
Developing robust incomplete Cholesky
factorizations in half precision arithmetic
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and
Tůma, M. (2025) Developing robust incomplete Cholesky
factorizations in half precision arithmetic. Numerical
Algorithms. ISSN 1572-9265 doi:
https://doi.org/10.1007/s11075-025-02015-x Available at
https://centaur.reading.ac.uk/120344/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1007/s11075-025-02015-x

Publisher: Springer

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

Numerical Algorithms
https://doi.org/10.1007/s11075-025-02015-x

RESEARCH

Developing robust incomplete Cholesky factorizations
in half precision arithmetic

Jennifer Scott1,2 ·Miroslav Tůma3

Received: 24 April 2024 / Accepted: 17 January 2025
© The Author(s) 2025

Abstract
Incomplete factorizations have long been popular general-purpose algebraic pre-
conditioners for solving large sparse linear systems of equations. Guaranteeing the
factorization is breakdown free while computing a high quality preconditioner is chal-
lenging. A resurgence of interest in using low precision arithmetic makes the search
for robustness more important and more challenging. In this paper, we focus on ill-
conditioned symmetric positive definite problems and explore a number of approaches
for preventing and handling breakdowns: prescaling of the system matrix, a look-
ahead strategy to anticipate breakdown as early as possible, the use of global shifts,
and a modification of an idea developed in the field of numerical optimization for the
complete Cholesky factorization of dense matrices. Our numerical simulations target
highly ill-conditioned sparse linear systems with the goal of computing the factors in
half precision arithmetic and then achieving double precision accuracy using mixed
precision refinement. We also consider the often overlooked issue of growth in the
sizes of entries in the factors that can occur when using any precision and can render
the computed factors ineffective as preconditioners.

Keywords Half precision arithmetic · Preconditioning · Incomplete factorizations ·
Iterative methods for linear systems

Jennifer Scott and Miroslav Tůma contributed equally to this work.

B Jennifer Scott
jennifer.scott@reading.ac.uk

Miroslav Tůma
mirektuma@karlin.mff.cuni.cz

1 School of Mathematical, Physical and Computational Sciences, University of Reading, Reading
RG6 6AQ, UK

2 STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK

3 Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,
Prague, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-025-02015-x&domain=pdf
http://orcid.org/0000-0003-2130-1091
http://orcid.org/0000-0003-2808-6929

Numerical Algorithms

1 Introduction

Our interest is in solving large-scale symmetric positive definite (SPD) linear systems
of equations Ax = b. Incomplete Cholesky (IC) factorizations of the form A ≈ LLT ,
where the factor L is a sparse lower triangular matrix, have long been important
and well-used algebraic preconditioners for use with iterative solvers. While they
are general purpose and, when compared to sparse direct solvers, require modest
computational resources, they do have drawbacks. Their effectiveness can be highly
applicationdependent and, although significant effort has gone into developing a strong
theoretical background, most results are limited to model problems. To be useful in
practice, their computation and application must be efficient and robust.

Traditionally, matrix factorizations have most often been computed using dou-
ble precision floating-point arithmetic, which nowadays corresponds to a 64-bit
floating-point number format. However, half precision arithmetic is being increas-
ingly supported by modern hardware and because it can offer speed benefits while
using less energy and memory, there has been significant interest in recent years in
its use in numerical linear algebra; see the comprehensive review [1] and references
therein. For linear systems, one strategy that has received attention is GMRES-IR [2].
The idea is to compute the matrix factors in low precision arithmetic and then employ
them as preconditioners for GMRES within mixed precision iterative refinement (see
also [1, 3, 4]). For SPD systems, GMRES can potentially be replaced by the CG (con-
jugate gradient) method [5]. Using low precision incomplete factors may enable much
larger problems to be solved (normally at the cost of more iterations to achieve the
requested accuracy). In an initial study [6], we explored this approach, focusing on
the safe avoidance of overflows that can occur when computing matrix factors using
low precision arithmetic.

When using any precision, breakdown can occur during an incomplete Cholesky
factorization of a general SPD matrix, that is, a pivot (diagonal entry of a Schur
complement) may be zero or negative where an exact Cholesky factorization would
have only positive pivots, or a computation within the factorization may overflow. A
review is given in the LapackWorking Note [7]. Breakdown is more likely when using
low precision arithmetic. This is partly because the initialmatrix Amust be “squeezed”
into half precision, which may mean the resulting matrix is not (sufficiently) positive
definite for the factorization to be successful [8]. But, in addition, overflows outside
the narrow range of possible numerical values are an ever-present danger. Our interest
lies in exploring strategies to prevent breakdown during sparse matrix factorizations.
Importantly, these must be robust, inexpensive and not cause serious degradation to
the preconditioner quality.

Building on our earlier work on breakdowns within half precision sparse matrix
incomplete factorizations [6], this paper makes the following contributions. Firstly,
we consider and compare the performance in half precision arithmetic of a number of
strategies to limit the likelihood of breakdown: (a) prescaling the matrix before it is
squeezed, (b) look-ahead that checks the diagonal entries of the partially factorized
matrix at each major step of the factorization, (c) the use of global shifts, and (d) an
approach based on locally modifying the factorization. The latter was originally used
to modify approximate (dense) Hessian matrices in the field of numerical optimiza-

123

Numerical Algorithms

tion. Here we seek to apply it to sparse problems, in combination with low precision
arithmetic, as a strategy that avoids the restarting needed with the use of global shifts.
Secondly, we demonstrate that, even if double precision is used throughout the com-
putation and breakdown does not occur, it is essential to take action to prevent growth
in the factor entries because otherwise, the factors can be ineffective as precondi-
tioners. Finally, we concentrate our numerical experiments on highly ill-conditioned
linear systems and the challenge of recovering double accuracy in the computed solu-
tion using a preconditioner computed in low precision arithmetic. We develop Fortran
software that enables us to illustrate the potential for exploiting half precision within
robust approaches for tackling large-scale sparse systems.

The rest of the paper is organised as follows. Section 2 looks at the different stages
at which breakdown can occur within an incomplete factorization. In Section 3, we
present a number of ways to prevent and handle breakdown. Numerical results for
a range of highly ill-conditioned linear systems coming from practical applications
are presented in Section 4. Finally, in Section 5, our findings and conclusions are
summarised.

Terminology We use high precision (denoted by fp64) to refer to IEEE double preci-
sion (64-bit) and low precision (denoted by fp16) for the 1985 IEEE standard 754 half
precision (16-bit). Note that bfloat16 is another form of half precision arithmetic. It
has 8 bits in the significand and (as in fp32) 8 bits in the exponent. We do not use it in
this paper because our software is written in Fortran and, as far as we are aware, there
are currently no Fortran compilers that support the use of bfloat16. Table 1 summarises
the parameters for the precisions used in this paper.

2 Possible breakdowns within IC factorizations

A myriad of approaches for computing incomplete factorizations of sparse matrices
have been developed, modified and refined over many years. Some combine the factor-
ization with an initial step that discards small entries in A (sparsification). For details
of possible variants, we recommend [9, 10], while a comprehensive discussion of
early strategies can be found in [11]; see also [12] for a short history and the recent
monograph [13] for a broad overview and skeleton algorithms.We note that significant

Table 1 Parameters for fp16, fp32, and fp64 arithmetic: the number of bits in the significand (including the
implicit most significant bit) and exponent, unit roundoff u, smallest positive (subnormal) number xsmin ,
smallest normalized positive number xmin , and largest finite number xmax , all given to three significant
figures

Signif. Exp. u xsmin xmin xmax

fp16 11 5 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104

fp32 24 8 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038

fp64 53 11 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308

123

Numerical Algorithms

progress in the field of preconditioning has been achieved by looking for incomplete
factorizations that are breakdown-free because of the properties of the matrix A, for
example, for M and H-matrices. A seminal paper on this is [14]; see also the summary
in [15].

Algorithm 1 outlines a basic (right-looking) incomplete Cholesky (IC) factorization
of a sparse SPD matrix A = {ai j }.1 It assumes a target sparsity pattern S{L} for the
incomplete factor L = {li j } is provided, where

S{L} = {(i, j) | li j �= 0, 1 ≤ j ≤ i ≤ n}.

The simplest case S{L} = S{A} is called an IC(0) factorization. Modifications to
Algorithm 1 can bemade to incorporate threshold dropping strategies and to determine
S{L} as the method proceeds. At each major step k, outer product updates are applied
to the part of the matrix that has yet to be factored (Lines 7–11).

Algorithm 1 Basic right-looking sparse IC factorization.
Input: Sparse SPD matrix A and a target sparsity pattern S{L}
Output: Incomplete Cholesky factorization A ≈ LLT

1: li j = ai j for all (i, j) ∈ S{L}
2: for k = 1 : n do � Start of k-th major step

3: lkk ← (lkk)1/2 � Diagonal entry is the pivot

4: for i ∈ {i > k | (i, k) ∈ S{L}} do
5: lik ← lik/lkk � Scale pivot column k of the incomplete factor by the pivot

6: end for � Column k of L has been computed

7: for j ∈ { j > k | (j, k) ∈ S{L}} do
8: for i ∈ {i ≥ k | (i, k) ∈ S{L}} do
9: li j ← li j − likl jk � Update operation on column j > k

10: end for
11: end for
12: end for

Unfortunately, unlike a complete Cholesky factorization, there is no guarantee in
general that an IC algorithm will not break down or exhibit large growth in the size
of the factor entries (even when using double precision arithmetic). This is illustrated

1 The Algorithm can be modified to compute a square-root free LDLT factorization in which L has unit
diagonal entries and D has positive entries.

123

Numerical Algorithms

by the following well-conditioned SPD matrix in which δ > 0 is small

A =

⎛
⎜⎜⎜⎜⎝

3 −2 0 2 0
−2 3 −2 c 0
0 −2 3 −2 0
2 c −2 8 + 2δ 2
0 0 0 2 8

⎞
⎟⎟⎟⎟⎠

.

Choosing δ 	 1 and c = 1 results in no growth in the entries of the IC(0) factor and
no breakdown. However, if c = 0 and entries (2,4) and (4,2) are removed from S{A}
then the IC(0) factor becomes

⎛
⎜⎜⎜⎜⎝

d1
−2/d1 d2

0 −2/d2 d3
2/d1 0 −2/d3 d4
0 0 0 2/d4 d5

⎞
⎟⎟⎟⎟⎠

,

with d21 = 3, d22 = 5/3, d23 = 3/5, d24 = 2δ, and d25 = 8 − 2/δ. In this case, if δ 	 1
then there is large growth in the (5,4) entry and the factorization breaks down because
the (5,5) entry is negative (for any working precision).

There are three places in Algorithm 1 where breakdown can occur. Following [6],
we refer to these as B1, B2, and B3 breakdowns.

• B1: The diagonal entry lkk may be unacceptably small or negative.
• B2: The column scaling lik ← lik/lkk may overflow.
• B3: The update operation li j ← li j − likl jk may overflow.

To develop robust IC factorization implementations, breakdowns must either be
avoided or they must be detected and handled by restarting the computation with
revised data. We seek to avoid breakdowns but, as we cannot guarantee there will be
no breakdowns, we still need to monitor for them. A recent study involving multi-
precision iterative refinement used the functions offered by MATLAB to check the
computed factors for Inf and/or NaN entries and took action if such entries were
found [16]. This is not a practical procedure for general use. One possible strategy is
to use IEEE-754 floating-point exception handling. This allows overflows to occur,
the execution continues until a status flag is checked and, at this point, if overflow has
been detected, restarting is initiated; see, for example, [17]. This is straightforward but
requires the user to employ the correct compiler flags, which may be challenging, for
instance, when a solver is interfaced from other languages. Furthermore, it is likely
that non-IEEE arithmetics will gain traction in the future [18]. An alternative and
potentially more flexible strategy is to incorporate explicit tests for breakdown into
the factorization algorithm. In this case, for an implementation to be robust, the tests
employed must only use operations that cannot themselves overflow.

An operation is said to be safe in the precision being used if it cannot overflow.
To safely detect B1 breakdown it is sufficient to check at Line 3 of Algorithm 1
that lkk ≥ τu , where the threshold parameter satisfies τu > 1/xmax . This ensures

123

Numerical Algorithms

(lkk)−1 < xmax . Typical values are τu = 10−5 for half precision factorizations and
τu = 10−20 for double precision [6]; these are used in our reported experiments
(Section 4). B2 breakdown can happen at Line 5. Let lkmax denote the entry below the
diagonal in column k of largest absolute value, that is,

lkmax = max
i>k

{|lik | : (i, k) ∈ S{L}}. (2.1)

If lkmax ≤ xmax and 1 ≤ lkk ≤ xmax or lkk ≥ lkmax/xmax then it is safe to compute
lkmax/lkk (and thus safe to scale column k). B3 breakdown can occur at Line 9. We
give an algorithm for safely detecting B3 breakdown in [6]. Given scalars a, b, c such
that |a|, |b|, |c| ≤ xmax , the algorithm returns v = a−bc or a flag to indicate v cannot
be computed safely. It does this in two stages: it first checks whether w = bc can be
computed safely and then whether v = a − w can be computed safely.

Note that although we are focusing on SPD problems and IC factorizations, B1, B2
and B3 breakdowns are also possible during complete or incomplete factorizations of
nonsymmetric sparse matrices. Indeed, for non SPD problems, B2 breakdowns (that
is, overflow of one or more entries when the pivot column is divided by the pivot) in
particular may be more likely to occur (although remains uncommon if the matrix is
well-scaled). To demonstrate how B2 breakdown can happen, consider the following
nonsymmetric matrix, which has some large off-diagonal entries

A =

⎛
⎜⎜⎜⎜⎝

3 −2 0 2 2
−2 3 −2 0 0
0 −2 3 −1 −1
2 0 −2 2.01 2.01

1000 1000 1000 1000 100

⎞
⎟⎟⎟⎟⎠

.

The LU factorization of A is given by

A = LU =

⎛
⎜⎜⎜⎜⎝

1
−2/3 1
0 −1.2 1
2/3 0.8 −2/3 1

1000/3 1000 5000 −400000 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

3 −2 2 0 2
5/3 −2 4/3 4/3

0.6 0.6 0.6
0.01 0.01

−900

⎞
⎟⎟⎟⎟⎠

.

When using fp16 arithmetic, B2 breakdown occurs when performing the 4th elimina-
tion step because the (5, 4) entry overflows (-4000 is divided by 0.01).

3 Preventing and handling breakdown in IC factorizations

While the use of safe tests allows action to be taken before breakdown occurs or the use
of IEEE exception handling can capture breakdown, our objective is to reduce the like-
lihood of breakdown. This will limit the overheads involved in handling breakdowns

123

Numerical Algorithms

and the effects on the quality of the computed factorizations through modifications
to the data. Breakdown is much more likely to happen when using low precision
arithmetic because of the greater likelihood of overflows occurring.

3.1 Avoiding breakdown by prescaling

For both direct and iterative methods for solving systems of equations it is often
beneficial to prescale the matrix, that is, to determine diagonal matrices Sr and Sl
(with Sr = Sl in the symmetric case) such that the scaled matrix Â = S−1

r AS−1
l is

“nicer” than the original A. By nicer, we mean that, compared with solving Ax = b, it
is easier to solve the system Ây = S−1

r b and then set x = S−1
l y.Whenworking in fp16

arithmetic, scaling is essential because of the narrow range of the arithmetic (recall
Table 1). Numbers of absolute value outside the interval [xsmin, xmax] = [5.96 ×
10−8, 6.55 × 104] cannot be represented in fp16 arithmetic and they underflow or
overflow when converted to fp16 arithmetic. Moreover, to avoid the performance
penalty of handling subnormal numbers, in practice numbers with small absolute
values are often flushed to zero (that is, replaced by zero). Before factorizing Â in
fp16 arithmetic, a scaling is chosen so that when converting (squeezing) the scaled
matrix into fp16, overflow is avoided. In this initial squeezing of the matrix, we flush
to zero all entries in the scaled matrix of absolute value less than 10−5. For incomplete
factorizations, numbers that underflow or are flushed to zero are not necessarily a
concern because the factorization is approximate. However, the resulting sparsification
may mean that the scaled and squeezed matrix is close to being indefinite.

No single approach to constructing a scaling is universally the best and sparse
solvers frequently include a number of options to allow users to experiment to deter-
mine the most effective for their applications (or to supply their own scaling). Our
experience with IC factorizations of SPDmatrices is that it is normally sufficient to use
simple l2-norm scaling (that is, using fp64 arithmetic, we compute Sr = Sl = D1/2,
where dii is the 2-norm of row i of A), resulting in the absolute values of the entries
of the scaled matrix Â being at most 1. This is used in the current study (but see [19],
where equilibration scaling is used and [5] where scaling by the square root of the
diagonal is used).

3.2 Preventing breakdown by incorporating look-ahead

Recall that the computation of the diagonal entries of the factor in a (complete or
incomplete) Cholesky factorization are based on

l j j = a j j −
∑
i< j

l2i j .

Initially, l j j = a j j and at each stage of the factorization a positive (or zero) term is
subtracted from it so that l j j either decreases or remains the same on each major step

123

Numerical Algorithms

k. Thus, to detect potential B1 breakdown as early as possible, look-ahead can be used
whereby at each step k, the remaining diagonal entries l j j (j > k) are updated (using
safe operations) and tested. For the right-looking Algorithm 1, it is straightforward
to incorporate testing but, for some IC variants, it may be necessary to hold a copy
of the diagonal entries of the factor. Look-ahead is employed in some well-known
fp64 arithmetic implementations of IC factorizations e.g., [20, 21]. Algorithm 2 is a
modified version of Algorithm 1 that includes checks for breakdown. The safe test for
B3 breakdown can be modified so that, ahead of the loop at Line 13, a check is made
that the entry of maximum magnitude in column k (that is, lkmax from (2.1)) is less
than (xmax)

1/2. If it is not, f lag = 3 is returned. Otherwise, the multiplication of lik
and l jk is safe and, at Line 17, only the subtraction needs to be checked. If in place of
the safe tests, IEEE exception handling is used then the IEEE overflow flag should be
tested at the end of each major loop (that is, between Lines 20 and 21).

Algorithm 2 Right-looking IC factorization with safe checks for breakdown.
Input: SPD matrix A, a target sparsity pattern S{L}, parameter τu > 0
Output: Either f lag = 0 and A ≈ LLT or f lag > 0 (breakdown detected)

1: li j = ai j for all (i, j) ∈ S{L}
2: f lag = 0

3: if l11 < τu then f lag = 1 and return � B1 breakdown

4: for k = 1 : n do � Start of k-th major step

5: lkk ← (lkk)1/2

6: if lkk ≥ 1 or lkk ≥ lmax/xmax then � lmax is largest off-diagonal entry (2.1)

7: for i ∈ {i > k | (i, k) ∈ S{L}} do
8: lik ← lik/lkk � Perform safe scaling

9: end for � Column k of L has been computed

10: else
11: f lag = 2 and return � B2 breakdown

12: end if
13: for j ∈ { j > k | (j, k) ∈ S{L}} do � Update columns j > k of L

14: for i ∈ {i ≥ j | (i, j) ∈ S{L}} do
15: Test entry (i, j) can be updated safely � Use Algorithm 2.2 of [6]

16: if not safe to update then f lag = 3 and return � B3 breakdown

17: li j ← li j − likl jk � Perform safe update operation

18: end for
19: if lii < τu then f lag = 1 and return � B1 breakdown

20: end for
21: end for

123

Numerical Algorithms

To see the usefulness of look-ahead, consider the following matrix

A =

⎛
⎜⎜⎜⎜⎝

3 −2 0 1 2
−2 3 −2 0 0
0 −2 3 0 −2
1 0 0 5 0
2 0 −2 0 8

⎞
⎟⎟⎟⎟⎠

.

It is easy to check that A is SPDwith condition number κ2(A) ≈ 2×106. If the IC(0)
factorization is computed in exact arithmetic then the entry (5, 5) of L is zero (B1
breakdown). The look-ahead strategy reveals this at the third step, thus reducing the
work performed before breakdown is detected.

A consequence of look-ahead is that, through the early detection of B1 breakdowns
and taking action to prevent such breakdowns, B3 breakdowns are indirectly pre-
vented. In our numerical experiments on problems coming from real applications, all
breakdowns when using fp16 arithmetic were of type B1 when look-ahead was incor-
porated. However, B2 and B3 breakdowns remain possible. Consider the following
well-conditioned SPDmatrix and its complete Cholesky factor (three decimal places):

A =

⎛
⎜⎜⎜⎜⎝

3 −2 0 2 0
−2 3 −2 0 0
0 −2 3 −2 0
2 0 −2 8.00007 550
0 0 0 550 60000

⎞
⎟⎟⎟⎟⎠

, L =

⎛
⎜⎜⎜⎜⎝

1.732
−1.155 1.291

0 −1.549 0.775
1.155 1.033 −0.516 2.309
0 0 0 95.254 30.414

⎞
⎟⎟⎟⎟⎠

.

Observe that the (4, 2) entry has filled in. The IC(0) factorization does not allow fill-in
and, after four steps, the first four columns of the IC(0) factor of A are given by

L1:5,1:4 =

⎛
⎜⎜⎜⎜⎝

1.732
−1.155 1.291

0 −1.549 0.777
1.155 0 −2.582 0.008
0 0 0 65738

⎞
⎟⎟⎟⎟⎠

.

In fp16 arithmetic, the (5, 4) entry overflows (B3 breakdown). This happens even with
look-ahead because the first three entries in row 5 of A are zero and so the (5, 4) entry
is not updated until after column 4 has been computed. In this example, the (4, 4) entry
before its square root is taken is greater than τu (it is equal to 7 × 10−5) and so there
is no B1 breakdown in column 4.

3.3 Global shifting to handle breakdown

Once potential breakdown has been detected (either through the B1-B3 tests or using
IEEE exception handling) and the factorization halted, a common approach is to mod-
ify all the diagonal entries by selecting α > 0, replacing the scaledmatrix Â by Â+α I

123

Numerical Algorithms

and restarting the factorization. In exact arithmetic, there is always an α∗ such that for
all α ≥ α∗ the IC factorization of Â + α I exists [22]. In practice, α∗ is unlikely to be
known a priori and it may be necessary to restart the factorization a number of times
with ever larger shifts. If α was to reach xmax in the working precision u then there
would have been large growth in the factor entries and it would be necessary to restart
using higher precision. However, this would be unlikely to result in a useful precon-
ditioner and α growing in this way was not observed in any of our tests (including
highly ill-conditioned examples). Algorithm 3 summarizes the global shifting strategy
for a SPD matrix held in precision u and for which an IC factorization in precision
ul ≥ u is wanted. After each unsuccessful factorization attempt, the shift is doubled
[20]. Here Al = f ll(Â) denotes converting the matrix Â from precision u to precision
ul . In practice, it is unnecessary to explicitly hold Al . Instead, entries of Â are cast to
precision ul on the fly as needed.

Based on our experience with a range of problems, in our reported tests, the initial
shift is taken to be αS = 10−3. The precise choice of the shift is not critical but it
should not be unnecessarily large as this may result in the computed factors providing
poor quality preconditioners. Note that more sophisticated strategies for changing the
shift, which also allow the possibility for a shift to be decreased, are possible [21].
These have been developed for fp64 arithmetic. Our initial experiments suggest it is
less clear that there are significant benefits of doing this when using fp16 arithmetic so
in our experiments we only report results for using the simple shift doubling strategy.

Algorithm 3 Shifted incomplete IC factorization in precision ul .
Input: SPDmatrix A in precision u, diagonal scalingmatrix S, a target sparsity pattern
S{L}, and initial shift αS > 0
Output: Shift α ≥ 0 and incomplete Cholesky factorization S−1AS−1 + α I ≈ LLT

in precision ul .

1: Â = S−1AS−1 � Symmetrically scale A

2: Al = f ll(Â) � Convert to precision ul
3: α0 = 0

4: for k = 0, 1, 2, . . . do
5: Al + αk I ≈ LLT in precision ul � We use Algorithm 4

6: If successful then set α = αk and return
7: αk+1 = max(2αk, αS)

8: end for

3.4 Local modifications to prevent breakdown

The next strategy is based on seeking to guarantee that the factorization exists by
bounding the off-diagonal entries in L . So-called modified Cholesky factorization
schemes have been widely used in nonlinear optimization to compute Newton-like

123

Numerical Algorithms

directions. Given a symmetric (and possibly indefinite) A, a modified Cholesky algo-
rithm factorizes A + AE , where AE is termed the correction matrix. The objectives
are to compute the correction at minimal additional cost and to ensure A + AE is
SPD and well-conditioned and close to A. A stable approach for dense matrices was
originally proposed by Gill and Murray [23] and was subsequently refined and used
by Gill, Murray and Wright (GMW) [24] and others [25–29].

Our GMW variant allows for sparse A and incomplete factorizations. In particular,
the incompleteness that can lead to significant growth in the factor is a feature that
implies modification of the GMW strategy is necessary. Consider the second example
in Section 3.2. It clearly shows that once a diagonal entry is small, but not smaller
than τu , it may be difficult to get a useful factorization by increasing this diagonal
entry by an initially prescribed value that is independent of other entries in its column.
In the GMW approach, at the start of major step k of the factorization algorithm, the
updated diagonal entry lkk is checked (before its square root is taken). If it is too small
compared to the off-diagonal entries in its column then it is modified; a parameter
β > 0 controls the local modification. Specifically, at step k, we set

lkk = max

{
lkk,

(
lkmax

β

)2
}

, (3.1)

where lkmax is given by (2.1). If (lkmax/β)2 overflows (this can be safely checked)
then the diagonal entry cannot be modified in this way. We call this a B4 breakdown.
If despite the local modification potential breakdown is detected then the factorization
is terminated and restarted using a global shift. As the following result shows, the
GMW(β) strategy limits the size of the off-diagonal entries in L and, for β sufficiently
small, it prevents B3 breakdown.

Lemma 1 Let the matrix A be sparse and SPD. Assume that, using the GMW(β)
strategy, columns 1 to j−1 columns of the IC factor L have been successfully computed
in fp16 arithmetic. For i ≥ j let nz(i) denote the number of nonzero entries in Li,1: j−1.
If

|ai j | + min(nz(i), nz(j))β2 ≤ xmax for all (i, j) ∈ S{L}, (3.2)

where xmax is the largest finite number represented in fp16, then B3 breakdown cannot
occur in the j-th step.

Proof From (3.1), the off-diagonal entries in the first j − 1 columns of L satisfy

|lik |
(lkk)1/2

≤ |lik |β
lkmax

≤ β, 1 ≤ k ≤ j − 1, i > k.

For any i > j we have

li j = 1

(l j j)1/2

⎛
⎝ai j −

j−1∑
k=1

likl jk

⎞
⎠ := l̃i j

(l j j)1/2
. (3.3)

123

Numerical Algorithms

To avoid breakdown, we require |̃li j | ≤ xmax . From (3.2) and (3.3),

|̃li j | ≤ |ai j | + min(nz(i), nz(j))β2 ≤ xmax ,

and hence B3 breakdown does not occur. ��
Rules to determine the parameter β for the complete Cholesky factorization of

densematrices (in double precision) are discussed in [23, 24] but for sparse incomplete
factorizations in fp16 arithmetic such sophisticated rules are not applicable. Provided
β is not very small, its value is not critical to the quality of the preconditioner. Given
β, Algorithm 4 incorporates the use of the GMW(β) strategy within the incomplete
factorization. Note that the local modifications are not combined with look-ahead. As
in Algorithm 2, the cost of checking for breakdowns is small. The most expensive step
is computing lmax .

Algorithm4Right-looking IC factorizationwith safe checks for breakdownandGMW
local modifications.
Input: SPD matrix A, a target sparsity pattern S{L}, parameters τu > 0 and β > 0
Output: Either f lag = 0 and A ≈ LLT or f lag > 0 (breakdown detected)

1: li j = ai j for all (i, j) ∈ S{L}
2: Set f lag = 0

3: for k = 1 : n do � Start of k-th major step

4: if (lmax/β)2 does not overflow then � lmax is largest off-diagonal entry (2.1)

5: Set lkk = max
{
lkk, (lmax/β)2

}
.

6: else
7: f lag = 4 and return � B4 breakdown

8: end if
9: if lkk < τu then f lag = 1 and return � B1 breakdown

10: Follow Lines 5–22 of Algorithm 2, with Lines 18–20 (look-ahead) removed.

11: end for

3.5 Recovering double precision accuracy

Having computed an incomplete factorization in low precision, we seek to recover
(close to) double precision accuracy in thefinal solution (although inmany applications
much less accuracy may be sufficient and may be all that is justified by the accuracy
in the data). In their work on using mixed precision for solving general linear systems,
Carson and Higham [2] introduce a variant of iterative refinement that uses GMRES
preconditioned by the low precision LU factors of the matrix to solve the correction
equation (GMRES-IR). Carson and Higham employ two precisions. This was later
extended to three precisions and then to five precisions [3, 4]; see Algorithm 5, where

123

Numerical Algorithms

we use a generic Krylov solver and the low precision incomplete factors. Here u is the
working precision. In the three-precision variant [4], u p = u, u p = u2 and ul ≥ u ≥
ur and typical combinations include (ul , u, ur) = (u16, u32, u64) or (u16, u64, u64).
Section 3.4 of [3] discussesmeaningful combinations of the five precisions. Theymust
satisfy u2 ≤ ur ≤ u ≤ ul , u p ≤ ug and u p < ul . The use of more than two precisions
has the potential to solve problems that are less well conditioned in less time and using
less memory.

In the SPD case, a natural choice is to select the conjugate gradient (CG) method
to be the Krylov solver. The supporting rounding error analysis for GMRES-IR relies
on the backward stability of GMRES and preconditioned CG is not guaranteed to be
backward stable [30]. Nevertheless, mixed precision results presented in [5] (using
MATLAB code and relatively small test examples) suggest that in practice CG-IR can
perform as well as GMRES-IR. In our earlier paper [6], we experiment with IC-CG-IR
and compare it with IC-GMRES-IR using fp16 and fp64 arithemtic. While there is
little to choose between themwhen run on well-conditioned SPD problems, for highly
ill-conditioned examples, IC-CG-IR often (but not always) requires a greater number
of iterations to obtain double precision accuracy.

Algorithm 5 IC-Krylov-IR: Krylov solver iterative refinement using five precisions.
Input: SPD matrix A and vector b in precision u, five precisions ur , ug , u p, u and u�,
maximum number of outer iterations i tmax > 0
Output: Computed solution of the system Ax = b in precision u

1: Compute IC factorization of A in precision u�

2: Initialize x1 = 0

3: for i = 1 : i tmax or until convergence do
4: Compute ri = b − Axi in precision ur ; store ri in precision u

5: Use a preconditioned Krylov solver to solve Adi = ri at precision ug , with

preconditioning and products with A in precision u p; store di in precision u

6: Compute xi+1 = xi + di in precision u

7: end for

4 Numerical experiments

We follow a number of others working on the development of numerical linear algebra
algorithms in mixed precision in performing experiments that aim to explore the fea-
sibility of the ideas by using half precision (see, for example, [5, 8, 31, 32]). We want
the option to experiment with sparse problems that may be too large for MATLAB and
have chosen to develop our software in Fortran. We use the NAG compiler (Version
7.1, Build 7118). As far as we know, it is the only multi-platform Fortran compiler
that currently fully supports the use of fp16 arithmetic and conforms to the IEEE stan-
dard. In addition, using the -roundhreal option, all half-precision operations are

123

Numerical Algorithms

rounded to half precision, both at compile time and runtime. Our numerical experi-
ments are performed on aWindows 11-Pro-based machine with an Intel(R) Core(TM)
i5-10505 CPU processor (3.20 GHz).

Our test set of SPDmatrices is given in Table 2. This set was used in our earlier study
[6]. For consistencywith that study,wedonot reorder thematrix A. The problems come
from a variety of application areas and are of different sizes and densities. Aswe expect
that successfully using fp16 arithmetic will be most challenging for ill-conditioned
problems, the problems were chosen because they all have a large estimated condition
number (in the range 107 − 1016). Many are initially poorly scaled and some contain
entries that overflow in fp16 and thus prescaling of A is essential. The right-hand side
vector b is constructed by setting the solution x to be the vector of 1’s. In Table 2, we
also report the number of entries in the “scaled and squeezed” matrix Al (see Line 2
of Algorithm 3). The squeezing discards all entries of the scaled matrix with absolute
value less than τu = 10−5. We see that this can lead to the loss of a significant number
of entries.

Our results are for the level-based incompleteCholesky factorization preconditioner
IC(�)with � = 2 and3 [33]. The number of entries in the incomplete factor L increases
as the parameter � increases. IC(0) is a very simple preconditioner in which L has the
same sparsity pattern as A. In practice, using very small �may be sufficient for solving
well-conditionedproblemsbut, as shown in [6], the resultingpreconditioner is oftennot
powerful enough to successfully tackle ill-conditioned examples (particularly when
computed using fp16 arithmetic).We refer to the IC(�) factorizations computed using
half and double precision arithmetic as fp16-IC(�) and fp64-IC(�), respectively. The
key difference between the two versions is that for the former, during the incomplete
factorization, we incorporate the safe checks for the scaling and update operations;
for the fp64 version, tests for B1 breakdown are performed (B2 and B3 breakdowns
were not encountered in our double precision experiments). The solves with L and
LT employ the L factor in double precision. This can be done by casting the data into
double precision and making an explicit copy of L; this negates the important benefit
that half precision offers of reducing memory requirements. Alternatively, the entries
can be cast on the fly. This is straightforward to incorporate into a serial triangular
solve routine, and only requires a temporary double precision array of length n. This
is done in our software.

We use two precisions: u� = u16 for the incomplete factorization and ur = ug =
u p = u = u64, where u16 and u64 denote the unit roundoffs in fp16 and fp64
arithmetic, respectively. That is, we aim to achieve double precision accuracy in the
computed solution. The iterative refinement terminates when the normwise backward
error for the computed solution satisfies

res = ‖b − Ax‖∞
‖A‖∞‖x‖∞ + ‖b‖∞

≤ δ = 103 × u64.

The implementation of GMRES is taken from the HSL software library [34] (MI24
is a Fortran MGS-GMRES implementation), and its convergence tolerance is set to
u1/464 (see [6] for an explanation of this choice); for each application of GMRES (Step 5
of Algorithm 5) the limit on the number of iterations is 1000. Restarting is not used. In

123

Numerical Algorithms

Ta
bl
e
2

St
at
is
tic
s
fo
r
ou
r
ill
-c
on
di
tio

ne
d
te
st
ex
am

pl
es

Id
en
tifi

er
n

nn
z(
A
)

no
rm

A
no

rm
b

co
nd

2
nn

z(
A
l)

B
oe
in
g/
m
sc
01
05
0

10
50

1.
51

×1
04

2.
58

×1
07

1.
90

×1
06

4.
58

×1
01

5
4.
63

×1
03

H
B
/b
cs
st
k1
1

14
73

1.
79

×1
04

1.
21

×1
01

0
7.
05

×1
08

2.
21

×1
08

6.
73

×1
03

H
B
/b
cs
st
k2
6

19
22

1.
61

×1
04

1.
68

×1
01

1
8.
99

×1
01

0
1.
66

×1
08

6.
59

×1
03

H
B
/b
cs
st
k2
4

35
62

8.
17

×1
04

5.
28

×1
01

4
4.
21

×1
01

3
1.
95

×1
01

1
3.
89

×1
04

H
B
/b
cs
st
k1
6

48
84

1.
48

×1
05

4.
12

×1
01

0
9.
22

×1
08

4.
94

×1
09

5.
24

×1
04

C
yl
sh
el
l/s
2r
m
t3
m
1

54
89

1.
13

×1
05

9.
84

×1
05

1.
73

×1
04

2.
50

×1
08

5.
09

×1
04

C
yl
sh
el
l/s
3r
m
t3
m
1

54
89

1.
13

×1
05

1.
01

×1
05

1.
73

×1
03

2.
48

×1
01

0
5.
07

×1
04

B
oe
in
g/
bc
ss
tk
38

80
32

1.
82

×1
05

4.
50

×1
01

1
4.
04

×1
01

1
5.
52

×1
01

6
7.
83

×1
04

B
oe
in
g/
m
sc
10
84
8

10
84
8

6.
20

×1
05

4.
58

×1
01

3
6.
19

×1
01

1
9.
97

×1
09

3.
02

×1
05

O
be
rw

ol
fa
ch
/t2

da
h_
e

11
44
5

9.
38

×1
04

2.
20

×1
0−

5
1.
40

×1
0−

5
7.
23

×1
08

4.
88

×1
04

B
oe
in
g/
ct
20
st
if

52
32
9

1.
38

×1
06

8.
99

×1
01

1
8.
87

×1
01

1
1.
18

×1
01

2
6.
30

×1
05

D
N
V
S/
sh
ip
se
c8

11
49
19

3.
38

×1
06

7.
31

×1
01

2
4.
15

×1
01

1
2.
40

×1
01

3
7.
70

×1
05

G
H
S_

ps
de
f/
ho
od

22
05
42

5.
49

×1
06

2.
23

×1
09

1.
51

×1
08

5.
35

×1
07

2.
66

×1
06

U
m
/o
ff
sh
or
e

25
97
89

2.
25

×1
06

1.
44

×1
01

5
1.
16

×1
01

5
4.
26

×1
09

1.
17

×1
06

nn
z(
A
)
de
no
te
s
th
e
nu
m
be
r
of

en
tr
ie
s
in

th
e
lo
w
er

tr
ia
ng
ul
ar

pa
rt
of

A
.n

or
m
A
an
d
no

rm
b
ar
e
th
e
in
fin

ity
no
rm

s
of

A
an
d
b.

co
nd

2
is
a

co
m
pu
te
d
es
tim

at
e
of

th
e
co
nd
iti
on

nu
m
be
r
of

A
in

th
e
2-
no
rm

.n
n
z(
A
l)
is
th
e
nu
m
be
r
of

en
tr
ie
s
in

th
e
lo
w
er

tr
ia
ng
ul
ar

pa
rt
of

th
e
m
at
ri
x

af
te
r
sc
al
in
g
an
d
sq
ue
ez
in
g

123

Numerical Algorithms

Table 3 Results for IC-GMRES-IR (Algorithm 5) using fp16-IC(�) and fp64-IC(�) preconditioners (� =
2, 3) with no look-ahead and with look-ahead (Section 3.2)

Identifier No look-ahead With look-ahead No look-ahead With look-ahead
i ts (n1, n2) i ts (n1) i ts (n1, n2) i ts (n1)

fp16-IC(2) fp16-IC(3)

Boeing/msc01050 65 (1, 0) 84 (4) 62 (1, 0) 81 (4)

HB/bcsstk24 428 (0, 1) 428 (1) 418 (0, 1) 418 (1)

Um/offshore 2013 (0, 4) 129 (5) 40 (0, 4) 40 (4)

fp64-IC(2) fp64-IC(3)

Boeing/msc01050 24 (0, 0) 69 (4) 25 (0,0) 69 (4)

HB/bcsstk11 201 (0, 0) 174 (1) 29 (0,0) 29 (0)

Cylshell/s3rmt3m1 102 (0, 0) 102 (0) NC (0, 0) 426 (1)

Boeing/ct20stif NC (0, 0) 1940 (2) 1332 (0, 0) 1368 (1)

GHS_psdef/hood ‡ (0, 0) 568 (5) ‡ (0, 0) 407 (4)

Um/offshore ‡ (0, 0) 128 (5) ‡ (0, 0) 37 (4)

i ts is the total number of GMRES iterations and (n1, n2) are the numbers of times
B1 and B3 breakdowns are detected (n2 is nonzero only for fp16-IC(�) with no look-
ahead). NC indicates that on an inner iteration the requested GMRES accuracy of u1/464
was not achieved within the limit of 1000 iterations. ‡ indicates failure to compute
useful factors because of enormous growth in the entries

the tables of results, NC denotes that this limit has been exceeded without the GMRES
convergence tolerance being achieved.

Our first experiment looks at the effects of incorporating look-ahead. Table 3
presents results with no look-ahead and with look-ahead. Here we only include the
test problems for which look-ahead has an effect. We make a number of observations.
Incorporating look-ahead can improve robustness, particularly when using fp64 arith-
metic.Without look-ahead, in fp64 arithmetic there can be very large growth in the size
of some entries in the factors and this goes undetected (no B1 breakdowns occur with
τu = 10−20). With look-ahead, growth did not happen in our tests on ill-conditioned
problems. In fp16 arithmetic, look-ahead can replace B3 breakdown by B1 breakdown
(e.g., HB/bcsstk24). Even if there are no B3 breakdowns, look-ahead can lead to a
larger number of B1 breakdowns being flagged (see problem Boeing/msc01050) and
hence a larger number of restarts, a larger shift and, consequently, a higher GMRES
iteration count. Note that the iteration counts for IC(3) are not guaranteed to be smaller
than for IC(2) (although they generally are).

Table 4 presents results for IC-GMRES-IR using a fp16-IC(2) preconditioner with
look-ahead and the GMW(β) strategy for β = 0.5, 10, and 100. B3 breakdown only
occurs for GMW(100) (there is a single B3 breakdown for examples HB/bcsstk24

123

Numerical Algorithms

Ta
bl
e
4

R
es
ul
ts
fo
r
IC

-G
M
R
E
S-
IR

(A
lg
or
ith

m
5)

us
in
g
a
fp
16

-I
C

(2
)
pr
ec
on

di
tio

ne
r
w
ith

th
e
G
M
W
(β
)
st
ra
te
gy

(S
ec
tio

n
3.
4)

an
d
w
ith

lo
ok
-a
he
ad

(S
ec
tio

n
3.
2)

Id
en
tifi

er
G
M
W
(0
.5
)

G
M
W
(1
0)

G
M
W
(1
00
)

W
ith

lo
ok
-a
he
ad

it
s

(n
1,
nm

od
)

it
s

(n
1,
nm

od
)

it
s

(n
1,
nm

od
)

it
s

(n
1)

B
oe
in
g/
m
sc
01
05
0

96
(0
,6

0)
65

(1
,0
)

65
(1
,0

)
84

(4
)

H
B
/b
cs
st
k1
1

10
92

(0
,4
76
)

N
C
(0
,3
10
)

20
5∗

(0
,0

)
20
5
(1
)

H
B
/b
cs
st
k2
6

78
6
(0
,4
76
)

11
1
(1
,0
)

11
1
(1
,0

)
87

(1
)

H
B
/b
cs
st
k2
4

10
18

(0
,4
46
)

N
C
(0
,4
28
)

42
8�

(0
,0

)
42
8
(1
)

H
B
/b
cs
st
k1
6

41
(0
,2

6)
23

(0
,0
)

23
(0
,0

)
23

(0
)

C
yl
sh
el
l/s
2r
m
t3
m
1

78
7
(0
,5
84
)

15
5
(0
,0
)

15
5
(0
,0

)
15
5
(0
)

C
yl
sh
el
l/s
3r
m
t3
m
1

20
17

(1
,7
10
)

63
0
(2
,0
)

63
0
(2
,0

)
63
0
(2
)

B
oe
in
g/
bc
ss
tk
38

13
35

(1
,9
14
)

31
3
(1
,0
)

31
3�

(0
,0

)
31
3
(1
)

B
oe
in
g/
m
sc
10
84
8

68
4
(0
,5
91
)

81
(0
,0
)

81
(0
,0

)
81

(0
)

O
be
rw

ol
fa
ch
/t2

da
h_
e

11
(0
,6
)

7
(0
,0
)

7
(0
,0

)
7
(0
)

B
oe
in
g/
ct
20
st
if

21
39

(0
,4

82
7)

19
00

(2
,0
)

19
00

(2
,0

)
19
00

(2
)

D
N
V
S/
sh
ip
se
c8

25
69

(1
,1
)

23
90

(1
,0
)

23
90

(1
,0

)
14
92

(1
)

G
H
S_

ps
de
f/
ho
od

24
59

(0
,2
50
74
)

58
1∗

(0
,0
)

58
1
(5
,0

)
58
1
(5
)

U
m
/o
ff
sh
or
e

N
C
(0
,3

84
6)

N
C
(0
,5

83
8)

20
13

(4
,2

)
12
9
(5
)

it
s
is

th
e
nu
m
be
r
of

G
M
R
E
S
ite
ra
tio

ns
an
d

(n
1,
nm

od
)
ar
e
th
e
nu
m
be
rs

of
tim

es
B
1
br
ea
kd
ow

n
is

de
te
ct
ed

an
d
th
e
nu
m
be
r
of

lo
ca
l

m
od
ifi
ca
tio

ns
m
ad
e
by

th
e
G
M
W

st
ra
te
gy
.�

an
d

∗ i
nd
ic
at
e
B
3
an
d
B
4
br
ea
kd
ow

ns
,r
es
pe
ct
iv
el
y.
N
C
in
di
ca
te
s
th
at
on

an
in
ne
r
ite
ra
tio

n
th
e

re
qu
es
te
d
G
M
R
E
S
ac
cu
ra
cy

of
u
1/
4

64
w
as

no
ta
ch
ie
ve
d
w
ith

in
th
e
lim

it
of

10
00

ite
ra
tio

ns

123

Numerical Algorithms

Table 5 Results for problem Boeing/bcsstk38

β 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9 1.0

nmod 7404 5751 3695 1891 1327 914 621 409 138 8 0

i ts 3542 2634 2068 2037 1642 1335 481 390 321 313 313

IC-GMRES-IR is run using a fp16-IC(2) preconditioner computed with the GMW(β)
strategy for a range of values of β (Section 3.4). nmod and i ts are the numbers of
local modifications made by the GMW strategy and GMRES iterations, respectively

and Boeing/bcsstk38 and for these a global shift is used). B4 breakdown happens
only for GMW(10) applied to GHS_psdef/hood (5 occurrences for this example) and
GMW(100) applied to HB/bcsstk11 (happens once); again a global shift is used to
avoid breakdown. We see that with β = 0.5, for some examples a large number
of local modifications (nmod) are made. This leads to the preconditioner being of
poorer quality compared to the IC(2) preconditioner with look-ahead. For β = 10,
local modifications are only needed for a few problems (HB/bcsstk11, HB/bcsstk24
and Um/offshore). In each case, the resulting preconditioner is not successful. For
GMW(100), local modifications are only made for Um/offshore; for all other test
examples, GMW(100) is equivalent to IC(2) with no look-ahead.

The sensitivity of the GMW(β) approach to the choice of β is reported on in Table 5
for problem Boeing/bcsstk38. As β increases, the number of local modifications to
diagonal entries (nmod) steadily decreases and so too does the GMRES iteration
count (i ts). For this example, for each β ≥ 0.4, B1 breakdown was detected once and
a global shift α = 10−3 was then employed.

Finally, results for IC-GMRES-IR using a fp64-IC(2) preconditioner are given
in Table 6. As we would expect, the number of breakdowns and the iteration counts
are often less than for the fp16-IC(2) preconditioner. If β = 0.5, the number of
local modifications when using fp64 arithmetic is very similar to the number when
using fp16 and the iteration counts are also comparable. For larger β, fp64 can result
in a higher quality preconditioner but, as earlier, without look-ahead the computed
preconditioner can be ineffective.

All the reported results employed our explicit safe tests for breakdown. We have
also run the fp16 arithmetic experiments with the B1 to B4 breakdown tests replaced
by IEEE exception handling. As expected, because in fp16 arithmetic τu = 10−5 and
xmin = O(10−5), this led to the same number of restarts and hence the same iteration
counts. However, by only testing the exception flag at the end of each major step
of the factorization, this approach did not distinguish between the different types of
breakdown. For the experiments using fp64 arithmetic, IEEE exception handling did
not detect any problems and consequently, for some examples, this led to growth in
the factor entries (exactly as in the case of no look-ahead).

123

Numerical Algorithms

Ta
bl
e
6

R
es
ul
ts
fo
r
IC

-G
M
R
E
S-
IR

(A
lg
or
ith

m
5)

us
in
g
a
fp
64

-I
C

(2
)
pr
ec
on

di
tio

ne
r
w
ith

th
e
G
M
W
(β
)
st
ra
te
gy

(S
ec
tio

n
3.
4)

an
d
w
ith

lo
ok
-a
he
ad

(S
ec
tio

n
3.
2)

Id
en
tifi

er
G
M
W
(0
.5
)

G
M
W
(1
0)

G
M
W
(1
00
)

W
ith

lo
ok
-a
he
ad

it
s

(n
m
od

)
it
s

(n
m
od

)
it
s

(n
1,
nm

od
)

it
s

(n
1)

B
oe
in
g/
m
sc
01
05
0

78
(6
0)

24
(0
)

24
(4
,0

)
24

(0
)

H
B
/b
cs
st
k1
1

10
87

(4
76
)

20
1
(0
)

20
1
(0
,0

)
23
2
(0
)

H
B
/b
cs
st
k2
6

77
5
(4
76
)

79
(0
)

79
(0
,0

)
79

(0
)

H
B
/b
cs
st
k2
4

91
3
(4
09
)

89
(0
)

89
(0
,0

)
89

(0
)

H
B
/b
cs
st
k1
6

41
(2
6)

22
(0
)

22
(0
,0

)
22

(0
)

C
yl
sh
el
l/s
2r
m
t3
m
1

79
2
(5
85
)

14
6
(0
)

14
6
(0
,0

)
14
6
(0
)

C
yl
sh
el
l/s
3r
m
t3
m
1

29
01

(7
10
)

10
2
(0
)

10
2
(0
,0

)
10
2
(0
)

B
oe
in
g/
bc
ss
tk
38

13
01

(9
43
)

14
1
(0
)

14
1
(0
,0

)
14
1
(0
)

B
oe
in
g/
m
sc
10
84
8

79
0
(6
00
)

68
(0
)

68
(0
,0

)
68

(0
)

O
be
rw

ol
fa
ch
/t2

da
h_
e

14
(6
)

6
(0
)

6
(0
,0

)
6
(0
)

B
oe
in
g/
ct
20
st
if

21
22

(4
84
7)

20
36

(4
0)

N
C
(0
,0

)
19
40

(2
)

D
N
V
S/
sh
ip
se
c8

70
1
(4
65
8)

35
4
(0
)

35
4
(0
,5
5)

35
4
(0
)

G
H
S_

ps
de
f/
ho
od

24
80

(2
50
54
)

N
C
(2
01
3)

N
C
(0
,1

19
98
)

56
8
(5
)

U
m
/o
ff
sh
or
e

N
C
(4
09
4)

N
C
(6
32
7)

‡(
4,

47
30
)

12
8
(5
)

it
s
is

th
e
nu
m
be
r
of

G
M
R
E
S
ite
ra
tio

ns
an
d

(n
1,
nm

od
)
ar
e
th
e
nu
m
be
rs

of
tim

es
B
1
br
ea
kd
ow

n
is

de
te
ct
ed

an
d
th
e
nu
m
be
r
of

lo
ca
l

m
od
ifi
ca
tio

ns
m
ad
e
by

th
e
G
M
W

st
ra
te
gy
.F

or
G
M
W
(0
.5
)
an
d
G
M
W
(1
0)
,n

1
=

0
fo
r
al
le
xa
m
pl
es

so
is
om

itt
ed
.N

C
in
di
ca
te
s
th
at
on

an
in
ne
r
ite
ra
tio

n
th
e
re
qu
es
te
d
G
M
R
E
S
ac
cu
ra
cy

of
u
1/
4

64
w
as

no
ta
ch
ie
ve
d
w
ith

in
th
e
lim

it
of

10
00

ite
ra
tio

ns
.‡

in
di
ca
te
s
fa
ilu

re
to

co
m
pu
te

us
ef
ul

fa
ct
or
s
be
ca
us
e
of

en
or
m
ou
s
gr
ow

th
in

th
e
en
tr
ie
s

123

Numerical Algorithms

5 Concluding remarks

Following on from our earlier study [6], in this paper we have illustrated the potential
for using half precision arithmetic to compute incomplete factorization precondition-
ers that can be used to obtain double precision accuracy in the solution of highly
ill-conditioned symmetric positive definite linear systems. In fp16 arithmetic, the dan-
ger of breakdown during the factorization of a sparse matrix is imminent and we
must employ strategies that force computational robustness. To avoid breakdown, we
have looked at global strategies plus a local modification scheme based on the GMW
approach that has been used for dense matrices within the field of optimization. This
employs a parameter β. Choosing a small β prevents breakdown during the factoriza-
tion (in both fp16 and fp64 arithmetic) and there is no need to employ a global shift.
However, the penalty is of poorer quality than that which is obtained by employing a
simple global shifting approach. Thus, our recommendations are to always prescale
the problem, to use a global shift, and to incorporate look-ahead. In addition, when
developing software using fp16, monitoring for breakdown must be built in to ensure
robustness. If this is done, then using low precision to compute an effective precondi-
tioner appears to be feasible.

Once a Fortran compiler that supports bfloat16 becomes available, it would be very
interesting to compare its performance to that of fp16. bfloat16 has the same exponent
size as fp32 (single precision). Consequently, converting from fp32 to bfloat16 is
easy: the exponent is kept the same and the significand is rounded or truncated from
24 bits to 8; hence overflow and underflow are not possible in the conversion. The
disadvantage of bfloat16 is its lesser precision: essentially 3 significant decimal digits
versus 4 for fp16. Another possible future direction is to explore the effects of different
preorderings of A on the number of breakdowns and the quality of the low precision
factors. Fill-reducing orderings can result in later entries in the factor being updated by
more entries from the previous columns. Intuitively, thismay lead tomore breakdowns.

When using higher precision arithmetic, the potential dangers within an incom-
plete factorization algorithm can be hidden. As our experiments have demonstrated,
a standard IC factorization using fp64 arithmetic without look-ahead can lead to an
ineffective preconditioner because of growth in the size of the entries in the factors.
Without careful monitoring (which is not routinely done), this growth may be unob-
served but when subsequently applying the preconditioner, the triangular solves can
overflow, resulting in the computation aborting.

Finally, we reiterate that, although our focus has been on symmetric positive definite
systems, breakdown and/or large growth in factor entries is also an issue for the incom-
plete factorization of general sparse matrices. Again, safe checks (or the use of IEEE
exception handling) need to be built into the algorithms and their implementations to
guarantee robustness.

Acknowledgements Wewould like to thank JohnReid for discussions on exception handling in Fortran and
for carefully reading and commenting on a draft of this manuscript. We are also grateful to two anonymous
referees for their insightful feedback that has led to improvements in the paper.

Author Contributions Both authors contributed equally to themanuscript (the developed of ideas, numerical
experiments, and preparation of the text).

123

Numerical Algorithms

Funding The authors received no external grant funding for this research.

Data Availability The test matrices used in this study are taken from https://sparse.tamu.edu/

Declarations

Ethical Approval and consent to participate There was no ethics approval required for this research.

Competing interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Higham, N.J., Mary, T.: Mixed precision algorithms in numerical linear algebra. Acta Numer. 31,
347–414 (2022). https://doi.org/10.1017/S0962492922000022

2. Carson, E., Higham, N.J.: A new analysis of iterative refinement and its application to accurate solution
of ill-conditioned sparse linear systems. SIAM J. Sci. Comput. 39(6), 2834–2856 (2017). https://doi.
org/10.1137/17M1122918

3. Amestoy, P., Buttari, A., Higham, N.J., L’Excellent, J.-Y., Mary, T., Vieublé, B.: Five-precision
GMRES-based iterative refinement. SIAM J. Matrix Anal. Appl. 45(1), 529–552 (2024). https://doi.
org/10.1137/23M1549079

4. Carson, E., Higham, N.J.: Accelerating the solution of linear systems by iterative refinement in three
precisions. SIAM J. Sci. Comput. 40(2), 817–847 (2018). https://doi.org/10.1137/17M1140819

5. Higham, N.J., Pranesh, S.: Exploiting lower precision arithmetic in solving symmetric positive definite
linear systems and least squares problems. SIAM J. Sci. Comput. 43(1), 258–277 (2021). https://doi.
org/10.1137/19M1298263

6. Scott, J.A., Tůma, M.: Avoiding breakdown in incomplete factorizations in low precision arithmetic.
ACM Trans. Math. Softw. 50(2), Article 9 (2024). https://doi.org/10.1145/3651155

7. Eijkhout, V.: On the existence problem of incomplete factorisation methods. Lapack Working Note
No. 144, UT-CS-99-435, http://www.netlib.org/lapack/lawns/ (1999)

8. Higham, N.J., Pranesh, S.: Simulating low precision floating-point arithmetic. SIAM J. Sci. Comput.
41(5), 585–602 (2019). https://doi.org/10.1137/19M1251308

9. Chan, T.F., Vorst, H.A.:Approximate and incomplete factorizations. In: ParallelNumericalAlgorithms,
ICASE/LaRC Interdisciplinary Series in Science and Engineering IV. Centenary Conference, D.E.
Keyes, A. Sameh and V. Venkatakrishnan, Eds., pp. 167–202. Kluver Academic Publishers, Dordrecht
(1997). https://doi.org/10.1007/978-94-011-5412-3_6

10. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn., p. 528. SIAM, Philadelphia, PA
(2003). https://doi.org/10.1137/1.9780898718003

11. Il’in, Y.M.: Iterative Incomplete Factorization Methods. World Scientific, Singapore (1992). https://
doi.org/10.1142/1677

12. Scott, J.A., Tůma, M.: The importance of structure in incomplete factorization preconditioners. BIT
Numer. Math. 51, 385–404 (2011). https://doi.org/10.1007/s10543-010-0299-8

13. Scott, J.A., Tůma, M.: Algorithms for Sparse Linear Systems. Nečas Center Series, p. 242.
Birkhäuser/Springer, Cham, (2023). https://doi.org/10.1007/978-3-031-25820-6

14. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)

123

https://sparse.tamu.edu/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0962492922000022
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/23M1549079
https://doi.org/10.1137/23M1549079
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/19M1298263
https://doi.org/10.1145/3651155
http://www.netlib.org/lapack/lawns/
https://doi.org/10.1137/19M1251308
https://doi.org/10.1007/978-94-011-5412-3_6
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1142/1677
https://doi.org/10.1142/1677
https://doi.org/10.1007/s10543-010-0299-8
https://doi.org/10.1007/978-3-031-25820-6

Numerical Algorithms

15. Meurant, G.: Computer Solution of Large Linear Systems. Elsevier, Amsterdam – Lausanne – New
York – Oxford – Shannon – Singapore – Tokyo (1999)

16. Oktay, E., Carson, E.: Multistage mixed precision iterative refinement. Numer. Linear Algebra Appl.
29(4), 2434 (2022). https://doi.org/10.1002/nla.2434

17. Demmel, J.W., Li, X.: Faster numerical algorithms via exception handling. IEEETrans. Comput. 43(8),
983–992 (1994). https://doi.org/10.1109/12.295860

18. Lindstrom, P., Lloyd, S., Hittinger, J.: Universal coding of the reals: alternatives to IEEE floating point.
In: Proceedings of the Conference for Next Generation Arithmetic, pp. 1–14 (2018). https://doi.org/
10.1145/3190339.3190344

19. Higham, N.J., Pranesh, S., Zounon, M.: Squeezing a matrix into half precision, with an application
to solving linear systems. SIAM J. Sci. Comput. 41(4), 2536–2551 (2019). https://doi.org/10.1137/
18M1229511

20. Lin, C.-J., Moré, J.J.: Incomplete Cholesky factorizations with limited memory. SIAM J. Sci. Comput.
21(1), 24–45 (1999). https://doi.org/10.1137/S1064827597327334

21. Scott, J.A., Tůma, M.: HSL_MI28: an efficient and robust limited-memory incomplete Cholesky
factorization code.ACMTrans.Math. Softw.40(4),Article 24 (2014). https://doi.org/10.1145/2617555

22. Manteuffel, T.A.: An incomplete factorization technique for positive definite linear systems. Math.
Comput. 34, 473–497 (1980). https://doi.org/10.2307/2006097

23. Gill, P.E., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization.
Math. Program. 7, 311–350 (1974). https://doi.org/10.1007/BF01585529

24. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. SIAM, 2nd edition, Philadelphia (2019).
https://doi.org/10.1137/1.9781611975604

25. Eskow, E., Schnabel, R.B.: Algorithm 695: Software for a new modified Cholesky factorization. ACM
Trans. Math. Softw. 17, 306–312 (1991). https://doi.org/10.1145/114697.116806

26. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Numerical experiments with the LANCELOT package
(Release A) for large-scale nonlinear optimization. Math. Program. 73, 73–110 (1996). https://doi.
org/10.1007/BF02592099

27. Fang,H.,O’Leary,D.P.:ModifiedCholesky algorithms: a catalogwith newapproaches.Math. Program.
115(2, Ser. A), 319–349 (2008). https://doi.org/10.1007/s10107-007-0177-6

28. Schnabel, R.B., Eskow, E.: A newmodified Cholesky factorization. SIAM J. Sci. Comput. 11, 424–445
(1990). https://doi.org/10.1137/0911064

29. Schnabel, R.B., Eskow, E.: A revised modified Cholesky factorization algorithm. SIAM J. Optim. 11,
1135–1148 (1990). https://doi.org/10.1137/S105262349833266X

30. Greenbaum, A.: Estimating the attainable accuracy of recursively computed residual methods. SIAM
J. Matrix Anal. Appl. 18, 535–551 (1997). https://doi.org/10.1137/S0895479895284944

31. Carson, E., Higham, N.J., Pranesh, S.: Three-precision GMRES-based iterative refinement for
least squares problems. SIAM J. Sci. Comput. 42(6), 4063–4083 (2020). https://doi.org/10.1137/
20M1316822

32. Carson, E., Khan, N.: Mixed precision iterative refinement with sparse approximate inverse precondi-
tioning. SIAM J. Sci. Comput. 45(3), 131–153 (2023). https://doi.org/10.1137/22M1487709

33. Watts, J.W.: A conjugate gradient truncated direct method for the iterative solution of the reservoir
simulation pressure equation. Soc. Pet. Eng. J 21, 345–353 (1981)

34. HSL. A collection of Fortran codes for large-scale scientific computation. https://www.hsl.rl.ac.uk.
(Accessed 2024)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1002/nla.2434
https://doi.org/10.1109/12.295860
https://doi.org/10.1145/3190339.3190344
https://doi.org/10.1145/3190339.3190344
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/S1064827597327334
https://doi.org/10.1145/2617555
https://doi.org/10.2307/2006097
https://doi.org/10.1007/BF01585529
https://doi.org/10.1137/1.9781611975604
https://doi.org/10.1145/114697.116806
https://doi.org/10.1007/BF02592099
https://doi.org/10.1007/BF02592099
https://doi.org/10.1007/s10107-007-0177-6
https://doi.org/10.1137/0911064
https://doi.org/10.1137/S105262349833266X
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/20M1316822
https://doi.org/10.1137/20M1316822
https://doi.org/10.1137/22M1487709
https://www.hsl.rl.ac.uk

	Developing robust incomplete Cholesky factorizations in half precision arithmetic
	Abstract
	1 Introduction
	2 Possible breakdowns within IC factorizations
	3 Preventing and handling breakdown in IC factorizations
	3.1 Avoiding breakdown by prescaling
	3.2 Preventing breakdown by incorporating look-ahead
	3.3 Global shifting to handle breakdown
	3.4 Local modifications to prevent breakdown
	3.5 Recovering double precision accuracy

	4 Numerical experiments
	5 Concluding remarks
	Acknowledgements
	References

