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ABSTRACT
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. 
Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales 
(i.e., γ-diversity), either due to reduced β-diversity amplifying diversity loss or increased β-diversity dampening diversity loss. 
Additionally, studies often focus on taxonomic diversity, while other important biodiversity components, including phylogenetic 
diversity, can exhibit differential responses. Here, we evaluated how agricultural and urban land use alters the taxonomic and 
phylogenetic α-, β-, and γ-diversity of an important pollinator taxon—bees. Using a multicontinental dataset of 3117 bee assem-
blages from 157 studies, we found that taxonomic α-diversity was reduced by 16%–18% in both agricultural and urban habitats 
relative to natural habitats. Phylogenetic α-diversity was decreased by 11%–12% in agricultural and urban habitats. Compared 
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with natural habitats, taxonomic and phylogenetic β-diversity increased by 11% and 6% in urban habitats, respectively, but ex-
hibited no systematic change in agricultural habitats. We detected a 22% decline in taxonomic γ-diversity and a 17% decline in 
phylogenetic γ-diversity in agricultural habitats, but γ-diversity of urban habitats was not significantly different from natural 
habitats. These findings highlight the threat of agricultural expansions to large-scale bee diversity due to systematic γ-diversity 
decline. In addition, while both urbanization and agriculture lead to consistent declines in α-diversity, their impacts on β- or γ-
diversity vary, highlighting the need to study the effects of land use change at multiple scales.

1   |   Introduction

Human activities have transformed global terrestrial environ-
ments for anthropogenic land uses, mainly agriculture and urban 
development (Ellis et al. 2010). These processes reduce biodiver-
sity by creating environments with unsuitable biotic and abi-
otic conditions and enhancing competitive exclusion (Mayfield 
et al. 2010), ultimately threatening ecosystem functions (van der 
Plas 2019). A common approach in evaluating the ecological im-
pacts of land use change is to compare the number of taxa within 
assemblages (taxonomic α-diversity) between natural habitats 
and anthropogenic habitats (Purvis and Hector 2000). Previous 
studies have found that taxonomic α-diversity in different taxa 
can be reduced by 19%–40% in agricultural habitats and 4%–50% 
in urban habitats on average (Newbold et al. 2015).

However, taxonomic α-diversity analyses could fail to capture the 
potential effects of land use change on homogenizing assemblages, 
thus underestimating γ-diversity loss (i.e., diversity at larger spa-
tial scales) (Socolar et al. 2016). Taxonomic β-diversity, relatively 
understudied compared with taxonomic α-diversity, captures 
compositional variations between assemblages and can deter-
mine how α-diversity loss upscales to γ-diversity (Mori, Isbell, 
and Seidl 2018; Socolar et al. 2016). Specifically, reduced and in-
creased β-diversity can result in higher and lower γ-diversity loss 
relative to what would be expected based on α-diversity losses 
alone (Socolar et al. 2016). While land use change is expected to 
homogenize assemblages and reduce β-diversity, empirical stud-
ies have shown mixed results (Newbold et al. 2016).

Regardless of the spatial scale at which it is measured, a limita-
tion of taxonomic diversity is its inability to effectively reflect 
ecological differences between species, such as morphology, 
physiology, and phenology (Purvis and Hector  2000; Tucker 
et al. 2017). Recent studies have increasingly emphasized analyz-
ing phylogenetic diversity alongside taxonomic diversity (Cadotte 
and Tucker 2018; Tucker et al. 2017). As evolution shapes spe-
cies traits, phylogenetic approaches can efficiently capture high-
dimensional ecological differences, reducing the risks of omitting 
important traits (Tucker et al. 2017, 2018). Additionally, phyloge-
netic diversity has exhibited similar or even better performance 
than taxonomic diversity in explaining ecosystem functions or 
services across sites (Tucker et al. 2019; van der Plas 2019).

While not always the case, responses of phylogenetic diversity 
to land use change should largely follow taxonomic diversity 
change (Tucker and Cadotte 2013). However, land use could also 
lead to more phylogenetic diversity loss than would be expected 
based on the taxonomic diversity loss. This is because land 
use change can strengthen phylogenetic habitat filtering (Grab 
et  al.  2019; Nowakowski et  al.  2018), causing only a subset of 

phylogenetically similar species to persist under anthropogenic 
land uses due to conserved traits (Duarte  2011). Interestingly, 
the filtering effects on α- and β-diversity can vary, again demon-
strating the importance of analyzing both α- and β-diversity to 
better understand net impacts at larger spatial scales (i.e., γ-
diversity) (Nowakowski et al. 2018).

To understand how land use change affects taxonomic and phy-
logenetic diversity, we focused on a well-studied and ecologi-
cally important taxon, bees. Pollination services by bees can 
be greater in sites with high bee taxonomic and phylogenetic 
α-diversity and landscapes with high taxonomic β-diversity 
between sites (Grab et  al.  2019; Weekers et  al.  2022; Winfree 
et  al.  2018) compared to lower diversity sites and landscapes. 
Ongoing global land use change is known to reduce bee diver-
sity generally (Cariveau and Winfree 2015; De Palma et al. 2016; 
Winfree, Bartomeus, and Cariveau  2011). However, the exact 
effects can vary with land use types, with some studies report-
ing increased bee diversity under land use change (Cariveau and 
Winfree 2015; Prendergast, Dixon, and Bateman 2022; Winfree, 
Bartomeus, and Cariveau  2011). Furthermore, the impacts of 
anthropogenic land uses are often evaluated using taxonomic 
α-diversity, even though other biodiversity metrics could exhibit 
different patterns (De Palma et al. 2017; Harrison, Gibbs, and 
Winfree  2018). Importantly, some bee lineages are especially 
sensitive to land use change, which could lead to a more sub-
stantial decline in phylogenetic diversity relative to taxonomic 
diversity (Grab et al. 2019; Harrison, Gibbs, and Winfree 2018).

We examined the ecological impacts of land use change on 
global bee diversity using bee assemblage data from agricul-
tural, urban, and natural habitats across all continents except 
Antarctica, where bees are absent. Our objectives were to (1) 
compare taxonomic and phylogenetic α-, β-, and γ-diversity 
among natural, agricultural, and urban habitats; (2) investigate 
whether land use change leads to stronger phylogenetic habitat 
filtering; and (3) identify the genera particularly affected by the 
agricultural and urban habitats. For Objective 1, we expected 
that natural habitats would contain greater taxonomic and phy-
logenetic α-, β-, and γ-diversity. For Objective 2, we predicted 
declines in phylogenetic diversity in urban and agricultural 
habitats, even after controlling for taxonomic diversity, due to 
increased phylogenetic habitat filtering.

2   |   Materials and Methods

2.1   |   Data Collection, Cleaning, and Filtering

Bee data were collected from various sources, includ-
ing the PREDICTS database (Hudson et  al. 2014), a 
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previous meta-analysis on bee diversity in agricultural sys-
tems (Kennedy et al. 2013), literature searches, and expert rec-
ommendations (see Section S1 for details and the limitations of 
our dataset). We corrected species synonyms using a bee spe-
cies guide and world checklist (Ascher and Pickering  2022). 
Missing taxa were further reviewed by a taxonomist coauthor 
(John S. Ascher). For 1% of 2257 species-level identifications, 
no matches were found; these were treated as morphospecies 
instead of species. For morphospecies or genus-level data, 
we checked the validity of the genus in the checklist and cor-
rected them when necessary.

Datasets were divided into different studies (see Table S1 for de-
tails of each study) according to their sampling strategies, which 
were broadly classified as (1) “flower visitors,” if the study sam-
pled flower-visiting bees within an area; (2) “targeted plants,” if 
the study sampled flower-visiting bees of targeted plant species; 
and (3) “all bees” for any other method, such as pan traps, hand 
netting, and vane traps. Thus, if a dataset provided bee data 
based on different sampling strategies, such as pan traps and 
hand-netting bees from targeted plant species, the data would 
be separated into different studies. For each site within each 
study, we aggregated bee species abundance data across sam-
pling dates (hereafter referred to as assemblage). We excluded 
Apis mellifera from all assemblages, as they were often from 
managed colonies.

We only included assemblages in our analyses if the following 
criteria had been met: (1) The sampling strategy had a broad 
taxonomic focus rather than only focusing on certain groups 
of bees (e.g., Bombus spp., solitary bees). (2) Spatial coordinates 
were recorded. (3) The number of individuals observed was re-
corded. (4) At least 10 individuals were identified to at least the 
genus level to ensure reliable rarefaction results (see below). We 
did not use a threshold higher than 10 individuals because this 
might bias the analyses against impoverished assemblages. The 
threshold is also consistent with or higher than that used in pre-
vious studies based on rarefaction (Blowes et al. 2022; van Klink 
et al. 2024). (5) The assemblages had sampling completeness of 
≥ 50% to ensure the reliability of diversity estimates. Sampling 
completeness was calculated using the R package iNEXT.3D 
(Chao et  al.  2021). (6) The assemblage had at least 95% of ob-
served individuals identified to at least the genus level to ensure 
reliable estimations of phylogenetic diversity. We did not set a 
minimum number of assemblages to include in a study for sub-
sequent analyses.

2.2   |   Definition of Land Uses

We classified the land use of each assemblage based on the 
predominant environment within the sampling area. Natural 
habitats were defined as areas primarily covered by vegetation 
resulting from natural succession or restoration (i.e., active at-
tempts to bring the site to a more natural state). Agricultural 
habitats were defined as sites managed for growing resources, 
including food and animal products. Urban habitats included 
green spaces covered by planted vegetation (not natural  
succession) managed for amenity or recreation (e.g., lawns 
and gardens). See Section  S2 for details of the land use 
classification.

2.3   |   Phylogeny

We used a global genus-level phylogeny to quantify the phy-
logenetic diversity of each assemblage (Hedtke, Patiny, and 
Danforth 2013). Tip names on the phylogenetic tree were cor-
rected using Ascher and Pickering (2022) and further reviewed 
by a taxonomist coauthor (John S. Ascher). We converted the 
tree to ultrametric using a non-negative least square (Turley 
et al. 2022). The strong cophenetic correlation (Pearson's r = 0.93) 
indicated that the tree's structure was largely conserved. Our 
data contained taxa from 355 genera, of which 32 were missing 
from the tree and were added to the closest sister genus available 
(Table S2). We randomly selected one species in the tree from 
each genus, then attached all species from each study as polyto-
mies at the midpoint of its corresponding genus branch, as this 
approach has been demonstrated to capture phylogenetic diver-
sity well when a species-level phylogeny is unavailable (Qian 
and Jin 2021). While the use of a genus-level phylogeny might 
not fully capture phylogenetic patterns of assemblages, previous 
bee studies have used the same phylogeny and detected phylo-
genetic diversity changes and phylogenetic habitat filtering (De 
Palma et al. 2017; Harrison, Gibbs, and Winfree 2018; Hendrix, 
Forbes, and MacDougall 2018). We quantified the phylogenetic 
α-diversity of each assemblage by generating 10 phylogenetic 
trees and found that the values of phylogenetic α-diversity were 
highly correlated (Pearson's r > 0.99). Thus, we only used the 
first phylogenetic tree for subsequent analyses.

2.4   |   α- and γ-Diversity Estimates

In our analyses, α- and γ-diversity always represent within- and 
across-sample diversity, respectively, within the same land use 
type. Thus, comparing α- and γ-diversity across habitats allows 
for assessing whether diversity loss is exacerbated at larger 
spatial scales by land use change (Chase et  al.  2019; Socolar 
et al. 2016). To estimate taxonomic and phylogenetic α- and γ-
diversity, we estimated both metrics with the Hill number equal 
to 1, as it considers the relative abundance of species within as-
semblages and is less prone to undersampling than lower Hill 
numbers (Roswell, Dushoff, and Winfree 2021).

We estimated α-diversity for all assemblages, while γ-diversity was 
estimated only for studies with at least five assemblages from at 
least one land use. Additionally, γ-diversity was only estimated 
for studies that indicated sampling effort for each assemblage. We 
pooled species abundance data across assemblages of the same 
land uses within each study before conducting the γ-diversity 
rarefaction analyses. To control for differences in sampling com-
pleteness between assemblages across studies, we extrapolated all 
α- and γ-diversities to their asymptotes (i.e., when sampling com-
pleteness equals 1). Each assemblage's taxonomic and phyloge-
netic diversity was estimated using iNEXT.3D (Chao et al. 2021).

2.5   |   β-Diversity Estimates

For each land use in each study, we used multiplicative parti-
tioning (β = γ/mean α) to obtain their β-diversity (Jost  2007). 
This method is especially suitable to understand the spatial scal-
ing of diversity loss, as it represents the scaling factor relating 
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α- and γ-diversity (Baselga 2013; Socolar et al. 2016). The metric 
also reflects the contribution of β-diversity to γ-diversity (contri-
bution of β = (1 − α/γ) × 100% = (1 − 1/β) × 100%).

The corresponding γ- and α-diversities were taken from rarefac-
tion analyses. As more abundant assemblages should more heavily  
influence γ-diversity estimates, mean α-diversity was weighted ac-
cording to the total abundance of each assemblage (Crist et al. 2003). 
Consistent with the γ-diversity analyses, our analyses included  
only studies with at least five assemblages in at least one land use.

2.6   |   Climatic and Methodological Variables

We collected a variety of climatic and methodological variables 
to control for their effects on bee diversity and to better quantify 
any effect of land use change (Table 1). For climatic variables, we 
collected mean annual temperature and annual precipitation, as 
well as the seasonality of each assemblage from the public da-
tabase CHELSA v1.2 (Karger et al. 2017). Annual precipitation 
was square root transformed to reduce the effects of outliers. All 
data were at 30-arc-second (~1 km) resolution.

For the β- and γ-diversity analyses, we additionally included 
methodological variables in the models that might affect both 
diversity metrics, namely, (1) study extent, (2) standard devia-
tions in sampling efforts across assemblages, (3) the number of 
assemblages, (4) standard deviations in sampling completeness 

across assemblages, and (5) log-transformed mean sampling 
completeness across assemblages (Table 1; see Section S3 for de-
tails and rationales to include these variables).

Preliminary analyses found high collinearity (Pearson's r > 0.7) 
among climatic variables and among the mean and standard 
deviations in sampling completeness across assemblages. Thus, 
we conducted robust PCA separately for all climatic variables 
and the two methodological variables. We included climatic PC1 
and PC2 for subsequent analyses, which captured > 81% of the 
climatic variations within our dataset (Table S3). Increasing PC1 
scores primarily reflect colder sites with high seasonality in tem-
perature but low seasonality in precipitation, while increasing 
PC2 scores reflect warmer and wetter sites with lower tempera-
ture seasonality and lower precipitation seasonality.

For the two methodological variables, we extracted the PCA1 
score to represent them, as it captured 93.1% variations across 
assemblages. A higher sampling effort PCA1 score indicates 
lower mean sampling completeness with higher variation across 
assemblages (Table  S3). Robust PCA was conducted using R-
package rrcov (Todorov and Filzmoser 2009).

2.7   |   General Modeling Strategy

We used mixed models to identify the effects of land use while 
controlling for methodological and climatic covariates, as well as 

TABLE 1    |    Predictors for the models related to each objective. Objectives 1a, 1b, and 1c are to compare α-, β-, and γ-diversities across three land 
uses, respectively. Objectives 2a, 2b, and 2c are to assess whether agricultural and urban habitats exhibited stronger phylogenetic habitat filtering in 
α-, β-, and γ-diversities, respectively. Objective 3 is to identify genera with altered abundance in agricultural and urban habitats relative to natural 
habitats. The rationales including different variables and their transformations have been described in the main text.

Variable name Description Objectives

Land use A factor with three levels: Natural/agricultural/urban 1–3

Sampling method A factor with three levels: All bees/floral visitor 
only/floral visitor of targeted plants

1–3

Climate PCA1 PCA1 score based on mean annual temperature, annual precipitation, as 
well as temperature and precipitation seasonality of each assemblage

1–3

Climate PCA2 PCA2 score based on the aforementioned climatic variables 1–3

log(Number of assemblages) Number of assemblages of each land use within a study 1b–1c

2b–2c

Sampling effort SD The standard deviation of sampling efforts between 
assemblages of the same land use within a study

1b–1c

2b–2c

Sampling completeness PCA1 PCA1 score based on the mean and standard deviation of sampling 
completeness between assemblages of the same land use within a study

1b–1c

2b–2c

log(Sampling extent) Maximum distance between assemblages of the same land use within a study 1b–1c

2b–2c

log(Taxonomic diversity) The taxonomic counterpart of phylogenetic α-, β-, and γ-diversities 2

Study identity Added as random effects to account for other differences between studies 1–3

Spatial autocorrelation term Controlling for spatial autocorrelation within each study 
based on the latitude and longitude of each assemblage

1a, 2a, 3a
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other unaccounted-for study differences using random effects. 
Study-level variation can lead to varying estimates of land use 
effects. For example, the effects may be stronger in warmer land-
scapes with fewer natural habitats in the surrounding environ-
ments (Ganuza et al. 2022; Kennedy et al. 2013). Methodological 
factors such as sampling area (Azaele et al. 2015) and methods 
(Lee and Guénard 2019) can also alter estimates of land use ef-
fects. Here, we focused on the general trend across studies rather 
than examining how land use change interacts with other envi-
ronmental or methodological variables. Therefore, apart from a 
few climatic and methodological covariates, we used study iden-
tity as a random effect to control for such study-level variations.

This statistical framework has been used in previous quantita-
tive syntheses assessing land use effects on diversity or abun-
dance by comparing data from studies conducted in different 
regions based on different methods. It also allows for studies 
with data on one land use only (De Palma et al. 2016; Millard 
et  al.  2021; Newbold et  al.  2015). A summary of how mixed 
models work is provided in Section S4. Additionally, we provide 
a simple simulation (Section S5) to justify our approach of in-
cluding study-level land use effects, despite some studies only 
providing bee data for a single land use. We emphasize here that 
mixed models do not estimate study-level land use effects (or, 
in general, any random slope) through modeling its relationship 
in each study individually. Rather, the calculations involve cal-
culating the fixed effects and the variance–covariance matrix, 
which uses data from all studies (Raudenbush and Bryk 2002). 
Below we provided a brief description of the models. For mathe-
matical expressions, please refer to Table S4.

2.8   |   Objective 1a: α-Diversity

To examine how taxonomic and phylogenetic α-diversity varied 
across land uses, we built linear mixed models with Gaussian 
distributions using log-transformed α-diversity. We specified 
log-transformed α-diversity as the response to improve normal-
ity. For predictors, we included sampling method (three levels: 
all bees/flower visitors/targeted plants) and land use (three 
levels: natural/agricultural/urban) of each site. Climatic PC1 
and PC2 scores were also added as predictors to control for the 
effects of regional climate on bee α-diversity. Our analyses in-
cluded nominal variables, so we set the intercepts as natural 
habitats sampled with methods targeting all bees. We further 
used sampling completeness as a weight in the regression, such 
that poorly sampled sites (and, therefore, those with higher un-
certainty in diversity estimates) had lower weights in the analy-
ses (Carvalheiro et al. 2013).

For random effects, study identity was added as a random inter-
cept, with land use effects added as random slopes, so the esti-
mates of land use effects could vary across studies. The random 
slopes were never correlated with random intercepts to facilitate 
model convergence (Matuschek et al. 2017).

Additionally, to control for spatial autocorrelation, we added 
an assemblage-level random intercept based on the spatial co-
ordinates of each site. The Matérn correlation model was used 
to construct the correlation matrix and estimate the spatial 
random effect. All spatial random effects were study specific, 

indicating that spatial autocorrelations were modeled within 
but not across studies, as they had very different methodologies. 
Indeed, we detected substantial spatial autocorrelation between 
sites within the same study but not between sites across differ-
ent studies (Section  S6). We compared models with and with-
out spatial random effects and found that the model including 
spatial autocorrelation had a significantly improved model fit, 
as indicated by a reduction of > 490 in the conditional Akaike 
information criterion.

We built the linear mixed model using R package spaMM, 
which allows including spatial random effects (Rousset and 
Ferdy 2014). We then conducted an omnibus test for differences 
across land uses based on F tests using R package lmerTest 
(Kuznetsova, Brockhoff, and Christensen 2017). If the effect of 
land use was significant, we further conducted pairwise com-
parisons across the three land uses, with the p-value adjusted by 
false discovery rate corrections.

2.9   |   Objective 1b and 1c: β- and γ-Diversity

The β- and γ-diversity analyses were conducted at the study 
level (i.e., each land use from a study contributes 1 data point). 
In the models, log-transformed multiplicative β-diversity (to 
improve normality) and untransformed γ-diversity were the 
responses. Land uses, sampling methods, climatic PC1 and 
PC2 scores, number of sampling sites, standard deviations 
of sampling efforts, PC1 scores based on sampling complete-
ness, and study extent were added as predictors. Climatic PC1 
and PC2 scores were averaged across assemblages of the same 
land use in each study. Study extent and number of sampling 
sites were log-transformed, as their effects tend to be nonlinear 
(Beck, Holloway, and Schwanghart 2013; Marcon, Zhang, and 
Hérault 2014; Marion, Fordyce, and Fitzpatrick 2017; Soininen, 
McDonald, and Hillebrand 2007). We added sampling complete-
ness of γ-diversity as weights in the models to account for some 
pooled assemblages being more unreliable in diversity estima-
tions due to low completeness. Study identity was added as a 
random intercept.

We started with a model that included the interaction between 
land use and study extent due to potential differences in dis-
tance–decay relationship across land uses. However, the in-
teraction term was nonsignificant. Therefore, we included no 
interaction term in the final model. Again, an omnibus test was 
conducted for the effect of land use, and if significant, pairwise 
comparisons were conducted across land use. Linear mixed 
models were built with R package lme4 (Bates et al. 2015) and 
p-values were obtained from lmerTest (Kuznetsova, Brockhoff, 
and Christensen 2017). Pairwise comparisons were conducted 
in emmeans (Lenth 2024), with the p-values adjusted by false 
discovery rate corrections.

2.10   |   Objective 2: Phylogenetic Habitat Filtering 
in Natural, Agricultural, and Urban Habitats

If agricultural and urban land uses increase phylogenetic hab-
itat filtering, their negative effect on phylogenetic diversity 
should still be significant after adding taxonomic diversity as 
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a covariate. Previous studies have used this approach to assess 
whether environments have lower phylogenetic diversity than 
expected based on taxonomic diversity (Barreto, Graham, and 
Rangel 2019; Sol et al. 2017). We did not use null model analyses 
because some of the studies in our meta–data set included stud-
ies with single land use, which did not capture species that fail to 
persist in different land uses (Lessard et al. 2012).

We added taxonomic diversity as an additional predictor to the 
phylogenetic diversity models described in Objective 1a-c. For α- 
and γ-diversity, the relationship between phylogenetic and taxo-
nomic diversity is a decelerating relationship, but for β-diversity, 
it is largely linear (Figure S1). Thus, we added log-transformed 
taxonomic diversity into each model. Note that for α- and β-
diversity models, the responses were also log-transformed. This 
effectively models a power law relationship, which can range 
from linear to nonlinear. We only conducted pairwise compari-
sons between land uses if the omnibus test revealed a significant 
effect.

2.11   |   Objective 3: Genus Abundance Across 
Land Uses

To facilitate interpretations of diversity patterns, we further 
identified genera that have reduced abundance in agricultural 
and urban habitats relative to natural habitats. We conducted 
the analyses at the genus rather than species level, as the latter 
would lead to strong temperate region biases, given that more 
tropical studies relied on morphospecies or genus-level identifi-
cations. For this objective, we selected 51 genera that were fre-
quently detected across studies, and thus, the effects of land use 
can be reliably quantified (see Section S7 for details).

Our analyses included genera with different geographical 
distributions, such as the cosmopolitan genus Megachile and 
the Neotropical genus Partamona (Michener  2007). Thus, 
different trends across genera could be driven by their vary-
ing sensitivity to land use changes and regional differences 
in the extent of environmental changes and management 
intensity. Quantifying the contributions of each mechanism 
would require additional life-history and environmental data. 
Nevertheless, our results can identify the genera more system-
atically affected by different land use drivers regardless of the 
underlying mechanisms.

We built a model for each genus with their abundance in each 
assemblage as the response and land use, sampling method, and 
climatic PC1 and PC2 scores as predictors. Random effects were 
identical with the α-diversity models (Objective 1a), with study 
identity as a random intercept and land use as a random slope 
to control for between-study differences. Again, a spatial term 
based on Matérn correlation nested within studies was added to 
control for spatial autocorrelation. We used negative binomial 
mixed models to analyze abundance changes across land uses 
(Warton  2005). An offset-capturing log-transformed sampling 
effort of each assemblage was also added.

For one genus (Dasypoda), abundance data based on sampling 
flower visitors of all or targeted plant species were not avail-
able. Thus, we dropped sampling method from the model. For 

31 genera, the effects of land use were only compared between 
agricultural and natural habitats, as there was a lack of urban 
studies containing abundance data of these genera. When three 
land uses were analyzed, we conducted pairwise comparisons 
if a significant result was obtained from the omnibus test. As 
we analyzed multiple genera, results might be affected by mul-
tiple comparisons. We further adjusted pairwise comparison p-
values using false discovery rate corrections.

We extracted the predicted abundance for each model for each 
land use while holding climatic PC1 and PC2 at their mean 
values, as well as holding the sampling strategy at “All bees.” 
We then calculated the ratio of predicted abundance between 
agricultural (or urban) and natural habitats (agricultural or 
urban/natural). We further log-transformed these ratios to 
convert them into arithmetic scales (Agresti  2007). We then 
used the package phytools (Revell 2012) to assess if there were 
phylogenetic signals in the log-transformed ratio based on 
Pagel's λ.

Briefly, Pagel's λ assesses whether any biological characteristics 
follow Brownian motion, a standard evolutionary model that as-
sumes the differences in the characteristics accumulate through 
a random walk over evolutionary time scales (Pagel  1999). λ 
Equals 1 when the characteristics are consistent with Brownian 
motion expectations. Alternatively, λ can be as low as 0 when 
the characteristics deviate from the evolutionary model. While 
other metrics to measure evolutionary signals exist, Pagel's λ 
is known to be the most robust metric according to simulation 
studies (Münkemüller et al. 2012).

3   |   Results

Our analyses included bee assemblage data from 3117 as-
semblages and 437,091 individuals of 4002 taxonomic units 
from 157 studies. The majority of the data (2574 assem-
blages from 120 studies) were in temperate regions (i.e., ab-
solute latitude > 23.4°), mainly North America and Europe, 
while 543 assemblages from 37 studies were in the tropics 
(Figure  1a). All studies identified specimens to species-level 
or morphospecies-level whenever possible, except two studies, 
which identified specimens to genus level. Sampling methods 
of individual studies range from point-based sampling (e.g., 
single vane trap) to aggregating samples within an area as 
large as 10 ha. In general, most studies were conducted along 
transects < 100 m or within plots < 1 ha (Table S1). Forty-two 
studies (27%) provided data on bee assemblages in more than 
one land use. All diversity models had high conditional R2 
(0.63–0.91, Tables S5–S8).

3.1   |   Objective 1a: α-Diversity

Taxonomic α-diversity declined by an average of 15.8% in ag-
ricultural (p = 0.006; 95% CI: 1.9%, 27.6%) and 19.6% in urban 
habitats (p = 0.006; 95% CI: 3.1%, 33.2%) compared with natural 
habitats after controlling for climatic and sampling differences 
(linear mixed models; Figure  1b, Table  S5). Using the genus-
level phylogeny of bees (Hedtke, Patiny, and Danforth 2013), we 
found that phylogenetic α-diversity declined by an average of 
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11.0% in agricultural habitats (p = 0.005; 95% CI: 2.7%, 18.7%) and 
11.6% (p = 0.017; 95% CI: 1.0%, 21.1%) in urban habitats relative 
to natural habitats (Figure 1c, Table S5). Pairwise comparisons 
between agricultural and urban habitats were nonsignificant for 
both diversity metrics.

3.2   |   Objective 1b: β-Diversity

The average taxonomic β-diversity was 1.75 (95% CI = 1.66, 
1.83), making up 42.7% of the taxonomic γ-diversity. Using lin-
ear mixed models, we observed a 6.4% decline in taxonomic 

β-diversity in agricultural habitats relative to natural habitats, 
although the results were marginally nonsignificant (p = 0.06; 
95% CI = 1.1%, 11.4%; Figure  1c, Table  S6). Pairwise compari-
sons also revealed marginally nonsignificant differences be-
tween urban and natural habitats, with 8.8% higher taxonomic 
β-diversity in urban habitats (p = 0.06; 95% CI = −0.4%, 18.7%; 
Figure  1c, Table  S6). However, we detected 16.2% higher tax-
onomic β-diversity in urban compared to agricultural habitats 
(p = 0.004; 95% CI = 6.5%, 26.8%).

Across studies, phylogenetic β-diversity averaged at 1.20 (95% 
CI = 1.17, 1.22), equivalent to 16.7% contribution of phylogenetic 

FIGURE 1    |    (a) Map showing locations of 157 studies included, and the proportion of natural, agricultural, and urban habitats sampled within the 
study. Pie size is proportional to the number of sampled sites in each study, ranging from 1 to 368. The density plot indicates the distribution of the 
studied assemblages (n = 3117) along the latitudinal gradient. (b–d) Diversity changes relative to values of natural habitats, with each panel showing 
responses of one diversity metric: (b) α-, (c) β-, and (d) γ-diversity. Point estimates represent model predictions of each land use based on fixed effects 
only, while error bars are 95% confidence intervals. The estimations of α-diversity were obtained by holding other covariates at the mean or mode 
values. For β- and γ-diversity, the estimation reflects a standardized sampling study with all assemblages having 100% sampling completeness, and 
other covariates at the mean or mode values. Small letters above error bars indicate results from pairwise comparisons, with different letters repre-
senting different groups. *Indicates that the pairwise comparisons included marginally nonsignificant results (p = 0.06).
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γ-diversity. Phylogenetic β-diversity was highest in urban habi-
tats—6.4% higher than natural habitats (p = 0.004; 95% CI = 2.2%, 
10.7%; Figure 1c, Table S5) and 8.8% higher than agricultural hab-
itats (p < 0.001; 95% CI: 4.5%, 13.3%). However, we found minimal 
evidence of differences between agricultural and natural habitats.

3.3   |   Objective 1c: γ-Diversity

Taxonomic γ-diversity was, on average, 25.2% lower in agricul-
tural than in natural habitats (p = 0.008; 95% CI: 10.5%, 39.9%; 
Figure 1d, Table S7). A 15.6% decline was also observed in urban 
habitats relative to natural habitats, but the difference was not 
statistically significant. Differences between urban and agricul-
tural habitats were also nonsignificant.

Similarly, we found that phylogenetic γ-diversity declined by 
17.8% (p = 0.006; 95% CI: 8.7%, 26.7%) in agricultural habitats 
relative to natural habitats (Figure 1d, Table S7). The pairwise 
comparison between natural and urban habitats, as well as be-
tween agricultural and urban habitats, was nonsignificant.

3.4   |   Objective 2: Phylogenetic Habitat Filtering in 
Natural, Agricultural, and Urban Habitats

After controlling for their taxonomic counterparts using linear 
mixed models, phylogenetic α- and γ-diversity metrics exhibited 

minimal differences across land uses (Figure  2a,c, Table  S8). 
However, we found that phylogenetic β-diversity was highest 
in urban habitats, while agricultural and natural habitats ex-
hibited similar values (Figure  2b, Table  S8). Specifically, phy-
logenetic β-diversity in urban habitats was 3.9% higher than in 
natural habitats (p = 0.03; 95% CI: 0.44%, 7.5%) and 4.5% higher 
than in agricultural habitats (p = 0.03; 95% CI: 0.84%, 7.97%).

3.5   |   Objective 3: Genus Abundance Across 
Land Uses

Compared with their average abundance in natural hab-
itats, 73% and 61% of common genera exhibited reduced 
average abundance in agricultural and urban habitats, re-
spectively, echoing the results of diversity analyses (Table S9, 
Figure  S2). Eight genera showed significantly lower abun-
dance in agricultural habitats, four belonging to the family 
Megachilidae (Osmia, Hoplitis, Megachile, and Anthidium). 
Only Protandrena (mining bees and ground nesters) had in-
creased abundance in agricultural habitats relative to natural 
habitats. For urban habitats, only Osmia (mason bees, primar-
ily cavity nesters) exhibited a significant response to land use, 
with reduced abundance in urban relative to natural habitats. 
We detected some phylogenetic signals in the responses to ag-
ricultural (Pagel's λ = 0.38, p = 0.08) and minimal signals in the 
responses to urban habitats (Pagel's λ < 0.001, p = 1) (Figure 3). 
After controlling phylogeny, responses of bee genera to urban 

FIGURE 2    |    Percent differences in phylogenetic (a) α-, (b) β-, and (c) γ-diversity metrics after controlling for their taxonomic counterparts, using 
natural habitats as the baseline. Error bars represent 95% confidence intervals, while point estimates present model predictions based on fixed effects 
only. The estimated α-diversity was based on holding all other covariates at the mean or mode values. The estimated β- and γ-diversities were based 
on assuming studies with standardized sampling and all assemblages with 100% sampling completeness, while other covariates were at the mean or 
mode values. Small letters above error groups indicate different grouping based on pairwise comparisons.

 13652486, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70006 by T

est, W
iley O

nline L
ibrary on [21/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 18 Global Change Biology, 2025

FIGURE 3    |     Legend on next page.
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and agricultural habitats were weakly correlated (Pearson's 
r = 0.09) (Figure S2).

4   |   Discussion

Biodiversity loss observed at local scales (α-diversity) can be 
dampened or amplified at larger spatial scales (γ-diversity), de-
pending on changes in the scaling factor (β-diversity) (Socolar 
et al. 2016). We synthesized the trends in how two major land 
use drivers, namely, agriculturalization and urbanization, affect 
bee taxonomic and phylogenetic α-, β-, and γ-diversity. We found 
that the trends in α-, β-, and γ-diversity are largely consistent 
between taxonomic and phylogenetic metrics when responding 
to the same land use driver. The α-diversity declines under the 
different anthropogenic land uses are consistent with our ex-
pectations and previous studies based on other taxa (Millard 
et  al.  2021; Newbold et  al.  2015). These results provide addi-
tional evidence of the threats of agricultural and urban expan-
sion (Dicks et al. 2021) by demonstrating their negative impacts 
on phylogenetic α-diversity in addition to taxonomic α-diversity. 
The responses of β-diversity to land uses are more variable, as 
urban habitats exhibited higher β-diversity than natural habi-
tats, which is in contrast with the general expectation that ur-
banization drives biotic homogenization (Socolar et al. 2016). At 
the same time, we found some support for agricultural habitats 
having reduced taxonomic β- but not phylogenetic β-diversity. 
These ultimately lead to reduced taxonomic and phylogenetic γ-
diversity in agricultural habitats, but not urban habitats, where 
we failed to detect significant γ-diversity loss compared to nat-
ural habitats. The β- and γ-diversity results highlight the threat 
of agricultural expansions to large-scale bee diversity due to sys-
tematic γ-diversity decline. Broadly, our results provide empiri-
cal evidence showing that, although α-diversity responses may 
be similar across land use drivers, β-diversity responses vary, 
resulting in different γ-diversity consequences.

The differing responses of β-diversity to urban and agricultural 
land use may be a result of differing environmental heterogene-
ity within these land use categories. In our dataset, most studies 
compared assemblages within a single city or landscape, with 
the mean and 95% percentile of the study extent being 38 and 
478 km, respectively. At these scales, different management prac-
tices within cities, such as varying ornamental plants or mow-
ing frequencies due to owner preferences (Aronson et al. 2017; 
Lerman et  al.  2018; Prendergast, Dixon, and Bateman  2022), 
can increase environmental heterogeneity and, therefore, re-
sult in higher β-diversity than natural habitats (Alberti  2016). 
Conversely, β-diversity exhibited varying trends or marginal de-
clines in agricultural habitats across studies. While agricultural 
activities reduce environmental heterogeneity, particularly in 
monocultural croplands (Leong et al. 2016), the effects can be 
more variable in subsistence agriculture systems (Landaverde-
González et  al.  2017), potentially explaining the marginal re-
sults. This ultimately led to detectable declines in γ-diversity in 

agricultural habitats but not urban habitats. Thus, our results 
indicate that while land use impacts are usually reported to 
affect α-diversity negatively across terrestrial taxa, these con-
clusions do not necessarily extend to γ-diversity, particularly 
with urbanization (Fenoglio, Rossetti, and Videla  2020; Liang 
et al. 2023; Newbold et al. 2015; Sol et al. 2017).

We found no evidence that land use change systematically 
strengthens phylogenetic habitat filtering, and in fact, we 
found relaxed filtering in urban habitats for β-diversity of bees. 
Previous bee studies have found variable phylogenetic habitat 
filtering effects across different types of agricultural and urban 
environments (Bartomeus et al. 2018; Odanaka and Rehan 2019; 
Ramírez et al. 2015; Villalta et al. 2022), potentially leading to 
no generalizable patterns when coarse land use classification 
is used. Studies of phylogenetic habitat filtering for β-diversity 
are rare. The weakly relaxed phylogenetic habitat filtering in 
urban habitats detected can again be explained by increased 
environmental heterogeneity in cities compared with natural 
and agricultural habitats (Alberti 2016; Aronson et al. 2017). For 
example, given the strong co-evolutionary history between bees 
and plants (Brown and Cunningham 2022), different planting 
preferences across urban green spaces can attract varying bee 
lineages, leading to higher phylogenetic β-diversity than ex-
pected based on taxonomic β-diversity. Nevertheless, the weakly 
relaxed phylogenetic filtering for phylogenetic β-diversity did 
not propagate to γ-diversity of bees in urban habitats, as phy-
logenetic β-diversity only contributed to 16.7% of γ-diversity 
across studies.

Apart from their varying impacts on bee diversity, another dif-
ference between the two land uses is that the genus-level abun-
dance changes exhibited an intermediate phylogenetic signal in 
agricultural habitats but minimal signal in urban habitats. The 
small number of genera in our analyses (≤ 51) limited our statis-
tical power (Münkemüller et al. 2012), while genus-level anal-
yses can underestimate phylogenetic signals (Rabosky  2015). 
Species-level analyses, including rare species, are needed to de-
termine the true extent of phylogeny in governing bees' responses 
to the two land uses. Nevertheless, the stronger phylogenetic 
signals in agricultural habitats suggest a higher importance of 
evolutionarily conserved traits, such as nesting biology and lecty 
(Odanaka and Rehan 2019), in determining species abundance 
in these environments (Grab et al. 2019). Alternatively, species 
responses to urban habitats may be more driven by stochasticity 
(Sattler et al. 2010) or evolutionarily labile traits, such as thermal 
tolerances (Hamblin et al. 2017).

As phylogenetic and taxonomic diversity respond similarly to 
agricultural and urban land uses, conservation measures that 
increase taxonomic diversity in agricultural and urban hab-
itats are expected to increase their phylogenetic counterparts. 
These findings can facilitate decision-making in management 
targeting multiple diversity metrics, as the responses of phy-
logenetic diversity to different environmental drivers are less 

FIGURE 3    |    Phylogenetic relationships of all genera examined and their responses to agricultural (a) and urban land uses (b) in terms of abun-
dance. When the ratio equals 1, genus abundance in agricultural or urban habitats is the same as in natural habitats. Genera in red and blue are sig-
nificantly more and less abundant in anthropogenic land uses, respectively. See Figure S2 for bar plots representing how individual genera respond 
to agricultural and urban land uses differently.
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understood than those of taxonomic diversity (Cadotte and 
Tucker 2018). For α-diversity, measures such as organic farm-
ing, crop diversification, establishing flower strips, and plant-
ing gardens have been found to increase pollinator taxonomic 
α-diversity in meta-analyses or quantitative syntheses (Kennedy 
et al. 2013; Lichtenberg et al. 2017; Majewska and Altizer 2020; 
Scheper et al. 2013). Studies have also evaluated the effective-
ness of conservation measures in enhancing taxonomic β-
diversity (Ponisio, M'Gonigle, and Kremen 2016), although they 
are relatively rare compared with studies focusing on taxonomic 
α-diversity. The same environmental drivers could increase 
taxonomic α-diversity but reduce taxonomic β-diversity in bees 
(Steinert et al. 2020), meaning that associated conservation mea-
sures can simultaneously mitigate and exacerbate the impacts of 
land use change, leading to unclear net effects on γ-diversity. 
Thus, we emphasize the importance of conducting additional 
taxonomic β- and γ-diversity assessments on the effectiveness of 
conservation measures to better understand their contributions 
to mitigating land use impacts.

Many large-scale conservation assessments focusing on the im-
pacts of land uses are based on projecting α-diversity models to 
different land use scenarios (Chaudhary et al. 2015; De Palma 
et  al.  2017; Newbold et  al.  2015). While α-diversity patterns 
are helpful for conservation planning, they might not apply to 
biodiversity at larger spatial scales (e.g., national-, regional-, or 
landscape-level biodiversity), which might have exacerbated/
weakened diversity loss depending on β-diversity changes 
(Socolar et al. 2016). Our findings demonstrate that qualitative 
conclusions about land use impacts can differ between α- and 
γ-diversity analyses. Based on our results, while taxonomic and 
phylogenetic α-diversity of bees might exhibit similar changes in 
agriculturalization and urbanization hotspots, the consequences 
for γ-diversity can be very different, with more substantial im-
pacts at larger scales expected in agriculturalization hotspots 
such as West Africa and Southeast Asia (Williams et al. 2021). 
Given the need to conserve biodiversity and its associated eco-
system functions at multiple scales (Socolar et al. 2016; Winfree 
et al. 2018), our study confirms the threat of agricultural expan-
sions to global bee diversity. It also highlights the need to un-
derstand processes determining β- and γ-diversity changes and 
integrate these diversity metrics into conservation assessments.
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