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A B S T R A C T

Grain protein content (GPC) is generally inversely correlated with grain yield (GY) but some genotypes 
consistently have higher or lower grain protein contents than predicted by simple regression analysis: this is 
called grain protein deviation (GPD). Positive GPD reflects greater nitrogen use efficiency and is an important 
target for breeders to develop more sustainable types of wheat.

Here, we investigate the genetic architecture of GPC, GY, thousand grain weight (TGW) and GPD using a 
population of 104 doubled haploid lines derived from a cross between two cultivars with positive (Hereward) 
and negative (Malacca) GPD and grown in replicated randomised field trials over three years. A total of 9 QTL 
were detected for all traits, five for GPC, two for GPD and one each for GY and TGW. All of the increasing alleles 
for GPC and GPD and the single QTL for TGW were contributed by Hereward while Malacca contributed the 
single increasing allele for GY. The two QTLs for GPD located on chromosomes 3A and 5B explained 23.3% and 
16.6% of the variance in the sample sets, respectively. Three QTL for GPC (on chromosomes 3A, 3B, 5B) each 
explained more than 14% of the variance, with those on chromosomes 3A and 5B having similar locations to the 
GPD QTLs on the same chromosomes. A survey of the gene content between the markers bordering the confi
dence intervals for the two GPD QTLs on chromosomes 3A and 5B identified 136 and 704 protein coding genes, 
respectively, including possible candidate genes.

1. Introduction

Wheat is the most widely grown and consumed staple crop in the 
world, estimated to provide about 20% of the calories in the human diet. 
The major uses of wheat are to make breads, other baked goods 
(including cakes and biscuits), pasta (durum wheat) and noodles (bread 
wheat), but it is also widely used as an ingredient in processed foods. 
Furthermore, wheat is widely used as feed for livestock, particularly 
non-ruminants (pigs and poultry), and as raw material for ethanol pro
duction (for alcoholic beverages and bioethanol).

The processing properties of wheat are underpinned by the gluten 
proteins which form a viscoelastic network in dough. Gluten is a com
plex mixture of individual proteins and processing quality is determined 
by variation in both the total protein amount, with loaf volume (a widely 
used measure of quality) being positively correlated with grain protein 
content (GPC) (He and Hoseney, 1992), and with allelic variation in 

some individual components, notably the high molecular weight sub
units of glutenin (Payne et al., 1987). Hence, it is possible to compen
sate, to some extent, for low intrinsic gluten quality by increasing gluten 
amount (Payne et al., 1987).

The importance of protein content means that grain traders and 
millers frequently specify minimum protein contents for breadmaking 
wheat, which are generally about 13% in the UK. This high protein 
requirement means that farmers often need to apply more nitrogen 
fertiliser than is optimal for crop yield, typically about 200kgN.ha− 1 for 
breadmaking wheat in the UK. This not only adds to the cost of pro
duction, but also increases the energy requirement for fertiliser pro
duction and the potential environmental footprint. Although it may be 
possible to reduce the protein requirement for breadmaking by modi
fying the breadmaking process, this has proved to be difficult to achieve 
and attention has focused on increasing GPC at lower nitrogen 
fertilisation.
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Many studies have shown that GPC is inversely correlated with grain 
yield (GY) and hence attempts to increase GPC have generally resulted 
in decreases in yield (Monaghan et al., 2001; Oury et al., 2003; Oury and 
Godin, 2007; Bogard et al., 2010). However, Monaghan et al. (2001)
compared GY and GPC for a range of cultivars, showing that some 
deviated positively or negatively from the simple regression line which 
could be calculated for GY vs GPC, and introduced the term grain protein 
deviation (GPD) to describe this phenomenon. GPD is an indicator of the 
relative ability of a cultivar to translocate nitrogen into the developing 
grain with cultivars exhibiting positive GPD being more efficient.

Several studies in bread (T. aestivum ssp. aestivum) and durum 
(T. turgidum ssp. durum) wheats have shown that GPD is partially under 
genetic control and therefore amenable to selection (Rapp et al., 2018; 
Nigro et al., 2019; Mosleth et al.,2020; Geyer et al., 2022; Paina and 
Gregersen, 2023). We have therefore investigated the genetic architec
ture of GPD, GPC, GY and thousand grain weight (TGW) in a doubled 
haploid (DH) population from a cross between the breadmaking wheat 
cultivars Malacca (negative GPD) and Hereward (positive GPD) grown 
in field trials for three years.

2. Materials and methods

2.1. Field trials and grain samples

A doubled haploid (DH) population of 104 lines was developed from 
the cross Malacca x Hereward by RAGT Seeds (UK) as described by 
Millar et al. (2008). This population was grown in three different envi
ronments (combination of year and location): at Rothamsted Research in 
2019–2020 (51◦48′06″N, 000◦23′42″W), abbreviated to RR2020, and at 
Reading University experimental station at Sonning-on-Thames in 
2020–2021 (51◦28′47″N, 000◦53′59″W) and 2021–2022 (51◦28′41″N, 
000◦54′06″W), abbreviated to RU2021 and RU2022 respectively. The 
same level of nitrogen fertilisation (150 kg ha− 1) was used for all three 
trials but the application times and other agronomic treatments were 
those used as standard for the two sites. Large plots were used in order to 
provide accurate yield data.

The DH population (104 lines) and the two parental lines were grown 
in three field trials. Most lines were grown in three replicate blocks in all 
three years but limited availability of grain meant that a small number of 
lines could only be grown in one replicate (12 lines) or two replicates (8 
lines) in year one. Hence, the experimental design in the RR2020 trial 
consisted of a Balanced Incomplete Block Design (BIBD) with 3 blocks of 
100 (4.15m × 1.8m - 7.47 m2) plots. A Randomised Complete Block 
Design (RCBD) was used in the two Reading field trials with three blocks 
of 5m × 1.9m (9.5 m2) plots of the 106 lines (104 DH and 2 parental 
lines). The sowing density was 250 seeds.m− 2 in RR2020 and 350 seeds. 
m− 2 in the two Reading trials.

Nitrogen fertilisation was applied at a rate of 150kgN.ha− 1 in two 
splits with the RR2020 trial receiving 50kgN.ha− 1 and 100kgN.ha− 1 as 
ammonium sulphate and ammonium nitrate, respectively, and the two 
trials at Reading receiving 75kgN.ha− 1 as a mix of ammonium sulphate 
and ammonium nitrate and 75kgN.ha− 1 as ammonium nitrate. The 
ammonium sulphate fertiliser therefore also provided sulphur at 44kgS. 
ha− 1 at Rothamsted and 40kgS.ha-1 at Reading.

2.2. Determination of GPC by near infrared spectroscopy (NIRS)

A small metallic plate was filled with cleaned grains and inserted into 
a FieldSpec 4 Standard-Res spectroradiometer (Malvern Panalytical, 
UK) which had been calibrated for nitrogen (AACCI Method 46–30) 
(Approved Methods of Analysis (cerealsgrains.org)). The NIRS spectra 
were then analysed with the software Indico Pro (Malvern Panalytical, 
UK) and the module IQ Predict (Alphasoft, Dhaka, Bangladesh) to 
calculate the grain nitrogen content which was converted to protein by 
applying a conversion factor of 5.7.

2.3. Determination of GY and TGW

The grain weight (kg) from each plot was measured at harvest by the 
combine harvester and the grain yield (g.m− 2) calculated by dividing the 
grain fresh weight by the plot area. Fresh grain samples of 70–80g were 
dried overnight at 105 ◦C to determine their water content and grain 
yield at 15% moisture was calculated. The value at 15% moisture was 
chosen as this is standard for the grain industry and allowed comparison 
with other studies such as Bogard et al. (2010). Two sub-samples of five 
hundred dried grains were prepared using an Elmor C1 seed counter 
(Elmor, Switzerland). These were weighed and the mean values used to 
calculate TGW on a dry weight basis.

2.4. Calculation of GPD genotypic means

Simple linear regressions between the individual values (including 
the individual field replicates or blocks) for GPC and GY were calculated 
for the three separate environments, with 284, 298, and 304 plots for 
RR2020 and RU2021 and RU2022, respectively, using the statistical 
software R (v4.1.1; RCore Team 2021) to retrieve the residuals (raw 
GPD values).

For the RR2020 trial, the Best Linear Unbiased Estimators (BLUES) 
for GPD were calculated using a mixed model with a fixed structure, 
"line", a random structure, "block", and a random structure "row
*column" nested into "block" with the R package lme4 (v1.1.30; Bates 
et al., 2015). A mixed model was selected to account for the imbalance of 
the line treatment. For the RU2021 and RU2022 trials, the arithmetic 
means for GPD were calculated with a linear model with a treatment 
“line” and a structure “block” on the untransformed GPD values for 
RU2021 and on the log10.transformed GPD values for RU2022 to 
improve the normality and homoscedasticity of the residuals.

2.5. Genotyping

The genotyping procedure and the construction of the genetic link
age map are detailed in Min et al., 2020.

2.6. Calculation of descriptive statistics, correlations and broad sense 
heritability

All statistics were calculated in the R software suite (v4.1.1; RCore 
Team 2021). In-built functions mean, median and standard deviation 
were used to calculate the arithmetic mean, median and the standard 
deviation, respectively. The correlations between replicates or between 
measurements in different environments were calculated using function 
"cor" and method “pearson”.

Broad-sense heritability (H2) measures the percentage of phenotypic 
variance that is explained by the genetic variance. A high H2 value in
dicates that the trait has a strong genetic basis in the set of environments 
under study and would be suitable for selection by breeders.

The following fixed effect model was used to calculate the broad- 
sense heritability (H2): 

yikt = μ + gi + et + (ge)it + ϵikt 

where yikt is the kth observation of the ith genotype at the tth environ
ment, μ is the intercept, gi is the main effect for the ith genotype, et is the 
main effect for the tth environment, (ge)it is the itth genotype-by- 
environment interaction effect, and εikt is the plot error effect corre
sponding to yikt.

The variance components of the model: Vg, Ve, Vge,Vε were calculated 
using the package VCA (v.1.5.1.) (Schuetzenmeister and Dufey, 2024) 
and were used to replace the parameters in following equation based on 
Schmidt et al. (2019) to calculate H2: 
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Where σ2
g is the genetic variance, σ2

ge represents the variance of the 
interaction between the genotype and the environment, σ2

ε is the resid
ual variance, ne the number of environments and nr the number of 
replicates or blocks.

2.7. QTL. Analysis

The QTL analysis was performed in R using the package qtl (v.1.52; 
Broman et al., 2003) with a custom made script available from https:gith 
ub.com/wingenl/rqtl_jic/tree/rqtl_jic_vs1.9. The script used the CIM 
(composite interval mapping) function to scan the genome for QTL lo
cations testing between 2 and 20 co-variates and selecting the model 
with the highest overall LOD support. The co-variates are introduced in 
the model to control the influence of QTL outside the genetic interval 
which is tested. The CIM QTL follow the following statistical model: 

yj = μ + αq xj +
∑

bk xjk + ej                                                              

where: q is the qtl being tested; yj is the trait value for individual j; μ is 
the overall mean; αq is the effect of the putative QTL in the marker in
terval (i,i+1); xj is the genetic predictor for individual j (taking value 1 
or 0 with probability depending on the genotypes at the markers i and j 
and the position tested for this QTL), bk is the partial regression coeffi
cient of the phenotype μ on the kth marker, xjk is a known coefficient for 
the kth marker in the jth individual taking a value 1 or 0 depending on 
the marker type and ej is the random error, all errors assumed to be 
normally distributed.

The significance of each individual QTL selected in the final model 
was assessed by backward multiple regression using the R2 criteria. The 
QTL confidence intervals were defined as the closest markers to the 
genomic positions of a LOD drop of 1.5 from the QTL peak.

The CIM model uses a permutation test (with 1000 permutations) to 
derive a genome-wide LOD significance threshold at the 5% level. QTL 
with LOD scores over this threshold are significant at the 5% level. We 
also recorded QTL with LOD scores less than 10% below this threshold if 
the backward regression test showed statistical significance (at the 5% 
level).

2.8. Identification of putative candidate genes within the two GPD QTL 
confidence intervals

The positions of markers bordering the QTL confidence interval on 
the IWGSC RefSeqv1.0 assembly were identified as described in Shor
inola et al. (2022). The BioMart tool from the EnsemblPlant software 
(Release 59, May 2024) was used to search for candidate genes in the 
Ensembl Plants Genes 59 database within the Triticum aestivum genes 
IWGSC dataset (Harrison et al., 2024) in the confidence interval region. 
This dataset was screened for protein coding genes only within the 
confidence interval (CI) of the two GPD QTL.

2.9. Orthology and gene set enrichment analysis

The functional enrichment analysis was performed using g:Profiler 
(version e111_eg58_p18_f463989d) with g:SCS multiple testing correc
tion method applying a significance threshold of 0.05 (Kolberg et al., 
2023). The search for orthologue genes in the model species Arabidospis 
thaliana was carried out with the version (e111_eg58_p18_f463989d).

3. Results

104 DH lines from the cross Malacca (negative GPD) and Hereward 
(positive GPD) were grown in three field trials (called RR2020, RU2021 
and RU2022) with a fertilisation rate of 150kgN.ha− 1 to investigate the 

genetic architecture of GPD under sub-optimal nitrogen nutrition (i.e. 
below the UK national average rate for breadmaking wheat of 200kgN. 
ha− 1).

3.1. Descriptive statistics

Descriptive statistics (arithmetic mean, median, and standard devi
ation) for GPD, GPC, GY and TGW were calculated for individual field 
trials and are presented in Table 1.

GPD showed the widest variation of the traits measured, with the 
coefficient of variation (cv) around the mean ranging from 12.67 to 158, 
and absolute values ranging from between − 1.25 and +2.36 % protein 
in RR2020 to between − 0.90 and +0.90 % protein in RU2021. By 
contrast, GPC, GY and TGW showed less variation, with cv values from 
0.04 (GPC RU2021) to 0.09 (GY RR2020 and RU2022) (Table 1).

3.2. Correlations between trait measurements

The correlation coefficients between the four traits (TGW, GPD, GPC, 
GY) measured in the different environments (shown Fig. 1d) are 
generally in good agreement: 0.72, 0.72 and 0.80 for TGW, 0.34, 0.43 
and 0.44 for GPD, and 0.39, 0.37 and 0.36 for GY. For GPC, the corre
lation was greater between RU2021 and RU2022 (0.60) than between 
these trials and RR2020 (0.43, 0.49).

Correlations between the four traits in each environment were 
calculated and are shown in Fig. 1 a-c. Within each field trial, GPD was 
strongly and positively correlated with GPC (0.97, 0.92, 0.95) with weak 
negative correlations with TGW at RU2021 and RU2022 and with GY at 
all sites. GPC was negatively correlated with GY at all sites (− 0.44, 
− 0.53, − 0.51) and with TGW at the RU2021 and RU2022 sites (− 0.42, 
− 0.37), but not at RR2020. TGW was positively correlated with GY at all 
sites, but more strongly at RU2021 and RU2022 (0.55, 0.49) than at 
RR2020 (0.27).

3.3. Linear regression between GPC and GY

The linear relationships between GPC and GY were analysed sepa
rately for the individual environments (Fig. 2). Statistically significant 
(p < 0.05) slightly negative (slope = -0.002) relationships of similar 
magnitude were found between GPC and GY (Fig. 2), with an increase in 
GY of 100 g m− 2 being accompanied by a decrease in GPC of 0.2% dry 
weight. The values for the two parents, Malacca and Hereward, were 
situated below and above the regression lines, respectively, in the 
RR2020 and at RU2021 sample sets (Fig. 2a and b), which is in agree
ment with previous reports (Millar et al., 2008; Mosleth et al., 2015, 
2020). However, the separation was less clear in the RU2022 sample set 
(Fig. 2c). The regression models for the RU2021 and RU2022 sample sets 
had a higher coefficient of determination (R2=0.18) than that for the 
RR2020 sample set (R2=0.08) suggesting a weaker linear relationship 
between the two variables in the latterenvironment (Fig. 2a–c).

3.4. Broad-sense heritability

The broad sense heritability (H2) varied from 0.57 for GPD to 0.78 
for TGW (Table 2) showing that more than half (0.57) of the observed 
variation in GPD is due to the genetic differences between cultivars.

3.5. QTL analysis

The CIM identified nine statistically significant QTLs (with LOD 
scores above 5) for the four traits. These were located on six chromo
somes with the greatest number being five for GPC and the lowest one 
each for GY and TGW (Table 3). A further five QTL which were just 
below significance in the CIM model (LOD scores of 0.2–0.4 below the 
LOD threshold) but significant in a statistical ‘leave-one-out test’ are 
presented in Supplementary Table S1.
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All of the increasing alleles (ie. alleles associated with higher values 
for the traits) for GPC and GPD were contributed by Hereward, which 
was expected as it was chosen as having higher GPC and GPD than 
Malacca. Malacca contributed the single increasing allele for GY, on 
chromosome 3B, which was also expected as it has a higher yield po
tential, being released in 1997, almost a decade after Hereward (1989). 
Hereward also contributed the single increasing allele for TGW.

Three QTL for GPC (Q.Gpc-3A, Q.Gpc-3B and Q.Gpc-5B) each 
explained more than 14% of the variance of the trait in the sample sets. 
The two GPC QTL Q.Gpc-3A and Q.Gpc-5B are mirrored by the GPD QTL 
Q.Gpd-3A and Q.Gpd-5B, which have similar locations and explain 
similar proportions of the GPD variance. Similarly, the significant GPC 
QTL Q.Gpc.3B and Q.Gpc-7A are mirrored by the GPD QTL Q.Gpd.3B 

and Q.Gpc-7A which were just below significance in the CIM analysis 
(Supplementary Table S1).

Two co-locations of QTL confidence intervals were noticed: Q.Gpc- 
5B and Q.Gpd-5B and Q.Gpc-3B and Q.Gy-3B (Table 3). Q.Gpd-5B and 
Q.Gpc-5B share the same peak marker (AX-95242218) and have fully 
overlapping QTL confidence intervals (Table 3, highlighted in red). Q. 
Gpc-3B, which was identified in the RU2022 sample set, co-locates 
with Q.Gy-3B identified in the RR2020 sample set with the peak 
marker (AX-94896615) being the same and similar confidence intervals 
(Table 3, highlighted in blue). However, whereas Hereward exhibited 
the increasing allele for GPC at RU2022, the increasing allele for GY in 
RR2020 was from Malacca. This is consistent with the known trade-off 
between GY and GPC in the two parental cultivars.

Table 1 
Descriptive statistics of GPD, GPC, GY, and TGW in the RR2020, RU2021 and RU2022 sample sets.

Trait Environment N Range Mean Median SD CV

GPD RR2020 106 − 1.25:+2.36 4.50–0.3 − 0.07 0.71 158
GPD RU2021 105 − 0.90; 0.90 − 0.03 − 0.06 − 0.38 12.67
GPD RU2022 106 − 1.36; 1.19 0.01 5.00–03 0.48 48
Across environments ​ ​ − 0.02 ​ ​ ​

GPC RR2020 106 11.39; 15.43 12.86 12.83 0.77 0.06
GPC RU2021 106 10.02; 12.33 11.08 11.09 0.44 0.04
GPC RU2022 106 9.40; 12.44 11.12 11.13 0.54 0.05
Across environments ​ ​ 11.69 ​ ​ ​

GY RR2020 106 514.15; 760.33 626.06 626.68 55.55 0.09
GY RU2021 106 511.59; 766.54 668.47 670.54 50.73 0.08
GY RU2022 106 632.26; 1020.34 850.05 852.02 76.56 0.09
Across environments ​ ​ 714.86 ​ ​ ​

TGW RR2020 98 36.81; 51.25 44.69 44.86 3.04 0.07
TGW RU2021 106 29.01; 44.99 37.61 37.72 2.68 0.07
TGW RU2022 106 28.14; 47.89 40.18 40.27 3.18 0.08
Across environments ​ ​ 40.83 ​ ​ ​

GPD is expressed as % protein at 15% moisture, GPC as protein % dry weight, GY as g.m− 2 dry weight, TGW as g dry weight.
The values were rounded up to two decimal places. Sample size (N), standard deviation (SD), and coefficient of variation around the mean (CV).

Fig. 1. Correlation coefficients for GPD, GPC, TGW and GY within individual field trials (a-c) and between the three trials (d). Red stars indicate levels of significance 
at 5% (*), 1% (**), and 0.1% (***) thresholds. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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3.6. Gene content of the 3A and 5B GPD QTLs

Q.Gpd-3A and Q.Gpd-5B may correspond to QTLs reported by other 
authors (as discussed below). A survey of the gene content between the 
markers bordering the confidence intervals for these QTLs on the IWGCS 
v1.0 Reference Sequence was therefore carried out. For Q.Gpd-3A, the 
confidence interval extends between markers AX-94557706 and AX- 
94535468 (3A:479,474,983 bp – 635,102,746 bp) and for Q.Gpd-5B 
between AX-94974270 and AX-94892126. However, marker AX- 
94974270 could not be placed on chromosome 5B as it is absent from 
the reference sequence. Instead, the adjacent marker on the map, AX- 
95242218, was used to define the confidence interval (5B:587,128, 
030 bp – 602, 244, 888 bp).

136 and 704 protein coding genes were inferred from the reference 
annotations for Q.Gpd-3A and Q.Gpd-5B, respectively. From these, 66 

and 639 genes, respectively, have orthologues in the model species 
Arabidopsis.

Gene set enrichment analysis on g:Profiler showed a significant over- 
representation (p = 0.023) of genes associated with calmodulin binding 
(GO:0005516) for Q.Gpd-5B and eight significant over-representations 
for Q.Gpd-3A; one of them (for GO:0009987-Cellular process) being 
highly significant (p = 1.17x10− 5). Two of the identified groups 
(GO:0042937 and GO:0071916) are associated with peptide trans
membrane transport activity and both contained four genes.

4. Discussion

Improving nitrogen use efficiency (NUE) of wheat is a key sustain
ability target, in order to reduce the use of nitrogen fertiliser and hence 
the energy requirement, cost and nitrogen footprint of production. NUE 
is a complex trait affected by many factors but can be broadly described 
as the relationship between available nitrogen and crop productivity. It 
has been described by a range of indices including the relationship be
tween applied nitrogen and nitrogen recovered in the grain (Congreaves 
et al., 2021). The progressive increases in wheat yields which have been 
achieved by scientific breeding are associated with decreases in grain 
protein content due to dilution with starch. Hence, positive GPD is a key 

Fig. 2. Linear regressions between GPC and GY at RR2020 (a), RU2021 (b) and RU2022 (c). Blue dotted lines denote the 95% confidence intervals around the 
regression slopes. Individual observations for the DH parents are color-coded in red for Hereward and green for Malacca. The linear regressions were performed on 
284 (a), 298 (b), and 304 (c) plots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)

Table 2 
Broad sense heritability (H2) for the three field trials.

Traits GPD GPC GY TGW

H2 0.57 0.74 0.66 0.78
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sustainability trait as it can be exploited to breed for higher grain protein 
content without the requirement for additional nitrogen fertilisation 
(Hawkesford, 2014).

Dissecting the genetic architecture of GPD is challenging because it 
reflects the relationship between GPC and GY, traits which are strongly 
influenced by environmental factors (E) and the interactions of these 
with genotype (G x E). In fact, our previous analyses showed that the 
genotype contributed only 30% of the variation in GPD, compared with 
48% for nitrogen content (a proxy for protein content) and 42% for GY 
(Mosleth et al., 2020).

The parents of the cross used for this study, Hereward and Malacca, 
were selected based on previous studies (Mosleth et al., 2015, 2020) 
which showed that they exhibited either strong positive GPD (Here
ward) or negative GPD (Malacca). The simple linear regression for GPC 
and GY showed slight negative trends in the three environments, which 
confirmed the inverse relationship between the two traits that has been 
widely reported (for example, Bogard et al., 2010; Oury et al., 2003).

In this study, the DH lines displayed wide variation for GPD (high 
CV), which was greater than the variation between the parents. This 
transgressive segregation suggests the trait is controlled by multiple 
genes with relatively small effects. The broad-sense heritability (H2) for 
GPD in the three environments studied here (0.57) was higher than that 
reported by Mosleth et al. (2020), who reported a heritability for GPD of 
0.44 for a set of genotypes grown in 17 environments. However, in 
eleven of the environments much higher values for heritability (up to 
0.84) were reported than in the combined dataset. The high heritability 
reported here may, therefore, reflect the low number of environments 
and greater similarity between them.

QTL analysis showed a total of nine significant QTL for all traits with 
the percentage of phenotypic variance explained ranging between 9.3% 
and 23.3%. A further five QTL were just below statistical significance 
and explained between 6.2 and 17.4 % of phenotypic variance 
(Supplementary Table S1).

Two major QTL (i.e explaining more than 15% of the phenotypic 
variance) for GPD were identified, Q.Gpd-3A and Q.Gpd-5B, which 
accounted for 24% of the phenotypic variance in RU2021 and 16.6% in 
RR2020, respectively. The high percentages of the variance that were 
not accounted in these sample sets suggest the presence of other loci 
with small effects as well as effects of E and G × E interactions.

The two GPD QTL (Q.Gpd-3A and Q.Gpd-5B) had additive effects of 
0.17% and 0.28 % protein/g dry weight, respectively (Table 3), with 
substitution effects (when the decreasing allele is replaced by the 
increasing allele) of 0.34% and 0.56 % protein/g dry weight.

It is notable that neither of the GPD QTLs was detected in all three 
sample sets. Differences in the detection of QTLs in sample sets grown in 
different environments are frequently observed in studies of this type, 
particularly when the traits are controlled by multiple QTLs with rela
tively small individual effects. Furthermore, because GPD is a derived 

trait, calculated from GPC and GY, the analysis will be affected by effects 
of environment on the two primary traits (GPC and GY).

However, comparisons with published studies show that both GPD 
QTLs corresponded to previously reported QTLs, with Q.Gpd-3A over
lapping with a 478.6–488.7 Mb region reported by Ruan et al. (2021)
and Q.Gpd-5B being located between QGpd.mgb-5B.1 (20.8 Mb down
stream of the peak marker) and QGpd.mgb-5B.2 (13.3 MB upstream of 
the peak marker) reported by Nigro et al. (2019) (Supplementary 
Table S2).

Protein coding genes underlying the confidence intervals of the two 
QTLs for GPD were predicted and enrichment analysis carried out. This 
showed that the region around Q.Gpd-5B includes genes that may 
encode calmodulin-binding proteins, which modulate calcium signalling 
in a range of biological processes, while the region around Q.Gpd-3A 
includes genes which may regulate peptide transport across mem
branes (Supplementary Table S3). It is possible that the latter contribute 
to greater transport of nitrogen into the developing grain of lines with 
the Hereward allele, which could be explored by comparing their 
expression levels in genotypes with the Hereward and Malacca alleles in 
different tissues and time points between anthesis and harvest (GPD 
being correlated with to post-anthesis N uptake (Bogard et al., 2010).

In conclusion, we have demonstrated that the Malacca x Hereward 
DH population is a useful resource to study the genetic architecture of 
GPD. Our results indicate that the genetic architecture of GPD is com
plex, involving multiple loci with small effect sizes. Nevertheless, we 
have identified two major QTLs on chromosomes 3A and 5B which 
correspond to previously reported QTLs for GPD. These QTL could 
therefore be used to underpin the development of markers for use in 
breeding. However, this would require the analyses of further crosses for 
more precise mapping and the validation of the markers using panels of 
genotypes grown in field trials. Preliminary analyses of the gene content 
within these QTL regions also indicate the presence of genes which could 
contribute to the regulation of protein accumulation in the grain, but 
further work is required to identify precise candidates and confirm their 
functions.
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