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Role of vector phenotypic plasticity in
disease transmission as illustrated by the
spread of dengue virus by Aedes albopictus

Dominic P. Brass 1,2 , Christina A. Cobbold3, Bethan V. Purse 1,
David A. Ewing 4, Amanda Callaghan2 & Steven M. White 1

The incidence of vector-borne disease is on the rise globally, with burdens
increasing in endemic countries and outbreaks occurring in new locations.
Effectivemitigation and intervention strategies requiremodels that accurately
predict both spatial and temporal changes in disease dynamics, but this
remains challenging due to the complex and interactive relationships between
environmental variation and the vector traits that govern the transmission of
vector-borne diseases. Predictions of disease risk in the literature typically
assume that vector traits vary instantaneously and independently of popula-
tion density, and therefore do not capture the delayed response of these same
traits to past biotic and abiotic environments. We argue here that to produce
accurate predictions of disease risk it is necessary to account for envir-
onmentally driven and delayed instances of phenotypic plasticity. To show
this, we develop a stage and phenotypically structured model for the invasive
mosquito vector, Aedes albopictus, and dengue, the second most prevalent
human vector-borne disease worldwide. We find that environmental variation
drives a dynamic phenotypic structure in the mosquito population, which
accurately predicts global patterns of mosquito trait-abundance dynamics. In
turn, this interacts with disease transmission to capture historic dengue out-
breaks. By comparing the model to a suite of simpler models, we reveal that it
is the delayed phenotypic structure that is critical for accurate prediction.
Consequently, the incorporation of vector trait relationships into transmission
models is critical to improvement of early warning systems that inform miti-
gation and control strategies.

Vector-borne diseases (VBDs) are primarily vectored by ectothermic
arthropods, whose life history is sensitive to environmental variation1.
Our ability to predict if vector populations can sustain pathogen
transmission across the species range requires an understanding of
how environmental variation and vector life-history interact2,3. There is
now a rich literature exploring the mechanisms through which

environmental variation alters vector trait expression, but explicit and
delayed mechanisms of individual variation are generally omitted,
even in extensively studied systems4. For example, adult mosquitoes
experiencing hot, dry summer conditions have a shorter lifespan than
adults that are subject to more favourable temperatures5. Short-lived
mosquitoes are less likely to survive to complete the extrinsic
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incubation period and take a subsequent blood meal to transmit the
pathogen. Therefore, there is environmentally driven inter-annual and
inter-regional variation in the ability of mosquitoes to vector disease6.

Predictions of the relative risk of VBDs, via metrics such as the
basic reproduction number, are highly sensitive to traits such as adult
longevity. Seasonal and regional variation in this trait is often
accounted for by parameterising functions that directly relate the
current temperature to the longevity of adult mosquitoes7,8. However,
adult longevity has also been shown to vary in response to an indivi-
dual’s experience of competition and temperature during develop-
ment. Therefore, the traits expressed by individuals in the population
result from complex interactions between past environmental condi-
tions and population states9. By ignoring the role that a vector’s his-
toric environmental experiences have on biological traits critical to
disease transmission we implicitly make the mean-field assumption,
that all individuals are equally competent vectors regardless of their
past experiences of the biotic and abiotic environment10. This mean-
field assumption compromises our ability to assess the risk of vector-
borne disease in variable environments, where seasonal patterns in
environmental variables induce seasonal variation in vector popula-
tion dynamics. Similarly, mean-field assumptions limit our ability to
assess the relative risk of VBDs between climatic zones, such as
between tropical and temperate environments, where different pat-
terns of environmental variation occur.

The delayed effect of developmental experience on adult traits is
an example of phenotypic plasticity, the ability of organisms expres-
sing the same genotype to express different phenotypes according to
the environmental conditions they are subject to11. To demonstrate
howmechanisms of delayed phenotypic plasticity can be incorporated
into predictions of VBDs we consider the ability of the invasive mos-
quito species Aedes albopictus to vector dengue virus. We use a
recently derived phenotypically explicit mathematical modelling fra-
mework to represent how historical biotic and abiotic environmental
conditions determine the trait dynamics of vector populations12. Ae.
albopictus is a competent vector of dengue virus that is now widely
distributed in temperate zones into which dengue is regularly
imported13. Dengue is a viral VBD that has seen a recent dramatic
increase in cases: in 2000 there were about half a million cases, which
has risen to over 4.2 million in 2022, caused by a combination of cli-
mate and anthropogenic change14.

Despite predictions of broad suitability for the transmission of
dengue virus byAe. albopictus in temperate climates such as Europe by
both statistical and mechanistic modelling approaches, outbreaks in
these regions have so far been limited in size and duration15,16. This
mismatch between observed and predicted disease incidence moti-
vates the development ofmodelling approaches that are better able to
reflect the currently observed global incidence of dengue. Due to the
species' global range (currently between 0 and 52.5 degrees latitude13),
Ae. albopictus populations are subject to a diverse range of environ-
mental conditions. Environmental variation has been shown to induce
variable trait dynamics in field populations and this may alter the
ability of populations in different environments to vector disease17,18. It
is our hypothesis that, by accounting for the effect of biotic and abiotic
environmental variation on the phenotypic trait structure and popu-
lation dynamics of Ae. albopictus, both the population dynamics of the
species across its range and the current patterns of disease incidence
around the globe can be better understood. Further, we propose that
omitting mechanisms of phenotypic plasticity limits the ability of
models to produce accurate and generalisable predictions of disease
incidence.

Results
Model overview and validation
Wedevelop a Susceptible-Exposed-Infected-Resistant (SEIR)model for
the transmission of dengue virus by Ae. albopictus that incorporates a

system of environmentally driven stage and phenotypically structured
delay-differential equations. The model explicitly predicts mosquito
population and trait dynamics. This model can represent the instan-
taneous effects of the current environment (e.g., temperature, pre-
cipitation, evaporation, photoperiod, and larval density) on vector
traits such as development rate and through-stage survival. In addi-
tion, it captures the delayed effect of historic biotic and abiotic
environments on these same traits. This allows us to represent how
phenotypic plasticity in response to historic biotic and abiotic envir-
onmental variation during development alters adult longevity. We
explicitly track the number of adult mosquitoes within the population
that have experienced specific developmental conditions. This results
in a phenotypically structured adult population that directly accounts
for the effects of past environments on the ability of mosquitoes to
transmit VBDs.

We use thismodel to consider the infection dynamics of a dengue
outbreak, beginning with the introduction of humans, infected with a
single serotype of dengue virus, into a completely susceptible popu-
lation. This simplified representation of the urban dengue virus
transmission cycle is most applicable to non-endemic temperate and
sub-tropical regions, where the likelihood of multiple serotypes cir-
culating simultaneously is reduced and the population’s prior expo-
sure to dengue virus is limited19. Our model incorporates detailed
species-specific processes, such as diapause, quiescence, the water
dynamics of developmental habitats, and developmental plasticity
that causes adult traits to vary in response to the environmental con-
ditions experienced by juveniles throughout development20,21. We use
data from published laboratory experiments to parametrise multi-
dimensional reaction norms describing how temperature, larval den-
sity, precipitation dynamics, and photoperiod alter the traits of mos-
quitoes within and across developmental stages. Remotely sensed and
climate reanalysis data combined with human population density data
are then used tomake spatio-temporal predictions of vector dynamics
and VBD risk across the globe. A full description of the model is pro-
vided in the Methods section and a detailed example of the model
outputs can be found in Supplementary Note 1.

We extensively validate the model predictions of mosquito
population, wing length, and disease dynamics by comparing them to
field surveys of mosquito populations and disease outbreaks across
the species range. To validate the population dynamics we use pub-
lished surveillance data, including life-stage specific population den-
sity estimates and average trait data, from 40 locations, across 13
countries and4 continents (see SupplementaryNote 1 for the full set of
validations). To validate themodel predictions of dengue dynamics we
compare them to historical dengue outbreaks, using reports from the
outbreak to select a likely introduction scenario for dengue virus into
the region and to define an area over which to simulate the model.
Validation data was obtained from a comprehensive search of pub-
lished studies that observed the population dynamics of Ae. albopictus
in the field or reported human cases of dengue. The literature search
was conducted using a snowball procedure - a systematic search
revealed a high number of false positives. Studies were included in our
validation if the data was collected with at least a monthly resolution
from a regionwhere Aedes aegypti, a closely related vector species was
absent. This exclusion criteria is necessary as Ae. aegypti is known to
compete with Ae. albopictus for larval resources and is also a vector of
dengue virus, factors which we do not account for here. Since sub-
stantial variation in case reporting effort through space and time is
likely, our predictions of dengue transmission are not rescaled and the
validations are intended to demonstrate that the model produces
plausible disease dynamics (see also Supplementary Note 2). The
comparisons presented in this paper represent the full set of datasets
meeting the above criteria that were found in our literature search.

Across the species global range, the model achieves excellent
predictions of the population and trait dynamics of Ae. albopictus
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(Fig. 1). The model’s predictions hold over a broad range of climatic
regions and reflect the differences in population dynamics that are
observed between temperate and tropical environments (see Mon-
mouth, New Jersey, USA (2009), R2 = 0.59, and St. Paul, La Réunion
(2013), R2 = 0.65 (Supplementary Fig. 47A)22,23. The model accurately
predicts detailed within-season dynamics and consistently captures
the species’ phenology (see adult numbers in Guangzhou, China
(2006–2015), R2 = 0.6 (Supplementary Fig. 45B), and Rimini, Italy
(2008), R2 = 0.94 (Supplementary Fig. 9A)24,25. The model additionally
captures the inter-annual variation in abundance observed in multi-
year data sets (see oviposition activity in Trento, Italy (2010–2020),

R2 = 0.71 (Supplementary Fig. 14), and adult numbers in Suffolk, USA
(2009–2018), R2 = 0.64 (Supplementary Fig. 40))26,27.

Our model predictions indicate and confirm the current limited
ability of Ae. albopictus to sustain autochthonous transmission in the
Alpes-Maritimes Department of France. Predictions show good
resemblance to the disease dynamics observed during the multi-year
epidemic on the island of Réunion and the large outbreak that
occurred in Guangzhou, China (Fig. 2)28–33. The reduced resemblance
of our predictions to the observed disease dynamics towards the latter
half of each outbreakmay be explained by the intensification of vector
control activities which we do not account for here. For example, in

Fig. 1 | Validation of predicted population dynamics against field data. Valida-
tions of the scaled model predictions against field data for locations around the
world. In each case, the x-axis is time in days, and the y-axis is either the scaled
abundance of individuals in a specific life stage or an average trait value. Each blue
line represents the model’s prediction of the population dynamics at the corre-
sponding location, the orange lines represent field observations from the
same location. The colour of the outer box indicates the type of data that is being

compared, orange boxes are for oviposition activity, which is the number of eggs
predicted to present in an ovitrap, green boxes indicate larval numbers, red boxes
indicate adult numbers and purple for average wing length. The location and year
of each comparison are indicated below/above each graph, further details of each
comparison can be found in Supplementary Note 1. Source data are provided as a
Source Data file. A Comparisons for Europe24–26,77,159–161. B Comparisons for North
America17,22,162–165. C Comparisons for Asia18,27,85,166–168.
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Guangzhou in 2014, a considerable intensification of vector control
activities occurred halfway through the outbreak to which, according
to previous diseasemodelling studies, led to a substantial reduction in
the final outbreak size and duration28. These validations demonstrate
that, through the careful consideration of the mechanisms by which
environmental variation acts on the life history of a vector species,
broadly generalisable predictions of population and disease dynamics
can be achieved.

The role of phenotypic plasticity in driving disease outbreaks
To examine how phenotypic plasticity contributes to the observed
disease dynamics, we examine four of the outbreaks in Fig. 2 in greater
detail. During each outbreak, we compare the wing lengths of all
mosquitoes within the modelled population to the wing lengths of
infectedmosquitoes responsible for dengue virus transmission events
(Fig. 3). Wing length is a trait that is observable in the field where it is
known to seasonally vary in a manner that qualitatively matches with
the variation we have observed in populations of Ae. albopictus and
other mosquito species17,34–36. This variation is highly correlated with
variation in adult longevity9. Adult longevity is used in the para-
metrisation of the model to link larval developmental experience to
adult trait expression9. Large mosquitoes are produced as a result of
low larval competitionand cooler temperatures at the start of the adult

season. These large mosquitoes have long lifespans which allows a
greater proportion of individuals to survive through the extrinsic
incubation period of the virus which is also prolonged when tem-
peratures are low.

As eachoutbreakprogresses the initial cohort of largemosquitoes
begins to die off, being replaced by subsequent cohorts of smaller
individuals that developed under higher intraspecific competition and
warmer temperatures. Consequently, the wing length distribution of
infected mosquitoes becomes increasingly similar to that of the entire
population (Fig. 3A–D). This demonstrates that the trait dynamics of
uninfected mosquitoes and mosquitoes responsible for infections are
distinct, with the relationship between the two evolving through time
and between outbreak locations. By considering differences between
these wing length distributions we are able to directly examine the
effects of phenotypic plasticity in adult longevity on disease
dynamics9. For example, in Guangzhou during first quarter of the
outbreak, an average of 70% of infections transmitted each day are
attributable to the largest 20%ofmosquitoes present in thepopulation
over this period (equivalently this is 47%, 31%, and 25% of transmission,
attributable to the largest 20% of mosquitoes in Alpes-Maritimes,
Reunion, and Hawai’i, respectively). More generally, across all of the
outbreaks considered here we find that, in the initial stages of each
outbreak, the majority of dengue virus transmission can be attributed

Observed dengue
cases

Predicted dengue
cases

Hawai'i, USA (2015-2016) Alpes Maritimes Department,
France (2018-2020) Tokyo, Japan (2014)

Guangzhou, China (2013-2014)La Réunion, France (2017-2020)

Fig. 2 | Validation of predicted disease dynamics against historical outbreaks.
Comparisons of the number of instances of autochthonous transmission detected
during historical dengue outbreaks and the model predictions13,30,169–171. For each
outbreak the x-axis is time in days and the y-axis is the reported number of

instances of autochthonous transmission, with the blue lines representing model
predictions and the orange lines field observations from that same location. These
results are discussed in detail in Supplementary Note 2 and source data are pro-
vided as a Source Data file.
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Fig. 3 | Comparison of trait dynamics during historic dengue outbreaks.
A–D Comparisons of the distribution of infective wing lengths and population
average wing lengths during four historic dengue outbreaks. The central green line
indicates the population’s median wing length at a given time with the shaded area
indicating the 25th and 75th percentiles of the wing length distribution. The central
orange line indicates the 50th percentile of the distribution of wing lengths of
infectious individuals with the shaded area indicating the 25th and 75th percentiles.

The blue and purple lines indicate the normalised number of dengue cases and
adult mosquitoes respectively. Source data are provided as a Source Data file.
Comparison for outbreaks in: A Hawai’i (2015–2016); B Réunion (2021); C Alpes-
Maritimes, France (2020); D Guangzhou in (2014). E The difference between the
average wing length of infective mosquitoes and the population average wing
length in four locations before and after the time of peak transmission.

Article https://doi.org/10.1038/s41467-024-52144-5

Nature Communications |         (2024) 15:7823 5

www.nature.com/naturecommunications


to mosquitoes with wing lengths that are higher than the population
average (Fig. 3E).

In the transmission of dengue, extended longevity is the only
advantage that we have assumed that large mosquitoes have over
small mosquitoes. The disproportionate amount of disease transmis-
sion events caused by large individuals during the initial stage of each
outbreak is therefore attributable to the effects of delayed environ-
mental variation on the trait structure of vector populations. This
result adds significant nuance to the seminal work of Macdonald37 on
malaria transmission, which demonstrated that under equilibrium
conditions, adult longevity is an important factor in determining
whether a VBD can spread. We show that temporal variation in adult
longevity is essential for amplifying pathogen transmission in the early
stages of an outbreak.

To test our hypothesis that vector trait dynamics are integral to
predicting disease dynamics, we develop a suite of model variants
(simplifications of our full model) that make common assumptions
about how vector traits respond to environmental variation (see
Supplementary Note 3). In the full model, we temporally track the
number of mosquitoes within the population that express each wing
length, resulting in a temporally evolving trait distribution, induced by
delayed phenotypic plasticity. We consider a variant of our full model,
where instead all adults are assumed to share the same invariant wing
length, an assumption that is common in derivatives of the classical
Ross-Macdonald transmission model, from which epidemiological
metrics such as the basic reproduction number are routinely derived.
We refer to this as the constant wing length model and consider its
dynamics for different constant wing lengths4. Under this assumption,
the only variation in adult traits occurs due to changes in the instan-
taneous environmental conditions, and so the effects of previous
environments on the expressionof traits areomitted.We also consider
a model variant that uses the same delayed mechanisms of trait
expression as the full model, but that represents this variation through
a population average wing length rather than tracking the temporal
evolution of the full trait distribution. We refer to this model variant as
the unstructured model. Under this assumption, phenotypic plasticity
is represented through a mean-field, where although the population's
average past experience of development is accounted for, there is no
explicit trait structure.

When the constant wing length model is simulated for the out-
break on Reunion (selected as a point of comparison due to its multi-
year duration), under the assumption that all mosquitoes express the
average wing length predicted by the full model (2.6mm), we find
that the constant wing length model predicts half as many total
infections over the duration of the outbreak compared to the full
model (see Supplementary Fig. 59). This demonstrates that the
inclusion of mechanisms of individual variation not only allows us to
attribute a disproportionate number of transmission events to large
mosquitoes (Fig. 3), but also shows that the vector population’s trait
dynamics have a quantifiable effect on outbreak size, and therefore
that phenotypic plasticity alters disease dynamics (see Supplemen-
tary Fig. 56 for examples of the constant wing length model for other
outbreaks). For the same outbreak, the unstructured model variant
predicts twice as many dengue cases as the full model. The mean-
field approach, characterised by the unstructured model, does not
account for the non-linear effect of adult survival on vector compe-
tence, resulting in quantitatively different predictions of outbreak
size (Supplementary Fig. 59). These examples show how the delayed
response of vector traits to past environments through phenotypic
plasticity gives rise to a trait distribution that is integral to under-
standing the disease dynamics we observe. Further, they show how
these disease dynamics cannot be anticipated by mean-field
approaches, even when they incorporate all the same mechanisms
of delayed phenotypic plasticity.

Global risk
Topredict transmission risk over the species global range,wederivean
expression for the reproduction number, Rt, which describes the
number of infections produced by the introduction of a single infected
human into the population (described in the Methods and compared
to the simpler model variants in Supplementary Note 3). This for-
mulation of Rt accounts for the effect of phenotypic plasticity in the
vector population trait structure, on the ability of that population to
transmit disease. It produces predictions that are generalisable
between climates (see Methods for details). We compute Rt across the
species' global range and report the number of consecutive months
per year between 2010−2020 that Rt > 1, in areas with a mean annual
relative humidity greater than 55%, conditions that indicate the suit-
ability of a region for the transmission of dengue virus and the survival
of adult mosquitoes. In general, we predict less suitability for the
autochthonous transmission of dengue vectored by Ae. albopictus
than approaches that do not account for the delayed effects of phe-
notypic plasticity (See Supplementary Note 4 for a comparison
between our predictions and thosemade by a standard formulation of
the basic reproduction number R0 that uses similar environmental
drivers and reaction norms). Furthermore, by comparing the average
period that Rt > 1 to the average density of adult female mosquitoes
during the active season (Fig. 4A, C, E) we see that abundance alone
does not predict the ability of vector populations to transmit disease.
Additional outputs of parameters of interest, such as the time of peak
adult density and the first and last days for which transmission is
predicted can be found in Supplementary Note 5.

In North America and Europe, regions that currently experience
limited autochthonous transmission of dengue virus by Ae. albopictus,
our approach predicts that there is currently limited transmission risk
from this vector. By comparison, in areas of China where dengue
outbreaks vectored by Ae. albopictus aremore frequent, our approach
predicts longer transmission periods over a wider area, demonstrating
that our predictions reflect currently observed regional differences in
dengue incidence38. By comparing the locations of historical dengue
outbreaks to locations that are predicted to be at risk, we observe that
despite our predictions being highly specific, they still encompass
locations known to experience autochthonous dengue virus
transmission33,39,40. For example, the location of 38 of the 41 clusters of
autochthonous dengue transmission in Europe reported by the Eur-
opean Centre for Disease Control since 2010 occurred within regions
that we predict are at risk of dengue transmission (Fig. 4D)13. This
suggests that over the last 10 years populations of Ae. albopictus in
temperate regions have had limited capability to sustain dengue
transmission due to environmental constraints despite the species
now wide distribution in these regions. Given the changing nature of
the climate, understandingwhen thiswidely distributed species will be
capable of sustaining prolonged transmission cycles in temperate
regions is of critical importance that is yet to be resolved, and which is
the subject of subsequent modelling work.

Discussion
In a world where the climate is changing rapidly, there is a clear need
for accurate models for predicting outbreaks of environmentally sen-
sitive, high-burden vector-borne diseases41. In a departure from the
current state-of-the-art we show that stage-phenotypically structured
delay differential equations are a practical and effective method for
producing such predictions by performing the most comprehensive
validation to date of a mechanistic model for the transmission of
dengue virus byAe. albopictus. We show that the delayed expression of
phenotypic plasticity in response to previous environments plays a
critical part in determining the ability of vectorpopulations to transmit
disease. This provides a rigorous theoretical basis to explore the long-
theorised importance of phenotypic plasticity in determining disease
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risk that is widely applicable to other systemsof vector-borne disease4.
We find that vector trait variation plays a critical role in determining
the ability of vector populations to sustain disease transmission and
therefore that vector abundance alone is not sufficient to predict
transmission risk. In light of our findings, vector traits may need to be
better integrated into vector surveillance and research to facilitate
more nuanced, robust predictions of population processes and
transmission dynamics.

The ability of mechanistic modelling approaches to incorporate
detailed vector ecology allows them to produce generalisable predic-
tions of disease risk. However, incorporating these details requires
substantial amounts of life-history data that does not yet exist for
many vectors, favouring the use of less detailed mechanistic models
than we develop here42–44. Even for well-studied species such as Ae.
albopictus, there are data gaps in our current knowledge. Some of
these gaps are life-stage specific, for example, when rearing adults for
infection trials it is common to record the combined life-history traits
of both larval and pupal life stages using a single generic class for
juveniles, data which less detailed mechanistic approaches can readily
utilise but that which we cannot. Although there are a sufficient
number of studies exploring the effects of competition on larval life

history to produce well-parametrised larval reaction norms, there is
very little available experimental data describing the life history of
pupae which are rarely specifically reared for study. As each life stage
may be affected differently to the same environmental stressor, life-
stage-specific gaps in our knowledge of vector life history potentially
mean that environmental limitations on these life stages are over-
looked in our predictions of vector dynamics and consequently dis-
ease transmission dynamics. Similarly, although there has been a
substantial effort to determine the lower thermal limits of the species’
reaction norms due to the species' northward expansion, there is a
more limited amount of life-history data available to describe the
species' responses to the extremely high temperatures which aremore
frequent in the regions where the majority of dengue virus transmis-
sion occurs14,45. Although these limitations have not prevented our
model fromproducing accurate predictions of population dynamics in
the regions we consider, unless addressed they may limit the gen-
eralisability of our predictions of population dynamics to future cli-
mates, a factor that could be mitigated through modifications to
standard experimental protocols.

When designing vector control campaigns to implement inter-
ventions such as the sterile insect technique, gene drive or transgenic

(A) (B)

(C) (D)

(E) (F)

Months
Rt > 1

Average
adult

density

Fig. 4 | Geographic variation in mosquito density and suitability for disease
transmission. A, C, E The average adult density during the active season of Ae.
albopictus in North America, Europe, and Asia respectively between the years
2010−2019. B, D, F The average number of months the reproduction number was
greater than one (Rt > 1) in North America, Europe, and Asia respectively between

the years 2010−2019. In D the yellow circles are centred on regions within which
autochthonous dengue transmission was detected between the years 2010 − 2019
and the red circles indicate the locations of outbreaks after this period. Source data
are provided as a Source Data file.
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control, it is common to rely on mathematical models of vector
population dynamics46. These models are used before implementing
control measures to inform the required level of population suppres-
sion and the intensity of control measures necessary to achieve this
target47–49. Similarly, after control measures have been implemented,
mathematicalmodels are a practicalmethod to assess how effective an
intervention has been by predicting how an outbreak would have
progressed in the absence of control50.Without this additional analysis
field-trials can only directly link the efficacy of their intervention to a
reduction inmosquito abundance and not necessarily the reduction in
human cases of disease that they aim to achieve, two factors we show
here are not necessarily directly linked51,52. The 2014 outbreak of den-
gue in Guangzhou provides a well-studied example showing the
potential of our approach as we and previous models are able to use
mathematical models to assess the efficacy of the implemented con-
trol measures (see Fig. 2)28,53. However, for the majority of the out-
breaks we considered, this sort of retrospective analysis is not possible
due to a lack of detail in the reporting of the nature, timing, and
intensity of control measures implemented. Further, to make reliable
predictions to assist in the design of vector control it is imperative to
use models that have been independently validated against real-world
data from the target system54. Extensive and independent validation of
mathematical models of systems of VBDs is currently not standard,
despite the ready availability of surveillancedata and is a critical step in
ensuring these predictions are robust.

Dengue transmission frequently occurs in regions where Ae.
albopictus co-occurs with the primary vector of dengue, Ae. aegpyti,
and with which it competes for resources in larval habitats55. This
complicates our ability to predict the effect of trait dynamics on
transmission efficacy as the relationship between adult wing length,
temperature, larval density, and food availability is asymmetrically
altered by the degree of interspecific competition that individuals of
either species experience56–58. Further, in endemic regions co-
circulating serotypes and previous exposure to infection complicate
transmission dynamics by introducing an immune structure to the
human population59. An extension of our model to these areas is
possible but would additionally require the development of a com-
parable model for Ae. aegypti, to quantify the effect that interspecific
competition has on the life history of both species and then to extend
the disease dynamics to consider multiple co-circulating serotypes of
the dengue virus. However, even in these more complex transmission
scenarios, the underlying interaction between environmental drivers
and vector trait expression is driven by the same mechanisms of
phenotypic plasticity that we explore here, as they are a fundamental
feature of vector ecology. By developing our understanding of the
drivers of disease dynamics that arise in regions with a single vector
transmitting a single serotype of dengue virus, we are now well posi-
tioned to begin addressing the more complex dynamics underlying
patterns of dengue transmission in other regions.

Current state-of-the-art methods for predicting VBD transmission
often make implicit mean-field assumptions and assume that vector
traits respond instantaneously to the current environment without
consideration for the complex biological processes through which
traits arise60–67. Trait-based approaches have been long advocated for
as a way of producing generalisable predictions of population pro-
cesses, but to date, there has been a limited application of theory to
practice, in part due to insufficient life-history data and due to the
increased complexity inherent in such approaches68. To produce
robust predictions that reflect how complex systems adapt to climate
change requires a fundamental shift in the way we account for the
effects of individual variation. We must move away from mean-fields
and towards a more complete representation of the mechanisms of
phenotypic plasticity through which individuals vary and which drive
population dynamics10. Deepening our understanding of the effects of
individual variation on populations is critical beyond vector-borne

disease sincemechanisms of individual variation are also important in
determining the outcome of infectious disease dynamics, biological
invasions, interspecific competition, and species responses to climate
change69–71. The advantages of such an approach are clear and have
allowed us to gain insights into a highly complex vector-borne disease
system, shedding light on the role that phenotypic plasticity plays in
shaping the ability of vector populations to spread disease.

Methods
To predict both the trait and population dynamics of Ae. albopictuswe
apply themodel framework developed in Brass et al.12. This framework
combines a stage-structured population model of the form described
in Nisbet and Gurney (1983) with an additional phenotypic structure
that is able to represent the effects of within and between generation
plasticity72. The phenotypic structure describes how an individual’s
previous experience of its environment during development alters the
traits it currently expresses. Individuals with different experiences of
thepast environment aregrouped intodifferent environmental classes
which describe how this experience alters the traits they express now.
By linking individual-level variation to population response, we are
able to predict not only the population’s dynamics but also the
population’s trait structure. This approach is flexible and able to
incorporate the effect, both instantaneous and delayed, of environ-
mental stressors on multiple traits, making it ideal for accounting for
the complex life history of Ae. albopictus.

The model predicts the dynamics of a population of mosquitoes
arising froma singlewater body of fixed dimensions. Themodel inputs
are environmental variables from the location being simulated and the
outputs are predictions of population and trait dynamics (Fig. 5). Adult
mosquitoes oviposit eggs either onto the surface of the water or
around the sides of the habitat, with the proportion of eggs being
placed around the side of the habitat increasing as water level
decreases73. The eggs placed into or around the water body express
either a diapausing or non-diapausing phenotype which is determined
by amaternal effect in response to falling temperatures anddecreasing
photoperiod24. Egg diapause is a form of regular dormancy that allows
eggs to withstand cold temperatures and is the primarymechanismby
which Ae. albopictus populations persist and overwinter in temperate
climates74. Once development is complete, both diapausing and non-
diapausing eggs either become quiescent, a form of irregular dor-
mancy that allows persistence through dry periods or immediately
hatch into larvae20. Quiescence continues until the dormant egg is
inundated by precipitation after which it immediately hatches.

In the model we assume that the water body only varies in
response to changes in temperature, the accumulation of precipita-
tion, and through evaporation of standing water and is otherwise
identical in every respect between locations. We assume that all eggs
initially either express the active or diapausing phenotype. All eggs
expressing the active phenotype develop at a temperature-dependent
rate after which they either hatch or become quiescent according to
the water level in the habitat. After completing development, diapause
eggs are assumed to remain dormant until a critical temperature and
photoperiod is reached after which they immediately hatch or become
quiescent24. We place restrictions on both the production of diapause
eggs and upon their release from diapause to ensure that they are fully
developedwhen they hatch. The survival of eggs through the egg stage
is assumed to be determined solely by temperature with this rela-
tionship differing between eggphenotypes75.We assumeall eggs in the
quiescent egg class are identical regardless of previous phenotype and
assume that quiescent eggs hatch when the water level rises.

Larval mosquitoes compete for available resources in the aquatic
habitat and are assumed to develop at a rate determined by both the
current temperature and the intensity of larval competition9. The
ecology of larval mosquitoes is complex, and to produce a coherent
model with the data currently available it is necessary to make broad
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simplifying assumptions about the life history of larvae. We assume
that all larvae are functionally identical, regardless of larval instar or
previous experience of dormancy during the egg stage. Therefore, we
only consider a single larval class76. It is assumed that there is no
interspecific competition either for resources or through predation
and that the only intraspecific competition is for resources and
space77,78. Available resource is assumed to be consumed in its entirety
and to be replenished daily, representing the product of temperature-
dependent metabolic processes in the larval environment. Once larval
development is complete pupation begins with the development of
pupae assumed to depend solely on temperature75. The container
habitats thatAe. albopictus prefer are generally small and vulnerable to
flushing, a process whereby the body of water overflows and indivi-
duals are swept away21. We represent flushing by increasing the mor-
tality of larvae and pupae whenever the height of the water in the
habitat exceeds the height of the container and rainfall is sufficiently
intense. These small containers are also susceptible to drying out, and
whenever all water within the container evaporates, all non-quiescent
juveniles are assumed to die out.

Adult mosquitoes experience developmental plasticity in
response to their experience of temperature and intraspecific com-
petition as larvae79. This is represented by tracking each individual’s
experience of the biotic and abiotic environment during development
and using this to determine the traits that individuals express as adults.

Specifically, each individual’s experience of the average temperature
and the average food available per larvaeper day over the courseof the
larval period is used to predict that individual’s wing length. Wing
length is then used to determine the fecundity and longevity of that
individual as an adult80. Both fecundity and longevity are then further
modified by the current temperature meaning that within the model
adult traits respond to both current and historic environmental
conditions43,75. The adult resources necessary to survive and complete
the reproductive cycle, such as sugar and blood meals, are always
assumed to be in excess and the model does not represent any effects
of competition between adults81. The production of cold resistant
diapausing eggs is triggered when falling temperatures and photo-
period reach a critical threshold24.

Model details
The abiotic environment. Abiotic environmental variation is incor-
porated into the model through temperature, photoperiod, evapora-
tion, and precipitation from the location in which the modelled
population is situated. Meteorological data is sourced from the ERA5-
land climate reanalysis dataset82. Climatic variables in this dataset are
available at a 0.1∘ × 0.1∘ resolution at an hourly time interval and are
processed to produce a daily mean temperature and the total accu-
mulated precipitation and evaporation each day. For use in the model
each environmental variable is extended to continuous time using

Precipitation
and

Evaporation
Text

I1 I2 Im-1 Im
Infected

mosquitoes

Hs

HI

HR

Human
population

Fig. 5 | Schematic of the model used to represent the transmission of dengue
virus byAe. albopictus.Weconsider a stage-structuredmodel with three explicitly
modelled mosquito life stages, eggs, larvae, and adults, with pupae represented
implicitly. The model considers the dynamics of a population from a single water
body of a fixed dimension with a water level that is dependent solely on pre-
cipitation and evaporation. Eggs are divided into three different classes, active eggs
Eγ, diapausing eggs ED, and quiescent eggs EQ, depending on the location they are
placed in the pool (active/quiescent) and the phenotype they express (diapausing/
non-diapausing). After hatching, eggs proceed to the larval class where develop-
ment depends on temperature, intraspecific density, and the food available per
larvaeperdaywhich is assumed to relate to the amountofwater accumulated in the
habitat and the current temperature. Once larval development is complete, larvae
transition to the pupal class which is represented implicitly. This means, that
although we account for the effect of environmental variation on the life history of
pupae, this is accounted forwithout the need for state equations. Uponmaturation

to adulthood, each individual’s experience of its environment as a larva determines
the survival and fecundity that the individual expresses as an adult through
developmental plasticity. To represent this wing length is discretised into m
environmental classes, with m sufficiently large to avoid the effects of discretisa-
tion. Wing length is correlated with both adult longevity and fecundity and so is
used to assign to each environmental class a set of adult traits, with adults in the xth

environmental class denoted Ax. Upon infection by biting an infected human, HI,
uninfectedmosquitoes in environmental class j, Aj, transition to the corresponding
infected mosquito class, Ij. The infection cycle begins when a susceptible human,
HS, is bitten by an infected mosquito after which that human has a chance to
become infected and move into the infected human class HI. After the recovery
period infected humans move into the resistant class, HR, and cannot be infected
again. The delay between exposure to infection and becoming infective is
accounted for by the delay structure.
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splines, which were then tested against the climate data to ensure
there were no errors in the interpolation. Splines were created using
the function Spline1D from version 0.5. 2 of the Dierckx package, a
wrapper from the Fortran library of the same name83.

The temperature at time t is denoted T(t), and for simplicity, we
assume that the temperature of the larval pool and the air temperature
are always the same84. Temperature is used throughout the model to
instantaneously alter the traits (survival and development rate)
expressed by individuals in each developmental stage. Temperature
plays a further role in two instances of delayed phenotypic plasticity
represented in the model. The average temperature an individual
experiences over the larval period in combination with the average
amount of food available per larva per daydetermines thewing lengths
of emerging adults. Also included is a maternal effect where the tem-
perature and the photoperiod at time t, denoted ψ(t), determines the
proportion of produced eggs that express a diapausing phenotype. A
combination of temperature and photoperiod subsequently deter-
mines when diapausing eggs are released from dormancy.

The total precipitation and evaporation each day, denoted ρ(t)
and ϵ(t) respectively, are used to simulate the dynamics of the aquatic
developmental habitat. The model simulates the dynamics of a single
cylindrical water body with a surface area of μmm2 and maximum
volume of Vmm3. Throughout the subsequent analysis these para-
meters are kept constant across the range of locations considered and
have been selected to be consistent with productive habitats observed
in the field85. Water accumulates in the habitat through precipitation
and leaves through both evaporation and overspill. Overspill occurs
when the amount of water in the pool exceeds the volume of the pool,
at which point any additional precipitation is not added to the pools
total volume. If an overspill event happens concurrently with an
intense period of precipitation, a spike in mortality of the larval and
pupal classes occurs, representing individuals being flushed away21.
The total amount of water in the habitat on day t after all precipitation
and evaporation can therefore be expressed by the time series

Wt = min Wt�1 +μðρðtÞ � ϵðtÞÞ,V� �
, ð1Þ

with an initial condition such that the habitat is full at the start of the
simulation, i.e., W0 = V. This time series for daily water level is then
extended to continuous timeusing a spline, such that thewater level at
time t is denoted W(t). Whenever W(t) = 0 the container has dried out
and all non-quiescent juvenile stages (active eggs, diapausing eggs,
larvae, andpupae) die-off. Habitatwater volume,W(t), alsogoverns the
proportion of eggs produced that are quiescent and when they are
released from dormancy.

Eggs. The number of active, quiescent and diapausing eggs present in
the population at time t is denoted by Eγ(t), EQ(t) and ED(t) respectively.
Active eggs develop at a temperature-dependent rate, immediately
hatching once development is complete if they are at or below the
current water level and moving into the quiescent class otherwise75.
Quiescent eggs remain dormant until inundated by precipitation after
which they immediately hatch20. Hatched eggs enter the larval class.
Diapausing eggs are cold resistant and are produced in response to a
maternal effect. They remain dormant until a critical temperature and
photoperiod threshold is reached after which they either immediately
hatch or become quiescent24. In other Aedes species, it has been
demonstrated that adult body size is related to egg size and that larger
egg sizes increase desiccation resistance86,87. Although weak effects of
egg size on survival have been observed in Ae. albopictus, there is
insufficient empirical data to justify the inclusion of such a function in
this model. Therefore, it is assumed that the only maternal effect is
whether an egg is active or diapausing88.

For active eggs, our model includes two state-equations that
describe how the stage duration and through-stage survival of active

eggs vary through time, which we denote by τEγ
ðtÞ and SEγ

ðtÞ, respec-
tively. To describe how these quantities evolve we parametrise two
temperature-dependent reaction norms gEγ

ðTÞ and ŜEγ
ðTÞ which

describe the development rate of active eggs and the proportion of
active eggs that survive through the stage when held at constant
temperature T. Note that ŜEγ

ðTÞ is distinct from SEγ
ðtÞ, the former is a

function of temperature describing the reaction norm, the latter is a
function of time, describing time-dependent survival. We use a similar
notation for survival and reaction norms of the other life stages. From
the underlying Nisbet and Gurney (1983) framework we inherit a
relationship between the development rate, the probability of
through-stage survival and the mortality rate. We therefore use the
temperature-dependent reaction norms for development and
through-stage survival to define an expression for the temperature-
dependentmortality rate of active eggs, δEγ

ðTÞ= � logðŜEγ
ðTÞÞgEγ

ðTÞ72.
The forms of the reaction norms used for egg survival and develop-
ment were selected by fitting function forms that have been used in
previous models to life-history data. We trial quadratic and Briere
functional forms for the development rates, and quadratic and Gaus-
sian functional forms for through-stage survival with each functional
form being truncated at a value close to 08. Functional forms were
fitted using a weighted non-linear least squares approach and AIC was
used for model selection, using the nls function in R89. The parameter
values are reported in Supplementary Note 6, and the data used to
perform this parametrisation was taken from a variety of published
constant temperature laboratory experiments75,90–97. The best fitting
functional form for the development rate of active eggs was a quad-
ratic given by

gEγ
ðTÞ= max σ11T

2 + σ12T + σ13,0:01
n o

: ð2Þ

The bestmodel for the through-stage survival of active eggs was a
Gaussian with a functional form

ŜEγ
ðTÞ= σ21

σ22

ffiffiffiffiffiffi
2π

p exp � 1
2

T � σ23

σ22

� �2
 !

: ð3Þ

The result of this fitting is provided in Fig. 6A and B respectively.
Egg quiescence is a mechanism of irregular dormancy that allows

a reservoir of eggs to persist through periods when the habitat has
completely dried out20. After maturing out of the active stage, a pro-
portion of eggs are assumed to enter the quiescent egg class depen-
dent upon the water level within the container habitat. Quiescent eggs
contain fully developed pharate larvae that remain dormant inside the
egg until inundated by water, and therefore within the quiescent egg
class, no development occurs. The proportion of eggs that enter the
quiescent class at time t is represented by the function Q(t) which is
defined by

QðtÞ=
V�W ðtÞ

V , if WðtÞ<Wðt� 1Þ
0, otherwise:

(
ð4Þ

This function links the proportion of eggs that become quiescent
to the height of the water in the container habitat. The condition
W(t) <W(t − 1) ensures eggs only become quiescent if the water level
on day t is lower than that on day t − 1. This choice of functional form
ensures that when the habitat completely dries out, W(t) = 0, all eggs
become quiescent upon maturation and so Q(t) = 1. As the water level
rises a lower proportion of eggs enter the quiescent class until the
habitat is completely filled,W(t) =V, and thereforeQ(t) = 0. Within the
quiescent egg class, it is assumed that the same temperature-
dependent mortality rate used for active eggs is suitable for quies-
cent eggs.

As egg quiescence is an irregular form of dormancy, maturation
out of the quiescent class is triggered by inundation rather than the
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completion of development. This is represented through the function
hQ(t), which describes the rate at which eggs that hatch out of the
quiescent class at time t and is defined by

hQðtÞ=
1 × 1� V�W ðtÞ

V

� �
, if WðtÞ>Wðt� 1Þ

0, otherwise :

(
ð5Þ

When the habitat is completely full, W(t) = V, and so hQ(t) = 1
and all quiescent eggs are inundated and hatch over the course of a
day. The conditionW(t) >W(t − 1) ensures that no eggs are released
from quiescence when the water level at time t is lower than the
water level at time t − 1 and therefore no new eggs would become
inundated.

Egg diapause is a mechanism of regular dormancy that allows the
persistence of populations through cold winter months and is gov-
erned by a maternal effect24. This is represented in this model by the
diapause function, D(t), which describes the proportion of adults at
time t that are producing non-diapause eggs and is defined by

DðtÞ= 1� 1
1 + 15eψðt,lÞ�ϕðlÞ , if TðtÞ≤ 18, and ψðtÞ≤ψðt� 1Þ

1, otherwise

(
ð6Þ

with the functional formtaken fromLacour et al.24 andwhereϕ(l) is the
critical photoperiod threshold required to induce the production of
diapausing eggs in adults at latitude l defined by

ϕðlÞ=0:1jlj+9:5 ð7Þ

according to the relationship determined by Armbruster et al.74. The
emergence of eggs from diapause is triggered by the current envir-
onmental conditions exceeding a critical temperature and photo-
period threshold98.Weassume that once the environmental thresholds
are reached, all eggs are released fromdiapause hatch over the course
of a day. This is represented by the function hD(t) which is defined by

hDðtÞ=
1, if TðtÞ≥ 12:5, and ψðtÞ>ϕðlÞ, and ψðtÞ>ψðt� 1Þ
0, otherwise :

	
ð8Þ

The mortality rate of diapausing eggs is defined by

δED
ðtÞ= 0:01, if TðtÞ>� 12

0:1, otherwise :

	
ð9Þ

This choice of mortality rate allows diapausing eggs to survive
exposure to extreme temperatures for short periods45. This ensures
that brief periods of intense cold do not kill off the whole population
whilst ensuring that sustained low-temperature conditions remain
unsuitable.

Larvae. Larval Ae. albopictus consumes a range of bacteria, plants and
detritus. Both the time that larvae take to develop and the proportion
of individuals that survive through the larval stage is assumed to
depend on the intensity of intraspecific competition for resource in
addition to temperature9. Predicting how much resource is available
for larval Ae. albopictus in a container habitat from climate data alone
would be a significant undertaking for even a limited geographical
range. Resource dynamics are complex, and the amount of resources
available in a container habitat varies with location, micro-climate, and
community composition amongst many other factors that are not
accounted for here99. Instead, we assume that the amount of food
available in the container is temperature-dependent, proportional to
the volume of water in the habitat and completely independent of
location. The gross primary productivity of the larval habitat is then
defined to be

FðtÞ= 10�6log10ð0:45+0:095TðtÞÞW ðtÞ+ f d ð10Þ

where the logarithmic term represents the products of respiration
following the work of White et al. and the constant term, fd, is a
reservoir of nutrition from the decay of detritus100. It is further
assumed that larvae divide the available food equally and completely
(i. e., scramble competition)101. The amount of food available per larvae
per day, α(t), can therefore be expressed by

αðtÞ= FðtÞ
LðtÞ : ð11Þ
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Fig. 6 | Active egg reactionnorms.Reaction norms for active eggs, the black line is
the fitted model and each point represents the data used to fit the model. Source
data are provided as a Source Data file. A Development rate of active eggs at

temperature T ,gEγ
ðTÞ. B Through egg-stage survival of active eggs held at constant

temperature T ,ŜEγ
ðTÞ.
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As with active eggs, we include two state equations that describe
how the stage-duration and through-stage survival of larvae changes
through time which we denote, τL(t) and SL(t), respectively. The
functions used to represent larval life-history processes are
comprised of multiple components but are principally constructed
from reaction norms for larval development rate, gL(T, α), and
through-stage survival independently of hydrological processes for
larvae held at constant temperatures and resource densities, ŜLðT ,αÞ.
To fit the multi-dimensional reaction norms for larvae we use gen-
eralised additive mixed effect models (GAMMs) using the R package
gamm4 version 0.2. 6102. Both the life-history data used to para-
metrise these reaction norms and the code to fit the models can
be found in the repository89,102. We consider models that include
different combinations of temperature, density, and an interaction
term between the two variables. As the data used to parametrise
these functions are sourced from laboratory experiments that
used populations of Ae. albopictus from different origin locations
and reared larvae on different diets, these factors are included as
random effects. For each life-history trait, the model with the
lowest AIC is selected. The results for larval development rate and
through-stage survival are shown in Fig. 7. The data used for this
fitting was compiled from published laboratory experiments with
both constant temperature and constant food provided per larvae
per day75,79,90,93–97,103–118.

The larvalmortality term, δL(T(t), α(t)), accounts for the dynamics
of the container habitat and density dependence. The water level of
the container habitat varies with evaporation and precipitation. Spikes
in larval mortality can therefore either be induced through the habitat
drying out or through the flushing of larvae when the habitat over-
flows. This is represented in the larval mortality rate by setting
δL(t) = δd whenever the habitat dries out, (i. e., W(t) = 0) and similarly
setting δL(t) = δf whenever the habitat overflows and the intensity of
rainfall is sufficient to initiate flushing (i. e.,W(t) = V and μρ(t) > 0.5V).
The final component of the larval mortality function is an over-
crowding term that increases the mortality of larvae when the larval
density exceeds 3 larvae per ml according to a Gompertz function119.
High larval densities are unfavourable for survival, and the term is
necessary in addition to the reaction norms to ensure that the fluctu-
ating water level does not cause implausibly high larval densities120.

Therefore, the expression for the mortality rate of larvae is defined by

δLðtÞ=

min � logðŜLðTðtÞ,αðtÞÞÞgLðTðtÞ,αðtÞÞ+ exp � exp 1�LðtÞ=3
W ðtÞ=1000

� �� �
,1

n o
,

if 0 <WðtÞ≤V and μρðtÞ≤0:5V,
δd , if WðtÞ=0,
δf , if WðtÞ =V and μρðtÞ>0:5V:

8>>>>><
>>>>>:

ð12Þ
Pupae. The pupal development rate and survival are assumed to
depend solely on temperature as there is a lack of experimental data to
quantify the effect of developmental plasticity from the larval stage.
We include two state equations that describe how the stage duration
and through-stage survival of pupae vary, denoted τP(t) and SP(t)
respectively. To describe how these quantities vary we once again
parametrise reaction norms for the development rate and survival of
pupae held at constant temperature T, denoted by gP(T) and ŜP ðTÞ
respectively with the forms of the reaction norms shown in Fig. 8.
These reaction norms are fitted using the same procedure described
for the egg stage, with a Briere function best describing the relation-
ship between pupal development rate and temperature with form

gPðTÞ= max σ31TðT � σ32Þðσ33 � TÞ1=σ34 ,0:01
n o

: ð13Þ

A quadratic functional form is chosen for the relationship
between through-pupal stage survival and temperature independently
of hydrological processes

ŜPðTÞ= max σ41T
2 + σ42T + σ43, 0:01

n o
, ð14Þ

parametrised using data from various sources75,93,95–97,106,109,121,122.
The survival andmortality parameters aremodified as in the larval

stage to induce mortality when W(t) = 0 and to account for flushing
such that

δPðtÞ=
� logðŜP ðTðtÞÞÞ

τP ðTðtÞÞ , if 0 <WðtÞ≤V and μρðtÞ≤0:5V,
δd , if WðtÞ=0,
δf , if WðtÞ=V and μρðtÞ>0:5V:

8>><
>>: ð15Þ
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Adults. Ae. albopictus experiences developmental plasticity in
response to the temperature, food availability, and conspecific density
experienced during juvenile development that contributes towards
temperature-dependent mortality and fecundity of adults9,80. This is
included in the model by using an individual’s experience of larval
competition and temperature through development to predict the
wing length that the individual will express as an adult. This wing
length is then used along with the current temperature to define the
mortality rate of adults and the rate at which eggs are produced. This
overlooks a known crowding effect whereby high densities of larvae
inhibit development independently of competition for resource79. This
choice is necessary as much of the experimental data used to

parametrise reaction norms does not control for larval density and
food availability simultaneously and therefore this relationship cannot
be included in themodel. Alsoomitted are the effects of the availability
of adult resources on the production of eggs, and other varied pro-
cesses demonstrably important in the life history of adults118,123. Using
the same GAMM fitting procedure as described for larvae, we fit a
2-dimensional reaction norm for the wing length of emerging adults,
wLðTavg ðtÞ,�αðtÞÞ, as predicted by the average larval temperature and
food available per larvae per day over the course of the larval period
(Fig. 9A). We also fit the reaction norm for the time until 50% adult
mortality, τA50

ðwL,TðtÞÞ, as predicted by wing length and temperature
(Fig. 9B). The parameterisations are carried out using data from
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published laboratory data from experiments that used constant
temperatures5,9,79,90–94,96,108–111,113,115–118,121–143.

In the model, the effects of developmental plasticity are repre-
sented by assigning each individual to an environmental class that
reflects their experience of the environment through development.
This is achieved by partitioning the adults into m environmental clas-
ses that define the wing length,wL, the adults are predicted to express
based upon their experience of temperature and resource availability
as larvae. We divide the possible wing lengths an adult could express,
ðwmin,wmaxÞ into m equally spaced subintervals and denote by wj the
midpoint of the jth sub-interval. Then define the function g such that
g(w) =wj if w 2 R is in the jth subinterval of ðwmin,wmaxÞ.

To determine the average amount of food available for larvae
maturing into adulthood at time t, we define

�αðtÞ=
R t�τP ðtÞ
t�τP ðtÞ�τLðt�τP ðtÞÞ

FðsÞ
LðsÞ ds

τLðt � τPðtÞÞ
: ð16Þ

Then, we define the transition function, wjðTavg ðtÞ,�αðtÞÞ), which
determines which adult class a fully developed juvenile is assigned to,
with

wjðTavg ðtÞ,�αðtÞÞ=
1, if gðwðTavgðtÞ, �αÞðtÞÞ=wj

0, otherwise

	

for j ∈ 1, . . . , m.
The fecundity of an individual expressing wing length w is then

given by

qðwÞ=0:5expσ51 + σ52w, ð17Þ

noting that a factor of 0.5 is required as only females produce eggs80.
The duration of a gonotrophic cycle is assumed to be temperature-
dependent and to be the reciprocal of the biting rate. This is
parameterised using a Briere function taken from Mordecai et al.8 of
the form

GðTðtÞÞ= 1

max σ61TðT � σ62Þðσ63 � TÞ12,0:01
n o , ð18Þ

from which the rate at which an individual with wing length w pro-
duces eggs at temperature T(t) can be determined. The number of
eggs an adult in environmental class j produce eggs over the course of
a gonotrophic cycle is defined by

qj =qðwjÞ: ð19Þ

Similarly, for individuals in environmental class j that expresswing
length wj the mortality rate of adults is defined to be

δAj
ðTðtÞÞ= � logð0:5Þ

τA50
ðwj ,TðtÞÞ

: ð20Þ

Population model. Following the model framework defined in Brass
et al.12, based upon the work of Nisbet and Gurney72, the stage-
structuredmodel to predict the population dynamics of Ae. albopictus
is

dEγðtÞ
dt

=REγ
ðtÞ �MEγ

ðtÞ � δEγ
ðtÞEγðtÞ, ð21Þ

dEDðtÞ
dt

=RED
ðtÞ �MED

ðtÞ � δED
ðtÞEDðtÞ, ð22Þ

dEQðtÞ
dt

=REQ
ðtÞ �MEQ

ðtÞ � δEQ
ðtÞEQðtÞ, ð23Þ

dLðtÞ
dt

=RLðtÞ �MLðtÞ � δLðtÞLðtÞ, ð24Þ

dAjðtÞ
dt

=RAj
ðtÞ � δAj

ðtÞAjðtÞ, for j 2 1,:::,m: ð25Þ

The variable developmental delay terms are defined such that

dτEγ
ðtÞ

dt
= 1�

gEγ
ðtÞ

gEγ
ðt � τEγ

ðtÞÞ , ð26Þ

dτLðtÞ
dt

= 1� gLðtÞ
gLðt � τLðtÞÞ

, ð27Þ

dτPðtÞ
dt

= 1� gP ðtÞ
gPðt � τPðtÞÞ

: ð28Þ

The through-stage survival terms are defined such that

dSEγ
ðtÞ

dt
= SEγ

ðtÞ
gEγ

ðtÞδEγ
ðt � τEγ

ðtÞÞ
gEγ

ðt � τEγ
ðtÞÞ � δEγ

ðtÞ
 !

, ð29Þ

dSLðtÞ
dt

= SLðtÞ
gLðtÞδLðt � τLðtÞÞ

gLðt � τLðtÞÞ
� δLðtÞ

� �
, ð30Þ

dSPðtÞ
dt

= SPðtÞ
gPðtÞδJðt � τPðtÞÞ
gPðt � τPðtÞÞ

� δP ðtÞ
� �

: ð31Þ

Recruitment and maturation terms defined by

REγ
ðtÞ=DðtÞ

Pm
j = 1 qjAjðtÞ
GðtÞ

 !
+CE ðtÞ, ð32Þ

MEγ
ðtÞ=

gEγ
ðtÞ

gEγ
ðt � τEγ

ðtÞÞREγ
ðt � τEγ

ðtÞÞSEγ
ðtÞ, ð33Þ

RED
ðtÞ= ð1� DðtÞÞ

Pm
j = 1 qjAjðtÞ
GðtÞ

 !
, ð34Þ

MED
ðtÞ=hDðtÞEDðtÞ, ð35Þ

REQ
ðtÞ=QðtÞðMEγ

ðtÞ+MED
ðtÞÞ, ð36Þ

MEQ
ðtÞ=hQðtÞEQðtÞ, ð37Þ

RLðtÞ= ð1� QðtÞÞðMEγ
ðtÞ+MED

ðtÞÞ+MEQ
ðtÞ, ð38Þ

MLðtÞ=
gLðtÞ

gLðt � τLðtÞÞ
RLðt � τLðtÞÞSLðtÞ, ð39Þ
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RAj
ðtÞ=wjðTavg ðtÞ, �α ðtÞÞ gPðtÞ

gPðt � τPðtÞÞ
MLðt � τP ðtÞÞSPðtÞ, for j 2 1, :::,m,

ð40Þ

where CE(t) is an impulse function that introduces active eggs to the
system at time 0.

The initial conditions are ED(0) = 100,
Eγ(0) = EQ(0) = L(0) =Aj(0) = 0 for j 2
1, ::: ,m, SX ð0Þ= exp �τX ðTð0ÞÞδX ðTð0ÞÞ

� �
for X ∈ E, L, P. The initial

history is for all t ≤0 and all simulations are performed with m = 200
unless otherwise noted. The model was simulated in Julia version 1.8
using the package DifferentialEquations144,145.

SEIR Model
The model for the population and trait dynamics of Ae. albopictus is
incorporated into a susceptible-exposed-infected-resistant (SEIR)
model for dengue virus vectored by Ae. albopictus (Fig. 5). We speci-
fically consider the introduction of a single serotype of dengue virus
into a completely susceptible human population. This simplified
representation of the urban dengue transmission cycle is most
applicable to non-endemic regions, such as Europe, the United States,
and easternAsia,where the likelihoodofmultiple serotypes circulating
simultaneously is reduced and therefore the human population is less
likely to develop serious complications19. The human population is
partitioned into those susceptible to infection, HS, those infected, HI,
and those resistant to infection due to having recovered, HR

146. It is
assumed that the size of the human population is constant with the
exception of the entry of infected humans into the population. Human
population density is estimated using the Gridded Population of the
World, Version (GPWv4) estimates for 2015147. Ae. albopictus is an
opportunistic feeder, and, in the absence of humans, will bite other
vertebrate species. These bites cannot propagate dengue virus (out-
sideof the geographically limited sylvatic transmission cycle148), but do
allow for egg production and so can maintain the mosquito popula-
tion. To represent this a population of non-human food sources is
included in the model, HB, which is estimated from field observations
of rates of anthropophagy and a meta-analysis of mammal
densities149,150.

Mosquitoes are assumed to bite at a temperature-dependent rate
of b(t) bites per mosquito per day that is inversely proportional to the
length of the gonotrophic cycle such that b(t) = 1/G(T(t))43. The pro-
portion of uninfectedmosquitoes that become infected after biting an
infected human is denoted hv(t), a function that takes the formused in
Liu-Helmersson et al. (2014)151. After the extrinsic incubation period,
τEIP(t), the proportion of bites that successfully transmit an infection
from an infected mosquito to an uninfected human is denoted
vh(t)43,151. After the intrinsic incubation period, τIIP, the infected human
is capable of transmitting the infection to new mosquitoes and
recovers from the infection after the recovery period, τREC. Note that
these delays implicitly account for the latent period between exposure
and infection without the need for the explicit inclusion of an exposed
class. In this model, large mosquitoes are assumed to have no direct
advantage in the act of transmission over smallmosquitoes and do not
bite more aggressively nor transmit disease more competently. The
only advantage large mosquitoes have over small is in their extended
longevity, which allows a greater proportion of mosquitoes contract-
ing an infection to survive to pass that infection on, especially under
stressful environmental conditions.

As the population model predicts the number of mosquitoes
arising from a single habitat and we now wish to predict the disease
transmission dynamics for a human population, it is necessary to
reconcile both populations onto the same spatial scale. Mark-
recapture studies have demonstrated that adult female Ae.

albopictus can disperse up to a kilometre from their release site152.
Further, analysis of dengue epidemics has shown that disease
dynamics can best be understood in 2 km× 2 km grids153. For these
reasons the model is simulated at a spatial scale of 4 km2, using the
number of humans per 4 km2 for the human population in combina-
tion with an estimate of the number of larval habitats per 4 km2 for the
mosquito population which is halved to represent that only female
mosquitoes bite. Thenumber of productive larval habitats per 4 km2, κ,
is assumed to be fixed between locations and within seasons and
estimated from field, surveys of larval habitats in Emilia-Romagna,
Italy, Hawai’i, USA, and Maryland, USA25,154–156.

The structured human population is represented by

dHSðtÞ
dt

= � RHðtÞ ð41Þ

dHI ðtÞ
dt

=RHðt � τIIPÞ � RHðt � τIIP � τRECÞ+CI ðtÞ � CI ðt � τRECÞ ð42Þ

dHRðtÞ
dt

=RHðt � τIIP � τRECÞ+CI ðt � τRECÞ ð43Þ

where

RHðtÞ= vhðtÞbðtÞ2κ
Xm
j = 1

Ij
HSðtÞ
HT ðtÞ ð44Þ

andHT(t) =HS(t) +HI(t) +HR(t) +HB and CI(t) is an impulse defined as in
the mosquito population model that initiates the transmission cycle
through the introduction of infectious humans at a predetermined
time that varies from outbreak to outbreak. Note that the inclusion of
non-human food sources introduces a dilution effect, as when HB is
large in relation to HS(t) the value of RH(t) will be low. This means that
when the human population size is small, and therefore most
bloodmeals are assumed to come from hosts that cannot become
infected with dengue virus, themodel predicts that only a low number
of total bites by infected mosquitoes result in susceptible humans
becoming infected. The omission of an explicit state-equation for
humans who have been exposed to infection, but who are not yet
infectious is a consequence of the intrinsic incubation period being
implicitly accounted for in the delay structure through the inclusion of
the term τIIP.

To represent infections in the mosquito population, infectious
adult classes are added, one foreachenvironmental class, denoted Ij(t).
The number of mosquitoes in environmental class j that become
infected at time t is denoted RIj

ðtÞ, and defined by

RIj
ðtÞ=hvðtÞbðtÞAjðtÞ

HI ðtÞ
HT ðtÞ

, ð45Þ

and the number of mosquitoes in environmental class j that become
infectious at time t is denoted MAj

ðtÞ and defined by

MAj
ðtÞ= gEIPðtÞ

gEIPðt � τEIPðtÞÞ
RIj

ðt � τEIPðtÞÞSEIPj
ðtÞ, ð46Þ

where SEIPj
ðtÞ is the proportion of individuals in environmental class j

that survive the infectious period.
The dynamics of infectious mosquitoes can therefore be descri-

bed by

dIjðtÞ
dt

=MAj
ðtÞ � δIj

ðtÞIjðtÞ, for j 2 1, ::: ,m ð47Þ
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dτEIPðtÞ
dt

= 1� gEIPðtÞ
gEIPðt � τEIPðtÞÞ

ð48Þ

dSEIPj ðtÞ
dt

= SEIPj ðtÞ
gEIPðtÞδAj

ðt � τEIPðtÞÞ
gEIPðt � τEIPðtÞÞ

� δAj
ðtÞ

 !
, for j 2 1 ,:::,m,

ð49Þ

where gEIP(t) is defined as in Brady et al.43. The equation for the rate of
change of adults in environmental class j is modified to include a term
representing mosquitoes becoming exposed to infected humans and
thus leaving the uninfected adult classes such that

dAjðtÞ
dt

=RAj
ðtÞ �MAj

ðtÞ � δAj
ðtÞAjðtÞ, for j 2 1 , :::,m: ð50Þ

WhereMAj
ðtÞ describes the rate that adults become infective. The

mosquito dynamics of the SEIR model are therefore given by

dEγðtÞ
dt

=REγ
ðtÞ �MEγ

ðtÞ � δEγ
ðtÞEγðtÞ, ð51Þ

dEDðtÞ
dt

=RED
ðtÞ �MED

ðtÞ � δED
ðtÞEDðtÞ, ð52Þ

dEQðtÞ
dt

=REQ
ðtÞ �MEQ

ðtÞ � δEQ
ðtÞEQðtÞ, ð53Þ

dLðtÞ
dt

=RLðtÞ �MLðtÞ � δLðtÞLðtÞ, ð54Þ

dAjðtÞ
dt

=RAj
ðtÞ �MAj

ðtÞ � δAj
ðtÞAjðtÞ, for j 2 1, :::,m ð55Þ

dIjðtÞ
dt

=MAj
ðtÞ � δIj

ðtÞIjðtÞ, for j 2 1, :::,m: ð56Þ

The variable delay terms satisfy

dτEγ
ðtÞ

dt
= 1�

gEγ
ðtÞ

gEγ
ðt � τEγ

ðtÞÞ , ð57Þ

dτLðtÞ
dt

= 1� gLðtÞ
gLðt � τLðtÞÞ

, ð58Þ

dτPðtÞ
dt

= 1� gP ðtÞ
gPðt � τPðtÞÞ

, ð59Þ

dτEIPðtÞ
dt

= 1� gEIPðtÞ
gEIPðt � τEIPðtÞÞ

: ð60Þ

The through-stage survival terms satisfy

dSEγ
ðtÞ

dt
= SEγ

ðtÞ
gEγ

ðtÞδEγ
ðt � τEγ

ðtÞÞ
gEγ

ðt � τEγ
ðtÞÞ � δEγ

ðtÞ
 !

, ð61Þ

dSLðtÞ
dt

= SLðtÞ
gLðtÞδLðt � τLðtÞÞ

gLðt � τLðtÞÞ
� δLðtÞ

� �
, ð62Þ

dSPðtÞ
dt

= SPðtÞ
gPðtÞδPðt � τPðtÞÞ

gPðt � τPðtÞÞ
� δPðtÞ

� �
, ð63Þ

dSEIPj ðtÞ
dt

= SEIPj ðtÞ
gEIPðtÞδAj

ðt � τEIPðtÞÞ
gEIPðt � τEIPðtÞÞ

� δAj
ðtÞ

 !
, for j 2 1 ,:::,m:

ð64Þ

The initial conditions are the same as those for the disease free
mosquito model, with the additional history HI(0) =HR(0) = 0 for t ≤0
andHS(0) is the initial humanpopulation density as estimated fromthe
Gridded Population of the World, Version (GPWv4) for 2015147. The
mosquito population is assumed to be initially entirely uninfected and
mosquitoes are introduced to the systemasdescribed in Equation (32).
Refer to the table in Supplementary Note 6 for an overview of all
parameters and notation.

Rt derivation
To quantify how disease risk changes between regions we derive an
expression for the case reproduction number Rt for the phenotypic
stage-structured model157. The case reproduction number is distinct
from the basic reproduction number as it reflects how transmission
risk varies as the outbreak progresses, accounting for how changes in
the infection structure of the population alter the potential for the
outbreak to continue as time passes158. We assume that a single
infected human is introduced precisely at the end of the intrinsic
incubation period and so can be bitten for the full duration of the
infectious period.We note that for amosquito to become infectious at
time t the infecting bite must have occurred at time t − τEIP(t). There-
fore, the number of mosquitoes that become infectious at time t
per day per 4 km2 can be expressed as

Xm
j = 1

gEIPðsÞ
gEIPðs�τEIPðsÞÞbðt � τEIPðtÞÞhvðt � τEIPðtÞÞ2κAjðt � τEIPðtÞÞSEIPj ðtÞ

HT
: ð65Þ

The infected human is assumed to remain infectious for τREC days,
and so the total numbermosquitoes per 4 km2 that become infected as
a result of the introductionof an infected human at time t − τEIP(t) is the
case reproduction number for human to mosquito transmission and
can be expressed as

Xm
j = 1

Z t + τREC

t

gEIPðsÞ
gEIPðs�τEIPðsÞÞbðs � τEIPðsÞÞhvðs � τEIPðsÞÞ2κAjðs � τEIPðsÞÞSEIPj ðsÞ

HT
ds:

ð66Þ
The number of susceptible humans that a single infectious mos-

quito bites per day at time t can be expressed as

bðtÞvhðtÞHSðtÞ
HT

, ð67Þ

and we can therefore approximate the mosquito to human case
reproduction number, the total number of new human infections
caused by a mosquito that became infectious at time t, by

Z t + 1=δAj ðtÞ

t

bðsÞvhðsÞHSðsÞ
HT

ds: ð68Þ

Note that this is only an approximation as the lifespan of the
infectious mosquito, 1=δAj

ðtÞ, is determined by the environment at
time t and does not account for any temperature-induced changes in
adult mortality that occur between times t and t + 1=δAj

ðtÞ.
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The human-to-human case reproduction number is the square
root of the product of the human-to-mosquito and mosquito-to-
human case reproduction numbers157. Hence, the number of new
infections caused by the introduction of a single infectious human at
time t − τEIP(t) can be approximated by

Rt�τEIPðtÞ =
Pm
j = 1

R t + τREC
t

gEIPðsÞ
gEIP ðs�τEIPðsÞÞ

bðs�τEIPðsÞÞhvðs�τEIPðsÞÞ2κAj ðs�τEIPðsÞÞSEIPj ðsÞ
HT

�"

×
R s + 1=δAj

ðsÞ
s

bðuÞvhðuÞHs ðuÞ
HT

du
� �

ds
�
1

2

:

ð69Þ

From Equation (69), we can compute Rt0 , where t0 = t � τEIPðtÞ,
directly from the numerical output. We note that in Equation (69) the
mosquito-to-human case reproduction number appears inside the
integral for the human-to-mosquito case reproduction number. This
accounts for the fact that depending on the human population and
environmental conditions at the time a mosquito becomes infected,
the resultant number of mosquito-to-human cases will vary. We test
the validity of this approximation in two ways. In Supplementary
Note 4 we demonstrate that for a population held at constant tem-
perature when Rt = 1 − ϵ case numbers decrease and that when
Rt = 1 + ϵ case numbers increase for a suitable ϵ. Further, Supple-
mentary Fig. 70 shows the average total annual number of dengue
cases over the same spatial region and temporal extent that is con-
sidered in Fig. 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ERA5-land climate reanalysis dataset can be accessed from the
Copernicus Climate Data Store [https://cds.climate.copernicus.eu/].
TheGriddedPopulation of theWord, Version (DPWv4) canbe accessed
through the Socioeconomic Data and Applications Center [https://
sedac.ciesin.columbia.edu/]. Source data are provided as a SourceData
file. The access information for the digitised life-history data and
observations of field populations are provided in the Source Data file
and also in the associated GitHub repository [https://github.com/
DomBrass/Aedes_DDE]. Source data are provided with this paper.

Code availability
The code used to produce these results is available in the associated
GitHub repository [https://github.com/DomBrass/Aedes_DDE].
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