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Abstract. Efficient methods for predicting weather-related
hazards are crucial for the effective management of environ-
mental risk. Many environmental hazards depend on the evo-
lution of meteorological conditions over protracted periods,
requiring assessments that account for evolving conditions.
The TAMSAT-ALERT approach addresses this challenge
by combining observational monitoring with a weighted
multi-year ensemble. In this way, it enhances the utility
of existing systems by enabling users to combine multiple
streams of monitoring and meteorological forecasting data
into holistic hazard assessments. TAMSAT-ALERT forecasts
are now used in a number of regions in the Global South for
soil moisture forecasting, drought early warning and agri-
cultural decision support. The model presented here, Gen-
eral TAMSAT-ALERT, represents a significant scientific and
functional advance on previous implementations. Notably,
General TAMSAT-ALERT is applicable to any variable for
which time series data are available. In addition, function-
ality has been introduced to account for climatological non-
stationarity (for example due to climate change), large-scale
modes of variability (for example El Niño) and persistence
(for example of land-surface conditions). In this paper, we
present a full description of the model, along with case stud-
ies of its application to the prediction of central England tem-
perature, Pakistan vegetation conditions and African precip-
itation.

1 Introduction

Transparent, robust and computationally efficient methods
for hazard assessment are of great value to stakeholders deal-
ing with environmental risk (for example, Boult et al., 2022).
Weather-related hazards may depend on the evolution of
multiple meteorological variables over a protracted period.
For example, crop yield is affected by precipitation and tem-
perature throughout the growing season. In-season updates
therefore require monitoring of past conditions as well as
forecasting. Combining observations and forecasts is, how-
ever, challenging – especially when the hazard in question is
affected by more than one variable. Extending the aforemen-
tioned example, when making an in-season assessment of the
risk of low crop yield, it is necessary to consider both me-
teorological conditions in the period since planting and the
probability of adverse conditions during the remaining sea-
son. One approach would be to drive a crop model, such as
AquaCrop (Steduto et al., 2009), with observations of each
driving variable up until the present and with an ensemble
of numerical weather prediction (NWP) model forecasts for
the future. There are two difficulties with this. On a practical
level, it may be problematic to obtain forecasts of all driv-
ing variables at the required time and spatial resolution. A
further challenging problem is the drift in predictions that
occurs as NWP models move from their initial state into
equilibrium with their own physics (for example, Manzanas,
2020). If model predictions were to be spliced directly onto
historical observations, the drift would cause systematic bias
in yield assessments, the magnitude of which would depend
on the stage of the growing season at which the meteoro-
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8354 E. Black et al.: General TAMSAT-ALERT v1.2.1

logical forecasts were initiated. This is a challenging error
to correct using standard bias correction methods because
the magnitude of the bias depends on the lead time of the
forecast. The TAMSAT-ALERT approach addresses these is-
sues by splicing together historical time series for the past
with an ensemble comprised of time series extracted from
individual historical years (hereafter referred to as a “cli-
matology”) for the future (Asfaw et al., 2018; Boult et al.,
2020; Brown et al., 2017). The use of consistent historical
data avoids the issue of model drift and accounts for complex
interactions between variables, such as precipitation, temper-
ature and net radiation (Asfaw et al., 2018). From a practical
perspective, seamless integration of past and future condi-
tions facilitates in-season updates for slowly developing haz-
ards, such as drought (Brown et al., 2017). This feature of
TAMSAT-ALERT provides a simple means of calculating
ensemble statistics that take into account both historical time
series and future predictions. Furthermore, the progressive
incorporation of observational monitoring gradually reduces
uncertainty in risk assessments as the season evolves – facil-
itating decision-making.

In its default state, TAMSAT-ALERT treats all members
of the climatological ensemble as equally likely. When cal-
culating ensemble statistics, such as the ensemble mean and
standard deviation, it is, however, in principle possible to
weight ensemble members individually if there is evidence
that some are more likely to occur than others. For example,
climatological ensemble members may be weighted more
strongly if the El Niño phase during their associated year
is close to that at the initiation of the forecast. Extending
this idea, the ensemble can be weighted using meteorological
forecasts, based on the similarity of the predicted weather to
the weather during the year associated with each ensemble
member. A strength of the methodology is that NWP out-
put can be incorporated, even when forecasts are not avail-
able for the variable being assessed. In Kenya, for example,
incorporation of skilful precipitation tercile forecast proba-
bilities output by the European Centre for Medium-Range
Weather Forecasts (ECMWF) dynamical forecasting system
improves the skill of the normalised difference vegetation in-
dex (NDVI) and yield forecasts during the secondary rainy
season (Young et al., 2020; Boult et al., 2020). The use of a
weighted climatological ensemble thus enables historical and
forecast data to be combined into a holistic view of risk (see
Appendix A and B for a more comprehensive description of
the weighting methodology).

Previous work on the TAMSAT-ALERT method has de-
scribed how the system can be used for agricultural and
drought forecasting (Asfaw et al., 2018; Boult et al., 2020;
Black et al., 2024a) and for short-term decision support
(Black et al., 2024b). Although originally designed for ap-
plication in Africa, there have been applications in Guyana
(David, 2023) and Pakistan (Black et al., 2024c). A simi-
lar approach is used for the FEWS NET drought outlooks
(Shukla et al., 2014; Turner et al., 2022) and for precipitation

predictions within the seasonal performance probability tool
(Novella and Thiaw, 2016).

In this paper, we present General TAMSAT-ALERT –
a versatile implementation of the TAMSAT-ALERT frame-
work. Unlike the previous system, which required the use
of a land-surface or crop model, General TAMSAT-ALERT
can be applied to any variable for which time series data are
available. General TAMSAT-ALERT is thus a self-contained
model rather than a modelling framework. During the de-
velopment of General TAMSAT-ALERT, we took the oppor-
tunity to extend the methodology and completely revise the
way that users interact with the code. A key innovation is
the option to increment variables from the forecast initiali-
sation date, enabling forecasts to account for persistence of
environmental conditions in time. In addition, as well as en-
abling users to weight the ensemble with time series of cli-
mate indices, General TAMSAT-ALERT permits weighting
by proximity of the climatological year to the target year.
The latter development avoids the assumption of climatolog-
ical stationarity – a weakness of the original methodology.

The paper is structured as follows. Section 2 summarises
the design and implementation of General TAMSAT-ALERT
and describes the novel developments in TAMSAT-ALERT.
In Sect. 3, the usage of the system is illustrated through three
case studies: probabilistic prediction of central England tem-
perature statistics, NDVI forecasting in Pakistan and contin-
ually updated predictions of the standardised precipitation
index (SPI) for Africa. The paper closes with some reflec-
tions on how General TAMSAT-ALERT fits into the ever-
expanding ecosystem of environmental forecast models.

2 Model description

2.1 Conceptual approach and implementation

The inputs and outputs of the system are illustrated by Fig. 1,
and the procedure is described more fully in the following ex-
ample, which considers a metric calculated over a period of
interest with the forecast initiated on a date within the period
of interest.

The preparatory steps are as follows:

1. Specify the period of interest (POI) start and end dates,
specify the initiation date of the forecast, and supply the
time series data for the forecasts.

2. Determine the dominant periodicity at the time resolu-
tion of the data (see Appendix C). For example, for a
time series with an annual dominant periodicity, the pe-
riodicity would be 365 for daily data or 12 for monthly
data. To simplify the description, for the rest of this sec-
tion, we will assume that the dominant periodicity is an-
nual.

Geosci. Model Dev., 17, 8353–8372, 2024 https://doi.org/10.5194/gmd-17-8353-2024
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Figure 1. Flow chart showing how the General TAMSAT-ALERT implementation works. The numbers in square brackets refer to the
modelling steps described in Sect. 2.1.

3. Optionally, transform the time series into a time series
of incremental change (i.e. the difference between each
value and the one that came before it in the time series).

4. Divide the time series into individual years.

The forecast is performed as follows:

5. Extract the data value on the initiation date of the fore-
cast.

6. Extract the future forecast period from every member of
the climatological ensemble. The first day of the fore-
cast period is the initiation date, and the last day is the
end of the period of interest.

7. If the option is taken to increment from the initiation
date, the data derived in step 5 are added to the state on
the initiation date of the forecast; otherwise the ensem-
ble consists of the raw data derived in step 5.

The metric over the whole period of interest is calculated
as follows:

8. The period of interest spans a period starting prior to the
initiation date as well as a period afterwards. For each
ensemble member, the forecast ensemble member (de-
rived in step 6) is spliced together with the observations
from the start of the period of interest to the initiation
date.

The ensemble statistics are calculated as follows:

9. Any weighting of the ensemble is applied at this stage,
with weights allocated to each climatological ensemble
member based on the conditions experienced during the
year from which the ensemble member is derived (see
Appendix A and B for further details of the methodol-
ogy). The code includes three options for weighting.

https://doi.org/10.5194/gmd-17-8353-2024 Geosci. Model Dev., 17, 8353–8372, 2024
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a. No weighting applied (weighting flag set to 0). In
this case, equal weights are assigned to all ensemble
members.

b. Weighting by proximity of the climatological en-
semble member year to the actual year (weighting
flag set to 1). This option allows the user to account
for long-term variability and trends in the variable
being forecast. The strength of the weighting is as-
signed by the user.

c. Weighting using an index of climate variability,
such as El Niño–Southern Oscillation (ENSO). This
option allows the user to favour climatological en-
semble members in which climate conditions are
similar to those at the initialisation of the fore-
cast. Both the data file used and the strength of the
weighting are specified by the user.

It is recommended that users experiment with differ-
ent weightings and strengths, ideally carrying out skill
assessments for a range of different set-ups (see case
study 1 for an example of this).

10. Any ensemble forecast statistic can be calculated from
the ensemble derived in step 7, using any weighting
options derived in step 9. These include the ensemble
mean, the ensemble spread, confidence intervals and
the probability that the metric being forecast will be
less than a user-prescribed threshold. The inbuilt returns
from General TAMSAT-ALERT are the weighted en-
semble mean and weighted ensemble standard devia-
tion.

2.2 Novel methodological developments

The original TAMSAT-ALERT implementation was de-
signed as a framework for producing ensemble crop yield
forecasts (Asfaw et al., 2018). Following the publication of
the original TAMSAT-ALERT method, there was interest
from the agricultural and humanitarian sectors in its wider
application to drought forecasting and agricultural decision
support (Boult et al., 2020; Black et al., 2024b). These sub-
sequent applications did not require significant development
of the underlying methodology for the framework, and so
there was no need to develop a new model. The wider use
of the TAMSAT-ALERT methodology, however, highlighted
an opportunity to develop the methodological framework
described in these papers into a new more general model.
General TAMSAT-ALERT thus builds on the success of
TAMSAT-ALERT by enabling users to derive forecasts di-
rectly from observations and reanalysis without the need for
the use of land-surface/crop models or NWP forecasts. This
has required several methodological and scientific extensions
and a complete redesign and rewrite of the underlying code.
For this release of General TAMSAT-ALERT, we have also
taken the opportunity to rethink the way that users interact

with the system, with the aim of enabling a wider range of
users to use the system to produce quantitative forecasts.

Scientific developments are as follows:

– In the previous implementation of TAMSAT-ALERT,
there was an assumption of climatological stationarity,
which is clearly over-simplistic when analysing vari-
ables with significant trends (such as surface tempera-
ture). General TAMSAT-ALERT includes options to ac-
count for trends in variables by incrementing from the
last day of the historical time series and/or by weight-
ing the climatology to favour years closer to the fore-
cast/hindcast initiation date. These methodologies are
demonstrated in case study 1 – prediction of central
England temperature extremes.

– The previous implementation of TAMSAT-ALERT did
not explicitly account for persistence, instead rely-
ing on land-surface models to represent persistence in
soil moisture. General TAMSAT-ALERT directly ac-
counts for temporal persistence (and implicitly long-
term trends) by allowing the user to select an option
for incrementing forecasts from the last day of histori-
cal observations. This functionality is illustrated by case
study 2 – NDVI forecasting for Pakistan – and by case
study 1 – prediction of central England temperature ex-
tremes.

– Predictability of many environmental variables is ampli-
fied by large-scale modes of variability, such as ENSO.
In General TAMSAT-ALERT, a method is implemented
for incorporating climate indices into ensemble predic-
tions. This is illustrated by case study 3 – probabilistic
prediction of SPI3 for Africa.

Methodological developments are as follows:

– General functions for weighting ensembles with clima-
tological indices have been developed and incorporated
into the code (allowing the user to specify the strength
of the weighting). Further details are included in Ap-
pendix B.

– An extension has been included to identify the dominant
periodicity in input data, and the code has been gener-
alised to deal with data with any periodicity and time
resolution. Further details are included in Appendix C.

Code developments are as follows:

– General TAMSAT-ALERT is released as a fully doc-
umented and publicly issued Python package (gen-
eral_tamsat_alert).

– The whole procedure described in Fig. 1 and
Sect. 2.1 is encompassed by a single function
[do_forecast()], which ingests netCDF data and
produces ensemble forecasts for a user-specified initi-
ation date and output period. The function includes all

Geosci. Model Dev., 17, 8353–8372, 2024 https://doi.org/10.5194/gmd-17-8353-2024
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of the functionality for weighting and incrementing de-
scribed above.

3 Model application

The application of General TAMSAT-ALERT is demon-
strated through three case studies that are designed to demon-
strate the functionality of the system beyond conventional
analyses of meteorological time series data. In particular, the
case studies demonstrate how General TAMSAT-ALERT im-
proves skill by incorporating non-stationarity, persistence of
environmental variables in time and wider modes of variabil-
ity such as ENSO.

– Case study 1: prediction of central England temperature
(CET) extremes. There is a strong anthropogenic posi-
tive trend in CET, superposed on strong decadal and in-
terannual variability. Application of General TAMSAT-
ALERT to the prediction of CET demonstrates how the
system handles non-stationarity in a historical climate.

– Case study 2: prediction of NDVI in Pakistan. NDVI in
semi-arid regions is highly persistent, and so this case
study demonstrates how General TAMSAT-ALERT ex-
ploits persistence to make skilful predictions with lead
times of up to 2 months.

– Case study 3: probabilistic prediction of the 3-month
standardised precipitation index (SPI3) for Africa. SPI3
on a particular day depends on cumulative precipitation
in the preceding 3 months. This case study demonstrates
how the system combines observations and predictions
into probabilistic forecasts. September–November pre-
cipitation in eastern Africa is, furthermore, strongly in-
fluenced by El Niño, and the case study demonstrates
how weighting with the Oceanic Niño Index (ONI) im-
proves forecast skill.

In order to assess the skill of the forecasts objectively, two
standard skill scores were utilised in the case studies:

– r2 (square of Pearson’s moment correlation coefficient)
is a measure of how closely the hindcast interannual
time series of NDVI captures the observed time series.
Specifically, r2 gives the proportion of variance in the
time series of observations is explained by the hind-
casts. An r2 of 1 denotes a perfect linear correlation,
for which all of the observed variability is represented
by the forecast; for a 40-year time series, r2 < 0.07
(r < 0.26) denotes that the correlation is insignificant at
the 95 % level.

– ROC–AUC (receiver operating characteristics–area
under the curve) is a metric of how reliably events can
be predicted. In this context, an event is the predictand
below a user-defined threshold (for example, below

the 20th percentile). An ROC–AUC of 0.5 or less
indicates no skill in distinguishing false alarms from
true positives (hits). An ROC–AUC of 1 indicates
a perfect forecast. For a concise guide to ROC–
AUC, see https://www.metoffice.gov.uk/research/
climate/seasonal-to-decadal/gpc-outlooks/user-guide/
interpret-roc (last access: 17 November 2024).

3.1 Case study 1: prediction of central England
temperature (CET) seasonal extremes

3.1.1 Case study 1: introduction

In this case study, the TAMSAT-ALERT system provides
probabilistic predictions of whether CET in a given season
will exceed the 90th, 95th or 99th percentiles. CET exhibits
a pronounced trend, which is reflected in increased occur-
rence of 90th-, 95th- and 99th-percentile events in the later
part of the time series (Fig. 2). The TAMSAT-ALERT system
can account for non-stationarity in two ways. Firstly, for fu-
ture periods, the climatological ensemble can be incremented
from the conditions on the initiation date of the forecast. Any
trend in the variable being predicted on the initiation date will
be implicitly represented in the ensemble. Secondly, the fa-
cility to weight the climatological ensemble allows the sys-
tem to favour years that are close in time to the period of
interest (see Appendix A and B). The CET case study thus
illustrates how accounting for non-stationarity improves pre-
diction skill for variables with a strong trend.

3.1.2 Case study 1: data and methodology

The dataset used in this study is HadCET (available
from https://www.metoffice.gov.uk/hadobs/hadcet/, last ac-
cess: 17 November 2024). HadCET is a time series of tem-
perature diagnostics for a region of the UK, roughly encom-
passed by a triangle enclosed by Lancashire, London and
Bristol. Monthly CET data are provided from 1659, with
daily maximum and minimum temperatures available from
1878 (see Parker et al., 1992, for a full description). This
case study utilises the monthly-mean daily maximum tem-
peratures for 1882–2021, focusing on July. It can be seen
from the time series displayed in Fig. 2 that there is pro-
nounced decadal variability throughout the time series, with
a clear warming trend evident from ∼ 1980 onwards.

Hindcasts were generated for the whole data period, and
each hindcast uses data from all years to generate the cli-
matological ensemble (i.e. from the past as well as from the
present). The metrics derived from the system were prob-
abilistic forecasts that the 90th, 95th and 99th percentiles
of CET would be exceeded. The percentiles were calcu-
lated using data from the whole time series based on the
ensemble mean and standard deviation (i.e. assuming Gaus-
sian behaviour). As was described above, General TAMSAT-
ALERT can optionally be run with each ensemble member

https://doi.org/10.5194/gmd-17-8353-2024 Geosci. Model Dev., 17, 8353–8372, 2024
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Figure 2. Time series of monthly-mean daily maximum July central England temperature (CET), highlighting the 90th, 95th and 99th per-
centiles.

incremented from the initiation dates of the forecasts and/or
weighted according to some measure of how similar the cli-
matological year is to the year in question. The intention of
the incrementing process is to generate ensembles of incre-
ments of the historical time series, relative to the previous
time step. Therefore, let us say for a given climatological
year that July had an average temperature of 18 °C and Au-
gust had an average temperature of 17.5 °C. In this case the
incremental value for August would be −0.5 °C. The clima-
tological ensemble member time series thus comprises a time
series of increments, which are then applied from the initial-
isation date. Practically speaking, the increment time series
are generated by subtracting the initial state for the climato-
logical year and then adding the result to the current year.

In the case study, the system was run for four set-ups. All
set-ups are run for a 1-month lead forecast (i.e. initialised by
the June monthly mean). The set-ups are

– no incrementing or weighting (i.e. the ensemble of val-
ues for historical data);

– ensemble members weighted by the proximity of the en-
semble climatological year to the hindcast year but with
no incrementing, where the exponential weighting fac-
tor is arbitrarily set to 1 (see Appendix B);

– no weighting but ensemble members incremented from
the temperature at the time of initialisation;

– ensemble members weighted by the proximity of the en-
semble climatological year to the hindcast year and en-
semble members incremented from the temperature on
the day of initialisation.

3.1.3 Case study 1: results

Figure 3 shows forecasts for each of the set-ups described
above. It can be seen that monthly-mean daily maximum
temperature for the example month chosen (July 2021) fell
just below the 90th percentile. When no weighting or in-
crementing is included, the probabilities of exceeding the
90th, 95th and 99th percentiles are close to the climatolog-
ical expectation of 0.1, 0.05 and 0.01, respectively. When the
weighting and/or incrementing is applied, the probabilities of
exceeding the threshold increase markedly. This is, in part,
because both weighting and incrementing implicitly account
for the strong positive observed trend.

A more formal analysis is shown in Fig. 4, which displays
a time series of hindcast probabilities of exceeding the 90th,
95th and 99th percentiles. When neither incrementing nor
weighting is applied (Fig. 4a), the probabilities are close to
climatological expectation and do not change from year to
year. Weighting the distribution by proximity of the climato-
logical ensemble year to the observed year (Fig. 4b) has the
expected effect of reducing the probabilities in the early part
of the time series and increasing them in the later part – re-
flecting the trend. The incrementing (Fig. 4c) has a similar
effect, with the probabilities of exceeding each threshold be-
ing consistently elevated in the later part of the time series.
Interestingly, when the incrementing is included, the proba-
bilities are consistently higher than the climatological expec-
tation – suggesting that there is some degree of non-Gaussian
behaviour that is picked up when the forecasts are initialised
from observations. In this case, the elevated probabilities
suggest that the climatological percentiles (as estimated by

Geosci. Model Dev., 17, 8353–8372, 2024 https://doi.org/10.5194/gmd-17-8353-2024
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Figure 3. Example forecasts with a 1-month lead time for July 2021. (a) No weighting or incrementing of the time series; (b) weighting
of the climatology by year proximity but no incrementing of the time series; (c) incrementing of the time series from the initiation but no
weighting; (d) weighting by year proximity and incrementing of the time series. In all of the plots, observations are blue; the 90th, 95th and
99th percentiles are pale yellow, pale orange and pale pink; and individual ensemble members are grey. The vertical green line is the date of
forecast initiation, and the red line is the target date. In (b) and (d), the weighting is denoted by the darkness of the lines.

assuming Gaussian behaviour) are too cold. When both the
incrementing and the weighting are applied (Fig. 4d), ele-
ments of both types of behaviour are evident, with strong
increases in hindcast probabilities in the later part of the
time series and greater-than-expected climatological proba-
bilities throughout. Figure 4 displays the results of a formal
skill assessment (ROC–AUC). When neither incrementing
nor weighting is applied, the ROC–AUC is close to the cli-
matological expectation of 0.5. When weighting and/or in-
crementing is applied, the skill improves, with ROC–AUC in
the region of 0.7–0.8. For the most extreme cases (95th and
99th percentiles), slightly better scores are achieved when
both the incrementing and weighting are applied, but the dif-
ferences are small.

3.2 Case study 2: prediction of NDVI for Pakistan

The implementation of General TAMSAT-ALERT for NDVI
forecasting is illustrated through a case study of Pakistan
and the surrounding region. Pakistan was chosen for the case
study for several reasons. Firstly, the climate and topogra-
phy of Pakistan vary considerably (see Fig. 5), enabling us
to test the NDVI forecasting method in a range of environ-
mental settings. The topographic zones include the highlands
of the north, large river plains in Punjab and Sindh, and
the Balochistan Plateau. The climate also varies consider-
ably. For example, precipitation ranges from < 100 mmyr−1

in the deserts of Balochistan to > 1000 mmyr−1 in northern

regions affected by the southwest monsoon. Secondly, veg-
etation in Pakistan is partly rainfed and partly fed by river
overflow and glacial melt. This means that there is a dis-
connect between variability in precipitation and vegetation
conditions. Direct observation of vegetation may thus be the
most appropriate method of monitoring drought and crop
conditions, and NDVI forecasts thus have practical value for
the region. The final reason for choosing Pakistan was prag-
matic. In 2020, the Start Network commissioned the TAM-
SAT group to develop a new drought monitoring service for
Punjab and Sindh, which, unlike pre-existing services, tar-
gets the secondary winter growing season. The development
of the drought monitoring system necessitated extending the
TAMSAT-ALERT method from soil moisture in Africa to
NDVI in Pakistan (Black et al., 2024c).

3.2.1 Case study 2: data and methodology

The dataset used in this study is the Blended Vegetation
Health Product (Blended-VHP). Blended-VHP is a multiple-
product dataset issued by NOAA’s Center for Satellite Ap-
plications and Research (STAR) that produces global veg-
etation health products. The Blended-VHP products in-
clude data from different satellite sensors (VIIRS for 2013–
present and AVHRR for 1981–2012) that have been re-
processed into a single homogenous time series (Yang et al.,
2021). The vegetation-health-related variables provided in-
clude NDVI, brightness temperature, the vegetation con-

https://doi.org/10.5194/gmd-17-8353-2024 Geosci. Model Dev., 17, 8353–8372, 2024
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Figure 4. Time series of predicted probabilities that the July central England temperature (CET) will exceed the 1850–2020 90th, 95th and
99th percentiles for a 1-month lead time – i.e. forecasts initiated in June. (a) No weighting or incrementing of the time series; (b) weighting
of the climatology by year proximity but no incrementing of the time series; (c) incrementing of the time series but no weighting; (d) both
weighting and incrementing applied. The bold lines show modelled probabilities of exceedance of the 90th-, 95th- and 99th-percentile
thresholds, and the fine lines show the climatological probabilities.

Figure 5. Maps of precipitation and NDVI annual means. (a) Annual mean precipitation in the case study region; (b) annual mean maximum
15 d NDVI in the case study region. The country outline shows the border of Pakistan.
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dition index, the thermal condition index and the vegeta-
tion health index. The raw Blended-VHP data are released
as weekly files at 4 km resolution. For this study, the data
were re-gridded to 0.05° and interpolated to twice-monthly
time steps (15th of the month, last day of the month). The
forecasts were produced using incrementing but no weight-
ing, with the TAMSAT-ALERT forecasts generated indepen-
dently for each grid point.

3.2.2 Case study 2: results

An example of an NDVI forecast for 1 August 2018, with
a lead time of up to 60 d, is shown in Fig. 6, and Fig. 7
shows r2, together with ROC–AUC, for forecasts of NDVI
that are below the 20th percentile on 1 August. The skill
scores are calculated for each point for the gridded forecasts.
Even 2 months in advance, there is some skill compared to
climatology, and by 1 July (1-month lead time), the forecasts
are highly skilful over most of the region. Although there is
some spatial variation, in all regions there is skill at a 60 d
lead time, with excellent skill at a 30 d lead time (ROC–
AUC > 0.85; r2 > 0.75). Since no weighting is applied and
the forecasts are for an NDVI snapshot rather than a seasonal
mean, the only source of skill in the forecasts is the time
persistence of NDVI. As was discussed for CET, a potential
limitation of the TAMSAT-ALERT method is the implicit as-
sumption that we can predict the future using historical cli-
matologies. The difficulty of dealing with data with a strong
trend is partly addressed by deriving ensembles using time
step changes in NDVI rather than using the absolute values
of the historical observations. It should be noted, however,
that although starting the forecasts from the NDVI on the
date of initiation accounts for the trend in NDVI on the date
of initiation, it does not account for trends in the magnitude
of the NDVI time increments.

3.3 Case study 3: 3-month standardised precipitation
index (SPI3) prediction for Africa

Lower-than-usual precipitation has severe consequences in
Africa because of the region’s dependence on rainfed agri-
culture. Precipitation in Africa varies strongly in both space
and time, with most regions having pronounced dry and wet
seasons (see Fig. 8). A commonly used metric of the pre-
cipitation anomaly is the standardised precipitation index
(SPI) (McKee et al., 1993). For a given time, SPI is essen-
tially the normalised and standardised cumulative precipita-
tion anomaly derived for a user-defined number of preceding
months. The choice of the number of months depends on how
the SPI data will be utilised. For assessment of agricultural
drought, a 3-month period is typically used; for hydrological
drought, longer periods (6 or 9 months) may be more appro-
priate.

In this application, the TAMSAT-ALERT system is used
to predict SPI3 for Africa with lead times of up to 3 months.

As was described above, SPI3 is based on cumulative pre-
cipitation during the 3 months prior to the target date. At a
3-month lead time, therefore, the TAMSAT-ALERT forecast
is based entirely on an ensemble of future precipitation. As
the season progresses, the ensemble progressively incorpo-
rates observations. For example, at a 1-month lead time, each
ensemble member will include 2 months of observations and
1 month of forecasts. The primary aim of this case study is
thus to demonstrate how TAMSAT-ALERT can be used to
combine historical observations and climatological informa-
tion into probabilistic predictions.

3.3.1 Case study 3: data and methodology

The dataset chosen was the GPCC monthly gridded precipi-
tation (a gridded dataset based on rain gauge observations).
For this study, the 1° resolution “Full Data Monthly Prod-
uct” was used (Schneider et al., 2016). The weighting was
carried out using the Oceanic Niño Index (ONI) provided
by NOAA (https://psl.noaa.gov/data/climateindices/list/, last
access: 17 November 2024). SPI was calculated for each en-
semble member precipitation time series using the proce-
dure outlined in Keyantash et al. (2023). The ROC–AUC
scores are for the detection of SPI <−0.75 (mild to mod-
erate drought). The probability that SPI breaches the drought
threshold is derived from the ensemble mean and standard
deviation, assuming Gaussian behaviour. This choice is jus-
tified because SPI is constructed in such a way as to make it
Gaussian, and an empirical approach tends to produce noisy
results, especially for extremes. For the weighted ensembles,
the weightings were derived from the ONI time series, with
weights based on the difference between the ONI at the fore-
cast initiation and the ONI for the climatological ensemble.

3.3.2 Case study 3: results

Figure 9 shows example SPI forecasts initiated at the begin-
ning of August, September and October 2015 for Novem-
ber SPI3. In 2015, there was a large El Niño event, result-
ing in high precipitation in eastern Africa and low precipita-
tion in southern Africa. It can be seen that in August, when
the forecast is based entirely on the climatological ensemble,
as would be expected, the unweighted ensemble predicts the
climatology – i.e. zero anomalies. As additional data are in-
cluded, the unweighted forecasts approach the observations,
with most observed features evident by October. For this case
(a large El Niño event), comparison between the weighted
and unweighted forecasts shows that the ONI weighting has
a pronounced effect (Fig. 9). Even in August, slight positive
anomalies are predicted in eastern Africa and slight negative
anomalies are predicted in southern Africa, in line with the
expected El Niño teleconnection (Reason, 2017; Black et al.,
2003). As the season progresses, the anomalies approach ob-
servations, with significantly positive anomalies evident in
southern and eastern Africa at a 2-month lead time.
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Figure 6. Predicted and observed NDVI in an example month (August 2018). The dates in the sub-panel titles are the initialisation dates for
the forecasts (date format: year-month-day). (a) Predicted and observed NDVI; (b) predicted and observed NDVI anomaly.

Figure 7. Skill scores for NDVI predicted for 1 August. The dates in the sub-panel titles are the initialisation dates for the forecasts (date
format: month-day). (a) ROC–AUC for detecting a 20th-percentile event; (b) r2 (i.e. the square of the Pearson correlation coefficient).

The improvement in skill as the lead time reduces, sug-
gested by the 2015 example, is consistent with the formal
skill assessment shown in Fig. 10, which shows the ROC–
AUC for detection of SPI <−0.75 (mild/moderate drought).
For the unweighted November forecasts, at a 3-month lead
time, the ROC–AUC is ∼ 0.5 for all of Africa, indicating
that the skill is no better than the climatology. As observa-
tions are incorporated, the skill increases until it is > 0.7 in
most regions at a lead time of 1 month. The weighting has
the greatest effect at the longer lead times, with the great-
est impact on eastern Africa. This is consistent with the
well-known El Niño teleconnection with the eastern Africa
October–December rainy season (Black et al., 2003).

4 Discussion and reflections

There are many excellent forecasting systems that contribute
to the early warning of climate-related hazards. Such sys-
tems are based on cutting-edge numerical weather predic-
tion models and on observations. These range from full dy-
namical systems run by meteorological agencies, such as the
Met Office, ECMWF and the Bureau of Meteorology, to sim-
ple statistical regression models (e.g. Diro et al., 2008; Gis-
sila et al., 2004). In recent years, there has been a prolifer-
ation of machine-learning-based algorithms capable of em-
ulating numerical forecasting systems or of inferring future
conditions using historical data (see Ren et al., 2021, for a
review). In parallel with forecast improvements, there have
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Figure 8. Seasonal cycle in precipitation over Africa: precipitation accumulations for DJF (a), MAM (b), JJA (c) and SON (d).

been significant developments in observation, and now that
we are 40 years into the meteorological satellite era, tra-
ditional ground-based observational networks are routinely
supplemented by satellite estimates. Long-standing satellite
datasets include the CHIRPS and TAMSAT precipitation
data (Funk et al., 2015; Maidment et al., 2017), both of which
provide data back to the early 1980s. Although generally less
accurate than satellite and ground-based observations (for ex-
ample, Lavers et al., 2022), meteorological reanalyses offer
long and consistent time series of a wide range of variables –
some of which are not easily observed by more direct meth-
ods. Widely used examples include the NCEP and the ERA5
reanalyses (Kalnay et al., 2018; Hersbach et al., 2020).

So – taking these examples into account – what is the point
of yet another ensemble forecasting system? From a tech-
nical perspective, General TAMSAT-ALERT is complemen-
tary to existing systems, which by and large focus either on
observations or on forecasts. It is challenging to provide even
qualitative assessments that take into account both the past
and the future. For example, one can envisage a situation in
which regional precipitation is forecast to be high following a
poor start to the rainy season. Does this mean that a seasonal
meteorological drought is likely? Or is the forecast high pre-
cipitation sufficient to outweigh the current dry conditions?
General TAMSAT-ALERT provides a straightforward way
to combine observations and forecasts into quantitative fore-
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Figure 9. Example forecast for 3-month SPI3 on 15 November 2015. From left to right: 3-month lead time (forecast initiated on 15 August),
2-month lead time (forecast initiated on 15 September), 1-month lead time (forecast initiated on 15 October) and observed SPI3. The top
row displays forecasts with no weighting applied to the ensemble. The bottom row displays forecasts with the ensemble weighted using the
Oceanic Niño Index (ONI).

casts (Boult et al., 2020). Extending the example above, in
some cases, meteorological forecasts may not be available,
or they may have poor skill. In this situation, the method pre-
sented here enables decision-makers to judge the probability
of seasonal drought based purely on observations of the sea-
son so far (as with case study 3).

An additional issue addressed by General TAMSAT-
ALERT is that of climate non-stationarity. The assumption of
stationarity is demonstrably false in a changing climate and
has been shown to have a detrimental effect on the skill of
empirical statistical predictions (Salvi et al., 2016; Adeyemi
and Akerele, 2017). An advantage of the approach intro-
duced in General TAMSAT-ALERT is that the weighting
methodology accounts for non-stationarity without making
assumptions about the structure of long-term trends or vari-
ability. This means that the forecasts account for both natural
decadal variability and anthropogenic climate change.

A further challenge for stakeholders is that the major fore-
casting organisations issue predictions and observations for
a limited number of variables. Even ECMWF, which pro-
vides both forecasts and an extensive and continually up-
dated meteorological reanalysis, only considers meteorolog-
ical and land-surface variables that can be output directly
from NWP models. Metrics of vegetation condition, such as
NDVI, are not included and could not be handled by the orig-

inal TAMSAT-ALERT modelling framework. Lack of fore-
casts for particular variables may make it difficult for stake-
holders to accommodate forecasts into their operations –
especially if their current monitoring protocols utilise vari-
ables, such as NDVI, that are not routinely predicted. The
general approach to time series forecasting presented here
provides a solution for such users.

The climatological approach central to the TAMSAT-
ALERT methodology enables users to exploit publicly avail-
able meteorological forecasts and observations to improve
skill (case studies 2 and 3 and Boult et al., 2020). Al-
though incorporation of skilful meteorological forecasts into
TAMSAT-ALERT is undoubtedly useful (Boult et al., 2020),
weighting with observed data is also potentially of value
to decision-makers. For example, El Niño can exacerbate
the risks of extreme weather in many regions (for example
Goddard and Gershunov, 2020; Kay et al., 2022), and ex-
isting systems and warnings may report possible sectorial
impacts of El Niño (for example Nobre et al., 2019; Kim
et al., 2021). However, in practice, such reports tend to be
semi-quantitative and reliant on expert judgement. The op-
tion to weight climatological ensembles with observations
of climate indices (weighting flag 2 in General TAMSAT-
ALERT) supplements this information by providing quanti-
tative assessments of how environmental variables are mod-
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Figure 10. ROC–AUC scores for 3-month SPI3 on 15 November. From left to right: 3-month lead time (forecast initiated on 15 August; a,
d), 2-month lead time (forecast initiated on 15 September; b, e) and 1-month lead time (forecast initiated on 15 October; c, f). (a–c) Forecasts
with no weighting applied to the ensemble. (d–f) Forecasts with the ensemble weighted using the Oceanic Niño Index (ONI).

ulated by El Niño. The methodology implicitly accounts not
only for varying teleconnection strength but also for the
strength of the link between meteorological variables af-
fected by El Niño and the metric being forecast. Figure 11
combines case study 2 (Pakistan NDVI) with case study 3
(African precipitation), comparing the effect of weighting
with ONI during the strongest El Niño event in recent his-
tory. The results show that weighting with ONI data has a
strong effect on African precipitation forecasts but that the
predicted anomalies for Pakistan are uniformly weak – re-
flecting a weak link between El Niño and NDVI (although
the predicted anomalies are stronger elsewhere in the region).
The negative Pakistan result is of practical importance – es-
pecially given the anecdotal weight given to El Niño in the
Pakistan meteorological and agricultural sectors (for exam-
ple, Siyal et al., 2019). In the humanitarian sector there is of-
ten discussion on taking action when an El Niño is imminent
or ongoing, and yet in some cases the connection between
El Niño and impact-relevant metrics, such as NDVI, is weak.

General TAMSAT-ALERT allows users to make their own
judgements about the relevance of El Niño for their particu-
lar application. Allowing users to incorporate data on modes
of variability is a significant extension of the original frame-
work.

The reliance of decision-makers on qualitative reports of
El Niño highlights the limited uptake of forecasts for early
action. This is in part because of the issue described above –
namely that centrally issued meteorological forecasts may
not target variables of interest. Further issues are that fore-
casts may not be available on the timetables specified in
early action plans and that forecast metrics may not be pre-
sented in a way that facilitates decision-making. These issues
can be addressed by some combination of collaboration, co-
production and direct production of forecasts by decision-
makers (for example, Dasgupta et al., 2023). Our computa-
tionally lightweight approach and the public release of Gen-
eral TAMSAT-ALERT through the standard Python package
indexing system facilitate all three solutions.
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Figure 11. Forecasts and observations of Pakistan (and surrounding region) seasonal mean NDVI anomaly (a–c) and Africa cumulative
precipitation anomaly (d–f). Comparison between unweighted forecasts (a, d), weighted forecasts (b, e) and observations (c, f). Forecasts are
initiated on 1 August 1997 and target the September–November 1997 season. The weighting is based on the Oceanic Niño Index.

Connected to the discussion above is the somewhat neb-
ulous notion of “ownership” of the forecasting process. It is
inevitable that forecasts are sometimes wrong. Loss of trust
in forecasts is, however, not inevitable if decision-makers
and end users have a detailed understanding from the outset
of the underlying principles and skill and subsequent limita-
tions (Hirons et al., 2021; Gudoshava et al., 2022). Using a
transparent method to generate ensemble forecasts and derive
relevant metrics is an excellent way of building such under-
standing. Furthermore, end users are more likely to persist
with a system that they have built themselves – working with
it over a number of years to design a decision-making process
that accounts for error and uncertainty (Hirons et al., 2023).

5 Conclusions

In this paper, we have presented a computationally
lightweight and general method for ensemble forecasting.
The key scientific innovations of the method are that it ac-
counts for non-stationarity in time series and that it exploits
the predictability arising from persistence in some environ-

mental variables without the need to use an initialised numer-
ical model. From a practical perspective, in comparison to
numerical and machine learning forecasting methods, Gen-
eral TAMSAT-ALERT is easy to use and computationally
lightweight.

General TAMSAT-ALERT is designed to ingest multiple
streams of meteorological forecast and environmental obser-
vational data. Accordingly, the intention is not to replace ex-
isting forecasts and observations but rather to provide a plat-
form for transforming such data into actionable assessments.
Over the coming years, our aim is to demonstrate the use of
the TAMSAT-ALERT methodology in a range of sectors and
to build the capacity of decision-makers to use our code to
produce bespoke hazard assessments.
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Appendix A: A brief description of the
TAMSAT-ALERT method

A1 Overview

TAMSAT-ALERT is a method of generating probabilistic
forecasts of environmental variables, using observed time se-
ries and (optionally) meteorological forecasts or indices of
large-scale modes of climatic variability. Accordingly, it en-
ables users to combine multiple sources of data into prob-
abilistic forecasts of environmental hazards. The way that
TAMSAT-ALERT works is illustrated by Fig. A1.

It can be seen from Fig. A1 that TAMSAT-ALERT fore-
casts use historical time series to provide the following com-
ponents.

– Monitoring information on the part of the period of in-
terest prior to the initiation date is provided. In opera-
tional systems, forecasts are initiated as close to “today”
as possible, and the observational time series is used to
monitor the progress of the season/period of interest so
far.

– Initial conditions for the forecasts are provided.

– A multi-year (climatological) ensemble is provided.
The climatological ensemble can be thought of as mul-
tiple realisations of the future, with each possible future
based on a series of events that have happened in the
past.

Using observational data from multiple years from the
past, spliced with observational data from the period of in-
terest so far, TAMSAT-ALERT thus generates an ensemble
of time series for the whole period of interest.

A2 Weighting the ensemble

In its default set-up, TAMSAT-ALERT treats each ensemble
member as equally likely. If additional information is avail-
able about the probability of individual ensemble members,
this information can be used to weight the ensemble. In prac-
tice, weighting the ensemble members is straightforward be-
cause each ensemble member is derived from a historical
year. Thus, if we can infer how likely conditions during a
historical year are to occur during the period of interest, we
can use this information to weight the ensemble. In this pa-
per and in previous studies, three methods of weighting the
ensemble have been demonstrated.

– Weighting method 1: by the proximity of the period of
interest to the climatological ensemble year.

Because many environmental variables show trends
over time, ensemble members from years closer in time
to the TAMSAT-ALERT forecast are more likely to ac-
curately represent conditions in the future segment of
the period of interest. In this weighting method, each

ensemble member is therefore weighted based on how
close its associated year is to the period of interest.

– Weighting method 2: by the similarity of climatic modes
of variability during the period of interest to modes of
variability during the climatological ensemble year.

In many parts of the world, the climate is greatly af-
fected by patterns of variability, such as El Niño–
Southern Oscillation (ENSO) and the North Atlantic
Oscillation. This means that weather conditions dur-
ing a given period are more likely to be similar to
those in past years when these patterns were in a sim-
ilar phase rather than when they were in a different
phase. For example, in eastern Africa, rainfall is influ-
enced by ENSO. If the period of interest occurs during
an El Niño, the rainfall will be more like the rainfall
during past El Niño periods than during La Niña peri-
ods. Weighting method 2 takes this into account by giv-
ing more importance to ensemble members for which a
user-provided index of a variability pattern for the rel-
evant climatological year is similar to the index on the
forecast’s start day. If the user-supplied index is poorly
correlated with the variable being forecast, the effect of
the weighting on the ensemble statistics will be min-
imal, while if it is strongly correlated, the ensemble
statistics will be significantly perturbed.

– Weighting method 3: using meteorological forecasts.

Meteorological forecasts provide information on the
likelihood that a specific weather variable, such as pre-
cipitation, will fall into one of three categories: below
average (tercile 1), average (tercile 2) or above average
(tercile 3).1 This information can be used to weight en-
semble members. Each ensemble member is assigned
to a tercile based on how the weather conditions during
the associated ensemble member year compare to the
historical average. The weighting is then based on the
forecasted probability for that tercile. For example, in
eastern Africa, rainfall in November 1997 was above av-
erage (tercile 3). If we are using a November precipita-
tion forecast for eastern Africa to weight the ensemble,
the 1997 ensemble member will be assigned to tercile 3
and weighted according to the present-day probability
of rainfall in that tercile. This approach allows precipi-
tation forecasts to weight TAMSAT-ALERT predictions
for various variables (like NDVI). Continuing the exam-
ple, similarly to in weighting method 2, if the connec-
tion between rainfall and NDVI is weak, then using a
precipitation forecast to weight the TAMSAT-ALERT
prediction will have little impact on the ensemble statis-
tics.

1Other thresholds for categorising meteorological variables,
such as quintiles and deciles, are equally applicable.
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Figure A1. Schematic of how the TAMSAT-ALERT method can be used to translate historical time series into probabilistic predictions.

A3 Calculating the risk of an adverse event

The risk of an adverse event can be calculated similarly to
other ensemble predictions. For instance, the weighted en-
semble mean and standard deviation can determine the prob-
ability that NDVI or precipitation will breach a user-defined
threshold. Another method involves using ensemble mem-
bers to drive a model, such as a crop or land-surface model.
In this approach, each ensemble member is used to run the
model, the model outputs are combined into an ensemble and
the risk assessment is based on the weighted ensemble statis-
tics.

Appendix B: Additional information on the inbuilt
method for weighting the climatological ensemble

Within General TAMSAT-ALERT, there are two inbuilt op-
tions for weighting the climatological ensemble. These are
defined in the wrapper function by flags:

– Weighting flag 0. No weighting is applied.

– Weighting flag 1. Weight the ensemble based on the
proximity of the climatological ensemble year to the
year in which the forecast is initiated.

– Weighting flag 2. Weight the ensemble based on the sim-
ilarity of some index at the point of forecast initiation to
the index during the climatological year.

The method of weighting is similar for methods 1 and 2.
For weighting flag 1, the ensemble is weighted as follows:

wi = e
−0.001

(
S1I T

24

)2

,

where wi is the weighting for ensemble member i, S is the
weighting strength, 1I is the difference between the initia-
tion time index and the climatological ensemble time index,
and T is the dominant period of the data.

For weighting flag 2, the ensemble is weighted as follows:

wi = e−(S1V )2
,

where wi is the weighting for ensemble member i, S is the
weighting strength, 1V is the difference between the value
of the climatic index at initiation and the climatic index for
ensemble member i, and T is the dominant period of the data.

The weighting strength for individual ensemble members
for both methods is illustrated by Fig. B1. The index used in
the figure is the Oceanic Niño Index (ONI), and the forecast
was initiated in November 1997 (a strong El Niño).
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Figure B1. An example of weights assigned to climatological ensemble members for a forecast initiated on 1 November 1997. (a) Weight-
ing by year proximity; (b) weighting by the Oceanic Niño Index. Note that the year of the forecast (in this case 1997) is left out of the
climatological ensemble.

Appendix C: Additional information on the inbuilt
method for determining the periodicity of the time series
data

For meteorological time series data, the dominant period-
icity is almost always 1 year. It is therefore recommended
that periodicity is specified by the user – accounting for the
time resolution of the data. For example, for the monthly
precipitation and temperature data in case studies 1 and 3,
the user-specified periodicity was 12, while for the twice-
monthly NDVI data in case study 2, the user-specified peri-
odicity was 24.

However, in order to make General TAMSAT-ALERT ap-
plicable to data without a known periodicity, a method for
deriving periodicity is supplied within the Python package.
The methodology is illustrated in Fig. C1 and summarised
below:

1. The input data are first transformed into a cleaner state
by subtracting the mean square offset error. This method
works by quantifying how different the signal is from
itself offset by a given amount, effectively correcting
for small variations in phase and removing noise from
the data.

2. The data are linearly detrended.

3. A Fourier transform is applied to the processed data.

4. The maximum peak in the resulting spectrum is identi-
fied as the dominant periodicity.

The algorithm described above is computationally inten-
sive, so it is applied to a subset of the gridded input – selected
by regular sampling of the grid at user-specified intervals.
It should be noted that the dominant periodicity is assumed
to be constant in space. If this is not the case, users are ad-
vised to use a subset of the data regionally before applying
the TAMSAT-ALERT method.
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Figure C1. An example of the dominant periodicity calculation method. (a) Example time series of processed and raw data (steps 1 and 2
above). (b) Fourier transform of the raw and processed data (step 3).

Code availability. All model code is open-source and pub-
licly available at https://pypi.org/project/general-tamsat-alert/ (El-
lis and Black, 2024b) and https://github.com/brightlego/General_
TAMSAT_ALERT (last access: 17 November 2024). The version
of the model evaluated in this paper is persistently archived at
the following DOI: https://doi.org/10.5281/zenodo.10955490 (El-
lis and Black, 2024a). A user guide to the code is included in the
Supplement. The ROC–AUC score calculation code is available at
https://pypi.org/project/fastroc/ (Ellis and Black, 2024c) and https:
//github.com/brightlego/fastroc (last access: 17 November 2024).

Data availability. All datasets used in this study are publicly avail-
able, via the sources given in Sect. 2. Convenience copies of
the netCDF format files used to produce the plots are avail-
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