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Abstract
The Indian Summer Monsoon (ISM) and the West African Monsoon (WAM)
are dominant drivers of boreal summer precipitation variability in tropical and
subtropical regions. Although the regional precipitation dynamics in these two
regions have been extensively studied, the intraseasonal interactions between
the ISM and WAM remain poorly understood. Here, we employ a climate net-
work approach based on extreme rainfall events to uncover synchronously
occurring extreme rainfall patterns across the two monsoon systems. We reveal
strong synchronization of extreme rainfall events during the peak monsoon
period in July and August, linking heavy rainfall over North India to that over
the Sahel with a lag of around 12 days. We find that La Niña like conditions
in combination with the Boreal Summer Intraseasonal Oscillation (BSISO) and
an enhanced Tropical Easterly Jet (TEJ) foster the synchronization between the
ISM and the WAM. The northward-propagating BSISO triggers African East-
erly Wave activity, bounded between a reduced African Easterly Jet and the TEJ.
These induce westward-traveling anomalous deep convection over the Sahel,
which causes extreme rainfall events to occur.

K E Y W O R D S

climate networks, extreme rainfall events, intraseasonal variability, North India, Sahel,
synchronization, teleconnections
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1 INTRODUCTION

The Indian Summer Monsoon (ISM) and the West African
Monsoon (WAM) are primary drivers of boreal sum-
mer precipitation variability in tropical and subtropical
regions. The ISM is characterized by a strong meridional
overturning circulation, with a low-level monsoon flow
from the Indian Ocean to the Indian subcontinent and
a return flow at upper levels known as the northward
migration of the Intertropical Convergence Zone (ITCZ:
(Bordoni & Schneider, 2008)). Similarly, the WAM is
characterized by low-level inflow of moist air from the
Atlantic Ocean, which converges with the dry, hot air
from the Sahara desert. Both the North Indian and Sahel
regions exhibit substantial variations in monsoon rain-
fall known as “active” and “break” phases (Annamalai &
Slingo, 2001; Rajeevan et al., 2010; Hall & Peyrillé, 2006).
The active phase is often associated with extreme rain-
fall events (EREs), which can have severe socioeconomic
impacts (Kotz et al., 2022).

The intraseasonal variability comes about through a
complex interplay of tropical and subtropical large-scale
modes of variability (Priya et al., 2015; Sooraj et al., 2020;
Nikumbh et al., 2023). For example, the rainfall dynam-
ics in both North India and the Sahel are known to be
correlated with the intensity and location of the Tropical
Easterly Jet (TEJ: (Huang et al., 2019)). The TEJ is a strong
zonal wind maximum in the upper troposphere that is
located over the tropical Indian Ocean and is mainly
present during boreal summer months (June–September).
It is established due to the meridional temperature gradi-
ent between the Equatorial Indian Ocean and the Asian
landmass and extends from the Pacific Ocean to the west
coast of the Sahel (Koteswaram, 1958). Elevated heating
over the Tibetan Plateau increases this gradient and leads
to an enhancement of the TEJ. Previous studies have
found a strong connection between the strength of the TEJ
and ISM rainfall (Pattanaik & Satyan, 2000; Madhu, 2014;
Huang et al., 2019, 2021). Through latent heat release
aloft, which again strengthens the meridional temperature
gradient, the TEJ becomes stronger (weaker) during wet
(dry) years of the ISM (Sathiyamoorthy et al., 2007; Rao &
Srinivasan, 2016). Conversely, a stronger upper-level jet
increases the vertical wind shear, which in turn leads
to more convective organization and also enhances the
northward migration of the ITCZ to the Indian subcon-
tinent (Jiang et al., 2004; Bickle et al., 2021). This conse-
quently increases rainfall in India. The physical mecha-
nism underlying the link between the TEJ and Sahel rain-
fall is less well understood, even though the strong statis-
tical correlation between the TEJ and Sahel rainfall is well
documented and consistent over several decades (Grist &
Nicholson, 2001; Sathiyamoorthy, 2005; Nicholson, 2008).

The TEJ often extends over Africa, sitting above the
lower-level African Easterly Jet (AEJ). Within the AEJ,
African Easterly Waves (AEWs) are embedded, which
cause around 90% of the annual rainfall in the Sahel region
(Nicholson, 2013). AEWs grow from thermal disturbances,
triggered mainly by anomalous convection (Thorncroft
et al., 2008). The zonal TEJ and AEJ supply the energy to
the AEWs (Skinner & Diffenbaugh, 2013). Mesoscale con-
vective systems are often embedded in the tracks of these
waves (Hamilton et al., 2020) and play an important role
in the occurrence of EREs in the western Sahel (Nicholson
et al., 2008). Several studies have shown that wet years in
the Sahel are often characterized by a regionally stronger
TEJ, even on interannual time-scales (Nicholson & Klot-
ter, 2021). A strong TEJ is conducive to wet conditions
over West Africa and recent work has also shown that
there is only a weak relationship between TEJ variability
and daily variations in convection over the Sahel (Lem-
burg et al., 2019; Nicholson & Klotter, 2021). Therefore,
Lemburg et al. conclude that the intensity of the TEJ is not
influenced by rainfall variations over Northwest and Cen-
tral Africa. Bickle et al. (2021). show that increased vertical
shear in the Sahel region also modulates the occurrence of
rainfall. Further, Whittleston et al. (2017). showed that the
coupling of the different zonal jets (TEJ, AEJ, and AEW
activity) over West Africa and the Sahel together modulate
the rainfall, but also the majority of climate models fail
to capture the observed relationship between the jets and
Sahel rainfall.

While the TEJ is influenced by strong convection over
India, the occurrence of EREs in the Indo-Pacific region
itself is substantially influenced by a large-scale mode
of convective variability, at time-scales between 30 and
60 days: the Boreal Summer Intraseasonal Oscillation
(BSISO: (Kikuchi, 2021)), sometimes also referred to as
the Monsoon Intraseasonal Oscillation (MISO: (Web-
ster, 2020; Nikumbh et al., 2021)). Wang & Sobel (2022).
demonstrated that its propagation characteristics can
be derived from the same principles as the better
known Madden–Julian Oscillation (MJO: Madden &
Julian (1971)), which is the dominant mode of intrasea-
sonal variability on the global scale (Zhang, 2005; Zhang
et al., 2020). The BSISO can thus be regarded as the sum-
mer counterpart of the MJO and is sometimes also called
the summertime MJO (Chang et al., 2021). The BSISO
originates in the Indian Ocean and propagates north-
eastward across India, the Maritime Continent, and the
Western Pacific (Kikuchi et al., 2012; Lee et al., 2013;
Kiladis et al., 2014). This oscillation plays a crucial role in
the generation of deep convection and interacts with the
local circulation patterns over the Indian subcontinent,
for example, by modulating the frequency and behavior
of low-pressure systems (Hunt & Turner, 2022)
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and modulating the occurrence of EREs (Nikumbh
et al., 2021).

The WAM also shows variability on the same
time-scale (Matthews, 2004; Janicot et al., 2009; Schlueter
et al., 2019) and this modulates occurrences of pre-
cipitation in the Sahel (Sossa et al., 2017; Vizy &
Cook, 2022). Some studies suggest that the initiation of
the BSISO via anomalous convection over the Indian
Ocean results in eastward-propagating Kelvin waves
and westward-propagating Rossby waves (Maloney &
Shaman, 2008). Currently, most studies agree that both
components (Kelvin and Rossby waves) have a significant
impact on the WAM (Mohino et al., 2012; Niang
et al., 2017). These Rossby waves exert a modulating influ-
ence on the mid-tropospheric temperature structure over
the Sahel, thereby facilitating deep convection (Mohino
et al., 2012), which in turn triggers AEW activity (Alaka &
Maloney, 2012; Ventrice et al., 2011).

The ISM rainfall variability is modulated further, on
interannual time-scales, by the El Niño–Southern Oscil-
lation (ENSO). Indian rainfall is enhanced (reduced)
during La Niña (El Niño) years, typically explained
by the modulation of the Walker circulation (Kumar
et al., 2006). The BSISO itself is modulated by ENSO, with
La Niña like conditions leading to an intensified north-
ward propagation and more EREs in North India (Strnad
et al., 2023). Similarly to the Indian rainfall, a telecon-
nection between ENSO and Sahel rainfall has been noted
(Folland et al., 1986), although the mechanism to explain
this connection is controversial (Joly et al., 2007). Modu-
lation of the TEJ by ENSO has been suggested to explain
the teleconnection (Chen & van Loon, 1987): due to con-
structive interference of the Walker circulation in La Niña
years, the TEJ intensifies and expands both horizontally
and vertically (Nithya et al., 2017), inducing more rain-
fall over the Sahel. In contrast to this, the TEJ weakens
and contracts spatially during El Niño years, leading to
a decrease in rainfall over the Sahel (Nithya et al., 2017).
This mechanism is used, for instance, to explain why El
Niño events reduce rainfall and foster the occurrence
of droughts in Ethiopia (Gleixner et al., 2017), and is
also present in some global circulation models (Bader &
Latif, 2003; Vashisht et al., 2021).

Summarized, the two monsoon systems of the ISM and
WAM are both influenced by the same global large-scale
modes of variability like ENSO (Shaman & Tziperman,
2007) and the MJO (Matthews, 2004). Further, a direct
modulation of the ISM by the tropical Atlantic via atmo-
spheric Rossby waves in the Tropics has been reported
(Mohino et al., 2012). However, the occurrence of rain-
fall in the two monsoon systems of the ISM and WAM
is commonly still investigated mainly on interannual
to decadal time-scales in the framework of the “Global

Monsoon” (Wang & Ding, 2008; Geen et al., 2020). Possible
interactions between both monsoon systems on intrasea-
sonal time-scales, however, have not been investigated
systematically. In their study, Boers et al. (2019). reveal a
synchronization pattern of EREs between North India and
the Sahel on daily time-scales. Some teleconnections of the
ISM shown in Boers et al. (2019). have been explained in
recent years; for example, the dynamical mechanism link-
ing the ISM to the Maritime Continent (Strnad et al., 2023),
circumglobal teleconnection (Beverley et al., 2019, 2021),
or the Yellow River Basin (Gupta et al., 2022). However,
the reasons for the synchronization between the ISM and
WAM remain unclear. Our study thus aims to identify
the atmospheric processes that drive the synchronization
between the ISM and the WAM on a time-scale of multi-
ple days.

Previous studies on rainfall variability during the
boreal summer monsoon have traditionally used methods
such as linear regression, empirical orthogonal functions
(EOFs), and composite analyses (Ding & Wang, 2005, 2007;
Wang & Ding, 2008; Vellore et al., 2014; Walker et al., 2015).
These are not suitable to capture the spatial characteris-
tics of EREs. Additionally, the identification of specific and
possibly varying time lags associated with particular inter-
action patterns of different atmospheric processes is chal-
lenging. Therefore, in this study, we examine the spatial
patterns associated with EREs that occur concurrently in
the Tropics and subtropics by employing a climate network
approach (Tsonis & Swanson, 2008; Malik et al., 2010;
Boers et al., 2014, 2019; Strnad et al., 2022, 2023). Cli-
mate networks are networks where links reflect a strong
statistical correlation between corresponding nodes, typi-
cally representing time series from different spatial loca-
tions. Here, the correlation is accessed by quantifying
the synchronicity of EREs using the event synchroniza-
tion algorithm (Quian Quiroga et al., 2002). We adopt
the methodology introduced in Strnad et al. (2023). to
identify groups of densely connected nodes in the net-
work, referred to as communities. These can be under-
stood as spatial regions where EREs occur significantly
synchronously.

Our method uncovers a community of synchronous
EREs comprising North India, China, and the Sahel
region. We then investigate the mechanisms responsible
for the synchronization by building upon the method from
Schlör et al. (2024)., clustering the propagation of EREs in
a multivariate latent space. Our approach reveals a robust
time-lagged connection between the ISM and WAM mon-
soon regions, prompting a subsequent exploration using
traditional meteorological analysis tools. We show in the
following that the aforementioned large-scale modes of
variability, namely the BSISO, TEJ, and ENSO, interact to
foster the synchronization between the ISM and the WAM.
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2 DATA AND METHODS

2.1 Data

This study focuses on the analysis of EREs occurring
within the monsoon season, set as June–September (JJAS).
Consequently, the analysis is limited to this specific time
frame.

2.1.1 Precipitation data

We use the 0.25◦ daily resolved precipitation data from the
Multi-Source Weighted-Ensemble Precipitation (MSWEP)
dataset (Beck et al., 2019b) for the period 1980–2022.
The MSWEP dataset is chosen for its longer time range
compared with other available multi-satellite precipitation

products, improving statistical robustness. It has been
shown to represent high rainfall quantiles well on global
scales (Beck et al., 2019a). We restrict our analysis in
the meridional direction to the latitudinal range from
the Southern subtropics to the Northern midlatitudes
(180◦W–180◦E, 30◦S–70◦N, see Figure 1a).

2.1.2 Extreme rainfall events

We generate binary event series from the precipitation
dataset. We only consider “wet days”, defined as
days with a rainfall sum of at least 1 mm. Events are
pointwise-defined: we determine one ERE day as a day
on which the daily precipitation sum exceeds the 90th
percentile (Q0.9(⋅)) of all wet days at that specific loca-
tion (Figure 1b). This results in one binary time series

F I G U R E 1 Schematic of the community detection approach. (a) The climate network is constructed by mapping the data to a spatial
grid of N approximately uniformly distributed points using the Fekete algorithm (Bendito et al., 2007). For visualization purposes, only every
10th grid point is plotted. Dashed lines indicate the latitudinal range of the analysis [20◦S, 60◦N]. (b) Every grid point is associated with a
precipitation time series. By thresholding locally at the 90th percentile (Q0.9), we obtain a binary event series (Evs). (c) The event
synchronization algorithm (Quian Quiroga et al., 2002) is employed to evaluate the statistical dependences between all pairs of time series
(i.e., a total of N × N comparisons). The time series and event series in (b) and (c) are just for illustrative purposes. (d) The adjacency matrix
A of the network characterizes the linkages between nodes, delineating the network’s underlying topology. Each black dot represents a
statistically significant synchronization between two nodes. Again, this matrix is for illustrative purposes. (e) Communities are detected by
identifying blocks in the adjacency matrix A via reordering of rows and columns using a probabilistic community detection algorithm.
Communities within the climate network represent groups of nodes characterized by stronger internal connectivity compared with their
connections with nodes outside the community. (f) The block structure is projected back to the spatial map. Nodes that are assigned to the
same community are colored in the same color. The hatched areas indicate regions with only a few wet days, which are excluded from the
analysis. [Colour figure can be viewed at wileyonlinelibrary.com]
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per grid point, where 1 indicates an event and 0 indicates
no event.

2.1.3 Reanalysis data

To analyze large-scale patterns associated with the syn-
chronization, we use the following variables from the
ERA5 Global Reanalysis dataset (Hersbach et al., 2020):
daily outgoing longwave radiation (OLR), sea-surface
temperature (SST), and horizontal (U,V) wind fields, and
vertical velocity 𝜔, specific humidity q, and temperature T
on pressure levels from 50 to 1000 hPa in steps of 50 Pa. The
datasets used for the multivariate principal component
analysis (PCA) are interpolated onto a 1◦ × 1◦ grid, and
all remaining datasets are interpolated onto a 2.5◦ × 2.5◦
grid. To ensure the robustness of our analysis and to avoid
confounding effects from long-term climate change, we
apply a linear detrending to all reanalysis datasets.

2.1.4 ENSO index

The ENSO state is obtained using the multivariate ENSO
index version 2 (MEIv2: (Wolter & Timlin, 2011)). The
MEIv2 is a multivariate index that combines six observed
variables over the tropical Pacific Ocean to provide a com-
prehensive measure of the ENSO state, obtained from
the National Oceanic and Atmospheric Administration
(NOAA) Physical Sciences Laboratory (PSL).1

2.1.5 BSISO index

The daily resolved BSISO index by Kikuchi et al. (2012). is
taken from https://iprc.soest.hawaii.edu/users/kazuyosh
/Bimodal_ISO.html (last accessed: May 10, 2023). The
index consists of two time series BSISO1 and BSISO2. The
amplitude, given by A =

√
BSISO12 + BSISO22, defines

an active (inactive) BSISO by A ≥ 1 (A < 1) (Wheeler &
Hendon, 2004). The two-dimensional phase space
spanned by BSISO1 and BSISO2 is subdivided into eight
equally sized sections that denote the phase of the BSISO.

2.1.6 Tropical Easterly Jet index

We employ the index definition of Huang et al. (2019).
to describe the characteristics in terms of amplitude and
variability of the TEJ for the period from June–September.
The metric of this index, denoted as the Tropical Easterly
Jet Index (TEJI), is mathematically formalized by spatially
averaging the U-wind anomalies at the 200-hPa pressure

level enclosed in the box within the interval [0◦E, 70◦E],
[0◦N, 15◦N] (magenta box in Figure S9 in the Supporting
Information (SI)). We define enhanced (reduced) phases
of the TEJI as events exceeding one standard deviation
below (above) the mean (as the jet flows westward, the
zonal wind values are negative: see Supporting Informa-
tion Figure S9).

2.1.7 All India rainfall index

The All India rainfall index (AIRI) by Parthasarathy
et al. (1994)., available from the India Meteorological
Department (IMD),2 is used to represent the ISM rain-
fall variability in JJAS. We consider days above (below)
one standard deviation from the mean as active (break)
ISM days.

2.2 Communities of synchronous
extreme rainfall events

We use climate networks to determine regions of signifi-
cantly synchronously occurring EREs. This involves mul-
tiple analysis steps, visualized schematically in Figure 1.

2.2.1 Mapping to a grid of spatially
uniformly distributed points

On a regular (rectangular) grid on a sphere, the distance
between grid points decreases the closer they are to the
poles, and they are therefore also more likely to be corre-
lated. This could cause biases in the community detection
algorithm later (see Section 2.2). To avoid these confound-
ing correlation effects, we first map the data to a grid of
spatially approximately uniformly distributed points using
nearest-neighbor interpolation (Figure 1a) by employing
the Fekete algorithm (Bendito et al., 2007). For computa-
tional reasons, the distance between two points of the new
grid is set to around 111 km, which corresponds to the
spatial distance between two points at the equator of a reg-
ular Gaussian 1◦ grid, resulting in a total of approximately
9600 grid points.

2.2.2 Climate network definition

A spatiotemporal dataset of rainfall time series is denoted
as X ∈ RN×T , where N represents the spatial locations
and T is the number of time points (i.e., all days in JJAS
for the period 1980–2022, that is, in total T = 5002). The
climate network is then defined as  = (V ,E), where
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each geographical location i ∈ 1, … ,N corresponds to
a node ni ∈ V , and is associated with the rainfall time
series x⃗i = (xi,0, … , xi,T) ∈ X. E represents the set of edges
within the network. An edge between two nodes ni and n𝑗

encodes a robust statistical dependence between the time
series x⃗i(t) and x⃗𝑗(t) labeled as edge ei𝑗 ∈ E.

2.2.3 Event synchronization

First, all rainfall time series x⃗i(t) are transformed into
binary event series e⃗i(t) by thresholding at the 90th per-
centile of all wet days (Figure 1b; see above). The event
synchronization algorithm (Quian Quiroga et al., 2002) is
employed to evaluate the statistical dependences between
pairs of event series, serving as a metric for quantifying
the synchronization between all pairs of time series within
the network (Figures 1c, S1). This method involves count-
ing concurrently occurring events within event sequences
from different locations, allowing a temporal gap—the
so-called dynamical delay 𝜏—between events in these
sequences to account for time deviations of at most 10 days
(see Supporting Information Section S1). The strength of
the synchronization between locations is assessed by sum-
ming up synchronous time points across all event pairs.
The statistical significance of synchronization between
a pair of event series is estimated using a null-model
test with 2000 random surrogates for each pair of event
series separately (see Supporting Information Section S1,
statistical significance). For details, we refer the reader
to Supporting Information Section S1 or to the detailed
descriptions in Boers et al. (2014, 2019); Strnad et al. (2023).
The adjacency matrix A of a network characterizes the
linkages between nodes, delineating the underlying topol-
ogy of the network, which can be visualized in the form
of a graph. The adjacency matrix is a mathematical repre-
sentation of these connections and captures the presence
or absence of links between nodes expressed as a N × N
matrix, where Ai,𝑗 = 1 indicates that events at location i are
statistically significantly co-occurring synchronously with
events at location 𝑗, and is set to 0 otherwise (Figure 1d).

2.2.4 Communities of synchronous
extreme rainfall events

Communities within the climate network represent
groups of nodes characterized by a higher internal den-
sity of links compared with their link density with groups
of nodes outside the community. Keeping in mind that
the network is constructed based on pairs of event series
exhibiting statistically significant synchronicity in the
occurrence of EREs, these communities correspond to

spatial regions where EREs are more likely to occur
synchronously. These communities often correspond to
spatially connected regions, possibly over large spatial dis-
tances (Figure 1f). The assumption is that points within
the same community are attributable to one (or even mul-
tiple) shared underlying physical mechanism(s) (Strnad
et al., 2023). In practice, communities are determined by
reordering rows and columns of the adjacency matrix A
to obtain a block structure (Figure 1e). An approach that
uses a stochastic block model (SBM) is very common.
The SBM serves as a generative model for random graphs,
generating community structures—specifically, subsets
of nodes referred to as “blocks”. These exhibit distinct
connectivity patterns, being connected with one another
at particular densities of connected nodes. The model
implementation used in this work is the network anal-
ysis package graph_tool (Peixoto, 2014a), favored for its
computational efficiency and its probabilistic output. This
implementation can infer the optimal number of commu-
nities in the data based on the principle of parsimony, that
is, simple structures with a low number of communities
are preferred to more complex ones with a higher number
of communities. In our case, the optimal number of com-
munities for the whole network was determined to be 10.
Further, the Bayesian approach of the algorithm makes it
possible to quantify the posterior probability of each node
belonging to a specific community by sampling different
network structures from the posterior distribution. We
average over all samples drawn from the posterior distribu-
tion and divide it by the total number of samples to obtain
a probability between 0 and 1. We call this the member-
ship likelihood of a node to a community. It quantifies the
probability of a node belonging to a specific community
based on the community structure. For more in-depth
details, we refer the reader to Peixoto (2014b, 2019).

2.3 Lagged synchronous rainfall index

We introduce a synchronization index, denoted as SRI(t),
to quantify for two (potentially distinct) sets of nodes A
and B of the network their time-dependent level of (lagged)
synchronicity in the occurrence of EREs. For each time
point t, we count for each node in set A the number of EREs
that are followed at a lag 𝜏lag by events in set B. The event
series associated with the set A (B) are denoted as eA

n (t)
(eB

m(t)), where n (m) describes the nth (mth) node in A (B)
with total number of points N (M). We define the lagged
synchronization index SRI𝜏lag (t) for a specific lag 𝜏lag as

SRI𝜏lag(t) =
N∑

n=1

M∑
m=1

eA
n (t) ⋅ eB

m(t − 𝜏lag). (1)
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As we observe further that the lag with the highest
synchronization between synchronous events in A and B
can vary (e.g., Figure S8a), we thus count all synchro-
nizations between A and B within a certain range of
lags [𝜏min, 𝜏max]. Summing over all possible lags and using
Equation (1), we define the synchronous rainfall index
SRI as

SRI(t) =
𝜏max∑

𝜏=𝜏min

SRI𝜏(t). (2)

Counting the number of (lagged) synchronous events
per time step enables us to quantify the number of EREs
within a set of locations A that are followed by events
in a set of locations B within a range of possible lags. To
pinpoint further the points in time of exceptionally strong
(lagged) synchronization, we compute the 90th percentile
of all values of the time series SRI(t) and define these
points in time as the most synchronous days (MSDs) that
are above this threshold.

2.4 Latent space clustering
of propagation pathways

To obtain meaningful clusters of the synchronization pat-
tern, we propose a variation of latent space clustering,

visualized schematically in Figure 2, as has been used in,
for example, (Schlör et al., 2024). The latent space is a
lower-dimensional representation of the original
high-dimensional data space, where the data are pro-
jected to capture the most important features (Bishop &
Nasrabadi, 2006). The latent model used here is EOF
analysis, also known as PCA, which reduces the dimen-
sionality of the data while retaining the largest possible
fraction of its original variance. The input data, pro-
vided as a spatiotemporal field x ∈ X, are selected and
pre-processed as follows. We assume that the mechanism
that drives the synchronization over the Sahel is related to
AEW activity, which is known to be responsible for about
90% of precipitation over the Sahel and is strongly influ-
enced by the AEJ (at around 600 hPa), between the TEJ at
around 200 hPa and the AEJ at around 600 hPa (Nichol-
son, 2013). Therefore, the physical mechanism should be
reflected in the zonal wind fields over pressure levels from
the near-surface towards the upper troposphere. To avoid
the curse of dimensionality, we adopt the approach pre-
sented by Whittleston et al. (2017). The three-dimensional
fields of the zonal winds (longitude, latitude, pressure
level) are reduced to a two-dimensional (latitude, pressure
level) field by averaging over 15◦W–15◦E (red rectangle
in Figure 2). The resulting time series are z-score normal-
ized. The resulting field is then used as input for the PCA.

F I G U R E 2 Sketch of the latent space clustering. The propagation pathways are clustered via traces in the latent space z. The
three-dimensional input field is first reduced to a two-dimensional field by averaging over the zonal range marked by the red rectangle and
then transformed to a low-dimensional latent space, which is denoted by the encoder. In our case, the encoder function is a Principal
Component Analysis. Input fields, x(t1), … , x(tn), for a propagation sample of n consecutive time steps are encoded in the latent space z
(displayed as black dots). These build a trace in the latent space (visualized by connected lines). These traces are clustered by a clustering
algorithm; the clusters are visualized as red and blue regions in the latent space. The clustered time points can be used to create
corresponding composite anomaly maps of any variable in the original (real) space. [Colour figure can be viewed at wileyonlinelibrary.com]
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At time t a transformation, zt = e(xt), is applied to map the
high-dimensional space, RN , where N = Nlat × Nplevel, to
a lower-dimensional space, RM , with M ≪ N. To cluster
the dynamics up to a lead of +15 days, we compute the
traces in the latent space z, where each sample s concate-
nates the steps in the latent space z from day 0 to day +15:
s = {z0, z1, … , z15}. Therefore, each sample t is a vector
of length 15 × nEOFs, where nEOFs is the number of EOFs
used for the clustering (see SI Section 3). To select the
EOFs that represent the propagation pathways best, we
consider the EOFs of which the corresponding principal
components (PCs) have the highest correlation coefficient
with the lagged synchronous index SRI(t) (Equation 2).

We employ the standard k-means clustering algorithm
to cluster traces in the latent space z. To determine the
optimal number of clusters, we use the silhouette score
(Rousseeuw, 1987). We remove consecutive days of the
MSDs to obtain meaningful traces. The silhouette score
measures the similarity of an object to its own cluster com-
pared with other clusters, ranging from −1 to 1. A high
value indicates a strong match to its cluster and a poor
match to neighboring clusters. A high average silhouette
score across all samples indicates an appropriate clustering
configuration. We performed a grid search over the num-
ber of clusters and EOFs, ranging from 2 to 10 clusters
and 1–10 EOFs, in order to identify the optimal clustering
configuration. Here, the best clustering is obtained for two
clusters and a single EOF with an overall silhouette score
of 0.4. Single samples with a silhouette score below 0.1 are
excluded from the analysis.

2.5 Estimation of conditional
probabilities

The probability that a day is a day belonging to the MSDs
(i.e., days for which we observe a high number of syn-
chronizations between North India and the Sahel, see
Section 2.3) under a condition, a (e.g., the condition that
the SST state in the tropical Pacific fulfills a La Niña con-
dition), is calculated as follows. Let s be the condition that
a day belongs to the set of MSDs S and a be a particular
condition, where the set of days fulfilling the condition a
is denoted as A. Then

P(s|a) = P(s, a)
P(a)

= ||S ∩ A||
||A||

describes the conditional probability for synchronous
events under condition a, where P(s, a) is the joint prob-
ability of s and a and P(a) the probability of a. Here, || ⋅ ||
denotes the set cardinality and S ∩ A the intersection of
days in S and A, that is, all days that are MSDs and fulfill
condition a. Accordingly, the conditional probability for a

further, second condition b that fulfills all days in the set
of days B is computed as

P(s|a, b) = P(s, a, b)
P(a, b)

= ||S ∩ A ∩ B||
||A ∩ B|| . (3)

This procedure is analogous for further conditions c, d,
etc. In our case, the conditional probabilities are estimated
for MSDs conditioned on the ENSO state, the BSISO
phase and activity, and the TEJ state. A corresponding
null model is estimated by assuming that the MSDs are
randomly distributed over time. The null model probabil-
ity of a day being an MSD is then calculated by dividing
||S|| by the total number of days, weighted by the relative
occurrence of a condition a over time.

3 RESULTS

3.1 Lagged extreme rainfall
synchronization between North India and
the Sahel

3.1.1 Pattern of the synchronization

The application of the community detection algorithm
(see Section 2.2) to the global climate network reveals 10
regions of synchronous EREs (Figure 1e). The objective
of the network analysis is to identify the regions that are
connected by the synchronization of EREs. These regions
constitute a “community” within the climate network,
constructed by estimating patterns of simultaneously
occurring EREs in a domain restricted to the Tropics and
boreal subtropics (see Figure 1 and Supporting Informa-
tion Section S1 for details). Each of these communities
could be investigated on its own, given that they extend
over extensive spatial scales and are characterized by a
high membership likelihood of the nodes in the respec-
tive regions belonging to the community (Figure S2). This
study focuses on the community that encompasses North
India, including the Indo-Gangetic Plain, the Himalayan
foothills (NI, red contour in Figure 3a), East Asia (EA,
pink contour in Figure 3a) delineated by the Himalayan
mountain chain, and the Sahel Zone (SZ, green contour
in Figure 3a) bounded between the tropical rainforest
and the Sahara desert. This community is characterized
by a high membership likelihood of the nodes in the
respective regions belonging to the community. The high
spatial coherence indicates that the community is a stable
manifestation of the synchronization pattern associated
with synchronous EREs (Figure S2). The synchroniza-
tion between NI and EA has been analyzed in previous
studies and can be attributed to the Eurasian Wave Train
associated with the Silk Road pattern (Gupta et al., 2022).
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F I G U R E 3 Synchronization pattern of extreme rainfall between North India and the Sahel. (a) Regions of statistically significant
synchronization between spatial locations are plotted according to their membership likelihood of being in the community comprising North
India (NI, red contour) and the Sahel Zone (SZ, green contour). The communities are determined using a probabilistic hierarchical
community detection algorithm based on the stochastic block model and overlaps of 100 independent runs (see Section 2.2). Hatched areas
indicate regions with few wet days (i.e., locations with less than 10 rainy days in 40 years), which are excluded from the analysis. We find a
community that comprises the regions of North India (NI), East Asia (EA), and the Sahel Zone (SZ). The connection between NI (red
contours), SZ (green contours), and EA (magenta contours) is investigated. (b) Lead–lag correlations in steps of days between time series
obtained from counting the number of extreme events of locations in the NI and the SZ (green line) and NI and EA (magenta line). Only
correlations with p < 0.001 are considered significant and are shown by colors, while black crosses denote non-significant correlation. The
maximum correlation is marked by a vertical solid line. (c) Interannual variability of the synchronization between NI and SZ is displayed by
counting the number of MSDs per JJAS season. (d) For the MSDs, we estimate the distribution over the week of the year in the JJAS
observation period. (e) The occurrence of MSDs is conditioned on the ISM activity. The dashed line indicates the null model of randomly
distributed MSDs per season. [Colour figure can be viewed at wileyonlinelibrary.com]

The time lag between NI and EA of three days (Figure 3b,
pink line) is consistent with the propagation speed of the
Eurasian Wave Train and the results in (Gupta et al., 2022).
In the following, we focus on exploring why the EREs
manifest synchronously (within a certain time range) over
the large continental-scale distance between North India
(red contour in Figure 3a) and the Sahel Zone (green
contour in Figure 3a).

3.1.2 Time lags of the synchronization

Synchronizations were observed to peak in strength at a
time lag of around 12 days, on average, throughout boreal
summer (June, July, August, September: Figure 3b). This
characteristic time delay between EREs within the NI
region and the SZ locations is estimated by lead–lag cor-
relation analysis. The number of occurrences of synchro-
nization patterns between NI and SZ is not constant but
varies substantially between different years (Figure 3c).
We obtain this yearly fluctuation by counting the num-
ber of MSDs per year. For later reference, we mark the

lowest 25% as the least synchronous years (red markers
in Figure 3c). We also observe that synchronization
occurs mainly during the core monsoon season from
July–mid-August (Figure 3d). The distribution over the
JJAS period is estimated by the week of the year for all
MSDs identified. Therefore, hereafter we focus on syn-
chronization events in July and August (JA), which we
consider to be the background state under which most
synchronization happens. While the occurrence of syn-
chronous events is high mainly during July and August,
coinciding with the period of highest daily rainfall sums
in India, there is still strong day-to-day variability within
these months.

3.2 Distinct synchronization patterns
with varying strength

The synchronization between North India and the Sahel
is not instantaneous but lags by almost two weeks
(Figure 3b) and varies across years (Supporting Informa-
tion Figure S8a) with varying SST background state in the
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tropical Pacific (Supporting Information Figure S8b–d).
We thus investigate potential reasons for the variations of
the synchronization patterns.

To obtain a meaningful classification of the MSDs, we
apply a clustering approach. We expect that the synchro-
nized events in SZ are somehow driven by the convective
activity induced through AEWs. This motivates the choice
of the following input variables for a PCA-based cluster-
ing (see Section 2.4). We use zonal U-wind fields over all
pressure levels from the surface up to 100 hPa to capture
changes in the structures of the associated AEJ and TEJ
that act as boundaries for the occurring AEWs. Where
clusters of consecutive days occur in the set of MSDs, we
remove all but the first day to avoid including the same
event more than once in our composite. The PCA helps to
reduce the dimensionality of the fields substantially and
to identify the PCs of the vertical wind structure that are
associated with the synchronization (see Section 2.4 for
details). We create a trace in the latent space of 12 con-
secutive days (in steps of 2 days) for each time point that
is identified as a MSD. These traces are used as input fea-
tures for a k-means clustering algorithm. The clustering
with the highest silhouette score (≈ 0.4) is obtained for
k = 2 clusters and one EOF (Figure 4). For reference, the
resulting clusters can be found in the supplementary mate-
rial (S3). The clustering approach is robust. An alternative
approach using a multivariate PCA (MV-PCA) yields sim-
ilar results (Supporting Information Figure S7). We thus
find two distinct clusters of MSDs. The years in which
these clusters occur are largely distinct from each other in
terms of timing (Figure S12).

We can use these clustered time points to create
composite anomaly maps of any variable in the origi-
nal (geographical) space. We create composite anomaly
maps for the OLR and the vertical velocity at 500 hPa
to uncover the time development of the synchronization
pattern (Figure 4). We observe that the propagation of neg-
ative OLR anomalies is accompanied by a strong rising
motion of the air in the mid-troposphere (Figure 4a–h).
Composite anomaly maps are computed for each cluster
individually in steps of +4 days (Figure 4), revealing two
different synchronization patterns:

• Strong synchronization. The first column in Figure 4
demonstrates the propagation of anomalous OLR in
steps of 4 days, from day 0 to day 12. Note that nega-
tive OLR anomalies often coincide with intense rainfall.
For day 0, we see a region of negative OLR anoma-
lies peaking over North India and ranging towards East
Africa around the Ethiopian Highlands (Figure 4a).
For day +4, these are largely confined to North India
and re-emerge later in the Sahel (Figure 4c). Strongly
anomalous OLR values over the full range of the Sahel

are observed from around day +8 onwards (Figure 4e).
The associated rainfall in the Sahel lags the rainfall in
North India by around 10–12 days when the convective
anomalies reach the Western African coast (Figure 4g).

• Weak synchronization. The second column of
Figure 4 does not show a clear propagation pattern
over the Sahel and the anomalies are of reduced inten-
sity. Not only the intensity but also the speed of the
westward propagation over the Sahel are substantially
different from those of the first cluster. We find some
anomalously enhanced OLR values around day +12
over the center of the Sahel (Figure 4h). The rainfall
over the Sahel lags the rainfall in North India by around
+12–15 days.

As the first cluster shows a more intense synchroniza-
tion pattern and the number of samples in the first cluster
is roughly twice the number of samples in the second
cluster, we suggest that the first cluster is the main
manifestation of the mechanism resulting in the synchro-
nization between NI and SZ, while the second cluster is a
weaker variation of the main mechanism. Further, given
the smaller cluster size, we cannot rule out that some rea-
sonable fraction of events are not causally connected but
arise by chance. Therefore, in the following, we will focus
on the first cluster, called the “strong synchronization”
cluster.

3.3 Background conditions favoring
ISM–WAM synchronization

The question arises as to why there is such pronounced
interannual variability in the synchronization between
North India and the Sahel (Figure 3c). We first note that
the synchronization is linked to the ISM variability, as the
likelihood of occurrence of the MSD is greater in active
ISM years, while there are hardly any synchronizations
during break ISM events and normal years correspond
more or less to the null mode (Figure 3e). To get a clearer
understanding of the initiation mechanism, we thus inves-
tigate different conditions influencing the variability of
ISM activity.

3.3.1 Anomalous convection in the
northwest of India

The synchronization is initiated by anomalously strong
convection in northwest India (Figures 4a, 5a). We observe
two characteristics. Firstly, the anomalously strong con-
vection in the northwest also coincides with the locations
where the strongest rainfall occurs (Figure 5b,d), as
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F I G U R E 4 Propagation for OLR and vertical velocity. We cluster the synchronization patterns based on the most synchronous days
using the lagged synchronous index (see Section 2.3). The first column (a,c,e,f) shows the first cluster of the synchronization pattern using
OLR. The second column (b,d,f,h) shows the second cluster. We create composite anomaly maps (estimated with respect to the month of the
year) for days −4 to +12 OLR in shading, overlapped by anomalous vertical velocity 𝜔 at 600 hPa (measured in Pa⋅s−1) in magenta line
contours denoting anomalously rising (sinking) air with 𝜔 anomalies larger (smaller) than 1 Pa⋅s−1. Arrows denote the near-surface
horizontal anomaly wind field at 800 hPa. Colored areas, contours, and wind vectors imply statistical significance at 95% confidence level.
[Colour figure can be viewed at wileyonlinelibrary.com]

is usually expected in the Tropics. Secondly, we also
note a deepening of the monsoon trough for the band
of enhanced negative OLR anomalies at around 15◦N
(Figure 5a). We further observe a strong anomalous moist-
ening of the upper atmosphere in Figure 5b,d, as well as
anomalous easterly zonal winds in the upper atmosphere
around 200 hPa.

At the same time, the anomalously strong convec-
tion in northwest India already shows a typical BSISO
(the “summertime MJO”) type signal, characterized by

a meridional dipole pattern of OLR anomalies that
moves northward (Figures 4a,c, 5a). An analysis based
on conditional probabilities (see Section 2.5) supports
this impression and shows a substantially increased
likelihood for MSDs when the BSISO is in phases 6
and 7 (Figure 5c, Supporting Information S15e). The
convective band is thus likely to be associated with
the active phase of the BSISO, which is character-
ized by heavy rainfall (see e.g., Kikuchi (2021); Strnad
et al. (2023)).
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F I G U R E 5 Convective anomalies in North India. (a) Composites of the strong synchronization cluster for the OLR superimposed with
the vertical velocities 𝜔 at 400 hPa (measured in Pa⋅s−1) in colored contours. Orange solid (purple dashed) contours denote anomalously rising
conditions for regions with anomalies larger (smaller) than 3 Pa⋅ s−1. Gray shading represents the Himalayan mountains. We visualize the (b)
zonal and (d) meridional circulation averaged over 20◦N–30◦N (70◦E–80◦E), shown by dashed rectangles in (a). All composites are computed
for the conditions on day 0. Panels (b) and (d) are split into two parts: on top the meridionally (zonally) averaged precipitation anomalies
(with respect to the month) are displayed; on the bottom, the vertical circulation is shown by composites of relative humidity anomalies,
computed with respect to the month (shading) and wind field anomalies (arrows). The black rectangles in (a) denote the regions for which
the vertical circulation plots are calculated. In (a), (b), and (d), colored areas imply statistical significance at a 95% confidence level (otherwise
white) using a two-sided t-test. Gray filled contours show the highest 10% of the orography, visualizing the Himalayan mountain chain. The
wind fields in the zonal (meridional) circulation plots are estimated using the meridionally (zonally) averaged U (V) anomalies, measured in
m⋅ s−1, and the vertical velocity 𝜔 in the horizontal direction, measured in hPa⋅ s−1. Only statistically significant arrows at a 95% confidence
level using a two-sided t-test are shown. (c) The condition probabilities (Section 2.5) of the selected days conditioned on active (inactive)
BSISO phases marked by blue (red) bars. The gray bars denote the likelihood of a respective null model that distributes the MSDs randomly
over the BSISO phases with respect to the relative occurrence of each phase. [Colour figure can be viewed at wileyonlinelibrary.com]

3.3.2 SST background state enhancing
synchronization likelihood

We find that the background SST state shows distinct
patterns for the two clusters. The strong synchroniza-
tion cluster shows an anomalous cooling in the central
Pacific (Figure 6a)—a La Niña like pattern—and a band of
anomalously warm SSTs in the northwest Pacific at around
40◦N, which is known as the Kuroshio–Oyashio exten-
sion (Di Lorenzo et al., 2023; Joh et al., 2023). Together,
these patterns in the Pacific Ocean resemble the patterns

of a negative phase of the Pacific Decadal Oscillation
(PDO) in JJAS (see Figure S11). We find that, starting
from around 1986, occurrences of samples that are clus-
tered as strong synchronization (weak synchronization)
are aligned well with the negative (positive) phase of the
PDO (Figure S12). The negative phase of the PDO favors
the occurrence of La Niña events (Di Lorenzo et al., 2023).
La Niña like conditions lead to an anomalously wet
monsoon season in North India, by modulating the Walker
circulation (Xavier et al., 2007) and assisting the north-
ward propagation of the BSISO towards the north of India
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F I G U R E 6 Background states for propagation clusters. We visualize different conditions for the samples of days classified as most
synchronous days that were clustered (Figure 4) into strong synchronization (first column) and weak synchronization (second column). For
comparison, conditions in July–August (JA) for years with few/no synchronizations (see Figure 3c) are also shown (third column). The first
row (a–c) shows SST anomalies. The second row (d–f) shows the composited zonal U-wind anomalies at 200 hPa. The third row (g–i) shows
the integrated vapor transport (IVT) anomalies; arrows denote the corresponding east- and northward components. All composited
anomalies are computed with respect to the month of the year. In all panels, colored areas imply statistical significance at 95% confidence
level using the Student’s t-test. The significance for the wind arrows is computed separately for the U and V components and a wind arrow is
shown only if both components are statistically significant. [Colour figure can be viewed at wileyonlinelibrary.com]

(Strnad et al., 2023). We additionally observe associated
cool SSTs over the Arabian Sea and the Bay of Bengal,
which are probably due to the enhanced convection over
the region, that is, cooling the surface through increased
insolation and precipitation. This pattern might also be
associated with a negative Indian Ocean Dipole, which
is often dynamically linked to La Niña events (Meyers
et al., 2007; Cherchi & Navarra, 2013). The second cluster
does not show a strong SST pattern in the tropical Pacific
Ocean (Figure 6b). We identify a weak warming pattern in
the Eastern Pacific represented by anomalously warm SSTs
in the Pacific Ocean (Figure 6b). However, this pattern is
less pronounced than the La Niña like one, suggesting that
the La Niña background state provides an important inten-
sification of the synchronization, even if the synchroniza-
tion can also occur without a La Niña event. For years with
only a few synchronizations, which we call dry years, we
identify a more pronounced El Niño like pattern repre-
sented by anomalously warm SSTs in the central equato-
rial Pacific Ocean (Figure 6c). This is consistent with the

observation that central Pacific El Niño events are more
often associated with a weakening of the Indian monsoon
(Kumar et al., 2006; Fan et al., 2017) and thus, in turn,
also weaken the synchronization between North India and
the Sahel.

3.3.3 Anomalously strong tropical easterly
jet enhances the synchronization

The composite wind field at 200 hPa for the strong
synchronization cluster shows an established anomalous
corridor that connects the area around the Yellow River
Basin zonally with North India and SZ (Figure 6d). The
flow is guided by the orography of the Tibetan Plateau
and the pattern is especially prominent to the south of the
Tibetan Plateau. These patterns resemble the characteris-
tics of an enhanced TEJ (Figure S9). The enhancement is
likely a result of the La Niña like conditions (Figure 6a)
and the associated Walker circulation response through
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upper-level disturbances, as first described by (Shaman &
Tziperman, 2007). Induced by La Niña, there is anomalous
heating over the Tibetan Plateau (Duan et al., 2012). The
subsequent anomalous meridional temperature gradient
leads to a strengthening of the TEJ core position over
the Indian Ocean (Figure 6a; also Nithya et al., 2017).
Further evidence is provided by the spatial correlation
patterns obtained by correlating the 200-hPa zonal wind,
200-hPa meridional wind, and 500-hPa vertical veloc-
ity, respectively, with the lagged synchronous index (see
Equation 1). The correlation pattern resembles the struc-
ture of the tropical easterly jet (Nicholson & Klotter, 2021)
(see also Supporting Information Figure S9 and compare
with Figure S10). The pattern of an enhanced TEJ is not
equally pronounced for the weak synchronization cluster
(Figure 6e). Here, the zonal winds are only moderately
enhanced over the equatorial Indian Ocean. In dry years,
the zonal wind field is not enhanced over the Indian Ocean
and the Bay of Bengal (Figure 6f). On the contrary, the pat-
tern resembles a weakened TEJ (Figure S9b), which can
be explained by the El Niño like SST pattern (Figure 6c).

3.3.4 Enhanced moisture transport from
the Arabian Sea

Further, during the MSDs for both clusters, we observe
an increased inflow of moist air from the Arabian Sea
via the cross-equatorial Somali Jet (Figure 6g,h). The
Somali Jet is a major source of moisture during the ISM
(Rai et al., 2018). It is therefore consistent that the
synchronization pattern is established mainly during the
core monsoon season (Figure 3c) when the Somali Jet is
most active. Further evidence is provided by the cold SST
pattern observed in the Arabian Sean (Figure 6a,b), which
is associated with increased evaporation and upwelling
under the wind stress forcing due to a strengthened
Somali jet. When this moisture flux hits the western
Himalayan mountains, it leads to forced deep convec-
tion (Figure 5a,b,d). The anomalously strong convection
in North India is thus—at least partially—forced by the
anomalously strong moisture flux towards the orography.
For dry years (Figure 3c), the synchronization is less pro-
nounced and the enhanced Somali Jet inflow vanishes
(Figure 6i), indicating that the moisture flux from the
Arabian Sea is crucial for the initiation of synchronization.

3.3.5 Combination of processes initiating
the synchronization

Taken together, the initiation of the synchronization
mechanism can be attributed to a threefold process.

Firstly, a negative PDO phase favors La Niña conditions
(Figure 6a), promoting deep convection over peninsular
India, facilitated by the anomalous Walker circulation
response (Figure 5b). Secondly, this response supports
the progression of the BSISO towards northwest India
(Figure 5a), substantially enhancing the frequency of deep
convection there. Thirdly, La Niña like conditions enhance
the TEJ over India, but also over the Sahel (Figure 6d,
Supporting Information Figure S10). We can provide
strong statistical evidence for the importance of these
three factors coming together. By estimating conditional
probabilities (Equation 3) for the occurrence of MSDs,
conditioned on the three potential impacting factors
BSISO, ENSO, and the TEJ, we observe that the condi-
tional probabilities for a day in JJAS being a MSD can be
enhanced substantially compared with the respective null
model. As expected from the analysis above, we find the
most substantial increase for MSD for the conditioning
on La Niña, an enhanced TEJ, as well as an active BSISO
for phases 6, 7, and 8 (Figure 7e). In general, we find that
an enhanced TEJ seems to be a necessary condition for
synchronization to occur, as the likelihood of MSDs is
increased when the TEJ is also enhanced (Figure 7a,c,e)
for El Niño or neutral conditions. For a reduced TEJ, we
observe hardly any synchronizations, even if the BSISO is
active and La Niña conditions are present (Figure 7b,d,f),
emphasizing the necessary role the TEJ plays in the
occurrence of the synchronization pattern.

The combination of these three factors also becomes
evident in a visual comparison. The pattern of anoma-
lously negative OLR in Figure 5a occurs further north than
on average for BSISO phases 6 and 7. However, when com-
positing the time points that are in the intersection of time
points of La Niña years, have an enhanced TEJ, and are
in BSISO phases 6 and 7 (Figure S16), the composited
map resembles the composited MSD map (Figure 5a). The
enhanced BSISO pushes moisture further north and north-
west towards Pakistan. In this region, the dry static sta-
bility is very low, and anomalous moisture readily triggers
convection. In consequence, we observe a significantly
increased moistening of the middle to upper atmosphere
from 500 to 200 hPa (Figure 5b).

3.4 Mechanism driving
synchronization between India and the
Sahel

For the days before the synchronization is initiated, the
OLR anomaly pattern shows a clear meridional dipole pat-
tern between the Indian Ocean and the Indian mainland
(Figure 8a) that is reminiscent of a classic BSISO-like struc-
ture (Kikuchi, 2021). We further observe a higher wave
activity in the equatorial region during years with a strong
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(a) (b)

(c)

(e) (f)

(d)

Number of samples 28

Number of samples 55

Number of samples 108

Number of samples 13

Number of samples 22

Number of samples 5

Enhanced TEJ Reduced TEJ

F I G U R E 7 Probabilities for the occurrence of synchronization conditioned on BSISO phases, ENSO, and TEJ. (a–f) Most synchronous
days (MSDs) are defined using the 90th percentile of the lagged synchronous index (see Section 2.5d). Their probability of occurrence is
conditioned on the state of the Boreal Summer Intraseasonal Oscillation (BSISO), the Tropical Easterly Jet (TEJ), and the respective phase of
the El Niño–Southern Oscillation (ENSO) for the respective time points computed as in Equation (3) (see Section 2.5). Blue (red) bars
indicate an active (inactive) BSISO state conditioned on the state of ENSO and the TEJ. Gray bars denote the respective null model, that is,
MSDs are assigned randomly to days in the JJAS season and assigned to the distribution of BSISO phases. [Colour figure can be viewed at
wileyonlinelibrary.com]

synchronization pattern compared with years with less
synchronization (years selected as shown in Figure 3c).
We estimate the equatorial wave activity by Wheeler–
Kiladis wavenumber-frequency spectrum plots ((Wheeler
& Kiladis, 1999); Supporting Information Figure S6).
In Figure 4, we see a slow westward propagation of
negative OLR anomalies starting from the Arabian
Sea and the northwest of India towards the Sahel. The
westward-propagating OLR anomalies in the strong syn-
chronization cluster resemble the westward propagation
pattern in (Matthews, 2004; Janicot et al., 2009, 2011),
which the authors call the “African MJO mode” (Jani-
cot et al., 2011). Our composites in Figure 5d show that
the strong convection in the northwest of India induces
a meridional overturning circulation cell with the down-
ward branch at around 10–15◦N, which could be linked
to the work of Ventrice et al. (2011), and Alaka & Mal-
oney (2012), who suggest that the MJO in the equatorial

warm pool triggers convection initially around the
Lake Chad Basin and the Ethiopian Highlands (around
20◦E–30◦E), though the process itself is not yet fully
understood. In any case, we observe this convection hap-
pening in the OLR anomalies starting from day 0 to day +4
(Figure 4a,c) and to a lesser degree for the weak synchro-
nization cluster a bit later at around day 4–8 (Figure 4d,f).

This region at around 20◦E–30◦E has been reported as
a “trigger region” for AEW activity influenced by the AEJ
(Leroux et al., 2010; Alaka & Maloney, 2012). We try to
identify AEWs by using Hovmöller diagrams of the merid-
ional wind overlaid with OLR anomalies. As single AEWs
differ in their characteristics, that is, where valleys and
peaks in the wave are, composite anomalies are not suited
to visualizing the activity of AEWs over the Sahel. Instead,
we have to study case-by-case events (see Figure S5
for some selected representative examples, similarly to
Leroux et al. (2010)). Figure 8b shows one illustrative
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F I G U R E 8 Conditions enabling synchronized ERE occurrences over the Sahel. (a) The background conditions for day −10 before the
synchronization is initiated are shown. OLR anomalies visualize convective activity. The two rectangles denote the regions for the Hovmöller
diagrams (in b) and the vertical cross-section plots (in c,d). (b) Hovmöller diagrams of the meridional V wind at 600 hPa for the zonal range
[25◦W, 100◦E] overlaid with OLR anomalies (dashed contours) averaged over the region 10◦N–18◦N for one exemplary date included in the
strong synchronization cluster. The orange arrow indicates the westward propagation direction of the wave and its estimated phase speed. (c)
The vertical cross-section of the zonal wind anomalies averaged over 0◦E–15◦E for day 0. The region of the TEJ and the AEJ are indicated by
text. The zonal wind anomalies are shown in m⋅ s−1. (d) The meridional circulation, averaged over 0◦E–15◦E for day +12. The top panel
shows the zonally averaged precipitation anomalies (with respect to the month). The bottom panel shows the vertical structure of the
circulation with arrows and the filled contours show relative humidity anomalies (computed with respect to the month). Gray contours
visualize the orography. The wind fields are estimated using the zonally averaged V anomalies, measured in m⋅ s−1, and the vertical velocity
𝜔 in the horizontal direction, measured in pa⋅ s−1. Only statistically significant wind arrows at 95% confidence level using a two-sided t-test
are shown. [Colour figure can be viewed at wileyonlinelibrary.com]

example of the zonal Hovmöller diagrams of V -wind
anomalies at 600 hPa for one representative event, drawn
from the strong synchronization cluster. In almost all
single composites, we find a clear westward-propagating
wave pattern that is accompanied by a westward-traveling
OLR anomaly pattern. The speed of the wave can be esti-
mated to be around 9 m ⋅ s−1, which is consistent with the
speed of AEWs as reported in (Thorncroft & Hoskins, 1994;
Kiladis et al., 2006), and most AEWs are initiated around
the trigger region of 20◦E–30◦E. This analysis shows
that the AEWs are indeed active during synchronization
events.

AEWs are known to be bounded between the region of
the AEJ and the TEJ (Lemburg et al., 2019; Nicholson &
Klotter, 2021) at around 600 hPa and increased AEW activ-
ity is linked to stronger vertical shear between the AEJ and
the TEJ (Nicholson et al., 2008). We find this pattern for the

strong synchronization cluster: the TEJ at around 200 hPa
is enhanced and the AEJ at around 600 hPa is reduced
(Figure 8c), resulting in an increased vertical shear of the
zonal winds. Our analysis uncovers a propagation pattern
of AEWs starting over the region where the convection
occurs initially. This process induces rainfall by initiating
mesoscale convective systems. This is shown by merid-
ional cross-sections of the composite relative humidity
anomalies on day +12 (Figure 8d). We find an overturn-
ing circulation, where convection occurs slightly off the
Equator at around 10◦N and is extremely deep, extending
to the tropopause. The rising air coincides with the
meridional core position of the reduced AEJ at 10◦N
(Figure 8c). This circulation overturns and leads to
subsidence at both 5◦N and 20◦N. The anomalous
increase of moisture content brought to the mid
and upper troposphere leads to deep instability in a
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region already characterized by widespread convection
during this time of year, consistent with (Vizy &
Cook, 2022). The anomalous deep convection moistens the
mid-troposphere, reducing subsequent dry entrainment
and ultimately leading to heavier widespread precipitation
over the Sahel (Figure 8d).

Through the propagation of the westwards traveling
AEWs, anomalous convection is then induced further
westward towards the Western Coast as well. We can
observe this in zonal cross-section plots of the U-wind
anomalies (Figure S17). There is also a positive feedback,
with the overturning circulation facilitating convergence
in the lower levels, leading to the observed increase in
near-surface humidity. In particular, we observe enhanced
IVT inflow driven by the increased convective activity
(Figure S13), which brings additional moisture from the
Atlantic Ocean into the continent at levels around 800 hPa
(Figure S17d–f). This also explains the observed increase
in anomalous precipitation closer to the Atlantic coast
(Supporting Information Figure 8c).

The rainfall extends over the full meridional range of
the Sahel from 5◦N–15◦N. In the zonal direction, there are
two peaks in intensity: one is over the Ethiopian High-
lands, the other over the Northwest African coast. The
former is likely due to orographic forcing at the Simien
mountains, while the latter is a result of the moisture
influx from the Atlantic Ocean (Figure 6g).

Composites of strong synchronization cluster days
show only marginally enhanced intensity in the region
of the upper-level TEJ at 200 hPa (compare the zonal
circulation at day 0, Figure S17b, with that at day +12,
Figure S17f). The upper-level easterlies do not differ sub-
stantially from the climatology, consistent with (Lemburg
et al., 2019). Instead, anomalous convection happens
from near the surface at 850 hPa up to about 400 hPa
(Figure S17a–f). Hence, it is not the local variability of the
TEJ on weekly to subseasonal time-scales that modulates
the Sahel rainfall, but rather its variability on interannual
time-scales. The strength of the teleconnection, there-
fore, also depends not on the local strength but on the
positioning of the TEJ.

4 DISCUSSION

We have identified and explained a teleconnection pat-
tern linking extreme rainfall events (EREs) on a conti-
nental scale between the monsoons of North India. We
first demonstrated that the synchronization pattern of
EREs between North India and the Sahel Zone is a robust
feature of the boreal summer monsoon system. The
synchronization pattern is not a statistical artifact but
rather is driven by anomalous large-scale atmospheric

circulation, supported by the background state of the
climate system. Our work thus provides a physical causal
explanation for the teleconnection between the Asian and
West African Monsoon domains.

We find that the synchronization is initiated by anoma-
lously strong convection in the northwest of India, which
is associated with an enhanced active phase of the BSISO.
During La Niña conditions, there is typically a stronger
South Asian monsoon (via the Walker circulation) and,
driven by the BSISO, it is more likely for EREs to arise
in northwest India (Strnad et al., 2023). The dynamics of
the BSISO are central to the initiation of the synchroniza-
tion pattern. Active phases of the BSISO also trigger the
initiation of AEWs over the Sahel, which are enhanced fur-
ther by the presence of reduced strength of the AEJ and
increased strength of the TEJ, which is itself modulated
by the La Niña conditions. The AEWs trigger convection,
leading to a lagged occurrence of EREs over the Sahel Zone
compared with over North India. Hence, the strength of
this teleconnection depends on the positioning and ampli-
tude of the TEJ and the periodicity of the BSISO.

While prior investigations have provided detailed
insights into intraseasonal precipitation variability at a
regional level in North India (Malik et al., 2010; Stolbova
et al., 2014; Boers et al., 2019; Hunt et al., 2021; Hunt &
Turner, 2022) and parts of the Sahel (Gleixner et al., 2017;
Lemburg et al., 2019; Vashisht et al., 2021), our study
integrates and consolidates these findings into a broader
context. This synthesis enhances our comprehension of
the underlying physical mechanisms, thereby holding the
potential to enhance seasonal and subseasonal forecasts
using windows of opportunities (Mariotti et al., 2020) dur-
ing boreal summer in the tropical monsoon domain.

Still, some open questions remain. Firstly, the west-
ward propagation over the Sahel shown in this study was
uncovered by using OLR as a proxy for induced convec-
tion and consequently for intense rainfall. OLR has the
advantage of being directly measurable and is therefore
a reliable variable. However, it is not a direct measure
of precipitation. Secondly, deep convective precipitation
over the SZ relies on the interaction of several complex
processes, including interactions of mesoscale convective
systems with the East African Jet at around 600 hPa and
the TEJ. Their interplay needs some further more local
analysis. In particular, the mechanistic link between con-
vection over northwest India and the Ethiopian highlands
needs to be better understood. Thirdly, the role of the Cir-
cumglobal Teleconnection (CGT: (Ding & Wang, 2005)) in
the synchronization between North India and the Sahel
Zone is not fully understood. We find some patterns indi-
cating a partial modulation by the CGT, but its effect seems
to be minor. Further, future research could investigate the
weak synchronization propagation cluster better. As the
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previous analysis suggests that strong synchronization is
the dominant process, the weak synchronization could
be a combination of multiple and presumably more local
interactions.

There are multiple ways to extend this work. One first
step would be to test the occurrence of the synchronization
pattern in current general circulation models (GCMs). On
the one hand, an analysis of the teleconnection pattern in
GCMs could provide insights into the robustness of the
synchronization pattern. On the other hand, as precipi-
tation dynamics and teleconnections are not always well
reproduced in current GCMs (Boyle & Klein, 2010; Hess
et al., 2022; Douville et al., 2023), the comparison could
help to identify potential biases in the models. Our results
provided a clear link between the BSISO, AEW activ-
ity, and the associated westward-propagating convection
with associated increased likelihood of EREs. It would be
interesting to investigate the potential link between the
synchronization initiating AEWs and the genesis of tropi-
cal Atlantic cyclones (Thorncroft & Hodges, 2001; Russell
et al., 2017; Bercos-Hickey & Patricola, 2024). For example,
(Ventrice et al., 2011) showed that westward-propagating
convection is linked to the genesis of tropical cyclones.
Further, there are some studies emphasizing the role of
AEWs in the genesis of North Atlantic hurricanes (Chen
et al., 2008). This could provide a new perspective on
the global impact of the Indian monsoon system and its
reported teleconnections to the North American west
coast (Boers et al., 2019).

Another next step could be to integrate knowledge
about the uncovered teleconnection in current operational
forecast systems. Of particular interest will be the repre-
sentation of these synchronizations in deep learning global
forecasts (for example Lam et al., 2023; Bi et al., 2023;
Lessig et al., 2023), which are more capable of capturing
complex nonlinear relationships in the data.
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