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A B S T R A C T

Construction contracts contain critical risk-related information that requires in-depth examination, yet tight 
schedules for bidding limit the possibility of comprehensive review of extensive documents manually. This 
research aims to develop models for automating the review of construction contracts to extract information on 
risk and responsibility that will provide inputs for risk management plans. Models were trained on 2268 sen-
tences from International Federation of Consulting Engineers templates and tested on an actual construction 
project contract containing 1217 sentences. A taxonomy classified sentences into Heading, Definition, Obliga-
tion, Risk, and Right categories with related parties of Contractor, Employer, and Shared. Twelve models 
employing diverse Natural Language Processing vectorization techniques and Machine Learning algorithms were 
implemented and benchmarked based on accuracy and F1 score. Binary classification of sentence types and an 
ensemble method integrating top models were further applied to improve performance. The best model achieved 
89 % accuracy for sentence types and 83 % for related parties, demonstrating the capabilities of automated 
contract review for identification of risk and responsibilities. Adopting the proposed approach can significantly 
expedite contract reviews to support risk management activities, bid preparation processes and prevent disputes 
caused by overlooking risks and responsibilities.

1. Introduction

Contracts play a critical governance role in construction projects by 
delineating the scope, payments, responsibilities, dispute resolution 
processes, and other binding terms between the employer and 
contractor. As Mendis et al. (2015) explain, contract documents 
communicate the employer’s expectations and requirements to the 
project teams executing the work. Formal agreements between clients 
and contractors are thus essential for successful project delivery. On the 
other hand, contracts can become a source of risk if they involve am-
biguity about rights and responsibilities, and/or parties to the contract 
are not aware of the contractual conditions and risk allocation.

According to Akintoye and MacLeod (1997), contractual terms are 
the second most important driver of risk premiums in the construction 
sector. This underscores the need to thoroughly review construction 
contracts from a risk perspective. Contracts intrinsically bear 

interpretation risks due to the subjective nature of comprehending 
lengthy texts drafted in natural language (Al Qady and Kandil, 2010). 
Differences in interpreting the applicable clauses amongst contracting 
parties can trigger conflicts (Grant et al., 2014). Inadequate definitions 
or specifications about the scope and procedures might result in disputes 
and claims (Hayati et al., 2019). Furthermore, employers may impose 
amended clauses in standard-form contracts to transfer greater liabilities 
onto contractors (Mendis et al., 2013; Rameezdeen and Rodrigo, 2014). 
If such one-sided clauses against their interests go unnoticed, contrac-
tors face avoidable financial, operational, and legal risks during project 
execution, leading to further conflicts.

Analyzing construction contracts in a comprehensive way is thus 
essential. Traditionally, construction professionals manually review 
contracts to identify risks and risk allocation between the parties which 
requires substantial expertise and effort. However, as Lee et al. (2019)
point out, the limited bidding periods constrain manual reviews of 
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extensive documents spanning hundreds of pages with interdependent 
sections. Permitting undetected risks and responsibilities to remain can 
have severe consequences later. Hence, there is a growing need for 
automated systems that can accurately analyze contract texts with 
minimal manual intervention (Chakrabarti et al., 2018). In this regard, 
Artificial Intelligence (AI) presents a solution to enhance risk manage-
ment by rapidly identifying the clauses that are related with risk and its 
allocation. Rule-based and Machine Learning (ML) classifiers using text 
mining and Natural Language Processing (NLP) approaches can help 
reliably analyze and categorize text-based information in contract 
clauses (Shamshiri et al., 2024), which has been a popular research 
theme. Although there are several previous studies regarding construc-
tion contract management as will be discussed Section 2 on literature 
review, most of the studies are about requirements identification from 
technical specifications, and automated contract review with limited 
focus on facilitating risk management processes. In this study, the aim is 
to demonstrate how information about risk, responsibility and shared 
ownership can be automatically retrieved so that contract review as a 
part of the risk management process is facilitated.

This research aims to develop models combining various NLP tech-
niques and ML algorithms for the automated review of construction 
contract clauses to identify risk, right and responsibility, which are 
critical for formulating risk management strategies and preparation of 
risk management plans. The study uses FIDIC (International Federation 
of Consulting Engineers) standard form of contracts to train models and 
test them on an actual construction project contract. Sentences within 
the contract are classified by using a taxonomy of “Headings, Defini-
tions, Obligations, Rights, and Risks” with a parallel labeling scheme 
assigning the Obligation (Responsibility), Right, and Risk sentences to 
related parties of the contract as Contractor, Employer, and Shared. 
Classification accuracy is tried to be improved with techniques like bi-
nary partitioning and classifier ensembles.

The remainder of the paper is organized as follows. The literature 
review synthesizes past applications of NLP and ML in different do-
mains. Next, the research methodology details the overall framework, 
including dataset development, model implementation with vectoriza-
tion techniques and algorithms, and performance benchmarking. The 
key results regarding sentence type and related party classifications are 
then presented, along with improvements from the binary classification 
and ensemble method. Finally, the conclusions section discusses major 
findings, contributions, limitations, and future research directions to-
ward automating construction contract analysis.

2. Literature review

As a subfield of AI, NLP draws from linguistics and computer science 
to develop algorithms that enable computers to understand, interpret, 
and manipulate human language by processing textual data (Salama and 
El-Gohary, 2016). Key application areas of NLP include language 
translation, text classification, speech recognition, and information 
extraction. In recent years, the popularity of NLP has surged with the 
advancement of computational techniques. When coupled with ML al-
gorithms, NLP can extract insights and patterns from unstructured text 
data (Shamshiri et al., 2024). This review compiles NLP and ML-related 
studies across different domains grouping them under two clusters and 
discusses how the current research can fill a gap in the existing 
literature.

Cluster 1 Requirements Engineering: Several studies have applied 
NLP techniques to address issues in Requirements Engineering (RE), 
which refers to the elicitation, analysis, specification, validation, and 
management of requirements for a system. Studies under this cluster 
demonstrate NLP’s capabilities for ambiguity resolution, automated 
template checks, and extracting models from text to improve require-
ment quality. Both ML and rule-based techniques have been imple-
mented with various NLP techniques. Ambiguity in requirements 
documents can undermine project success, as vague requirements 

increase the risk of misunderstandings. NLP has been used in RE to 
automatically detect different forms of ambiguity. Zait and Zarour 
(2018) developed an NLP approach to detect lexical and semantic am-
biguity. Using part-of-speech tagging, requirement normalization, and 
BabelNet lexical database, they identified words with multiple meanings 
and sentences prone to multiple interpretations. Yang et al. (2010)
focused on detecting coordination ambiguity in requirements text. After 
preprocessing the sentences with various NLP techniques, they used the 
LogitBoost ML algorithm with labeled samples to train a classifier for 
pinpointing ambiguous instances. Huertas and Juárez-Ramírez (2012)
introduced the Natural Language Automatic Requirement Evaluator 
(NLARE) model, which leverages several NLP techniques to evaluate 
requirements in terms of atomicity, ambiguity, and completeness. 
Rosadini et al. (2017) utilized General Architecture for Text Engineering 
(GATE) as an NLP tool to identify ten ambiguity classes concerning the 
requirement documents of railway signaling systems. In addition to 
ambiguity detection, Arora et al. (2015) proposed an NLP-based tool 
called Requirement Template Analyzer (RETA) to assess the confor-
mance of requirements text to predefined templates. The tool flags 
problematic syntactic structures violating template guidelines. Robeer 
et al. (2016) extracted conceptual models from textual user stories using 
heuristic rules. Their NLP-based Visual Narrator tool identified key en-
tities and relationships to create models automatically, facilitating RE.

Cluster 2 Automated contract management: NLP and ML have been 
leveraged in the contract management domain to enable the automation 
of laborious manual tasks like contract analysis, and text classification. 
In general, NLP-based research in the construction contract manage-
ment domain has generally pursued compliance checking, information 
extraction, text classification, and assessment of contractual risk due to 
ambiguity or alterations from standard forms of contract. For contract 
analysis, Chalkidis et al. (2017) extracted key contract elements like 
parties, duration, and governing law from 3500 contracts using word 
embeddings and ML algorithms. Chalkidis and Androutsopoulos (2017)
enhanced performance on the same data by employing a deep learning 
approach. Chakrabarti et al. (2018) developed a framework using 
paragraph vectors and supervised learning to identify risk-prone clauses 
in the contract and map them to predefined categories of liability, in-
demnity, and confidentiality. Regarding text classification, Mok and 
Mok (2019) categorized court decision sentences to build a domain 
ontology using NLP and logistic regression. Galser et al. (2018) classified 
rental contract sentences written in German according to a predefined 
taxonomy. They used NLP text vectorization techniques and ML algo-
rithms to categorize the sentences into classes such as duties, pro-
hibitions, and definitions. Zhang and El-Gohary (2016) proposed a 
rule-based NLP approach for automated compliance checking of con-
struction regulatory texts. Moon et al. (2018) used web crawling to 
extract keywords that summarize international construction documents 
from various countries. They used an ontology to capture semantic 
features based on domain knowledge. Al Qady and Kandil (2010)
extracted responsibilities from construction contracts with an NLP tool 
called Concept Relation Identification using Shallow Parsing (CRISP). 
Salama and El-Gohary (2016) focused on classifying contract clauses as 
environmental or non-environmental using ML algorithms on an 
NLP-processed dataset. Jung et al. (2024) developed a Bidirectional 
Encoder Representations from Transformers (BERT)-based NLP model to 
automatically link construction schedule activities to Uniformat classes. 
For the assessment of contractual risk, Lee et al. (2019) detected 
modified clauses in FIDIC-based contracts, which could be disadvanta-
geous to contractors using syntactic and semantic rules. Lee et al. (2020)
used a similar rule-based approach to determine missing contract clau-
ses that actually favor contractors. Zhou et al. (2023) developed an NLP 
and deep learning-based method to intelligently detect missing clauses 
in construction project contracts. Shuai (2023) proposed a 
rational-augmented NLP framework to identify unilateral contractual 
change risks in construction projects.

The current study differs from the previous studies in Cluster 1 and 
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Cluster 2 that it aims to automate contract review process by providing 
information on clauses on risk, responsibility and right and allocated 
parties Contractor, Employer and Shared as an input for risk manage-
ment plans in FIDIC types of contracts. Most similar studies within this 
domain are carried out by Moon et al. (2022) and Pham and Han (2023). 
Moon et al. (2022) utilized BERT to classify clauses in construction 
specifications into various risk categories, including payment, temporal, 
procedure, safety, role and responsibility, definition, and reference. 
Using 2807 clauses from 56 construction specifications, BERT-based 
clause classification model returns performances with high accuracy. 
This study used specifications from two highway projects and 5 natio-
nal/regional standards from Australia, UK and USA to identify risk in 
various categories, whereas our study does not cover identification of 
risk from technical specifications but aims to cluster risk and re-
sponsibility information using a standard form of contract which is 
FIDIC. Pham and Han (2023) used 2586 clauses from 10 FIDIC-based 
construction contracts to develop a multitask model that simulta-
neously performs classification tasks for risk identification (6 cate-
gories), allocation (4 categories) and response (5 categories). They 
argued that performance of their multitask model exhibited higher 
performance than single task models. Our study is different as it auto-
mates the contract review process to retrieve clauses using a taxonomy 
that relates right, responsibility and risk, and allocates to an ownership 
category of Contractor, Employer or Shared which can further be used to 
recall/analyse specific clauses, for example about “Shared Risk” and/or 
“Responsibility of Employer” which was not done in Pham and Han 
(2023). Unlike the previous studies, our study also uses ensemble 
methods for improved performance as will be discussed in the following 
sections. Automated contract review model to support risk management 
process by providing clauses on risk, responsibility and allocation, 
coupled with the ensemble approach increasing performance of the 
model differs from the current state-of-the-art.

3. Research objective and methodology

The research objective is to develop a model for automated contract 
review that can be used as an input for risk management and bid 
preparation activities in a contracting firm. The overall research meth-
odology (showing the research steps on the left and methods on the 
right) comprises of several key steps, as depicted in Fig. 1. With a 
problem statement developed around the need to expedite construction 
contract risk analysis amid bidding time constraints, this research tar-
geted a solution based on automated text analysis leveraging NLP and 
ML capabilities. Since readily available labeled datasets were lacking 
publicly, foundational methodology phases established training and test 
data corpora by extracting sentences from three FIDIC standard forms of 
contracts, namely Red, Yellow, and Silver Books, along with a real 
project contract through Python libraries. Sentences were categorized 
into labels spanning sentence types (Heading, Definition, Obligation, 
Risk, Right) and related parties (Contractor, Employer, Shared) to 
enable supervised classification model training. Labels underwent se-
lective expert review to validate categorization quality. With thoroughly 
labeled datasets established, the methodology shifted to developing an 
array of ML models as well as defining their performance evaluation 
metrics. Twelve models combining NLP text vectorization techniques 
with ML algorithms were trained on sentence type and related party 
classification predictions based on the curated contract sentence data-
sets. Accuracy and F1 score were designated key metrics to test model 
performance. A multi-class classification procedure was implemented by 
decomposing the categorized labels into binary partitions to improve 
sentence type prediction accuracy over initial results. Finally, the 
competitive voting ensemble method integrated top-performing models 
for each contract text classification task to enhance predictions further. 
This comprehensive methodology enabled iterative performance gains 
while thoroughly evaluating the effectiveness of the ML models for the 
automated analysis of construction contracts. The following sections 

delve into the details of the research steps.

3.1. Text preparation

Text preparation phases involve transforming original contract PDF 
documents into textual datasets in spreadsheet form, amenable to ML 
classifiers. In order to automate this process, a tool aligned to the process 
model architecture in Fig. 2 was designed using Python programming 
language.

The initial conversion process utilized the Python PDFMiner library 
(Shinyama, 2019) to extract text files from the PDF versions of the 
provided contracts. However, the text outputs contained various extra-
neous artifacts, including heading breaks, segmented sentences, page 
numbers, and watermarks, requiring systematic removal before splitting 
the sentences. As such, four hard-coded rules were implemented 
sequentially by a custom Python script to clean texts from the extra 
characters that resulted from the conversion process and do not belong 
to the main text of contracts. The first rule provided the removal of extra 
paragraph breaks that divide heading texts from their numbering by 
replacing them with space. The second rule handled numbering within 
sentences that induced mid-sentence segmentation by searching for 
clause/sub-clause numbering conventions delimited by colons or semi-
colons and replacing intruding line break characters with space to rejoin 
partial divisions. The third rule addressed page numbers inducing text 
fragmentation by searching for and removing paragraphs with solely 
digit strings before and after other paragraphs. Finally, the fourth rule 
stripped watermarks that emerged as individual characters through 
isolated paragraphs by searching for and removing all single-character 
paragraphs across texts. Consequently, these four cleaning rules resul-
ted in a polished text file ready for downstream processes.

Then, sentence extraction was operationalized in two stages. In the 
first stage, the spaCy Python library (Honnibal et al., 2020) was 
employed for sentence splitting. An NLP pipeline was created to segment 
the text documents into sentence units based on dots in the text. After 
sentence splitting with NLP, the complicated sentences were rearranged 
through syntactic rules, as proposed by Kim et al. (2020). Accordingly, 
complex multipart FIDIC sentences were algorithmically broken down 
into digestible self-contained clauses based on bullets, connectors, and 
punctuations, increasing the number of sentences by 300–400 per 
document. These operations resulted in four Pandas Data Frames (The 
Pandas Development Team, 2020) created in the Python environment 
for each contract text: 1791 sentences for the FIDIC Red Book, 1726 
sentences for the FIDIC Silver Book, 1829 sentences for the FIDIC Yellow 
Book, 1305 sentences for the actual construction project contract.

After converting the PDF contracts into Excel files, three FIDIC Books 
were combined in one file containing 5346 sentences to be used as the 
training dataset, while 1305 sentences in the actual construction project 
contract comprised the test dataset. However, there were repeating 
sentences in these datasets (especially in the training dataset due to the 
same provisions and definitions in different FIDIC Books). Before elim-
inating the duplicates with a matching algorithm, a rule set was defined 
to account for minor inconsistencies that inhibited naive exact matching 
of otherwise identical sentences. In this direction, some words, punc-
tuations, special characters, bullet indicators, numbers, and connectors 
were removed from sentences, and texts were converted into lowercase 
to normalize case sensitivity mismatches. Implementing such trans-
formations in systematic order generated a comparative sentence col-
umn to yield unique entries, enabling accurate duplication removal 
through semantic equivalence.

The final datasets thus encompassed Excel files with a unique sen-
tence per row. This exhaustive procedure resulted in 3485 sentences 
ready for categorization: 2268 from FIDIC Red, Silver, and Yellow Books 
in the training dataset and 1217 from the construction project contract 
in the test dataset.
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Fig. 1. Research steps.
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3.2. Dataset labeling

Aligned with the overall goal of creating ML models to automate 
construction contract analysis, unique sentences extracted previously 
were systematically labeled for supervised classification training. As 
shown in Fig. 3, two taxonomic labels were manually compiled using the 
sentence types of Heading, Definition, Obligation, Risk, and Right, and 
the related parties of Contractor, Employer, and Shared.

First, sentence types were compiled across all 2268 sentences in the 
training dataset and 1217 sentences in the test dataset. The Heading and 
Definition groups comprised structural components and terms, whereas 
the Obligation, Right, and Risk groups indicated conditions affecting 
different contractual parties. The categorical distribution of the sen-
tences within these groups is presented in Table 1. Label proportions 
were fairly similar between the training and test datasets, indicating 
consistency.

Related party assignments were then attached for Obligation, Right, 

and Risk sentences only, as Headings and Definitions do not imply any 
responsibility to any party. As shown in Table 2, the training set 
comprised 269 Shared items affecting both Contractor and Employer, 
together with 1044 Contractor-specific and 549 Employer-specific 
statements, compared to 118 Shared, 617 Contractor-related, and 186 
Employer-related elements in the test dataset. The comparison of the 
distribution ratios between the two sets was again consistent without a 
significant skew.

This manual labeling effort transformed extracted contract sentences 
into comprehensively annotated datasets coded for sentence types and 
related parties, forming categorized datasets for model training and 
evaluation. Example sentences taken from FIDIC Red Book for each label 
are given below:

Heading: “4.7 Setting Out”
Definition: “1.1.11 "Contract Agreement" means the agreement 

entered into by both Parties in accordance with Sub-Clause 1.6 [Con-
tract Agreement].”

Obligation-Employer: “The Employer shall promptly make available 
to the Contractor all such data which comes into the Employer’s 
possession after the Base Date.”

Obligation-Contractor: “The Contractor shall be responsible for the 
adequacy, stability and safety of all the Contractor’s operations and 
activities, of all methods of construction and of all the Temporary 
Works.”

Fig. 2. The process model for converting contract documents to Excel file.

Fig. 3. Labels used to create supervised machine learning models.

Table 1 
Categorical distribution of the datasets in terms of sentence type.

Sentence type category Number of sentences
Training dataset Test dataset

Heading 228 205
Definition 178 91
Obligation 1033 565
Risk 488 242
Right 341 114

Table 2 
Categorical distribution of the datasets in terms of related party.

Related party category Number of sentences
Training dataset Test dataset

Shared 269 118
Contractor 1044 617
Employer 549 186
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Obligation-Shared: “Each Party shall advise the other and the Engi-
neer, and the Engineer shall advise the Parties, in advance of any known 
or probable future events or circumstances which may (b) adversely 
affect the performance of the Works when completed.”

Right-Employer: “The Employer’s Personnel shall, during all the 
normal working hours stated in the Contract Data and at all other 
reasonable times (a) have full access to all parts of the Site and to all 
places from which natural Materials are being obtained”

Right-Contractor: “The Contractor shall be entitled to use, for the 
purposes of the Works, the utilities on the Site for which details and 
prices are given in the Specification.”

Right-Shared: “If either Party is dissatisfied with a determination of 
the Engineer and (d) thereafter, either Party may proceed under Sub- 
Clause 21.4 [Obtaining DAAB’s Decision].”

Risk-Employer: “If the Contractor suffers delay and/or incurs Cost as 
a result of a failure by the Employer to give any such right or possession 
within such time, the Contractor shall be entitled subject to Sub-Clause 
20.2 [Claims For Payment and/or EOT] to EOT and/or payment of such 
Cost Plus Profit.”

Risk-Contractor: “The Contractor shall then promptly rectify the 
error or defect at the Contractor’s risk and cost.”

Risk-Shared: “Subject to the following provisions of this Sub-Clause, 
the Contract Price shall be adjusted to take account of any increase or 
decrease in Cost resulting from a change in or (d) the requirements for 
any permit, permission, licence and/or approval to be obtained by the 
Contractor under sub-paragraph (b) of Sub-Clause 1.13 [Compliance 
with Laws], made and/or officially published after the Base Date, which 
affect the Contractor in the performance of obligations under the 
Contract.”

3.3. Validation of dataset labels

Although the proportion of the categories showed a satisfactory 
alignment between the training and test datasets, a comprehensive 
validation procedure was instituted to affirm the quality of manual la-
beling through an expert evaluation before final model usage. A total of 
280 sentences, involving 10 % of the sentences from each label category, 
were randomly sampled from the Obligation, Risk, and Right categories 
across training and test datasets for external review. Headings and 
Definitions were excluded from the validation study as they are readily 
identifiable.

Six domain experts currently working in contract management roles 
in construction companies evaluated the labels. As shown in Table 3, 
they possess advanced graduate degrees and up to 20 years of tenure in 
their positions. A partitioned validation methodology separated the 
participants into control and label groups to prevent confirmation bias.

First, the unlabeled sample of 280 sentences (185 from the training 
dataset and 95 from the test dataset) was categorized by the label group 
with the consensus of all three participants. Then, the control group 
assessed the categories assigned by both the label group and the re-
searchers in a follow-up meeting to ratify them or propose modifica-
tions. As a result, the control group logged just eight different labels (six 
in the training subset and two in the test subset) compared to the re-
searchers, as presented in Table 4. The deviations of 3 % in the training 
sample and 2 % in the test sample were minor margins of error, 

indicating substantive data integrity. This multi-phase external valida-
tion process enabled robust evaluation of dataset label quality. The 
limited inconsistencies within reasonable margins provided confidence 
in the suitability of the categorizations to proceed with implementing 
supervised ML models.

3.4. Preprocessing and vectorization of text data with NLP

Developing effective ML models for contractual text data requires 
thorough preprocessing to clean noise in sentences, encompassing extra 
characters like punctuations, cases, and stop words, followed by feature 
engineering using mathematical vectorization approaches to numeri-
cally encode the textual data. As depicted in Fig. 4, sentences in the 
datasets underwent a sequence of transformations to make them 
digestible for algorithms. As detailed below, these steps allowed ML 
models to use meaningful inputs, called X values, for analysis.

Preprocessing employs programmed textual editing techniques to 
strip away unnecessary elements of sentences so that ML models can 
focus on the most pertinent data content. Specific techniques applied 
here included: 

• Expanding contractions: Shortened verbal conjugations of words like 
“can’t” need to be expanded to “cannot” to simplify grammatical 
complexity. However, the datasets of this study did not contain such 
informal abbreviations as they were derived from legal contract 
documents.

• Lowercasing: All sentences were converted to lowercase letter 
formatting using the Natural Language Tool Kit (NLTK) in Python 
(Bird et al., 2009). This step created consistent casing, as some ML 
algorithms interpret and process uppercase and lowercase terms 
distinctly.

• Removing punctuations: The regular expression library in Python 
stripped out punctuation symbols by replacing 32 common types, 
like periods, parentheses, brackets, etc., with spaces. This step helped 
focus the sentences on the words themselves rather than non- 
alphanumeric characters.

• Removing digits: Despite numbers carrying essential legal and 
contractual meanings like monetary values or dates, variation in 
their use across different sentences can confuse ML algorithms 
regarding the selection of related labels. Thus, digits were globally 
replaced by a single generic numeric value using the regular 
expression library in Python.

• Removing stop words: Some words like “this,” “they,” and “where” 
frequently appear in sentences without contributing substantive 
informational value. Python’s NLTK filtered out such words based on 
its pre-defined lists of generic stop words.

• Lemmatization: Using Python’s NLTK, words were converted into 
their simplest root dictionary form. For example, “paying,” “paid,” 
and “pays” were all simplified to the root word “pay” to aggregate 
different inflections of terms.

• Removing extra spaces: All the prior preprocessing steps often 
introduce extra spacing between words. The regular expression li-
brary in Python was used to replace them with single standard 
spaces. 

Upon completion of the preprocessing steps, the data frame con-
taining modified X values in a new column was exported to an Excel 
file for the vectorization phase, which allows computers to process 
text data. Six methods described below were used to mathematically 
encode the preprocessed text into numeric vector representations 
readily digestible by ML algorithms.

• Bag of Words (BoW): The BoW method represents entire sentences 
through fixed-length vectors containing the counts of unique words 
appearing in them. The values of a vector reflect the frequency of 
these words within the related sentence. BoW logic was implemented 
through the scikit-learn Python library (Pedregosa et al., 2011) in 
this study. Using the CountVectorizer function, each sentence was 

Table 3 
Participant profile of the validation study.

Participant Education Experience Position Group

Participant 1 M.Sc. 16–20 Chief contract manager Control
Participant 2 M.Sc. 10–15 Chief contracting officer Control
Participant 3 Ph.D. 10–15 Senior contract specialist Control
Participant 4 B.Sc. 5–10 Senior contract specialist Label
Participant 5 B.Sc. 0–5 Contract specialist Label
Participant 6 M.Sc. 0–5 Assistant contract specialist Label
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converted to a vector with a dimension matching the overall size of 
1680 vocabularies across the training dataset.

• Term Frequency-Inverse Document Frequency (TF-IDF): The TF-IDF 
method also builds vocabulary vectors from sentences but further 
applies a weighting model to balance frequently and rarely used 
words. The term frequency portion calculates how often words occur 
in each text, while document frequency downweighs terms used 
broadly across many sentences and texts. Multiplication of these 
terms gives the final TF-IDF score for each word to embed in the 
vector of the related sentence. Similar to BoW, the scikit-learn Py-
thon library was utilized to implement TF-IDF logic. With the 
TfidfVectorizer function, each sentence was represented by a vector 
containing 1680 values. 

Although BoW and TF-IDF are effective methods for converting 
text into machine-readable vectors, they lack the ability to capture 
the context of words. In order to address this limitation, word em-
beddings have been introduced in 1986 (Landthaler et al., 2016). 
Word embeddings collectively encompass techniques in NLP that 
map words or phrases to vectors, with the primary aim of capturing 
and characterizing the semantic relationships between them based 
on their distributional properties within large language corpora. 
Several research groups have developed pre-trained word embed-
ding models, including Word2vec by Google (Mikolov et al., 2013), 
GloVe by Stanford University (Pennington et al., 2014), fastText by 
Facebook AI Research (Bojanowski et al., 2016), and BERT by Google 
(Devlin et al., 2019). In this study, a custom word embedding was 
employed together with three pre-trained word embeddings, as 
described below:

• Custom word embedding: Unlike pre-trained embeddings, such as 
GloVe or BERT, which are trained on large, general-purpose corpora, 
custom embeddings are developed by training directly on the specific 
dataset being analyzed—in this case, sentences extracted from FIDIC 
construction contracts and an actual project contract. This approach 
allows the model to capture domain-specific language, jargon, and 
nuanced meanings that may not be well-represented in more general 

embeddings. By training custom embeddings specifically on the 
FIDIC contract dataset, we aimed that the resulting vector repre-
sentations of words and sentences are aligned with the unique lin-
guistic patterns in construction contracts. This specialization may 
enable the model to better understand contract-specific terminology 
and thus improves its ability to classify sentences by type and related 
party. The custom word embeddings in this study were generated 
using the Word2Vec model, implemented through the Keras library 
in Python. The training process involved the following steps:

1. Preprocessing the Text Data: The sentences from the FIDIC contracts 
were first preprocessed, which involved expanding contractions, 
lowercasing, removing punctuation and digits, removing stop words, 
and lemmatization. This was essential to clean the text and prepare it 
for effective embedding generation.

2. Training on the Contract Dataset: The cleaned corpus of sentences 
from the FIDIC contracts was used as the training data for the 
Word2Vec model. Word2Vec uses a shallow neural network to learn 
vector representations for words based on their context in the text. In 
this case, the model learned word vectors by analyzing the co- 
occurrence of words in sentences from the contracts, capturing the 
relationships between key terms and phrases.

3. Dimensionality of Word Vectors: The dimensionality of the word 
vectors was set to 200, meaning that each word was represented by a 
200-dimensional vector. This dimension size was selected based on a 
balance between computational efficiency and the model’s ability to 
capture complex relationships between words in the contract 
language.

4. Training Parameters: The Word2Vec model was trained using the 
Continuous Bag of Words (CBOW) approach, which predicts a target 
word based on its surrounding context. The model also used a win-
dow size of 5, meaning it considered five words to the left and right of 
the target word to generate the word’s vector representation. A skip- 
gram approach could also be considered for future work, depending 
on the desired focus on rare words and phrases.

Table 4 
Results of the validation study.

Label Number of sentences (Whole dataset) Number of sentences 
(Training subset)

Number of sentences 
(Test subset)

Training Test Researchers Label group Control group Researchers Label group Control group

Obligation-Shared 142 81 14 12 13 9 11 10
Obligation-Contractor 624 401 62 59 61 40 39 39
Obligation-Employer 267 83 26 27 26 9 8 9
Risk-Shared 72 23 8 9 8 3 2 3
Risk-Contractor 285 177 28 33 29 17 19 17
Risk-Employer 131 42 13 11 13 5 5 5
Right-Shared 55 14 6 6 7 2 3 2
Right-Contractor 135 39 13 16 14 4 3 4
Right-Employer 151 61 15 12 14 6 5 6
Total 1862 921 185 185 185 95 95 95

Fig. 4. Steps to convert sentences in the datasets to numerical representation.
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5. Output: After training, each word in the FIDIC dataset was repre-
sented by a unique 200-dimensional vector. These vectors were then 
used as input features for subsequent classification tasks, enabling 
the machine learning models to make predictions about sentence 
types and related parties based on the contract’s specific language.

• spaCy word embedding: spaCy (Honnibal et al., 2020) is an 
open-source Python library that provides pre-trained models in 
various languages. In this study, the “en_core_web_lg” English lan-
guage model (Explosion, 2022) was employed, which contains 514, 
000 unique vectors, each with a dimension of 300, compiled from 
diverse web texts.

• GloVe word embedding: GloVe provides pre-trained word vectors 
developed with an unsupervised learning algorithm for broad 
corpora (Pennington et al., 2014). Despite the existence of different 
GloVe word embeddings, the Wikipedia model containing 
300-dimensional vectors was utilized to match the contractual lan-
guage of this study better.

• BERT word embedding: BERT is a pre-trained model developed by 
Google (Devlin et al., 2019). It includes vector encodings based on its 
massive Wikipedia and book corpora, containing contextual usage of 
3300 million words, and has been used by the Google search engine 
since 2020. The BERT model as the basic model of BERT series, 
employed in this research has converted each word in the datasets 
into 768-dimensional vectors.

3.5. Machine learning algorithms

ML enables automated pattern discovery from data to make predic-
tive decisions, with core learning approaches spanning supervised, un-
supervised, and reinforcement techniques. Supervised learning entails 
creating predictive models from labeled training data. Algorithms learn 
decision rules that link inputs to output categories. New unlabeled data 
can then be classified based on learned patterns. Unsupervised learning 
identifies intrinsic structures within unlabeled data. Algorithms cluster 
or segment data based only on input patterns. Reinforcement learning, 
on the other hand, optimizes actions in a reward-driven environment. 
Agents learn behaviors by maximizing the cumulative future reward 
through trial-and-error interaction, with feedback guiding progressive 
improvement. This research employed supervised learning using the 
labeled contract sentences for algorithm training. Specifically, five main 
algorithms were implemented, as detailed below: 

• Logistic Regression is a statistical learning algorithm used for clas-
sification tasks. It uses the logistic function to predict the probability 
of categorical outcomes rather than continuous numeric outputs. 
Logistic regression is well-suited for text classification as it can 
handle discrete textual inputs and map them to categorical target 
classes.

• Support Vector Machine (SVM) is a supervised learning algorithm 
that can be applied to both classification and regression tasks. It 
constructs a hyperplane or a set of hyperplanes in high-dimensional 
space to separate different classes or predict numerical values. The 
strength of SVM lies in its ability to handle non-linear separable data 
by using kernel functions to map inputs into higher dimensional 
feature spaces.

• Decision Tree is a widely used supervised learning algorithm that can 
perform both classification and regression tasks. It builds a model of 
decisions or rules using a hierarchical structure of nodes, with each 
leaf node corresponding to an outcome or class label. Decision trees 
naturally handle discrete and categorical variables, making them 
suitable for text classification.

• Recurrent Neural Networks (RNNs) are a type of deep neural 
network that works well with sequential data such as text and time 
series. RNNs have cyclic connections that enable them to retain the 
memory of previous inputs when processing new ones. This makes 

RNNs useful for tasks such as speech recognition, language trans-
lation, and NLP applications.

• BERT is a deep bidirectional transformer model suitable for NLP 
tasks. It leverages vast volumes of text data to learn contextual word 
representations. Fine-tuning BERT with pre-trained models, as per-
formed in this study, can substantially improve prediction perfor-
mances in relatively small datasets.

Thus, five ML algorithms, including three statistical and two deep 
learning methods, were utilized to predict contractual sentence types 
and related parties.

3.6. Trained models

This study used 12 models for contract text classification by 
combining six text vectorization techniques with five ML algorithms, as 
outlined in Table 5. Specifically, BoW, TF-IDF, and spaCy word 
embedding were each paired with Logistic Regression, SVM, and Deci-
sion Tree algorithms, creating 9 models (Models 1–9). RNN was matched 
with Keras custom word embedding and GloVe word embedding as 
Models 10 and 11. Finally, the BERT algorithm was matched with pre- 
trained BERT word embedding (Model 12). This broad set of combina-
tions allowed the comparison of different alternatives for contract text 
classification.

These 12 models were implemented using the training and test 
datasets. The training dataset, derived from FIDIC contracts was split 
into 90 % training and 10 % test sets. Sentences vectorized with the 
selected NLP technique (X Values) and their predefined labels (Y Values) 
served as inputs to train the corresponding ML algorithm of a model. 
Once the model was trained using the training split, its internal per-
formance was assessed on the test split by generating the confusion 
matrix and classification report. The model was then evaluated on the 
test dataset derived from a real project contract. The test dataset sen-
tences vectorized by the same NLP technique were fed into the trained 
classification model to predict labels. Model predictions were compared 
to the actual dataset labels to test the external performance of the model. 
This process allowed systematic development and internal validation of 
the classification models before testing them on the real contract. 
Consequently, the most reliable models were identified in terms of the 
performance evaluation criteria detailed in the next section.

3.7. Performance evaluation method

ML classification models are evaluated based on four parameters: 
True Positive (TP), False Positive (FP), True Negative (TN), and False 
Negative (FN). These parameters are derived from a confusion matrix, 
which compares the predicted and actual classes of a dataset. For binary 
classification with two possible classes (positive and negative), the 
confusion matrix is a 2×2 table. TP counts positive examples that are 
correctly classified as positive. In FP, negative examples are incorrectly 
predicted as positive. TN is accurately predicting negatives as negative. 

Table 5 
Trained models.

Model Text vectorization technique Machine learning algorithm

Model 1 BoW Logistic Regression
Model 2 BoW SVM
Model 3 BoW Decision Tree
Model 4 TF-IDF Logistic Regression
Model 5 TF-IDF SVM
Model 6 TF-IDF Decision Tree
Model 7 spaCy word embedding Logistic Regression
Model 8 spaCy word embedding SVM
Model 9 spaCy word embedding Decision Tree
Model 10 Keras custom word embedding RNN
Model 11 GloVe word embedding RNN
Model 12 BERT word embedding BERT
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FN is incorrectly identifying positives as negative. For multi-class 
problems, as in this research, the confusion matrix expands to a n x n 
grid of cells, with n being the number of classes. The TP, FP, TN, and FN 
can be obtained for each class by summing appropriate cells. For 
example, in a 3-class problem with classes A, B, and C, the metrics for 
class A are calculated as follows: 

• TP is the cell where actual A examples are correctly predicted as A.
• FP is found by summing cells where actual B and C examples are 

incorrectly predicted as A.
• TN sums all cells where actual B and C examples are not incorrectly 

predicted as A.
• FN sums cells where actual A examples are incorrectly predicted as B 

or C.

After deriving the TP, FP, TN, and FN values from the confusion 
matrix, key classification metrics can be calculated. This study utilized 
four metrics to evaluate model performance. Accuracy measures the 
overall performance of the model based on the ratio of TP and TN pre-
dictions to all predictions. Precision refers to the ratio of true positives to 
total positive predictions. It shows how good a model is in positive 
identification. Recall determines the ratio of true positives to actual 
positives. It shows the capture rate of a model on positives. Finally, F1 
score balances precision and recall as the harmonic mean of the two. 
These four metrics are calculated according to Eqs. (1)-(4): 

Accuracy =
TP + TN

TP + FP + TN + FN
(1) 

Precision =
TP

TP + FP
(2) 

Recall =
TP

TP + FN
(3) 

F1 score = 2 x
Precision x Recall

Precision + Recall
=

2 x TP
2 x TP + FP + FN

(4) 

In summary, accuracy and F1 score, derived from precision and 
recall, constituted the main measures to evaluate the performance of the 
ML models. Although accuracy is a widely used indicator of overall 
performance, it can be misleading if classes are imbalanced. For 
instance, a case with 100 positives and 900 negatives could yield a 90 % 
accuracy rate with a consistent “negative” prediction. Compared to ac-
curacy alone, F1 score provides a more nuanced understanding of the 
performance in unevenly distributed classes. Therefore, both metrics 
were taken into account for performance evaluation.

4. Results

4.1. Initial classification results

The results of sentence type classification (Heading, Definition, 
Obligation, Risk, and Right) for all 12 models on the internal test split 
and external test dataset are presented in Table 6. The worst-performing 
model was Model 9 using the Decision Tree algorithm. It had the lowest 
accuracy and F1 score across both the test split and test dataset. In 
contrast, Model 12 leveraging BERT word embeddings and the BERT 
deep learning algorithm attained the highest accuracy of 0.82 and F1 
score of 0.79, which were established as benchmark values to improve 
upon in subsequent steps. Model 5 with TF-IDF vectorization and SVM 
algorithm also obtained reliable results with 0.80 accuracy and 0.78 F1 
score on the test dataset. Although the internal testing of Model 2 and 
Model 4 achieved results higher than 0.80 for both accuracy and F1 
score, these values dropped to 0.73 for F1 score and 0.76 and 0.75 for 
accuracy, respectively. For other models, the difference between test 
split and test dataset values was less than 0.06, indicating consistent 
behavior across different test conditions.

Table 7 shows the results of related party classification (Contractor, 
Employer, and Shared). Again, Model 9 performed the worst with the 
lowest accuracy and F1 score on both test sets. The internal test split 
results of Model 1, Model 2, Model 4, Model 5, Model 10, and Model 11 
achieved accuracy and F1 scores of more than 0.80. These values, 
however, decreased to 0.70 s for accuracy and 0.60 s for F1 score on the 
external test dataset results. Further investigations revealed that these 
models were not successful in capturing different representations of the 
parties in the datasets. In this respect, Model 12 leveraging BERT’s 
context-based predictions was the best model to effectively handle dif-
ferences between the training and test datasets. The 0.80 accuracy and 
0.73 F1 score were targeted for improvement in later steps for related 
party classification.

4.2. Results with binary classification

With the purpose of enhancing the sentence type classification per-
formance, the multi-class label classification problem was converted 
into multiple binary classifications using the “one vs rest” method. This 
involved separating the original five sentence types into four sequential 
binary label groups, as depicted in Fig. 5. Accordingly, sentences are 
categorized as either Heading or Clause (covering Definition, Obliga-
tion, Risk, and Right) in Label Group 1. Clause sentences were then 
separated into Definition and Other (Obligation, Risk, and Right) in 
Label Group 2. Label Group 3 distinguished Obligation from Other (Risk, 
Right). Finally, Label Group 4 classified Risk and Right. 12 models were 
trained sequentially across all four label groups. Individual perfor-
mances of the groups were analyzed before combining predictions into 
an overall result column in the Pandas Data frame for comparison to the 

Table 6 
Initial results of sentence type classification.

Model Internal test split results External test dataset results

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Model 1 0.79 0.76 0.78 0.77 0.76 0.72 0.76 0.73
Model 2 0.81 0.82 0.82 0.82 0.76 0.73 0.75 0.73
Model 3 0.69 0.75 0.65 0.69 0.70 0.70 0.66 0.63
Model 4 0.83 0.83 0.84 0.83 0.75 0.74 0.75 0.73
Model 5 0.81 0.83 0.79 0.81 0.80 0.79 0.77 0.78
Model 6 0.69 0.75 0.63 0.65 0.70 0.70 0.66 0.65
Model 7 0.71 0.73 0.70 0.71 0.71 0.67 0.67 0.67
Model 8 0.72 0.74 0.66 0.69 0.75 0.70 0.68 0.69
Model 9 0.55 0.38 0.41 0.38 0.62 0.40 0.44 0.41
Model 10 0.66 0.71 0.57 0.58 0.69 0.69 0.60 0.62
Model 11 0.68 0.66 0.60 0.59 0.69 0.62 0.56 0.56
Model 12 0.81 0.81 0.78 0.80 0.82 0.79 0.80 0.79
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initial classification results.
According to the results of Label Group 1, headings represented the 

simplest case of differentiating from clause-based sentences. While the 
BERT model (Model 12) was the best model with 100 % heading clas-
sification accuracy, eight other models (Model 1, Model 2, Model 4, 
Model 5, Model 7, Model 8, Model 10, and Model 11) attained more than 
99 % accuracy on the test dataset. This demonstrates ML models can 
reliably distinguish headings from clauses in contractual texts. The 
worst-performing model was the Decision Tree-based Model 9 with 0.94 
accuracy and 0.90 F1 score.

For Label Group 2, where definitions were labeled against a broad 
“Other” class, performance understandably fell but remained strong. All 
12 models obtained more than 90 % accuracy, indicating robust iden-
tification capabilities for definitions. Particularly, the BERT model 

(Model 12) and Keras-RNN model (Model 10) both achieved 0.98 ac-
curacy and 0.95 F1 score on the test dataset.

The classification of obligations in Label Group 3 against the “Other” 
group encompassing risks and rights represented a bigger challenge. 
Although Model 12 had the highest performance with 0.84 accuracy and 
F1 score, 8 models (Model 2, Model 3, Model 4, Model 6, Model 7, Model 
8, Model 9, and Model 10) scored less than 80 % for both, highlighting 
the difficulty in identifying the obligation sentences.

The final binary step separated the sentences related to risks and 
rights, where Model 12 achieved 0.79 accuracy and 0.77 F1 score. Four 
more models (Model 1, Model 4, Model 5, and Model 10) reached 
comparable performance levels. Similar to the previous results, Model 9 
lagged behind with 0.66 accuracy and 0.52 F1 score. The general drop in 
classification performance shows that there is still progress to be made 

Table 7 
Initial results of related party classification.

Model Internal test split results External test dataset results

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Model 1 0.81 0.82 0.80 0.81 0.71 0.66 0.68 0.67
Model 2 0.84 0.85 0.84 0.84 0.69 0.64 0.66 0.64
Model 3 0.69 0.75 0.56 0.55 0.72 0.66 0.68 0.67
Model 4 0.84 0.84 0.85 0.84 0.72 0.65 0.68 0.66
Model 5 0.82 0.85 0.80 0.82 0.77 0.72 0.67 0.69
Model 6 0.67 0.74 0.55 0.54 0.70 0.61 0.45 0.45
Model 7 0.76 0.75 0.73 0.74 0.66 0.58 0.61 0.59
Model 8 0.75 0.74 0.71 0.72 0.70 0.63 0.60 0.61
Model 9 0.61 0.59 0.50 0.52 0.61 0.55 0.47 0.49
Model 10 0.84 0.84 0.81 0.82 0.72 0.64 0.67 0.65
Model 11 0.81 0.82 0.78 0.79 0.73 0.72 0.68 0.67
Model 12 0.85 0.88 0.84 0.86 0.80 0.79 0.69 0.73

Fig. 5. Conversion process of multi-class classification to binary classification for sentence type labels.
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in distinguishing between risks and rights.
Following the individual performance evaluations, the binary clas-

sification outputs were combined by checking the label groups 
sequentially to choose from the Heading, Definition, Obligation, Risk, 
and Right types for each sentence. As shown in Table 8, Model 1, Model 
5, Model 10, Model 11, and Model 12 obtained more than 80 % accuracy 
on the test dataset through the binary classification approach. F1 scores 
of these models were also very close to or greater than the benchmark 
value established in the initial classification results. Although the per-
formance of all 12 models was improved, the best and worst-performing 
models remained the same. While the BERT model (Model 12) came out 
on top with 0.87 accuracy and 0.83 F1 score, Model 9, which combined 
the spaCy word embedding and the Decision Tree algorithm, got the 
lowest scores for both. There were also remarkable improvements in the 
RNN variants, Model 10 and Model 11, with significant increases in 
accuracy values and f1 scores. Thus, binary classification proved an 
effective strategy to boost sentence type prediction in construction 
contracts.

4.3. Results with ensemble method

Ensemble methods leverage the combined capabilities of multiple 
ML models to improve classification performance over individual 
models. Voting is a simple yet powerful ensemble technique where the 
predictions from selected models are pooled together (Zhou, 2012). 
Despite the presence of different voting classifiers, this study employed a 
competitive voting scheme tailored for multi-class labeling (Zhang et al., 
2020). As demonstrated in Fig. 6, competitive voting relies on the top 
three highest-performing models. If all models agree, the unanimous 
class is selected. If two models select the same class, that majority class is 
chosen. Finally, if all models disagree, the prediction of the model with 
the highest individual accuracy prevails.

The competitive voting process began by identifying the top three 
models for each classification task based on their individual test dataset 
results (Table 7 and Table 8). For sentence type classification, the 
selected models were SVM-based Model 5 leveraging TF-IDF vectoriza-
tion, RNN Model 11 with GloVe embedding, and BERT-based Model 12. 
The same models were also chosen for related party classification as they 
outperformed others. The predictions of these models on the test dataset 
were fed into the competitive voting algorithm in Fig. 6 to produce the 
ensemble classifications. This structured procedure exploited the rela-
tive strengths of the top models on contractual text classification to 
optimize the decisions. The ensemble results were then evaluated to 
determine performance enhancements.

Table 9 compiles the accuracy and F1 score improvements resulting 
from competitive voting on sentence types. In comparison to the best 
individual model (Model 12), the ensemble method improved accuracy 
to 0.89 from 0.87 and F1 score to 0.86 from 0.83.

Applying competitive voting to related party classification produced 
similar improvements as documented in Table 10. The benchmark 
values of 0.80 for accuracy and 0.73 for F1 score increased to 0.83 and 

0.76, respectively, when the ensemble method was used. These en-
hancements demonstrate how competitive voting can improve model 
performance by synergizing different predictions.

4.4. Evaluation of results

By examining class-specific performance, we identified several 
common causes for misclassification. One of the primary sources of 
misclassification stems from the inherent overlap in the language used in 
different categories. Another source of misclassification was observed in 
sentences that are inherently ambiguous or complex, involving multiple 
clauses or legal dependencies. Certain categories that share conceptual 
overlap but differ in subtle legal meaning, such as "Shared Re-
sponsibilities" versus "Contractor Responsibilities," also contributed to a 
notable portion of misclassifications. Sentences that require under-
standing previous or subsequent clauses (e.g., conditions that depend on 
other clauses) were more likely to be misclassified.

As shown in the previous sections, the classification performance of 
the ML models was gradually improved through successive steps. Fig. 7
visualizes the improvements in sentence type classification based on 
four key metrics. The accuracy improved from 82 % to 87 % after binary 
conversion, culminating at 89 % with the competitive voting ensemble 
method. F1 score likewise increased from 79 % to 83 % and 86 % 
throughout these steps. The performance improvements demonstrate 
that converting sentence types into binary groups allowed more focused 
learning for the trained models. Furthermore, the ensemble method 
optimized aggregate predictions across the top models.

For related party classification, although binary classification was 
not possible, the progression in Fig. 8 shows the ensemble method 
outperformed the initial best results achieved with Model 12. Accuracy 
increased to 83 % from 80 %, whereas F1 score climbed to 76 % from 
73 %. The findings confirm that competitive voting is an effective 
ensemble method for advancing the classification of contractual parties 
beyond individual models by counterbalancing their limitations.

5. Discussion of key findings

The initial classification results showed that deep learning methods 
involving contextual word embeddings like Model 12, leveraging BERT 
embeddings and the BERT deep learning architecture, delivered 
remarkably higher performance compared to statistical learning 
methods across both sentence type and related party classifications., 
underscoring the importance of semantic relationships within contract 
sentences. This can be attributed to BERT’s ability to capture the 
contextual relationships within sentences through its bidirectional 
transformer architecture, which is particularly effective in handling 
complex contract language that involves nuanced meanings and multi-
ple dependencies.

Model 11 (RNN with GloVe word embeddings) performed better 
than Model 10 (RNN with custom word embeddings). This is likely due 
to the GloVe embeddings being trained on a massive corpus of general 
language, enabling the model to capture a wider range of semantic re-
lationships. The custom embeddings, while tailored to the FIDIC dataset, 
may have missed some broader linguistic patterns captured by GloVe, 
especially for sentences with more general legal language. However, 
both Models 11 and 10 benefited from RNN’s ability to capture 
sequential dependencies, making them more suitable for handling con-
tract language, which often involves multiple clauses and conditional 
statements. Decomposing multi-class tasks into narrower binary classi-
fications improved the accuracy further. Integrating predictions from 
the top models through the competitive voting ensemble, By aggregating 
the predictions, the ensemble method compensated for individual model 
weaknesses, exploited their complementary strengths and enhanced 
overall predictions better than individual algorithms. Although it is not 
an immediate replacement for human-based review, attaining 0.89 ac-
curacy and 0.86 F1 score for such a broad classification problem with a 

Table 8 
Test dataset results with binary classification of sentence type.

Model Accuracy Precision Recall F1 score

Model 1 0.82 0.77 0.79 0.78
Model 2 0.79 0.75 0.77 0.75
Model 3 0.74 0.72 0.68 0.69
Model 4 0.80 0.78 0.77 0.77
Model 5 0.84 0.83 0.81 0.81
Model 6 0.72 0.70 0.66 0.67
Model 7 0.76 0.70 0.71 0.70
Model 8 0.79 0.75 0.72 0.73
Model 9 0.68 0.61 0.52 0.52
Model 10 0.82 0.80 0.79 0.79
Model 11 0.83 0.80 0.78 0.78
Model 12 0.87 0.83 0.85 0.83
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relatively small training dataset demonstrated the potential of auto-
mated contract analysis. If we compare our findings with a similar study 
in this area, they are very close to Pham and Han’s (2023) study (mean 
weighted average F1 is around 0.9) that also aims to extract risk-related 
information from the contracts as an input for risk management 
decision-making.

Some key findings that may help development of similar models by 
other researchers within this domain include: 

1. Comparison of Performance of Traditional vs. Deep Learning Models: 
While traditional models such as TF-IDF with SVM (Model 5) 
demonstrated strong baseline performance, the deep learning models 
(especially BERT) exhibited superior results. This is likely due to the 
greater capacity of deep learning models to capture complex lan-
guage structures and dependencies, which are prevalent in legal and 
contractual texts.

2. Comparison of Custom Embeddings vs. Pre-trained Embeddings: The 
performance gap between Model 11 (RNN with GloVe) and Model 10 
(RNN with custom embeddings) suggests that pre-trained embed-
dings, which capture broader linguistic structures, can sometimes 
outperform domain-specific embeddings. GloVe’s general under-
standing of semantic relationships across a large corpus provided 
better overall accuracy, indicating that while custom embeddings 
may capture domain-specific nuances, they may not always gener-
alize as well to a variety of sentence structures. The decision to use 
custom embeddings was critical in addressing the unique challenges 
of understanding contract language. Still, as noted, there are po-
tential benefits in combining both custom and pre-trained embed-
dings to leverage the strengths of each.

It has to be noted that BERT as the most basic model in the BERT 
series was used in this study. There are other models such as RoBERTa 
that ranks high in text classification task evaluation by improving the 
text encoding of BERT, ELECTRA that uses two contesting neural net-
works to improve its model performance, DeBERTa as a new algorithm 
for virtual contesting training and LEGAL-BERT where English legal 
texts are added to the corpus as a supplementary training set (Fu et al., 
2023). Thus, the findings given above should be interpreted considering 
that performance values are based on only the 12 models where other 
BERT models were not considered. Moreover, commercial LLMs, 
including ChatGPT could also provide a solution for the risk-based 
contract review problem. Several researchers like Wong et al. (2024)
and Mialon et al. (2023) argue that LLMs pre-trained in the general 
domain are not directly applicable for domain-specific tasks such as 
contract review. Direct application of LLMs to process construction 
contracts may even lead to unprofessional incorrect outputs due to 
hallucination (Huang et al., 2023). In this study, when ChatGPT was 
directly applied as a text classifier the precision, recall, F1 score and 
accuracy values were found as 0.1478, 0.1579, 0.1324 and 0.3284, 
respectively which are significantly lower than fine-tuned models, 
reinforcing the previous researchers’ arguments on better performance 

Fig. 6. Competitive voting process.

Table 9 
Test dataset results of sentence type classification with ensemble method.

Model Accuracy Precision Recall F1 score

Model 5 0.84 0.83 0.81 0.81
Model 11 0.83 0.80 0.78 0.78
Model 12 0.87 0.83 0.85 0.83
Competitive voting 0.89 0.87 0.85 0.86

Table 10 
Test dataset results of related party classification with ensemble method.

Model Accuracy Precision Recall F1 score

Model 5 0.77 0.72 0.67 0.69
Model 11 0.73 0.72 0.68 0.67
Model 12 0.80 0.79 0.69 0.73
Competitive voting 0.83 0.80 0.74 0.76
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of fine-tuned BERT models over ChatGPT in contract review. On the 
hand, there are studies in the contract management domain such as 
reported by Gao et al. (2024), particularly about analyzing long con-
struction contract texts where LLMs are found to be more user-friendly 
due to their text generation capabilities to provide answers to specific 
questions meeting the consulting needs of practitioners, which was not 
considered as a performance criterion in our study. The performance 
comparison between fine-tuned BERT models and any other LLM like 
GPT-4 depends on several factors, including the specific task, dataset, 
and evaluation metrics.

6. Conclusions

Despite the vital role of construction contracts in determining the 
risks, rights, and obligations assigned to contracting parties, an 
exhaustive analysis of lengthy contract documents during tight bidding 
schedules remains a persistent challenge. Manual expert reviews require 
extensive time and effort while being prone to oversight risks that can 
result in avoidable disputes and failures. There is an evident need for 
automated systems to rapidly analyze construction contracts and accu-
rately detect problematic clauses upfront. This research proposed a so-
lution leveraging recent advances in NLP and ML to categorize contract 
sentences for automated analysis. The research methodology followed 

sequential steps initiating with the compilation of labeled datasets, 
followed by training of an array of ML models, and finalized with per-
formance enhancements via binary classification and ensemble method. 
Over 3000 sentences derived from FIDIC books and an actual con-
struction contract were manually categorized across two taxonomies of 
sentence types and related parties. With the validated datasets estab-
lished, 12 models combining diverse vectorization techniques and al-
gorithms were implemented.

These findings carry significant theoretical and practical implica-
tions. The findings demonstrate that applying NLP and ML to contract 
review process to highlight sentences related with risk and responsibility 
can significantly expedite the risk management process. The compara-
tive evaluation of various NLP techniques and ML algorithms provides 
insights into their capabilities which may be useful for researchers 
aiming to develop models for similar tasks. Models like BERT, which 
excel at understanding contextual language, are particularly well-suited 
for classification of sentences. The competitive voting ensemble method 
shows promise as a tool for improving classification accuracy, making it 
a valuable approach for practitioners aiming to implement automated 
contract review systems in real-world settings.

Practically, the proposed approach can considerably help construc-
tion firms by expediting contract reviews. The ability to rapidly classify 
clauses and detect risk exposures would allow contractors to assess risks 

Fig. 7. Improvements in sentence type classification.

Fig. 8. Improvements in related party classification.
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and make informed bidding decisions within tight timeframes. Using our 
model, contract review documents can be automatically prepared and 
used by Risk Management Teams to populate risk registers, assess the 
level of risk and finally, recommend contingency values based on the 
level of risk and responsibility. Adoption of AI-based automated contract 
review can significantly enhance risk management process in large 
contracting firms. Risk management process can be fully automated by 
using our automated contract review model as an input to an “intelligent 
risk registerer” that can use our model’s outputs on risk and re-
sponsibility to locate different types of risks (such as political, economic 
etc.) and associated risk owners in risk checklist templates, which is 
recommended for future research.

This study also has certain limitations. The training data relied solely 
on FIDIC books, necessitating model re-development for alternative 
contract types. Subjective manual labeling and category choices may not 
reflect the general risk perceptions in the industry, limiting the gener-
alizability of findings. Future work should focus on creating richer 
training datasets across diverse contractual formats to generalize model 
applicability. While this research focuses on using supervised ML, future 
studies can employ rule-based techniques and reinforcement learning 
for comparative purposes. As discussed in the literature review section, 
it is critical to identify ambiguity in a text written in natural language. 
Although FIDIC books are made up of well-defined sentences, similar 
models based on other forms of contracts could incorporate ambiguity 
detection modules to flag unclear clauses, which requires further 
research. Another future research can be about comparison of the per-
formance of our recommended ensemble model incorporating NLP and 
ML algorithms with other LLMs such as RoBERTa, ELECTRA, DeBERTa 
and LEGAL-BERT and GPT, where comparison should include several 
criteria not only performance metrics such as accuracy, but also level of 
user engagement, training time and other utility metrics.
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