitable alternative has the highest
numerical value.

8.3.7. Development Phase

The results of the alternative evaluation show that ceramic tiles are ranked first as an
appropriate alternative with a score of 52.6%, followed by porcelain tiles ranked second
with a score of 26.5%, and in the last rank, terrazzo tiles with a score of 20.9%. After
selecting the appropriate alternative with a high score (ceramic tiles), the user can go to the
BIM model, select this alternative, and apply it to the BIM model, as shown in Figure 36.
Selecting this alternative led to a 39% reduction in flooring material costs as the original
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flooring material (porcelain tiles) cost 375 EGP/m2 (15.3 USD/m2) and ceramic tiles cost
230 EGP/m2 (9.4 USD/m2).
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9. Conclusions

The Architecture, Engineering, and Construction (AEC) industry faces persistent chal-
lenges that impede growth and productivity. Despite efforts to digitize the industry, issues
such as cost inefficiencies, project delays, and poor decision making remain prevalent. The
literature highlights that AEC is one of the least digitally developed industries globally. Al-
though technologies like Building Information Modeling (BIM) and systematic approaches
like Value Engineering (VE) have demonstrated potential, their full capabilities remain
underutilized. This study addresses this gap by proposing a framework that integrates both
BIM and VE, implemented in a prototype model. The framework supports the evaluation
and ranking of design alternatives based on multiple criteria, providing decision-makers
with valuable tools for optimizing construction outcomes.

The results from the case study demonstrated significant improvements from the
integration of VE and BIM, particularly in office building projects. For example, the
framework led to a 20% reduction in reinforced concrete (RC) slab costs and a 39% reduction
in flooring material costs. These findings underline the benefits of integrating VE and BIM,
which can be summarized as follows:
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• Centralized data management: the use of a Common Data Environment (CDE) pro-
vides a centralized repository for all project data, allowing stakeholders to access and
manage information efficiently from any location.

• Efficiency in documentation and calculations: BIM reduces time spent on documenta-
tion, quantity take-offs, and cost estimations by automating these processes.

• Enhanced visualization: 3D modeling in BIM aids the VE team in visualizing project
elements, identifying areas for improvement, and generating innovative ideas early in
the design phase.

• VEIDEA data bank: a structured VEIDEA data bank, based on the OmniClass classi-
fication system, allows for efficient storage, management, and retrieval of VE ideas,
improving the decision making process.

• Improved design process: the VE–BIM integration add-in assists design teams in
reviewing past VE ideas and making informed decisions during the design phase,
saving time and improving outcomes.

• Streamlined VE study: the VE–BIM integration add-in also aids VE teams during the
Value Engineering study by providing easy access to past ideas and enabling a more
efficient review process.

• Automated decision making: the use of the Analytical Hierarchy Process (AHP) in the
evaluation phase automates the ranking of alternatives, helping to prioritize design
solutions based on multiple criteria.

• Accurate cost estimation: linking the BIM model with MasterFormat classifications allows
for more accurate and reliable cost estimates throughout the Value Engineering process.

The findings from this study align with previous research on the advantages of in-
tegrating VE and BIM in construction projects. The synergy created by combining these
approaches, supported by a Common Data Environment, has the potential to transform
the construction industry by improving efficiency, reducing costs, and enhancing project
outcomes. This framework equips designers and VE teams with the tools necessary to
develop cost-effective buildings that meet client requirements.

In terms of its contribution to the field, this study represents the first comprehensive
attempt to integrate BIM and VE within a Common Data Environment for pre-construction
decision making. The practical implications for industry professionals are significant, as
the framework offers clear benefits in terms of integration, visualization, structured data
management, and automated evaluation.

10. Limitations and Future Research

Several limitations were identified in this study. First, the model was restricted to
office building projects, which may limit its generalizability to other types of construction
projects. Second, the successful implementation of the VE–BIM integration add-in and
Revit model template depends on their availability to the design team from the outset of
the project. Third, newly introduced VE ideas require the user to create or modify elements
in the Revit model template to ensure compatibility with the VEIDEA data bank. Finally,
structural alternatives often necessitate changes that require the involvement of designers.

Future research should focus on extending this framework to other project phases
beyond pre-construction and applying it to different types of construction projects. Addi-
tionally, incorporating artificial intelligence (AI) tools into the framework could enhance
its decision making capabilities, particularly for complex projects where multiple criteria
must be balanced.
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