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A B S T R A C T

Anomaly detection in the Industrial Internet of Things (IIoT) is a challenging task that relies heavily on
the efficient learning of multivariate time series representations. We introduce Skip-patching and Spatial–
Temporal discrepancy mechanisms to improve the efficiency of detecting anomalies. Traditional feature
extraction is hindered by redundant information in limited datasets. The situation is that feature generation
from stable operational processes results in low-quality representations. To address this challenge, we
propose the Skip-Patching mechanism. This approach involves selectively extracting features from partial
data patches, prompting the model to learn more meaningful knowledge through self-supervised learning.
It also effectively doubles the training sample size by creating independent sub-groups of patches. Despite the
complex spatial and temporal relationships in IIoT systems, existing methods mainly extracted features from
a single domain, either temporal or spatial (sensor-wise), or simply cascaded two features, i.e., one after one,
which limited anomaly detection capabilities. To address this, we introduce the Spatial–Temporal Association
Discrepancy component, which leverages discrepancies between spatial and temporal features to enhance latent
representation learning. Our Skip-Patching Spatial–Temporal Anomaly Detection (SSAD) framework combines
these two components to provide a more diverse and comprehensive learning process. Tested across four
multivariate time series anomaly detection benchmarks, SSAD demonstrates superior performance, confirming
the efficacy of combining Skip-patching and Spatial–Temporal features to enhance anomaly detection in IIoT
systems.
1. Introduction

The rapid expansion of the Industrial Internet of Things (IIoT),
driven by more affordable connectivity and advanced automation, em-
phasizes the importance of efficient security measures. The importance
of security and safety in IIoT is highlighted by the severe consequences
of breaches, which can lead to catastrophic industrial damage and pose
significant risks to human safety. To safeguard the wealth and health
of industrial processes within the Industrial Internet of Things (IIoT),
the detection of anomalies in extensive multivariate time series data
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is essential. This data, generated by sensors and actuators involved in
these processes, requires sophisticated monitoring to prevent losses.
Consequently, data-driven approaches, especially deep learning tech-
niques, have been increasingly adopted for the efficient and stable
detection of anomalies in such multivariate time series data.

Deep learning approaches are typically categorized into supervised
and unsupervised learning. Supervised learning is challenging for IIoT
anomaly detection as labeling vast datasets is impractical and requires
identifying unseen anomalies. In contrast, unsupervised learning, which
https://doi.org/10.1016/j.neucom.2024.128428
Received 16 May 2024; Received in revised form 25 July 2024; Accepted 16 Augu
vailable online 20 August 2024 
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
st 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:yinsongxu2-c@my.cityu.edu.hk
mailto:dingyl@sustech.edu.cn
mailto:jiangjie@cup.edu.cn
mailto:rmcong@sdu.edu.cn
mailto:zhangxuefeng@mail.neu.edu.cn
mailto:shiqwang@cityu.edu.hk
mailto:samkwong@ln.edu.hk
mailto:shuang-hua.yang@reading.ac.uk
https://doi.org/10.1016/j.neucom.2024.128428
https://doi.org/10.1016/j.neucom.2024.128428
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.128428&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Y. Xu et al.

2

l
d
i
i
o
o
s
m
s
s
K
d

b
m
v
l
s
a
i
i
P
r
m
a

f
s
i
a
h
s
M
d
t
s
t

Neurocomputing 609 (2024) 128428 
does not require labeled data, is preferred. Unsupervised anomaly
detection methods often focus on tasks such as reconstruction or pre-
dictions using normal samples, which are much easier to obtain than
abnormal data in the regular operation of IIoT systems. These meth-
ods assume that anomalies will significantly deviate from the model’s
reconstructions [1–3] or predictions [4,5], trained with normal data.

Representation learning, which focuses on automatically discover-
ing the representations needed for feature detection from raw data in
machine learning, plays a pivotal role in data-driven anomaly detection
within the IIoT. Applying representation learning to multivariate time
series data in IIoT contexts introduces distinct challenges: (i) Quality
of Latent Feature: A detailed and comprehensive representation is
vital for accurate reconstruction. The absence of explicit labels in
unsupervised learning models compounds the difficulty. In the IIoT
context, the demand for stable operation results in minimal behavioral
variations, leading to repetitive system patterns. This stability, while
crucial, inadvertently generates similar data samples, significantly com-
plicating critical feature extraction in unsupervised learning models.
(ii) Complementarity of Features Across Different Perspectives:
Anomalies in multivariate time series can be delineated through both
temporal and spatial dependencies [6]. The connections in the time
domains lead to the temporal feature, and the cause–effect relation
between sensors in IIoT presents the spatial feature. Certain features
possess a superior ability to detect specific types of anomalies. How-
ever, for anomalies that exhibit both characteristics, it is often difficult
for a single approach to identify them effectively. One can significantly
enhance the anomaly detection rate by harmonizing the insights from
diverse features.

To extract high-quality features from data characterized by simple
tasks and redundant information, researchers have developed various
strategies to enhance a model’s learning capabilities. Self-supervised
learning emerges as a key technique for improving representation in
deep learning frameworks. Among its strategies, masking stands out
by concealing portions of the data, thereby encouraging the model
to uncover deeper, more meaningful features to compensate for the
missing parts. Traditional masking techniques, however, typically op-
erate at the point level, which might not be fully effective in time
series data characterized by extensive redundancy; adjacent time points
can often predict missing values, diminishing the learning challenge.
Our methodology introduces patch-level skipping, a more sophisticated
approach that hides critical segments of data, challenging the model to
engage in more complex reconstruction tasks. This technique utilizes
the power of self-supervised learning, compelling the model to identify
and focus on the extraction of more significant features. This strat-
egy has shown efficacy in fields such as natural language processing
(NLP) [7] and computer vision (CV) [8]. Moreover, our technique
effectively doubles the size of the training dataset, leading to enhanced
generalization, heightened robustness, and improved contextual un-
derstanding. The integration of skip-patching and data augmentation
techniques collectively results in a marked improvement in feature
representation.

There are two main characteristics for anomalies [6]: temporal,
which introduces irregular patterns in the time series, and spatial,
which affects the coordination among sensors. Certain anomalies ex-
hibit both characteristics, requiring a comprehensive approach that
draws on both spatial and temporal insights for detection. Current ef-
forts often concentrate on a single dimension of analysis. The approach
is limited in scope, effectively addressing only one type of anomaly and
falling short in scenarios where both temporal and spatial anomalies
coexist [4,9,10]. While some efforts tried to integrate both spatial and
temporal features, their methods simply cascade two features that can
hinder the model’s ability to balance between two types of information,
thus limiting representational effectiveness [11]. In response, we pro-
pose a parallel architecture to bridge a strong connection between two
distinct feature-extracting branches, each dedicated to mining insights

from the spatial and temporal domains. This arrangement leverages w

2 
the discrepancies between the two features’ entropy to enhance the
feature extraction quality. This approach provides a more balanced and
comprehensive framework for anomaly detection in IIoT.

In this paper, we propose a novel Skip-Patching Spatial–Temporal
Anomaly Detection (SSAD) method with greatly enhanced representa-
tion learning ability. Our method consists of two key components: Skip-
Patching and Spatial–Temporal Association Discrepancy. The Skip-
Patching technique not only enriches feature quality but also increases
the volume of training samples. Concurrently, the Discrepancy module
optimally aligns spatial and temporal features, facilitating a compre-
hensive representation of learning to capture a broader spectrum of
anomalies.

We summarize the contributions as follows:

1. We propose a Skip-Patching mechanism for multivariate time
series-related tasks for high-quality representation and more
training samples.

2. We propose a Spatial–Temporal discrepancy mechanism that
leverages both spatial and temporal perspectives of the data to
provide complementary views.

3. We implement a novel model architecture and performed exper-
iments on four multivariate time series datasets, demonstrating
that our approach, SSAD, achieves superior anomaly detection
performance compared to seven state-of-the-art methods.

. Related work

Anomaly in the multivariate time series could lead to a considerable
oss of human health and property, so researchers have designed many
etection methods at the early stage of an anomaly event to limit the
nfluence of anomalies. The common idea of anomaly is they have
rregular patterns from standard series. The classic method turns to find
utliers during the testing phase, such as based on the distance [12]
r density [13]. Along with the system becoming more complex, a
imple strategy makes it hard to differentiate the anomaly samples. The
achine learning (ML) method has the advantage of finding the incon-

picuous relations in the data [14,15]. Traditional ML strategies have a
imilar way of finding outliers [16]. Technics like Random Forest [17],
-nearest Neighbor [18], and Support Vector Machines [19] have been
emonstrated to achieve similar actions with better performance.

Feature quality is a significant element for a model to distinguish
etween normal and anomalous samples. TimesNet [20] designs a
ore general way by masking random time points. In the computer

ision and the nature language process fields, BERT presents a masked
anguage model to predict the masked words to enhance the repre-
entation of the connection within the context [7,8] uses a masked-
utoencoder which reconstructs a figure by using limited fragments to
ncrease the semantic knowledge for the representation learning. The
dea is also used in multivariate time series-related tasks. According to
atchTST [21], a subseries of a data series achieves a better effective
epresentation learning than one at the point level. DUMA [22] uses
asks on the data patches to get a better detection performance but in
random order.

Recent works use deep learning methods to achieve further complex
eature extraction [23–26]. Similar to the classic strategies, the Gaus-
ian Mixture Model in DAGMM [27], Long Short Term Memory (LSTM)
n USMD [28], and Variational Auto-Encoder (VAE) in VLSTM [9]
ll use an Auto-Encoder (AE) structure to compress the sample to
idden features which present difference between normal and anomaly
amples. To capture the representation of the data more effectively,
emAE [3] and CMAE [29] use a memory component to capture

ifferent hidden features in vectors and only use information from them
o reconstruct the data. DAEMON [2] and MAD-GAN [30] generate
imilar data as the normal to train the model in an adversarial way
o reserve only the core feature. Anomaly samples are reconstructed

ith the normal features with higher difficulty and produce a distinct
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Fig. 1. Skip-Patching Spatial–Temporal Anomaly Detection (SSAD) architecture. The Skip-Patching module splits the data into patches and archives half patches as input. Spatial–
temporal association discrepancy contains separate embedding and discrepancy layers. The details of the components are shown on the right. Separate Embedding embeds the
data from different domains and keeps the other unchanged. The discrepancy layer uses the tendentious outputs from the Separate Embedding to extract two different features to
calculate the spatial–temporal association discrepancy.
anomaly score. To get better representation learning, EncDec-AD [10]
and TSMAE [31] use LSTM to aim at the temporal information from
the data. On the other hand, besides knowledge of the time domain,
there is also a connection between channels. TimesNet [20] finds the
connection between periods within the temporal dimension to support
the model to extract the hidden information. DLinear [32] uses a linear
method to find the connection between characters of data frequency
and use for long-term forecasting. GDN [4] and VGCRN [5] focus on
finding the spatial representation using Graph Neural Network-based
frameworks. To increase the efficiency of digging comprehensive crit-
ical information, the Anomaly Transformer [1] produces two different
temporal hidden features and uses the discrepancy to support the model
to study the data from two temporal views with the Transformer.
InterFusion [6] designed a cascaded structure to unite spatial and
temporal features simultaneously, letting the model also take care of
the anomaly in the spatial domain.

3. Model structure

3.1. Overview

The SSAD architecture, depicted in Fig. 1, processes a time window
of multivariate time series data, 𝑋 ∶ (𝑥𝑖,… , 𝑥𝑊 ), where 𝑋 ∈ R𝑊 ×𝐸 , 𝑊
denotes the window size and each 𝑥𝑖 at timestamp 𝑖 comprises the data
points of 𝐸 sensors. The model employs a Skip-Patching mechanism
to divide the data into patches, alternately picking half of the patches
to form the input samples. These patches are then concatenated and
embedded along temporal and spatial domains, subsequently branching
into respective pathways for further analysis. The model leverages the
discrepancy between temporal and spatial features to enhance their
representation learning mutually. Notably, reconstruction is performed
using the spatial feature solely, resulting in an estimated output, �̂� ∶
(�̂�𝑖,… , �̂�𝑊 ). This dual focus on spatial and temporal representations
allows the model to discern valuable information effectively throughout
the learning phase. A key aspect of this process is calculating an
association discrepancy based on these features, which amplifies the
differentiation between normal and anomalous samples when com-
bined with reconstruction error. After training, the threshold for the
anomaly score is determined with the help of assigned training and
threshold dataloaders. This allows for identifying anomalies in the
testing phase by comparing the score with the threshold.

3.2. Skip-Patching

Utilizing a time window as the input to assess anomaly status in
a system is a widely accepted approach. Traditionally, research has
leveraged data reconstruction to enrich models with comprehensive
3 
data insights, enhancing representation learning quality. However, the
simplicity of using complete information limits the model’s ability
to uncover the data’s underlying relational knowledge. Inspired by
BERT [7] and MAE [8], we develop a learning strategy that con-
ceals half of the timestamps, compelling the model to reconstruct
the entire dataset. This self-supervised approach enables the model to
grasp essential reconstruction information. Nonetheless, the temporal
domain’s redundancy often allows for easy recovery of time points by
their immediate neighbors, thereby impeding the model’s acquisition of
crucial latent knowledge. To address this challenge, as Fig. 2 shows, we
introduce a Skip-Patching mechanism. This technique divides the input
data into patches. Subsequently, either odd or even patches are selected
and concatenated to form the input for subsequent analysis. This pro-
cess removes large segments of the series and prevents straightforward
reconstruction based on neighboring values, requiring the model to
explore deeper data connections to enhance feature quality. Moreover,
creating independent sub-groups of patches doubles the available sam-
ple size, alleviating the constraints of limited datasets prevalent in
anomaly detection research.

Initially, the data 𝑋 is segmented into patches of a fixed size 𝑝. If
𝑊 represents the total length of the time series, then the total number
of patches 𝑃 is calculated as 𝑃 = 𝑊 ∕𝑝. The resulting matrix, 𝑋𝑠, has
dimensions 𝑃 × 𝑝 × 𝐸, where 𝐸 denotes the spatial dimension. The
patches are divided into two sets based on their sequence (even or odd).
After randomly selection, one set is reserved for the further processing.
The selected patches are then concatenated along the temporal dimen-
sion to form 𝑋 ∈ R𝑊 ∕2×𝐸 , which is prepared for feature extraction.
The model processes the reshaped data through the feature extraction
module, which is then used for data reconstruction.

By retaining only half of the data patches, the Skip-Patching strategy
brings multiple advantages to the model’s learning process. Firstly, this
approach requires the model to infer missing time points, enhancing its
predictive capabilities. The preserved patches, embodying both local-
ized details and the overarching structure of the time window, compel
the model to leverage both local and global semantic information
during reconstruction. This enriches the model’s comprehension and
utilization of the data. Secondly, this selective retention amplifies the
impact of anomalous data segments. In scenarios where predominantly
anomalous points are preserved, the model’s output anomaly score
intensifies due to a reduced presence of normal timestamps. Conversely,
if anomalous points are predominantly excluded, the model attempts
to reconstruct a normal series from an originally anomalous input,
thereby increasing the reconstruction error. This duality enhances the
model’s sensitivity to anomalies. Thirdly, processing a truncated series
reduces computational demands, optimizing the learning framework’s
efficiency. Additionally, employing a randomized selection strategy for
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Fig. 2. The structure of the Skip-Patching module.
Fig. 3. The structure of the Spatial–Temporal Association Discrepancy module.
the patch groups ensures comprehensive learning from the dataset, pre-
venting model bias towards any specific data subset. Alternatively, two
independent patch groups for training effectively double the training
sample size, trading off increased training duration for improved model
robustness.

3.3. Spatial–temporal association discrepancy

Multivariate time series data encapsulate two pivotal forms of
knowledge: temporal and spatial. Temporal information extraction,
a conventional practice in time series analysis, emphasizes the se-
quential interconnectivity of data points. Spatial information, on the
other hand, elucidates the interrelations among multiple sensors or
channels at a given time, particularly relevant in IIoT datasets where
device interactions are common. As Fig. 3 shows, we employ two
specialized embeddings to capture these dimensions: temporal and
spatial. The temporal embedding maintains the integrity of the time
sequence, mapping each point to a higher-dimensional feature space.
Spatial embedding follows a parallel strategy, preserving the spatial
dimension’s original scale but projecting it into an enriched feature
space. These embeddings are strategically designed to generate infor-
mative matrices optimized for the distinct analytical requirements of
subsequent processing stages, ensuring a comprehensive understanding
of spatial and temporal dynamics in the data. Our approach leverages
distinct features to construct a time-point-wise feature matrix, utilizing
the discrepancies between these features to bolster anomaly detection.
Initially, data transforms two separate matrices tailored for specific
analytical purposes:

�̃�𝑡𝑒𝑚𝑝 = 𝑇 𝑒𝑚𝑝𝐸𝑚𝑏𝑒𝑑(�̃�) + 𝑃𝐸(�̃�)

�̃�𝑠𝑝𝑎𝑡 = 𝑆𝑝𝑎𝑡𝐸𝑚𝑏𝑒𝑑(�̃�𝑇 )
(1)

Here, 𝑃𝐸() denotes position embedding, integrating spatial dimensions
into a hidden feature space while incorporating a classic position em-
bedding through 𝑇 𝑒𝑚𝑝𝐸𝑚𝑏𝑒𝑑() and maintaining the temporal domain
unchanged. Conversely, 𝑆𝑝𝑎𝑡𝐸𝑚𝑏𝑒𝑑() expands the temporal dimension
of raw data into a latent feature size and keeps the spatial domain
unchanged, focusing on the spatial interrelations among data points.

Upon embedding, the dataset undergoes processing through a three-
layer structure, each layer 𝑙 comprising two branches dedicated to
4 
temporal and spatial associations. The temporal association branch
utilizes �̃�𝑡𝑒𝑚𝑝 to extract temporal features by assessing the relative
distances between temporal vectors. Inspired by [1], we use a learnable
scale parameter, 𝜎 ∈ R𝑁×1,

𝜎 = �̃�𝑡𝑒𝑚𝑝𝑊
𝑙
𝜎 (2)

facilitating the Gaussian kernels’ ability to encapsulate the overarching
characteristics of channel activities at specific time points:

𝑇 𝑙
𝑓 = 𝑅𝑒𝑠𝑐𝑎𝑙𝑒

⎛

⎜

⎜

⎝

[

1
√

2𝜋𝜎𝑖
𝑒𝑥𝑝

(

−
|𝑗 − 𝑖|2

2𝜎2𝑖

)]

𝑖,𝑗∈{1,…,𝑁}

⎞

⎟

⎟

⎠

(3)

where 𝑅𝑟𝑒𝑠𝑐𝑎𝑙𝑒() converts the weights into a normalized distribution
across the time domain. Here, the temporal feature matrix is refined
by computing the Gaussian kernel weights between the 𝑖th metric
and all other 𝑗th time points, subsequently rescaled to produce a
discrete distribution 𝑇 𝑙

𝑓 ∈ R𝑊 ×𝑊 . The result then passes through an
𝐴𝑙𝑖𝑔𝑛() function to realign the temporal length to its original dimension.
The final temporal association matrix, 𝑇 𝑙, is derived after applying a
𝑆𝑜𝑓𝑡𝑚𝑎𝑥() layer, setting the stage for comparative analysis with its
spatial counterpart:

𝑇 𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑙𝑖𝑔𝑛(𝑇 𝑙
𝑓 )) (4)

For spatial feature extraction, we adopt a Transformer architecture
utilizing multi-head attention mechanisms to enhance spatial under-
standing. Within each attention head ℎ = 1,… ,𝐻 the input undergoes
transformation into query 𝑄, key 𝐾, and value 𝑉 matrices:

𝑄,𝐾, 𝑉 = �̃�𝑙−1
𝑠𝑝𝑎𝑡𝑊

𝑄
ℎ , �̃�𝑙−1

𝑠𝑝𝑎𝑡𝑊
𝐾
ℎ , �̃�𝑙−1

𝑠𝑝𝑎𝑡𝑊
𝑉
ℎ (5)

The computation of spatial attention maps 𝑆𝑙
𝑓 ∈ R𝐸×𝐸 is achieved by

applying a softmax function to the product of 𝑄 and 𝐾, normalized by
the square root of the model’s dimension:

𝑆𝑙
𝑓 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄ℎ𝐾𝑇
ℎ

√

𝑑𝑚𝑜𝑑𝑒𝑙
) (6)

Analogous to the temporal association process, spatial features are
projected through an 𝐴𝑙𝑖𝑔𝑛() function followed by a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥() to derive
the spatial association 𝑆𝑙:

𝑆𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑙𝑖𝑔𝑛(𝑆𝑙 )) (7)
𝑓
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Subsequently, the attention matrix, in conjunction with the value ma-
trix 𝑉 , constructs the layer-specific features. These features are fur-
her refined through layer normalization 𝐿𝑁(), a feedforward network
𝐹𝑁(), and a highway network 𝐻𝑊 (), a bypassing for deeper learning,

acilitating the reconstruction of this step’s input and preparing it for
ubsequent layers:

̃ 𝑙
𝑠𝑝𝑎𝑡 = 𝐿𝑁(𝐹𝐹𝑁(𝐿𝑁(𝑆𝑙

𝑓𝑉
𝑙
ℎ + �̃�𝑙−1

𝑠𝑝𝑎𝑡)) +𝐻𝑊 (�̃�𝑠𝑝𝑎𝑡)) (8)

hrough iterative processing across multiple layers, the model delves
eeper into spatial detail extraction. At the final step, �̃�𝑙

𝑠𝑝𝑎𝑡 undergoes
linear layer to reconstruct the data, �̂�, matching the original in-

ut’s dimensions. This rigorous spatial feature processing significantly
nhances the model’s capacity for nuanced representation learning.

Upon feature extraction by both branches, the matrices embody
istinct representations of the original data from spatial and temporal
erspectives. To quantify the disparity between these representations,
e employ the Kullback–Leibler (KL) divergence, facilitating a thor-
ugh comparison of the spatial and temporal association distributions:

𝑠𝑠𝐷𝑖𝑠(𝑆, 𝑇 ) =
[

1
𝐿

𝐿
∑

𝑙=1

(

𝐾𝐿(𝑆𝑙
𝑖,∶, 𝑇

𝑙
𝑖,∶) +𝐾𝐿(𝑇 𝑙

𝑖,∶, 𝑆
𝑙
𝑖,∶)

)

]

𝑖=1,…,𝑊

(9)

where 𝑆𝑙 , 𝑇 𝑙 ∈ R𝑊 ×𝑊 represent the spatial and temporal association
atrices, respectively. Given the inherent asymmetry of the KL diver-

ence — yielding different values when directionally swapped — we
pt for a symmetrical approach to KL divergence computation. The
chieved association distributions ensure a balanced and comprehen-
ive evaluation of the knowledge encapsulated within the two latent
eature matrices, enhancing our understanding of their interrelation
nd the overall data representation, which provides more information
or distinguishing the normal and anomaly samples.

.4. Loss function and optimization

The model’s learning optimization integrates reconstruction error
ith Association Discrepancy, partitioning the loss function into two
rimary components. The initial component, the reconstruction loss
𝑟𝑒𝑐 , is quantified using the Mean Square Error (MSE) between the
riginal input 𝑋 and its reconstructed counterpart �̂�.

𝑟𝑒𝑐 = ‖𝑋 − �̂�‖

2 (10)

he discrepancy loss 𝑑𝑖𝑠𝑐 accounts for the second component, encap-
ulating the divergence between spatial and temporal feature repre-
entations. This is modulated by a parameter 𝜆 facilitating a minimax
ptimization strategy:

𝑑𝑖𝑠𝑐 = −𝜆 × 𝐴𝑠𝑠𝐷𝑖𝑠(𝑆, 𝑇 ) (11)

inally, the total loss combines two loss results:

= 𝑟𝑒𝑐 + 𝑑𝑖𝑠𝑐 (12)

mploying a minimax strategy [1], this approach exploits the sym-
etrized KL divergence discrepancy to refine representation learning.
dynamic learning mechanism further amplifies the benefits of dual-

iew representation learning, enforcing reciprocal learning between the
wo feature sets. This is operationalized through separate backpropaga-
ion (BP) phases for each feature set, with the alternate feature being
emporarily detached:

𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑃ℎ𝑎𝑠𝑒 ∶ (�̂�, 𝑇 , 𝑆𝑑𝑒𝑡𝑎𝑐ℎ,−𝜆,𝑋)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑃ℎ𝑎𝑠𝑒 ∶ (�̂�, 𝑇𝑑𝑒𝑡𝑎𝑐ℎ, 𝑆, 𝜆,𝑋)
(13)

his strategy not only optimizes the learning process but also distinctly
ccentuates discrepancies between normal and anomalous samples,
nhancing the model’s discriminative capacity.
 m

5 
.5. Anomaly criterion

The Anomaly Score serves as the criterion for distinguishing be-
ween normal and anomalous samples, synthesizing the association
iscrepancy and the reconstruction error. This score accentuates dif-
erences between normal and anomalous inputs by integrating the
ime point-wise discrepancy with the reconstruction error through
lement-wise multiplication:

𝑛𝑜𝑚𝑙𝑎𝑦𝑆𝑐𝑜𝑟𝑒(𝑋) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(−𝐴𝑠𝑠𝐷𝑖𝑠(𝑆, 𝑇 ))

⊙ [‖𝑋 − �̂�‖

2]𝑖,…,𝑊
(14)

his formulation reflects the nuanced interplay between temporal and
patial features within the model. Based on the information from both
omains, anomalies that contain characteristics from both types can
e identified. In the presence of anomalies, abnormal behavior may
e localized to a few devices, causing the spatial feature to exhibit
ocalized discrepancies as well. This condition results in a reduced
L divergence, thereby elevating the Anomaly Score. The product of

hese components magnifies the effect of each factor, ensuring that any
eviation from the norm significantly influences the overall score. Since
he model masters the reconstruction with higher quality features, the
nomaly samples have a higher chance of failure of any component
o align with the expected pattern during normal operations, which
recipitates a magnification in the Anomaly Score, facilitating the
dentification of anomalies.

SSAD is designed to mirror the decision-making process of domain
xperts in diagnosing anomalies in operational systems. Typically, ex-
erts recognize patterns in normal operational data and utilize the
elational dynamics between sensors to identify anomalies, despite
he inherent challenges in monitoring complex sensor data. In similar
ashion, the SSAD framework uses dual feature extraction mechanisms
o independently analyze temporal and spatial dimensions of the data.
his allows the framework to assess interactions within each dimension
s well as across them, much like an expert would check whether trends
n one sensor follow those in another. Discrepancies between the spatial
nd temporal features serve as a metric for evaluating the congruence
f data patterns against expected norms. This method of discrepancy
easurement effectively pinpoints anomalies by highlighting atypical

elationships that deviate from established patterns. Additionally, the
kip-patching mechanism in SSAD plays a crucial role by focusing the
odel’s attention on essential information, emulating an expert’s ability

o disregard irrelevant data noise and focus on significant signals. This
echanism not only enhances the model’s robustness to anomalies but

lso ensures that it prioritizes critical features indicative of normal
peration or potential deviations. The anomaly score combines both
eature and data discrepancies, mimicking expert diagnostic processes.

. Experiments

This section presents a detailed evaluation of our proposed SSAD
odel, outlining the methodology employed to assess its performance

n anomaly detection within multivariate time series data. We intro-
uce the datasets utilized for testing, selected for their relevance to
eal-world applications, and the challenges they present in anomaly
etection. The metrics chosen to measure the model’s performance are
hen described, emphasizing their importance in accurately quantifying
etection capabilities. Following this, we detail the implementation
pecifics of our experiments, ensuring reproducibility and transparency.
fter that, a comparison between the performance of all the methods

s presented. Additionally, an ablation study is performed to elucidate
he contribution of each model component to overall performance.
inally, we explore the model’s sensitivity to various hyperparameters,
dentifying optimal configurations that enhance its anomaly detection
ccuracy. Together, these sections offer a holistic view of the SSAD

odel’s evaluation.
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Table 1
Statistical summary of SWaT, WADI, SMAP, and MSL datasets.

Datasets SWaT WADI SMAP MSL

# Features 51 127 25 55
Training size 495 000 1 048 571 135 183 58 317
Testing size 449 919 172 801 427 617 73 729
Anomaly rate (%) 12.14 5.99 12.80 10.50

4.1. Datasets

In our study, we employ four widely used datasets to evaluate
the performance of the proposed SSAD model: MSL (Mars Science
Laboratory rover) and SMAP (Soil Moisture Active Passive Satellite):
Sourced from NASA’s spacecraft monitoring systems, these datasets are
compiled from telemetry data recorded in Incident Surprise Anomaly
(ISA) reports, with MSL featuring 55 variables and SMAP comprising
25 variables [33]. SWaT (Security Water Treatment): This dataset is
derived from a fully operational water treatment testbed, documenting
readings from 51 sensors and actuators [34]. WADI (Water Distribution
Testbed): As a dataset representing a water distribution system, WADI
includes data from 127 industrial devices monitored by a Supervisory
Control And Data Acquisition (SCADA) system, simulating a real-world
industrial environment [35]. Table 1 summarizes these datasets, high-
lighting their diverse applications and complexity. Before analysis, all
data points are normalized using a standard scaler, optimizing them
for deep learning model training and ensuring consistency in model
evaluation.

4.2. Evaluation metrics

To assess the performance of our proposed model in compari-
son with baseline models, we employ three standard metrics: Preci-
sion, Recall, and the F1-score. These metrics are calculated as fol-
lows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ), 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁), and
𝐹1 = 2𝑇𝑃∕(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁), where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 denote the
counts of true positives, false positives, and false negatives, respec-
tively. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the ratio of correctly predicted positive observations
to the total predicted positives. 𝑅𝑒𝑐𝑎𝑙𝑙 is the ratio of correctly predicted
positive observations to all observations in the actual class. 𝐹1 − 𝑠𝑐𝑜𝑟𝑒
is the weighted average of Precision and Recall. Consistent with estab-
lished practices in the field, we implement an adjustment strategy for
anomaly identification: a sample is considered correctly identified if at
least one of the points within an anomalous segment is detected [1,
36]. This approach acknowledges the real-world application scenario
where any segment encompassing an anomalous event indicates an
anomaly, thereby adopting a flexible detection criterion that enhances
the practical relevance of our model’s performance evaluation.

4.3. Implementation details

Our proposed model was developed using PyTorch, version 2.0.1
[37], and leveraged CUDA 11.7 for GPU acceleration, ensuring efficient
computation. The experimental environment was configured on an
Ubuntu 22.04.2 LTS system equipped with an Intel i7-12700 CPU and
an NVIDIA RTX 3090Ti graphics card, providing the necessary compu-
tational resources for model training and evaluation. For optimization,
the Adam optimizer was selected for its effectiveness in handling
sparse gradients on noisy problems, with a learning rate set at 0.0001.
The model architecture includes three layers dedicated to extracting
hidden features, designed to capture the complex patterns inherent in
multivariate time series data. For the architectural parameters, hidden
layer channels are set to 512 to allow for a comprehensive feature
representation. The number of attention heads is fixed at 8, facilitating
the model’s ability to attend to different parts of the input sequence
for better context understanding. The batch size is configured at 32,
6 
balancing the trade-off between training speed and memory usage.
The window size for input data is chosen as 256 with a patch size of
16, optimizing the model’s ability to process and learn from temporal
segments effectively. The anomaly detection threshold is established by
designating a specific proportion of the validation datasets as anoma-
lies. This predefined proportion is adjusted for each dataset: 0.1% for
SWaT and WADI datasets, 1% for MSL and SMAP datasets. All datasets
are scaled by using standardization. Additionally, the hyperparameter
𝜆, which balances the reconstruction loss and association discrepancy
in the loss function, was meticulously set to 3.

4.4. Baselines

To evaluate the performance of SSAD, we employ the following
7 baselines: PCA uses Principal Component Analysis to transform the
representation from high to low dimensions [38]. The reconstruction of
the transformation is used as the anomaly score. AE uses the classic Au-
toencoder structure [39]. An encoder digs the hidden variables from the
input, and a decoder reconstructs the data based on the hidden informa-
tion. LSTM-VAE concatenates LSTM with a fully connected network in
a variational autoencoder [40]. The model leverages LSTM as the major
component to explore the temporal knowledge from the data. MAD-
GAN also uses LSTM but with generative adversarial training [30]. A
generator works with a discriminator to squeeze the hidden feature for
more details. InterFusion introduces a hierarchical VAE to utilize the
spatial and temporal features for finding inter-spatial–temporal anoma-
lies [6]. GDN designed a Graph Neural network-based model to focus
on learning the spatial relationships from normal data [4]. PatchTST
utilizes an individual channel strategy to process each channel in
the multivariate time series independently [21]. iTransformer lever-
ages spatial relationships with spatial features to improve detection
accuracy [41]. DLinear uses a lightweight deep linear neural network-
based framework to find connections within the frequency of temporal
dimension [32]. TimesNet focuses on the intraperiod and interpe-
riod relations [20]. Anomaly Transformer provides a new anomaly
score formula that appends the KL divergence discrepancy between
features to enlarge the difference between normal and anomaly [1]. The
baselines’ performance will be compared with our proposed method.

4.5. Comparison

4.5.1. Performance
Table 2 presents the comparative performance of the proposed

SSAD model against the baseline models, evaluated across the metrics
of precision, recall, and F1 score. The performance of TimesNet and
DLinear on the WADI dataset, as well as all results for the Anomaly
Transformer model, are derived directly from their respective official
source codes. All other results are from relevant papers. The results
demonstrate the superior performance of our model across all datasets.
Specifically, the SSAD model achieves significant improvements in F1
score compared to the best-performing baselines, with an improvement
of 5.96% on the MSL dataset, 1.77% on the SMAP dataset, 2.94% on
the SWaT dataset, and 5.37% on the WADI dataset.

4.5.2. Computational cost and scalability
Table 3 presents the computational costs of recent methods, mea-

sured in seconds per epoch during training. iTransformer and DLinear,
which are based on a simple Transformer and a combination of linear
layers, respectively, exhibit short training times due to their straight-
forward architectures [32,41]. However, the limited learning layers in
these models result in poor performance when handling more com-
plex data. PatchTST, while also a simple Transformer-based model,
employs a channel-independent strategy, which increases processing
time as it handles each channel sequentially [21]. TimesNet, Anomaly
Transformer, and SSAD are all built upon the Transformer architec-
ture. TimesNet expands one time series into three variations, requiring
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Table 2
Performance comparison between the proposed method and the baselines.

Methods MSL SMAP SWaT WADI

Metric (%) P R F1 P R F1 P R F1 P R F1

PCA 29.37 24.14 26.50 28.84 19.93 23.57 24.92 21.63 23.16 39.53 5.63 9.86
AE 71.66 50.08 58.96 72.16 79.95 75.86 72.63 52.63 61.03 34.35 34.35 34.35
LSTM-VAE 85.49 79.94 82.62 92.20 67.75 78.10 76.00 89.5 82.20 87.79 14.45 24.82
DAGMM 89.60 63.93 74.62 86.45 56.73 68.51 89.92 57.84 70.40 54.44 26.99 36.09
GDN 91.35 86.12 88.66 89.32 88.72 89.02 99.35 68.12 80.82 97.50 40.19 56.92
InterFusion 81.28 92.70 86.62 89.77 88.52 89.14 80.59 85.58 83.01 92.31 88.47 90.35
PatchTST 88.33 68.51 77.17 89.53 54.33 67.62 99.16 75.21 85.54 28.11 34.55 31.00
iTransformer 58.29 16.37 25.56 90.46 50.53 64.84 91.47 80.49 85.63 30.59 39.15 34.34
DLinear 84.34 85.42 84.88 92.32 55.41 68.26 80.91 95.30 87.52 33.52 45.23 38.51
TimesNet 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 52.76 93.11 67.36
Anomaly Transformer 91.01 84.50 87.63 92.50 96.71 94.56 94.78 93.86 94.32 87.21 97.97 92.28

SSS-AT (Ours) 91.81 97.60 94.62 93.83 98.97 96.33 97.71 96.81 97.26 95.41 100 97.65
Table 3
Computational cost comparison in 4 datasets.

Datasets MSL SMAP SWaT WADI

iTransformer 14 25 115 412
PatchTST 167 174 865 4814
DLinear 3 6 25 58
TimesNet 339 4140 5391 13 133
Anomaly Transformer 135 313 1100 1781

SSAD 106 234 865 1532

Table 4
The ablation study of the proposed method. Skip-Patching (SP) and spatial–temporal
association discrepancy (ST) are the two components.

Components F1 Score (as %)

SP ST SMAP MSL SWaT WADI

94.56 87.63 94.32 92.28
✓ 95.23 90.67 95.68 96.25

✓ 95.84 89.65 96.65 97.23
✓ ✓ 96.33 94.62 97.26 97.65

more processing time [20]. SSAD, similar in structure to the Anomaly
Transformer, incorporates a Skip-patching mechanism that reduces the
amount of data handled, thereby decreasing the overall training cost.

The general utility of iTransformer, PatchTST, DLinear, and Times-
Net spans across various tasks in the multivariate time series domain,
with anomaly detection being one of the applications. In contrast, both
Anomaly Transformer and SSAD are specialized for anomaly detection
in multivariate time series, optimizing their structures for this specific
challenge.

4.6. Ablation studies

Our ablation study evaluates the individual contributions of Skip-
Patching (SP) and spatial–temporal association discrepancy (ST) to the
overall performance of our anomaly detection model. As detailed in
Table 4, we systematically replaced parts of our framework to assess
their impact, using the Anomaly Transformer as a base model for
comparison.

For the Skip-Patching replacement experiments, We conducted two
sets of experiments for Skip-Patching: one utilizing only half of the
input series and the other maintaining the original setup. Incorporation
of the Skip-Patching module yielded performance improvements across
four datasets by 0.67%, 3.04%, 1.36%, and 3.97%, respectively. This
indicates that Skip-Patching significantly enhances model performance
by promoting semantic richness, sparsity, and an increased sample
count.

For our second contribution, Comparing our model’s performance
with the base model, which primarily analyzes two temporal knowl-
edge representations, our approach — incorporating hidden features
7 
Table 5
Performance comparison with patching size of 2s, 8s, 16s, 32s, and 64s in 4 datasets.

Patch size 2 8 16 32 64

MSL 95.54 96.55 97.26 96.52 96.76
SMAP 95.40 96.19 96.33 95.91 95.49
SWaT 90.53 91.36 94.62 92.82 91.57
WADI 94.16 97.24 97.65 97.68 97.67

and discrepancies from both spatial and temporal domains — outper-
formed the baseline by margins of 1.28%, 2.02%, 2.33%, and 4.95%.
This underscores the value of integrating spatial features, which enrich
the model’s knowledge base and improve its ability to detect spatial
anomalies.

Integrating both Skip-Patching and spatial–temporal association dis-
crepancy components, our model significantly outstripped the baseline,
demonstrating improvements of 1.77%, 6.99%, 2.94%, and 5.37%.
This comprehensive enhancement validates these components’ essen-
tial and synergistic roles in elevating the model’s anomaly detection
capabilities. These ablation experiments conclusively demonstrate the
necessity and efficacy of each model component, affirming their col-
lective contribution to superior anomaly detection performance across
diverse datasets. Besides performance comparison, the 𝑝-value has been
calculated to exam the difference between SSAD and the baseline.
Using 10 experiment results with MSL datasets, the resulting 𝑝-value
of 7.494 907 185 472 132 × 10−6 indicates a statistically significant differ-
ence in performance, strongly favoring the proposed SSAD method over
the baseline.

4.7. Hyperparameter sensitivity

4.7.1. Patch size
The selection of patch size within the Skip-Patching component is

a critical parameter in our model, directly influencing the amount of
local information preserved for subsequent processing. To ascertain the
optimal patch size and its impact on model performance, we conducted
tests across varying sizes: 2, 8, 16, 32, and 64. These variations aim to
gauge the model’s sensitivity to the extent of neighboring information
considered during training. Fig. 4 and Table 5 illustrate the maximum
F1-score achieved with each patch size across different datasets. The
results indicate that a patch size of 16 consistently yields the best
performance. Smaller patches have a similar effect as masking on the
point level, which makes it easy for the neighbors to recover the missing
data points, limiting the model’s ability to learn meaningful representa-
tions. Conversely, larger patches introduce a barren of information. Too
much key information is removed from the time series, which makes it
impossible for the model to recover full data with limited information.
This exploration into patch size sensitivity underscores its importance
in our model’s architecture, affirming that a well-chosen patch size can
significantly improve anomaly detection performance by ensuring an

optimal balance of local information retention.
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Fig. 4. Performance comparison with patching size of 2s, 8s, 16s, 32s, and 64s in 4 datasets.
Fig. 5. Performance comparison between SP and SP-r in 4 datasets. SP contains a Skip-Patching component. SP-r replaces the component with a random patches masking module.
4.7.2. Skip-Patching order
The order in which patches are selected and omitted in the Skip-

Patching process plays a crucial role in the model’s ability to capture
and retain meaningful temporal relationships within the data. Our
approach involves selectively concealing either odd or even patches,
a strategy designed to preserve relational information more effectively
than random selection. To validate the efficacy of this ordered patching
approach, we conducted an experimental comparison, assessing the im-
pact on model performance. Fig. 5 and Table 6 present a performance
comparison, measured in maximum F1-scores, between two configura-
tions: SP, which incorporates the standard Skip-Patching component,
and SP-r, which employs a random patch masking module instead.
The experiment aimed to determine whether a structured approach to
patch omission — focusing on either odd or even patches — offers
advantages over random masking. The findings indicate a clear benefit
to maintaining a regular order in patch masking. The SP configuration,
adhering to an ordered selection process, consistently outperformed the
SP-r configuration across all four datasets. This suggests that preserving
8 
patches in a sequential manner — thereby maintaining fixed temporal
distances between retained patches — facilitates more effective learn-
ing of temporal dynamics and relationships. By keeping the temporal
structure intact, the regular omission pattern inherent to Skip-Patching
enables the model to learn a richer and more efficient representation
of the data, underscoring the importance of the Skip-Patching order in
enhancing anomaly detection capabilities.

5. Conclusion and future work

In this article, we introduce the novel SSAD method, which signif-
icantly enhances representation learning for multivariate time series
in IIoT. SSAD method enhances IIoT anomaly detection by improving
feature quality and doubling training data volume through innova-
tive half-patch techniques. These techniques create two independent
sub-groups, enabling deeper data insights. Alongside this, the Spatial–
Temporal Association Discrepancy module aligns spatial and temporal
features for more effective representation learning, facilitating precise
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Table 6
Performance comparison between SP and SP-r in 4 datasets.

MSL SMAP SWaT WADI

SP-r 92.28 95.99 96.93 97.32
SP 94.62 96.33 97.26 97.65

anomaly detection in both temporal and spatial domains. The inte-
gration of Skip-Patching and spatial–temporal analysis significantly
advances the understanding of IIoT data. The model’s performance
exceeds seven baseline models in four datasets, confirming SSAD’s
superior capability in anomaly detection.

Deploying the SSAD framework for anomaly detection in real-world
IIoT environments is our research’s ultimate goal. The quality of train-
ing data is crucial for building a robust SSAD model, as it requires
data with regular patterns that cover several cycles. The Skip-patching
mechanism enhances the model’s robustness to missing data, allowing
SSAD to handle noisy data points or minor instances of incomplete
data. However, it is important to note that a large volume of noisy
data points might be misinterpreted as an anomaly event. In extreme
conditions, incomplete data could obscure critical information, leading
to suboptimal model performance. While SSAD demonstrates strong
potential for deployment in real-world IIoT environments, addressing
challenges such as handling large volumes of noisy or incomplete data
is critical for its successful implementation.
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