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Abstract
On the Fock–Sobolev spaces, we study the range of Volterra inner derivations and
composition inner derivations. The Volterra inner derivation ranges in the ideal of
compact operators if and only if the induced function g is a linear polynomial. The
composition inner derivation ranges in the ideal of compact operators if and only if
the induced function ϕ is either identity or a contractive linear self-mapping of C.
Moreover, we describe the compact intertwining relations for composition operators
and Volterra operators between different Fock–Sobolev spaces. In this paper, our
results are complement and in a sense extend some aspects of Calkin’s result (Ann
Math 42:839–873, 1941) to the algebras of bounded linear operators on Fock–Sobolev
spaces.
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1 Introduction

Let A be a Banach algebra over the complex field. A linear map D : A → A is a
derivation if D(xy) = xD(y) + D(x)y for all x, y ∈ A . Over the last half century,
there have been lots of results giving conditions on a derivation of a Banach algebra
implying that its range is contained in some ideal. One of the most famous result given
by Singer and Wermer [19] says that every continuous derivation of a commutative
Banach algebramaps has into Jacobson radical of the algebra. Previously, InCalkin [3],
Calkin proved that an inner derivation X �→ [T , X ] := T X − XT maps the algebra
of all bounded operators on a Hilbert space to the ideal of all compact operators if and
only if T is a compact perturbation of a scalar operator. In general, this conclusion
fails to hold true on Banach spaces, see [18, p. 288].

In this paper, we are interested in Volterra-type inner derivations on Fock–Sobolev
spaces, in particular, we give characterizations which complement and in a sense
extend some aspects of Calkin’s result to the algebras of bounded linear operators on
Fock–Sobolev spaces. To reach this goal, we use the compact intertwining relations
for Volterra and composition operators and some results of the bounded and compact
Volterra and composition operators between different Fock–Sobolev spaces.

To state our main results, we recall some basic definitions. Let H(C) be the class
of all entire functions on the complex plane C. For 0 < p < ∞ and a nonnegative
integer m, the Fock–Sobolev spaces F p

m consist of entire f ∈ H(C) for which

∫
C

∣∣∣ f (m)(z)
∣∣∣p e− p

2 |z|2d A(z) < ∞,

where d A denotes the Lebesgue area measure on C. The Fock–Sobolev spaces were
introduced in [7] where it was proved that f ∈ F p

m if and only if

‖ f ‖(m,p) :=
(

p

2π

∫
C

| f (z)|pe−pψm (z)d A(z)

) 1
p

< ∞,

where ψm(z) = 1
2 |z|2 − m log(1 + |z|). It is clear that F p

0 is the classic Fock spaces.
Interested reader in this topic can refer [26] for more details.

Furthermore, the Fock–Sobolev space F∞
m also has the following equivalent defi-

nition

F∞
m :=

{
f ∈ H(C) : ‖ f ‖(m,∞) = sup

z∈C
| f (z)|e−ψm (z) < ∞

}
.

Note that for each nonnegative integerm, the space F2
m is a reproducing kernel Hilbert

space with the reproducing kernel function Km(z, w), for w ∈ C. An explicit expres-
sion for Km(z, w) is still unknown. For each w ∈ C, by Proposition 2.7 in [6], we
have the following asymptotic properties

‖Km(·, w)‖2(m,2) ≈ e2ψm (w).
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For other values of p, by Theorem 14 of [7], we have an upper estimate

‖Km(·, w)‖2(m,p) � eψm (w).

Note that when m = 0, the sapce F2
m reduces to the classical Fock space F2, in

particular, F2 is a reproducing kernel Hilbert space with normalized kernel function

kw(z) = e− 1
2 |w|2+w̄z .

For f ∈ H(C), every ϕ ∈ H(C) induces a composition operator Cϕ by Cϕ f =
f ◦ ϕ. The bounded and compact composition operators on various holomorphic
functions spaces have been studied intensively in the past few decades. Interested
readers may refer to books [10, 17] and recent papers [1, 2, 4, 12, 21, 22] on the Fock
spaces and the references therein.

If g ∈ H(C), the Volterra operator Vg is defined by

Vg f (z) =
∫ z

0
f (ζ )g′(ζ )dζ

where z ∈ C and f ∈ H(C).
The discussion of Volterra-type operators first arose in connection with semigroup

of composition operators, and readers can refer to [20] for further details and back-
ground. On the Fock type spaces, Constantin [8] and Peleáz [9] firstly studied the
bounded and compact Volterra type operators. Later, Mengestie [13] characterized the
products of integral type operators and composition operators between different Fock
spaces.

LetB(F p
m ) be the Banach algebra of bounded linear operators on the Fock–Sobolev

spaces F p
m , where 0 < p ≤ ∞. The Volterra inner derivation induced by g ∈ H(C)

onB(F p
m ) is defined by

D(Vg) : B(F p
m ) → B(F p

m ) T �→ [Vg, T ], ∀T ∈ B(F p
m ).

We can now state our main results.

Theorem A Let 0 < p ≤ ∞, the Volterra inner derivation D(Vg) on B(F p
m ) maps

into the ideal of compact operators if and only if g(z) = az + b with a, b ∈ C.

The composition inner derivation induced by ϕ ∈ H(C) onB(F p
m ) is defined by

D(Cϕ) : B(F p
m ) → B(F p

m ) T �→ [Cϕ, T ], ∀T ∈ B(F p
m ).

Theorem B Let 0 < p ≤ ∞, the composition inner derivation D(Cϕ) on B(F p
m )

maps into the ideal of compact operators if and only if ϕ = id or ϕ(z) = az + b with
a, b ∈ C and |a| < 1.

Theproofs ofTheoremsAandBare given inSects. 3 and 4, respectively. In addition,
at the end of this paper,we study the unbounded composition operatorsCϕ : F p

m → Fq
m
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when 0 < q < p ≤ ∞ proving that there are some unbounded composition operators
that compactly interwine all bounded Volterra operators.

Throughout the paper, we use the following notations: A � B means that there is
a positive constant C such that A ≤ CB. A ≈ B means that A � B and B � A.

2 Preliminaries

2.1 Compact Intertwining Relations

Let X and Y be two metric linear spaces, we denote byB(X ,Y ) the collection of all
continuous linear operators from X to Y and byK (X ,Y ) the collection of all compact
elements of B(X ,Y ), and by Q(X ,Y ) the quotient space B(X ,Y )/K (X ,Y ).

For A ∈ B(X , X), B ∈ B(Y ,Y ) and T ∈ B(X ,Y ), we say that T intertwines A
and B inQ(X ,Y ) (or T intertwines A and B compactly) if

T A − BT ∈ K (X ,Y ) where T �= 0.

More intuitively, the compact intertwining relation is explained by the following com-
mutative diagram,

X
A−−−−→ X⏐⏐	T

⏐⏐	T

Y
B−−−−→ Y

mod K (X ,Y ).

When X = Y and A = B it is easy to see the following two assertions are equivalent:

(a) T intertwines every A ∈ B(X) compactly.
(b) The inner derivation D(T ) : B(X) → B(X) ranges in the compact ideal.

From this point of view, we will study the compact intertwining relations for composi-
tion operators and Volterra operators between different Fock–Sobolev spaces, which
are then used to obtain our two main results (Theorems A and B) as direct conse-
quences.

In the series papers [23–25], Yuan, Tong and Zhou firstly investigate the intertwin-
ing relations for Volterra operators and composition operators on the Bergman spaces,
bounded analytic function spaces and Bloch spaces in the unit disk. By continuing this
line of work, we characterize the compact intertwining relations for composition oper-
ators and Volterra operators between different Fock–Sobolev spaces. Our main results
on the Volterra and composition inner derivation onB(F p

m ) then follow immediately.

2.2 Background onVolterra and Composition Operators

In this subsection, we present some preliminary lemmas give characterizations of the
bounded and compact Volterra and composition operators on the Fock–Sobolev spaces
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whether 0 < p ≤ q ≤ ∞ or 0 < q < p < ∞. Combining Lemma 2.2 in [14] and
Lemma 2.1 in [15], we conclude the following lemma.

Lemma 2.1 If f ∈ H(C), the following inequalities hold.

(a): If 0 < p < ∞, then

‖ f ‖p
(m,p) ≈ | f (0)|p +

∫
C

| f ′(z)|p
(1 + ψ ′

m(z))p
e−pψm (z)d A(z).

(b): If p = ∞, then

‖ f ‖(m,∞) ≈ | f (0)| + sup
z∈C

| f ′(z)|
1 + ψ ′

m(z)
e−ψm (z).

The bounded and compact Volterra operators Vg : F p
m → Fq

m were characterized in
[14, 15], and we summarize them as follows.

Lemma 2.2 Let 0 < p, q ≤ ∞, g ∈ H(C).

(a): If 0 < p ≤ q ≤ ∞, then

(i): Vg : F p
m → Fq

m is bounded if and only if g(z) = az2 + bz + c, where
a, b, c ∈ C;

(ii): Vg : F p
m → Fq

m is compact if and only if g(z) = az + b, where a, b ∈ C.

(b): If 0 < q < p < ∞, then Vg : F p
m → Fq

m is bounded if and only if it is compact
and if and only if g(z) = az+b, a, b ∈ C whenever q

2 >
p−q
p , and g is constant

otherwise.
(c) If 0 < q < ∞, then Vg : F∞

m → Fq
m is bounded if and only if it is compact

and if and only if g(z) = az + b, a, b ∈ C whenever q > 2, and g is constant
otherwise.

The bounded and compact composition operators on the Fock–Sobolev spaces are
characterized in [16]. The following lemma summarizes those characterizations as
follows whenever 0 < p, q ≤ ∞.

Lemma 2.3 Let 0 < p, q ≤ ∞, ϕ ∈ H(C).

(a): If 0 < p ≤ q ≤ ∞, then

(i): Cϕ : F p
m

→ Fq
m is bounded if and only if ϕ(z) = az+b where |a| < 1, b ∈ C

or ϕ(z) = az where |a| = 1;
(ii): Cϕ : F p

m → Fq
m is compact if and only if ϕ(z) = az+b where |a| < 1, b ∈ C.

(b): If 0 < q < p < ∞, then Cϕ : F p
m → Fq

m is bounded if and only if it is compact
and if and only if ϕ(z) = az + b for |a| < 1, b ∈ C.

(c): If 0 < q < ∞ and p = ∞, then Cϕ : F∞
m → Fq

m is bounded if and only if it is
compact and if and only if ϕ(z) = az + b where |a| < 1, b ∈ C.
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2.3 CarlesonMeasures

The Carleson measure theorems will play an important role in our proofs. So, let us
give the definitions of Carleson and vanishing Carleson measures for Fock–Sobolev
spaces.

Let 0 < p ≤ ∞ and 0 < q < ∞. We say that a nonnegative Borel measure μ on
C is a (F p

m , q)-Carleson measure if

∫
C

| f (z)|qe− q
2 |z|2dμ(z) � ‖ f ‖q(p,m), for every f ∈ F p

m .

In other words, the measureμ is a (F p
m , q)-Carleson measure if and only if the embed-

ding map Iμ : F p
m → Lq(σq) is bounded where dσq(z) = e− q

2 |z|2dμ(z).
We say that the measure μ is a vanishing (F p

m , q)-Carleson measure if

lim
j→∞

∫
C

| f j (z)|qe− q
2 |z|2dμ(z) = 0,

whenever f j is a bounded sequence in F
p
m that converges uniformly to zero on compact

subsets of C as j → ∞.

For s, t > 0, we define the (t, s)-Berezin type transform of μ by

μ̃(t,s)(w) =
∫
C

(1 + |z|)−se− t
2 |z−w|2dμ(z).

The following lemma is the main result in [16].

Lemma 2.4 Let 0 < p, q < ∞ and μ be a nonnegative measure on C.

(a): If 0 < p ≤ q < ∞, then μ is a vanishing (F p
m , q)-Carleson measure if and only

if μ̃(t,mq)(z) → 0 as |z| → ∞ for some (or any) t > 0.
(b): If 0 < p ≤ q < ∞, then μ is a (F p

m , q)-Carleson measure if and only if
μ̃(t,mq)(z) ∈ L∞ for some (or any) t > 0.

(c): If 0 < q < p < ∞, then μ is a (F p
m , q)-Carleson measure if and only if μ is a

vanishing (F p
m , q)-Carleson measure, and if and only if μ̃(t,mq) ∈ L

p
p−q for some

(or any) t > 0.
(d): If 0 < q < ∞ and p = ∞, then μ is a (F∞

m , q)-Carleson measure if and only if
μ is a vanishing (F∞

m , q)-Carleson measure, and if and only if μ̃(t,mq) ∈ L1 for
some (or any) t > 0.

3 Proof of Theorem A

In this section we study the boundedness and compactness of the operator Tϕ,g, we
define below. Then, we characterize the compact intertwining relation for Volterra
operators Vg and Cϕ from F p

m to Fq
m for 0 < p, q ≤ ∞. Using this fact, we prove the

first main theorem of this paper and at the end of this section we study the connection
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between the operators Vg and Tϕ,g. To prove Theorem A, ϕ, g ∈ H(C), we consider
the following operator

Tϕ,g f (z) =
∫ ϕ(z)

0
f (w)g′(w)dw −

∫ z

0
f (ϕ(w))g′(w)dw,

for f ∈ F p
m and z ∈ C.

To characterize the properties of Tϕ,g wedefine another integral operator as follows:

I p,qg,ϕ (w) :=
∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

|kw(ϕ(z))|q e− q|z|2
2 d A(z).

The following Propositions give some necessary and sufficient conditions for the
bounded and compact Tϕ,g between different Fock–Sobolev spaces F p

m and Fq
m

whether 0 < p ≤ q ≤ ∞ or 0 < q < p ≤ ∞.

Proposition 3.1 Let ϕ, g ∈ H(C) and 0 < p, q ≤ ∞.

(a): If 0 < p ≤ ∞, then Tϕ,g is bounded from F p
m to F∞

m if and only if

sup
z∈C

|(g ◦ ϕ − g)′(z)|
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm (z) < ∞.

(b): If 0 < p ≤ q < ∞, then Tϕ,g is bounded from F p
m to Fq

m if and only if

sup
z∈C

I p,qg,ϕ (w) < ∞.

(c): If 0 < q < p < ∞, then Tϕ,g is bounded from F p
m to Fq

m if and only if

I p,qg,ϕ (w) ∈ L
p

p−q (C, d A).

(d): If 0 < q < ∞, then Tϕ,g is bounded from F∞
m to Fq

m if and only if

I∞,q
g,ϕ (w) ∈ L1(C, d A).

Proof To prove the sufficient condition of (a), we apply Lemma 2.1 to have

‖Tϕ,g f ‖(m,∞) ≈ sup
z∈C

|(g ◦ ϕ − g)′(z)|| f (ϕ(z))|
1 + ψ ′

m(z)
e−ψm (z)

≤ sup
z∈C

|(g ◦ ϕ − g)′(z))|
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm (z) sup

z∈C
| f (ϕ(z))|e−ψm (ϕ(z))

= ‖ f ‖(m,∞) sup
z∈C

(g ◦ ϕ − g)′(z)
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm (z)

� ‖ f ‖(m,∞) � ‖ f ‖(m,p),



103 Page 8 of 16 X. Yang, et al.

where the last inequality follows from the monotonicity property F p
m ⊆ F∞

m .
Conversely, for each w ∈ C, let ξ(w,m)(z) = e−ψm (w)K(w,m)(z). By Corollary 14

in [7] for p < ∞ and a direct computation for p = ∞, we have

‖ξ(w,m)‖(m,p) � 1,

where the constant involved is independent of p andw. Applying Tϕ,g to ξ(w,m) yields

‖Tϕ,gξ(w,m)‖(m,∞) ≈ sup
z∈C

|(g ◦ ϕ − g)′(z)||ξ(w,m)(ϕ(z))|
1 + ψ ′

m(z)
e−ψm (z)

≥ |(g ◦ ϕ − g)′(z)||ξ(w,m)(ϕ(z))|
1 + ψ ′

m(z)
e−ψm (z),

for all points w and z in C. In particular, by setting w = ϕ(z), we have

‖Tϕ,g‖(m,∞) � |(g ◦ ϕ − g)′(z)|
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm(z)|ξ(ϕ(z),m)(ϕ(z))|e−ψm (ϕ(z))

≈ (g ◦ ϕ − g)′(z)
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm(z).

Since Tϕ,g is bounded from F p
m to F∞

m , the proof of (a) is complete.
Next, we prove (b) for the case 0 < p ≤ q < ∞. By setting

dV (z) = |(g ◦ ϕ − g)′(z)|q
(1 + ψ ′

m(z))q
e−qψm (z)+ q

2 |ϕ(z)|2d A(z) and dθ(z) = dV (ϕ−1(z)),

we estimate the norm of Tϕ,g f as follows

‖Tϕ,g f ‖q(m,q) ≈
∫
C

|(g ◦ ϕ − g)′(z)|q | f (ϕ(z))|q
(1 + ψ ′

m(z))q
e−qψm (z)d A(z)

=
∫
C

| f (ϕ(z))|qe− q
2 |ϕ(z)|2dV (z)

=
∫
C

| f (z)|qe− q
2 |z|2dθ(z).

Hence, the operator Tϕ,g : F p
m → Fq

m is bounded if and only if θ is a (F p
m , q)-Carleson

measure. By (b) of Lemma 2.4, it follows that the desire result follows if and only if

θ̃(q,mq)(w) =
∫
C

1

(1 + |z|)mq
e− q

2 |z−w|2dθ(z) ∈ L∞.
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Substituting back dθ and dV in terms of d A, we obtain

θ̃(q,mq)(w) =
∫
C

|(g ◦ ϕ − g)′(z)|q
(1 + |ϕ(z)|)mq(1 + ψ ′

m(z))q
e
q
2 |ϕ(z)|2−qψm (z)− q

2 |ϕ(z)−w|2d A(z)

=
∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

∣∣∣∣kw(ϕ(z))e− |z|2
2

∣∣∣∣
q

d A(z)

< ∞,

which completes the proof of (b).
The proofs of (c) and (d) are similar to (b) and we omit it. ��

Proposition 3.2 Let ϕ, g ∈ H(C) and 0 < p, q ≤ ∞.

(a): If 0 < p ≤ ∞, then Tϕ,g is compact from F p
m to F∞

m if and only if Tϕ,g is bounded
and

lim|ϕ(z)|→∞
|(g ◦ ϕ − g)′(z)|

1 + ψ ′
m(z)

eψm (ϕ(z))−ψm(z) = 0. (3.1)

(b): If 0 < p ≤ q < ∞, then Tϕ,g is compact from F p
m to Fq

m if and only if

lim|w|→∞ I p,qg,ϕ (w) = 0.

(c): If 0 < q < p < ∞, then Tϕ,g is compact from F p
m to Fq

m if and only if

I p,qg,ϕ (w) ∈ L
p

p−q (C, d A).

(d): If 0 < q < ∞, then Tϕ,g is compact from F∞
m to Fq

m if and only if

I p,qg,ϕ (w) ∈ L1(C, d A).

Proof To prove (a), we first assume that the operator Tϕ,g is compact. We observe
that the sequence {ξ(w,m)} converges to zero uniformly on compact subsets of C as
|w| → ∞. Then, the compactness of Tϕ,g and Lemma 2.1 give

0 = lim|w|→∞ ‖Tϕ,gξ(w,m)‖(m,∞)

≈ lim|w|→∞ sup
z∈C

|(g ◦ ϕ − g)′(z)||ξ(w,m)(ϕ(z))|
1 + ψ ′

m(z)
e−ψm (z)

� lim|w|→∞
|(g ◦ ϕ − g)′(z)||ξ(w,m)(ϕ(z))|

1 + ψ ′
m(z)

eψm (w)−ψm (z)e−ψm (w),
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for every z in C. In particular„ putting w = ϕ(z), we have

0 � lim|ϕ(z)|→∞
|(g ◦ ϕ − g)′(z)|eψm (ϕ(z))−ψm (z)

1 + ψ ′
m(z)

|ξ(ϕ(z),m)(ϕ(z))|e−ψm (ϕ(z))

≈ lim|ϕ(z)|→∞
|(g ◦ ϕ − g)′(z)|

1 + ψ ′
m(z)

eψm (ϕ(z))−ψm (z).

Conversely, let { f j } be a bounded sequence of functions in F p
m and { f j } converges

uniformly to zero on compact subsets of C as j → ∞. It is easy to obtain

‖Tϕ,g f j‖(m,∞) ≈ sup
z∈C

|(g ◦ ϕ − g)′(z)|| f j (ϕ(z))|
1 + ψ ′

m(z)
e−ψm (z)

≤max

{
sup

|ϕ(z)|>N1

G(z), sup
|ϕ(z)|≤N1

G(z)

}
,

where G(z) = |(g◦ϕ−g)′(z)|| f j (ϕ(z))|
1+ψ ′

m (z) e−ψm (z). Since (3.1) holds, for each ε > 0 there
exists a positive N1 such that

|(g ◦ ϕ − g)′(z)|
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm(z) < ε,

whenever |ϕ(z)| > N1. Hence,

sup
|ϕ(z)|>N1

G(z) ≤ sup
|ϕ(z)|>N1

|(g ◦ ϕ − g)′(z)|
1 + ψ ′

m(z)
eψm (ϕ(z))−ψm (z) sup

z∈C
| f j (ϕ(z))|e−ψm (ϕ(z))

≤ε‖ f j‖(m,∞) ≤ ε‖ f j‖(m,p),

for every positive integer j .
Because of { f j } converging to zero uniformly on compact subsets of C, we

sup
|ϕ(z)|≤N1

G(z) � sup
|ϕ(z)|≤N1

| f j (ϕ(z))| → 0 as j → ∞,

which completes the proof of (a).
Next, we use the vanishing Carleson embedding theorem to prove (b), (c) and (d)

by following the same arguments used in Proposition 3.1. Hence, we omit this. ��
Now, we are ready to characterize the compact intertwining relation for Volterra

operators between Fock–Sobolev spaces.

Theorem 3.3 Let 0 < p ≤ q ≤ ∞. The Volterra operators Vg : F p
m → Fq

m compactly
intertwines all composition operators Cϕ which are bounded both on F p

m and Fq
m if

and only if g(z) = az + b for a, b ∈ C.
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Proof Let 0 < p ≤ q ≤ ∞. If g(z) = az + b for a, b ∈ C, we can see Vg is compact
from F p

m to Fq
m by Lemma 2.2. Hence

Cϕ |Fq
m
Vg|F p

m→Fq
m
−Vg|F p

m→Fq
m
Cϕ |F p

m

is compact for every Cϕ bounded on F p
m and Fq

m .
For the necessary, we just give the proof for the case 0 < p ≤ q < ∞, because

the proof when 0 < p ≤ ∞ and q = ∞ is highly similar.
By (a) of Lemma 2.2, Vg : F p

m → Fq
m is bounded if and only if g(z) = az2+bz+c

for a, b, c ∈ C. Putting ϕ(z) = λz with |λ| = 1, by (b) of Proposition 3.2, we have

0 = lim|w|→∞

∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

|kw(ϕ(z))e− |z|2
2 |qd A(z)

= lim|w|→∞

∫
C

|2(λ2 − 1)az + b(λ − 1)|q(1 + |z|)q
(1 + |z| + ||z|2 + |z| − m|)q e− q

2 |λz−w|2d A(z)

� lim|w|→∞

∫
D(w,1)

|2(λ2 − 1)az + b(λ − 1)|q(1 + |z|)q
(1 + |z| + ||z|2 + |z| − m|)q d A(z)

� lim|w|→∞
|2(λ2 − 1)aw + b(λ − 1)|q(1 + |w|)q

(1 + |w| + ∣∣|w|2 + |w| − m
∣∣)q .

Thus, we must have a = 0. Therefore, g has the form bz+c for some b, c ∈ C,which
completes the proof. ��

We now prove our first main theorem

Proof of TheoremA Let p = q and use Theorem 3.3 to have
[Cϕ, Vg] ∈ K (F p

m ) for everyCϕ ∈ B(F p
m ) if and only if g(z) = az+bwith a, b ∈ C.

According to Lemma 2.2, it is equivalent to Vg ∈ K (F p
m ). Hence, D(Vg) maps into

K (F p
m ) if and only if Vg is a compact operator. ��

Remark 3.4 In Theorem 3.3, we characterize the compact intertwining relations

Cϕ |Fq
m
Vg|F p

m→Fq
m
−Vg|F p

m→Fq
m
Cϕ |F p

m
(3.2)

for 0 < p ≤ q ≤ ∞.
The compact intertwining relations (3.2) in cases 0 < q < p ≤ ∞ are trivial

becausewe can see the boundedness and compactness ofVg : F p
m → Fq

m are equivalent
by Lemma 2.2.

At the end of this section, we study the connection between operators Vg and Tϕ,g .

Theorem 3.5 Let 0 < q < p ≤ ∞. If either ϕ(z) = az + b for |a| < 1, b ∈ C

or ϕ(z) = az for |a| = 1, the operator Vg : F p
m → Fq

m is bounded if and only if
Tϕ,g : F p

m → Fq
m is bounded.
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In this point of view, we conclude that there is no unbounded Vg acting from F p
m

to Fq
m such that Vg compactly intertwines all composition operators Cϕ which are

bounded on F p
m and Fq

m .

Proof The necessity is trivial by the fact that Vg : F p
m → Fq

m is bounded if and only
if it is compact when 0 < q < p ≤ ∞, see (b) and (c) of Lemma 2.2.

For the sufficiency, we just prove the case 0 < q < p < ∞ by (b) of Lemma 2.3,
because the proof of the case 0 < q < ∞ and p = ∞ will be the same by (c) of
Lemma 2.3.

Note that the following estimates are true whenever z ∈ D(w, 1):

1 + |z| ≈ 1 + |w|;
1 + |az + b| ≈ 1 + |aw + b|;
1 + |z| +

∣∣∣|z|2 + |z| − m
∣∣∣ ≈ 1 + |w| +

∣∣∣|w|2 + |w| − m
∣∣∣ .

By the subharmonicity of |(g ◦ ϕ − g)′| pq
p−q , we have

∫
C

( |(g ◦ ϕ − g)′(w)|q (1 + |w|)mq

(1 + ψ ′
m(w))q (1 + |ϕ(w)|)mq

) p
p−q

d A(w)

=
∫
C

( |(g ◦ ϕ − g)′(w)|q (1 + |w|)mq+q

(1 + |w| + ||w|2 + |w| − m|)q (1 + |ϕ(w)|)mq

) p
p−q

d A(w)

�
∫
C

(∫
D(w,1)

|(g ◦ ϕ − g)′(z)|q (1 + |z|)mq+q

(1 + |z| + ||z|2 + |z| − m|)q (1 + |ϕ(z)|)mq
d A(z)

) p
p−q

d A(w)

�
∫
C

(∫
D(w,1)

|(g ◦ ϕ − g)′(z)|q (1 + |z|)mq+qe
q
2 (|ϕ(z)|2−|ϕ(z)−w|2)− q

2 |z|2

(1 + |z| + ||z|2 + |z| − m|)q (1 + |ϕ(z)|)mq
d A(z)

) p
p−q

d A(w)

≤
∫
C

(∫
C

|(g ◦ ϕ − g)′(z)|q (1 + |z|)mq

(1 + |ϕ(z)|)mq (1 + ψ ′
m(z))q

|kw(ϕ(z))e− |z|2
2 |qd A(z)

) p
p−q

d A(w),

where ϕ(z) = az + b for |a| < 1, b ∈ C or ϕ(z) = az for |a| = 1. Since Tϕ,g is
bounded from F p

m to Fq
m,

∫
C

( |(g ◦ ϕ − g)′(w)|q(1 + |w|)mq

(1 + ψ ′
m(w))q(1 + |ϕ(w)|)mq

) p
p−q

d A(w) < ∞.

Fromwhich we conclude that (g◦ϕ−g)′ must be a constant. In addition, if (g◦ϕ−g)′
is a nonzero constant, the above holds only if pq

p−q > 2. Then, the desired result follows
from (b) of Lemma 2.2. ��

4 Proof of Theorem B

In this section, we characterize the compact intertwining relations for composition
operators and Volterra operators between different Fock–Sobolev spacesB(F p

m ) and
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B(Fq
m) when 0 < p ≤ q ≤ ∞ or 0 < q ≤ p ≤ ∞, which leads us to prove our main

Theorem B.

Theorem 4.1 Let ϕ ∈ H(C) and g ∈ H(C). In either case 0 < p ≤ q < ∞ or
0 < p < ∞ and q = ∞, the bounded composition operator Cϕ : F p

m → Fq
m

compactly intertwines all Volterra operators Vg which are bounded both on F p
m and

Fq
m if and only if either ϕ(z) = az + b for |a| < 1 or ϕ(z) = ±z.

Proof Since Vg is bounded both on F p
m and Fq

m , it means that g is a quadratic polyno-
mial on C by (a) of Lemma 2.2.

We first prove the theorem whenever 0 < p ≤ q < ∞. For ϕ(z) = az + b with
|a| < 1, the composition operator Cϕ is a compact operator from F p

m to Fq
m by (a)

of Lemma 2.3. Thus, Tϕ,g is a compact operator from F p
m to Fq

m for every quadratic
polynomial g.

If ϕ(z) = z, for any entire g, it is obvious that Tϕ,g is a zero operator and hence
compact. If ϕ(z) = −z, we have

∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

|kw(ϕ(z))e− |z|2
2 |qd A(z)

=
∫
C

|2b1|q(1 + |z|)q
(1 + |z| + ||z|2 + |z| − m|)q e

− q|z+w|2
2 d A(z)

�
∫
C

e− q|z+w|2
2 d A(z) < ∞,

where g(z) = a1z2 + b1z + c1, with a1, b1, c1 ∈ C. By the dominating convergence
theorem, we have

lim|w|→∞

∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

|kw(ϕ(z))e− |z|2
2 |qd A(z) = 0.

Then, by (b) of Proposition 3.2, Tϕ,g is compact from F p
m to Fq

m .
On the other hand, the boundedness of composition operator Cϕ : F p

m → Fq
m

implies that either ϕ(z) = az + b with |a| < 1, b ∈ C or ϕ(z) = az with |a| = 1 by
Lemma 2.3.

If ϕ(z) = az with |a| = 1, we have

∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

|kw(ϕ(z))e− |z|2
2 |qd A(z)

=
∫
C

|2a1z(a2 − 1) + b1(a − 1)|q(1 + |z|)q
(1 + |z| + ||z|2 + |z| − m|)q e− |az−w|2

2 d A(z)

�
∫
D(w,1)

|2a1z(a2 − 1) + b1(a − 1)|q(1 + |z|)q
(1 + |z| + ||z|2 + |z| − m|)q d A(z)

� |2a1w(a2 − 1) + b1(a − 1)|q(1 + |w|)q
(1 + |w| + ||w|2 + |w| − m|)q .
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By Proposition 3.2, we have

lim|w|→∞
|2a1w(a2 − 1) + b1(a − 1)|q(1 + |w|)q

(1 + |w| + ||w|2 + |w| − m|)q = 0.

Thus, we have a2 = 1. That is ϕ(z) = ±z.
Now, we study the case 0 < p < ∞ and q = ∞. If ϕ(z) = az + b with |a| < 1,

b ∈ C, by (a) of Lemma 2.3, it means that Cϕ is a compact operator from F p
m to F∞

m .
So, Tϕ,g is a compact operator from F p

m to F∞
m , for any quadratic polynomial g. If

ϕ(z) = az with a = ±1, we get

lim|ϕ(z)|→∞

∣∣(g ◦ ϕ − g)′(z)
∣∣

1 + ψ ′
m(z)

eψm (ϕ(z))−ψm(z)

= lim|z|→∞
(2a1z(a2 − 1) + b1(a − 1))(1 + |z|)

(1 + |z| + ||z|2 + |z| − m|) = 0,

where g(z) = a1z2 + b1z + c1 with a1, b1, c1 ∈ C. It then follows from (a) of
Proposition 3.2 that Tϕ,g is compact for any quadratic polynomial g.

Conversely, by a similar computation as above and (a) of Proposition 3.2, we have
a = ±1 if ϕ(z) = az with |a| = 1, which completes the proof. ��
Proof of Theorem B The sufficient is trivial. For the necessity, let p = q and use The-
orem 4.1. It remains to check the case when ϕ(z) = −z.

We let M( f )(z) := z f (z) for f ∈ H(C). From Theorem 3.1 in [16], we get M is
bounded on F p

m . It follows by a direct computation that

[C−z, M] f (z) = −2MC−z f (z).

Using Theorem 3.1 in [16] again, we get [C−z, M] is bounded and noncompact. This
completes the proof. ��
Remark 4.2 In Theorem 4.1, we characterize the compact intertwining relations

Vg|Fq
m
Cϕ |F p

m→Fq
m
−Cϕ |F p

m→Fq
m
Vg|F p

m
(4.3)

whenever in the case 0 < p ≤ q < ∞ or 0 < p < ∞ and q = ∞.
The compact intertwining relations (4.3) in cases 0 < q < p ≤ ∞ are trivial

because the boundedness and compactness of Cϕ : F p
m → Fq

m are equivalent by (b)
and (c) of Lemma 2.3.

At the end of this paper, we study the unbounded composition operatorCϕ : F p
m →

Fq
m so that Tϕ,g : F p

m → Fq
m is compact for every quadratic polynomials g.

Proposition 4.3 Let 0 < q < p ≤ ∞. Let g be a quadratic polynomial. Then, the
operator Tϕ,g : F p

m → Fq
m is compact if ϕ(z) = az + b with a2 = 1, b ∈ C whenever

pq
p−q > 2, and ϕ(z) = z otherwise.
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Proof It is easy to see that (g ◦ϕ − g)′ is a constant. Denote by (g ◦ϕ − g)′ ≡ λ ∈ C,
and we have

∫
C

(∫
C

|(g ◦ ϕ − g)′(z)|q(1 + |z|)mq

(1 + |ϕ(z)|)mq(1 + ψ ′
m(z))q

∣∣∣∣kw(ϕ(z))e− |z|2
2

∣∣∣∣
q

d A(z)

) p
p−q

d A(w)

=
∫
C

(∫
C

|λ|q(1 + |z|)mq+qe
q
2 (|ϕ(z)|2−|ϕ(z)−w|2)− q

2 |z|2d A(z)

(1 + |z| + ||z|2 + |z| − m|)q(1 + |ϕ(z)|)mq

) p
p−q

d A(w)

�
∫
C

(∫
C

|λ|q
(1 + |z|)q e

q
2 (|ϕ(z)|2−|ϕ(z)−w|2)− q

2 |z|2d A(z)

) p
p−q

d A(w)

≈
∫
C

|λ|q(1 + |w|)− pq
p−q d A(w) < ∞,

where the last integral converges since either pq
p−q > 2 or λ = 0.

If 0 < q < ∞ and p = ∞, then Tϕ,g : F∞
m → Fq

m is compact if ϕ(z) = az + b
with a2 = 1, b ∈ C whenever q > 2, and ϕ(z) = z otherwise. Hence, the conclusion
is the same as above. ��
Remark 4.4 From Proposition 4.3, we notice that there are unbounded composition
operators which compactly intertwine all bounded Volterra operators when 0 < q <

p ≤ ∞.
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