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Abstract

Background

Obesity, characterized by chronic energy imbalance and excessive adiposity, is a key com-

ponent of metabolic syndrome and is associated with low-grade inflammation and altered

adipokine secretion. This study aimed to evaluate the association between dietary fat con-

sumption and its influence on interleukin (IL) and leptin levels in participants with obesity.

Methods

Using the Asian obesity classification criteria, a cross-sectional study was conducted on 384

adults (18–59 years). Anthropometric measurements by bioelectrical impedance analyzer

(BIA), blood biochemistry by colorimetric assay, inflammatory markers and hormones by

ELISA test, and dietary intake were assessed by Semi-FFQ.

Results

Obesity prevalence was 26.1% and 73.90% in males and females, respectively. Participants

with obesity exhibited significantly higher inflammatory and hormonal marker levels. Positive

correlations were observed between blood lipid, glucose, and tumor necrosis factor-α, IL-6,

and leptin levels. Energy, carbohydrate, and sugar intake were positively correlated with lep-

tin levels. High saturated fat intake was associated with increased IL-6 levels (odds ratio =

2.03, 95% confidence interval [CI] = 1.00–4.11, p < 0.047), whereas high total fat intake ele-

vated leptin levels by 2.14-fold (95% CI = 1.12–4.10, p < 0.021) in participants with obesity.

Conclusions

This study demonstrates significant associations between dietary fat composition, inflam-

matory markers, and leptin levels in individuals with obesity. These findings suggest that

modulating dietary fat intake can be a potential strategy for mitigating obesity-related inflam-

mation and leptin resistance, highlighting the need for targeted nutritional interventions in

obesity and metabolic syndrome management.
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Background

Obesity is a significant risk factor for metabolic syndrome, a cluster of conditions including

diabetes, cardiovascular diseases (CVDs), dyslipidemia, and insulin resistance [1]. The Global

Burden of Disease Study (2017) indicated that the prevalence of obesity has dramatically

increased over the past few decades, affecting millions globally [2]. Specifically, the NCD Risk

Factor Collaboration (2016) reported that from 1975 to 2016, the global prevalence of obesity

nearly tripled, with over 650 million adults classified as obese, underscoring the urgency of

addressing this epidemic [3]. Furthermore, a systematic review and meta-analysis highlighted

that obesity rates are projected to continue rising, with an anticipated prevalence of 1.12 billion

adults expected to be obese by 2030 [4]. Complex factors of genetic susceptibility, sedentary

lifestyle, and high-calorie diet consumption comprise the etiology of obesity and metabolic

syndrome, resulting in chronic energy imbalance and excessive body fat accumulation [5,6].

The global rise in obesity is closely linked to changes in dietary patterns, particularly the

increased consumption of high-fat diets. Lipids play a crucial role in the development of obe-

sity and related metabolic disorders.

Obesity and metabolic syndrome are characterized by chronic low-grade inflammation, sig-

nificantly impacting adipose tissue functionality and associated with an excessive increase in

visceral adipose tissues [7]. White adipose tissues secrete various pro- and anti-inflammatory

substances, including cytokines, such as interleukin (IL-6) and tumor necrosis factor-α (TNF-

α), and adipokines, such as leptin and adiponectin [8]. These inflammatory factors have been

linked to the development and progression of insulin resistance, type 2 diabetes (T2D), and

cardiovascular complications in metabolic syndrome [9]. Dysregulated lipid metabolism con-

tributes not only to excess body fat but also to inflammatory processes that involve cytokines

such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), as well as adipokines

like leptin. These molecules are key mediators in the pathogenesis of obesity-related complica-

tions, including insulin resistance and cardiovascular disease [10].

Leptin, primarily produced by adipocytes in white adipose tissues, plays a crucial role in

hunger, body weight, and glucose metabolism regulation [11]. In both males and females, lep-

tin levels are positively correlated with adiposity. However, obesity and metabolic syndrome

have been associated with leptin resistance, partly because of abnormalities in leptin receptor

signaling and impaired leptin transport across the blood–brain barrier [12]. In obese individu-

als, leptin levels are significantly elevated due to the increased adipose tissue mass. Despite

these high levels, the body becomes resistant to leptin’s effects, leading to continued overeating

and reduced energy expenditure. This leptin resistance is a key factor in the pathogenesis of

obesity, as it undermines the body’s ability to regulate weight effectively [13]. Leptin not only

regulates energy balance but also functions as a pro-inflammatory mediator. Elevated leptin

levels in obesity are associated with increased production of inflammatory cytokines, such as

TNF-α and IL-6, which further contribute to chronic low-grade inflammation seen in obesity

and metabolic syndrome [14]. This inflammatory state is linked to insulin resistance, cardio-

vascular diseases, and other obesity-related complications.

Major lifestyle factors contributing to the onset and progression of obesity, metabolic syn-

drome, and their comorbidities include diet and physical activity. Dietary components, partic-

ularly dietary fat, can influence inflammation and disease risk [15]. The lipid content of the

diet is strongly correlated with obesity and metabolic disturbance onset and duration [16].

High fat diets (HFDs) have been shown to exacerbate the obesity epidemic and the emergence

of associated metabolic diseases, including T2D [17]. Studies have indicated that HFD con-

sumption can result in food-induced obesity and metabolic abnormalities that mimic the met-

abolic syndrome in humans [18]. Increased saturated fat intake has been linked to elevated
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levels of inflammatory indicators and insulin resistance, primarily through toll-like receptor 4

pathway activation [19].

Furthermore, diet influences serum leptin levels, inflammation, and insulin sensitivity. In

humans and rats, energy restriction and fasting have been shown to lower blood leptin levels

and improve insulin sensitivity [20]. Preliminary research has suggested that the fatty acid

composition of the diet can influence serum leptin levels and metabolic parameters [21]. Stud-

ies in rats and human cell lines have shown varying effects of different fatty acid types (n-6, n-

3 polyunsaturated, monounsaturated, and saturated) on leptin gene expression, serum levels,

and insulin signaling [22,23]. Despite extensive research on obesity and metabolic syndrome,

the relationship between dietary fat content, serum leptin levels, and inflammation markers,

particularly in individuals with obesity with or at risk of metabolic syndrome, remains incom-

pletely understood. While extensive research has been conducted globally on the relationship

between diet, lipid metabolism, and obesity, there is a lack of studies that explore these factors

within specific ethnic and geographical contexts. The social, cultural, and environmental fac-

tors unique to particular populations can significantly influence dietary patterns and their met-

abolic effects [24]. Understanding these contextual variables is essential to ensuring the

external validity of any findings and to allow for the generalization of results across diverse

populations. This study addresses the gap in understanding the relationships between dietary

fat types, inflammation markers, and leptin levels in individuals with obesity, particularly in

non-Western populations. We aim to provide a comprehensive view of these factors in Thai

adults with obesity, combining detailed dietary assessment with biomarker analysis. This novel

approach in selecting specific population has the potential to reveal mechanisms of obesity-

related metabolic disorders and inform culturally appropriate strategies for metabolic syn-

drome management in Southeast Asia.

Methods

Study design and participants

This cross-sectional study was conducted between July and October 2023 in the Laksi District

of Bangkok, Thailand. This study included 384 adults aged 18–59 years who were recruited on

the basis of predetermined inclusion and exclusion criteria. The following were the inclusion

criteria: literacy, body mass index (BMI)� 18.5 kg/m2 to 40 kg/m2, and willingness to partici-

pate. The following encompassed the exclusion criteria: pregnancy, lactation, severe chronic

illnesses, metabolic disorders affecting nutritional needs, eating disorders, recent significant

weight loss, and cannot provide blood samples.

Procedures

The study protocol was approved by the Ethics Committee of the Faculty of Tropical Medicine,

Mahidol University of Thailand (EC approval number: MUTM 2023-042-01) and adhered to

the Declaration of Helsinki guidelines. All participants provided informed consent before

study participation. Thai clinical trials no. is TCTR20240723011.

The study collected data from August 1st to September 30th, 2023. During this period, public

relations efforts were carried out in the Laksi community to encourage participant registration.

These activities included displaying billboards, sharing project infographics, and distributing

posters to inform and engage potential participants. The researcher contacted participants via

telephone to screen participants who meet the inclusion/exclusions criteria and recruited to

the study.

One day before the study, the researcher contacted participants to remind them to fast from

food and water for 12 hours. On the day of the study, the researcher provided a verbal
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explanation of the study details and participant information to ensure everyone understood

the procedures and purpose of the research. The participant read patient information sheet

and written inform consent form. Then, following the 4 stations to complete the study process,

1st Station: Volunteers completed the questionnaire by trained interviewers. Station 2: Mea-

surement of the vital signs; such height, weight, and blood pressure as well as drawing two

tablespoons of blood under a certified nurse’s observation. Station 3: Measurement of anthro-

pometry by bioelectrical impedance analyzer (BIA), and body composition. Station 4: Assess-

ment of dietary consumption by Semi-FFQ with an interviewer.

Measurement

Anthropometric and body composition measurements. Anthropometric parameters

(height, weight, and waist and hip circumferences) were measured using standardized tech-

niques following the International Biological Program criteria. BMI was calculated as weight

(kg) divided by height squared (m2). The waist to hip ratio was determined. Body composition

was assessed using a bioelectrical impedance analyzer (BIA) (TANITA1-SC330, Tanita Cor-

poration, Tokyo, Japan) to evaluate muscle-mass, fat-mass, and metabolic components.

Biochemical analyses. After a 12-h fast, blood samples were collected for glucose, lipid

profile, and inflammatory marker and hormone analyses. Serum was separated and stored at

−80˚C until analysis.

Lipid profiles: total cholesterol, high-density lipoprotein (HDL), and triglyceride levels

were measured using enzymatic methods (Stanbio Cholesterol LiquiColor1 Test Kit, Boerne,

Texas, USA). Low-density lipoprotein (LDL)-cholesterol levels were calculated using the Frie-

dewald formula. Fasting glucose levels were determined using the glucose oxidase method

(Glucose LiquiColor1 Test Kit, Stanbio Laboratory, Boerne, Texas, USA). Homeostatic

model assessment for insulin resistance (HOMA-IR) was computed as (fasting glucose [mg/

dL] × fasting serum insulin [mU/L]/405) [25].

Inflammatory markers and hormones: Myeloperoxidase, IL-6, and TNF-α were quanti-

fied using enzyme-linked immunosorbent assay (ELISA) kits from MyBioSource Inc. (San

Diego, CA, USA). Leptin and insulin levels were measured using ELISA kits from Sigma-

Aldrich (St. Louis, MO, USA). All assays were performed according to manufacturers’ proto-

cols. Cutoff values indicating high risk for metabolic diseases and inflammation-related com-

plications were determined based on previous research in obesity and metabolic syndrome.

These thresholds predict increased risk for metabolic disorders (insulin resistance, cardiovas-

cular diseases) and systemic inflammation, with established clinical significance (p<0.05) in

multiple cohort studies. The following values were defined as high-risk: TNF-α,>29 pg/mL 0;

IL-6, >30 pg/mL; myeloperoxidase, >87.8 ng/mL; leptin,>5 ng/mL; and insulin, >12 uIU/

mL [26–29].

Dietary assessment. The semi-FFQ was designed to assess dietary intake over a 1-month

period. Dietary intake was assessed using a semi-quantitative food frequency questionnaire

(FFQ) containing 75 commonly consumed dishes and beverages in Bangkok, developed in a

previous study [30]. The FFQ categorized food items into 12 groups on the basis of nutrient

composition and obesity risk factors. The semi-FFQ, initially developed for the SI-Health

study. A 5-level scale is used for serving sizes based on the ’household unit’ of the Thai food-

based dietary guidelines. The questionnaire provides information on food consumption fre-

quency and portion sizes, with nutrient profiling to classify foods into three risk levels for non-

communicable diseases (NCDs). Energy and nutrient content were calculated using the

INMUCAL-Nutrients V.4.0 software (Institute of Nutrition, Mahidol University, Nakhon

Pathom, Thailand). High saturated fat consumption was defined as>22 grams, total fat> 70
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grams, and high sugar content> 50 grams, based on the World Health Organization guide-

lines and previous studies [31].

Statistical analysis

The sample size calculation was conducted through two approaches to ensure adequate statisti-

cal power. First, for detecting genetic associations, a power analysis was performed with

parameters of moderate effect size (r = 0.3), power (1-β) = 0.80, and significance level (α) =

0.05 for correlation analysis, indicating a minimum required sample of 374 participants. Sec-

ond, for population proportion estimation, we used the formula n = [Z2p(1-p)]/d2, where

Z = 1.96 (95% confidence level), p = 0.424 (42.4% obesity prevalence in Thai population,

2021), and d = 0.05 (5% margin of error), which also yielded a minimum sample size of 374.

To account for potential 10% data loss, we aimed to recruit 412 participants. The final study

included 384 participants, exceeding the minimum required sample size of 374, thus ensuring

adequate statistical power for both genetic association analysis and population proportion

estimation.

Data were analyzed using Statistical Package for the Social Sciences (version 23, IBM,

Armonk, NY, USA). Continuous variables were expressed as means ± standard deviations and

categorical variables as percentages. Obesity was defined according to Asian classification

(BMI� 25 kg/m2). The associations between dietary lipids and cytokine profiles were assessed

using multivariable logistic regression models, adjusting for potential confounders including

age, gender, and physical activity. Relationships between dietary factors and inflammatory

markers were analyzed using Chi-square tests for categorical variables and Student’s t-tests for

continuous variables. Linear regression analysis, adjusted for gender, was performed to exam-

ine associations between metabolic parameters. Correlations between variables were evaluated

using Pearson correlation coefficients. Statistical significance was set at p< 0.05.

Results

Participant characteristics

The characteristics of the study population are presented in Table 1. The study included a total

of 384 adults, comprising 299 females and 85 males. Females (73.90%) had higher obesity prev-

alence than males (26.1%). Most participants with obesity were aged 46–59 years (46.23%), fol-

lowed by 18–35 years (31.16%). Educational attainment significantly differed between the

non-obese and obese groups, with participants with obesity being more likely to have a bache-

lor’s degree (32.66%) than those who attained high school education (26.13%). Occupational

distribution did not significantly differ between the groups. Both groups reported low rates of

smoking and regular exercise.

Anthropometric parameters

Table 2 provides a comprehensive overview of the anthropometric parameters and the distri-

bution of participants across the non-obese and obese categories. In the obese group, all

anthropometric parameters after adjusted gender were significantly higher (p< 0.001), except

for age and height. Notably, the average waist circumference in the obese group exceeded 90

cm, correlating with increased CVD risk.

Nutritional intake

In the obese group, energy, carbohydrate, protein, sugar, total fat, and saturated fatty acid

(SFA) intakes were significantly higher (p< 0.05). Additionally, in the obese group, cholesterol
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and sodium intakes showed an increasing trend although not statistically significant. Table 3

presents a detailed comparison of nutritional intake between the non-obese and obese groups.

Blood inflammation, hormonal, and biochemical markers

Fig 1 presents a comparison of blood inflammation markers, hormonal levels, and blood bio-

chemistry parameters between non-obese and obese groups. In the obese group, inflammatory

marker (TNF-α and IL-6), myeloperoxidase, leptin, and insulin levels were significantly ele-

vated (p< 0.05). Moreover, blood biochemistry parameters excluding total cholesterol were

significantly higher in the obese group (p< 0.05) and HDL level was higher in non-obese

group significantly (p<0.05).

Table 1. Characteristics of the study population.

Variables Non-obese (%) Obese (%) P value

(n = 185) (n = 199)

Gender 0.051

• Male 33 (17.8) 52 (26.1)

• Female 152 (82.2) 147 (73.90)

Age (Years) 0.093

• 18–35 73 (39.46) 62 (31.16)

• 36–45 37 (20.00) 45 (22.61)

• 46–59 75 (40.54) 92 (46.23)

Education 0.01

• Uneducated 3 (1.62) 0 (0)

• Primary school 14 (7.57) 31 (15.58)

• High School 38 (20.54) 52 (26.13)

• Vocational college 22 (11.89) 25 (12.56)

• Bachelor degree 76 (41.08) 65 (32.66)

• Higher Bachelor degree 32 (17.30) 26 (13.07)

Occupation 0.145

• Unemployed 21 (11.35) 22 (11.06)

• Personal business 31 (16.67) 41 (20.60)

• Employee/House work 44 (23.78) 63 (31.66)

• Office 6 (3.24) 7 (3.52)

• Government service 55 (29.73) 46 (23.12)

• Others/student 28 (15.14) 20 (10.05)

Smoking 0.507

• No 173 (93.51) 184 (92.46)

• Yes 12 (6.49) 15 (7.54)

Exercises (> 150 min/week) 0.849

• No 112 (60.54) 122 (61.31)

• Yes 73 (39.46) 77 (38.69)

Physical activity 0.447

• Physical inactivity 113 (61.08) 109 (54.77)

• Moderate physical activity 55 (29.73) 80 (40.20)

• High activity 17 (9.19) 10 (5.03)

P values are calculated using the Chi-square test.

* P values of <0.05 are considered statistically significant.

https://doi.org/10.1371/journal.pone.0315711.t001
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Correlations between markers and nutritional intake

Table 4. presents correlation between blood inflammation markers, hormonal and nutrition

composition, providing insights into how dietary factors may influence various physiological

markers in the context of obesity. Myeloperoxidase levels were positively correlated with sugar

and total cholesterol intakes (r = 0.151 and 0.121, respectively; p< 0.05). Leptin levels were posi-

tively correlated with energy, carbohydrate, and sugar intakes (r = 0.124, 0.140, and 0.110, respec-

tively; p< 0.05). Table 5 showed TNF-α levels was positively correlated with blood glucose, total

cholesterol, triglyceride, and LDL levels (r = 0.141, 0.122, 0.215, and 0.142, respectively;

p< 0.05). Leptin level was positive correlated with blood glucose, total cholesterol, triglyceride,

and LDL levels (r = 0.154, 0.102, 0.155, and 0.139, respectively, p< 0.05). TNF-α, IL-6, leptin,

insulin, and HOMA-IR were negatively correlated with HDL levels (r = −0.229, −0.143, −0.253,

−0.230, and −0.246, respectively; p< 0.001). IL-6 levels were positively correlated with blood glu-

cose, triglyceride, and LDL levels (r = 0.115, 0.145, and 0.103, respectively; p< 0.05).

Associations in participants with obesity

S1–S3 Tables express interactions between blood inflammation and hormonal markers in rela-

tion to sugar, saturated fat, and total fat intake in the obese group. After adjusting for age and

Table 2. Anthropometric parameters and the number of participants with and without obesity.

Variables Non-obese (n = 185) Obese P value

(n = 199)

Mean ± SD Mean ± SD P valuea

Age (years) 39.81 ± 12.00 42.04 ± 11.37 0.063 0.443

Hight (cm) 159.42 ± 7.29 160.00±8.34 0.478 0.368

Weight (kg) 56.04±6.70 76.89±16.08 0.000* 0.000*
Fat (%) 27.36±6.02 37.78±7.94 0.000* 0.000*
Fat-mass (kg) 15.31±3.95 29.40±11.34 0.000* 0.000*
Fat-free mass (kg) 40.64±6.34 47.20±9.78 0.000* 0.001*
Muscle-mass (kg) 38.37±6.03 44.64±9.46 0.000* 0.000*
Basal Metabolic rate (kcal) 1189.72±166.83 1435.78±278.19 0.000* 0.000*
Metabolic age (years) 33.46±9.70 55.50±10.45 0.000*

0.000*
Visceral fat rating 5.19±2.39 10.63±3.86 0.000* 0.000*
Body mass index (kg/m2) 22.02±1.68 29.87±5.10 0.000* 0.000*
Waist circumference (cm) 76.05±9.69 94.54±12.32 0.000*

0.000*
Hip circumference (cm) 94.96±4.77 108.02±9.59 0.000*

0.000*
Waist to Hip ratio 0.79±0.09 0.87±0.07 0.000* 0.000*
Neck circumference (cm) 32.67±3.23 37.21±4.06 0.000*

0.000*
Middle arm circumference (cm) 26.31±2.52 32.21±3.58 0.000*

0.000*
Blood pressure (mmHg)

Systolic 119.26±16.59 133.92±18.20 0.000* 0.000*
Diastolic 75.66±10.54 83.86±12.58 0.000* 0.000*

P values are calculated using Student’s t-test. Data are presented as means ± standard deviations (SDs).

P valuesa are calculated using Linear regression adjusted by gender

* P values of <0.05 are considered statistically significant.

https://doi.org/10.1371/journal.pone.0315711.t002
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gender, high saturated fat intake was associated with increased IL-6 levels (odds ratio [OR] =

2.03, 95% confidence interval [CI] = 1.00–4.11, p< 0.047) compared with low saturated fat

intake. High total fat intake was associated with increased leptin levels (OR = 2.14, 95%

CI = 1.12–3.38, p< 0.021) compared with low fat intake. Although high sugar intake showed a

trend toward increased leptin levels (OR = 2.12), this association was not statistically signifi-

cant as shown in S1 Table.

Discussion

Individuals with BMIs of 25 kg/m2 or more are considered obese, which is a major risk factor

for metabolic disorders, including T2D and CVDs, and is independently linked to greater

mortality. Our study, which included 384 adults, noted that females (73.90%) had higher obe-

sity prevalence than males (26.1%), with most participants with obesity aged 46–59 years

(46.23%). To address the higher prevalence of obesity among women, both globally and specif-

ically in Asia, several factors need to be considered, including biological, sociocultural, and

economic influences. Globally, women tend to have higher obesity rates than men due to

Table 3. Nutrition consumption of the non-obese and obese groups.

Variables Non-obese

(n = 185)

Obese

(n = 199)

P value

Mean ± SD Mean ± SD

Nutrients

Energy (kcal/day) 2249.64±626.47 2565.93±1044.46 0.001

Carbohydrate (g) 262.18±84.03 301.82±117.02 0.000

Sugar (g) 65.14±33.02 75.58±44.39 0.011

Protein (g) 102.08±32.38 115.92±55.87 0.004

Total Fat (g) 88.07±29.37 99.75±50.42 0.007

SATFAT (g) 26.49±8.38 29.92±15.10 0.008

Cholesterol (g) 461.86±193.17 511.21±294.08 0.059

Sodium (mg) 3310.96±2271.57 3634.27±2510.43 0.197

Carbohydrate (%) 46.52±7.07 47.80±8.45 0.164

Protein (%) 18.33±3.08 18.01±3.20 0.341

Fat (%) 35.15±5.40 34.18±6.64 0.128

P values are calculated using Student’s t-test. Data are presented as means ± SDs.

* P values of <0.05 are considered statistically significant.

https://doi.org/10.1371/journal.pone.0315711.t003

Fig 1. A: Blood inflammation and enzyme markers of non-obese and obese group B: Hormonal marker of non-obese and obese group C: Blood biochemistry

of non-obese and obese group. P value were calculated by Student’s t test compared between both groups. * is statistically significant at p value<0.05.

https://doi.org/10.1371/journal.pone.0315711.g001
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physiological factors such as differences in fat distribution and hormonal that predispose them

to higher fat accumulation [32]. Sociocultural norms, such as expectations around body

image, diet, and physical activity, also disproportionately affect women, with many cultures

imposing greater limitations on women’s mobility and exercise opportunities [33]. In Asia,

rapid urbanization and economic transitions have resulted in lifestyle changes, such as a shift

toward higher consumption of processed and energy-dense foods combined with more seden-

tary behaviors, which disproportionately affect women [34]. The combination of these factors

can lead to an increase in the obesity prevalence among women in these regions. Furthermore,

the nutrition transition in many developing Asian countries has significantly contributed to

the rising obesity rates in women, particularly as traditional diets give way to more

Table 4. Correlation between blood inflammation markers, hormonal, and nutrition composition.

Correlation

Energy CHO sugar Protein Total fat SFAs Cholesterol %CHO %Protein %FAT

TNF-α Pearson Correlation 0.025 0.053 0.04 0.02 -0.009 -0.018 -0.056 0.091 -0.024 -0.105

p value 0.631 0.311 0.445 0.698 0.868 0.732 0.283 0.083 0.648 0.146

IL-6 Pearson Correlation -0.027 -0.008 0.019 -0.037 -0.036 -0.043 -0.054 0.028 -0.007 -0.033

p value 0.604 0.878 0.712 0.48 0.5 0.417 0.302 0.591 0.896 0.532

Myeloperoxidase Pearson Correlation 0.025 0.032 .151** -0.024 0.035 0.054 .121* 0.012 -0.088 0.03

p value 0.637 0.541 0.004 0.642 0.507 0.306 0.021 0.822 0.095 0.567

Leptin Pearson Correlation .124* .140** .110* 0.078 0.097 0.095 0.031 0.082 -0.081 -0.064

p value 0.018 0.008 0.036 0.14 0.064 0.072 0.559 0.119 0.124 0.227

Insulin Pearson Correlation 0.007 0.053 0.016 -0.018 -0.032 -0.047 -0.051 0.092 -0.042 -0.097

p value 0.893 0.315 0.765 0.731 0.546 0.37 0.336 0.08 0.429 0.065

**. Correlation is significant at p values of <0.01.

*. Correlation is significant at p values of <0.05.

Abbreviations: CHO as a carbohydrate, SFAs as a saturated fatty acid.

https://doi.org/10.1371/journal.pone.0315711.t004

Table 5. Correlation between blood inflammation markers, hormonal, and blood biochemistry.

Correlations

Blglucose Blcholes BLHDL BLTG BLLDL

TNF-α Pearson Correlation .141** .122* -.229** .215** .142**
Sig. (2-tailed) .006 .018 .000 .000 .006

IL-6 Pearson Correlation .115* .092 -.143** .145** .103*
Sig. (2-tailed) .025 .073 .005 .005 .044

Myeloperoxidase Pearson Correlation .217** -.005 -.056 .093 -.011

Sig. (2-tailed) .000 .929 .275 .071 .835

Leptin Pearson Correlation .154** .102* -.253** .155** .139**
Sig. (2-tailed) .003 .048 .000 .002 .006

Insulin Pearson Correlation .357** .031 -.230** .211** .046

Sig. (2-tailed) .000 .547 .000 .000 .372

HomaIR Pearson Correlation .756** .056 -.246** .345** .048

Sig. (2-tailed) .000 .276 .000 .000 .355

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Abbreviations: Blglucose as a Blood glucose, Blccholes as a Blood cholesterol, BLHDL as a Blood HDL, BLTG as a Blood triglyceride, BLLDL as a Blood LDL.

https://doi.org/10.1371/journal.pone.0315711.t005
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Westernized eating patterns [35]. This finding aligns with the understanding that obesity

results from a imbalance between energy intake and expenditure, influenced by genetics,

nutrition, and environmental factors. An individual’s diet and activity level are two key lifestyle

factors that influence how obesity and its comorbidities start and worsen [36].

In participants with obesity, we observed significantly elevated inflammatory marker

(TNF-α and IL-6), myeloperoxidase, leptin, and insulin levels (p< 0.05). This finding supports

the concept that obesity is characterized by increasing inflammation and immune cell infiltra-

tion into adipocytes [37]. The positive correlations observed between the levels of these mark-

ers and blood glucose, lipids, and LDL levels further emphasize the relationship between

obesity, inflammation, and metabolic disorders [38]. Our negative correlations between HDL

and inflammatory markers (TNF-α, IL-6), leptin, and insulin also suggest a relationship where

inflammation may impair HDL synthesis and increase its catabolism. This could create a cycle

where reduced HDL levels further compromise anti-inflammatory protection in obesity. Obe-

sity is associated with chronic low-grade inflammation, largely due to the excessive expansion

of adipose tissue. As adipocytes expand, immune cells, particularly macrophages, infiltrate the

adipose tissue and secrete pro-inflammatory cytokines such as TNF-α and IL-6, which play a

key role in the development of insulin resistance. TNF-α disrupts insulin signaling through

the activation of NF-κB and other inflammatory pathways, impairing glucose uptake in

peripheral tissues like muscle and liver [39]. Similarly, IL-6 promotes hepatic glucose produc-

tion and exacerbates insulin resistance [40]. Leptin, a hormone predominantly secreted by adi-

pocytes, is also elevated in obesity, but its normal regulatory function on appetite and energy

expenditure becomes impaired, leading to leptin resistance [41]. High circulating triglycerides

have been implicated in disrupting leptin transport across the blood-brain barrier, reducing

leptin’s ability to signal satiety, which exacerbates overeating and weight gain [42]. This condi-

tion of leptin resistance is commonly observed in obesity and contributes to its progression

[41].

Our nutritional intake analysis revealed significantly higher energy, carbohydrate, protein,

sugar, total fat, and SFA consumption in the obese group (p< 0.05). This finding aligns with

previous findings that dietary fat is a crucial factor in obesity development. Certain dietary

components including dietary fat can influence inflammation in humans. The fatty acids that

make up dietary fat include polyunsaturated fatty acids of the omega (n) 6- and n3-family, con-

jugated linoleic acid, monounsaturated fatty acids (MUFAs), and saturated and trans fatty

acids. One possible mechanism by which dietary fat modulates inflammation is through eicos-

anoid compound metabolism or it may operate by activating gene expression to regulate mem-

brane and cytosolic signaling [43]. Notably, we observed that high saturated fat intake was

associated with increased IL-6 levels (OR = 2.03, 95% CI = 1.00–4.11, p< 0.047), whereas high

total fat intake was associated with increased leptin levels (OR = 2.14, 95% CI = 1.12–3.38,

p< 0.021) in participants with obesity. These findings support the idea that inflammation and

disease risk are influenced by dietary components, particularly fat [44]. A high-fat diet, partic-

ularly one rich in saturated fatty acids (SFAs), can trigger a cascade of inflammatory responses

in the body. SFAs are known to activate Toll-like receptors (TLRs), specifically TLR4, which is

expressed on various immune cells and adipocytes. When SFAs bind to TLR4, it activates the

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, leading to the

transcription of pro-inflammatory cytokines [45]. This process results in chronic low-grade

inflammation, a hallmark of obesity, characterized by the infiltration of immune cells into adi-

pose tissue.

The positive correlation we observed between leptin levels and energy, carbohydrate, and

sugar intakes suggests a potential mechanism for leptin resistance in obesity. The observed

weak correlation indicates that only a limited portion of the variance in leptin levels can be
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attributed to variations in sugar intake. Consequently, this raises questions about the practical

implications of these findings within a clinical context. Previous literature has similarly

reported such associations yet emphasized that statistical significance does not equate to mean-

ingful clinical effects. For instance, studies by Sinha et al. [46]. indicate that while certain die-

tary components may correlate with leptin levels, the clinical significance of these correlations

can be limited. Weak correlations may not result in substantial changes in health outcomes or

metabolic risk, thereby necessitating a broader evaluation of dietary patterns and lifestyle fac-

tors influencing leptin regulation. This finding aligns with how continuous high calorie intake

leads to leptin resistance, due to elevated triglyceride and leptin levels impairing leptin

transport.

Moreover, our study showed that all anthropometric parameters, except for age and height,

were significantly higher in the obese group (p< 0.001). Notably, the average waist circumfer-

ence in the obese group exceeded 90 cm, correlating with increased CVD risk [47] The effects

of different fatty acids on inflammation and metabolic parameters are particularly interesting.

Consuming an SFA-enriched diet resulted in increased inflammatory marker levels, whereas

consuming a MUFA-rich diet caused an increased anti-inflammatory activity, which supports

the results of previous studies on the differential impacts of fatty acid types [48] The mecha-

nism may involve the stimulation of peroxisome proliferator-activated receptors, which play

regulatory roles in glucose and lipid homeostasis [49]. The elevated leptin levels in participants

with obesity, coupled with the association between high fat intake and increased leptin levels,

support the concept of leptin resistance in obesity [41] This resistance may be partly caused by

impaired leptin transport, potentially influenced by high triglyceride levels, as suggested by

previous studies [50].

Although our study showed a trend toward increased leptin levels with high sugar intake,

this was not statistically significant. However, animal studies have pointed to fructose as a pos-

sible cause of leptin resistance, suggesting that more research is needed to better understand

how carbohydrates affect leptin levels in humans [51]. The study demonstrates several

strengths, including a large sample size of 384 adults aged 18–59 years, which provides robust

statistical power for analyses. It also conducted a comprehensive assessment, including anthro-

pometric measurements, blood biochemistry, inflammatory markers, hormones, and dietary

intake. The quantification of specific associations, such as the odds ratio for high saturated fat

intake and increased IL-6 levels, adds to the study’s rigor. However, the study also has limita-

tions. Its cross-sectional design precludes the establishment of causal relationships between

dietary fat consumption and inflammatory markers or leptin levels. The reliance on self-

reported dietary intake may introduce recall bias, potentially affecting the accuracy of the die-

tary data. Additionally, the use of Asian obesity classification criteria may limit the generaliz-

ability of findings to non-Asian populations. Moreover, the limitation for this study is the

semi-FFQ. Although our semi-FFQ was adapted from a previously validated version for Thai

adults with metabolic syndrome risk [29], and underwent expert review for our modifications

of additional local foods, the modified version has not yet been specifically validated in our

study context, which could affect the precision of dietary intake assessments.

Future research should focus on longitudinal and intervention studies to establish causal

relationships between dietary fat consumption, inflammatory markers, and leptin levels in

obesity. A closer examination of different types of fats and carbohydrates could elucidate the

mechanisms underlying diet-induced leptin resistance. Investigating these associations in

diverse populations would broaden the applicability of findings. Examining gene-diet interac-

tions and long-term health outcomes associated with dietary fat-induced changes in inflamma-

tory markers and leptin levels could provide more insights. These directions may lead to more
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effective nutritional strategies for obesity management and prevention of related metabolic

complications.

Conclusions

Obesity is a chronic low-grade inflammation. Dietary factors, particularly HFDs, exacerbate

inflammation and impact leptin levels, thereby influencing obesity-related metabolic disor-

ders. The results of our study showed a positive correlation between blood biochemistry and

TNF-α, IL-6, and leptin levels. Furthermore, energy, carbohydrate, and sugar intakes were

positively correlated with leptin levels. Moreover, the results indicated that high fat consump-

tion (SFAs) increased IL-6 and leptin levels in participants with obesity. This relationship may

contribute to the development of metabolic syndrome and its associated complications. Our

findings highlight the significance of dietary strategies in managing obesity-related health risks

and support the role of reduced-fat diets in promoting metabolic health in individuals with

obesity.
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