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Abstract. The orientation of ice crystals affects their microphysical behaviour, growth, and precipitation. Ori-
entation also affects interaction with electromagnetic radiation, and through this it influences remote sensing
signals, in situ observations, and optical effects. Fall behaviours of a variety of 3D-printed plate-like ice crystal
analogues in a tank of water–glycerine mixture are observed with multi-view cameras and digitally reconstructed
to simulate the falling of ice crystals in the atmosphere.

Four main falling regimes were observed: stable, zigzag, transitional, and spiralling. Stable motion is charac-
terised by no resolvable fluctuations in velocity or orientation, with the maximum dimension oriented horizon-
tally. The zigzagging regime is characterised by a back-and-forth swing in a constant vertical plane, correspond-
ing to a time series of inclination angle approximated by a rectified sine wave. In the spiralling regime, analogues
consistently incline at an angle between 7 and 28°, depending on particle shape. Transitional behaviour exhibits
motion in between spiral and zigzag, similar to that of a falling spherical pendulum.

The inclination angles that unstable planar ice crystals make with the horizontal plane are found to have a
non-zero mode. This observed behaviour does not fit the commonly used Gaussian model of inclination angle.
The typical Reynolds number when oscillations start is strongly dependent on shape: solid hexagonal plates
begin to oscillate at Re = 237, whereas several dendritic shapes remain stable throughout all experiments, even
at Re> 1000. These results should be considered within remote sensing applications wherein the orientation
characteristics of ice crystals are used to retrieve their properties.

1 Introduction

Understanding the motion of falling ice crystals is important
to both the microphysical processes within clouds and their
bulk characteristics, such as radiative and optical properties.
However, their dynamics are not well understood; ice crystals
have complex and irregular shapes and can exhibit fluttering,
spiralling, and tumbling motions.

To quantify the orientation of analogues, the inclination
angle, θ , is the angle made between the rotated ice crystal’s
c axis and the global vertical y axis (Fig. 1). Falling ice crys-
tals, when stable, have a constant θ of 0° (List and Scheme-
nauer, 1971). When unstable, it is commonly assumed crys-
tals have Gaussian distributions of orientations, with a modal

θ of 0°, and standard deviations varying between 10° (pris-
tine ice crystals) and 40° (heavily aggregated snowflakes)
(Melnikov and Straka, 2013; Ryzhkov et al., 2020). However,
ice crystals exhibit a variety of unstable falling regimes, each
corresponding to different distributions of orientations.

1.1 Importance of orientation of ice crystals

The orientations of falling crystals impact their projected
area in the horizontal plane, their sedimentation rate, and the
rate at which they can collide with other hydrometeors (West-
brook et al., 2010). Compared to ice crystals with purely
vertical motion, ice crystals with horizontal motions in ad-
dition to the vertical will travel a farther distance, providing
more opportunity to collide with other hydrometeors than ice
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11134 J. R. Stout et al.: Stable and unstable fall motions of plate-like ice crystal analogues

Figure 1. Axes of a crystal inclined by θ of 20° and pointing towards an azimuth, φ, of 45°, both relative to the laboratory frame of reference,
given by a (x,z) horizontal plane and a vertical y axis. The crystal plane is represented by the a and a′ axis, where the a axis is aligned
with one of the crystal branches. The c axis is perpendicular to the crystal plane. The views provided are for an observer facing (a) the c–y
plane (b), the a′–y plane, and (c) the x–z plane.

crystals with vertical motion alone (Wang, 2021). This fur-
ther impacts cloud macrophysical properties, such as radia-
tive impacts and cloud lifetime.

Properties of ice crystal motion have important implica-
tions for radar and lidar observations: orientation directly in-
fluences signals sampled by dual-polarisation radar, as the
orientation of crystals changes the differential reflectivity
(ZDR) (Bringi and Chandrasekar, 2001). Unstable motion
causes fluctuations in the crystal velocity in the component
of the crystal motion along the radar beam, broadening the
Doppler spectrum width (Feist et al., 2019). Differences in
assumptions of orientation can therefore impact the relation-
ship between the derived ice crystal diameter and Doppler
or polarimetric remote sensing observations, ultimately af-
fecting radar-derived precipitation rates (Matrosov, 2011;
Schrom et al., 2023).

Horizontal orientation of ice crystals affects lidar obser-
vations, especially in the case of specular reflection, causing
enhanced return for lidars pointing exactly at zenith or nadir
(Sassen, 1977; Platt, 1977; Gibson et al., 1977; Hogan and
Illingworth, 2003). The magnitude of the enhancement and
its variation with elevation angle are strongly dependent on
the chosen model for crystal orientation (Platt, 1977).

For clouds containing ice, crystal size, concentration,
habit, and orientation all play a significant role in deter-
mining cloud radiative properties such as optical depth and
albedo (Curry and Ebert, 1992; Ishimoto et al., 2012; Hi-
rakata et al., 2014). Changes in these particle orientation as-
sumptions can lead to high variation in the retrieval of cirrus
properties from satellite observations. In certain cases, de-
creasing the assumed standard deviation of θ from 20 to 5°
doubled the estimated optical depth (Masuda and Ishimoto,
2004). Horizontally oriented ice crystals have also been the-
orised to increase cloud shortwave albedo by up to 40 %
(Takano and Liou, 1989).

When ice crystals are horizontally oriented, this gives
them distinctive optical characteristics (Cho et al., 1981;
Sassen, 1987). For instance, horizontal crystals can create a

range of atmospheric optical phenomena such as sun dogs,
light pillars, and Parry arcs, among others (Moilanen and
Gritsevich, 2022). Additionally, spiralling ice crystals have
been hypothesised to cause the rare “Bottlinger’s rings” ef-
fect (Lynch et al., 1994; Tränkle and Riikonen, 1996).

Ice crystal orientation also impacts the apparent crystal
properties (e.g. size, projected area, aspect ratio) inferred
from analysis of 2D projections sampled by ground-based
imagers such as PIP (Precipitation Imaging Package) (Jiang
et al., 2017; von Lerber et al., 2017). To estimate the 3D pa-
rameters relevant for drag calculations from 2D projections
of snowflakes, assumptions about particle orientation, shape,
and motion must be made (Köbschall et al., 2023). Dunnavan
and Jiang (2019) find that for highly eccentric particles (such
as aggregates) that have large fluctuations in θ , very limited
information can be inferred about a particle’s 3D shape with-
out specifying appropriate particle orientation distributions.

1.2 Phenomenology of circular discs

Analogies may be drawn between the aerodynamics of ice
crystals and those of other idealised shapes, such as thin cir-
cular discs. There has been extensive experimental research
on the aerodynamic behaviour of thin circular discs (e.g.
Willmarth et al., 1964; Field et al., 1997; Ern et al., 2011;
Zhong et al., 2011). Two dimensionless ratios have been pro-
posed to characterise the motion of falling circular discs: the
Reynolds number, Re, and the dimensionless moment of in-
ertia, I ∗ (Willmarth et al., 1964; Field et al., 1997), discussed
in the following sub-sections.

1.2.1 Reynolds number

The Reynolds number is defined as

Re=
VmeanD

υ
, (1)
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where υ is the dynamic viscosity of the fluid, Vmean is the
mean vertical velocity of the particle, andD is the maximum
dimension of the particle.

Willmarth et al. (1964) identified that Re 100–200 is the
critical point for the onset of unstable motions for circular
discs, after which periodic behaviour begins. The value of the
critical Reynolds number varies depending on particle shape.
Field et al. (1997) report an experimental study of how metal
circular discs fall through water and glycerol mixtures and
how paper discs fall through air. Different falling regimes
were observed depending upon the experimental parameters;
discs could fall steadily, exhibit oscillating periodic motions,
or tumble.

Periodic behaviour includes zigzag and spiralling sub-
types of behaviour, and more recently an in-between be-
haviour was identified as transitional through experimental
investigations by Zhong et al. (2011). Zhong et al. (2011) find
that for circular discs, at low Re and I ∗, the most common
behaviour is spiralling, whereas at high Re and I ∗, zigzag-
ging behaviour is most common, with transitional behaviour
occurring at intermediate I ∗ and Re (Fig. 2).

At Reynolds numbers below the critical Reynolds num-
ber, flow around crystals is stable. For planar crystals in this
regime, laboratory and field measurements have shown that
the largest dimension becomes normal to the axis of gravity,
and the plate crystals achieve a horizontal orientation, corre-
sponding to a constant inclination angle of zero (Jayaweera,
1965; List and Schemenauer, 1971; Pruppacher and Klett,
1997 (see their Sect. 10), Kajikawa, 1992; Wang, 2021)

At a critical Reynolds number, the flow around the crystal
becomes unstable, forming vortices as part of the boundary
layer of fluid at the surface of the particle. When shedding
of these vortices in the wake of crystals occurs, the distribu-
tion of pressure on the crystal changes, exerting forces that
cause it to rotate (Zhong et al., 2013; Tagliavini et al., 2021a).
These unstable motions are observed as oscillations in ori-
entation, as well as in the vertical and horizontal velocities,
such that they are non-zero, fluctuating, and have a distribu-
tion. There is a current lack of understanding about the ori-
entation of ice crystals in unstable regimes, and one of the
aims of this paper is to explore this.

1.2.2 Dimensionless moment of inertia, I∗

The dimensionless moment of inertia for a circular disc is
defined as the ratio of the moment of inertia of a circular disc
about its diameter and a quantity proportional to the moment
of inertia of a rigid sphere of fluid of the same diameter, such
that

I ∗disc =
π

64
ρp

ρf

t

D
, (2)

where ρp is the density of the particle, ρf is the density of
the fluid, t is the thickness of the disc, and D is its diameter
(Willmarth et al., 1964). For more complex shapes, the more

general non-dimensional moment of inertia is

I ∗ =
Ia

ρfD5 , (3)

whereD is the maximum dimension of the particle. The mo-
ment of inertia for rotation around the three principal axes
of the crystals is calculated, where Ia is the smallest of these
three moments, aligned in the a-axis direction of the crystal
(Fig. 1) (Kajikawa, 1992). For reference, further information
regarding the calculation of the moments of inertia can be
found in Gregory (2006, p. 570).

1.2.3 Comparing ice crystals with discs: Re – I∗ phase
space and area ratio

Figure 2 presents a summary of the coverage of the data pre-
sented in McCorquodale and Westbrook (2021a, b), also used
in this study, on the Re and I ∗ phase space and the key prior
experiments on ice crystal shapes (Kajikawa, 1992; Cheng
et al., 2015; Nettesheim and Wang, 2018) and circular discs
(Field et al., 1997; Zhong et al., 2011) that are discussed
in Sects. 1.3 and 1.4. Using a mass–diameter relationship
from Nakaya and Terada (1935) for planar dendritic crys-
tals and methods for estimating I ∗ from Kajikawa (1992),
we find that a 10, 1, and 0.1 mm planar dendritic crystal,
where the density of ice is 917 kg m−3 and the density of
air is 1.2 kg m−3, has an I ∗ of 0.02, 0.2, and 2.0 respectively.
The hatched region of Fig. 2 displays this expected range of
I ∗ for planar dendritic ice crystals – this matches well with
the range of previous observations of ice crystals.

Our study focuses on planar crystals. These range from
hexagonal plates (which present a solid obstacle to the flow
at all Reynolds numbers) to stellar crystals and dendrites,
which have much more open projections. One way to char-
acterise this shape variability is by area ratio: the ratio of the
maximum cross-sectional area of the particle and the area of
its circumscribing circle, which helps compare with circu-
lar discs. Fluid experiments on planar shapes report that the
amplitude of oscillations in the descent velocity was max-
imum for circular discs and decreased with the area ratio,
suggesting that unstable motions are inhibited by more com-
plex shapes (Esteban et al., 2018).

1.3 Existing work on orientation of ice crystals

A variety of approaches have been developed to study the
aerodynamics of ice crystals. Using the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO),
Zhou et al. (2013) simulated crystal distributions and orien-
tations and found that horizontally oriented plates occurred
in 60 % of optically thick ice and mixed-phase cloud lay-
ers. Similarly, Stillwell et al. (2019) found that horizontally
oriented plates must occur in at least 25.6 % of all ice-only
column observations using polarisation lidar for their simu-
lations to match the observations.

https://doi.org/10.5194/acp-24-11133-2024 Atmos. Chem. Phys., 24, 11133–11155, 2024
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Figure 2. Phase diagram showing the stable (black) and unstable (purple) behaviour of falling particles as a function of I∗ (dimensionless
moment of inertia) and Re (Reynolds number). Data from TRAIL (this study and McCorquodale and Westbrook (2021a, b)) are in solid
circles, and all other data points are for shapes relevant to ice crystals (Nettesheim and Wang, 2018; Kajikawa, 1992; Cheng et al., 2015).
Solid lines and annotations are from Field et al. (1997) and dashed lines and rotated annotations are from Zhong et al. (2011), presenting the
observed behaviour for circular discs. Acronyms in the legend refer to the shapes in Table 1. The hatched region is the expected range of I∗

for dendritic planar ice crystals.

Common models of particle orientation distribution as-
sume either uniform distribution, horizontal orientation with
an inclination angle of zero, or a Gaussian distribution with
a peak at zero-inclination angle (e.g. Borovoi and Kustova,
2009). However, models of particle orientation distribution
for falling particles suggest modal inclination angles of ap-
proximately 10° (Klett, 1995). Melnikov and Straka (2013)
attempt to retrieve the spread of fluttering angles from polari-
metric radar data, assuming that the mean inclination angle
is zero and that the distribution has a fixed, size-independent
width, retrieving fluttering amplitudes on the order of 2–23°.
However, remote sensing is an indirect measurement rather
than a direct observation of the fall motion.

More direct measurements are possible, such as in situ ob-
servations of ice particles near the surface (e.g. Zikmunda,
1972; Locatelli and Hobbs, 1974; Kajikawa, 1992; Garrett
et al., 2015; Fitch et al., 2021). Falling natural planar snow
crystals placed into a tube were studied by Kajikawa (1992),
who used a stereophotogrammetric method and found that
hexagonal plate crystals exhibited stable and unstable mo-
tions, including a swing motion (zigzag) and a helical ro-
tation motion (spiralling). The critical Reynolds number,
above which crystals exhibited unstable motion, was found
to vary depending on the specific crystal habit, as classified
by Magono and Lee (1966). For crystals of classification P1a
(hexagonal plates), the critical Reynolds number was found
to be 47, while for P1f crystals (fern-like crystals), the crit-
ical Reynolds number was found to be 91. Nonetheless, the

tendency of ice crystals to break, evaporate, and melt when
handled led to high uncertainties in direct observations of ice
crystals at the ground.

Multi-Angle Snowflake Camera (MASC) observations by
Garrett et al. (2015) found that the modes of the distribu-
tion of inclination angles were 20, 16, and 13° for graupel,
rimed particles, and aggregates respectively, indicating that
snow particles show a preference for near-horizontal orienta-
tion but have non-zero modal values. Recent research into the
MASC measurements by Fitch et al. (2021) has also reported
preferential non-horizontal inclinations for the orientation of
snow particles, with a modal value of 12° observed for light
wind speeds in shielded conditions.

These findings suggest that the assumption of Gaussian
orientation distribution may not always be accurate and that
the orientation of snow particles may exhibit preferential ori-
entations that are non-horizontal, even in quiescent environ-
ments. Lynch et al. (1994) proposed modelling the swinging
motion of falling ice crystals similarly to that of a pendu-
lum where the pivot of the pendulum falls vertically at con-
stant velocity. This notion is supported by Esteban (2019),
who found that oscillatory motions of discs and a variety of
other planar shapes in both quiescent and turbulent fluids had
pendulum-like motions, with turbulence simply adding noise
to the oscillations.

We hypothesise that planar ice crystal analogues will be-
have similarly to this previous experimental work and test
that hypothesis in this study. Falling ice crystals may be well

Atmos. Chem. Phys., 24, 11133–11155, 2024 https://doi.org/10.5194/acp-24-11133-2024
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approximated as falling pendulums, and there is a relation-
ship between the distribution of angles and other fall motion
aspects such as velocity fluctuations, perceived projected ar-
eas, and perceived aspect ratios.

Cheng et al. (2015) explored the behaviour of hexagonal
plates using numerical simulation, with Re ranging from 46
to 974 and I ∗ ranging from 1.1 to 0.3. The plates are stable
at Re= 46 and unstable at Re= 135. Smaller plates exhibit
a zigzag motion, while larger plates exhibited spiralling, and
none of the plates tumbled during the simulation, in contrast
to the work by Field et al. (1997) and Zhong et al. (2011) on
circular discs.

Nettesheim and Wang (2018) used numerical simulations
to study the fall behaviour of branched crystals, showing un-
stable fall motions for sector plates at Re= 384 and broad-
branched plates at Re= 345. They also provided data on
other experiments, with sine wave fits to the Euler angles of
the particles during the experiments. However, the time series
the angles are fit over include a spin-up period between the
initial “release” of the crystal and it settling into its preferred
fall motion, which precludes a quantitative comparison with
the results presented in our study.

As the unsteadiness of falling particles is a complex,
nonlinear, multi-degree-of-freedom phenomenon, numerical
simulations impose significant computational cost and tech-
nical challenges. These simulations also rely on assumptions
about turbulence, vortex shedding, and how these interact
with falling particles, making it difficult to confidently simu-
late the wide range of conditions ice crystals experience.

Using analogues – scaled-up models of natural crystals –
presents a promising avenue for studying the fall behaviour
of ice crystals in a laboratory environment. List and Scheme-
nauer (1971) report measurements of machined analogues of
snowflake particles falling in solutions of water and glyc-
erine or salt water and exploit the dynamic similarity. This
dynamic similarity only applies when falling steadily at ter-
minal velocity, since the only dimensionless variables are Re
and particle shape. When falling unsteadily, the ratio ρp/ρf,
contained within I ∗, is also significant. To compare the re-
sults with natural snowflakes falling in the atmosphere, the
study considers five different designs of planar ice crys-
tals and observes stable behaviour at Re< 100. For discs,
hexagonal plates, and broad-branched models, small oscil-
lations are observed at Re≈ 200, although no oscillations are
observed at this Reynolds number for stellar, dendritic, or
stellar-with-plate shapes. Köbschall et al. (2023) used ana-
logues of aggregate snowflakes, finding that the area of com-
plex snowflake analogues projected in the direction of flow is
often maximised, and for many of their analogues, a rotation
around the vertical axis was seen.

Building on previous work by Westbrook and Sephton
(2017), McCorquodale and Westbrook (2021a) utilised mod-
ern 3D printing techniques to fabricate analogues for study-
ing the aerodynamics of ice particles through the analogue
method. In experimental studies, these analogues were anal-

ysed through a custom algorithm, producing digital recon-
structions of the trajectory and orientation of the particle.
From these experiments, analogues of aggregates are found
to exhibit different preferential orientations depending on the
Reynolds number for the same particle shape (McCorquo-
dale and Westbrook, 2021c). Tagliavini et al. (2022) per-
formed numerical simulations with dendritic crystals and
compared results with free-falling analogues, using the par-
ticle tracking algorithms described in McCorquodale and
Westbrook (2021a, b). They found that throughout the Re
range in both numerical simulations and laboratory observa-
tions, the wake and motions of dendritic crystals were stable,
even as high as Re= 1500, supporting the idea that the onset
of unstable motions is sensitive to crystal geometry. This is a
topic explored in the current article.

1.4 Investigating unresolved questions

It is evident that the representation of crystal orientation in
many studies is not well constrained at present. There is ev-
idence that unstable motions may be more complex than a
simple zigzag motion, but the conditions under which this
happens are not clear.

There are extremely limited data quantifying how the ori-
entations of unstable crystals are distributed and what that
distribution depends on as well as how frequent and large the
velocity fluctuations (in both vertical and horizontal) are in
response to the unstable wake of the falling crystal and how
they are correlated with the variations in orientation. In this
article we present new data to address these areas of uncer-
tainty.

Building on previous work by Westbrook and Sephton
(2017), McCorquodale and Westbrook (2021a) utilised mod-
ern 3D printing techniques to fabricate analogues for study-
ing the aerodynamics of ice particles through the analogue
method. To link the behaviour of real ice crystals to the theo-
retical behaviour observed by Esteban et al. (2019, 2018) in
laboratory experiments, we further examine the experiments
by McCorquodale and Westbrook (2021a), focusing on the
fall behaviour of quiescent plate-like particles, identify the
angles at which ice crystal analogues fall, and test the poten-
tial relationship between the distribution of fall angles and
other motion aspects.

The paper is organised as follows: in Sect. 2, we de-
scribe the experiment by McCorquodale and Westbrook and
the data sets derived from it. In Sect. 3 we discuss the re-
sults, beginning with Sect. 3.1, discussing which particles fall
steadily. Section 3.2 introduces and describes four case stud-
ies of periodic motion and how their orientations, velocities,
and oscillation frequencies can be characterised. Section 3.3
discusses the broader trends and characteristics of the full
data set, including how distributions of θ , oscillation frequen-
cies, and motion type vary by shape and Reynolds number,
as well as how velocity components vary with one another.

https://doi.org/10.5194/acp-24-11133-2024 Atmos. Chem. Phys., 24, 11133–11155, 2024
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Further discussion of these results, including a summary and
conclusions, can be found in Sect. 4.

2 Data

A diverse range of ice particle analogues were included in
this study, ranging from hexagonal plates with an area ratio
of 0.87 to open branched crystals with an area ratio as low
as 0.23 (Table 1). The area ratio of the particles included is
calculated using the observed projected area of the particle
divided by the circumscribing circle at each time step during
experiments when fall motion is stable. The mean calculated
area ratio is then used to describe each result.

The ice crystal analogues were produced using a Form 2
3D printer (Formlabs), which achieves a high level of pre-
cision with a minimum layer thickness of 25 µm and a laser
spot size of 140 µm. The maximum dimensions of particles
ranged from 1 to 3 cm, with aspect ratios varying between
0.04 and 0.2 and area ratios varying between 0.2 and 1 (Ta-
ble 1). Due to an artefact of how the numerical code from
Reiter (2005) was used to create some of the crystal shapes,
a few of the models (S, F, D, DP, and PB) were later realised
to be non-hexagonally symmetric and instead have a hori-
zontal aspect ratio (the diameter in the a axis to the diameter
of the a′ axis) of 1, instead of 1 : 1.15 for a regular hexagon.
We do not expect this to affect the broad behaviour of their
fall motions, and indeed we observe zigzag, spiral, and tran-
sitional behaviour for these particles, but as noted later, this
asymmetry may influence the details of the critical axis that
zigzag motions are oriented around.

To replicate atmospheric conditions in the laboratory, the
dynamical similarity experiment was conducted in a trans-
parent acrylic tank with internal dimensions of 0.4× 0.4×
1.8 m. The tank was filled with uniform mixtures of water
and glycerol, with the volume fraction of glycerol ranging
from 0 % to approximately 50 %. By varying both the den-
sity and viscosity of the fluid, and the size of the analogues,
it was possible to sample a wide range of Reynolds numbers
for each shape (Table 1).

During the experiment, the ice particle analogues were al-
lowed to free fall through the tank and were recorded using
three orthogonal cameras. Each camera records the fall of the
particle through a region approximately 0.2× 0.2× 0.2 m in
size, 1.5 m below the surface of the fluid. By this point, the
particles have reached their terminal velocities and their be-
haviour is insensitive to the initial release orientation.

The Trajectory Reconstruction Algorithm implemented
through Image anaLysis (TRAIL) then produced digital re-
constructions of the trajectory and orientation of the parti-
cle in free fall. The orientation of the particles was recon-
structed using a set of Euler angles. More details on the fabri-
cation of the analogues, experimental setup, and reconstruc-
tion algorithm can be found in McCorquodale and Westbrook
(2021a).

These data, referred to as “TRAIL”, provide time series
of the 3D positions and orientation of the falling analogues
from which the 3D velocity vectors at each time step can be
derived. The reconstructed orientations, described by the Eu-
ler angles, further enable the calculation of the inclination
angle, θ , which is more widely used in atmospheric applica-
tions. A total of 354 experiments with plate-like shapes were
conducted, resulting in the range of values described in Ta-
ble 1.

The instantaneous velocity at each time step is calculated
by applying the central difference formula to the coordinate
values, providing an estimate of the instantaneous velocity of
the particle at each time point.

3 Results

Motion observed in the laboratory was typically stable or pe-
riodic. Based on the variation of the particle inclination an-
gle, θ (Fig. 1), the periodic behaviour can be divided into
three sub-types – zigzag, spiral, and transitional behaviour –
and will be analysed below.

3.1 Crystals which fall steadily

Particles in the TRAIL data set were diagnosed as exhibiting
stable motion when the Euler angles that describe rotation
about the a and a′ axes (see Fig. 1) fluctuate by less than
±2.5° across the measurement region; this threshold corre-
sponds to the resolution of the 3D reconstruction. Stable par-
ticles fall horizontally with their a axis in the horizontal plane
and the c axis oriented vertically (i.e. with a near-zero in-
clination angle), with no measurable fluctuations in velocity
and no horizontal movements.

A total of 223 ice crystal analogues exhibited stable mo-
tion, while 131 exhibited unstable, periodic motion. Across
all shapes, the Reynolds number alone cannot be used to pre-
dict stability: the Reynolds numbers observed ranged from
3 to 1615 for stable motion and from 197 to 2162 for un-
stable motion. The range of the dimensionless moment of
inertia values was 0.14× 10−3–12× 10−3 for stable motion
and 0.28× 10−3–11× 10−3 for unstable motion. With both
variables exhibiting a considerable overlap in the presented
behaviours, the onset of unstable motions for ice crystals can-
not be considered the same as for circular discs, which be-
come unsteady around Re= 100–200 (Field et al., 1997) and
around Re= 200 for our results (Fig. 3).

Shape (approximated by area ratio) is found to have a large
impact on instability. The coverage of stable and unstable
behaviours for all ice crystal analogues in TRAIL is sum-
marised in Fig. 3, and it can be seen that the onset of unsta-
ble motions can be at larger Re (by up to 1 order of mag-
nitude) than the predicted onset of unsteadiness for circular
discs. The spread of experiments and their motion types by
Reynolds number, separated by shape, is presented in Fig. 3.

Atmos. Chem. Phys., 24, 11133–11155, 2024 https://doi.org/10.5194/acp-24-11133-2024
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Table 1. Particle shapes analysed in this study. Area ratio is calculated using the observed projected area divided by the circumscribing
circle around the maximum diameter, as seen from beneath when fall motion is steady. Re is calculated using the observed mean velocity and
maximum observed diameter as seen from beneath.

Shape Abbreviation Image Area ratio Aspect ratio Re range

Circular disc CD 1.0 0.04, 0.1, 0.2 3–1660

Hexagonal plate HP 0.87 0.04, 0.1, 0.2 7–1680

Wang sector plate Wang-S 0.80 0.025 9–1567

Broad-branched plate BBP 0.64 0.04, 0.07, 0.1 5–1104

Plate-branched PB 0.56 0.04, 0.07, 0.1 23–1675

Wang broad-branched plate Wang-BBP 0.5 0.025 6–1542

Fern-like dendrite F 0.47 0.04, 0.07, 0.1 21–1831

Dendrite-V1 D1 0.39 0.04, 0.07, 0.1 10–1615

Dendrite-around-plate DP 0.34 0.04, 0.07, 0.1 15–1811

Dendrite D 0.31 0.04, 0.07, 0.1 17–2007

Stellar dendrite S 0.23 0.04, 0.07, 0.1 15–2162

Figure 3. Motion-type coverage of Reynolds number for each shape and aspect ratio. Stable, zigzag, transitional, and spiral are black crosses,
pink circles, black diamonds, and blue triangles respectively. Particle shape labelling is defined in Table 1.

Some particles are stable for a much larger range of
Reynolds numbers than others. A few shapes (D1 at all aspect
ratios as well as D, DP, S, and F at aspect ratio 0.04) remained
stable throughout all conditions, even at Re> 103. Previous
studies report an increase in the drag coefficient when pla-
nar particles fall unsteadily (McCorquodale and Westbrook,
2021b). That is, the onset of unsteady motion is coupled with

a change in wake structure (Zhong et al., 2011; Tagliavini
et al., 2021b; Nettesheim and Wang, 2018), which in turn
influences the drag coefficient. This change in CD is more
pronounced when the area ratio is high than when it is low
(McCorquodale and Westbrook, 2021b), suggesting that un-
steadiness is less vigorous in particles with low area ratios,
such as dendrites.
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3.2 Case studies of periodic motion

Four case studies are presented to illustrate the periodic mo-
tion sub-types seen in Fig. 4 and described in Table 2. These
cases were picked by visual inspection as characteristic types
of behaviour. In this section, we will quantitatively describe
the four case studies and then objectively classify their mo-
tion based on inclination angle in Sect. 3.2.5.

Each case study experiment was conducted in pure wa-
ter. The case study examples are of hexagonal plates except
the spiralling case (Fig. 4g, h), which was a broad-branched
plate, as none of the hexagonal plate studies exhibited pure
spiralling behaviour with no wobble, but instead exhibited
transitional spirals. Figure 4a, c, e, and g present side views
of the particle cases, viewed from a laboratory frame of ref-
erence. Figure 4b, d, f, and h present the linearly detrended
centre of mass of each particle at each time step, effectively
subtracting the mean fall velocity, such that the particle is
viewed from an observer falling at the same mean velocity as
the particle.

3.2.1 Characteristics of periodic motion

The first of the periodic motion types seen is the zigzag case
study: the particle swings back and forth in one plane, and
as the particle swings away from its centre of fall, its incli-
nation angle increases, akin to a planar pendulum motion.
The zigzag–transitional case introduces an element of rota-
tion around the vertical axis, such that the plane of swing
slowly moves anticlockwise, and had the experimental run
been longer, it may have rotated back to its original posi-
tion. The transitional–spiral case is similar, but the rate of
rotation around the vertical is faster, producing wider loops.
Spiralling, the final sub-type of periodic motion remains at a
near-constant inclination angle and does not swing back and
forth and instead precesses around its central point without
touching its mean centre of fall.

The sub-types of periodic motion can be approximated by
the sub-types of spherical pendulums: zigzagging is similar
to a planar pendulum, spiralling is comparable to a conical
pendulum, and transitional motion captures the range of pen-
dulum motion between the two extremes, with the horizontal
displacement approximating a rhodonea curve (Helt, 2016).
A conical pendulum characteristically traces out a circle in
the horizontal plane, akin to spiralling cases, which also trace
out a circle in the horizontal plane. Similarly, a planar pendu-
lum serves as an analogy for the zigzagging motion, as they
are both constrained to movement in a single plane, tracing
out a line in the horizontal plane.

3.2.2 Time series of θ and φ

Series of inclination angles, θ , for the periodic motion types
can be approximated as sinusoidal (Fig. 5). To distinguish
between the regimes, rectified sine waves are fit to these in-
clination angle time series, using a fast Fourier transform as

a first guess of the frequency of the sine wave and the SciPy
curve fit function (Virtanen et al., 2020), such that

θ = |θamp sin(ωt +ω0)+ θtilt|, (4)

where θ is the inclination angle, t is the time in seconds, θamp
is the amplitude of the wave, and θtilt is the angular displace-
ment of the sine wave; the period of the sine wave is 2π/ω
(in seconds) and ω0 is the phase shift.

All unstable motion presented in this study was observed
to be periodic and is approximated through Eq. (4). We ob-
served no complex tumbling, chaotic fluttering, or behaviour
with significantly non-sinusoidal motion to it. However, we
note that there are some experiments in the study in which ad-
ditional (weaker) modes of oscillation, in addition to the pri-
mary frequency, seem to be present. For example, the transi-
tional case in Fig. 5c has an amplitude that fluctuates slightly
in time at a lower frequency than the primary mode of oscil-
lation captured by the simple single-frequency fit. We did not
attempt to capture these finer details in our fitting procedure.

The root mean square error of the rectified sine wave fits
to the four case studies is 1.1, 1.3, 2.7, and 0.9° for the
zigzag, transitional–zigzag, transitional, and spiral cases re-
spectively. The root mean square error of all fits to the data is
1° and is provided in the Supplement.
θamp and θtilt are found to summarise the motion types

well, as they represent the variability and tilt of the particle
respectively and constrain the pendulum model. They also al-
low the periodic sub-types to be distinguished quantitatively:
a spiralling particle has a low θamp and a high θtilt, as it is
consistently inclined and does not flutter.

Zigzagging behaviour is the opposite: a potentially high
θamp and a near-zero θtilt, as it swings around a horizontal
orientation, but flutters much more than a spiralling particle
(Fig. 5). For instance, the zigzag example case (Fig. 5a) has
a fitted θamp of 34° and a θtilt of 0°.

The transitional–zigzag case behaves similarly but never
samples (close to) θ = 0, and it is just starting to transition to
having a slow rotational component. It should be noted that
although the transitional–zigzag case has a higher θamp (42°)
than the zigzag case (where θamp is 34°), this does not negate
categorisation of behaviour for either case, as the trajectory
of the transitional–zigzag case is close to zigzag behaviour
but never samples exactly θ = 0, and it is just starting to tran-
sition to having a slow rotational component.

The transitional case (Fig. 5c) has a smaller amplitude than
both zigzag and zigzag–transitional cases; θamp is 9°, but θtilt
is much higher, at 24°. The spiralling case (Fig. 5d) has an
even smaller amplitude still, with θamp at 1°but θtilt at 20°.
Spiralling behaviour can have non-zero θamp, although θamp
is small. This small variation in θ is referred to as “wobble”
for spiralling cases. It may be worth considering how much
of this wobble is a physical phenomenon versus an artefact
or experimental uncertainty; a wobble of 2.5° could easily
originate from experimental uncertainty. Given the wobble
in Fig. 5d appears to have a uniform period, we believe the
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Figure 4. Case studies visualising the periodic motion sub-types. Side views of the particle motion (a, c, e, g) and linearly detrended centre
of mass normalised by particle diameter (b, d, f, h) coloured by inclination angle θ (°) for the zigzag, zigzag–transitional, transitional, and
spiral cases respectively.

Table 2. The observed behaviours of the presented case studies.

Motion type θmean θtilt θamp ε Vamp/Vmean Uamp/Vmean Stθ Stφ
(°) (°) (°)

Zigzag 22 0 34 0.01 0.37 0.41 0.45 0.028
Zigzag–transitional 27 0 42 0.00 0.47 0.55 0.34 0.079
Transitional 24 24 9 0.73 0.42 0.49 0.91 0.57
Spiral 20 20 1 0.94 0.03 0.03 0.90 0.46

wobble in this case is partly a physical phenomenon, but you
can see the impact of experimental uncertainty in the traces
within Fig. 5a–c at the limits of the inclination angle (e.g.
for zigzag the angle often does not reach 0). This will partly
be due to the finite time resolution of the measurements and
partly due to the accuracy of the orientation reconstruction.

Figure 5 also displays the distributions of θ for each case
study. The zigzag case has a distribution that is consistent
with that expected for simple harmonic motion, where the
most likely inclination is at the end of each swing where
dθ/dt is smallest and least likely is an angle of zero. Spiral
has an almost constant inclination angle, and hence a very

narrow distribution of θ , centred on an angle significantly
higher than zero. Transitional has a distribution that is in be-
tween the other two cases, and in common with spiral cases
θ is always above zero. This is in significant disagreement
with the common assumption that orientation is a Gaussian
distribution where the most common orientation is horizontal
(θ = 0).

An azimuth angle, φ, represents where the c axis of the
crystal when projected into plane view is pointing relative
to the x axis (in the laboratory reference frame) (Fig. 1c). A
spiralling particle has a linear increase (or decrease, in cases
not shown) of azimuth angle, and dφ/dt is constant (as seen
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Figure 5. Time series of inclination angles (°) for the periodic motion sub-types shown in Fig. 4 (black) and their fitted curves from Eq. (4)
(blue). A histogram of angles is shown to the right of each panel, using 2.5° bins.

Figure 6. Time series of azimuth angles, φ (°), for the periodic motion sub-types.

in Fig. 6d). The saw-tooth shape is produced by the angle
being limited to ±180°.

Purely zigzag cases swing around one axis: when the par-
ticle goes from pointing one way to pointing another, φ
changes by 1180° seen by the square-wave shape (Fig. 6a).
For pure zigzag cases, dφ/dt is constant except for close to
the instant where the particle becomes horizontal (θ = 0) and
φ becomes highly uncertain, as the c axis is momentarily
pointing towards the vertical (and can be ignored). The axis
that zigzagging cases pivot around tends to be the branches
of the crystal, in the plane of the a and a′ axes. For shapes

that are non-hexagonally symmetric (S, F, D, DP, and PB),
the shortest branches are the axis the crystal pivots around.

Transitional cases have a non-constant dφ/dt , a combina-
tion of the saw-tooth and square waves seen in the spiral and
zigzag cases. For the zigzag–transitional case (Fig. 6 b), φ in-
creases during its time along each loop of the rhodonea curve
and then jumps by a value close to 180° when the orientation
of the c axis is close to vertical. The transitional case (Fig. 6c)
has no visible jumps in φ, except for the aliasing at ±180°,
as θ never becomes close to zero.
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3.2.3 Velocity fluctuations

The amplitudes of the u and w components of velocity (in
the x and z directions respectively) changed in the presence
of any component of rotation around the vertical. Therefore,
a combined horizontal component of velocity, U , was calcu-
lated as follows:

U =
√
u2+w2. (5)

Sine waves can be fit to the vertical component of velocity,
V , and the horizontal component of velocity, U , such that

V = Vamp sin(ωV t +ωV 0)+Vmean, (6)
U = |Uamp sin(ωU t +ωU0)+Uoffset|. (7)

These velocity components of the particles were found
to follow a sinusoidal pattern consistent with the pendulum
model (Fig. 7). U is fit with a rectified sine wave, as hori-
zontal speed can become zero in zigzag cases but cannot be
negative (Eq. 5).

For all experiments with periodic motion, θ , U , and V are
all found to have sinusoidal patterns with the same period
(i.e. ωV = ωU ) but different offsets and amplitudes. Uoffset is
not always zero: it is non-zero for particles that drift as they
descend or particles with a spiralling component.

A summary of the sine wave fit components can be found
in Table 3. Horizontal velocity, U , was found to peak when
the tilt was lowest (i.e. when the particle was flat or the in-
clination angle of the particle was closest to zero) just after
vertical velocity, V , peaks.

The amplitude of V fluctuations relative to the mean ver-
tical fall speed (Vamp/Vmean) is 0.37, 0.47, 0.42, and 0.03 for
the zigzag, zigzag–transitional, transitional, and spiral cases
respectively. The amplitude of horizontal velocity fluctua-
tions relative to the mean fall speed (Uamp/Vmean) is similar
to their vertical components (0.41, 0.55, 0.49, and 0.03 for
each case respectively). In the case of the spiralling particle,
U and V are held relatively constant compared to the other
cases, effectively making the spiralling cases a quasi-steady
mode with a non-zero near-constant inclination.

For the non-spiralling cases, large fluctuations suggest that
the mean vertical velocity, Vmean, does not sufficiently char-
acterise the velocity of a particle. The distributions shown in
Fig. 7 for the non-spiralling cases are broad, suggesting that
a broad spectrum of instantaneous velocities for a single type
of oscillating particle should be considered when interpreting
Doppler spectra.

3.2.4 Projected area fluctuations

One major application of this research is for dwelling radars
and lidars, whether ground-based (usually close to zenith) or
spaceborne (usually close to nadir). Variation in the projected
area affects assumptions in backscatter cross-section and
hence the retrieval of particle size and number. Fluctuations

will also affect polarimetric measurements and retrievals us-
ing these, particularly when the particles are viewed from
the side. Figure 8 presents the time series of reconstructed
projected areas as seen from below for each case study, nor-
malised by the planar cross-sectional area of each analogue.
The projected area as seen from below anti-correlates with θ
in each time series, displaying an out-of-phase relationship:
as θ increases, the aspect ratio of the analogues increases (be-
coming closer to 1), while the area ratio and projected area
decrease.

For all four cases, vertical velocity and projected area ex-
hibit a 180° out-of-phase relationship, where vertical velocity
peaks just after the projected area reaches its minimum point.
The projected area is more in phase with horizontal velocity,
peaking just after U reaches its maxima. This supports the
idea that vertical velocity increases when the projected area
is minimised, as drag is minimised in the vertical direction,
allowing the particle to accelerate.

In the case of an infinitely thin particle, the projected area
as seen from below is equal to the cross-sectional area of the
particle multiplied by cosθ (and hence correlated with cosθ ,
as evident from Fig. 8). In the presence of particle thickness,
the normalised projected area is expected to be greater than
or equal to cosθ and therefore should never fall below 0.7, as
θ never exceeds 45° for periodically oscillating cases. In fact,
the observed projected area occasionally exceeds that of the
projected area of the particle when horizontal (i.e. the ratio in
Fig. 8b slightly exceeds 1): this can only be achieved through
the influence of the finite thickness of the particle.

3.2.5 Motion-type parameter, ε

Since these four cases are not discrete classes of behaviour,
we propose a parameter to characterise where each experi-
ment lies on the continuum of motions between zigzag and
spiral. To quantify the spectrum of periodic behaviour, a
motion-type parameter, ε, is defined as

ε =
θtilt

θtilt+ θamp
, (8)

such that particles with ε = 1 correspond to spiralling, as
θtilt� 0 and θamp ≈ 0 for spiralling cases. Zigzagging be-
haviour corresponds to ε = 0, as zigzagging behaviour has
high amplitudes, θamp� 0, and θtilt ≈ 0. Transitional cases
can have non-zero θtilt and θamp, and ε can therefore range be-
tween 0 and 1. The four case studies presented have ε = 0.01,
0.00, 0.73, and 0.94 for zigzagging, zigzag–transitional, tran-
sitional, and spiral respectively. The parameter ε charac-
terises the distribution in θ and does not account for varia-
tion in φ. This explains why the transitional–zigzag motion
case (Fig. 4b) has near-zero ε – the distribution shape of θ
in that example is very close to that of a pure zigzag motion,
even though there is also a weak azimuthal rotation superim-
posed which distinguishes it from the zigzag case. Although
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Figure 7. Time series of the horizontal and vertical velocity components for the periodic motion sub-types, normalised by the mean vertical
velocity in each experiment.

Table 3. The experimental conditions for the presented case studies from Figs. 4–8.

Motion type Shape Aspect ratio Reynolds number I∗× 10−3

Zigzag HP 0.04 546 1.59
Zigzag–transitional HP 0.10 757 3.94
Transitional HP 0.04 684 1.58
Spiral BBP 0.04 512 1.07

ε does not capture azimuthal variations, these details are of-
ten not practically significant when considering the statistics
of a crystal population in a cloud; instead, it is the distribu-
tion of inclination angle θ which is of primary interest, and
this motivates our definition of ε.

3.2.6 Oscillation frequencies

For bulk approximations (retrievals, microphysics schemes),
it is useful to characterise the frequency of oscillatory be-
haviour. To non-dimensionalise the frequency of oscillation
of the experiments, the Strouhal number is calculated as

Stθ =
fD

Vmean
, (9)

where f is the frequency of oscillation found by the sine
wave fit to θ (Kajikawa, 1992). Stθ , the Strouhal number for
θ , is therefore representative of the number of oscillations in
θ of the particle in the time it takes for the particle to fall the
vertical distance equal to its diameter.

Stθ (frequencies) of the four cases is 0.45, 0.34, 0.91, and
0.90 for zigzag, zigzag–transitional, transitional, and spiral
respectively (Table 3).

A secondary Strouhal number can also be calculated using
the rate of change of φ:

Stφ =
1

360°

∣∣∣∣dφdt
∣∣∣∣ D

Vmean
, (10)

where | dφdt | is the mean absolute rate of precession of the par-
ticle. Stφ is therefore the number of full turns around a ver-
tical axis that a particle makes during the time it takes for
the particle to fall the vertical distance equal to its diame-
ter. Stφ for the zigzag and zigzag–transitional cases is 0.028
and 0.079 respectively. The zigzag case is effectively non-
rotational around the vertical axis and therefore has the low-
est Stφ . The transitional and spiral cases have substantial ro-
tation around the vertical axis and therefore have Stφ of 0.57
and 0.46 respectively. The transitional case spirals faster and
wobbles faster than the spiral case, but otherwise both Stθ
and Stφ appear to increase with ε.
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Figure 8. Time series of reconstructed projected areas as seen from below for each case study, normalised by the observed projected area
when θ = 0 (solid blue line). θ (dashed black line) and cosθ (dashed light blue line) are provided for reference.

3.3 Characteristics of the full data set

3.3.1 Distributions of θ

Figure 9 displays the distributions of inclination angle across
Re, excluding stable experiments, and separates the cases by
particle shape and ε greater than or less than 0.5 to demon-
strate the impact of ε on the distributions. The onset of un-
steadiness is seen at Re≈ 200 (Re= 212 for non-circular
disc shapes), the lowest onset of spiralling in particular is
seen at Re= 461 (for non-circular disc shapes), and the on-
set of spiralling for circular discs is seen at values as low as
Re≈ 300.

Different shapes show different distributions of inclination
angles as well as exhibiting different θtilt and θamp (Fig. 9).
For a particular shape, the distribution remains similar be-
tween adjacent Reynolds number bins; once a specific mo-
tion regime is reached for a particular shape, the same θtilt
and θamp are maintained. For instance, Wang-BBP shapes
spiral and have a mean θ of around 21° (along with a nar-
row distribution), while circular discs tend to have a much
wider distribution, corresponding to high-amplitude zigzag
behaviour.

Many of the shapes that present spiralling behaviour at
high Re first present zigzagging behaviour at intermediate Re
(see also Figs. 3, 11, and 10).

3.3.2 Characterisation of motion

Sine waves were fit using Eq. 7 to all velocity compo-
nents and to θ for all periodic experiments (Eq. 4), and
the motion-type parameter ε was subsequently calculated
(Fig. 12) (Eq. 8).

There is discrepancy between the literature on circular
discs and our observations of ice crystal shapes when tak-
ing I ∗ into account. The motion parameter, ε, increases for
increasing Reynolds number and dimensionless moment of

inertia (Fig. 10), which is the opposite of the result reported
by Zhong et al. (2011), who found that, for circular discs
exhibiting periodic motions, spiralling occurred at lower Re
and I ∗ and zigzagging occurred at higher Re and I ∗. Our re-
sult instead agrees with Cheng et al. (2015), who found that
hexagonal plates exhibit a zigzag motion at low Re, while
larger plates at higher Re exhibited spiralling. Jayaweera
(1965) also finds that for falling spheres, zigzagging occurs
at lower Re than spiralling, which occurs at very high Re
(Re > 105). Our results also deviate from the stable–periodic
division line provided by Field et al. (1997), as the ice crystal
shapes do not become unsteady until higher Reynolds num-
bers than circular discs, since shape has a strong impact on
the conditions that the onset of unsteady motions occurs.

Whilst I ∗ is used successfully for studies of circular discs,
shape must also be taken into account when considering the
broad range of shapes that ice crystals exhibit. Differences in
shape can be quantified by area ratio (the ratio of the max-
imum cross-sectional area of the particle and the area of its
circumscribing circle).

Across the experiments, ε increases for increasing
Reynolds number and area ratio (Fig. 11. In agreement with
Esteban et al. (2019) and Tagliavini et al. (2021a), stable fall
behaviour is found to be much more likely for particles with
lower area ratios; i.e. ice crystals with more dendritic or com-
plex shapes are more likely to fall steadily when under the
same Reynolds number.

Using linear support vector classification (Pedregosa et al.,
2011), we identify a line of best fit that maximises the dis-
tance between stable and periodic behaviour, such that peri-
odic behaviour occurs when

log10(Re)>
2.82−Arearatio

0.87
. (11)

The critical point of this expression is displayed in Fig. 11.
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Figure 9. Inclination angle distributions of all unstable experiments, equally weighted by experiment, binned by Reynolds number and
particle shape, with shapes in order of decreasing area ratio, excluding CD-P and D1. Experiments are split by spiral (ε > 0.5; upper, orange)
or zigzag (ε ≤ 0.5; lower, blue). Quartiles (dashed) and mean values (solid) are inside each distribution. θamp θ tilt are the mean values of
θamp and θtilt for each set of experiments (separated by ε and particle shape). Reported values are the mean (±standard deviation of the
mean) for each set of distributions.

Mean inclination angle was not found to distinguish well
between periodic motion types (Fig. 12a). θtilt is found to
be near-zero for zigzagging cases (where ε < 0.5), but θamp
can reach up to 45° (Fig. 12b). For all experiments where
ε > 0.5, θtilt is between 7 and 28° (Fig. 12c).

The distribution of ε was found to be bimodal (Fig. 12d),
favouring either zigzag or spiralling behaviour, with transi-
tional motion being less likely. Out of all 131 periodic plate-
like observed experiments, 65 experiments displayed ε < 0.2,
34 were found to have ε between 0.2 and 0.8, and 32 experi-
ments had ε > 0.8. The potential cause of this is discussed in
Sect. 3.3.4.

3.3.3 Velocity fluctuations

Across all periodic experiments, the amplitude of the verti-
cal velocity, Vamp, was found to be approximately 85 % of

the amplitude of the horizontal speed, Uamp (Fig. 13a), us-
ing least-squares linear regression. In contrast to our findings,
Kajikawa (1992) reported that the standard deviation of the
horizontal velocity, U , was considerably larger (5 %–20 %
of the fall velocity) than the standard deviation of the verti-
cal velocity (< 3 % of the fall velocity) for dendritic-shaped
particles undergoing periodic oscillation. The reason for the
difference between our findings and those of Kajikawa is un-
known, and it is hard to understand why fluttering particles
would have large horizontal velocity fluctuations but almost
constant vertical velocity. More investigation of natural par-
ticles using modern observations, such as by Maahn et al.
(2024), may help explore this in the future.

For zigzagging particles, as θamp increases, the amplitudes
of both the vertical and horizontal speed components in-
crease exponentially (Fig. 13b). For spiralling particles, as
θtilt increases, the amplitude of vertical velocity increases
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Figure 10. As in Fig. 2, but with each experiment in TRAIL coloured by ε. Stable experiments are marked with black crosses. Solid lines
are from Field et al. (1997) and dashed lines are from Zhong et al. (2013).

Figure 11. Phase diagram showing the stable (black crosses) and periodic (coloured by ε) behaviour of falling particles as a function of area
ratio and Reynolds number. Equation (11) is shown as the black line.

slightly (i.e. there is more wobble). θtilt has no influence on
the amplitude of vertical velocity for zigzagging particles,
as it is near-zero (Fig. 13c). Other relationships between the
variables mentioned in this study were also explored; how-
ever, no clear patterns or simple relationships were evident.

3.3.4 Strouhal numbers

Strouhal numbers were calculated for all experiments, as de-
tailed in Eqs. (9) and (10). For experiments where ε ≤ 0.2,
Stθ has a mean of 0.29 and a standard deviation of 0.10,
with no significant trend with Re (Fig. 14). Zigzagging par-
ticles (ε ≤ 0.2) never have Stθ above 0.50. Despite having
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Figure 12. Mean inclination angle, θmean (a), θtilt (b), and θamp (c) by Reynolds number, coloured by ε. Histogram of ε (d).

Figure 13. Variation of components of motion for all periodic experiments. Amplitude of horizontal velocity relative to mean vertical
velocity compared to amplitude of vertical velocity relative to mean vertical velocity (a), θamp (b), and θtilt (c), coloured by ε. Dashed lines
are fit to all experiments (a), experiments where ε < 0.5 (b), and experiments where ε > 0.5 (c).

typically much smaller amplitudes than zigzagging particles,
spiralling experiments (ε ≥ 0.8) have a larger range of Stθ ,
with a potential for Stθ up to 1.50 and a mean Stθ of 0.5. Stθ
for spiralling particles may be greater than for zigzagging;
the wobbling of a spiralling particle is at a much smaller am-
plitude (θamp) than that of a zigzagging particle.

Similar to Stθ and previous literature on circular discs,
there is no particular trend in Stφ with Reynolds number
(Fig. 15). Stφ is close to zero for zigzagging particles (where
ε ≤ 0.2), as the rate of spiralling is very low (by definition),
whereas for spiralling particles (ε ≥ 0.8), Stφ can be as high
as 0.7. No systematic relationship was found between either
Strouhal number (Stθ or Stφ) and area ratio.

When spiralling analogues rotate faster, they tend to also
wobble more frequently. For high ε (and correspondingly,
small θamp), Stθ is approximately half of Stφ , corresponding
to the classic observation that wobbling plates are found to
wobble twice as fast as they rotate (Fig. 16) (Tuleja et al.,
2007). When θamp is non-zero, the spiral motion that the cen-
tre of mass of the analogue makes is not a perfect circle: the
smaller the angle of wobble, the closer the traces of the ana-
logue are to circles. When the spin is not a perfect circle, Stφ
no longer matches double the wobble rate, Stθ . For higher
θamp (low ε) cases, Stφ and Stθ appear to both remain low
and not depend on one another.

3.3.5 Mean inclination angle

For particles that are already spiralling, the higher θamp is, the
more likely the behaviour is to be transitional (non-perfect
spiralling) and the larger the swing the particle makes; there-
fore the wobble is less frequent and Stφ is lower. This may
also be the cause of the bimodal distribution in ε (Fig. 12).
Particles that have high Stφ spiral quickly relative to their
vertical velocity. This fast rotation around the vertical means
that any torque at 90° to the vertical axis of rotation (which
causes wobble in θ ) will have less effect because it is small
relative to the gyroscopic torque. Therefore, the rotation of
spiralling particles most likely inhibits any potential zigzag-
ging motion. Across a set of experiments for a given particle,
at low Reynolds numbers, mean inclination angle, θ , is close
to zero, as particles are stable, and at higher Reynolds num-
bers, particles become unstable and θ increases to a steady,
non-zero value. To quantify and compare the onset of unsta-
ble motions for different particle properties, a logistic curve
is fit to the data using a least-squares method and the Trust
Region Reflective algorithm from the SciPy curve fit func-
tion (Virtanen et al., 2020) for each particle shape (Fig. 17a)
and area ratio (Fig. 17b) as follows:

θ =
θunstable

1+ e−k(log10(Re)−log10(Re)onset)
+ θ stable, (12)
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Figure 14. Scatter plot of Strouhal numbers (Stθ ) for each unstable experiment versus Reynolds number, coloured by ε. Box plots of
observed Strouhal numbers for particles with θamp > 2.5° alongside.

Figure 15. Scatter plot of azimuth Strouhal numbers (Stφ) for each unstable experiment versus Reynolds number, coloured by ε. Experiments
where θamp < 2.5° are marked with crosses. Box plots of observed Strouhal numbers for particles with θamp > 2.5° alongside.

where Reonset is the value of the function’s midpoint,
θunstable+ θ stable is the supremum of the values of the func-
tion, k is the steepness of the curve, and b is the minimum
θ value of the function. Particles with higher area ratio typ-
ically have bigger oscillations with larger θ . Dendrites with
low area ratios and stellar crystals are stable at very high Re
and typically have a smaller θ when unstable.

4 Discussion and Conclusion

Ten different plate-like snowflake shapes, in addition to cir-
cular discs, of up to three different aspect ratios each were al-
lowed to free fall through a tank of water–glycerine mixture
to simulate behaviours of real ice crystals in the atmosphere.
The fall behaviour of these analogues was viewed by three
orthogonal cameras, allowing for the digital reconstruction
of their trajectories and orientations.

4.1 Summary

Four main falling regimes are observed: stable, zigzag, tran-
sitional, and spiralling. Stable motion has no measurable
fluctuations, while other regimes involve periodic oscilla-

tions in both inclination angle and velocities. All unstable
motions for the experimental series observed were of peri-
odic behaviour: no tumbling behaviour is observed in this
work. Stable analogues all had θ = 0; i.e. their maximum di-
mension was in the horizontal plane. Zigzag motion involves
swinging back and forth, while spiralling remains inclined at
a constant, non-zero inclination angle.

Spiralling particles rotate steadily around the vertical axis
at constant dφ/dt . That is, the rotation of spiralling planar
particles does not result from a rotation around the c axis
of the particle (see Fig. 1); rather, periodic rotations of equal
amplitude, but phase difference of 90°, occur about the a axis
and a′ axis such that θ is approximately constant. This rota-
tion of the particle about the a and a′ axes causes the par-
ticle’s centre of mass to trace a circular path. By contrast,
zigzagging particles maintain a constant azimuth angle, φ,
that has a square wave (such that the minima and maxima
are spaced 180° apart). Transitional cases are a mix of the
two behaviours: they swing back and forth but also rotate as
they do so. Particle components of velocity (V and U for
vertical and horizontal respectively) were also found to be
sinusoidal with respect to time. Sine waves are fit to time se-
ries of θ and U and V , and the rate of spiralling, dφ/dt , is
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Figure 16. Scatter plot of azimuth Strouhal numbers (Stφ) versus inclination Strouhal numbers (Stθ ). The slope of the dashed line is 2.

Figure 17. Mean inclination angle, θ , against Reynolds number, Re, for each experiment (scatter) grouped by particle shape (a) and area
ratio (b) with overlaid fitted logistic functions.

found through linear regression. The amplitude of the sine
wave, θamp, was found to vary between 0° and 43.1°. Peri-
odic motion is found to be analogous to the range of spher-
ical pendulum behaviour, corresponding to simple harmonic
motion. Time series of θ and velocities for periodic exper-
iments are therefore sinusoidal, and distributions of θ have
a non-zero mode. The results do not support the common
assumption of Gaussian orientation distributions with a zero-
modal angle during unstable motions: the distributions of θ
have non-Gaussian distributions and non-zero modes.

In the spiralling regime, components of velocity are held
relatively constant compared to the other cases, effectively
making the spiralling cases a quasi-steady mode with a non-
zero near-constant inclination. When particles spiral, they are
consistently inclined at an angle, observed to typically be be-
tween 7 and 28°. The central line of the sine wave fit, θtilt, is
typically between 8 and 25° for spiralling behaviour for all
particles, with a mean of 18.4 ° and a standard deviation of
6.8°.

Strouhal numbers (non-dimensionalised frequencies) were
found using the rate of spiralling, dφ/dt , and the frequency
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of the sine waves of θ , finding Stφ and Stθ respectively. These
each represent the number of turns the particle makes and
the number of wobbles the particle makes in the time taken
for the particle to fall the vertical distance equal to its own
diameter.

Stφ was found to be approximately half of Stθ for spi-
ralling cases: particles were found to wobble twice as often as
they made a full rotation around the vertical, consistent with
previous work (Tuleja et al., 2007). For zigzagging cases, Stθ
is found to be 0.29± 0.7, with no variation with Reynolds
number.

The onset of unstable motions is found to be more likely
for higher area ratios corresponding to less complex shapes
(such as pristine hexagonal plates), in agreement with Este-
ban et al. (2018) and Tagliavini et al. (2021a). The shapes D1
(at all aspect ratios), DP, S, and F (at aspect ratio 0.04) re-
mained stable throughout all experiments, even at Re > 103.
The onset for circular discs was found to be as low as Re=
197.

A motion-type parameter ε is calculated using θamp and
θtilt to quantify the spectrum of behaviour from zigzag (ε =
0) to spiral (ε = 1). ε increases for increasing Reynolds num-
ber and dimensionless moment of inertia: spiralling is more
likely when both parameters are higher. Particles were ob-
served to exhibit zigzagging behaviour at lower Reynolds
number than spiralling, and some particles (Wang-BBP)
were found to exclusively spiral when unsteady. This con-
trasts with findings from Esteban et al. (2018) and Zhong
et al. (2013), who expect spiralling to occur at lower Re and
I ∗ than zigzagging.

4.2 Implication of results

The literature on ice crystal orientations often assumes that
they can be modelled by a Gaussian distribution of the incli-
nation angle with a mode at θ = 0° and with a breadth that is
independent of the particle size.

Our findings show that in fact we should expect the distri-
bution of inclination to be non-Gaussian, with a mode close
to the maximum inclination that the particle experiences. For
zigzag motions the distributions may be rather broad, span-
ning a few tens of degrees (Fig. 3a). For spiralling particles
the distributions are very narrow (only a few degrees) but
with a substantial systematic inclination (Fig. 3d).

It is also evident from our data that the distribution of in-
clination angle varies sharply around some critical Reynolds
number. Small particles fall steadily with horizontal orienta-
tion. Large particles fall unsteadily with a substantial inclina-
tion on average. The data in Fig. 17 suggest that the transition
between these two modes of fall is relatively sharp and is de-
pendent on the shapes of the particles, with open shapes like
stellar crystals and dendrites falling stably at higher Reynolds
number (larger diameter) than hexagonal plates and broad-
branched crystal forms.

Ground-based snowflake imagers have reported preferen-
tially non-horizontal orientations, and the laboratory results
reported here may provide a means to understand that ob-
servation. In future work, we hope to make a more detailed
comparison between field observations of fluttering crystals
Maahn et al. (2024) and our expectations from the laboratory.

Incorporating this information into remote sensing re-
trievals and interpretation (e.g. polarimetric radar signatures)
should help improve the accuracy and robustness of those
analyses. New electromagnetic scattering databases provide
increasing flexibility to integrate over arbitrary distributions
of inclination angle (Brath et al., 2020). It is difficult as yet
to make a simple prescription for what the distribution of θ
should be as a function of crystal size and shape – as we
have seen, there is significant variability in behaviour across
crystals of different cross section and aspect ratio. However,
Fig. 17 gives an indication of what a realistic mean incli-
nation angle could be for various Reynolds numbers, while
Fig. 9 provides more detail on the typical form of those dis-
tributions. We suggest choosing assumptions for crystal ori-
entation distributions that are consistent with these data.

The observation that large fluctuations may occur in the
fall velocity of unstable particles implies that a single mean
speed cannot be used to approximate the velocity of a single
fluttering crystal, and that a spread of velocities should be
considered when interpreting such spectra. This is expected
to appear as a broadening of the Doppler spectrum from a
vertical-pointing radar. An estimate of the magnitude of these
fluctuations can be deduced from Fig. 13. Likewise, the fluc-
tuating horizontal velocity of the crystals acts to broaden
the Doppler spectrum for near-horizontally scanning weather
radars, which should be considered when inferring the distri-
bution of turbulent air motions from such data, and it raises
the intriguing prospect of retrieving crystal fluttering char-
acteristics from horizontal Doppler data in conditions where
turbulence and wind shear are weak or absent.

4.3 Limitations and future work

Strong turbulence, typically characterised by high kinetic
eddy dissipation rates (e.g. > 0.1m2 s−3), could affect crys-
tal orientation when crystals are large (> 1 mm) (Klett, 1995;
Garrett et al., 2015). In these cases, strong turbulence is
found to widen the distribution of θ for both stable and un-
stable particles (Fitch et al., 2021). Our study only considers
quiescent conditions, as we want to know under what condi-
tions particle instability still occurs, even without the addi-
tion of turbulence.

Although strong turbulence is typical within convective
clouds and at the ground, typical turbulence-induced veloc-
ity perturbations across the faces of ice crystals within clouds
are approximately 50 times smaller than the vertical velocity
of the crystal, and other aerodynamic factors are involved
(Westbrook et al., 2010). Studies of sun glints have shown
that there are many cases in which turbulence does not domi-
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nate and conditions can be considered quiescent, such that ice
particles have horizontal orientations (Marshak et al., 2017;
Varnai et al., 2020). Turbulence does not typically dominate
the fall behaviour of very small particles, as the scales of tur-
bulence are not small enough to influence the orientation of
the crystals, with only a slight wobble of up to 2° observed
in some cases (Sassen, 1980; Klett, 1995).

In the literature on circular discs, Re is the key control on
the onset of unsteadiness, while the parameter I ∗ is argued to
modulate the form of the unsteady motion (recall Fig. 2). In
our data, it is clear that I ∗ on its own is not the only relevant
parameter or perhaps not even the leading control. Never-
theless, we acknowledge that I ∗ in our current experiment is
significantly smaller than the case of ice crystals falling in air,
largely due to the difference in density between the labora-
tory fluid (water) versus the atmosphere (air). To address this,
we are currently undertaking a new set of experiments with
much lighter analogues falling in air and will report these
results in a future publication.

Many aspects of shape are not covered by area ratio, and
other shape parameters could later be explored in addition to
area ratio to capture the full variability of shape parameters.
Future work therefore also includes exploration of the impact
of shape, with the aim of understanding the influence of ex-
perimental conditions on unsteadiness more accurately than
the results presented in this study.

Understanding the fall behaviour of ice crystals allows
us to further understand the speed at which they grow, fall,
and precipitate, allowing this behaviour to be modelled and
parameterised more effectively. Further research exploring
an even wider range of ice crystal shapes, sizes, and envi-
ronmental conditions will help build on these findings and
advance our overall understanding of ice crystal dynamics
within the complex atmospheric system.

Appendix A: Appendix

Table A1. Output variables from logistic fits as presented in Fig. 17
for each shape.

Shape θunstable Reonset k θ stable∗
(°) (°)

HP 23.6 237 14 0.2
Wang-S 18.6 287 100 0.4
BBP 21.5 398 37 1.8
PB 13.0 325 30 0.3
Wang-BBP 16.0 435 37 0.9
F 13.2 339 100 0.7
D1 1.85 413 100 0.5
DP 8.16 462 10 1.4
D 15.8 1763 10 1.1
S 9.02 1193 10 2.2

Table A2. Output variables from logistic fits as presented in Fig. 17
by binned area ratio.

Area ratio θunstable Reonset k θ stable∗
(°) (°)

0.8> and ≤ 0.9 22.3 247 12 0.4
0.7> and ≤ 0.8 23.2 281 5 0.0
0.6> and ≤ 0.7 21.5 398 37 1.8
0.5> and ≤ 0.6 13.0 326 30 0.2
0.4> and ≤ 0.5 17.6 324 52 0.8
0.3> and ≤ 0.4 7.79 622 10 0.7
0.2> and ≤ 0.3 8.65 1540 10 1.8

A1 Estimation of the magnitude of I∗ in the atmosphere

We estimated the magnitude of I ∗ for real ice crystals falling
in air by using a mass–diameter relationship from Nakaya
and Terada (1935) for planar dendritic crystals:

m= 0.0038 d2,

wherem is in milligrams and d is in millimetres. A predicted
value for I ∗ can then be calculated following the method in
Kajikawa (1992), such that

Ia =
1

16
M D2,

where Ia is the moment of inertia about the a axis of the
crystal and M and D are the mass and diameter in kilograms
and metres respectively. This can then be used to calculate I ∗

as

I ∗ =
Ia

ρfD5 ,

where we set the density of air to be 1.2 kgm−3. We find
that 10, 1, and 0.1 mm planar dendritic crystals have an I ∗ of
0.02, 0.2, and 2.0 respectively.

The mass–diameter relationship from Nakaya and Terada
(1935) was chosen as an example to illustrate the order of
magnitude of I ∗ that could be expected in the atmospheric
case (we are not attempting to provide precise estimates of
I ∗ for specific crystal shapes and dimensions). The approxi-
mate formula for I ∗ from Kajikawa (1992) was selected be-
cause it requires only the mass and diameter of the crystal as
inputs, without detailed knowledge of the full mass distribu-
tion around the snowflake.

Data availability. Data for the case studies and the characteristics
of the full data set are available as a Supplement.

Supplement. Videos from the four case studies presented in
Sect. 3.2 are given in the Supplement. The supplement related to this
article is available online at: https://doi.org/10.5194/acp-24-11133-
2024-supplement.
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