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Introduction

A growing body of research suggests that several healthy 
dietary patterns such as the Mediterranean diet (MED), as 
well as individual food types (e.g., fruits and vegetables) 
and nutrients (e.g., dietary fibre) that comprise the MED, 
have been shown to be associated with a lower likelihood 
of experiencing common mental disorders (CMDs) such as 
depression and anxiety, as well as CMD-related symptom-
atology [1–5]. Additionally, data from multiple randomised 
clinical trials have also demonstrated a causal effect of the 
healthy dietary patterns improving these outcomes [6–9], 
possibly via modulation of various mechanisms including, 
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Abstract
Purpose Healthy diets are believed to be associated with a reduced risk of experiencing common mental disorders (CMDs) 
and related symptomatology (such as ruminative thinking), and with healthier brain chemistry and structure, especially in the 
frontal regions implicated in CMDs, cognitive control, and food choice. Nevertheless, there is very limited research on the 
relationship between diet health/quality and brain function. In this study we assessed the associations between adherence to 
the Mediterranean diet and resting state functional connectivity (rs-FC) of the prefrontal cortex (PFC) with the whole brain 
and whether this connectivity would be associated with ruminative thinking as a transdiagnostic factor for CMDs.
Methods Thirty-seven adults (Mean Age = 25.57, SD = 7.18) completed the Mediterranean Diet Adherence Screener 
(MEDAS) and were classified into high- and low-quality diet groups and completed the Ruminative Response Scale. All 
participants underwent resting-state functional MRI (fMRI) to determine whole-brain rs-FC of the medial prefrontal cortex 
(mPFC).
Results Participants in the high MEDAS group (vs. low MEDAS group) exhibited significantly greater rs-FC of the mPFC 
seed with the thalamus, caudate and putamen. Additionally, the strength of rs-FC of the mPFC seed with these regions was 
positively associated with the MEDAS scores across groups in both crude and adjusted models. There were no significant 
associations between the strength of rs-FC of the mPFC seed with the cluster of voxels with the thalamus, caudate, and puta-
men and ruminative thinking.
Discussion This work shows that healthy dietary patterns are associated with rs-FC in the frontal-subcortical circuitry in 
healthy volunteers. Considering the implications of the dysregulation of this circuity, adhering to healthy dietary patterns 
may offer a promising alternative/complementary method to improve CMDs, cognitive control, and food choices.
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but not limited to, oxidative stress, plasticity, microbiota–
gut–brain axis, and inflammatory responses [10, 11].

Nonetheless, there is limited research on the relationship 
between diet and brain imaging biomarkers. Studies focus-
ing on dietary patterns showed that the MED is associated 
with structural alterations in the brain, such as greater total 
brain volume [12, 13], greater grey matter volume in the 
frontal lobes [13, 14] and preserved integrity of white mat-
ter bundles linking limbic regions with the frontal regions 
[15].

Recently, work from our group has shown that adher-
ence to the MED was associated with increased gamma-
aminobutyric acid (GABA) and reduced glutamate (GLU) 
concentrations, as well as increased grey matter volume 
in the areas in the prefrontal cortex (PFC; an area that is 
involved in the aetiology and maintenance of CMD [14, 
16–19] and regulation of food intake (type, quantity, and 
quality) and appetite [20]), and these neural changes were 
associated with rumination (a transdiagnostic factor for 
CMDs) [14]. Importantly, the PFC is structurally and func-
tionally connected to the thalamus and striatal regions [21] 
which are involved in food choice, reward, and motiva-
tion [22]. Because there may be a bidirectional relationship 
between making healthy dietary choices and/or adhering to 
MED style diets and better CMD outcomes, it may be that 
stronger resting state functional connectivity (rs-FC) of the 
PFC with the thalamus and/or striatum is associated with a 
greater adherence to the MED diet.

Converging evidence from a health neuroscience frame-
work of obesity/overeating highlighted that reduced PFC 
activity could be viewed as a predictor, cause, or outcome of 
poor dietary choices/adhering to unhealthy dietary patterns, 
through downregulation of the PFC (i.e., poor cognitive 
control, hence dietary self-regulation and food choice) and 
upregulation of the striatum (i.e., increased reward sensitiv-
ity) [23]. Similar to this model, diet-related neurochemical 
and neurostructural changes in the PFC might, therefore, 
alter the functioning of the PFC, thalamus, and striatum. 
This may offer an additional mechanistic explanation as to 
why there may be a bidirectional relationship between mak-
ing healthy dietary choices and/or following the MED style 
diets and better CMD outcomes. However, apart from a 
small number of studies that identified (i) localised changes 
in functional brain activity in response to intake of specific 
nutrients [24] (which fails to account for the synergistic 
and cumulative effects of multiple nutrients within a com-
prehensive dietary pattern [25]), and (ii) increased within-
network and between-network resting-state functional 
connectivity (rs-FC) in individuals who adhere to the MED 
[26], and reduced rs-FC in the structures that are involved 
in pathophysiology of obesity/overeating [27], no studies 
have investigated the associations between MED and rs-FC 

of the prefrontal cortex. To this end, we performed a seed-
based analysis to assess the associations between adher-
ence to healthy eating patterns (i.e., the MED), resting-state 
functional connectivity of the PFC, and the CMD transdiag-
nostic factor, rumination. We hypothesised that connectiv-
ity of the PFC with those regions identified as important 
for CMDs, food choice, reward, and motivation would be 
weaker in individuals with low adherence to the Mediter-
ranean diet, and that this connectivity would be associated 
with rumination.

Methods

Participants

One hundred and sixty-four students (from the University 
of Roehampton and University of Royal Holloway) and 
members of the public were screened online (Qualtrics; 
https://www.qualtrics.com) using the Mediterranean Diet 
Adherence Screener (MEDAS) [28]. Thirty-eight partici-
pants were selected based on the upper and lower quartiles 
to establish high MEDAS score (High MEDAS; >8, n = 19) 
and low MEDAS score (Low MEDAS; <6, n = 19) groups.

Exclusion criteria included presence of contraindications 
for MRI scanning (i.e., presence of metal, etc.), current use 
of prescribed medication for neuropsychiatric disorders or 
illicit substances misuse, or history of or presence of psychi-
atric and neurological disorders, body mass index < 18.5 kg/
m2 and > 29.9 kg/m2, and having diabetes mellitus, hyper-
tension (systolic blood pressure ≥ 140 mmHg or diastolic 
blood pressure ≥ 90 mmHg) or cardiovascular diseases 
(clinical history). All participants provided informed con-
sent and received £50 for participation. The research proto-
col was approved by the Ethical committee at the University 
of Roehampton (Reference: PSYC 22/ 444) on 30/01/2023. 
The study has been performed in accordance with the ethi-
cal standards laid down in the 1964 Declaration of Helsinki 
and its later amendments.

Demographic, dietary, and clinical assessment

In order to ensure that High vs. Low MEDAS groups were 
matched for demographic and environmental/lifestyle fac-
tors, all participants were asked to complete a demograph-
ics form assessing age, sex, level of education, handedness 
(assessed via Annett Hand Preference Questionnaire [29]), 
income, alcohol consumption (units per day), and tobacco 
consumption (cigarettes per day)…etc. Additionally, EPIC 
Norfolk Food Frequency Questionnaire (FFQ) was used 
[30] to estimate habitual food intake. Participants reported 
(i) how frequently they consume 130 food items, with 
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options ranging from ‘never or less than once a month’ to 
‘6 + per day’ and (ii) other foods they consume. FETA soft-
ware was used to convert food frequency questionnaire data 
into nutrient and food group values [31].

A-14-item MEDAS [28] was used to estimate adherence 
to the Mediterranean style diets. This measure involves 
12 questions on food consumption frequency (e.g., “How 
many servings of whole fruit do you eat per day?”) and 2 
questions on food intake habit (e.g., “Do you use olive oil 
as the main source of fat for cooking?”). Each question is 
scored 0 or 1, and total scores range from 0 to 14 where 
higher scores represent higher adherence to the Mediterra-
nean diet, hence higher diet quality. The MEDAS demon-
strates good test-retest reliability (r = 0.69) [32] and validity 
(coefficients ranging from 0.52 to 0.79) [28, 32, 33] in 
healthy and unhealthy adult populations in the UK and in 
other European countries.

Ruminative Response Scale (RRS) [34], a 22-item ques-
tionnaire, was used to assesses reflection, brooding, and 
depression-related rumination. Each item (e.g., “How often 
do you Think about how sad you feel?”) is rated on a 5-point 
Likert scale from 1 (almost never) to 4 (almost always) and 
higher scores reflect increased levels of ruminative thinking. 
The RRS demonstrates good test-retest reliability (r = 0.67) 
and validity (0.90) [34].

High and Low MEDAS groups were compared on demo-
graphic and clinical measures by using chi-square or inde-
pendent sample t-tests (two-tailed) on IBM® SPSS Statistics 
Version 26. A threshold of p < 0.05 was applied throughout.

fMRI data acquisition

Resting-state fMRI images were acquired over 10 min 
using a 3-T Siemens AG Trio MRI system with a 32-chan-
nel head coil while participants were instructed to keep 
their eyes closed (300 T2*-weighted echoplanar images; 
repetition time = 2 s; echo time = 30 milliseconds; slice 
thickness = 4 mm; flip angle = 90°; matrix: 64 × 64; field of 
view = 192 mm). A T1-weighted magnetization-prepared 
rapid-acquisition gradient echo (MPRAGE) scan was 
acquired for registration purposes, including spatial normal-
ization to standard space (Montreal Neurological Institute; 
MNI).

fMRI data preprocessing

Image analysis was performed using FMRIB Software 
Library (FSL) version 6.0.6 (www.fmrib.ox.ac.uk/fsl). The 
time course of the fMRI data was first realigned to com-
pensate for head movements as in Jenkinson, et al. [35]Jen-
kinson, et al. [35], and all non-brain matter was removed 
using FSL’s brain extraction tool (BET). Time-series 

statistical analysis was carried out using FSL’s Improved 
Linear Model, with local autocorrelation correction as in 
[36], after high-pass temporal filtering (Gaussian-weighted 
least square fit (LSF) straight line fitting with sigma = 50 s).

None of the fMRI data were deemed to have had exces-
sive head motion (> 2.5 mm translation). Motion cleaning 
and noise reduction were performed using a 32-parameter 
linear regression model [37] used in our previous publica-
tions [38–40]. Specifically, this included 6 motion param-
eters (3 translational dimensions along the X, Y and Z axes 
as well as the 3 rotational dimensions of ‘pitch’, ‘roll’ and 
‘yaw’) combined with the timeseries from the CSF and 
white matter (all of which provides 8 parameters), as well as 
their temporal derivatives to provide 16 parameters, and the 
quadratic of these to provide 32 parameters in total. Further-
more, frame-wise displacement (FD) was determined with 
root-mean squared matrix calculation (using the tool ‘fsl_
motion_outliers’) to obtain the average rotation and transla-
tion parameter differences across EPIs. Time points where 
motion exceeded acceptable FD thresholds as expressed in 
[41, 42] were censored using separate regressors for each of 
these time points in the model. A fixed FD threshold for all 
participants was determined via calculation of the SD of FD 
across all data points and computing the following equa-
tion: 0.25 mm + 2 * SD as in Satterthwaite, Elliott, Gerraty, 
Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, 
Gur and Wolf [37]Satterthwaite, Elliott, Gerraty, Ruparel, 
Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur and 
Wolf [37]. The timeseries of the resultant residuals from the 
regression model was then scaled and normalised at each 
voxel: ([residuals – mean]/SD) + 100.

A seed-based approach was implemented by creating a 
10 mm sphere in the mPFC with a centre-of-mass (in MNI 
space) of X = 45, Y = 85 and Z = 48 (Fig. 1). This place-
ment of the seed was chosen to mirror the placement of the 
voxel for the 1H-Magnetic Resonance Spectroscopy scans 
performed on the same participants as shown in our pre-
vious paper [14]. This seed mask was transformed to each 
participant’s native space, and the timeseries data from 
within this mask were then extracted from the scaled and 
normalised residuals of the 32-parameter regression model 
and then included as a single explanatory variable in a linear 
model at the first (i.e., single-subject) level. Contrast images 
representing voxel-wise effects resulting from this model 
were then registered to the MPRAGE structural image and 
then into standard MNI space using a 12-paramater affine 
transformation [43]. Registration from MPRAGE structural 
images into standard space was further refined using non-
linear registration [i.e. FNIRT; 44]. Finally, images were 
smoothed using a 5 mm full-width at half-maximum Gauss-
ian kernel.
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Results

Participant characteristics

Due to data loss, we report results from 37 participants (19 
High MEDAS and 18 Low MEDAS). Table 1 provides 
a full summary of participant characteristics across the 
sample and in High MEDAS and Low MEDAS groups. 
The groups did not differ for sex, age, education, income, 
physical activity, BMI, energy and macronutrient intakes, 
and handedness, but by design, differed significantly on the 
MEDAS scores.

Resting state functional connectivity

Whole-brain, voxel-wise GLM analyses revealed that com-
pared to individuals in the Low MEDAS group, those in the 
High MEDAS group exhibited greater resting-state func-
tional connectivity of the mPFC seed with the thalamus, 
caudate and putamen (Fig. 2). We did not observe any sig-
nificant clusters for Low MEDAS > High MEDAS contrast.

The GLM that examined the relationship between 
whole-brain connectivity of the mPFC seed and continuous 
MEDAS scores in the whole group revealed no significant 
clusters. As such, we extracted the values from each of the 
three separate clusters depicted in Fig. 2 and correlated these 
with MEDAS scores in all participants in an exploratory 
fashion. Bivariate correlations revealed that, in the whole 
group, MEDAS scores positively correlated with resting-
state functional connectivity of the mPFC seed with the 
cluster of voxels with the thalamus (r = 0.362, p = 0.028), 
caudate (r = 0.375, p = 0.022) and putamen (r = 0.337, 
p = 0.041) (Fig. 3). Partial correlations revealed that these 
correlations remained significant when controlling for the 
effects of BMI, age, and sex revealed (thalamus: r = 0.398, 
p = 0.020, caudate: r = 0.377, p = 0.028; putamen: r = 0.346, 
p = 0.045).

fMRI data analysis

Group level analyses were performed using FSL’s Local 
Analysis of Mixed Effects (FLAME1) with outlier de-
weighting applied.

To assess the influence of group (High vs. Low MEDAS) 
on whole-brain connectivity of the mPFC seed, a model with 
five explanatory variables (EVs) that controlled for BMI, 
age and sex was constructed. The first EV denoted the High 
MEDAS group, the second EV denoted the Low MEDAS 
group, the third EV denoted BMI (demeaned), the fourth 
EV denoted age (demeaned), and the fifth EV denoted sex 
(demeaned). Two contrasts were computed in order to deter-
mine which in regions (if any) (i) the high MEDAS group 
exhibited greater connectivity with the mPFC seed and (ii) 
the low MEDAS group exhibited greater connectivity with 
the same mPFC seed.

To assess the relationship between scores on the MEDAS 
and whole-brain connectivity of the mPFC seed, a model 
with four explanatory variables (EVs) that controlled for 
BMI, age and sex was constructed. In this model, the first 
EV denoted MEDAS scores, the second EV denoted BMI, 
the third EV denoted age, and the fourth EV denoted sex 
(all demeaned). Two contrasts were computed to determine 
which regions (if any) exhibited resting-state functional 
connectivity that (i) positively correlated and (ii) negative 
correlated with MEDAS scores in the whole group.

For all models, statistical maps were cluster-corrected 
for multiple comparisons (voxel height threshold: Z > 3.09, 
cluster significance p < 0.05).

To examine the relationships of rumination with group 
differences in connectivity, connectivity values (z scores) 
were extracted from significant clusters and entered into the 
IBM® SPSS Statistics Version 26 for correlation with the 
RRS.

Fig. 1 Placement of seed in the mPFC in standard (MNI) space

 

1 3

34 Page 4 of 10



European Journal of Nutrition (2025) 64:34

PFC with thalamus, caudate, and putamen were not signifi-
cantly associated with the RRS scores.

Our study provides the first direct evidence showing 
greater rs-FC of the mPFC seed with the striatal regions 
(including caudate and putamen) and thalamus in individu-
als in the high (vs. low) MEDAS groups. Additionally, 
rs-FC of the mPFC was positively correlated with MEDAS 
scores across both groups. Previous research showed that 
weaker PFC activity is implicated in impairments in cog-
nitive control [45, 46] (which is linked to the aetiology of 
CMDS [47]), possibly through modulation of GABAer-
gic, glutamatergic, and dopaminergic neurotransmission/
metabolism in this area [18, 48–50]. Increased striatal/tha-
lamic activity, on the other hand, is known to be involved 
in impairments in impulsivity/compulsivity [51, 52], reward 
[53], as well as motivation [22], and intake of palatable 
calorie-dense foods increases striatal cortical activity [54], 
possibly through decreased dopaminergic signalling/activ-
ity, as previously observed in the forms of (i) decreased 
binding potential for dopamine D2 receptors in obese 

Bivariate and partial correlations did not reveal signifi-
cant associations between RRS (i.e. rumination scores) 
and resting-state functional connectivity of the mPFC seed 
with the cluster of voxels with the thalamus, caudate, and 
putamen.

Discussion

The aim of the current study was to perform a seed-based 
analysis to assess the associations between adherence to 
healthy eating patterns (i.e., the MED) and rs-FC of the 
PFC with those regions identified as important for CMDs, 
food choice, reward, and motivation. Results revealed 
greater rs-FC of the mPFC seed with the thalamus, caudate 
and putamen in individuals in the high (vs. low) MEDAS 
groups. Additionally, rs-FC of the mPFC seed with the clus-
ter of voxels with the thalamus, caudate, and putamen were 
positively associated with the MEDAS scores across groups 
in both crude and adjusted models. However, rs-FC of the 

Table 1 Participant characteristic across the sample and in the high MEDAS and low MEDAS groups
Total Sample (n = 37) High MEDAS (n = 19) Low MEDAS (n = 18) t/χ2 p

Sex (N: M/F) 13/24 7/12 6/12 0.05 0.82
Age (M ± SD) 25.57 ± 7.18 26.21 ± 8.71 24.89 ± 5.28 − 0.55 0.58
MEDAS Score (M ± SD) 6.92 ± 2.30 8.84 ± 0.90 4.89 ± 1.37 -10.45 < 0.001
RRS Score (M ± SD) 46.46 ± 14.66 46.58 ± 15.25 46.33 ± 14.45 0.05 0.96
Education (N) 3.88 0.42
   GCSE/O levels 1 0 1
   A levels/secondary 8 5 3
   Degree commenced 6 2 4
   Degree completed 12 8 4
   Postgraduate 10 4 6
Income/annum (N) 1.82 0.87
   Less than £18,000 7 4 3
   £18, 000 to £30, 999 8 4 4
   £31, 000 to £51, 999 8 5 3
   £52, 000 to £100, 000 3 2 1
   More than £100, 000 5 2 3
   Do not know 6 2 4
Physical Activity/week (N) 2.67 0.62
   Less than 30 min 3 1 2
   30–90 min 6 3 3
   90–150 min 13 8 5
   150–300 min 9 3 6
   More than 300 min 6 4 2
BMI (kg/m²) (M ± SD) 24.37 ± 4.69 23.53 ± 4.35 25.26 ± 5.00 -1.12 0.27
Energy/day (kcal) (M ± SD) 1738.09 ± 637.26 1764.12 ± 688.43 1710.61 ± 597.17 0.25 0.80
Carbohydrate/day (g) (M ± SD) 201.26 ± 82.25 199.09 ± 88.63 204.79 ± 77.39 − 0.21 0.84
Protein/day (g) (M ± SD) 85.65 ± 32.81 85.26 ± 36.66 86.14 ± 29.27 − 0.08 0.94
Fat/day (g) (M ± SD) 67.00 ± 28.44 71.34 ± 30.36 64.46 ± 26.68 0.73 0.47
Handedness (N: R/L) 34/3 18/1 16/2 0.42 0.52
N: number; M: male; F: female; MEDAS: Mediterranean Diet Adherence Screener; RRS: Ruminative Response Scale; kg: kilograms; m: metre; 
kcal: kilocalories; g: grams; R: right; L: left

1 3

Page 5 of 10 34



European Journal of Nutrition (2025) 64:34

healthy food choices. This may be true in part due to the 
fact that adherence to low GLU diets and consumption of 
high dietary GABA have already been shown to affect brain 
and behaviour (improved subjective stress and sleep-related 
outcomes and altered cognitive performance, blood oxygen 
level dependent (BOLD) response and functional connec-
tivity) [3, 64, 65], possibly through GABA-modulating bac-
teria of the human gut microbiota [66].

The MED emphasises food groups intrinsically related 
to brain health (hence potentially to better affective and 
cognitive processing and outcomes) and is characterised 
by high intakes of vegetables, fruits and nuts, legumes, and 
unprocessed cereals, low intakes of meat and meat products 
[67] that are associated with various metabolic processes 
[10, 11]. Hence, the MED may also potentially alter neuro-
chemistry,-structure, and/or -function, and related affective 
and cognitive mechanisms through inhibition of oxidisation 
and inflammatory pathways [68, 69] and through modulat-
ing peripheral and central glucose and insulin metabolism 
[68, 70] and the gut microbiota [71–73].

Although in our previous study we observed a significant 
negative correlation between rumination and rPCG-GMV 
and a marginally significant positive association between 
rumination and mPFC-GLU concentrations [14], in the cur-
rent study rs-FC of the mPFC with the striatal and thalamic 
regions were not correlated with RRS scores. Given that our 
measure of rumination in the current study was based on 

humans [55] (as a consequence of insulin resistance [56]) 
and decreased dopamine D2 receptors in the striatum in rats 
who were fed high fat (vs. normal chow) diets [57, 58] and/
or (ii) increased microglia proliferation, hence, metabolic 
inflammation following high-fat diet consumption [52]. As 
depicted in models of obesity/over-eating, downregulation 
of PFC and upregulation of striatum is implicated in impair-
ments in food choice-related self-control and cognitive con-
trol, which may increase tendency to consume unhealthy 
foods/follow unhealthy dietary patterns [59–61]. Addition-
ally, PFC-thalamus connectivity is an integral part of deci-
sion-making [62] and external eating behaviours (i.e., eating 
in response to food cues) [63]. Taken together, adherence 
to unhealthy dietary patterns may impact the functional 
calibration of this frontal–subcortical circuitry, by evoking 
functional dysregulation of the PFC and striatal and thalamic 
regions (potentially through diet-induced alterations in neu-
rotransmission/metabolism of GABA/GLU/Dopamine). In 
turn, this may result in potential impairments in cognitive 
control and thus in experiencing symptoms of CMDs, and/
or adherence to unhealthy dietary patterns/making poor food 
choices through altered impulsivity, motivation, and reward 
processing. Therefore, dietary approaches that alter frontal 
and striatal GABA, GLU, and dopamine neurotransmission/
metabolism, may offer a promising approach to recalibrate 
this frontal–subcortical circuitry, and potentially improve 
CMDs and CMD-related symptomatology and/or making 

Fig. 2 A: Cluster of voxels in which resting-state functional connec-
tivity with the mPFC seed depicted in Fig. 1 is greater in the High 
MEDAS group than in the Low MEDAS group. B-D: Mean z values 
from the cluster of voxels in the Thalamus (B), Caudate (C) and Puta-

men (D) in High MEDAS individuals and Low MEDAS individuals 
separately. Thal. = Thalamus; Caud. = Caudate; Put. = Putamen. Error 
bars denote 1 standard error of the mean
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stratification of results/analysis by sex in order to fully elu-
cidate sexual dimorphism in the context of nutrition and 
health.

In conclusion, our findings suggest that adhering to 
healthy dietary patterns may be associated with stronger 
rs-FC between specific brain structures involved in CMD 
physiopathology and food choice, reward, and motiva-
tion, and may therefore, offer a promising alternative and/
or complementary method to improve CMDs and CMD-
related symptomatology and/or making further healthy food 
choices. Considering the potential implications of the PFC 
dysregulation discussed above, and that (i) the PFC follows 
a protracted development [75], and (ii) overall brain health 
may encompass a wide range of adverse outcomes includ-
ing dementia and functional impairment, the timing of pre-
ventative interventions may be especially pertinent.
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self-report, the lack of correlations may reflect diminished 
insight into ruminative-thinking processes driven by lower 
regional connectivity in the frontal and higher regional con-
nectivity the striatal areas that were reported to be associ-
ated with more self-reported unwanted thoughts [74].

There are several notable caveats to be aware of in 
this study. Firstly, due to the cross-sectional nature of our 
study, we could not determine cause and effect relation-
ships, therefore, further longitudinal studies are warranted 
to allow stronger causal inferences to examine the impact of 
diet quality on rs-FC. Secondly, the small sample may have 
led to Type II errors, especially when examining associa-
tions of connectivity with RRS scores. Lastly, due to small 
sample size, we could not examine potential sex-dependent 
effects, however, future studies are encouraged to consider 

Fig. 3 Scatterplots depicting positive bivariate correlations between 
MEDAS scores and z scores extracted from within the A: Thalamus; 
B: Caudate; and C: Putamen clusters depicted in Fig. 2 above
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