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A B S T R A C T : 

The increasing complexity of maritime risks and threats requires accurate and 
timely identification, both for environmental and human safety. Satellite 
observations enable comprehensive surveillance of large maritime areas which is 
essential for detecting and responding to environmental changes and potential 
threats. The Horizon Europe project EURMARS, aims to develop and validate a 
multi-purpose observation platform to enhance detection capabilities for various 
risks and threats. This paper proposes a novel Earth Observation (EO) data 
processor, designed to handle various open-access satellite images from Sentinel-
1, and Sentinel-2 as well as video from the NEMO-HD microsatellite. By employing 
Object-Based Image Analysis (OBIA) through machine learning and deep learning 
techniques, the detection of vessels is achieved using synthetic aperture radar 
(SAR), multispectral images, and RGB video. Data from positioning systems is 
utilized to ensure comprehensive monitoring and to validate the results of the 
method. The integration of satellite imagery with AIS data is a key element of the 
vessel detection methodology, enhancing the accuracy and reliability of maritime 
surveillance. By projecting AIS data onto satellite imagery and using a validation 
algorithm to resolve discrepancies, we significantly improve vessel detection, 
reducing uncertainty and ensuring effective maritime surveillance. Real-world 
testing has demonstrated the method’s effectiveness in enhancing maritime 
security and enabling early threat response. 
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Introduction 

Aim and Scope 

Monitoring and managing the maritime environment are crucial and 
challenging due to its vast size and continuously changing conditions1. 
Traditional surveillance methods such as land-based or ship-based observation, 
often fail to provide comprehensive and timely data over wide areas. In 
contrast, remote sensing data such as satellite imagery offer a significant 
advantage in addressing these challenges, due to their ability to cover large 
areas and capture high- and medium-resolution data.  

The detection of vessels via satellite images can be enhanced by transmitters 
which provide information on the position, direction and other vessel 
characteristics, that can contribute to their detection. One of the most common 
tracking systems is the Automatic Identification System (AIS), which provides 
continuous information on the vessels’ position. In addition to AIS, Long-Range 
Identification and Tracking (LRIT) was established as an international system by 
International Maritime Organization (IMO). Such tracking systems are present 
on most vessels, but in the case of smaller vessels (< 300 tons) do not need to 
carry AIS or LRIT2. In terms of satellite imagery, optical and SAR data are best 
suited for detecting vessels3.  

Regarding vessel detection using optical images, the main factors affecting 
the results are the size of the objects detected and the weather conditions. 
Vessels must span at least a required number of pixels in the image, depending 
on spatial resolution, while adverse weather conditions can negatively affect 
detection accuracy. Environmental factors such as waves, clouds and solar 
reflection can complicate the detection of vessels in optical images4. Moreover, 
white lines created by waves can look like vessels, confusing the algorithm. In 
contrast, detection is much more effective in calm seas. Additional, large clouds 
can cover significant parts of the image so detection may be impossible, while 
smaller clouds may appear as targets and need to be filtered out when 
classifying objects. In addition, solar reflection in waves can create high contrast 
areas in the image, which may be mistaken for vessels5. 

On the other hand, SAR data is a reliable method for detecting vessels at sea, 
as they provide good results regardless of weather conditions. Moreover, larger 
vessels, being metallic structures, reflect more radar signals. However, SAR 
images can have high levels of noise and sensitivity in the air, which can prevent 
accurate detection of vessels6. To create a reliable automatic vessel detection 
system, integrating data from multiple sources can yield more comprehensive 
and accurate results. Merging optical or SAR data with position point data such 

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode


EURMARS: Use of Satellite Imagery for Maritime Mapping in Large Areas 
 

 3 

as AIS data, can serve as a verification system, enhancing the method's 
correctness and reliability. 

This paper presents a methodology for processing EO data that combines 
OBIA with machine learning and deep learning techniques for vessel detection 
using SAR, multispectral images and RGB video. By integrating data from 
positioning systems (AIS), the processor provides in-depth monitoring and 
validation of results. The methods and technologies have been validated 
through real-world experiments, demonstrating their effectiveness in 
facilitating immediate threat response and enhancing maritime security. 

Relative Literature Review 

Since the first launch of optical and SAR satellites five decades ago, the number 
of satellites capturing images of the Earth has increased significantly. These 
satellites are classified by the spatial resolution of the images they receive to: 
very high, high, medium and low resolution. Among the open access satellite 
data, Sentinel satellites offer high-resolution images7, while Landsat provides 
medium resolution data8. This categorization supports a variety of applications 
in environmental monitoring, resource management, and scientific research, 
leveraging recent advancements in satellite remote sensing technologies. 

Recent research has focused on vessel detection in Sentinel-19-17 and 
Sentinel-218-22 images, often combined with other data types. For example, in a 
study2, Sentinel-1 data with AIS datasets were integrated and a database and a 
web-based tool has been developed to detect dark vessels- not transmitting AIS 
signals, potentially involved in illegal activities and to visualize the vessel 
detections from both sources. Additionally, in another research a Polarimetric 
Combination-based Ship Detection (PCSD) method addresses challenges like 
speckle noise in SAR data, achieving an overall detection rate of over 85% and 
over 42% for small vessels6. Similarly, an algorithm using object detection 
methods on optical satellite images has been proposed for identifying small 
vessels, particularly those under 20 meters in length that typically lack AIS, with 
the capability of detecting vessels as small as 8 meters23. In addition to the 
Sentinel satellites, the Slovenian microsatellite NEMO-HD complements the 
Sentinel data with higher resolution multispectral and HD video data. With its 
advanced guidance, navigation and control system it can track non-linear tracks 
on-ground (monitoring coastlines) or point in a selected target on ground for up 
to several minutes [1-3]. Despite its high speed in orbit, NEMO-HD can maintain 
the orientation towards a selected area on Earth to record HD video. Video from 
space with motion tracking of vessels brings another dimension to the maritime 
traffic monitoring. These advancements in satellite remote sensing technology 
and data integration have significantly improved the accuracy and effectiveness 
of maritime monitoring and vessel detection. 
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Methods 

Dataset  

The EURMARS project exploits open access data and in particular, images from 
the Sentinel-1, Sentinel-2, Landsat-8/9 satellites and video from the NEMO-HD 
microsatellite for vessel detection. In the current work, only data from Sentinel-
1, 2 and NEMO-HD satellites were used. Sentinel-124, launched in 2014, has a 
12-day turnaround time and collects SAR images with a spatial resolution of 5x5 
meters, ensuring high quality images regardless of weather conditions and time 
of day. On the other hand, Sentinel-225 provides high spatial resolution multi-
spectral optical observations at 10x10 meters globally, has a 10-day retrieval 
period and features 13 spectral bands, making it suitable for various 
applications such as detecting changes in land cover, coastal monitoring, 
emergency management, border and maritime monitoring. NEMO- HD collects 
high resolution video in the visual part of spectrum and has the spatial 
resolution of 2.8x2.8 meters. The video footprint on ground is 3x5 km and can 
be taken globally. When the area of interest is within the reach of the NEMO-
HD ground station located in Slovenia, the video can be downstreamed in real-
time. For the other AOI’s the video is saved onboard and transmitted to the 
ground during the next contact with the ground station in the same day. 

For the training, testing and validation of the optical vessel detection model, 
four different datasets were used. The first one is the TGRS-HRRSD Dataset26 

(Figure 1) which contains 21,761 images acquired from Google Earth and Baidu 
Map, the second one is the Ship Detection from Aerial Images27 containing 621 
images of 1 class for the ship detection, the third dataset namely ship-
detection28 and the last one Ships in Google Earth dataset29 which contain 794 
Google Earth images and split into 2 groups – training and testing. All datasets 
are open access and contain optical images of vessels. 

 
Figure 1: Sampe images from TGRS-HRRSD Dataset 

Regarding the SAR image dataset used for training and testing of the algorithm, 
a labelled dataset with 102 Chinese Gaofen-3 images30 (Figure 2) and 108 
Sentinel-1 images used. The images cropped in smaller parts (256x256 pixels) 
creating 39.729 image chips.  

 
Figure 2: Sample images from Chinese Gaofen-3 images and 108 Sentinel-1 Datasets 
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Methodology  

The vessel detection algorithm operates through several critical steps. First, it 
searches for new image products by continuously searching the Copernicus and 
USGS Earth Explorer product catalogue within a predefined region of interest 
for Sentinel-1, Sentinel-2 and Landsat 8,9 images. This search is performed on 
an hourly basis. An API facilitates the image acquisition process by allowing 
browsing of available products based on several parameters such as sensor 
type, product layer, region of interest, cloud cover and acquisition date. 

Once an image is detected, the algorithm automatically downloads it and 
undertakes a series of pre-processing steps to optimize it for the detection 
algorithm. These preprocessing steps (Figure 3) are essential to ensure data 
quality in machine learning applications and include subset of images, noise 
reduction, masking to highlight the area of interest, and applying spectral or 
geometric transformations to prepare the image for accurate vessel detection. 

 

 

(a) 

 

(b) 
Figure 3: Workflow of the image dataset pre-processing (a) SAR, (b) optical imagery 

The model, in order to operate the vessel detection, utilizes the YOLO (You Only 
Look Once) v7 algorithm for object detection, which has been pre-trained and 
tested for this purpose. Unlike traditional object detection methods which 
perform detection on various regions of an image, YOLO takes a different 
approach. It divides the input image into a grid and for each cell predicts 
bounding boxes and class probabilities directly within this grid. It resizes the 
input image to resolution of 448 × 448, and runs a single convolutional neural 
network on the image, that is consisted by 24 convolutional layers followed by 
2 fully connected layers31.  Although the YOLO model was trained on very high-
resolution images, the algorithm was tested on high- and medium-resolution 
images. However, adjustments were made to ensure high training accuracy 
without negatively impacting the results. These adjustments include 
procedures such as scale invariance and data augmentation. Specifically, for 
scale invariance, the YOLO model was trained using images where the detected 
object's bounding box occupied 10% or less of the image area. If the bounding 
box covered more than 10% of the image, the image was discarded from the 
training dataset. A lot of repetitions were implemented in order the optimal 
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batch size and epochs to be selected. Finally, the batch size was selected equal 
to 8 and the model seems to converge on 300 epochs. 
 

 

Figure 4: Algorithm Flowchart for vessel detection 

Five metrics (objectness, precision, recall, F1 score and mean average 
precision) were used to evaluate the model during the training and validation 
processes in order to assess the effectiveness of the model in terms of how well 
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the bounding box covers the detected object, the probability of a detected 
object appearing in a particular region of the image, the accuracy of the correct 
objects detected, the percentage of correct instances predicted, and the overall 
performance of the model.  

The model identifies vessels by generating rectangular orthogonal parallels 
around them and annotating each one with a confidence level. The vessel 
identification process differs slightly between optical and SAR images. Figure 4 
illustrates the flowchart of the algorithm, detailing the sequence of actions 
performed to extract vessel detection polygons from satellite images. The 
diagram includes each stage of the process, from image acquisition and 
preprocessing to the extraction of georeferenced polygons. 

The algorithm for the vessel detection was entirely developed in Python 3.6 
in the code user interface of Visual Studio and the libraries used for the 
processing are: Or, Tarfile, dotenv, Numpy, Rasterio, SnapPy, Geopandas, PIL, 
SQLAlchemy and OpenCV. 

Fusion with AIS Data 
AIS data can make an important contribution to vessel detection from satellite 
imagery as it provides real-time information on the position, speed and 
direction of vessels, which can be used to confirm and improve satellite 
detection. The methodology for the acquisition and exploitation of AIS data 
consists of the following steps. First of all, the data were acquired from ground-
based antennas placed in the EURMARS study areas. After applying the object 
detection algorithm to a satellite image, bounding boxes are created around the 
detected vessels. The next step involves integrating the AIS data with the 
satellite images. During this step, the selected AIS data and the polygons from 
the detected vessels are projected on the image.  

 
Figure 5: Flowchart of AIS-Validated Vessel Identification System 
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Then the detected vessel positions were verified by cross-referencing them 
with AIS data (Figure 5). This verification process determines which polygons 
from the detection algorithm contain AIS points (Figure 6a), thereby confirming 
the accuracy of the detected vessel positions. However, AIS data may 
sometimes display a positional offset relative to the detected vessel in the 
satellite image (Figure 6b). To address this, the algorithm considers both the 
position and trajectory of AIS points, applying a minimum distance threshold to 
ascertain whether the nearby AIS points and the detected bounding box 
correspond to the same vessel. 

Additionally, the method addresses gaps in AIS signal transmission. If a 
vessel's position falls within such a gap (Figure 6c), the algorithm identifies the 
last known AIS point before the signal loss and the first point when the signal 
resumes, connecting these points with a vector (Figure 6d, 6e). The algorithm 
ensures that the detected vessel is located along this vector and within a 
defined distance parallel to it. If these conditions are met, the algorithm 
concludes that the AIS data and the detected polygon correspond to the same 
vessel, thereby ensuring consistent and accurate vessel identification despite 
potential data gaps. When the algorithm detects a vessel near the vector and 
needs to decide whether the detected vessel corresponds to the nearest vector, 
it color-codes the rectangle: orange for medium possibility and red for low 
possibility (Figure 6f). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6: (a) Validated AIS points with detected vessels, (b) Offset of AIS data (c) Gap 
between AIS points, (d)- (e) Vector connection between successive points with 
temporal gap, (f) Detected vessels belonging to the vector 
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Results 

Performance and Score 

The model was trained, tested, and validated using multiple image datasets, 
with data distribution as follows: 80% for training, 10% for testing, and 10% for 
validation. The evaluation of results for both optical and SAR images was 
conducted using the metrics mentioned before. Figure 7 and Figure 8 illustrate 
the algorithm’s performance over 300 epochs. Detailed results of the training 
and testing evaluations are provided below. 

 
Figure 7: Training evaluation metrics of optical images 

 
Figure 8: Training evaluation metrics of SAR images 

Figure 9a displays the prediction accuracy for vessels in the optical images 
during the testing phase with a true positive rate of 75% for the "ship" class, 
while 25% of the predictions were classified as "background." Additionally in 
Figure 9b the confusion matrix shows the testing prediction accuracy for vessels 
in the SAR images. The model attained a true positive rate of 95% for the "ship" 
class, while 5% of the predictions were classified as "background." 

 
(a) 

 
(b) 

Figure 9: Confusion matrix for model testing for vessel detection in (a) optical images, 

(b) SAR images 
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Demonstration of the Pilot Use Case 

During the EURMARS project, demonstration experiments were carried out to 
evaluate and validate the project's methodologies and systems. The project 
integrates a wide range of sensors, with the primary objective of enhancing the 
detection of sea objects through data fusion. Since several sensors from 
different locations can detect the same object, it was crucial to test these 
methods in real-time conditions, beyond simple simulations. This study 
specifically focused on merging satellite imagery and AIS data to improve 
detection accuracy at sea. 

The first demonstration was held in Varna, Bulgaria on April 2024. During two 
days, the Sentinel-2 satellite passed over the area of interest on the first day, 
followed by the NEMO-HD satellite on the next day. Concerning the Sentinel-2 
image, the cloud coverage was more than 90% but the area of interest was with 
light clouds (Figure 10a). NEMO-HD satellite collected a video with a duration 
of 1 minute over the area. During the video, the clouds were moving, causing 
some areas to appear cloud-free for a few seconds. 

The algorithm implementation on the satellite image yielded one true 
positive and two false positives results (Figure 10b). Due to the dense cloud 
coverage, objects like small clouds are detected as vessels. Figure 10c shows the 
detection results occurred after the algorithm’s implementation. Afterwards, 
the detected results are evaluated and the true positive detections are sent to 
the visualization platform, along with their metadata such as detection time, 
coordinates of the vessel and object’s detected dimensions. 

 
(a) 

 
(b) 

 
(c) 

Figure 10: (a) Sentinel-2 image (b), (c) Detections on Sentinel-2  

Moreover, on the NEMO-HD video, the algorithm made a vessel detection in a 
duration of 8 seconds with a confidence >0.025 (Figure 11).  

    

Figure 11: Detections on NEMO-HD video frames  

To validate the detection results, vessel positions were recorded using two 
methods (Figure 12a). First, an AIS antenna was installed in the Varna region to 
capture and transmit vessel position signals as they passed through the area of 
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interest (Figure 12b). Additionally, some GNSS tracker devices were given to the 
members of the vessels in order to record their position and as a consequence 
the position of the vessel (Figure 12c).  

 

 
(a) 

 
(b) 

 
(c) 

Figure 12: (a) Two vessels appeared on the image (b) Vessel 1 position with AIS (c) 

Vessel 2 position with GNSS tracker 

A noted issue with the detected bounding boxes is that the algorithm 
occasionally misidentifies the wake of a moving vessel as part of the vessel itself, 
resulting in an overestimation of the vessel's size. Additionally, when two 
vessels are in close proximity, the algorithm may merge both vessels into a 
single bounding box. To address these challenges, the integration of AIS data 
can improve accuracy by providing additional information to distinguish 
between overlapping or closely spaced vessels, improving detection results. 

Discussion 

In this paper, an end-to-end methodology for vessel detection that integrates 
optical and SAR satellite imagery with AIS data was presented. This 
methodology automates the entire process from image retrieval to vessel 
detection, ensuring a continuous workflow without requiring user intervention. 
Initially, the vessel detection algorithm automates the search and acquisition of 
relevant satellite images, followed by pre-processing to improve the quality of 
the images. It then detects vessels within these images, providing a final output 
of detected vessels. The model demonstrates high accuracy in the validation 
phase, with a true positive rate of 75% for optical images and 95% for SAR 
images. Noticeably, the model works better for SAR images. The reason may be 
traced to the testing samples, which are more diversified for optical images. 
Compared in relevant works32,33 where YOLO models were used for vessel 
detection, our model performs adequately, given the weather conditions that 
may affect the detection of vessels at sea.  

The integration of satellite images with AIS data is a key element of our 
approach, facilitating the verification of vessel positions and allowing the 
identification of vessels that are either not transmitting AIS signals or 
experiencing temporary interruptions in transmission. The ability of the 
detection validation algorithm to manage and resolve mismatches between AIS 
data and satellite detections significantly enhances the accuracy and 
consistency of vessel identification. This capability not only improves detection 
accuracy but also reduces ambiguity in vessel position, thus saving time and 
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minimizing uncertainty. In addition, the color-coding system effectively 
visualizes the confidence level of each detection, providing a clear assessment 
of how likely a detected vessel is aligned with the AIS data. This integration 
optimizes data use for maritime surveillance.  

The implementation on real-world experiments in the EURMARS project 
exemplifies a robust approach to evaluating data fusion techniques for 
maritime object detection. The integration of various sensors, including satellite 
imagery and AIS data, underscores the importance of cross-referencing multiple 
data sources to improve detection accuracy. The demonstration in Varna, 
highlighted the challenges and successes of the project. Validation with AIS data 
and GNSS trackers ensured accurate verification, though issues with detecting 
vessel wakes and merging close-range vessels into a single bounding box 
indicate areas for improvement. These findings reinforce the value of real-time, 
multi-sensor data fusion in maritime surveillance and highlight the need for 
further refinement in the EURMARS project's vessel detection algorithm. 

Conclusion and Future Work 
In this paper, we introduced our work developed under the Horizon Europe 
project EURMARS, in which maritime object detection, more specifically, vessel 
detection was presented.  A framework, in which YOLOv7 was exploited for 
object detection, integrates image acquisition, pre-processing, vessel detection, 
and result outputs for the purpose based on both optical multi-spectral images 
and SAR images. Four maritime datasets were used to fine-train the YOLOv7 
models for optical images from a number of remote sensing satellites, whilst 
two datasets were employed for SAR images from two satellites. Validation and 
testing results have shown that the developed algorithms can achieve excellent 
vessel detection accuracy of 75% and 95% for optical images and SAR images, 
respectively. In the demonstration testing, Sentinel-2 (multi-spectral) images 
and NEMO-HD (RGB) video were captured in experiments associated with 
Automatic Identification System (AIS). In these tests, common errors of the 
system have been identified and corrected by modifying the developed 
algorithm. With more demonstrations throughout the EURMARS project, we 
will further explore robustness of the developed algorithm and enhance its 
resilience to deal with different scenarios in maritime environments. For vessel 
detection models, valuable training data may be generated from Sentinel-1, 
Sentinel-2 and Landsat, the targeted satellites, to increase the detection 
accuracy. We may also consider to modify the model architectures to fit better 
for maritime object detection, in light of scenarios with more tests in real-
conditions.  
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