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One-third of the global soybean
production failure in2012 isattributable to
climate change

Check for updates

Raed Hamed 1 , Corey Lesk 2, Theodore G. Shepherd3, Henrique M. D. Goulart1,4,
Linda van Garderen 5,6, Bart van den Hurk 1,4 & Dim Coumou 1,7

In 2012, soybean crops failed in the three largest producing regions due to spatially compounded hot
and dry weather across North and South America. Here, we present different impact storylines of the
2012 event, calculated by combining a statistical crop model with climate model simulations of 2012
conditions under pre-industrial, present-day (+1 °C), and future (+2 °C) conditions. These simulations
use the ECHAM6 climate model and maintain the same observed seasonally evolving atmospheric
circulation. Our results demonstrate that anthropogenic warming strongly amplifies the impacts of
such a large-scale circulation pattern on global soybean production. Although the drought intensity is
similar under different warming levels, larger crop losses are driven not only by warmer temperatures
but also by stronger heat-moisture interactions. We estimate that one-third of the global soybean
production deficit in 2012 is attributable to anthropogenic climate change. Future warming (+2 °C
above pre-industrial) would further exacerbate production deficits by one-half compared to present-
day 2012 conditions. This highlights the increasing intensity of global soybeanproduction shockswith
warming, requiring urgent adaptation strategies.

Soybean is the largest traded agricultural commodity comprisingmore than
10% of the total value of global agriculture trade1. Themajority of the global
soybean crop is produced in the United States (US), Brazil, and Argentina
which together contribute approximately 75% of the global annual soybean
supply (Fig. 1a). This highly concentrated soybean production in three
regions makes the global soybean supply vulnerable to regional production
shocks. Climate-related shocks, in particular, can have substantial impacts,
with concurrent multivariate hot and dry extremes among the most detri-
mental environmental factors affecting crop yields2,3. These are critically
damaging when they co-occur in multiple hotspot-producing regions
within a single harvesting season, which can threaten the stability of the
global food system4,5. One key contribution of this work is to investigate a
specific case study that combines bothmultivariate and spatially compound
weather extremes6 with disproportionate impacts on global soybean
production.

2012 is a noticeable year when soybean yields failed in large parts of
both the US and Southeast South America (SESA). This led to an unpre-
cedented soybean production shock evenwhenexpressed in a relative sense,

with the global production anomaly being 10% below anticipated trend
levels (Fig. 1b). A 2-year persistent La Niña event in 2010–2012 favored an
active southAtlantic convergence zone in austral summer 2011–2012 and a
strong negative ‘horseshoe’ sea-surface temperature pattern in the north
Pacific in boreal summer 2012. Both have been previously shown to be
important precursors of hot and dry conditions in SESA and the US
respectively, mediated via dynamically well-understood teleconnections7–10.
Analyzing how anthropogenic climate change modulates the impacts of
such spatially compound harvest failures can provide relevant information
for adaptive planning concerning similar events in the future. Furthermore,
it enables an event-based estimation of losses or gains directly incurred due
to climate change11.

As defined by the IPCCWorkingGroup II (WGII), impact attribution
involves quantifying how changes in climate-related systems cause changes
in natural or human systems12. While impact attribution does not neces-
sarily entail attributing changes to human-induced climate forcing, an
increasing number of studies do consider this aspect13, which is the focus of
our study. However, attributing the anthropogenic imprints to weather
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extremes and their subsequent impacts is challenging due to the intertwined
roles of natural variability andanthropogenic climate change indriving such
events14. Attribution methods typically involve comparing the observed
system state, which includes anthropogenic influences, to a counterfactual
baseline that excludes these human-induced forcings.

The most commonly used probabilistic approach involves com-
paring large ensembles of climate model experiments—specifically,
control simulations that exclude anthropogenic forcings and historical
simulations that include these forcings. This comparison allows for
separating forced changes from internal variability15. However, this
method is vulnerable to epistemic model errors. In particular, this con-
cerns atmospheric circulation changes, which are much more uncertain
compared to the well-understood and modeled thermodynamic changes
associated with global warming16. Particularly noteworthy is the current
lack of confidence in the greenhouse gas–forced response of ENSO
dynamics. Recent research highlighted that current models fail to
reproduce the observed strengthening in the east-west tropical Pacific
Sea-surface temperature (SST) gradients, the latter favoring La Nina-like
conditions17,18. These inconsistencies could lead to important errors in
both attribution and projection of anthropogenic climate change impacts
in regions sensitive to tropical Pacific SSTs19.

The storyline approach has been proposed as a framework to
address climate change imprint on high-impact events in the context of
deep uncertainty20,21. One way to do this is via climate model experiments
that can realistically simulate a prescribed observed circulation anomaly
under different background climatological conditions, so-called

spectrally nudged atmospheric experiments22–24. Such conditioning
removes the effects of highly uncertain circulation changes and allows
one to focus exclusively on the thermodynamic implications of climate
change on a particular event of interest. This type of assessment is, by
definition, deterministic and does not explore, for instance, changes in
the frequency of the event. Nevertheless, it avoids the generation of
probabilistic statements that can be misleading due to high model
uncertainty. Such spectrally nudged storyline approaches can provide key
information on the implications of climate change but have not been
used yet to study high-impact crop failure events.

Here, we use spectrally nudged atmospheric experiments that repro-
duce the anomalous circulation state and associated surface extremes of
2012under observed factual conditions (1 °Cwarming), aswell as under two
counterfactual scenarios: pre-industrial conditions (nowarming) and a 2 °C
warmerworld24.Wefirst usemixed-effect statisticalmodels (see “Methods”)
to quantify the relationship between crop yields and summer temperature
and soilmoisture at the county level.We then use estimated relationships to
attribute 2012 soybean production deficits based on event storylines of
temperature and soilmoisture conditions under different levels of warming.
By comparing soybean production anomalies between storylines, we
quantify the extent to which anthropogenic climate change modulates the
impacts of an event with identical, drought-inducing atmospheric circula-
tion conditions as observed in 2012. In other words, we ask the question of
what the impacts would have been if the 2012 conditions, along with their
level of agri-technology, landmanagement, harvested area, etc., would have
occurred in a different climate.

Fig. 1 | Global and regional soybean production trends and 2012 anomalies.
a Total national soybean production (Mt) time series (source: FAOSTAT) split into
Brazil, Argentina, United States and the rest of the world. b LOESS (Locally esti-
mated scatterplot smoothing) detrended global soybean production anomaly (Mt).
Red dot indicates the year 2012. c–e Anomalies of linearly detrended 2012 soybean

yield (t/ha) (source: USDA/IBGE/SIAA), summer maximum temperature (mean
daily maximum temperature) (source: CRU36) and summer root zone soil moisture
(% deviation from climatological mean) (source: GLEAM37) at county scale in the
Americas. Summer refers to Jul-Aug-Sep average in the northern hemisphere and
Jan-Feb-March average in the southern hemisphere.
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Results
Compound hot and dry conditions as key driver of crop losses
We concentrate our analysis on the US, Brazil, and Argentina given their
large shareof global soybeanproduction.Production in all three countries in
2012 fell short of trend expected levels (Fig. 1a, b). Within the US, negative
yield anomalies were widespread, except for the eastern coast. In South
America, adverse yield anomalies were primarily concentrated in the SESA
region, encompassing the southernparts ofBrazil andArgentina.Cropyield
estimates were near average only in the province of Buenos Aires (south of
34 °S) and the central Brazil (CB) region (north of 20 °S) (Fig. 1c). The
spatial patternof this compoundyield anomaly closelymirrors the estimates
of summer temperature and soil moisture anomalies in their respective
regions (Fig. 1d, e).

To quantify this climate-yield relationship, we link detrended crop
yields (in tons per hectare) and detrended summer soil moisture, tem-
perature and their interaction using three distinct mixed-effect statistical
models for the US, SESA, and CB regions separately (Fig. 2). We allow
estimated relationships (e.g., the sensitivity of soybeans to high

temperatures) to vary at county level per region, which offers the advantage
of quantifying both region-wide and county-specific effects simultaneously
(Supplementary Fig. 1). This approach accommodates the potential idio-
syncrasies of local conditions that might contribute to varying crop-climate
sensitivities at county scale. Furthermore, explicitly accounting for the
interaction between soil moisture and high temperatures was shown to lead
to significant model improvements allowing to capture physiologically
expected increasing crop sensitivities to temperature when soil moisture is
low2,25,26.

Our statistical crop models explain roughly one-third of soybean
variability in theUS and SESA (Fig. 2a, b), in line with previous research27,28.
We note considerably lower explained variability for the CB region (Sup-
plementary Table 1). We further calculate the out-of-sample fraction of
explained variability (R2) at the local and regional scale which leads to
similar results, highlighting model robustness (Supplementary Fig. 2).
Specifically for 2012, we report out-of-sample predictions that show a very
similar spatial pattern and intensity to observed soybean yield anomalies in
2012 across the Americas (compare Figs. 1c and 2b). We find that 1 °C

Fig. 2 | Sensitivity of soybean yield anomalies to summer soil moisture and
maximum temperature anomalies. a Yield anomalies (t/ha, color shading) as a
function of summer soil moisture (%, vertical axis) and maximum temperature (°C,
horizontal axis) anomalies. Contour lines represent modeled yield sensitivity based
on regional fixed effect model coefficients. Grids represent observed soybean
anomalies aggregated within bin intervals of 2.5% (height) and 0.25 °C (width) for

soil moisture and temperature anomalies respectively. Marginal R2 considers the
proportion of variance explained by the regional fixed effects only while conditional
R2 additionally considers variance explained by local effects relative to the overall
variance. b Out-of-sample 2012 model yield predictions at county level. The three
boxes represent, from north to south, the United States (US), Central Brazil (CB),
and southeast South America (SESA) regions, respectively.
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warmer summers, on average, lead to soybean yield losses of 0.07 t/ha in the
US and 0.1 t/ha in the SESA and CB regions. Similarly, soil moisture
anomalies of 10% below average conditions correspond to average yield
losses of 0.1, 0.3 and 0.06 t/ha in theUS, SESA, andCB regions, respectively.
Notably, the combination of a 1 °C temperature increase and a 10% soil
moisture deficit results in additional compound negative yield impacts of
0.03, 0.24, and 0.03 t/ha, beyond the independent effects of heat anddrought
alone (Fig. 2a).

The compound impacts of moisture and temperature reflect distinct
crop physiological stress to combined hot-dry conditions that cannot be
inferred from simply the sum of moisture and temperature impacts29,30.
Dry soils can make crops much more susceptible to heat stress due to a
variety of physiological processes, including a lack of evaporative
cooling30. Similarly, heat stress can damage a crop’s roots, making it more
sensitive to drought conditions by constraining root water uptake31. While
soybean sensitivity to climate variability exhibits variations at the local
level due to county-specific effects such as selected cultivars or soil type,
the estimated coefficients remain broadly consistent between county and
regional average estimates. The effects of temperature diverge only for
northern counties in the US (north of 40 °N) where higher temperatures
have a limited or positive impact on soybean yields compared to largely
negative effects across the US (Supplementary Fig. 1). This is in line with
previous research2,32, and can be largely attributed to colder regional cli-
matic conditions (Supplementary Fig. 3a). Lower crop sensitivity in CB
has also been documented in previous research and can be attributed to a
tropical humid climate which leads to a reduced frequency of hot and dry
events9,33. Both these regions have, in fact, seen recent expansion in har-
vested area driven by growing demand for feed and concurrent favorable
weather conditions34.

Estimating impacts of climate change on 2012 crop losses
Weproceed to estimate yield anomalies of the 2012 conditions under a pre-
industrial and plus 2 °C climate. This consists of combining storylines of
summer 2012 weather conditions under different warming levels with the
statistical cropmodels we establish above. For the weather input, we rely on
global climate model experiments from the ECHAM6 model where large-
scale vorticity and divergence in the free atmosphere are spectrally nudged
toward reanalysis conditions23,35. This reproduces three ensemble members
of the 2012 large-scale circulation anomaly under pre-industrial, present-
day and plus 2° warming levels while allowing surface temperature and soil
moisture to respond freely (see “Methods”). The spectrally nudged
ECHAM6 model is able to reproduce the inter-annual variability in soil
moisture and temperature well compared to observation-based data pro-
ducts (Supplementary Fig. 3). However, model biases with respect to the
absolute magnitude of the respective soil moisture and temperature
anomalies remain (Supplementary Fig. 4b). To avoid propagating this bias
in our impact calculations, we use original CRU36 and GLEAM37 based
temperature and soilmoisture values as 2012 reference conditions, hereafter
“factual 2012,” and apply delta changes (see “Methods”) on those anomalies
to obtain our adjusted storyline datasets38. Finally, we transform yield
anomalies to production anomalies by multiplying with harvest area esti-
mates for 2012. This step accounts for the spatial pattern of yield and
harvested area and the varying contribution of counties to total soybean
production when aggregating across spatial scales.

To attribute the conditional climate change effects on the 2012
event, we compare soybean production estimates between factual (1 °C
warming) and pre-industrial (no warming) conditions. We find that 35%
(5-95 range of 13–45%) of the global soybean production deficit in 2012
is due to historic warming (Fig. 3). Production deficits varied

Fig. 3 | Soybean 2012 production anomalies in pre-industrial, factual and plus
2 °C conditions. Per region (colored bars) andmulti-regional total production (gray
bars) anomalies are calculated by summing up the product of county-level yield
model estimates and local harvested area estimates. Contributions of temperature,
soil moisture and combined temperature and soil moisture conditions are

determined following county-levelmodel coefficient estimates. Confidence intervals
combine both the upper and lower storyline ensemble member estimate and the 5-
95% confidence interval in model predicted production estimate. The mean effects
(dots) consider both average prediction estimates and ensemble average storyline
estimates.
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considerably at the regional scale with 3.5%, 222% and−14% changes for
the US, SESA and CB respectively highlighting the heterogeneity of cli-
mate change impacts on local crop production. We note that for the CB
region, these anomalies are small in magnitude compared to the US and
SESA regions reflecting low yield sensitivity and generally favorable
factual 2012 local weather conditions (Figs. 1c and 2a). The large changes
recorded in the SESA region can be explained by high crop-weather
sensitivities and local temperature levels above mean climatological
conditions. Pre-industrial temperature anomalies in the SESA region are
generally below the 1980–2014 climatological mean of around 30 °C
(Supplementary Fig. 5a). However, during 2012, temperatures in the
entire SESA region exceeded that climatological value (Fig. 4e and
Supplementary Fig. 6). Factual warming impacted production equally
through both direct temperature increases and the indirect, stronger
interactive heat-drought impacts, highlighting the non-linear response of
crops to compound weather conditions. Although soil moisture changes
themselves are negligible for South America, higher temperatures create
stronger sensitivities to similar moisture deficits, as quantified by the
steeper soil moisture-crop yield response curve at warmer levels (Fig. 4b).
On the other hand, warming in the US due to historic climate change is
of a smaller magnitude compared to that in the SESA region. This, in
combination with slightly wetter soil moisture conditions, leads to milder
additional yield losses in the US (as shown in Figs. 3 and 4, and Sup-
plementary Figs. 6–8).

Climate change effects in a plus 2 °C storyline led to roughly a 56%
(34–91%) increase in the factual 2012 production anomaly. Regional
changes are 61.1%, 25.5% and 728% for the US, SESA and CB regions,
respectively (The extremely high percentage change for CB reflects the very

small anomaly in 2012). Although changes in soilmoisture are negligible for
all regions, the absolute change in regional temperature anomaly conditions
is larger going from factual to plus 2 °C storylines compared to differences
between pre-industrial and factual storylines (Fig. 4 and Supplementary
Fig. 6). This is particularly the case for the US where historic warming leads
to 0.8 °C of local warming, but future local warming is roughly twice as large
(Fig. 4f). This differencemay be due to the regionally varying SST warming
patterns in response topre-industrial cooling (relative to2012) andplus 2 °C
warming. Different regional SST warming patterns can lead to slightly
varying circulation imprints on local temperature andprecipitationbetween
the two periods.

Discussion
Here we apply statistical approaches that model the combined effect of
summer soil moisture and temperature on crop yields. This formulation is
consistent with recent efforts to model yield focusing on the interaction of
timely water and heat stress conditions, including synergistic impacts of
compound hot and dry conditions30. Alternatively, process-based crop
models canbeused todynamically simulate the response of crops toweather
although these require extensive computational and calibration efforts and
have been shown to underestimate the impacts of weather extremes39,40.
Statistical models, on the other hand, do imply a certain degree of extra-
polation when inferring impacts of weather conditions outside the training
dataset41. In this study, this is particularly relevant for simulated impacts in a
2 °C warmer climate where temperature anomalies are largely unprece-
dented. Nevertheless, current research shows similar crop-weather sensi-
tivities and impact estimates from process-based and statistical models, at
leastwithwarmingup to+2 °C,whichsuggests the estimates from thiswork

Fig. 4 | Soybean yield anomalies in response to 2012 summer soil moisture and
maximum temperature anomalies in pre-industrial, factual and plus 2 °C con-
ditions. Estimates for summer soil moisture (%) (a–c) and maximum tem-
perature (°C) (d–f) anomalies are calculated by taking a harvest area weighted
spatial average for these variables over the three different regions separately.

Confidence intervals take into account both the upper and lower storyline
ensemble member estimate and the 5–95% confidence interval in the fixed
effect model coefficients. The mean effects (solid dashed lines) are based on
both the average fixed effect coefficients and ensemble average storyline
estimates.
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are reliable41. Statistical models also ignore the potential yield-stimulating
role of CO2 fertilization, but this has been shown to be significantly less
effective during hot-dry conditions42.

We attribute the impacts of climate change using a highly conditioned
setup where we prescribe the circulation pattern and assume no change in
other relevant drivers such as biotic stress, harvested area, crop genetics and
management. Thus, any adaptation and technological development are
excluded from our analyses. Changes in some of these storyline parameters
can alter the impacts of such events in the future. For instance, recent studies
have explored the potential to considerably expand soybean production in
Europe43,44. Such changes would imply a different concentration of future
soybean production, different trade networks and, therefore, different cas-
cading impacts. Moreover, here we assumed a fixed growing season, which
in practice is affected by changes in temperature, photoperiod, and inter-
twined farming practices. Warmer temperatures are generally associated
with earlier and faster phenological growth, which can lead to a shorter
growing season45. This can affect the timing of peak physiological sensitivity
to weather extremes, and the effectiveness of related processes, such as the
CO2 fertilization effect. Research indicates that timely adaptation, including
the introduction of new cultivars and adjustment of the growing season, can
increase actual crop yields by up to 9% for soybean46. Future work could
refine our storylines by including these effects, which could provide quan-
titative information for future adaptation planning.

The current exceptional concentration of global soybean production
in just three countries renders this trade network particularly vulnerable
to shocks5. Our analyses indicate that the thermodynamics of global
warming significantly increase the severity of joint soybean breadbasket
failures in key harvesting regions across the Americas. This raises sig-
nificant concerns, as soybeans are currently the largest globally traded
agricultural commodity, accounting for 60% of globally traded oilseed
crops47. A substantial portion of soybean production is allocated to
animal feed and is experiencing growing demand due to shifts in dietary
preferences toward meat products48. A notable example is China, which
presently accounts for 56% of global soybean demand, making it parti-
cularly vulnerable to the escalating intensity of spatially compound
soybean failures with warming49. Additionally, soybeans are used in dairy
and meat replacement products, as well as food aid meals for emergency
relief programs, posing potential cascading impacts on various sectors
that rely on soybean50. While our study has focused on soybeans, spatially
synchronized harvest failures have been documented for other staple
crops, including maize and wheat51. These failures can be induced by
large-scale weather patterns like ENSO, the North Atlantic Oscillation,
and circumglobal wave-trains, all of which exhibit uncertain responses to
warming52,53. Considering the far-reaching implications of such syn-
chronized crop failures on global food security, the development of
carefully tailored storylines could provide useful information for adap-
tation planning. This can help increase preparedness for devastating yet
plausible far-reaching food crises. Some plausible interventions could
include a de-concentration of producing regions and enhancing the
resilience of the trade-storage system. Additionally, the development of
multi-stress resistant cultivars or reducing dependence on soybean for
some key uses could be explored.

To conclude, we present here a framework that conditionally attributes
the impacts of climate change on the unprecedented global soybean pro-
duction failure in 2012. We find that one-third of the production deficit in
2012 was linked to anthropogenic global warming. Further warming in a
+2 °C world (above pre-industrial) has the potential to further increase the
production deficit by one-half compared to factual conditions. The crop
losses are primarily due to the direct impacts of warmer temperatures on
crops and the indirect impacts of warmer temperatures on physiological
water stress.Althoughwefindno substantial decrease in soilmoisture across
storylines, interactive heat-moisture effects exacerbate 2012-like events in a
warmer climate. This study illustrates how the impacts of extreme weather
can amplify with climate change. Our storyline-based impact attribution
study provides a blueprint for future impact attribution studies, in principle

applicable for any type of impact, which could be particularly relevant for
estimates on loss and damage54.

Online methods
Crop yield, temperature and soil moisture datasets
National global production estimates (tons) for the period (1980–2014) are
obtained from the FAOSTATdataset. To estimate detrended anomalies, we
subtract the long-term production trend calculated based on local regres-
sions (loess). County-level yield (t/ha) and harvested area (ha) data for
Argentina, Brazil and the United States for the period (1980–2014) are
obtained from governmental sources: SIAA (http://www.siia.gov.ar/, last
access: 1 February 2022), IBGE (https://www.ibge.gov.br/, last access: 1
February 2022) and USDA (https://quickstats.nass.usda.gov/, last access: 1
February 2022) respectively. County-level yield data are linearly detrended
to eliminate long-term effects largely due to technological improvements.
The harvested area per county is used to transform yield values in tons per
hectare to production in tons. Root zone soil moisture and maximum
temperature variables at monthly time scale are obtained from the gridded
GLEAM v3.5a and CRU v. 4.06 datasets, respectively. GLEAM is a model-
based dataset that assimilates observed satellite-based soil moisture input
while CRU provides maximum temperature estimates based on station
observations36,37. These datasets are filtered for the period 1980–2014 and
temporally averaged over summer crop-sensitive periods (Jan-Feb-March
for South America, Jul-Aug-Sep for the United States). Furthermore, the
data is spatially averaged and linearly detrended at county level. Tempera-
tures are presented as (°C) anomalies and soil moisture as (%) anomalies
with respect to 1980–2014 climatology.

Spectrally nudged storyline dataset
Storylines for the three levels of warming for the year 2012 are produced
using the ECHAM6 atmospheric model with T255 horizontal spectral
resolution and 95 vertical levels (T255L95) nudged with NCEP R1 reana-
lysis data24. To simulate conditions under different levels of warming, sea-
surface temperatures and greenhouse gases are altered for each of the
storylines23,24. Three ensemble members per storyline are considered to
robustly estimate the climate change signal in the time series of concern.
Details on the storylines dataset, including the different SST and greenhouse
gas levels used for the simulation, can be found in van Garderen (2022)35.

We make use of the long-term spectrally nudged simulation
(ECHAM_SN) that covers the period (1980–2014) to compare our storyline
dataset toGLEAMandCRUdatasets. ECHAM_SN is produced in a similar
way to the storyline dataset but covers a larger period and does not include
ensemble members or counterfactual simulations55. We process the
ECHAM_SN soil moisture and maximum temperature variables in a
similar way to the GLEAM and CRU variables, where we average over the
abovementioned summer periods and spatial units and proceed to linearly
detrend at county level.We find statistically significant correlations between
datasets for both summer soil moisture and maximum temperature
detrended variables both at county level across the entire study domain
(Supplementary Fig. 3).

Statistical analysis
We use a mixed-effect regression model per region to link detrended
summer maximum temperature (CRU) and root zone soil moisture
(GLEAM) to detrended soybean county-level yields (governmental sour-
ces). The regional model is defined as follows:

ŷc;t ¼ β0þ β0c
� �þ β1þ β1c

� �
SMc;t þ β2þ β2c

� �
SM2

c;t

þ β3þ β3c
� �

TXc;t þ β4þ β4c
� �

TX2
c;t þ β5þ β5c

� �
TXc;tSMc;t

ð1Þ

where c is a county index and t is for year (1980–2014). ŷc;t is the predicted
yield anomaly in county c and year t. TXc;t and SMc,t represents the
detrended maximum temperature and soil moisture values in county c and
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year t, respectively. β0 represents the regional intercept, β1 and β2 represent
the soil moisture regional effect, β3 and β4 represent the maximum tem-
perature regional effect and β5 represents the temperature-soil moisture
regional interaction effect. Coefficients with subscript c accommodate
different sensitivities for each county per region where the slope is random,
with county as random factor.Confidence intervals for regional and county-
level coefficients, in addition to yield prediction estimates, are calculated
based on bootstrap resampling with 1000 draws. For further robustness
tests, we calculate out-of-samplemodel predictions, including for year 2012,
based on a leave-one-out cross-validation scheme and compare the model
performance to in-sample model fit.

Attributing the crop production impacts of 2012 using climate
storylines
The storyline time series are averagedover summerperiods and spatial units
of interest. To stay as close as possible to the event’s observed conditions, we
use original CRU and GLEAM based temperature and soil moisture values
as 2012 reference conditions and apply additive delta changes on those
anomaly levels based on our storyline outputs38. Delta changes from pre-
industrial to present conditions are calculated by considering all possible
combinations of three ensemble members for both pre-industrial and
present-day storylines in 2012, resulting in nine combinations. A similar
approach is employed to calculate delta changes from the present to the plus
2 °C storyline (Supplementary Fig. 4). We then use statistical model esti-
mated coefficients to project changes in yield anomalies resulting from
changes in 2012 weather conditions due to climate change. We use indi-
vidual model coefficients relating yield sensitivity to temperature, soil
moisture and their interaction to estimate the contribution of each of these
components to yield change. County-level yield anomalies (t/ha) are
aggregated to region-wide production anomalies (tons) bymultiplying local
estimated yield anomalies with county-level 2012 harvested area size (ha).
The 5–95% confidence intervals for production estimates are calculated
based on bootstrap resampling with 1000 draws. Finally, we illustrate
varying yield sensitivities to temperature and soil moisture per storyline by
calculating the marginal effects of temperature and soil moisture on yield,
measured specifically for respective soil moisture and temperature storyline
regional average values.

Data availability
The yield data are available at the abovementioned web portals. GLEAM
data is accessible here: https://www.gleam.eu/#downloads. CRU data is
accessible here: https://crudata.uea.ac.uk/cru/data/hrg/. The ECHAM_SN
data is accessible here: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?
acronym=CLISAP_MPI-ESM-XR_t255l95. The ECHAM spectrally
nudged storyline data used in this study are made available at: https://
zenodo.org/records/14803607.

Code availability
Code to reproduce this study is made available at the following GitHub
repository: https://github.com/Raed-Hamed/soybeans_2012_climate_
impact_storyline_attribution.
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