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Abstract: Traditional medical image sensors face multiple challenges. First, these sensors typically
rely on large amounts of labeled data, which are time-consuming and costly to obtain. Second,
when the data volume and image size are large, traditional sensors have limited computational
power, making it difficult to effectively train and infer models. Additionally, traditional sensors have
poor generalization ability and struggle to adapt to datasets with different modalities. This paper
devises a novel framework, named LSDSL, and deploys it in the sensor. LSDSL utilizes low-quality
sensor data for semi-supervised learning in medical image segmentation. in supervised learning,
we devise the hard region exploration (hre) module to enhance the model’s comprehension of low-
quality pixels in hard regions. in unsupervised learning, we introduce a pseudo-label sharing (ps)
module, which allows low-quality pixels in one network to learn from the high-quality pixels in
the other networks. our model outperforms other semi-supervised methods on the datasets of two
different modalities (CT and MRI) in medical image sensors, achieving superior inference speed and
segmentation accuracy.

Keywords: deep learning; semi-supervised; hard region; entropy; medical image sensor

1. Introduction

In the field of medical imaging, the rapid development of image segmentation tech-
nology has provided significant support for the application of sensors [1,2]. Medical image
segmentation aims to separate important structures from the background in images, thereby
accurately extracting key biological information. This technology brings substantial ben-
efits to the performance enhancement of medical sensors, particularly in diagnostic and
therapeutic applications [3].

Through image segmentation, sensors can more effectively identify pathological re-
gions, thereby improving the accuracy and reliability of diagnoses [4]. For example, in
tumor detection, precise image segmentation helps sensors clearly delineate tumor bound-
aries, which not only improves tumor size measurements but also provides more reliable
treatment options [5].

In addition, by incorporating advanced deep learning methods such as semi-supervised
learning, image segmentation can reduce the reliance on large amounts of labeled data,
allowing sensors to adapt more effectively to different clinical environments [6–13]. This
advantage is particularly beneficial in resource-limited settings, enabling timely and ac-
curate decision support for physicians. By integrating image segmentation with sensor
data, clinicians can obtain vital pathological information in real time, thereby enhancing
diagnostic efficiency and improving patient treatment outcomes.
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Semi-supervised medical image segmentation methods often use multi-network struc-
tures to learn from each other [14,15]. Figure 1a shows two networks learning from each
other, and Figure 1b demonstrates a high-performance network imparting knowledge to a
lower-performance network. These approaches focus solely on achieving overall network
consistency, neglecting the potential for low-quality pixels to learn from high-quality pixels.
We believe these low-quality pixels that are prone to negative effects contain rich feature
information. Figure 1c illustrates our pixel learning approach, where high-quality pixels
guide their low-quality counterparts, while high-quality pixels are not influenced by low-
quality ones. This ensures that the network effectively learns the features of high-quality
pixels without being negatively impacted by the features of low-quality pixels.
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Figure 1. Examples of multiple networks learning from each other in unsupervised learning:
(a) Two networks learning from each other, (b) The good network guides the bad network,
(c) The good pixels guide the bad pixels.

So, to obtain segmented images with high evaluation metrics and excellent segmenta-
tion results, it is essential to ensure that the model pays enough attention to low-quality
pixels during training and derives a positive impact from these pixels. We propose a new
semi-supervised medical image segmentation method, named LSDSL. Our method com-
prises two modules: the HRE and PS modules, utilized for supervised and unsupervised
learning, respectively. In the supervised learning, the HRE module employs ground truth
as a reference to identify regions where the network deems pixel anomalies, designating
them as hard regions. The model reinforces its understanding of these difficult areas to
improve performance. In unsupervised learning, when two networks predict the same
pixel, they produce two different entropies. The pixels with low entropy are considered
high-quality sensor image pixels, while those with high entropy are regarded as low-quality
sensor image pixels. The PS module encourages the low-quality pixels in both networks to
learn from the high-quality pixels, thereby improving performance. Finally, we implement
the trained model on the medical image sensor to achieve medical image segmentation. The
design of LSDSL aims to address numerous challenges faced by traditional medical image
sensors, such as their reliance on large amounts of labeled data, limited computational
capabilities, and poor generalization. LSDSL is designed to enhance the utilization of both
labeled and unlabeled data, effectively leveraging low-quality data that other methods
have not utilized to extract richer semantic information. It can be deployed on medical
image sensors for real-time image processing, and presents outstanding performance across
datasets of different modalities.

Our main works are summarized as follows:

(1) We introduce a novel medical image segmentation method, LSDSL, to more precisely
identify and understand low-quality labels.

(2) We propose an HRE module to make the model more focused on the correct under-
standing of hard regions in labeled data.

(3) We propose a PS module to enable the utilization of low-quality pixels to their maxi-
mum positive impact.

(4) Our model demonstrates the best performance on the medical image sensor.
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2. Related Work
2.1. Semi-Supervised Medical Image Segmentation

Currently, there exist numerous commendable semi-supervised methods demonstrat-
ing strong performance through diverse techniques. CAML [16] utilizes labeled data to
guide unlabeled data, enhancing the extraction of feature information. MTNet [17] com-
bines an attention mechanism with an uncertainty minimization strategy to effectively
leverage unlabeled images. BCP [18] enables the model to acquire generic semantic informa-
tion while learning from unlabeled data. DCPA [19] integrates pseudo-labeling, consistency
regularization, and data augmentation. CPR [20] designs a context-similarity learning
module to learn contextual relationships and utilized these relationships to correct pseudo-
labels. UG-MCL [21] combines intra-task consistency learning and inter-task regularization
to exploit geometric shape information. LGDA [22] proposes a local–global pseudo-label
correction method for source-free domain-adaptive medical image segmentation. MCF [23]
explores network bias correction. SNSCL [24] designs a noise-tolerant supervised contrast
learning loss for correcting noisy labels. PH-Net [25] masks out hard regions while ran-
domly cropping other regions for data augmentation, employing a contrastive learning
method to improve the segmentation performance of hard regions. However, these meth-
ods often overlook network interactions and the potential negative impact of incorporating
low-quality data during training.

2.2. Pseudo-Labeling Method

Semi-supervised semantic segmentation methods often employ pseudo-labeling tech-
niques to acquire reliable feature information, thereby enhancing performance. Fix-
match [26] identifies high-quality pseudo-labels by applying a fixed threshold. Subse-
quently, UA-MT [14] uses uncertainty estimation to select more reliable pseudo-labels.
UPC [27] combines consistency regularization and pseudo-labels to correct pseudo-labels
containing noise by uncertainty. RPG [28] establishes matches between visually similar
regions in labeled and unlabeled images to share semantic information. SCP-Net [29] uses
unlabeled data to enhance the coherence of pseudo-labels within each class. ACPL [30]
proposes an anti-curriculum pseudo-labeling method that improves pseudo-labels accuracy
through the precise integration of classifiers. PCL [31] suggests a multi-round correction
method and a multi-vote weighting method for pseudo-label correction. DISC [32] selects
and corrects noisy labeled data based on the momentum of memorized intensities of each
instance in previous rounds. Rankmatch [33] proposes a rank-aware correlation consistency
strategy to enhance the model’s generalization performance. CroCT [34] introduces a
novel cross-structure and task-cooperative teaching mechanism. CCDC [35] dynamically
selects the most representative pixels to form positive and negative pairs, enabling con-
trastive learning at different training stages. PLMT [36] synergizes the self-training pipeline
with pseudo-labeling and consistency regularization techniques. However, none of these
methods fully harness the potential of low-quality pseudo-labels.

3. Method
3.1. Overview

Before presenting our method, we introduce some notations to define the semi-
supervised medical image segmentation task. The purpose of this is to describe our
method succinctly. We are given the entire dataset D= DL + DU : DL is the labeled dataset
consisting of N images, and DU is the unlabeled dataset consisting of M images, where
N ≪ M. Next, the two datasets can be formalized as DL =

{
xL

i , yL
i

∣∣i ∈ (1, . . . , N)
}

and
DU =

{
xU

i

∣∣i ∈ (1, . . . , M)
}

, where xL
i and yL

i denote the images in the labeled data and the
corresponding ground truth, respectively, and xU

i denotes the images in the unlabeled data,
xL

i , xU
i ∈ RH×W×D, yL

i ∈ {0, 1}H×W×D.
Our proposed semi-supervised medical image segmentation method is illustrated in

Figure 2. To capture more hard regions, we devise two heterogeneous basic networks that
demonstrate comparable performance [23]. Network A adopts the commonly used V-Net
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architecture, while in network B, we substitute the encoder part of V-Net [37] with a residual
structure. This modified architecture is referred to as the Heterogeneous V-Net (HV-Net).
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3.2. Hard Region Exploration

We observe several abnormal phenomena during the model training process: (1) both
networks make consistent predictions, but they do not match the ground truth; (2) pixel
labels with higher entropy match the ground truth, while pixel labels with lower entropy
do not; (3) there is a significant difference in the entropy of predictions for a given pixel
between the two networks. These pixels likely belong to regions with complex features,
making it difficult for the model to accurately determine the class, and they are classified as
low-quality pixels, which are also considered part of the hard regions. This situation reflects
the model’s potential bias in understanding image features in certain regions, leading to
predictions that do not align with the ground truth. By identifying these hard regions, the
model can focus on learning from areas with rich information but complex features, thereby
improving its overall understanding and segmentation capability.

During the supervised learning phase, we design an HRE module that uses labels and
entropy as references to explore hard regions in the images. This exploration allows the
model to uncover potential and rich feature information in these regions, thereby providing
more positive and diverse features to enhance model performance. Thus, we identify three
anomalies in network predictions as hard regions:

(1) Two networks simultaneously predict the class of a pixel to be in agreement, but
this prediction does not align with the class in the corresponding ground truth, as expressed
in the form:

M1 = I((yL
V = yL

H)&(yL
V ̸= yL)), (1)

(2) These two networks obtain inconsistent entropy for the same pixel. The class of the
pixel with higher entropy aligns with the ground truth, while the class of the pixel with
lower entropy is inconsistent with the ground truth, as expressed in the form:

M2 = I((EL
V < EL

H)&(yL
V ̸= yL)&(yL

H = yL)), (2)

M3 = I((EL
V > EL

H)&(yL
H ̸= yL)&(yL

V = yL)), (3)

here, yL
V and yL

H are the output classes with the maximum probability from the two net-
works, given the input labeled data.
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(3) The entropy difference between the predictions of a given pixel by the two networks
is significant, as expressed in the form:

M4 = I(Abs(EU
V − EU

H) > τ1), (4)

The region where these three anomalies occur is defined as the hard region in the
image. Here, I(·) denotes the indicator function, and τ1 is the bias threshold and is set to
0.3. EL

V and EL
H represent the entropy of the labeled data input to the V-Net and HV-Net

network predictions, computed by Equation (5).
We define pij ∈ RC as the j-th pixel of the i-th image in the output of the network’s

softmax probability, where C is the number of classes [38]. Entropy is represented as follows:

E
(

pij
)
= −

C−1

∑
c=0

pij(c)logpij(c), (5)

where pij(c) is the value of pij at c-th dimensions.
The representation of hard regions is as follows:

Mex = M1 ∪ M2 ∪ M3 ∪ M4, (6)

Therefore, we design a hard region exploration loss to enhance the model’s under-
standing of hard regions:

Lex =
∑ Mex

∥∥yL
K − yL

∥∥2

ΣMex
, (7)

where yL
K refers to the output probabilities yL

V and yL
H in the V-Net and HV-Net, respectively,

and yL is the ground truth.

3.3. Pseudo-Label Sharing

The PS module is designed based on the different perceptions of the same pixel by
two heterogeneous networks. Due to the differences in the structure and parameters
of the networks, their predictions for the same pixel may vary. This difference can be
leveraged to extract feature information about the pixel. Pixels predicted as low entropy
(i.e., considered high-quality) in one network are used as pseudo-labels to guide the learning
of corresponding high-entropy (low-quality) pixels in the other network. Therefore, low-
quality pixels can acquire useful information from high-quality pixels, improving their
feature representation and thereby enhancing the overall performance of the model. To
achieve this goal, an entropy difference mask is designed. This mask selects pixels with
a certain entropy discrepancy between the two networks by setting a threshold β and a
bias threshold τ2, thereby identifying which pixels can serve as high-quality pseudo-labels
to guide the learning of low-quality pseudo-labels. In this way, the model can extract
valuable information from unlabeled data, enabling the learning of low-quality pixels from
high-quality ones.

The entropy difference mask is represented as follows:

Md = I((EU
A > β)&(τ2 < Abs(EU

V − EU
H))), (8)

The purpose of this mask is to identify pseudo-labels with entropy bias between the
two networks. Here, β is used as a threshold to filter out pixels with very small entropy
and is set to 0.2, τ2 is the bias threshold and is set to 0.05, EU

V denotes the entropy of
predicted pixels by V-Net, and EU

H denotes the entropy of predicted pixels by HV-Net. In
their respective networks, EU

A represents the corresponding entropy. The computation
process of EU

V and EU
H is similar to that in Equation (5).
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Additionally, we designate a portion of pixels with very small entropy as high-quality
pixels, and they learn from each other. The mask is set as follows:

Mh = I(0 < EU
A < β), (9)

The pseudo-label sharing loss Lsh is an unsupervised loss, calculated using mean
squared error, as follows:

Lsh1 =
∑ Md

∥∥∥yU
high − yU

low

∥∥∥2

ΣMd
, (10)

Lsh2 =
∑ Mh

∥∥yU
V − yU

H

∥∥2

ΣMh
, (11)

Lsh = Lsh1 + Lsh2, (12)

here, yU
high represents pseudo-labels for pixels with relatively high entropy in one network,

while yU
low represents pseudo-labels for pixels with lower entropy in the other network;

they do not require backpropagation during the training process. yU
V and yU

H represent
pseudo-labels for V-Net and HV-Net, respectively.

Finally, the total loss function Lsub for each subnetwork is expressed as follows:

Lsup = Lce + Ldice + αLex, (13)

Lsub = Lsup + λ1Lsh, (14)

where Lsup represents the supervised loss, and Lce and Ldice denote commonly used cross-
entropy and Dice losses, respectively. α is the weight that balances the exploration loss and
other supervised losses, and λ1 is the weight that balances the supervised and unsuper-
vised losses.

4. Experiment
4.1. Datasets

We conduct evaluations on the Left Atrium (LA) and Pancreas-NIH Segmentation
datasets. The first dataset is the LA dataset [39], which comprises 100 imaging scans.
This dataset comprises 100 3D gadolinium-enhanced MR imaging volumes, each with
corresponding ground truth and an isotropic resolution of 0.625 × 0.625 × 0.625 mm.
Figure 3a–c shows the 2D raw images, 2D ground truth, and 3D ground truth of the LA
dataset. Medical experts can select images suitable for annotation from a large set of
cardiac MRI images. These images need to have sufficient quality and representativeness to
accurately reflect the morphology of the patient’s left atrium. The experts use specialized
medical image annotation software to carefully outline the boundaries of the left atrium on
the images. After completing the annotations, a quality check is usually performed to ensure
the accuracy and consistency of the annotations. Multiple experts may annotate the same
set of images, and their results are compared. Discrepancies are discussed and corrected,
and the annotated image data along with the corresponding annotation information are
organized and stored, ultimately forming a complete ground truth dataset of the left atrium.
To ensure a fair comparison in experiments, the settings for evaluating our model on this
dataset are consistent with other methods [16]. Specifically, we use 80 training volumes
and 20 testing volumes. During training, the input volumes are randomly cropped to
112 × 112 × 80 and subjected to flipping as a data augmentation technique.

The second dataset is the Pancreas-NIH dataset [40], containing 82 imaging scans. To
ensure a fair comparison in experiments, the settings for evaluating our model on this
dataset are consistent with other methods, with a uniform configuration of 62 training
volumes and 20 testing volumes.
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Figure 3. Two-dimensional raw images, Two-dimensional ground truth, and Three-dimensional
ground truth of the LA and Pancreas datasets. The first row is the Two-dimensional original image,
the second row is the Two-dimensional ground truth, and the third row is the Three-dimensional
ground truth. (a–c) are the images of the left atrium, and (d–f) are the images of the pancreas.

The in-plane resolution of the CT scan images is fixed at 512 × 512, and the interslice
spacing varies between 1.5 and 2.5 mm. Figure 3d–f shows the 2D raw images, 2D ground
truth, and 3D ground truth of the Pancreas dataset. On pancreatic CT images, doctors use
specialized annotation tools to precisely outline the contours of the pancreas based on its
morphology, density, and other features, creating a ground truth. To improve the reliability
and accuracy of the ground truth, multiple experts may be invited to annotate the same set
of medical images, followed by discussions and negotiations to reach a consensus on the
annotations. For disputed regions, further analysis and research are conducted until the
final ground truth is determined. During data preprocessing, voxel values are clipped to
the range of [−125, 275] Hounsfield Units (HU), and the data are further resampled to an
isotropic resolution of 1.0 × 1.0 × 1.0 mm. In the training phase, volumes are randomly
cropped to 96 × 96 × 96 before being input into the model. Pancreatic CT volumes,
compared to left atrium MRI volumes, exhibit a more complex background. The pancreas,
located deep in the abdomen, undergoes significant morphological variations, and its
boundaries are often indistinct. Therefore, pancreas segmentation is more challenging than
left atrium segmentation due to these factors.

4.2. Implementation Details

The training process involves 6000 iterations using the Adam optimizer. We augment
the data by applying rotation and flip operations to the images. We conduct the experiments
using Python’s PyTorch framework on an RTX 3080 GPU with 12 GB of memory, sourced
from NVIDIA, based in Santa Clara, CA, USA. To ensure the objectivity and fairness of
comparative experiments while avoiding excessive computational costs, we execute all
experiments three times on the same machine with a set of random seeds, presenting
the mean and standard deviation of the final iteration results [16]. Regarding framework
optimization, we employ the SGD optimizer for model training, setting the initial learning
rate to 0.01 and dividing it by 10 every 2500 steps. The batch size is set to 4, containing two
labeled patches and two unlabeled patches. To enhance the model’s robustness, we utilize
a Gaussian warming-up function λ(t) = 0.1 ∗ −5(1−t/tmax) during the experiment to balance
supervised and unsupervised losses, where t denotes the current iteration, and tmax is the
maximum iteration count.

For the quantitative analysis of the experimental results, we utilize four metrics to
assess the segmentation performance: Dice coefficient (Dice), Jaccard index (Jaccard), 95%
Hausdorff Distance (95HD), and Average Surface Distance (ASD) [27].
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4.3. Performance on the LA Dataset

In our comparative analysis, we compare LSDSL with other state-of-the-art methods
on the LA dataset, including MCF [23], CDMA [17], Co-BioNet [41], MLRP [42], and
CAML [16]. We perform experiments on V-Net and HV-Net under fully supervised settings,
evaluating the baseline’s performance on the LA dataset trained with 100% and 5% labeled
data to establish the upper and lower bounds for the segmentation task.

As shown in Table 1, with only 20% labeled data, LSDSL achieve notable enhancements:
Dice increases from 85.97% to 91.25%, Jaccard increases from 75.96% to 83.58%, 95HD
decreases from 16.55% to 5.31%, and ASD decreases from 4.87% to 1.59%. Additionally,
using only 5% and 10% labeled data, LSDSL also outperforms the other methods in terms
of performance.

Table 1. LSDSL is compared with other methods on the LA dataset. The metrics display the mean ±
standard deviations for each method using three different random seeds.

Method
Volumes Used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (Voxel) ASD (Voxel)

MCF [23] 4(5%) 76(95%) 83.16 ± 1.87 70.86 ± 2.63 18.66 ± 3.12 6.54 ± 0.72
CDMA [17] 4(5%) 76(95%) 87.13 ± 2.31 77.14 ± 1.98 13.24 ± 2.64 3.55 ± 1.54

Co-BioNet [41] 4(5%) 76(95%) 87.26 ± 1.31 77.32 ± 1.65 10.05 ± 1.84 2.88 ± 0.88
CAML [16] 4(5%) 76(95%) 87.34 ± 1.25 77.65 ± 0.08 9.76 ± 0.92 2.49 ± 0.22
MLRP [42] 4(5%) 76(95%) 87.54 ± 1.71 77.31 ± 2.11 9.67 ± 2.51 2.55 ± 1.64

LSDSL(Ours) 4(5%) 76(95%) 87.66 ± 2.35 78.12 ± 1.13 9.37 ± 1.21 2.22 ± 0.65
MCF [23] 8(10%) 72(90%) 86.88 ± 0.64 77.21 ± 0.61 11.24 ± 1.67 3.64 ± 1.78

CDMA [17] 8(10%) 72(90%) 88.56 ± 1.12 80.89 ± 0.98 11.54 ± 2.21 2.84 ± 2.10
Co-BioNet [41] 8(10%) 72(90%) 89.40 ± 0.98 81.10 ± 0.62 9.38 ± 1.89 2.61 ± 1.98

CAML [16] 8(10%) 72(90%) 89.62 ± 0.20 81.28 ± 0.32 8.76 ± 1.39 2.42 ± 0.17
MLRP [42] 8(10%) 72(90%) 89.68 ± 1.56 81.54 ± 0.77 8.72 ± 2.45 2.24 ± 2.15

LSDSL(Ours) 8(10%) 72(90%) 89.88 ± 0.68 81.66 ± 0.48 8.61 ± 1.97 1.83 ± 0.65
MCF [23] 16(20%) 64(80%) 90.48 ± 0.19 82.76 ± 1.13 6.55 ± 0.33 1.85 ± 0.17

CDMA [17] 16(20%) 64(80%) 90.57 ± 0.33 83.28 ± 0.84 6.08 ± 0.51 1.63 ± 0.21
Co-BioNet [41] 16(20%) 64(80%) 90.65 ± 0.20 83.17 ± 1.18 5.98 ± 0.30 1.71 ± 0.15

CAML [16] 16(20%) 64(80%) 90.78 ± 0.11 83.19 ± 0.97 6.11 ± 0.38 1.68 ± 0.16
MLRP [42] 16(20%) 64(80%) 90.84 ± 0.34 83.40 ± 0.85 5.41 ± 0.22 1.62 ± 0.24

LSDSL (Ours) 16(20%) 64(80%) 91.25 ± 0.13 83.58 ± 0.76 5.31 ± 0.35 1.59 ± 0.29

Figure 4 presents 3D visualizations of the segmentation results for all compared
methods alongside their corresponding ground truth. Moreover, LSDSL maintains a lower
standard deviation, indicating excellent stability in the designed model.
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Figure 4. Two-dimensional and 3D visual segmentation results of different semi-supervised methods
in the LA dataset with 20% labeled data. Raw image and Regions of Interest show the areas that the
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We test the memory usage and training time of different models on the LA dataset,
with the number of training epochs set to 6000. The results are shown in Table 2. Since the
network structure of LSDSL is the same as that of MCF, its memory usage and training
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time are similar. However, compared to other state-of-the-art methods, LSDSL requires
fewer computational resources. It can be trained on a 12 GB GPU while achieving higher
performance metrics.

Table 2. Memory usage and training time of different semi-supervised methods.

Method
Metrics

Memory (GB) Time (Hour)

MCF [23] 10.61 2.50
CDMA [17] 16.24 3.40

Co-BioNet [41] 27.62 3.57
CAML [16] 26.49 3.32
MLRP [42] 17.82 3.10

LSDSL (Ours) 11.26 2.51

4.4. Performance on the Pancreas Dataset

We compare LSDSL with other methods using 20% labeled data on the Pancreas
dataset. The performance results of the baseline network trained on 100% and 5% labeled
data for the Pancreas dataset are considered the upper and lower bounds for the task.
As shown in Table 3, LSDSL outperforms other methods across all evaluation metrics.
When trained with only 20% labeled data compared to the lower bound, LSDSL demon-
strates a significant improvement, Dice increases from 64.09% to 77.34%, Jaccard increases
from 48.12% to 63.73%, 95HD decreases from 19.02% to 10.93%, and ASD decreases from
4.92% to 2.05%. This substantial performance boost indicates that LSDSL effectively over-
comes challenges such as significant morphological variations and the unclear boundaries
present in the Pancreas dataset. Figure 5 visualizes the segmentation results of different
methods on the Pancreas dataset. Compared to other methods, LSDSL achieves more
accurate segmentation.

Table 3. Comparison of LSDSL with other methods on the Pancreas dataset. Metrics are displayed as
the mean ± standard deviation results for different methods using three different random seeds.

Method
Volumes Used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (Voxel) ASD (Voxel)

MCF [23] 3(5%) 59(95%) 50.39 ± 1.48 45.44 ± 1.55 35.49 ± 1.88 13.67 ± 2.22
CDMA [17] 3(5%) 59(95%) 54.59 ± 1.88 48.27 ± 1.89 31.41 ± 1.67 12.44 ± 3.56

Co-BioNet [41] 3(5%) 59(95%) 54.66 ± 2.12 48.48 ± 1.62 29.43 ± 1.01 11.21 ± 4.37
CAML [16] 3(5%) 59(95%) 54.84 ± 1.01 48.67 ± 1.21 29.84 ± 1.48 11.48 ± 2.92
MLRP [42] 3(5%) 59(95%) 55.03 ± 1.45 48.82 ± 1.11 26.31 ± 1.37 11.23 ± 1.44

LSDSL (Ours) 3(5%) 59(95%) 55.12 ± 1.31 49.17 ± 0.91 26.74 ± 1.44 10.98 ± 1.40
MCF [23] 6(10%) 56(90%) 63.89 ± 2.31 53.08 ± 1.46 21.60 ± 1.46 15.34 ± 1.56

CDMA [17] 6(10%) 56(90%) 68.03 ± 1.98 56.87 ± 1.64 18.54 ± 2.15 9.74 ± 2.74
Co-BioNet [41] 6(10%) 56(90%) 68.14 ± 1.64 57.31 ± 2.47 18.37 ± 3.17 8.54 ± 2.41

CAML [16] 6(10%) 56(90%) 69.61 ± 0.51 57.64 ± 1.53 17.73 ± 2.47 5.64 ± 2.36
MLRP [42] 6(10%) 56(90%) 69.88 ± 0.66 58.69 ± 1.45 15.85 ± 2.34 5.77 ± 2.97

LSDSL (Ours) 6(10%) 56(90%) 69.93 ± 0.46 58.87 ± 1.88 15.64 ± 2.21 5.31 ± 1.19
MCF [23] 12(20%) 50(80%) 73.99 ± 1.12 62.17 ± 1.23 11.62 ± 2.67 2.78 ± 1.94

CDMA [17] 12(20%) 50(80%) 76.54 ± 0.87 63.55 ± 0.84 14.48 ± 2.34 2.54 ± 1.71
Co-BioNet [41] 12(20%) 50(80%) 76.85 ± 0.45 63.36 ± 0.99 15.21 ± 2.22 2.07 ± 1.04

CAML [16] 12(20%) 50(80%) 76.88 ± 0.69 63.38 ± 0.65 12.77 ± 1.89 2.96 ± 1.02
MLRP [42] 12(20%) 50(80%) 77.29 ± 0.84 63.66 ± 0.51 11.22 ± 1.78 2.55 ± 1.41

LSDSL (Ours) 12(20%) 50(80%) 77.34 ± 0.32 63.73 ± 0.45 10.83 ± 1.52 2.05 ± 0.90

We conduct statistical tests using LSDSL and other methods on two datasets [43]. The
results of the statistical tests demonstrate that the p-values for LSDSL compared to the other
methods are all less than 0.05, clearly indicating the superior performance of LSDSL.
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on the Pancreas dataset with 20% labeled data. Raw image and Regions of Interest show the areas
that the model needs to segment in the image.

4.5. Effects of Different Components

Table 4 presents the results of the ablation study. In the ablation study, we set (V-
Net+HV-Net) as baselines. Subsequently, we incorporate the HRE and PS modules in
different combinations to observe the impact of each module on model performance. When
the HRE or PS module is added, there is a significant improvement in baseline performance.

Table 4. Ablation experiment results for different components in LSDSL on the LA dataset. (V-
Net+HV-Net) represents the average performance of the two networks.

Method
Module

HRE PS Dice (%) Jaccard (%) 95HD (Voxel) ASD (Voxel)

V-Net+HV-Net 86.44 ± 0.50 76.01 ± 0.87 15.78 ± 3.88 6.10 ± 0.81
V-Net+HV-Net

√
90.68 ± 0.21 81.20 ± 0.40 6.85 ± 0.45 2.24 ± 0.44

V-Net+HV-Net
√

90.82 ± 0.34 82.11 ± 0.31 7.31 ± 0.78 5.76 ± 0.27
V-Net+HV-Net

√ √
91.25 ± 0.13 83.58 ± 0.76 5.31 ± 0.35 1.59 ± 0.29

With both HRE and PS modules added to the baseline, Dice increases by 4.81%, Jaccard
increases by 7.57%, 95HD decreases by 10.47%, and ASD decreases by 4.51%. In supervised
learning, the model with the assistance of the HRE module gains a clearer understanding
of hard regions in images while minimizing the negative impact of the complex structures
of the segmentation target during training. As training progresses, hard regions are no
longer difficult to discern. Additionally, in unsupervised learning, the model can leverage
the PS module to achieve complementary knowledge. The network imparts the feature
information of its high-quality pseudo-labels to the other network.

As shown in Table 5, we also calculate the number of low-quality pixels captured
by the HRE and PS modules during model training. The model effectively learns from
these pixels, leading to a better understanding of the segmentation target. As shown in
Figure 6, we highlight the low-quality pixel regions on the segmentation target. It is clear
that low-quality pixels are mostly present in hard-to-segment areas.

Table 5. Number of low-quality pixels identified by the HRE and PS modules during training.

Epoch
Number of Low-Quality Pixels

Sup Unsup

1000 123,916 130,484
2000 58,243 178,194
3000 45,362 178,258
4000 37,824 131,606
5000 118,800 232,518
6000 37,791 241,031
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Figure 6. (a–d) show the low-quality pixels in the left atrium images.

4.6. Effects of HRE Module

After integrating the HRE module into both V-Net and HV-Net, LSDSL exhibits a
10.74% reduction in 95HD and a 2.93% decrease in ASD compared to V-Net. Similarly, com-
pared to HV-Net, LSDSL demonstrates a 10.71% decrease in 95HD and a 2.64% reduction in
ASD. The notable decrease in 95HD and ASD affirms the effectiveness of the HRE module
in compelling the model to explore hard regions.

Figure 7 illustrates the positive impact of the HRE module on segmentation results.
In the first row without the HRE module, additional noise is present in the segmentation
target, and precise segmentation in hard regions like fine branches is compromised. The
second row distinctly showcases the favorable influence of the HRE module, indicating
that the segmentation target in fine branches closely resembles the ground truth after
incorporating the HRE module. This strongly suggests that the HRE module enhances
the model’s understanding of hard regions within the segmentation target, resulting in
contours that closely align with the ground truth.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18 
 

 

model can leverage the PS module to achieve complementary knowledge. The network 
imparts the feature information of its high-quality pseudo-labels to the other network. 

As shown in Table 5, we also calculate the number of low-quality pixels captured by 
the HRE and PS modules during model training. The model effectively learns from these 
pixels, leading to a better understanding of the segmentation target. As shown in Figure 
6, we highlight the low-quality pixel regions on the segmentation target. It is clear that 
low-quality pixels are mostly present in hard-to-segment areas. 

Table 5. Number of low-quality pixels identified by the HRE and PS modules during training. 

Epoch 
Number of Low-Quality Pixels 

Sup Unsup 
1000 123,916 130,484 
2000 58,243 178,194 
3000 45,362 178,258 
4000 37,824 131,606 
5000 118,800 232,518 
6000 37,791 241,031 

 
Figure 6. (a–d) show the low-quality pixels in the left atrium images. 

4.6. Effects of HRE Module 
After integrating the HRE module into both V-Net and HV-Net, LSDSL exhibits a 

10.74% reduction in 95HD and a 2.93% decrease in ASD compared to V-Net. Similarly, 
compared to HV-Net, LSDSL demonstrates a 10.71% decrease in 95HD and a 2.64% re-
duction in ASD. The notable decrease in 95HD and ASD affirms the effectiveness of the 
HRE module in compelling the model to explore hard regions. 

Figure 7 illustrates the positive impact of the HRE module on segmentation results. 
In the first row without the HRE module, additional noise is present in the segmentation 
target, and precise segmentation in hard regions like fine branches is compromised. The 
second row distinctly showcases the favorable influence of the HRE module, indicating 
that the segmentation target in fine branches closely resembles the ground truth after in-
corporating the HRE module. This strongly suggests that the HRE module enhances the 
model’s understanding of hard regions within the segmentation target, resulting in con-
tours that closely align with the ground truth. 

 
Figure 7. The first and second rows show the segmentation results of LSDSL every 1000 iterations 
with and without the HRE module, respectively, along with comparisons to the ground truth. 
Figure 7. The first and second rows show the segmentation results of LSDSL every 1000 iterations
with and without the HRE module, respectively, along with comparisons to the ground truth.

4.7. Effects of PS Module

The PS module requires simultaneous updates of both networks during training to
be effective. Therefore, we demonstrate the module’s effectiveness only when training the
two networks simultaneously. After incorporating the PS module into the baseline, LSDSL
exhibits an increase of 4.38% in Dice and 6.10% in Jaccard. Figure 8 compares consistency
regularization, the DCPLG module in MCF, and our PS module on the 20% labeled LA
dataset, highlighting that the PS module demonstrates a more stable performance improve-
ment compared to other network learning methods. This signifies that the PS module
directs low-quality pseudo-labels to learn positive features from high-quality pseudo-labels,
and the incorporation of low-quality pseudo-labels in training has a beneficial impact.

4.8. Performance of Using Different Percentages of Thresholds

As shown in Figure 9, we investigate the influence of τ1, τ2, and β on the performance
of LSDSL. In Figure 9a–c, the Dice increases correspondingly with the increase of τ1, τ2 and
β. Dice reaches its peak values at 89.28%, 90.30%, and 90.26%, respectively, and further
increases in these values lead to a gradual decrease in Dice.
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4.9. Performance on the ACDC Dataset

As shown in Table 6, LSDSL is tested on the 2D ACDC dataset [44] and achieves the
best performance, demonstrating its effectiveness in 2D datasets and its strong generaliza-
tion capabilities.

Table 6. Performance comparison of different methods on ACDC dataset.

Method
Volumes Used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (Voxel) ASD (Voxel)

MCF [23] 7(10%) 63(90%) 85.78 ± 1.46 76.11 ± 1.75 8.21 ± 0.88 2.34 ± 1.07
CDMA [17] 7(10%) 63(90%) 88.45±1.77 80.24±1.24 4.61±0.97 1.44±0.54

Co-BioNet [41] 7(10%) 63(90%) 88.61 ± 1.55 80.07 ± 1.84 4.74 ± 0.54 1.34 ± 0.87
CAML [16] 7(10%) 63(90%) 89.01 ± 1.04 80.41 ± 0.55 4.81 ± 1.07 1.57 ± 0.48
MLRP [42] 7(10%) 63(90%) 89.09±0.84 80.55±0.32 4.49±0.46 1.25±0.36

LSDSL (Ours) 7(10%) 63(90%) 89.15 ± 0.27 80.77 ± 0.47 4.31 ± 0.89 1.22 ± 0.61
MCF [23] 14(20%) 56(80%) 87.24 ± 1.88 79.51 ± 1.97 5.28 ± 0.58 1.96 ± 1.03

CDMA [17] 14(20%) 56(80%) 88.97±0.34 80.71±1.24 4.54±0.81 1.55±0.59
Co-BioNet [41] 14(20%) 56(80%) 89.05 ± 0.48 80.65 ± 1.17 4.60 ± 1.34 1.89 ± 0.68

CAML [16] 14(20%) 56(80%) 89.19 ± 0.22 80.79 ± 1.11 5.26 ± 0.97 1.52 ± 0.42
MLRP [42] 14(20%) 56(80%) 89.85±0.17 80.94±0.94 4.22±0.64 1.59±0.46

LSDSL (Ours) 14(20%) 56(80%) 90.03 ± 0.14 81.24 ± 1.05 4.11 ± 0.87 1.50 ± 0.55

4.10. Model Evaluation on Medical Image Sensor

We compare the performance of LSDSL with other semi-supervised models on the
medical image sensor, as shown in Figure 10, which consists of a Jetson Nano development
board and a display [45]. We conduct experiments using the LA dataset with 20% labeled
data. The experimental results in Table 7 demonstrate that LSDSL achieves the highest
average segmentation metrics and the fastest inference time per image using 20 medical
images for inference on the sensor.
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4.11. Effects of Data Preprocessing on Performance

Cropping and rotating images are used as data augmentation operations before images
are input into the model. We conduct ablation experiments to observe the impact of these
data augmentation operations on the model’s performance.

In the ablation experiments, we set three different cropping sizes. Since the number
of input channels for the network is set to 16, all cropping sizes are multiples of 16. The
cropping size of ‘112 × 112 × 80’ is used before model training, which matches the crop-
ping setting in other semi-supervised methods [16]. Since some images have dimensions
smaller than 128 or 96 before cropping, we do not conduct further experiments with larger
cropping sizes. The results are shown in Table 8. The performance shown by the size of
‘112 × 112 × 80’ is the best. The reason is that when the image size is cropped to 64 or 48,
the target segmentation area can be cropped, which leads to the inability of the model to
learn the segmentation target effectively.

Table 8. Impact of different cropping sizes on performance.

Crop Size
Metrics

Dice (%) 95HD (Voxel)

80 × 80 × 48 90.15 9.16
96 × 96 × 64 91.07 6.95

112 × 112 × 80 91.26 5.59

Additionally, we apply data augmentation operations such as random flip, 90-degree
flip, 180-degree flip, and 270-degree flip to test their impact on the model’s performance and
its rotational agnosticism. The results are shown in Table 9. When the image undergoes a
180-degree rotation, the model achieves the highest performance. For other rotation angles,
the performance slightly decreases, but it still shows higher performance compared to no
rotation, indicating that applying rotation operations can improve model performance. We
conduct an additional experiment where the images are input into different models for
training without applying any rotation operations. During the testing phase, we perform
inference using randomly rotated images. The experimental results, as shown in Table 10,
show that the performance of LSDSL only slightly decreases, while other advanced semi-
supervised methods experience significant performance drops. This demonstrates that
LSDSL is less negatively affected by image rotation operations. Furthermore, we conclude
that the model exhibits rotational agnosticism.

Table 9. Impact of different rotation angles on performance.

Rotation Angle
Metrics

Dice (%) 95HD (Voxel)

No 90.85 8.45
Random 91.05 6.17

90 91.11 5.98
180 91.26 5.59
270 91.17 5.74

Table 10. Evaluating the performance of different models using randomly rotated images. (Rotation
option indicates whether rotation is applied during preprocessing).

Method Rotation
Metrics

Dice (%) 95HD (Voxel)

Co-BioNet 83.44 20.03
Co-BioNet

√
90.66 10.61

CAML 81.73 18.15
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Table 10. Cont.

Method Rotation
Metrics

Dice (%) 95HD (Voxel)

CAML
√

90.43 11.97
MLRP 86.17 10.21
MLPR

√
90.74 7.64

LSDSL 89.45 8.24
LSDSL

√
90.76 6.13

4.12. Research Gap

We have identified several limitations in the designed method: (1) Although the
method uses two basic networks, the computational load of both networks remains rela-
tively high, which imposes a certain computational burden on the hardware module of the
sensor. (2) LSDSL relies on manually set thresholds to improve performance when using
low-quality data, and these thresholds need to be adjusted if a different dataset is used.
(3) When faced with more complex medical images, LSDSL also struggles to achieve good
segmentation results, as it only uses a portion of the low-quality data for learning.

5. Conclusions

This paper presents a semi-supervised medical image segmentation framework,
named LSDSL, designed for deployment on sensors. The core idea is to utilize two basic
networks to design a semi-supervised learning model capable of effectively leveraging
low-quality pixels. This model can be deployed on sensors and quickly achieve efficient
segmentation results. Consequently, we propose two modules in the model: the HE module
utilizes ground truth as a reference to guide the model in enhancing its understanding of
hard regions. The PS module enables the improvement of the effectiveness of low-quality
pseudo-labels and thereby makes a positive impact on the overall model performance. The
segmentation results on two different modalities of benchmark datasets indicate that the
proposed model’s segmentation contours closely align with the ground truth contours,
especially excelling in hard regions while achieving state-of-the-art performance with the
medical image sensor.

Currently, the network parameters of the model we designed are still relatively large,
and both segmentation accuracy and speed need further improvement. In future work,
we will focus on improving network structure to reduce the model’s parameters while
maintaining high segmentation performance, aiming to achieve faster and more efficient
medical image segmentation on sensors. At the same time, we will enable the model
to leverage more low-quality data to improve performance without being dependent on
threshold settings.
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