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Abstract The soil health assessment has evolved from focusing primarily on agricultural productivity to an
integrated evaluation of soil biota and biotic processes that impact soil properties. Consequently, soil health
assessment has shifted from a predominantly physicochemical approach to incorporating ecological, biological
and molecular microbiology indicators. This shift enables a comprehensive exploration of soil microbial
community properties and their responses to environmental changes arising from climate change and
anthropogenic disturbances. Despite the increasing availability of soil health indicators (physical, chemical, and
biological) and data, a holistic mechanistic linkage has not yet been fully established between indicators and soil
functions across multiple spatiotemporal scales. This article reviews the state‐of‐the‐art of soil health
monitoring, focusing on understanding how soil‐microbiome‐plant processes contribute to feedback
mechanisms and causes of changes in soil properties, as well as the impact these changes have on soil functions.
Furthermore, we survey the opportunities afforded by the soil‐plant digital twin approach, an integrative
framework that amalgamates process‐based models, Earth Observation data, data assimilation, and physics‐
informed machine learning, to achieve a nuanced comprehension of soil health. This review delineates the
prospective trajectory for monitoring soil health by embracing a digital twin approach to systematically observe
and model the soil‐plant system. We further identify gaps and opportunities, and provide perspectives for future
research for an enhanced understanding of the intricate interplay between soil properties, soil hydrological
processes, soil‐plant hydraulics, soil microbiome, and landscape genomics.

Plain Language Summary Soil health refers to the ability of soil to function as a vital ecosystem that
supports plants, animals, and humans. Traditionally, soil health assessments focused mainly on agricultural
productivity. However, modern assessments now consider the soil's living organisms and their driving
processes, which affect soil properties. This shift has expanded soil health evaluations to include ecological,
biological, and molecular microbiology methods. Despite the growing number of indicators to measure soil
health, including physical, chemical, and biological factors, there is still a need to fully understand how these
indicators relate to soil functions over different times and places. This article reviews the latest methods for
monitoring soil health, particularly how soil‐microbiome‐plant interactions cause and respond to changes in soil
properties and functions. It also explores the promising approach of the soil‐plant digital twin, which combines
various models and data sources to understand soil health better. The review highlights future directions for
monitoring soil health using digital twin technology to observe and model the soil‐plant system systematically.
It identifies current knowledge gaps and opportunities and suggests areas for future research to improve our
understanding of the complex interactions between soil properties, water processes, plant interactions, soil
microbiomes, and landscape genomics.

1. Introduction
Healthy soils are indispensable for sustaining life on our planet. They provide vital provisioning, supporting and
regulating ecosystem services (Keesstra et al., 2016; Lal et al., 2021; Vereecken et al., 2016). Soils are funda-
mental for the production of safe and nutritious food and they also provide essential raw materials, such as fiber
and biofuels, for various human needs (Adhikari & Hartemink, 2016). Soils support nutrient cycling, which is
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crucial for plant growth and therefore overall (agri‐) ecosystem productivity (Cao et al., 2024; Manzoni &
Porporato, 2009). They also support a diverse range of organisms, thereby preserving biodiversity and main-
taining healthy ecosystems (Bardgett & Van Der Putten, 2014). In addition, soils play a crucial role in storing and
purifying water, regulating water flows, and recharging aquifers. They act as a natural buffer against droughts and
floods, contributing significantly to climate adaptation (Vereecken et al., 2022). Additionally, via vegetation's
assimilation of CO2 and subsequent decomposition of plant materials, soils sequester carbon from the atmo-
sphere, which helps mitigate greenhouse gas emissions (Minasny et al., 2017). All these above‐mentioned soil
functions are dependent on soil health.

It has been assessed that 60%–70% of soils in Europe are in an unhealthy condition (European Commis-
sion, 2023). Globally, the Food and Agriculture Organization of the United Nations (FAO, see Appendix Table
A1 for abbreviations) reported that 5,670 million ha of land is undergoing degradation, of which 29% is attributed
to human activity (FAO, 2022). This situation may likely worsen as climate changes and land use intensifies. For
instance, warming of the Earth System will enhance plant growth and therefore increase litter inputs into the soil,
as well as accelerate the mineralization of soil carbon, leading to increased CO2 emissions from soil respiration.
Adding to the complexities, there are significant uncertainties regarding how elevated atmospheric CO2, global
warming, and altered precipitation patterns will impact soil carbon balance, as well as nutrient limitations to
primary production, microbial respiration, microbial thermal acclimation and adaptation (Hartmann & Six, 2023;
Philippot et al., 2024; Robinson et al., 2019; Sullivan et al., 2022). Similarly, agriculture intensification and
deforestation, without sustainable land management practices, will result in more soil compaction, surface
sealing, runoff, soil erosion, and contamination of surface and ground waters and the atmosphere (Borrelli
et al., 2023; Panagos et al., 2015; Panagos, Vieira, et al., 2024; Rillig et al., 2023). Soil‐related issues are identified
also as the primary environmental drivers that historically contributed to the collapse of societies (Ander-
son, 2005). These same problems persist today and pose significant environmental threats.

Recognizing the importance of soil health, the European Commission (EC) has launched “A Soil Deal for
Europe” mission (European Commission, 2023; Panagos, Borrelli, et al., 2024) with the goal of pioneering,
showcasing and accelerating the transition to healthy soils by 2030, in alignment with the Green Deal commit-
ments. This mission includes establishing a robust, harmonized soil monitoring framework (European Union Soil
Observatory, EUSO) (Panagos, Montanarella, et al., 2022; Panagos, Broothaerts, et al., 2024). Similarly, the
North American Project to Evaluate Soil Health Measurements (NAPESHM) has been initiated to investigate
widely applicable soil health measurements for soil health assessment using over 30 soil health indicators (SHIs)
and 124 long‐term agricultural research sites (including both conventional and regenerative systems) (Norris
et al., 2020). Furthermore, in China, the third national soil survey was launched in 2022 to understand and protect
soil health toward food security, as well as China's peak carbon and carbon neutrality targets (G. L. Zhang
et al., 2022). These developments emphasize the concept of “soil health” is gaining traction, highlighting soils as a
crucial yet overlooked societal asset and public good (Panagos, Borrelli, et al., 2024).

Haberern (1992) first introduced the concept “Soil Health,” two decades afterMausel (1971) coined the term “Soil
Quality” that refers to “the ability of soils to yield corn, soybeans and wheat under conditions of high‐level
management.” While soil quality emphasizes agricultural production, soil health considers “the capacity of a
living soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity,
maintain or enhance water and air quality, and promote plant and animal health” (Doran, 2002). Since then, “soil
health” and “soil quality” have often been used interchangeably (Laishram et al., 2015). However, soil health
has been distinguished from soil quality, withmost scientists concurring on its definition as “the continued capacity
of a soil to function as a vital living ecosystem that sustains plants, animals, and humans,” as defined by the U.S.
Department of Agriculture Natural Resource Conservation Service (USDA‐NRCS) (Norris et al., 2020). Addi-
tionally, soil health describes “the continued capacity of soils to support ecosystem services” (European Com-
mission, 2023), andmore specifically as “the physical, chemical and biological condition of the soil, determining its
capacity to function as a vital living system and to provide ecosystem service” in the first‐ever EU SoilMonitoring
Law. This comprehensive definition of soil health encompasses both the intrinsic and dynamic properties of soils
to function sustainably and provide ecosystem services (Bünemann et al., 2018; J. Lehmann et al., 2020).

To keep track of a soil's health under ever changing conditions, it is essential to monitor a set of measurable SHIs
that can reflect a soil's capacity to deliver ecosystem services (European Environment Agency, 2023; Greiner
et al., 2017). This monitoring should consist of effective and ideally low‐cost strategies that enable sufficiently
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high spatio‐temporal monitoring resolutions. Despite the growing acceptance of the concept of soil health among
scientists and policymakers, selecting relevant SHIs and interpreting them in the context of soil physico‐chemical
and biological properties remains a challenge (Banerjee & van der Heijden, 2023).

For example, prominent reviews by Bünemann et al. (2018) and J. Lehmann et al. (2020) underscore a persisting
deficiency in mechanistic links (e.g., through process‐based modeling) between SHIs and soil functions (Vogel
et al., 2019). Furthermore, Fierer et al. (2021) delved into the ongoing discourse surrounding the utility of soil
microbial diversity and activity in assessing soil health. While an ongoing debate questions whether soil health
disproportionately emphasizes either soil microbiology or physicochemical properties, the inherent synergy
between these two realms remains inadequately explored (Bünemann et al., 2018; Coyne et al., 2022).

Box 1. Soil Health Indicators (SHIs).

Soil health and its indicators have been studied for over three decades (Gregorich & Acton, 2012; J. Lehmann & Kleber, 2015; J. Lehmann
et al., 2020). Based on various assessment frameworks (Bridges & Oldeman, 1999; FAO & ITPS, 2015; FAO & United Nations, 2020; Huber
et al., 2010), the widely discussed SHIs focus on addressing various soil threats, including soil erosion (from water or wind), loss of organic
matter, salinization, acidification, nutrient depletion/excess, pollution, compaction and physical degradation, waterlogging, impaired water
regulating, subsidence of organic soils, loss of soil biodiversity, landslides, soil sealing, and desertification (Panagos, Borrelli, et al., 2024).
However, the definition and classification of SHIs, as well as approaches for their sampling, measuring and evaluation, remain diverse
(European Environment Agency, 2023; Moinet et al., 2023).

In the context of monitoring soil threats and informing policy development, various SHIs have been established to assess soil condition,
degradation, resilience, and ecosystem services (see Figure 1). The EU's Soil Mission has identified eight key soil threats: soil pollutants,
excess nutrients and salts, soil organic carbon, soil structure, biodiversity, nutrients and pH, vegetation cover, and landscape heterogeneity, as
well as the area of forest and wooded lands (European Commission, 2023). Additionally, the EU Soil Monitoring Law highlights 12 critical
indicators for monitoring soil health (Directorate General for Environment, 2024). To support these efforts, the EUSO Soil Health Dashboard
has been developed, focusing on nine major degradation processes, such as soil erosion, pollution, and nutrient imbalance, loss of soil organic
carbon and soil biodiversity, and peatland degradation, using a total of 19 indicators (Panagos, Borrelli, et al., 2024; Panagos, Broothaerts,
et al., 2024; Panagos & Montanarella, 2018; Panagos, Montanarella, et al., 2022; Panagos, Vieira, et al., 2024). These integrated frameworks
provide a comprehensive approach for assessing and addressing soil health at various levels.

Most of SHIs can be directly obtained frommeasurable soil properties through field surveys and laboratory experiments (EuropeanEnvironment
Agency, 2023). There are also non‐soil indicators related to drivers of change in soil health at landscape scales (e.g., vegetation cover and
landscape heterogeneity) and can be operationally monitored using remote sensing techniques (spaceborne, airborne, proximal) (Angileri
et al., 2023). It is noteworthy that recent advancements in proximal and remote sensing of the land surface and near‐surface environmental
variables (Manfreda&BenDor, 2023;Rodell et al., 2015; Su et al., 2014; J.Wang et al., 2023) have significantly improved the assessment of soil
health. For example, Gholami et al. (2024) use precipitation and soil moisture variables as important factors for predicting global land sus-
ceptibility to wind erosion. Romero et al. (2024) include climatic factors for deriving the soil health map as a composite index based on soil
biodiversity, plant disease control and soil properties. Prăvălie et al. (2024) consider also vegetation parameters (Normalized Difference
Vegetation Index—NDVI) and groundwater table, among other factors, for the unifiedmodeling of landmulti‐degradation pathways in Europe.

However, many indicators represent multiple soil processes, and as a result, SHIs are not always easily distinguishable from one another. For
instance, soil aggregation (or soil structure, being a physical indicator) results from chemical parameters (e.g., soil organic matter), mineral
type (Ben Dor et al., 2022) and biological processes (Totsche et al., 2018), as well as land use and management (as expressed by vegetation
cover). Similarly, the evaluation of a soil's potential to produce biomass depends on root zone water and nutrient availabilities, the capacity for
root water and nutrient uptake (a function of soil texture/structure), and the fraction of absorbed photosynthetically active radiation (external
drivers, non‐soil indicators) (Y. Wang et al., 2021; Yu, Fatichi, et al., 2020). Additionally, estimating soil erosion in one place and deposition
of soil materials elsewhere requires a model with (non‐)soil parameters and indicators such as climatic and vegetation inputs and a Digital
Elevation Model (Borrelli et al., 2020, 2023; Panagos et al., 2015; Panagos, Vieira, et al., 2024).

Once measured, these SHIs are expected to be compared with specific threshold values that define soil as either “healthy” or “unhealthy,”
thereby furnishing crucial insights into soil function (Maharjan et al., 2020). Considering the dynamic interactions between soil chemical,
physical, and biological properties, the effective determination of threshold values for soil health assessment will require process‐based
modeling.
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1.1. Soil Microbiome, Soil Structure, and Soil Health

Soil microbial metrics are key indicators of soil health, often involving the measurement of microbial taxa,
enzymatic activities, microbial biomass and biodiversity (Anthony et al., 2023; Schloter et al., 2018). However,
these metrics can be difficult to interpret due to context‐specific biotic and abiotic influences (Fierer, 2017). For
instance, enzymatic activity may indicate either nutrient limitation or availability, while microbial biomass alone
offers limited insights into soil health (Fierer et al., 2021). Moreover, metrics like fungal‐to‐bacterial ratios,
though widely used, lack conclusive evidence for clear differentiation in nutrient cycling pathways (Philippot
et al., 2013). As such, a more targeted approach, tailored to specific management or policy goals, is necessary
when evaluating soil health (Jansson et al., 2023).

A trait‐based approach offers a promising avenue, as microbial traits reflect variations in soil processes and
environmental conditions (Dauphin et al., 2023; Y. Yang, 2021). For example, Tao et al. (2023) finds that

Box 2. EU Soil Observatory (EUSO).

Soil science renaissance (SSR), coined by Hartemink and McBratney (2008), refers to the renewed
interests to bring soils back onto the global research and policy agendas. Evidence of a continued SSR is
the Soil Mission at EU (Panagos, Borrelli, et al., 2024), the NAPESHM in North America (Norris
et al., 2020), and the Third National Soil Survey in China (G. L. Zhang et al., 2022). Here, we used the
EUSO and its monitoring service as one of the avatars for SSR.

Over the past two decades, the EU has implemented the Soil Thematic Strategy (2006), the Common
Agricultural Policy (2013) for agri‐environmental protection. Moreover, since 2020, soil health and its
protection has been ranked high in the EU Green Deal, EU Soil Biodiversity Strategy 2030, EU Soil
Strategy 2030, Zero Pollution Action Plan, the Farm to Fork Strategy, the Carbon Removal Certification
framework, and the EU Climate Adaptation Strategy (Panagos, Borrelli, et al., 2024). It reaches its
pinnacle with “A Soil Deal for Europe” mission, and the general approach on Soil Monitoring Law
being adopted by the EU Council.

To support EU policies, the EUSO aims to be the primary provider of soil reference data and knowledge
at the EU level. Its objectives include monitoring soil health, transitioning from soil monitoring to a
deeper understanding, supporting soil policy development, engaging with soil research activities, and
raising societal awareness about the importance of sustaining healthy soils (Broothaerts et al., 2024;
Panagos, Broothaerts, et al., 2024). The monitoring component of EUSO is driven by the LUCAS (Land
Use/Cover Area Frame Survey) Soil module, which is the only harmonized and regularly conducted soil
survey in the EU, serving as a key reference system for soil monitoring (Panagos, Van Liedekerke,
et al., 2022). The LUCAS Soil module (2009–2012 and 2015) includes measurements of 13 physico-
chemical properties, along with corresponding visible and near‐infrared spectral libraries (Orgiazzi
et al., 2018). It was further expanded in the 2018 survey to include soil biodiversity measurements,
characterizing taxonomical and functional diversities of soil microbial communities at 1,000 locations,
with the number of locations doubled in the 2022 survey (Orgiazzi et al., 2022).

LUCAS Soil is an open‐access resource that provides maps of soil properties and derived maps of soil
threats (Panagos, Van Liedekerke, et al., 2022), supporting tools like the soil health dashboard (Prăvălie
et al., 2024). It is evolving to capture spatiotemporal variations in soil characteristics influenced by land
use, land cover changes, and climate change, facilitated by its triennial surveys and the inclusion of a soil
biodiversity module. This comprehensive, harmonized, continental‐scale soil database, when combined
with the LUCAS land cover nomenclature (EUROSTAT, 2018) and other bioclimatic variables, has
significantly advanced the trait‐based approach to understanding soil health (Dulya et al., 2024; Lab-
ouyrie et al., 2023; Smith et al., 2021). This underscores the growing need to explore the mechanistic
connections between above‐ and below‐ground ecophysiological processes.
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microbial carbon use efficiency, while influenced by and interacts with climatic, geographic, soil chemical and
vegetation variables, is the major determinant for the preservation of soil organic carbon (SOC). Hawkins
et al. (2023) uses satellite‐based Net Primary Productivity (NPP) of global vegetation, mycorrhizal vegetation
data, and Copernicus Dynamic Land Cover map, to estimate the amount of photosynthate that terrestrial plants
allocate to different mycorrhizal types in the soil.

Furthermore, advances in high‐throughput molecular technologies and landscape genomics enable detailed
analysis of microbial functional traits, which can inform biogeochemical cycling models and soil health man-
agement (Crowther et al., 2019; Lahlali et al., 2021). However, achieving broad applicability requires large‐scale
sequencing and cross‐site analyses (Lewin et al., 2022), mirroring the development of global soil spectral libraries
for physical, chemical, and biological properties (Orgiazzi et al., 2018; Viscarra Rossel et al., 2016).

Soil microorganisms play a pivotal role in soil formation and soil structure (aggregate) stability, facilitating global
elemental cycling through interactions with minerals, water, and plants (Dignac et al., 2017). The weathering of
rock minerals creates porosity, allowing autotrophic and heterotrophic microorganisms to colonize, fix carbon,
and contribute to organic matter buildup (Banwart et al., 2019). These microorganisms accelerate the dissolution
of rock minerals, making nutrients available for plant colonization (Wild et al., 2022). As plants grow, their roots
and symbiotic fungi further drive weathering and enhance soil structure by forming aggregates with organic and
mineral particles (Giannakis, Nikolaidis, Valstar, & Rowe, 2017). Microorganisms also influence soil structure
properties by reorganizing soil particles and pores, affecting water retention and hydraulic conductivity (Cao
et al., 2024), which in turn impact ecosystem water, energy, and carbon fluxes (Sullivan et al., 2022). The
composition of microbial communities is shaped by environmental factors and plant traits (Sokol et al., 2022),
while these microbial communities reciprocally influence nutrient availability and plant growth (Philippot
et al., 2024).

Soil structure is essential for driving soil functions by regulating the exchange of water, solutes, energy, and
carbon between the atmosphere, biosphere, hydrosphere, and lithosphere (Banwart et al., 2019; Fatichi
et al., 2020), and contributes to the reduction of soil degradation processes including soil erosion (Panagos
et al., 2015). It creates reactive, porous interfaces that influence microbial interactions, nutrient cycling, and
pollutant transformation, acting as a dynamic biogeochemical reactor linking above‐ and belowground systems
(Ebrahimi & Or, 2018; Kravchenko et al., 2019). Soil structure models are based on two perspectives (Vogel
et al., 2022): the pore and aggregate approaches. Aggregate‐based models focus on the formation, stability, and
reformation of aggregates (Segoli et al., 2013; Stamati et al., 2013; Zech et al., 2024), while pore‐based models
emphasize the interactions among porosity, organic matter, and pore size distribution (König et al., 2023; Meurer,
Barron, et al., 2020). Both approaches offer complementary insights into soil functions such as water retention,
carbon sequestration, and elemental cycling (Totsche et al., 2024). Advanced models, such as the aggregate‐based
1D‐ICZ model (Giannakis, Nikolaidis, Valstar, Rowe, et al., 2017) and the pore‐based USSF (Jarvis et al., 2024),
simulate the dynamic interactions between soil structure and its hydro‐biogeochemical consequences across
multiple scales, from the microbiome to regional levels (Sullivan et al., 2022; Vereecken et al., 2022). Under-
standing soil structure's role in soil functions requires integrating key mechanisms and processes within the soil‐
plant‐microbiome continuum to capture the complex interactions governing soil‐plant systems (Faucon
et al., 2017).

Digital twin technology, initially developed for engineering, and manufacturing industries, is increasingly being
applied in Earth system science to create digital replicas of real‐world systems, integrating models, data, and
artificial intelligence for real‐time simulations (Bauer et al., 2024; Bauer, Dueben, et al., 2021). The European
Union's Destination Earth (DestinE) program exemplifies this approach by combining Earth system models and
Earth Observation data with machine learning to create a high‐fidelity digital replica of the planet (Hoffmann
et al., 2023). A digital twin's key features include precise digital replicas, real‐time data synchronization, lifecycle
data management, and model‐data fusion for self‐evolving simulations that reflect physical reality (Claus
et al., 2022; San, 2021; Semeraro et al., 2021; Tao & Qi, 2019). While the use of digital twins in soil research has
been limited to small‐scale applications (Purcell & Neubauer, 2023; Tsakiridis et al., 2023), the growing
availability of soil and plant data (Kattge et al., 2020; Orgiazzi et al., 2018), including multi‐omics (Bernatchez
et al., 2024), hyperspectral imaging (Chabrillat et al., 2019), and microwave data (Wigneron et al., 2017), po-
sitions soil science as a “big data” field (Amelung et al., 2024). Digital twins offer potential for advancing soil
structure and soil function models, enabling improved understanding of soil processes and scenario‐based
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assessments of and projections for soil health management under changing environmental conditions (Amelung
et al., 2024; Fisher et al., 2018; Purcell et al., 2023; Tsakiridis et al., 2023).

1.2. Structure of This Review

It is critically important for acquiring process‐level insights into soil health to grasp the multifaceted functions
performed by soils (Baatz et al., 2021; Deckmyn et al., 2020; Vereecken et al., 2016; Vogel et al., 2018).
Addressing this imperative necessitates the monitoring and prediction of soil health amidst mounting challenges
posed by unsustainable soil management practices and the impacts of climate change (Amelung et al., 2020;
Lal, 2015). Interactions in the soil system, involving soil properties, hydrological processes, soil‐plant hydraulic
parameters, soil‐root interactions, the soil microbiome and land management practices are ever‐present (Hart-
mann & Six, 2023). Thus, monitoring soil health mandates a comprehensive approach that encompasses the entire
soil‐plant system across diverse spatiotemporal scales, as it is only through such holistic monitoring endeavors
that a contextual understanding of soil health can be attained.

This review aims to explore the following scientific inquiries:

1. What are the mechanistic linkages between SHIs and soil functions?
2. How do soil‐plant‐microbial processes contribute to changes and dynamics in soil properties and subsequent
alterations in soil functions?

3. How can process‐based models, Earth Observation data, data assimilation, and physics‐informed machine
learning be integrated to monitor and predict soil health and its responses to environmental and climatic
changes across spatiotemporal scales?

Particularly, this article will scrutinize the current state‐of‐the‐art soil properties and processes considered in soil
health monitoring, review the effectiveness of existing approaches, and pinpoint potential gaps to be addressed.
Soil microbiome plays a pivotal role in linking microbial activities at the microscale to larger‐scale soil processes
at the pedon, field and regional scale, through biochemical and structural alterations to the soil. Therefore, we will
review the representation of soil microbiome (Section 2) and soil hydrological processes (Section 3) in the Earth
system to comprehend the mechanistic linkages between SHIs and soil functions.

Recent advancements in molecular methods for soil microbiology will be reviewed, alongside the examination of
trait‐based approaches that integrate microbial processes into soil biogeochemical modeling. Furthermore, recent
developments in remote sensing will be surveyed for their applicability in landscape genomic approaches for
understanding below‐ground soil properties, which remain largely underexplored. The article will also discuss the
principles of mapping and remote sensing of observable soil properties (Section 4), as well as the current
challenges associated with monitoring and predicting subsurface soil properties.

We expand beyond these aspects by also reviewing the “vegetation as a root‐zone soil sensor” approach for
monitoring and predicting subsurface soil properties from remote sensing (Section 5). The evolution of this
innovative technique, for example, linking soil‐plant processes to satellite observables, is poised to stimulate and
propel a novel research paradigm within the domain of “soil health.” Last but not least, the digital twin approach,
synergizing advanced remote sensing, field and laboratory measurements, and model representation of soil‐plant
processes, coupled with data assimilation and machine learning, is reviewed for its applications in soil health
monitoring, and in comprehending the intricate interplay between soil properties, soil hydrological processes,
soil‐plant hydraulics, soil microbiome and landscape genomics (Section 6).

Soil health will be a major theme of the coming decades, and will involve the ever‐growing use of Earth
Observation data, soil and plant databases, mechanistic and AI‐empowered model developments, as well as the
digital twin approach. This review aims to set out the opportunities for companies, governments, non‐profit
organizations, farmers, research institutes and universities to collaborate, to produce continuous, harmonized
and standardized data and models to foster soil health monitoring for sustainable soil management for future
generations (Section 7).

2. The Soil Microbiome and Soil Properties
Indicators of soil health related to biological properties encompass both the “visible” components (e.g., the
macrofauna) and the 'invisible' components (e.g., the microbiome). While established guidelines often include
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“visible” indicators, such as the diversity and abundance of earthworms (as outlined in ISO 11268), indicators for
assessing the status of the soil microbiome remain scarce (Schloter et al., 2018). The soil microbiome is the
belowground “engine” governing biogeochemical cycling of macro‐/micro‐nutrients and other elements for
delivering key soil functions, including nitrogen transformation (Crowther et al., 2019), plant growth and
resilience to abiotic stresses (Trivedi et al., 2020), pest and disease control (Hu et al., 2018), pollutant degradation
(Teng & Chen, 2019), as well as regulating functions related to soil structure (Philippot et al., 2024), soil hy-
drological processes (Hartmann & Six, 2023), soil erosion (Borrelli et al., 2020) and carbon sequestration
(Jansson & Hofmockel, 2020).

In a direct pathway to plants, the functions of three groups of either associative or symbiotic beneficial micro-
organisms contribute to plant nutrition and health (Coban et al., 2022): plant growth–promoting rhizobacteria
(PGPR), symbiotic nitrogen‐fixing bacteria, and two major types of mycorrhizal fungi: arbuscular mycorrhizal
fungi (AMF) and ectomycorrhizal fungi (EMF). PGPR refers to microorganisms that colonize the rhizosphere and
enhance plant growth and stress tolerance via a variety of mechanisms, such as nutrient acquisition (including
associative N2 fixation), pathogen suppression and production and modulation of plant hormones (Trivedi
et al., 2020). Symbiotic nitrogen‐fixing microorganisms (e.g., Rhizobium, Bradyrhizobium and Frankia spp.)
form mutualistic relationships with plants, converting atmospheric nitrogen gas into ammonia. This process
occurs within specialized symbiotic structures (nodules) of leguminous or actinorhizal plant species and directly
supplies nitrogen to the host plant, and subsequently adds biologically available nitrogen to the soil. AMF, in the
phylum Glomeromycota, establish a symbiotic relationship with a broad diversity of plant species by penetrating
the cortical cells of the roots to enhance access to nutrients and water (Brundrett & Tedersoo, 2018). EMF (in the
phylum Ascomycota and Basidiomycota) form symbiotic relationships with woody plant species, making this
relationship the dominant symbiotic plant‐fungal interaction in forest ecosystems. Ectomycorrhizas drive nutrient
cycling and enhance water transfer between plants through their hyphal network, thereby increasing plant drought
resilience (Martin et al., 2016).

The functioning of soil microorganisms is highly context‐dependent and governed by the composition of soil
microbial communities and the abundance of its individual members (termed the community structure) (Bickel &
Or, 2020; Sokol et al., 2022). For example, the relative abundances of major bacterial and archeal taxa can vary
dramatically depending on the soil environment (Crowther et al., 2019). Composition of the soil microbiome is
influenced by the spatial variability in the soil environment, which can differ significantly over micrometers to
millimeters. These small‐scale variations encompass distinct biotic and abiotic characteristics, microbial abun-
dances, and rates of microbial activities (O’Brien et al., 2016). Furthermore, aboveground plant communities can
shape belowground microbial communities, which is particularly true for mycorrhizal fungi, fungal plant path-
ogens and some nitrogen‐fixing bacteria (Trivedi et al., 2020). Although there are associations between plant
communities and soil microbial communities, many other factors can be involved (e.g., climate, plant species,
microbial taxa, and soil habitat properties) (Evans et al., 2022; Vahedifard et al., 2024). Such intricate interplays
render the direct prediction of soil microbial community structure based on plant species a complex and non‐
trivial task.

2.1. Characterizing the Soil Microbiome

Currently, 20%–50% of the variation in the mineralization rates of carbon and nitrogen across terrestrial eco-
systems can be explained by climate, plant, land use and land cover changes, as well as edaphic factors (Jansson &
Hofmockel, 2020; Z. Li et al., 2019). The remaining unexplained variation in elemental processing rates across
the globe is assumed to be determined by the structure and function of soil microbial communities (Fierer, 2017;
Sokol et al., 2022). Therefore, it is critical to generate a predictive understanding of the global variation in soil
community structure to allow for reliable prediction of future changes in key soil functions (e.g., nitrogen/carbon
fixation, mineralization, decomposition). There are four emerging categories to characterize the functional
biogeography of soil microbial communities: global patterns in biomass and abundance, functional group
composition, taxonomic diversity and composition, and functional trait expression (Crowther et al., 2019).

One common assumption is that the biomass or abundance of soil organisms reflects the functional potential of the
soil microbiome, since they influence the turnover rates of soil organic matter (SOM) (Basile‐Doelsch
et al., 2020; Dignac et al., 2017). However, this relationship can behave unexpectedly depending on climate
conditions. For example, the soil biomass has a general trend of increasing with latitude, indicating a negative
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relationship between soil microbial biomass and SOM turnover rate at the global scale (i.e., the greatest soil
organism abundance is in Arctic and Sub‐Arctic regions, where the metabolic rates of heterotrophic organisms are
low) (van den Hoogen et al., 2019). However, for regions under equivalent climate and environmental conditions,
larger soil microbial communities generally drive faster SOM turnover. This highlights the fact that using in-
dicators from the soil biological perspective alone (e.g., soil microbial biomass) is not enough to comprehend and
assess the soil functioning and its health status.

The functional group composition of the soil microbiome offers a more nuanced understanding of soil health
compared to microbial biomass alone, which is often treated as a 'black‐box' metric lacking specificity on taxa
composition. Microbial biomass estimates can vary depending on the methods used and soil properties (Fierer
et al., 2021). Partitioning the soil microbiome into broad organismal groups, such as fungi, bacteria, archaea, and
protists, enhances our understanding of their differential roles in soil processes. For instance, fungi and bacteria
significantly influence carbon and nitrogen mineralization, with fungi dominating in ecosystems with slow‐
growing plants and bacteria prevailing in fast nutrient‐cycling systems like grasslands (Bahram et al., 2018;
Coban et al., 2022). The fungal‐to‐bacterial ratio is often used to indicate soil biogeochemical processes, though
its interpretation can be complicated by overlapping niches between these groups (Fierer et al., 2021). Further
refining these broad groups into functional guilds, such as AMF and EMF, reveals mechanistic insights into soil
functioning. AMF dominate fast nitrogen‐cycling ecosystems, while EMF thrive in slow‐cycling systems,
influencing SOM turnover (Steidinger et al., 2019). Consequently, the AMF:EMF ratio serves as an indicator of
elemental cycling rates and soil microbial stability (Frey, 2019; Lu & Hedin, 2019). These functional group
analyses are being incorporated into Earth System Models to better represent soil‐plant‐microbial processes
globally (Crowther et al., 2019).

Taxonomic diversity and composition within soil microbial communities provide refined insights into soil
functioning by categorizing species into distinct microbial taxa. DNA metabarcoding has transformed the ability
to assess microbial taxa abundance, revealing that despite the vast diversity, only a few taxa dominate soil mi-
crobial communities (Bahram et al., 2018; Tedersoo et al., 2014). This hyperdominance, similar to patterns in
plant communities (McGill et al., 2007), raises questions about whether soil microbial community structures
mirror aboveground plant distributions (Fierer et al., 2012). Key edaphic and biotic factors, such as soil pH, C:N
ratios, moisture, temperature, texture, climate, and vegetation types, shape the diversity and abundance of mi-
crobial taxa (Cameron et al., 2018; Thompson et al., 2024). This relationship helps infer the functional potential of
microbial taxa on a broad spatial scale, with studies showing environmental data can predict bacterial distribu-
tions globally (Delgado‐Baquerizo et al., 2018). However, linking taxonomic diversity to functional biogeog-
raphy remains challenging, as taxonomic classifications do not always correlate with functional traits, and soil
microbial processes involve a complex interplay of active, dormant, and inactive taxa (Blagodatskaya &
Kuzyakov, 2013). Additionally, while most DNA sequencing methods measure relative abundance, absolute
abundance and functional gene data, which are essential for understanding microbial processes, are harder to
obtain, though new approaches are emerging (M. Zhang et al., 2022).

The functional traits of soil organisms, rather than their taxonomic diversity, are key drivers of soil functioning,
influencing elemental processing rates and other ecosystem processes (Crowther et al., 2014). These traits
encompass structural, morphological, biochemical, and genetic characteristics that shape the performance of
individual organisms (Lennon et al., 2012). Advanced molecular techniques, such as metagenomics (genetic
composition), metatranscriptomics (active functions), and metaproteomics (protein synthesis and enzyme ac-
tivity), allow for detailed insights into the functional profiles of entire microbial communities (Bouchez
et al., 2016). Measuring these traits facilitates a mechanistic understanding of microbial community assembly,
revealing trade‐offs between stress tolerance and competitive traits along environmental gradients, with stress
tolerance prevailing in colder, drier regions and competitive traits in tropical, moist areas (Fierer, 2017). This
understanding, applicable across both fungi and bacteria, helps explain biogeographic patterns in soil functioning,
which are shaped by the interactions of climate and soil properties (Maynard et al., 2019). Increasing use of
'omics' technologies offers new opportunities to link genetic and functional diversity with integrated soil func-
tioning, following trait‐based frameworks developed in plant ecology (Sokol et al., 2022).
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2.2. Soil Microbiome, Soil Aggregate, and Soil Processes

Soil microorganisms are not only responsible for nutrient and carbon transformations but they also shape their
physical soil habitat through either biogeochemical and/or biophysical mechanisms (Gregory, 2022; Sullivan
et al., 2022). In turn, biologically altered soil properties can influence the abundance and composition of soil
microbial communities across space and time. There are eco‐coevolutionary relationships between the soil
microbiome and soil properties/processes due to the complex network of causation and feedback effects (Hart-
mann & Six, 2023).

2.2.1. Soil Microorganisms and Physicochemical Properties

Microbial processes related to nutrient and carbon cycling are the most notable biogeochemical processes
generating protons and hydroxyl ions that affect soil pH (Huet et al., 2023), which in turn primarily structures soil
microbial communities. The microbial release of protons or organic acids contribute to the biological weathering
of minerals (such as granitic bedrock and silicates) (Jongmans et al., 1997), which increases the solubility and
bioavailability of nutrients needed by soil microorganisms and plants. This release of elements from rocks
changes the geochemical and mineralogical conditions of soil environments, which can facilitate the bio‐
silicification process that takes up silicic acid from the soil (Sommer et al., 2013). On top of mineral dissolu-
tion and formation, bacterial and fungal activities also induce the precipitation of carbonate minerals (i.e.,
microbially induced carbonate precipitation, MICP), which can alter directly soil physical and mechanical
properties, for example, causing reduced hydraulic conductivity and enhanced shear strength (Vaksmaa
et al., 2017).

2.2.2. Soil Microorganisms and Soil Aggregates

Soil microorganisms have direct effects on the formation, stabilization, and disintegration of soil aggregates,
since microorganisms can affect the 3D arrangement of soil particles and pores. For instance, microorganisms can
stabilize the architecture of soil aggregates with their cells and metabolic products, while they can disintegrate the
aggregates via catabolizing the binding agents that hold together soil particles (Wilpiszeski et al., 2019). Both
bacteria and fungi have dominant influences on the formation of soil aggregates (Angst et al., 2021), via pro-
ducing binding agents, such as the gel‐like water‐rich macromolecular organic mixtures—extracellular polymeric
substances (EPS).

EPS play an important role in binding soil particles with carbonates, metal oxides, and organic matter into organo‐
mineral complexes forming silt‐sized aggregates (<50 μm) or microaggregates (50–250 μm), while the com-
plexes of roots and fungal hyphae can enmesh and physically entangle these smaller aggregates into larger and
less stable macroaggregates (>250 μm) (Costa et al., 2018). It is to acknowledge that microaggregates might form
within macroaggregates (Six et al., 2000). Soil microorganisms interact with soil aggregates from the smallest
scale (for instance, microbial processes involved in mineral weathering or MICP), via intermediate scales (for
instance, enmeshment and entanglement via fungal hyphae), to the largest scale (for instance, AMF‐induced
changes in the aboveground plant community reshape soil structure and its interactions with microorganisms)
(Philippot et al., 2024). Furthermore, the glomalin‐related soil protein, as a component of AMF hyphal walls,
contributes significantly to the stabilization of soil aggregates due to its positive correlation with aggregate water
stability and its slow turnover rate (Rillig, 2004).

2.2.3. Soil Microorganisms and Soil Hydrological Processes

It is intuitive to reason that the interaction between soil microorganisms and soil processes acts via intermediate
soil properties such as the size and stability of soil aggregates. As detailed above, microorganisms can alter the 3D
arrangement of soil particles and related pore‐size distribution, which can increase the volume of soil micropores,
thus directly influencing the water holding capacity of the soil (Rabot et al., 2018). Soil microorganisms and their
interactions with plant roots control the stability of soil aggregates (Hartmann & Six, 2023), which has significant
effects on soil erodibility (via mechanical soil binding or biochemical effects) (Bezak et al., 2024; Borrelli
et al., 2020; Panagos et al., 2015) and will eventually affect soil hydrological processes (Coban et al., 2022;
Panagos, Vieira, et al., 2024; Poesen, 2018).
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Growing evidence suggests that mycorrhizal fungi can facilitate water movement between plants along their
hyphae, and via water redistribution through the soil profile, to mitigate drought impacts on plant productivity.
The contribution of water transport by AMF has been reported to account for more than 30% of transpiration of
their host plants (Kakouridis et al., 2022), and AMF can improve soil hydraulic conductivity by up to 50% to allow
roots to extract more soil water in the plant available moisture range (Bitterlich et al., 2018). Nevertheless, the
microbial secreted EPS andMICP can also decrease soil hydraulic conductivity by clogging macropores and slow
down soil evaporation rates by introducing soil hydrophobicity (Philippot et al., 2024; Querejeta, 2017). For
instance, fungi can produce compounds like hydrophobins to render soil particle surfaces hydrophobic, which
attenuates soil rewetting rates but maintains the continuity of the liquid phase in micropores under extremely dry
conditions (Or et al., 2007).

2.3. Soil‐Microbiome‐Plant Continuum and Trait‐Based Approaches

2.3.1. Soil‐Microbiome‐Plant Continuum

The soil‐microbiome‐plant interactions occur at soil‐root interface (rhizosphere) and root‐shoot interface, via a
series of complex plant‐microorganism and microorganism‐microorganism interactions (Trivedi et al., 2020). For
example, the plant roots exude organic acids, sugars, and secondary metabolites, serving as signals to attract
microbial colonization (J. Xu et al., 2018) onto the root surface (Levy et al., 2018). Root‐secreted compounds and
signals not only produce biofilms but also influence the architecture of the biofilm. For instance, under either
biotic or abiotic stress conditions, plant roots can alter their exudation patterns to selectively recruit beneficial
stress‐tolerant microbiomes from the soil (Giauque et al., 2019). These root‐associated microbial processes can
benefit plants through promoting growth with enhanced nutrient uptake, controlling stress by the modulation of
plant hormones, and warding off pathogens and pests via antagonism (Trivedi et al., 2020).

It is expected that these belowground microbial processes occurring during plant growth will modify the soil
properties/functions in the rhizosphere (e.g., soil pH, soil aggregates, water and nutrient uptake). Other than
releasing low‐molecular‐mass compounds (such as, sugars and organic acids) and secondary metabolites, roots
also exude a complex mixture of polymeric substances (e.g., polysaccharides) that make up the mucilage, root
border cells and dead root cap cells (Philippot et al., 2013). These rhizodeposits are important carbon sources for
soil microorganisms. It has been reported that root exudation can account for approximately 25% of the total
carbon allocation to the roots in grasses and cereals (Jones et al., 2009). On the other hand, rhizosphere microbiota
are responsible for the plant losing photosynthate via rhizodeposition, imposing a significant cost on plant fitness,
because microbial biodegradation of exudates drives passive transport of the exudates from inside the root to
outside, which creates the concentration gradient driving the loss via diffusion (Gregory, 2022; Martin
et al., 2016; Philippot et al., 2013). Rhizosphere microbiotas can influence the competitiveness of plant species
and thus also influence plant community diversity (Klironomos et al., 2011; Neuenkamp et al., 2018; Van Der
Heijden et al., 2008; Wardle et al., 2004). Such effects of belowground‐aboveground interactions on the plant
community composition have been reported by an increasing number of plant‐soil feedback experiments (Jiang
et al., 2024; Van der Putten et al., 2013).

2.3.2. Trait‐Based Approaches

Plant‐soil feedback studies have led to the rapid proliferation of trait‐based approaches to understand soil‐
microbiome‐plant interactions, assuming that changes in environmental conditions can exert strong selection
pressures on fitness‐related phenotypic traits. The trait‐based approach integrates environmental and “omics” data
to investigate spatiotemporal variations in the abundance and metabolic activity of belowground microorganisms
(Dauphin et al., 2023). One of the most recognized advantages of trait‐based approaches is that they improve our
mechanistic understanding of the genetic basis of phenotypic traits that impact organismal fitness across envi-
ronmental gradients and species (Lajoie & Kembel, 2019), without directly measuring fitness, because that is
difficult to assess.

A widely used trait‐based approach is genotype‐environment associations (GEA), also called landscape genomic
analysis, which typically relies on four key components (Y. Li et al., 2017): (a) the sampling design considering
intraspecific genetic diversity and relevant environmental differences; (b) environmental data describing the
putative selective pressures of interest; (c) high‐quality genome‐wide data; and, (d) statistical methods to correlate
the targeted response variable (i.e., genomics) with the predictor (environmental) variables.
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The biotic and abiotic environmental predictors needed by the GEA approach can be obtained from in‐situ
measurements, remote sensing, or model‐observation‐derived gridded data sets. With the current trend of
increasing our understanding of the global biogeography of soil communities, geo‐referenced, interpolation‐
based, gridded environmental data sets (e.g., from remote sensing or climate/land reanalysis) have been inten-
sively used in landscape genomics (Bahram et al., 2018; Crowther et al., 2019; Tedersoo et al., 2014). Never-
theless, despite soil properties being an essential predictor for understanding genetic patterns and molecular
mechanisms of local adaptation of individuals, global data sets of below‐ground physical, chemical, and bio-
logical soil factors are still largely missing, which hinders the application of GEA analyses for evaluating soil
health (Dauphin et al., 2023; Lajoie & Kembel, 2019; Leigh et al., 2021).

Making the most of landscape genomics for understanding soil health requires the use of the most informative and
largely independent predictors that can capture complex environmental conditions and intraspecific genetic
variation. It also demands sound statistical methods to investigate and describe the genetic response to envi-
ronmental variations (Y. Li et al., 2017). Moreover, expert knowledge of predictors related to selective pressures
or species information is needed to select the most relevant factors that our statistical models should focus on
(Dauphin et al., 2023). Yet, GEA methods suffer from various issues, such as collinearity, model overfitting, or
the confounding effects of demographic history of soil microbiome on the genetic signature (Lajoie & Kem-
bel, 2019). Machine learning and deep learning algorithms have been deployed to remedy these issues, facilitating
detailed characterization of environmental conditions, and to account for the nonlinear genomic responses to
biotic and abiotic environmental predictors (Leigh et al., 2021).

2.4. Remote Sensing for Soil‐Microbiome‐Plant Continuum

Traditional field‐based soil investigations, obtained via an appropriate sampling design, is of crucial importance
in landscape genomic research (Dauphin et al., 2023). However, repeated acquisitions of soil samples to deter-
mine their physical, chemical, and biological properties can be laborious, especially on a regional scale. As a
result, field‐obtained soil information is often slow, expensive, and limited in space. Remote sensing technology,
based on radiative properties (e.g., reflectance, emissivity, absorbance, and transmission) of land surfaces, can
serve as an effective alternative to acquire low‐cost information at high spatiotemporal resolution (Brocca
et al., 2024; Manfreda & Ben Dor, 2023). For instance, soil moisture is a widely‐used indicator for total soil
microbial biomass. Yet, its field‐collection is highly time‐ and resource consuming, which has led to the clus-
tering of in‐situ stations in the northern hemisphere midlatitude regions (Dorigo et al., 2021). On the other hand,
recent rapid developments in remote sensing have enabled the retrieval of daily soil moisture at global scales with
spatial resolutions ranging from 1 to 25 km (Q. Han et al., 2023; Zeng et al., 2016; L. J. Zhang et al., 2021; Zhuang
et al., 2020).

Depending on targets, remote sensing‐derived soil properties can be categorized as direct indicators (e.g., soil
mineral composition, soil texture, organic matter/content, soil surface roughness, soil moisture and temperature),
and indirect/proxy factors (e.g., vegetation indices, topography, and land use/land cover) (Abdulraheem
et al., 2023; J. Wang et al., 2023). These indicators are then used to evaluate soil health via assessing soil erosion,
salinization, desertification, and contamination, based on empirical relationships established with statistical
regression models like those used in the trait‐based approaches (such as, PLSR ‐ Partial Least Squares Regres-
sion) (Dauphin & Peter, 2023; Francos et al., 2021).

While these correlation‐based analysis frameworks offer valuable insights into the connection between soil
properties and soil health assessment, there remains a gap in our mechanistic understanding of the intricate
interplay among plant‐soil‐microbial interactions, soil structure dynamics, soil functioning, and their ecological
consequences (Adewopo et al., 2014). Soil‐plant‐microbial interactions entail complex networks of causation and
feedback, within which previously adapted/selected microorganisms are driving soil environmental changes (e.g.,
formation of soil aggregates) (Fierer, 2017). As a consequence, soil microbiome‐driven shifts in soil properties
will subsequently shape the structure of microbial community in terms of its composition, abundance of in-
dividuals, as well as affect the fitness of the modifying soil organisms themselves. As such, if these reciprocal
modifications between plant‐soil‐microorganisms are persistent in time, microorganisms can influence selective
pressures across generations with possible adaptive evolutionary trajectories (Philippot et al., 2024).

Given the intricate interconnected nature of the soil‐microbiome‐plant continuum, unraveling the fundamental
mechanisms governing soil functions poses a significant challenge when employing reductionist methodologies
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that isolate individual factors. Progressing in this field necessitates an integrative framework that merges insights
from soil science, microbiology, biogeochemistry, ecology, hydrology and climatology (Coban et al., 2022;
Hartmann & Six, 2023; Ma et al., 2021). This advancement can be facilitated by leveraging advancements in
microbial molecular techniques, multi‐omics analyses, field‐based sampling methods, and trait‐based approaches
to bridge the gap between laboratory experiments and field conditions (Leigh et al., 2021; Martin & van der
Heijden, 2024). Furthermore, capitalizing on advancements in Earth observation science, such as the proliferation
of (spatiotemporal and spectral) high‐resolution satellite sensors, the continual refinement of process and
observation models, and the integration of machine and deep learning algorithms, in conjunction with the
emergence of Digital Twin Earth (DTE) (Hoffmann et al., 2023), promises a substantial amplification of our
understanding of this complex continuum (Bauer et al., 2024; Hoffmann et al., 2023; Su, Zeng, et al., 2020; Zeng
& Su, 2024).

3. Soil Hydrology and Soil Properties
Quantifying soil hydrological parameters and processes is essential for assessing SHIs (Panagos et al., 2015;
Philippot et al., 2024; Prăvălie et al., 2024; Vogel et al., 2018, 2024). On the other hand, as noted in the previous
section, soil structure and SOM have a strong influence on soil hydrology, affecting various land surface pro-
cesses and Earth system components, including vegetation, groundwater, and the atmosphere (Fatichi et al., 2020;
Sullivan et al., 2022; Vereecken et al., 2022; Wild et al., 2022).

In this section, we review and discuss soil hydrological processes and their relation to soil health, with a focus on
soil structure and its representation in ESMs. We also explore avenues to improve the parameterization of these
aspects in ESMs. We consider static basic soil properties such as soil texture and mineralogy, along with the soil
structure, which has the strongest influence on soil hydraulic properties (Szabó et al., 2021; Tóth et al., 2017).
Secondary, non‐static properties, such as water retention characteristics, soil hydraulic and thermal conductiv-
ities, are directly influenced by basic (static and dynamic) soil properties. We have deliberately excluded event‐
driven impacts (e.g., fires, volcanic ash deposition, severe erosion, or aeolian deposition) on soil properties (Doerr
& Cerdà, 2005; Furtak &Wolińska, 2023; Lubis et al., 2021; Massman, 2021), as these processes are not yet fully
integrated into current‐generation land models in ESMs (Fisher & Koven, 2020).

3.1. Soil Hydrological Processes and Soil Health

Soil hydrological processes are governed by the physical, chemical, and biological properties of soils. These
properties influence howwater flows and is retained in soils, and how it is allocated between storage, evaporation,
runoff, lateral flow, deep drainage, percolation, capillary rise or uptake by roots to support transpiration, at any
moment in time (Vereecken et al., 2022; Y. Wang et al., 2021; Yu et al., 2016; Yu, Fatichi, et al., 2020). Soil
hydrological dynamics are shaped by a combination of soil characteristics such as texture, organic matter content,
pH, cation and anion content, structure, and surface condition, as well as vegetation type and climate (Or, 2020; C.
Zhang & Lu, 2019). Together, these factors modulate the effects of climate change and soil‐land managements on
terrestrial ecosystems and control feedback mechanisms within the water, energy, carbon, and nutrient cycles
(Fatichi et al., 2020; Stephens et al., 2023; Vereecken et al., 2015). Consequently, soil hydrological processes,
together with soil microorganisms, create the links between pore‐scale soil properties and broader regional and
global climate processes (Figure 1) (Vereecken et al., 2022).

At the pore scale, capillary and molecular forces, such as hydrogen bonding, van der Waals forces, and elec-
tromagnetic fields, act on soil water (Luo et al., 2022). These forces influence the storage, flow and transport of
water, heat, matter and energy in soil, including the heat of wetting or condensation (Edlefsen & Anderson, 1943).
These soil pore‐scale processes and properties determine the environmental conditions of microbial habitats (e.g.,
abiotic characteristics) (Hartmann & Six, 2023), which govern the structure and function of the soil microbiome
(e.g., microbial abundances and community composition, and rates of microbial activities) (Fierer, 2017). For
example, the spatial organization of soil aggregates can induce sharp gradients in the availability and accessibility
of water, oxygen and nutrients for microorganisms (Borer et al., 2018). Such sharp gradients lead to localizations
of different microbial communities (e.g., aerobic bacteria colonize larger pores between and within macroag-
gregates, while anaerobic niches dominate smaller pores within microaggregates) (Z. Li et al., 2024). It has been
reported that microbial communities located on the surface of macroaggregates are largely disconnected during
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Figure 1.
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soil drying while again becoming interconnected during (re)wetting events (Wilpiszeski et al., 2019). This
highlights the importance of soil hydrological processes for the assessment of soil health.

At the soil profile scale, soil hydrological processes involve infiltration, runoff, internal and deep drainage,
evapotranspiration, soil water storage, and capillary rise, including from the groundwater table. Water flows
primarily through the soil matrix or along preferential flow paths, such as macropores and biopores (Vereecken
et al., 2019). At the catchment to regional scale, water flow within and over the surface of the soil is routed across
the landscape. At the global scale, large‐scale atmospheric processes, such as atmospheric blocking and large
convective rainfall events, can cause droughts and floods, which interact with soil physical and biological pro-
cesses (Taylor, 2015). Furthermore, across all the mentioned scales, land‐atmosphere feedbacks interact with soil
hydrological processes within the Soil Plant Atmosphere Continuum (SPAC) (Stephens et al., 2023). For
example, soil moisture content will affect atmospheric boundary layer growth and hence affect the occurrence of
cloud‐forming processes. These interactions also influenced the formation of soils throughout Earth's history,
shaping the present‐day landscapes, landforms, and soils (Veldkamp et al., 2017) (Figure 1).

Soil hydrological processes, along with their interactions with vegetation and climate, continue to impact soil
properties, soil functioning, and soil development. Changes to the soil system can occur at an accelerated rate due
to human activity and climate change. For example, the projected more vigorous hydrological cycle under global
warming (i.e., more intensive precipitation combined with increased runoff) is expected to increase the water‐
driven soil erosion 30%–60% globally (Borrelli et al., 2020), depending on soil properties (e.g., texture,
organic content, permeability, structure and stone cover), land use/land cover management, and soil conservation
practices (Borrelli et al., 2023). Therefore, accurately representing soil hydrological processes and properties in
ESMs is crucial, as the pace of soil hydrological changes (e.g., acceleration of surface runoff due to climate
change) can serve as a key indicator of soil health and sustainability (K. Yang et al., 2011).

3.2. Soil Structure and Soil Hydro‐Biogeochemical Processes

Mineralogical, biological, and chemical interactions influence soil structure and related properties by causing
primary particles to bind and form clay‐sized or silt‐sized organo‐mineral complexes. These complexes can
cluster into microaggregates, macroaggregates, or peds (Totsche et al., 2018). Over time, macropores form be-
tween macroaggregates and peds, often induced by shrinkage and swelling of active clays (such as montmoril-
lonite) in clay‐rich soils due to soil drying‐wetting, or due to freeze‐thaw cycles. Additionally, soil structure
formation in many terrestrial ecosystems is driven by root systems and burrowing soil fauna, which create
biopores (Robinson et al., 2019). At the scale of the soil‐plant system, a healthy soil structure can be concep-
tualized as an efficient “biogeochemical reactor” that facilitates the abiotic and biotic processes mentioned above.
It establishes a mechanistic link between the aboveground vegetation and belowground soils, via connecting soil
to microorganisms, plants and to the atmosphere, as well as to groundwater (Ebrahimi & Or, 2018; Kravchenko
et al., 2019).

Soil microorganisms can influence the reorganization of soil particles and pores through their involvement in both
the formation and destruction of soil macroaggregates (Sullivan et al., 2022). An increase in soil microbial
necromass compounds can lead to pore clogging, whereas the decomposition of SOM can create new soil pores
(Cao et al., 2024). As a result, the soil microbiome can alter soil properties and processes, and consequently the
“bedrock‐to‐atmosphere” exchange and feedback processes (Wild et al., 2022). For instance, pore clogging can
reduce soil hydraulic conductivity and decrease water infiltration and subsequent internal drainage, while stable
aggregates and micropores can enhance water retention. These changes in soil hydrological processes will
inevitably affect the ecosystem water, energy, and carbon fluxes at the land‐atmosphere interface. In turn, the
local (micro)climate can influence the composition of the soil microbial community (Bickel & Or, 2020).

Figure 1. Soil properties, microbiome, soil hydrological processes at pore‐scale, to pedon, regional (weather), and global (climate) scales (adapted from Vereecken
et al. (2022)). Conversely, climate together with internally/externally driven deposition/erosion processes shape the soil formation: the soil column on the bottom right
shows how the climate record (temperature (red) and precipitation (blue)) relates, via depositional events, to sedimentary units (adopted from Veldkamp et al. (2017)).
At the same time, the specific soil formation will feed back to the local land‐atmosphere interactions; the double arrows show the continuous exchanges between soil
formation and soil properties, vegetation (root development), soil fauna, as well as climate. The observable soil (physical, biological, and chemical) properties are listed
(top left), mainly based on the review by Bünemann et al. (2018). The eight soil health indicators adopted by European Commission's Soil Mission (European
Commission, 2023) are listed with the diagrams representing the scales at which these indicators are measurable.
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While it can take decades or even centuries for natural soil structure to form (Banwart et al., 2019; Veldkamp
et al., 2017), a single tillage or erosion event can easily disrupt this structure, compromising soil functionality and
carbon storage. For instance, tillage disrupts pore continuity, causes loss of biopores, and creates compacted plow
pans that hinder root growth and vertical water movement (Or et al., 2021). Additionally, tilled soil surfaces are
vulnerable to crust formation during heavy rainfall, which can negatively impact water infiltration rates (Francos
et al., 2021). Conversely, numerous studies have shown that “no‐till” practices enhance soil structure stability,
preserving against erosion and improving water storage within the soil body (Mondal & Chakraborty, 2022).
These benefits, along with other notable impacts on various chemical and biological parameters, contribute to a
significantly higher soil health status under no‐till practices compared to conventional tillage (Aziz et al., 2013).

The soil structure‐facilitated processes range from long‐term regolith transformation, to seasonal shifts in
vegetation inputs of organic matter, and diurnal variations in water, heat and gas flows and solute transport (Wild
et al., 2022). It also extends across a range of spatial scales, from nanometric‐sized clay particles to landscape‐
scale ecosystem fluxes (Sullivan et al., 2022) (Figure 1). Capturing these slow, ongoing soil‐forming processes is
critical in ESMs, especially for long‐term climate predictions (Robinson et al., 2019). Furthermore, soil scientists
and agronomists increasingly recognize soil systems and their properties as dynamic on sub‐seasonal to seasonal
timescales (Bonetti et al., 2021; Fatichi et al., 2020; Vereecken et al., 2022). These temporal changes in soil
systems influence land‐atmosphere interactions and feedbacks, as well as land hydrological and thermal mem-
ories, which have significant implications for Earth System modeling (Rahmati et al., 2023). Simulating the Earth
System at the kilometer scale also presents challenges in representing within‐grid cell heterogeneity of soil and
related vegetation properties (e.g., through scaling techniques) (Montzka et al., 2017). Addressing these com-
plexities is essential for improving the accuracy and relevance of ESMs.

3.3. Modeling Hydro‐Biogeochemical Consequences of Soil Structure

There are currently two fundamentally different approaches to model soil structure: the pore perspective and the
aggregate perspective. The pore perspective emphasizes the structure of the pore network framed by soil particle
surfaces, while the aggregate perspective focuses on the formation, stability, destruction, and reformation of soil
aggregates (Vogel et al., 2022).

Models based on the aggregate perspective include the Coupled Carbon, Aggregation and Structure Turnover
(CAST) model (Stamati et al., 2013), the AggModel (Segoli et al., 2013), and the Cellular Automaton Model
(CAM) (Zech et al., 2024). These models are characterized by the dynamic, self‐organized re‐arrangement of
solid building or functional units such as particulate organic matter (POM) and aggregates based on surface
interactions (Zech et al., 2022). The continuous and dynamic reorganization of soil aggregates between disin-
tegration and assemblage has important implications for the turnover of POM. On the other hand, models based on
the pore perspective include the BODIUM model by König et al. (2023) and the soil structure model by Meurer,
Chenu, et al. (2020). These models focus on the dynamic interactions among SOM storage and turnover, soil
porosity, and pore size distribution. However, they do not consider individual soil aggregates as explicit building
units and tend to overlook the biological processes that contribute to the generation of aggregation pore‐space.

There is a growing consensus that both pore and aggregate perspectives provide complementary insights into soil
structure. Ultimately, soil functions such as water retention, carbon sequestration, elemental cycling, and the
movement of fluids and matter are influenced by the spatial organization of particles, POM, pores, and the
characteristics of biogeochemical interfaces (such as topography and heterogeneity) across various scales
(Totsche et al., 2024). Improving our understanding of the intricate links between soil structure and soil function
requires high‐fidelity simulation of soil structural changes and their effects on the exchanges within the SPAC,
across various spatial scales and complexities.

The aggregate‐based CAST model has been incorporated into the critical zone model 1D‐ICZ to simulate dy-
namic soil structure and its effects on soil functions, including plant and biomass production, soil biodiversity,
carbon and nutrient turnover and sequestration, water filtration and groundwater recharge (Giannakis, Nikolaidis,
Valstar, Rowe, et al., 2017). The comprehensive capacity of 1D‐ICZ model stems from its integrative model
structure, which includes flow, transport, and bioturbation modules (HYDRUS‐1D and SoilGen), a chemical
equilibrium and weathering module (BRNS chemical equilibrium model coupled with SAFE chemical weath-
ering module), the C/N/P dynamics and structure module (CAST), and the plant productivity module (PROSUM
based on theoretical production ecology principles) (Banwart et al., 2019; Giannakis, Nikolaidis, Valstar, &
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Rowe, 2017). While 1D‐ICZ accounts for root exudates' influence on soil weathering processes, it does not
explicitly express the mechanic processes of root exudation, nutrient absorption, and associated microbial ac-
tivities. The Root Exudation in Watershed‐Scale Transport (REWT) model addresses this shortcoming but
simplifies other processes considered in the 1D‐ICZ model (Sullivan et al., 2022).

Similarly, the pore‐perspective‐based soil structure model by Meurer, Chenu, et al. (2020) has been integrated
into the soil‐crop model USSF (Uppsala model of soil structure and function). USSF simulates interactions
between soil structure dynamics and soil hydrological processes, and how these influence crop production and
organic matter cycling at the soil profile scale (Jarvis et al., 2024). The model accounts for matrix porosity
composed of textural pore structure and aggregation porosity, along with bioporosity, tillage porosity, total
macroporosity, percolating macroporosity, and soil bulk density. These soil structure dynamics influence soil
processes via their impacts on root growth and turnover, SOM turnover, and soil hydraulic properties (Jarvis
et al., 2024).

These advanced soil function models demonstrate that the understanding of the linkage between soil structure and
soil functions can only be achieved through modeling the chain of impacts from the microbiome scale to soil
aggregates, pedon, watershed, regional, continental, and global scales (Sullivan et al., 2022; Vereecken
et al., 2022) (Figure 1). Simulating this complex cascade of processes requires careful integration of all key
mechanisms and processes within the soil‐microbiome‐plant continuum, as well as their roles in regulating the
“bedrock‐to‐atmosphere” exchanges.

3.4. Soil Property Maps for ESMs

Basic soil property maps serve as essential inputs for pedotransfer functions (PTFs) to estimate soil hydraulic and
thermal characteristics in ESMs. A key consideration is how these soil property maps are initially generated. Soil
mapping approaches can generally be categorized into two main types:

1. The traditional (or conventional) soil survey‐based mapping. This approach relies on the identification of map
units, which are derived from the delineation of soil boundaries based on either remote sensing imageries or
field observations with a conceptual model about the relationships between soil attributes and visual features
of landscape. Next, field observations are made to describe the representative soil profiles within each map
unit. The produced soil map (representing a discrete spatial model) is presented as polygons that reflect distinct
soil types across the landscape. This method forms the basis for many national and regional soil maps (Kempen
et al., 2012). An example is the harmonized soil databases for Europe, such as the European Soil Database v2.0
(Panagos, Van Liedekerke, et al., 2022);

2. Digital soil mapping (DSM). This method is defined as “the creation and population of spatial soil information
systems by numerical models inferring the spatial and temporal variations of soil types and soil properties from
soil observation and knowledge and from related environmental variables” (Lagacherie & McBratney, 2006).
DSM has three main components (Minasny&McBratney, 2016): (a) input from legacy soil observations (from
fields and laboratories) and soil maps, or information from newly acquired soil samples, obtained using
statistical sampling techniques; (b) the development of mathematical or statistical models (continuous spatial
model) for spatial and non‐spatial soil inference, identifying relationships between soil properties and soil
covariates or environmental factors such as soil, climate, organisms, relief, parent materials, age and spatial
position (scorpan) (Chen et al., 2022; McBratney et al., 2003; G. L. Zhang et al., 2017); (c) the output as a
continuous spatial soil information system that can be readily updated when new information becomes
available (Helfenstein et al., 2024; Hengl et al., 2017; Liakos & Panagos, 2022; Poggio et al., 2021).

Soil maps derived from the discrete spatial model‐based approaches cannot be directly applied in ESMs due to
several limitations (Dai, Shangguan, et al., 2019; Schoorl & Veldkamp, 2016; Wielemaker et al., 2001): (a)
mapping units or soil polygons are often described as soil complexes or associations, while ESMs require gridded
soil data; (b) traditional maps ignore spatial variations between polygons, resulting in abrupt transitions at soil
polygon boundaries; (c) soil types are used to represent regional soil variability, explaining only a limited range of
actual variation in soil properties.

DSM combines geostatistical methods with regression‐based or machine learning‐based models (and their
ensemble) to generate high‐resolution soil property maps by leveraging a wealth of auxiliary data and soil profile
databases at regional and national levels (Minasny & McBratney, 2016), such as SoilGrids250 m (Hengl
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et al., 2017) and euptfv2 (Szabó et al., 2021). This approach explains variations in soil properties across different
soil types, linking them to soil formation covariates (scorpan), in line with the Catena concept (Jenny &
Amundson, 1994; Pennock & Veldkamp, 2006; Schoorl & Veldkamp, 2016).

Although DSM addresses the limitations of the discrete spatial model‐based approach, both methods face un-
certainties due to the use of different analytical methods for the same soil property across various soil profile
databases (Dai, Shangguan, et al., 2019). Additionally, since most legacy soil profile data were not collected with
the probability sampling method (Batjes et al., 2020), the spatial uncertainty estimates of the resulting soil
property maps are not significantly robust (Bregt, 1992; Stoorvogel et al., 2017). It is to note that the LUCAS soil
module (Orgiazzi et al., 2018), as the reference system for soil monitoring in EU, is currently collecting temporal
variation of soil characteristics with a stratified sampling method within the EUSO framework (Panagos,
Broothaerts, et al., 2024). The EUSO's approach will contribute significantly to EU Soil Monitoring Law (for the
need of monitoring soil taking into account both spatial and temporal aspects), to the development of transient
PTFs, and to produce soil maps with spatial uncertainty information. For example, the LUCAS database has been
used to map topsoil physical and chemical properties at the European scale, with associated uncertainties and
errors quantified (Ballabio et al., 2016, 2019).

Despite the abovementioned advancement, current global soil maps are derived from a combination of legacy and
newly available soil profiles. The World Soil Information Service (WoSIS) hosts a comprehensive data set with
196,498 geo‐referenced profiles collected between 1920 and 2020 (Batjes et al., 2020). The data set includes
18.2% of data from before 1980, 47.7% from between 1981 and 2020%, and 31.9%with unknown collection dates.
Although these soil profiles can be time‐stamped, the spatial coverage varies significantly across different time
periods, making the available soil profiles insufficient for generating statistically reliable global soil maps for
each period. For instance, in WoSIS, only 0.7% of profiles were sampled before 1920, 0.1% between 1921 and
1940%, and 3.9% between 1941 and 1960 (Batjes et al., 2020).

3.5. Challenges in Representing Soil Properties in ESMs

Current ESMs rely on static data such as soil texture to derive soil hydrothermal parameters using PTFs (Weber
et al., 2024). These parameters feed into the mathematical functions that model soil hydraulic (and thermal)
functions, including the water retention and hydraulic conductivity curves, within soil hydrological sub‐models
(Van Looy et al., 2017). These functions implicitly describe the soil matrix's pore‐size distributions and some-
times account for dual porosity soils, allowing for preferential flow. However, ESMs often overlook the impact of
sudden and gradual changes in soil structure, which can alter the parameters used in soil hydraulic functions
(Fatichi et al., 2020). This limitation arises from a lack of understanding regarding the turnover timescales of
aggregates and macropores, as a function of natural and management processes (Vereecken et al., 2022). A recent
study (M. Zhao et al., 2022) found that the absence of soil structure representation in ESMs (used for CMIP6, the
Coupled Model Intercomparison Project Phase 6) leads to a 50% underestimation of drought‐driven increases in
evapotranspiration, particularly in drier regions. These drought‐driven increases in evapotranspiration are con-
cerning because they can rapidly deplete water resources, leading to flash droughts and acute stress on ecosys-
tems. These challenges are not adequately captured by CMIP6 predictions for the future climate of the Earth.

Directly measuring soil hydraulic properties at regional and global scales is impractical due to the significant time
and labor required (Van Looy et al., 2017). PTFs offer an alternative by linking easily accessible soil charac-
teristics, such as texture, bulk density, and organic carbon content (Hengl et al., 2017; Poggio et al., 2021), with
soil hydraulic and thermal parameters needed to model soil water and heat flow, as well as biogeochemical
parameters for carbon and nutrient cycles (Dai, Xin, et al., 2019; Van Looy et al., 2017). Despite their widespread
use in land surface modeling, the selection of hydraulic PTFs can introduce significant uncertainties in estimates
of soil water infiltration and surface evaporation (Weihermüller et al., 2021). These uncertainties stem from the
following limitations (Van Looy et al., 2017; Vereecken, 2023; Vereecken et al., 2022; Weber et al., 2024):

1. Different measurement methods and instruments used to assess basic and hydraulic soil properties can
introduce systematic biases (Vereecken et al., 2010);

2. There are significant data gaps in the development of multiscale PTFs, ranging from soil profile to global scale,
especially for soils formed under natural vegetation in varying climatic conditions (Vereecken et al., 2022).
For instance, many PTFs are derived from arable land in temperate zones and may not perform well in fine‐
textured soils of tropical and subtropical regions (Ottoni et al., 2018);
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3. PTF development typically relies on textural information, bulk density, and soil carbon content, without
explicitly accounting for the impact of soil structure (Romero‐Ruiz et al., 2018). However, soil management
practices (and history) can induce structural alterations to the soil and its hydraulic and thermal properties. The
transient PTFs are needed to account for such temporal effects;

4. Most PTFs assume homogeneity and unimodality of pore size distributions using simplified models like van
Genuchten‐Mualem, overlooking variations in rock fragments, mineralogy, chemical, and biological prop-
erties (P. Lehmann et al., 2021);

5. While dual‐modal and multimodal hydraulic functions have been created, they are yet to be integrated into
land surface models (LSMs). Additionally, reliable PTFs for these functions remain undeveloped
(Durner, 1994);

6. Many LSMs consider deep vadose zones and even the depth to bedrock (DTB) while applying the same soil
hydraulic and thermal parameterization as used for the top 1–2 m layers throughout the entire soil profile
(Condon et al., 2021). Deep sediments are fundamentally different from the soil layer close to the surface,
since they have not undergone pedogenic processes and not influenced by the vegetation‐induced pore‐space‐
forming processes. However, very few observational data have been collected to characterize hydrothermal
properties of deep vadose zones (Marthews et al., 2014);

Vereecken et al. (2022) advocated for closer collaboration between soil hydrology scientists and global land
surface and climate modelers to enhance the representation of soil hydrological processes in PTF‐aided LSMs.
Two potential pathways forward were proposed: (a) Developing multiscale PTFs that can be applied seamlessly
from soil profile to global scales. For example, multiscale Bayesian neural network‐based PTFs enable the
upscaling and downscaling of soil hydraulic parameters (Jana &Mohanty, 2011); (b) Most LSMs rely on a single
set of PTFs (e.g., for Van Genuchten Mualem or Brooks‐Corey hydraulic equations), which can lead to bias in
PTF predictive ability. It is recommended to use ensemble PTFs that combine multiple PTF sets (Dai, Xin,
et al., 2019; He et al., 2020). Furthermore, a roadmap for the future development of PTFs has been presented by
the International Soil Modeling Consortium (ISMC) PTF Working Group (Weber et al., 2024). Among other
issues, they address the fundamental concern on the scale mismatch between PTF derivation (based on laboratory
measurements) and its applications (at the field to regional scales), and suggest evaluating PTFs functionally by
using ecosystem‐scale observations of water, energy, carbon fluxes to tackle such scale discrepancy.

In addition to soil properties extending 1–2 m below the surface, ESMs also require information on soil properties
down to the DTB (Shangguan et al., 2017). However, due to a lack of reliable data, creating an accurate global
DTB map, along with corresponding soil property maps below the 1–2 m depth, remains challenging. While
applying DTB data to define the lower boundary in ESM configurations requires caution, Huscroft et al. (2018)
developed a two‐layer global hydrogeology map that provides permeability data for shallower (unconsolidated,
based on DTB data) and deeper (consolidated, defined as up to 100 m) layers. Despite inherent uncertainties due
to limited regional and national permeability data, the two‐layer global permeability map presents an opportunity
to simulate deeper groundwater flow processes at a global scale (de Graaf et al., 2017), although such a simulation
is not yet considered in ESMs (Condon et al., 2021).

3.6. Ways Forward

There are various other soil properties that are not yet fully represented in ESMs. For example, the presence of
gravel significantly impacts soil hydrothermal properties (You et al., 2022; H. Zhao et al., 2018), yet there is a lack
of PTFs to account for the effects of gravel on a global scale. Additionally, there are no global sequences of maps
of temporally variable soil chemical and physical properties, which would recognize that soils evolve and change
over time (Pennock & Veldkamp, 2006; Schoorl & Veldkamp, 2016). Soil surveys in areas such as the
Netherlands indicate that agricultural practices have substantially altered soil physical and chemical properties
(Sonneveld et al., 2002). Similarly, studies of sediment flux dynamics in fluvial systems reveal the occurrence of
centennial sediment waves in eroding river channels, where dynamic sedimentation zones shift both upstream and
downstream (Schoorl et al., 2014). These relationships between land use, landscape dynamics, and soil properties
can be explored through soil‐landscape process modeling, such as with the LAPSUS model (Landscape Process
Modeling at Multi‐dimensions and Scales) (Schoorl & Veldkamp, 2016; Schoorl et al., 2000, 2014).

Given these complexities, integrating ESMs with soil‐landscape models is essential for simulating soil formation
processes, including the roles of the soil microbiome and soil aggregation as discussed earlier. This coupling will
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allow ESMs to account for temporal changes in soil properties, leading to more precise and nuanced predictions of
the fluxes and state variables of the Earth system (Dai, Shangguan, et al., 2019; Pelletier et al., 2015). There are
recent progresses in mapping temporally variable soil properties (Weber et al., 2024) to inform ESMs: for
example, Jha et al. (2023) used soil structure dynamics to couple organic carbon dynamics with hydraulic
properties.

As mentioned in Section 3.4 and 3.5, among others, the main challenge of representing soil properties in ESMs is
the data scarcity. To address this data constrain, data assimilation (DA) techniques have been utilized to integrate
process‐based knowledge from soil‐landscape models with limited soil profile data. This approach generates
continuous space‐time soil maps at a catchment scale (Heuvelink et al., 2006). DA employs recursive optimi-
zation algorithms to update the soil map by projecting one timestep ahead based on the predicted soil map from
the previous timestep and incorporating measurements from the current timestep. The DA approach for updating
soil maps aligns closely with the Digital Twin methodology (Bauer, Dueben, et al., 2021; Bauer, Stevens, &
Hazeleger, 2021; European Commission, 2021), which can simulate and analyze past and present soil formation
processes, as well as predict future changes. This approach can potentially create maps of temporally variable soil
properties if ample time‐stamped and geo‐referenced soil profile data are available.

Remote sensing has been utilized in soil surveys for quite a long time, and modern air‐ and space‐borne
hyperspectral imagery has been extensively applied for mapping soil properties with success (Chabrillat
et al., 2019; Lagacherie & Gomez, 2018; Viscarra Rossel et al., 2022). With the increasing availability of remote
sensing products and other big data in Earth system science (X. Li et al., 2023), when combined with the DA
approach, the challenge of data scarcity for producing global maps of temporally variable soil properties can be
effectively addressed.

4. Remote Sensing of Observable Soil Properties
4.1. Soil Remote Sensing

Given the multifaceted nature of soil health, soil monitoring must accurately measure inputs and outputs to soils,
as well as external pressure and drivers (e.g., climate zones, vegetation covers). It should also capture biological,
chemical, and physical transformations and processes related to water, matter, and energy cycles. This holistic
approach to soil monitoring is crucial for providing all relevant soil (and non‐soil) indicators for soil health
assessment to prevent soil degradation and sustain soil ecosystem services in the long term, supporting sus-
tainability goals (European Environment Agency, 2023).

The adoption of a “holistic monitoring” approach has been advocated to promote the “checks by monitoring”
(CbM) approach as a key control system by paying agencies under the EU's Common Agricultural Policy (CAP)
(Angileri et al., 2023) (hereafter as CbM‐CAP). The remote sensing‐based CbM‐CAP approach is employed to
monitor the effects of plot‐ or farm‐based policy measures aimed at enhancing environmental and climate per-
formance, promoting sustainable management of natural resources (such as soil and water), and safeguarding
biodiversity, landscapes and associated ecosystem services. This approach, along with other remote sensing
methods, encompasses three aspects (Devos et al., 2021): (a) the monitoring and recording of land‐use practices,
which involve human activities on a unit of land and their impact on altering the biophysical characteristics of the
soil‐plant system; (b) Earth Observation of the soil‐plant system and the land cover manifestations linked to land‐
use practices; (c) meeting the information need of end‐users, such as those related to the new CAP's Eco‐schemes
(European Commission, 2022), which support farmers in transitioning toward more sustainable farming practice
by adopting climate adaptation measures to minimize the negative impacts of agriculture.

The abovementioned remote sensing‐based approach introduces the concept of a fundamental physical moni-
toring unit known as “tegon,” derived from the Latin “tegere,” meaning “to cover.” The tegon is defined as the
smallest monitoring unit of vegetation cover, consisting of various layers with uniform biophysical and life cycle
characteristics. These layers exchange material and energy with one another, as well as with the atmosphere above
and the soil below (Devos & Milenov, 2013). Thus, the tegon‐pedon pair (Figure 2) represents the three‐
dimensional elementary components of the SPAC, which can be monitored with remote sensing.

Soil and land management practices influence soil health, and the direction and extent of this impact can be
assessed through field surveys, soil mapping, physically‐based modeling, and crucially by remote sensing‐based
monitoring of the abovementioned tegon‐pedon pair. Although remote sensing has been recognized as an
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innovative technique for soil health monitoring, few review articles and reports elaborate how to apply remote
sensing technique for monitoring soil health, for example, not only providing spatial information of soil properties
and land cover characteristics, but also assessing soil‐ and land‐management practices that can be related to soil
functions via physically‐based modeling. The connection between SHIs and soil functions, considering the
synergy between soil biological and physico‐chemical properties, as well as soil management practices (and

Figure 2. The “Tegon‐Pedon” pair as the three‐dimensional elementary unit of the soil‐plant‐atmosphere continuum (SPAC),
whose biophysical characteristics can be observed with remote sensing across the VNIR‐SWIR‐TIR‐MW domains of the
electromagnetic spectrum (VNIR—Visible and Near Infrared [0.4–1.0 μm], SWIR ‐Short Wave Infrared [1.0–2.5 μm], TIR ‐
thermal infrared [3–12 μm], MW—microwave [0.5–100 cm]). In the top panel, the spectral reflectance characteristics of soil,
vegetation, and water can be observed by multi‐ and hyperspectral sensors (e.g., Sentinel‐2, EnMAP). The active radar
scattering and passive microwave emission from the “Tegon‐Pedon” pair can also be monitored by microwave sensors (e.g.,
Sentinel‐1, SMAP, SMOS). The photosynthesis process at leaf level is also illustrated: energy from sunlight is absorbed by
the plant photosynthetic pigments (i.e., chlorophyll and carotenoids) in chloroplasts and converted into energy‐rich
carbohydrates. When illuminated, leaves reflect, transmit, and absorb light, as well as emit absorbed light energy at longer
wavelength as chlorophyll fluorescence (i.e., solar‐induced chlorophyll fluorescence, solar‐induced fluorescence (SIF), in
natural environment). The FLEX mission (Drusch et al., 2017) is dedicated to measure SIF, which serves as a proxy of
photosynthesis and is an integrative observable of soil‐plant‐atmosphere (or SPAC) dynamics. Recent progress in drone
technology can provide high spectral separation and temporal resolution of relatively large areas, such as agricultural fields.
These are pivotal advances in the context of high‐resolution soil health monitoring (Manfreda & Ben Dor, 2023).
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histories), requires the combined use of process‐based models, Earth Observation (EO) data, DA and physics‐
informed machine learning, which has been coined as the digital twin approach (Bauer, Dueben, et al., 2021;
Bauer, Stevens, & Hazeleger, 2021; Zeng & Su, 2024).

4.2. Challenges of Soil Remote Sensing

In 2019, the European Space Agency (ESA) hosted theWorld Soil User Consultation Meeting to discuss the steps
needed to establish a soil monitoring system that combines space‐based EO data with in‐situ data and modeling
(http://worldsoils2019.esa.int/index.php). There are currently operational passive and active remote sensing
platforms that can be used to observe soil properties such as SOC, particle size distribution (PSD, e.g., sand‐clay‐
silt fractions), soil roughness, and other soil attributes, as well as state variables like near‐surface soil moisture.
These platforms include passive optical (multi‐spectral and hyperspectral), thermal, and microwave systems, as
well as active synthetic aperture radar (SAR) and LiDAR systems (Ben‐Dor et al., 2019).

Although remote sensing techniques for soil monitoring are available, their application in retrieving soil prop-
erties and variables is challenged by the fact that most pixels represent a mix of bare soil, non‐photosynthetic and
photosynthetic vegetation. Non‐photosynthetic vegetation (NPV) refers to plant materials that are incapable of
performing photosynthesis, such as crop residues, straw/balk mulch, wood chips, dead plant material (e.g., litter,
stumps), and senesced vegetation (Verrelst et al., 2023). This necessitates refining retrieval models capable of
distinguishing signals from mixed pixels (see Figure 2, top panel). Other complicating factors include the con-
dition of the soil surface (sealed or non‐sealed) and soil moisture content, which influences absolute soil
reflectance. Additionally, radiation that reaches a satellite can be affected by atmospheric conditions, such as
gases, clouds, aerosols as well as viewing geometry (Chabrillat et al., 2019).

Despite challenges, due to their cost‐effectiveness (e.g., costing one‐tenth of a chemical analysis) and high
reliability (repeatable and reproducible results), soil spectroscopy methods for estimating soil properties have
improved significantly over the years (Viscarra Rossel & Bouma, 2016; Viscarra Rossel et al., 2022). This
progress has led to the on‐going development of standards and protocols for soil spectroscopy (Ben‐Dor
et al., 2024). Many soil spectral libraries (SSL), such as the LUCAS SSL and the world soil SSL (Leenen
et al., 2022; Viscarra Rossel et al., 2016), taking advantage of LUCAS Soil and other databases (Orgiazzi
et al., 2018), have been established to advance remote sensing‐assisted soil monitoring.

Terrestrial spectral libraries play a critical role in analyzing hyperspectral remote sensing data. These libraries
contain spectral profiles of various soil materials from different horizons, along with detailed metadata such as
location, pedogenic characterization, and measurement protocols for both field and laboratory settings (Nocita
et al., 2015). This information can be applied for retrieving soil information from multispectral sensors, via
resampling the SSL spectral resolution to match the multispectral measurements. Ben‐Dor and Banin (1995)
pioneered this approach, which remains widely used today (Fongaro et al., 2018; Silvero et al., 2021). It should be
noted that the laboratory SSL have been developed with disturbed soil samples from the field, that is, with a non‐
intact soil surface. However, based on the innovative “field‐lab” apparatus developed by Ben‐Dor et al. (2017),
SSL for the soil surface can be established based on in‐situ measurements with undisturbed soil surface. Common
metadata on soil attributes in SSLs include textural composition (clay, silt, and sand content), organic matter,
calcium‐carbonate, iron oxides, hygroscopic moisture content, and specific surface area (as in the LUCAS SSL
and global SSL) (D’Andrimont et al., 2020; Ben Dor et al., 2022; Orgiazzi et al., 2018). SSLs provide a foun-
dation for developing proxy models for quantifying, classifying, mapping, and monitoring soil properties from
remote sensing. Therefore, they should be closely integrated with the advancement of remote sensing technology
for effective soil monitoring (Ben‐Dor et al., 2019).

4.3. Soil Reflectance and Soil Properties

While factors such as vegetation cover, soil moisture, and soil surface sealing are often seen as constraints for soil
monitoring, they can also be viewed as opportunities to gather information on land surface properties and state
variables through soil reflectance data (Ben‐Dor et al., 2019). Given that soil samples consist of a mixture of
mineral particles, air, water, and organic matter, each element influences reflectance and transmittance, thereby
defining the soil spectrum.
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Spectral responses of soils can be directly related to physical or chemical soil properties (e.g., absorption features
of water molecules) or correlated with other properties (e.g., specific surface area being associated with the type
of clay minerals). Often, the spectral features related to a specific soil property overlap with signals from other
properties, making direct and separate assessment of these properties challenging. However, a thorough under-
standing of the radiative transfer process within the soil‐plant system and their interactions with soil state vari-
ables and properties can help resolve specific spectral signals (Ben‐Dor et al., 2019; Chabrillat et al., 2019)
(Figure 2). For example, advancements in radiative transfer modeling (RTM) have improved the quantification of
NPV cover and biomass in croplands and grasslands by better simulating the interactions between radiation and
NPV (Verrelst et al., 2023).

Recent advancements in field‐based soil measurements under laboratory conditions, for example, SoilPRO (Ben‐
Dor et al., 2017, 2023), have supported the application of soil reflectance to derive surface water infiltration rates
(Francos et al., 2021, 2023). Spectral transfer functions (STFs) can estimate soil hydraulic properties by
combining soil physico‐chemical properties with spectral measurements (Francos et al., 2021; Su, Zeng,
et al., 2020). However, the effectiveness of STFs depends on the similarity between the spectral data used to
develop them and the data to which they are applied (Romano et al., 2023). Babaeian et al. (2015) derived STFs to
predict parameters of the van Genuchten‐Mualem and Brooks‐Corey models based on VNIR‐SWIR spectral data.
These STFs have shown that predicted parameters of soil hydraulic models can realistically describe the dynamics
of measured soil water content profiles (Babaeian et al., 2016). Alternatively, STFs can predict basic soil
properties such as soil texture and organic matter content, which can then be used as inputs to PTFs for deriving
soil hydraulic parameters (Romano et al., 2023; Su, Zeng, et al., 2020), although note the issues with PTFs as
pointed out in Section 3.5.

4.4. Soil Sensors in Space

The concept of Image Spectroscopy (IS, also termed as hyperspectral imaging), which involves creating a
'spectral cube' composed of numerous spectral bands, has been employed to obtain spectral views of soils. This
technique allows for extracting information representing the spectral features of the soil for each pixel in a spectral
image.

New orbiting sensors such as PRISMA (PRecursore IperSpettrale della Missione Applicativa) (Cogliati
et al., 2021) and EnMAP (Environmental Mapping and Analysis Program) (Chabrillat et al., 2020), with over 200
spectral bands across the visible, near‐infrared (VNIR), and shortwave infrared (SWIR) regions, have already
demonstrated their ability to capture Earth's surface reflectance information (Chabrillat et al., 2019). Upcoming
missions from the Copernicus Programme, such as LSTM (Land Surface Temperature Monitoring Mission)
(Koetz et al., 2018) and CHIME (Copernicus Hyperspectral Imaging Mission for the Environment) (Rast
et al., 2021), will further enhance monitoring soil properties through their extensive spectral coverage.

In this context, it's noteworthy to mention NASA's planned 2027 launch of the Surface Biology and Geology
(SBG) hyperspectral sensor. The SBG aims to acquire global spectroscopic (hyperspectral) imagery across visible
to shortwave infrared (VSWIR; 380–2,500 nm) and multispectral mid‐wave and thermal infrared (MWIR: 3–
5 μm; TIR: 8–12 μm) wavelengths at high spatial resolution (∼30 m in the VSWIR and ∼60 m in the TIR) and
sub‐monthly global temporal resolution (Cawse‐Nicholson et al., 2021). There are also sensors deployed on the
International Space Station (ISS). For example, HISUI (Hyperspectral Imager Suite) has 185 spectral bands
between 0.4 and 2.5 μm with spectral resolution of 10 nm for VNIR and 12.5 nm for SWIR (Matsunaga
et al., 2020). The EMIT (Earth Surface Mineral Dust Source Investigation) mission has a spectral coverage
between 0.41–2.45 μm and a spectral sampling ≤10 nm, and aims to determine the mineral composition and
abundance of arid lands (Green et al., 2023).

This expanding availability of high signal‐to‐noise ratio spaceborne spectral data is anticipated to support global
monitoring of soils, provided that the STF (i.e., a regression function between spectral signal and observable soil
properties) is known, soils are well‐exposed (i.e., bare soil pixels), and local SSLs are available (Chabrillat
et al., 2019). However, utilizing this technology for routine global soil monitoring is challenging due to mixed
pixels, atmospheric attenuation, geometrics and optical distortions, and BRDF (Bidirectional Reflectance Dis-
tribution Function) effects. Furthermore, optical remote sensing is limited to sensing the top 50 μm–1 mm of the
soil body in the VNIR‐TIR domains (Ben‐Dor et al., 2019; Dupiau et al., 2022).
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Developing pixel‐unmixing solutions at high spectral and spatial resolutions is key to deriving pure soil pixels,
when there is a mixed cover of photosynthetic and NPV (Verrelst et al., 2023). Gallo et al. (2018) and Rogge
et al. (2018), in separate studies, successfully resolved the contributions of vegetation cover (photosynthetic
vegetation) and litter cover (NPV) on the soil spectrum by utilizing temporal satellite imageries of an area and
“summarizing” the exposed pixel of bare soil. They assumed that in a dynamically managed agricultural area,
there would be at least one point in time when the soil is not vegetated. By using indices to account for non‐
photosynthetic and photosynthetic vegetation, they generated a “pure” soil image.

Though optical remote sensing cannot penetrate the soil surface, spectral images combined with in‐situ electro-
magnetic methods using “smart” techniques (such as a spectral penetrating‐probe assembly) (Ben‐Dor et al., 2009)
can yield soil profile maps. Another promising avenue is utilizing vegetation as a “root zone” sensor for soil
monitoring. For instance, Zuzana et al. (2013) evaluated the reclamation quality in post‐mining regions using
spectrally measured leaf properties such as chlorophylls a and b, carotenoids, and relative water content. Belgiu
et al. (2023) successfully retrieved pre‐harvest nutrient concentrations in crop grains using PRISMAandSentinel‐2
spectral imagery.However, nutrient accumulation in grains is governed by several processes, including soil uptake,
internal transport, storage, and remobilization from vegetative tissues during senescence. These processes can be
effectively modeled through a soil‐plant digital twin, which can be applied for retrieving soil nutrient content and
other SHIs. Such mechanistic understanding of soil‐plant interactions enhances the potential of vegetation remote
sensing as a tool for inferring soil properties. Paz‐Kagan et al. (2015) proposed a biological assay to evaluate soil
health by assessing the condition of selected standard vegetation as an indicator for probing the root zone soil health
using imaging spectroscopy. Such an approach can extend the application of (multi‐/hyper‐)spectral remote
sensing beyond topsoil monitoring to include soil profiles when combined optimally with other EO technologies
dedicated to vegetation monitoring. The next section will expand on the Vegetation‐as‐a‐Soil‐Sensor (VaaSS)
approach, as this is a promising avenue in the context of representing dynamic soil properties in ESMs.

5. Vegetation‐As‐A‐Soil‐Sensor (VaaSS)
5.1. Remote Sensing of Vegetation Properties and Functioning

EO‐based optical vegetation indices (VIs) are widely utilized to monitor plant health, reflecting various bio-
physical, biochemical, and physiological properties of vegetation. The most well‐known VI is the NDVI.
However, VIs often confront challenges such as data gaps caused by long revisit times and cloud cover, which can
affect the quality of information they provide. The reliability of VI‐based data depends on the satellite sensors
used, quality control processes, compositing algorithms, atmospheric and geometric corrections, as well as soil
conditions (Zeng et al., 2022). For instance, wet exposed soil may yield NDVI values that cause bare soil to be
incorrectly classified as vegetation.

Analyses of VI data products are mostly focusing on structural properties such as Leaf Area Index, and to a lesser
extent, on vegetation functioning (e.g., greenness parameters are used to estimate Fraction of Absorbed Photo-
synthetically Active Radiation, fAPAR, and Gross Primary Production, GPP) (Pierrat et al., 2022). The recent
advancements in satellite remote sensing of solar‐induced fluorescence (SIF), such as the Fluorescence Explorer
(FLEX) mission, offer new opportunities for assessing vegetation functioning and utilizing photosynthetic
changes to quantify early pre‐visual impacts of soil water stress (Buitink et al., 2020; Drusch et al., 2017). SIF can
thus serve as a satellite observable for using vegetation as a root‐zone sensor to monitor subsurface soil properties
or state variables (such as soil moisture content).

SIF remote sensing enables the acquisition of detailed information about photosynthetic light response curves and
steady‐state behaviors in vegetation for evaluating photosynthesis and stress effects across various biological,
spatial, and temporal scales (Mohammed et al., 2019). Nevertheless, SIF retrieval can be influenced by con-
founding factors at the leaf and canopy levels that are unrelated to the photosynthetic activity of plants (Porcar‐
Castell et al., 2021). As such, SIF modeling involves two main approaches: leaf physiological models that
describe fluorescence emission and its relationship with electron transport and photochemistry in leaves (Busch
et al., 2020; van der Tol et al., 2016; Yin et al., 2021), and radiative transfer models that describe the effects of
canopy structure on absorption and scattering (Verhoef et al., 2007). Nevertheless, both methods simplify the
relationship between soil water availability and vegetation functioning (Joshi et al., 2022; Y. Wang et al., 2021).
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As a result, water‐stress effects may only become apparent in SIF signals when soil water deficits affect the optical
or thermal appearance of the vegetation. This 'invisibility' of water stress effects limits the potential of SIF satellite
data to accurately capture vegetation health status and its relationship with root zone soil moisture content.
Consequently, this disconnect between water stress and vegetation functioning hinders the use of VaaSS in the
context of SIF observations, unless a forward observation simulator can be employed to account for thiswater stress
effect and link the belowground soil processes to aboveground top‐of‐canopy reflectance and SIF (Figure 3).

Figure 3. Illustration of the soil‐plant hydraulic system. Left panel: water potential across the SPAC continuum connects the root zone soil to the leaf, impacting the flow
of water through xylem. This connection also affects the water vapor density in the substomatal intercellular airspace of leaves, which in turn influences gas exchange,
photosynthesis, energy balance fluxes, and radiative transfer at leaf and canopy levels; Right panel: An example of a digital replica of the soil‐plant system, known as the
STEMMUS‐SCOPE model. The SCOPE model simulates leaf‐to‐canopy reflectance and solar‐induced fluorescence spectra in observation directions. It also models
photosynthesis and evapotranspiration based on leaf optical properties, canopy structure, and micrometeorological conditions. STEMMUS simulates the simultaneous
transfer of liquid, vapor, dry air, and heat, and calculates soil moisture, soil temperature, and soil water potential in a coupled manner. The model uses these soil state
variables to compute the hydraulic resistances across the soil‐plant hydraulic system.
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5.2. Satellite Observables for Soil‐Plant Water Content

Microwave remote sensing products of surface soil moisture (SSM) and root zone soil moisture (RZSM) have
long been utilized for drought monitoring (L. J. Zhang et al., 2021; Zhuang et al., 2020). Most microwave SSM
data products operate at regional scales (around 25 km) and use a fixed root zone depth of 1 m globally (Reichle
et al., 2017). However, in reality, root growth is dynamic, and the depth of root water and nutrient uptake varies
throughout the growing season. Currently, there is a range of SSM products available at a 1 km resolution
generated through machine learning algorithms (Q. Han et al., 2023). Nevertheless, reliable, physically consistent
sets of SSM and RZSM at field and plot scales are still needed for effective tracking of soil water stress and its
impacts on ecosystem functioning (Carranza et al., 2018; Du et al., 2021; Zhuang et al., 2020).

Satellite‐based SSM and RZSM data, when integrated with LSMs via data assimilation techniques, can be used to
estimate soil hydraulic parameters (Pinnington et al., 2021; Santanello et al., 2007) and soil texture (H. Zhao
et al., 2023). However, both SSM and RZSM data are derived from satellite products using retrieval algorithms
that simplify radiative transfer processes and depend on ancillary data sets (e.g., land use/land cover classifi-
cation, vegetation indices, soil attributes, meteorological variables, etc.) (Colliander et al., 2017, 2022; de Rosnay
et al., 2020; Su et al., 2013; Zeng et al., 2016). This simplification and reliance on ancillary data can introduce
uncertainties (Su et al., 2018; Zeng et al., 2015, 2019) in estimating soil hydraulic properties through the
assimilation of SSM and RZSM data, particularly when soil attributes are part of the ancillary data. To address
these challenges, forward observation simulators, in which process‐based models are coupled with either
emission models (de Rosnay et al., 2020; X. Han et al., 2014) or discrete emission‐scattering model (H. Zhao
et al., 2021), have been developed to directly assimilate brightness temperature to retrieve soil properties (H. Zhao
et al., 2023).

The ability to track liquid water in vegetation using hyperspectral remote sensing was first demonstrated by Gao
and Goetz (1990), allowing for the mapping of vegetation burn potential (Robichaud et al., 2007). Furthermore,
changes in vegetation water content (VWC) are directly linked to ecosystem functioning, including water‐energy‐
carbon fluxes (Konings et al., 2021). Therefore, quantifying VWC can enhance our understanding of ecosystem
responses to drought, especially when coordinated with SSM/RZSM dynamics.

Microwave radiometry‐derived vegetation optical depth (VOD) correlates with VWC and biomass, depending on
sensor wavelengths, plant type, and structure (Frappart et al., 2020). Given microwave remote sensing's capa-
bilities to observe day and night regardless of cloud cover, along with penetration beyond the top few millimeters
of plant canopies, microwave sensors such as AMSR‐E, SMOS, and SMAP have been widely used to provide
long‐term, coarse‐resolution VOD observations (25–50 km) for monitoring regional soil‐plant water status
(Konings, Piles, et al., 2017). However, existing VOD products struggle to capture dynamic VWC changes from
seasonal and interannual variations in phenology and biomass in tropical woodlands (Tian et al., 2018) or sub‐
daily plant physiological processes (Wigneron et al., 2021). These sub‐daily processes influence water‐energy‐
carbon exchanges and the hydraulic connections across the SPAC continuum (X. Xu et al., 2021).

5.3. Satellite Observables for Soil‐Plant Hydraulics

Currently, there is a growing trend toward incorporating soil‐plant hydraulics into ESMs. However, the focus
primarily remains on xylem vulnerability, while the explicit roles of soil and root hydraulics are often overlooked.
Carminati and Javaux (2020) illustrate that xylem vulnerability does not trigger a plant's drought response (i.e.,
stomatal closure) in medium‐wet to dry soils. Instead, soil hydraulic conductivity loss is the key driver of a plant's
drought response. This is because plants adapt the hydraulic conductivity of their roots and the surrounding soil
(the rhizosphere) to match the soil conditions and atmospheric water demand. For instance, roots may shrink as
soil dries, creating air gaps between root hairs and the soil matrix. These gaps lead to a drop in the hydraulic
conductivity of the soil‐root system, imposing a primary hydraulic limitation along the soil‐plant continuum
(Carminati & Javaux, 2020).

Such regulation of plant water status, root zone soil hydraulic properties, and transpiration can be predicted based
on the theory of the coupled soil‐plant hydraulic system. This leads to an “E − Ψleaf − Ψsoil” framework for
interpreting a plant's drought response, taking into account both above‐ and below‐ground hydraulic traits (E
represents evaporation, Ψleaf represents leaf water potential, and Ψsoil represents soil water potential).
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The interpretation framework of soil‐plant hydraulics offers a mechanistic approach to infer belowground soil
water potential (Ψsoil) from aboveground leaf water potential (Ψleaf), which closely correlates with VWC. The
non‐linear relationship between Ψleaf and VWC is known as the pressure‐volume curve, which is analogous to the
soil water retention curve. Measurements of the pressure‐volume curve across plant species are becoming more
accessible (Konings et al., 2021), generating interest in collecting more data (Novick et al., 2022). Advances in in‐
situ measurement techniques for water potentials across the SPAC continuum (Conesa et al., 2023; Jain
et al., 2021; Lakso et al., 2022) are also emerging. With the increasing availability of in‐situ soil‐plant water
content and water potential data, it will become feasible to develop methods to derive Ψleaf from remote sensing
VWC data. This capability could enable the use of vegetation as a soil sensor to detect Ψsoil, leveraging the
connections within the soil‐plant hydraulic system (Figure 3).

Remote detection of subsurface Ψsoil, combined with remotely sensed SSM and RZSM data, can facilitate the
retrieval of parameters necessary for soil hydraulic property models and water retention curves. Additionally,
remote sensing‐based Ψleaf and Ψsoil can be directly assimilated into a suitable soil‐plant model within a data
assimilation framework. This integration can help estimate both vegetation properties and various soil properties
such as soil hydrothermal properties, SOC content, and soil texture (Y. Wang et al., 2021; H. Zhao et al., 2023). It
is important to note that remote sensing‐based estimates of Ψleaf and Ψsoil are currently limited by the scarcity of
in‐situ measurements across diverse global biomes. Hence, we strongly encourage wider research in this area.

5.4. Multifaceted Nature of the Soil‐Plant System

In previous sections, we discussed the ongoing interactions between soil properties, vegetation, climate, and land
management and their complex relationship with the soil‐plant hydraulic continuum. Therefore, monitoring soil
goes beyond focusing solely on the soil itself, it also encompasses the intricate physical and biogeochemical
processes that drive the water, energy, and carbon cycles within the critical zone. These interplays, along with
their responses to climate extremes such as droughts, are both spatially and temporally complex (refer to Figures 1
and 3).

Over time spans of years to decades, average VWC measurements can quantify ecological dynamics, including
biomass and structural changes at biome, continental, and global scales (Bueso et al., 2023). For example, in-
formation on the impact of disturbances such as fire, extreme drought, and soil management (e.g., tillage prac-
tices) can be gleaned from VWC's sensitivity to the amount of aboveground biomass (T. Zhang et al., 2018).
Consequently, remotely sensed VWC, SSM, RZSM, and SIF (hereafter, these four variables are called as soil‐
plant hydraulics variables, SPHVs) can help identify disturbances in soil properties on large scales. This is
due to the cohesive coordination within the soil‐plant hydraulic system, as illustrated in Figure 3, which allows us
to link soil properties to satellite observations of soil‐plant hydraulics.

At sub‐seasonal to seasonal timescales (weeks to months), interactions between SSM, RZSM, xylem hydraulic
functions, and VWC (Figure 3) can assess the risk of drought‐induced mortality and fire risk (Konings
et al., 2019). During this time frame, SPHVs data can also provide insights into regional soil properties. At sub‐
daily timescales, measurements of SPHVs reflect the coordinated responses of root‐xylem hydraulics and sto-
matal conductance to drying soil and air. Consequently, these data can detect water stress before it becomes
apparent through other leaf properties (Y. Wang et al., 2021). Therefore, sub‐daily monitoring of SPHVs holds
promise as an early warning system for drought risks.

By monitoring the soil‐plant system SPHVs with satellites, we can retrieve sub‐daily leaf water potential and soil
water potential, with the latter at the core of soil hydrological processes. This ultimately facilitates the estimation
of soil hydraulic and thermal properties, enhancing our understanding of the soil‐plant hydraulic system.

5.5. The Need for Sub‐Daily Monitoring System

The necessity for sub‐daily observations of the SPHVs is evident in Figure 4. Figures 4a and 4b demonstrate the
sub‐daily variations in Ψleaf and SIF, both influenced by root zone soil moisture via the water stress factor (WSF).
This is evident from the fact that the variation of Ψleaf is regulated by WSF (Figure 4a). SIF is also regulated by
WSF, and in the STEMMUS‐SCOPE model this is reflected by the fact the WSF affects the maximum
carboxylation rate and the maximum electron transport rate, which determines the SIF yield (Y. Wang
et al., 2021). Considering that both SIF and Ψleaf are regulated by WSF, Figure 4c demonstrates that the SIF‐Ψleaf
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relationship is negative and linear under water‐stressed conditions, with a sub‐daily hysteresis loop (Y. Wang
et al., 2021). This linear relationship provides an opportunity to derive Ψleaf from SIF remote sensing data. To
enhance our understanding of drought responses in plants and ecosystems across multiple spatiotemporal scales,
we need simultaneous sub‐daily monitoring of SPHVs using EO technologies. These span optical (e.g., for SIF,
SSM) (Dupiau et al., 2022; Porcar‐Castell et al., 2021), thermal infrared (e.g., for SIF, SSM) (Paruta et al., 2021),
and microwave (e.g., for VWC, SSM and RZSM) domains (Konings et al., 2019; Zhuang et al., 2020).

Although this type of monitoring may seem complex, current constraints are largely due to the availability of
sensors rather than technological limitations (Damm et al., 2018; Konings et al., 2021; Mohammed et al., 2019;
Novick et al., 2022). Gaining a deeper understanding of sub‐daily drought response and enhancing the monitoring
of SPHVs will pave the way for the development of VaaSS methodologies. Currently, there is no dedicated
spaceborne system designed to systematically observe SPHVs at sub‐daily intervals to capture the dynamic
physiological responses of plants to water stress. However, greenhouse experiments under controlled conditions
have demonstrated the potential of hyperspectral technology to track the daily evapotranspiration cycle (Weksler
et al., 2020), suggesting high spectral, temporal and spectral resolution technology could be used to detect VWC,
and other related variables in the SPAC.

Existing and planned passive microwave radiometers (e.g., AMSR‐E, SMAP, SMOS, CIMR, and AMSR‐3) as
well as active scatterometers (e.g., ASCAT) offer long‐term, near‐daily (1–3 days) coarse resolution (25 km)
observations to monitor the water status of soil‐plant systems at regional scales, including VWC, SSM and
RZSM. Other active microwave sensors (e.g., ROSE‐L), however, provide high spatial resolution (<1 km)
synthetic aperture radar measurements on a weekly basis (Bueso et al., 2023; Frappart et al., 2020; Wigneron
et al., 2021). Recent advancements, such as RapidScat on the International Space Station, have shown the
feasibility of tracking VWC and, consequently, SSM and RZSM dynamics throughout the day (Konings, Yu,
et al., 2017). For SIF, the Orbiting Carbon Observatory 2/3 (OCO‐2/3) have been used to generate SIF data at a
biweekly interval with ∼2 km resolution. Additionally, TROPOMI provides daily SIF observations at a coarser
5 km resolution, which can be further downscaled to 500 m as for the continental United States (Sun et al., 2023).

Therefore, the ability to obtain sub‐daily observations of SPHVs is currently limited more by the orbital con-
figurations of existing sensors than by the inherent sensitivity of optical, thermal, and microwave observations.

Figure 4. (a) The sub‐daily (half‐hourly) variations in leaf water potential (Ψleaf ) and water stress factor (WSF), illustrating
the coordinated variation between leaf water potential and WSF, which is a function of root zone soil moisture and root
length distribution. WSF = 1 means there is no stress, while WSF = 0 means there is no plant‐available water available for
uptake by roots; (b) solar‐induced fluorescence (SIF). (c) The SIF‐LWP relationship under stressed and non‐stressed
conditions. Under stressed conditions (LWP from ca. − 150 to − 300 m), SIF has a negative linear relationship with LWP.
This linear relationship provides an opportunity to derive LWP from SIF remote sensing data.
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This suggests that a geostationary multi‐sensor platform is required to enhance our understanding of drought
responses in the soil‐plant system across various spatial scales, ranging from plant‐level (1–10 m, sub‐daily) to
field‐level (10–60 m, weekly), landscape‐level (60–300 m, weekly‐monthly), and regional‐level (>1 km,
monthly‐annual).

Gaining insights into the soil‐plant system at these scales will support monitoring soil properties from point to
global scales, especially when integrated with soil reflectance measurements from laboratory to airborne
platforms (Francos et al., 2021). Alternatively, a constellation of CubeSats with different daily observation
times and sensors spanning the visible, near‐infrared, shortwave infrared, thermal infrared, and microwave
domains could potentially achieve the necessary spatiotemporal resolutions. To integrate observations across
multiple electromagnetic frequencies for deriving consistent SPHVs at different scales, a process‐based model
linking satellite observations in the visible, near‐infrared, shortwave infrared, thermal infrared, and microwave
domains with above‐ and below‐ground water‐energy‐carbon processes is required (H. Zhao et al., 2022)
(Figures 2 and 3).

6. Toward a Soil‐Plant Digital Twin
6.1. The Digital Twin Approach

Digital twin technology, initially developed for engineering and industry, has now been widely adopted in various
fields, including Earth system science (Bauer, Stevens, & Hazeleger, 2021). A digital twin is essentially a digital
replica of real‐world systems and processes, synchronized at a specified frequency and fidelity using model‐data
fusion techniques to enable the two‐way data/information flows (Tao & Qi, 2019). One notable application of the
digital twin in Earth system science is the European Union's Destination Earth (DestinE) program (Hoffmann
et al., 2023), which seeks to create the most accurate digital replica of our planet by combining ESMs and EO data
with DA techniques, in conjunction with artificial intelligence (e.g., physics‐informed machine learning and deep
learning) (Bauer et al., 2024).

The concept of DTE is rapidly evolving, revolutionizing Earth system science through its multifaceted
approach and advanced digital technologies (Bauer, Dueben, et al., 2021). Its importance is increasingly
acknowledged for its ability to agilely and accurately forecast extreme climate events and predict environmental
impacts (Bauer, Stevens, & Hazeleger, 2021; Bi et al., 2023). At the core of DTE are four main pillars: physics‐
based models, machine learning and deep learning algorithms, data assimilation techniques, as well as the
associated need of digital technologies that facilitate the supercomputing and data‐handling capabilities. The
“knowledge heart” of DTE is the high‐quality science input from the optimal synergy between first‐principle
physics‐based models and EO via data assimilation (X. Li et al., 2023), which create physics‐based reference
and training data for the hybrid physical equation‐data driven DTE system (Bauer et al., 2024; Vance
et al., 2024). The above DTE approach can be generalized to build DTE components, including DTE‐Climate
(Bauer, Stevens, & Hazeleger, 2021), DTE‐Hydrology (Brocca et al., 2024), as well as Digital Twins for other
subsystems/processes, such as, a digital twin of soil‐plant system (Zeng & Su, 2024), or a digital twin of the
soil‐microbiome‐plant continuum.

The integration of digital twin technology in soil monitoring has been limited, and primarily conducted at small
scales (Tsakiridis et al., 2023). However, the rapid expansion of observation data on soil‐plant systems,
including spectro‐microscopy with tomography and multi‐omics (Amelung et al., 2024), hyperspectral imaging
of soil's and plant's electromagnetic reflectance across visible, near‐infrared, and thermal infrared spectra (Ben‐
Dor et al., 2019), and microwave data (Wigneron et al., 2017), has created a vast and rapidly growing re-
pository of soil‐plant data. This wealth of soil‐plant data has established the arena of soil and plant sciences as a
'big data' discipline and opens new possibilities to apply digital twin technology for soil health monitoring. The
use of digital twin technology is anticipated to advance the further development of soil‐plant (hydraulic)
models, as well as soil structure and soil function models by integrating dynamic structural components into the
soil‐plant modeling (Fisher & Koven, 2020; Sullivan et al., 2022). By combining algorithms grounded in
physical, chemical, biological, and ecological principles with big soil‐plant data, we can improve our under-
standing of the soil‐plant system, and soil structure‐function relationships, as well as enable scenario‐based
spatiotemporal projections of soil health for better management practices under current and future environ-
mental conditions.

Reviews of Geophysics 10.1029/2024RG000836

ZENG ET AL. 28 of 48

 19449208, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

G
000836 by T

est, W
iley O

nline L
ibrary on [26/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6.2. Soil Microbial Processes Within a Digital Twin Framework

Recent years have witnessed significant strides in the integration of diverse processes into ESMs (Blyth
et al., 2021). These advancements span various domains, including biogeochemical cycles (Fisher &
Koven, 2020; Yu, Fatichi, et al., 2020), plant hydraulics (Kennedy et al., 2019; Sabot et al., 2020; Y. Wang
et al., 2021), coupled moisture and heat transfer (Garcia Gonzalez et al., 2012; Yu, Zeng, & Su, 2020; Zeng
et al., 2011), freeze‐thaw dynamics (Yu et al., 2018), groundwater flow (Condon et al., 2021) and beyond.

Despite advancements, ESMs continue to lack a thorough depiction of microbial processes, essential for the long‐
term projected responses of soil organic matter and carbon storage to global warming (Wieder et al., 2013, 2015).
This deficiency arises from our incomplete understanding of soil biota distribution and abundance on a global
scale, compounded by the complexity of microbial ecology and the challenges associated with in situ mea-
surements. These factors are essential for conceptualizing and parameterizing biogeochemical model structures
intended to simulate microbial processes explicitly.

A promising avenue for advancing biogeochemical modeling involves integrating microbial community prop-
erties through trait‐based approaches (Fierer, 2017). This approach is viable because trait information can be
observed as phenotypes, such as growth rates, substrate assimilation efficiency, and microbial substrate uptake, or
inferred directly from genomic proxies, such as optimal growth temperatures and minimum generation times
(Reed et al., 2014).

For example, by adhering to fundamental thermodynamic principles (Calabrese et al., 2021), physiological and
biophysical trade‐offs can be quantified as the benefits and costs to an organism for each functional trait. These
trade‐offs govern microbial fitness and trait distributions in both space and time (Lajoie & Kembel, 2019).
Together with these traits and multi‐omics data, microbial models that consider biophysical trade‐offs related to
substrate acquisition, energy generation and stress tolerance can provide tangible predictions of how microbial‐
mediated ecosystem processes, such as carbon‐use efficiency, nitrogen fixation and nitrate reduction, and mi-
crobial biomass turnover, vary through time and space (Sokol et al., 2022).

Despite significant progress in trait‐based microbial models, most soil biogeochemical models still fail to
incorporate the dynamic variations of the physical and chemical soil environment. These fluctuations within the
highly heterogeneous soil microhabitats are pivotal in shaping the distribution and activities of soil microor-
ganisms (Fierer, 2017), yet they remain inadequately linked with microbial processes.

For instance, when plant residues enter the soil system, they are colonized by microbial decomposers under the
presence of favorable conditions for microbial activity, such as soil moisture and temperature. This then initiates a
process where fungal hyphae, microbial metabolites, and root exudates bind soil particles into macro‐aggregates
around POM (Hartmann & Six, 2023). Subsequently, the macro‐aggregated POM undergoes decomposition and
fragmentation, producing smaller micro‐aggregates as well as silt‐clay sized aggregates (Wilpiszeski et al., 2019).
The further decomposition of incorporated organic matter leads to decreased microbial growth and reduced
stability of macro‐aggregates, causing the release of stabilized micro‐aggregates, silt‐clay sized aggregates, and
highly decomposed residual POM.

This macro‐aggregate destruction process is influenced by the availability of decomposable materials and the
“glue” (e.g., EPS) that holds the aggregates together, as well as the micro soil environment (Wilpiszeski
et al., 2019). The microbial processes involved in the life‐cycle of soil aggregates therefore modify “intermediate”
soil properties (e.g., re‐organization and binding of soil particles that affect hydraulic conductivity, micropore
volume, and hydrophobicity), which have soil hydrological consequences on soil water infiltration/retention
capacity, and desiccation/rehydration rates (Philippot et al., 2024).

Therefore, a digital twin of the soil‐microbiome‐plant continuum should integrate soil microbial processes and
their impacts on soil aggregates, as well as the cascade effects on soil hydrological processes. It should capture the
complex interactions between these elements, which ultimately govern ecological processes and soil functions at
landscape and ecosystem scales (Cao et al., 2024; Little et al., 2008). Only with such a mechanistic process‐based
approach, together with the trait‐based landscape genomics method, combined with in‐situ/laboratory mea-
surements, remote sensing observations and data assimilation techniques, microbial processes are then deemed
embedded within a digital twin framework. With the increasing availability of novel and high‐quality geo‐
referenced environmental data from satellites (X. Li et al., 2023; Vance et al., 2024), integrated ecosystem and
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critical zone observatories (Ohnemus et al., 2024; Pastorello et al., 2020), as well as soil (Orgiazzi et al., 2018) and
plant databases (Kattge et al., 2020), and the Earth BioGenome projects (Blaxter et al., 2022; Lewin et al., 2022),
we are now presented with a unique opportunity to realize such a digital twin.

6.3. The Need for a Soil‐Plant Digital Twin

The collection of sub‐daily measurements of soil reflectance and SPHVs across various spatiotemporal scales will
enhance our understanding of drought responses in agricultural and (semi‐)natural ecosystems, as well as the soil
properties at different scales. However, extracting process‐level insights from these measurements requires the
development of a digital twin for the soil‐plant system, encompassing a process‐based model integrated within a
data assimilation framework (Bauer, Dueben, et al., 2021). A soil‐plant digital twin should facilitate a continuous
two‐way data/information flow between the digital replica and the physical system, and should enable users to
interrogate the soil‐plant system with future climate scenarios for scenario analyses and for proposing potential
adaptation and mitigation measures (Zeng & Su, 2024). This soil‐plant digital twin will enable the evaluation of
plant evolution and health, as well as their interactions with soil properties, through the optimal fusion of process‐
based soil‐plant model, multi‐ and hyperspectral, VNIR‐SWIR‐TIR‐MW data from satellite sensors, drone
surveys, and in situ measurements, as well as the application of machine learning algorithms (Su, Zeng,
et al., 2020).

The fundamental characteristics of a soil‐plant digital twin include (Tsakiridis et al., 2023; Zeng& Su, 2024): (a) a
highly precise and high‐fidelity digital replica of the physical soil‐plant system; (b) near‐real‐time accurate
measurements and model predictions; (c) lifecycle data management for both measurements and model simu-
lation results; (d) model‐data fusion to optimally combine observations and models, either by updating the model
system's parameters or states. This 'self‐evolving' nature allows the digital twin to simulate and predict system
states and parameters that progressively align with physical reality; (e) the possibility for interrogation of what‐if
questions and scenario analyses; and (f) computational science and AI‐empowered modeling to support human
interaction with digital twins, transforming complex data into actionable information for decision‐making in a
data/information‐streaming manner (Bauer et al., 2024; Eyring et al., 2024).

A soil‐plant digital twin, fully equipped with soil‐microbiome‐plant continuum processes, is essential because
satellite sensors cannot directly observe belowground soil properties. For instance, optical sensors cannot
penetrate the soil profile, although microwave sensors can capture signals from both soil and vegetation. Remote
sensing (VNIR‐SWIR‐TIR‐MW) signals related to specific soil properties often overlap with those from other
soil or vegetation properties (Figure 2). However, by mathematically modeling soil‐microbiome‐plant continuum
processes and the associated radiative transfer within the soil‐plant system (e.g., scattering, emission, and
reflection processes at the vegetation canopy, within the canopy, on the soil surface, and within the top soil layer),
we can resolve and unmix remote sensing signals (satellite observables) to assess the specific soil and vegetation
properties in question (Lv et al., 2023; Su, Wen, et al., 2020; H. Zhao et al., 2021, 2022).

The integration of the soil‐microbiome‐plant continuum processes with radiative transfer processes connects the
digital model of the soil‐plant system to satellite observations. This linkage between physical soil‐microbiome‐
plant processes and satellite observations is a key aspect of the soil‐plant digital twin, allowing direct assimilation
of remote sensing data into process‐based models, facilitating the two‐way data/information flow. While tradi-
tional point‐based sampling methods are essential and indispensable, they are not cost‐effective for large‐scale
quantification of SHIs. The envisioned soil‐plant digital twin enhances existing soil and plant databases by
integrating multi‐scale observations, ranging from point measurements to air‐ and space‐borne sensor footprints,
offering an innovative approach for monitoring and predicting SHIs with comprehensive spatial and temporal
coverage (Abdulraheem et al., 2023; Zeng & Su, 2024).

7. Conclusions
7.1. Gaps and Opportunities

The physical, chemical, and biological properties of soils play a central role in regulating soil processes,
particularly those related to the soil microbiome and hydrology. These properties shape the formation of soil
structure, which in turn influences soil hydrological and thermal processes. Consequently, soil structure and soil
hydrological process connect pore‐scale water and heat flow, biogeochemical processes, and soil‐root interactions
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to regional landscape land‐atmosphere interactions and global climate cycles (in the form of water, energy, and
carbon cycles) (Vereecken et al., 2022). Climate also plays a significant role in soil formation within an intricate
feedback cycle (Figure 1). It is evident that continuous interactions occur among soil properties, soil‐forming
processes, and land management. Therefore, monitoring soil health extends beyond soil alone and must
include the soil‐plant system, as soil acts as the interface between the atmosphere, biosphere, geosphere, and
hydrosphere.

7.1.1. Soil‐Microbiome‐Plant Continuum and Trait‐Based Approaches

Diverse plant traits in mixed vegetation can shape the abundance and structure of belowground soil microbial
communities, via providing organic matter input as plant litter or root exudates with distinct substrate and energy
resources (Coban et al., 2022). On the other hand, the heterogeneous soil microbiome impacts vegetation by
modulating the bioavailability of soil nutrients for plant growth (Philippot et al., 2024). These interlinkages within
the soil‐microbiome‐plant continuum reflect the mechanistic connection between aboveground and belowground
communities, which have been increasingly recognized as key drivers of soil and ecosystem functions, as well as
their community dynamics (Faucon et al., 2017). It is, therefore, expected that soil microorganisms' community
structure and dynamics can be inferred from measurable environmental characteristics at landscape scales (i.e.,
landscape genomics) (Dauphin et al., 2023; Y. Yang, 2021).

With the revolution of high‐throughput molecular (multi‐omics) technology, the characteristics of soil micro-
organisms can now be measured at the gene/enzyme, genome, guild, and community levels (Lahlali et al., 2021).
Via such “high‐resolution” microbial functional traits, together with enzymes and morpho‐physio‐phenological
traits, as well as the emergence of landscape genomics, we are now at an opportunity edge to apply trait‐based
approach for assessing, understanding, and managing soil health. Nevertheless, achieving this goal requires
sequencing, cataloging, and characterizing soil microbial genomes worldwide. Additionally, comprehensive,
cross‐site analysis of environmental impacts on microbial functional traits and the influence of microbes on
biogeochemical processes is necessary.

7.1.2. Soil Hydrological Processes

To effectively model soil hydrological and biogeochemical processes in the Earth system and gain a better un-
derstanding of the comprehensive interactions between soil properties and Earth system processes, we need to
obtain accurate soil hydraulic, thermal, biological, and gas flow properties. Although state‐of‐the‐art field and
laboratory methods are available to measure these soil properties at specific locations, extending these mea-
surements to a global scale remains challenging. Notably, advancements in DSM have revolutionized the pro-
duction of global soil property maps (Arrouays et al., 2020). These innovations promote more time‐efficient and
cost‐effective soil sampling strategies and analysis methods, enabling more accurate spatiotemporal character-
ization of soil properties and soil health (Panagos, Broothaerts, et al., 2024). Additionally, the growing avail-
ability of remote sensing products for soil co‐variate factors further enhances this capability (G. L. Zhang
et al., 2017).

In recent decades, pedotransfer functions have been developed to link readily available basic soil properties (such
as soil texture, bulk density, and organic carbon content) to hydrothermal and biogeochemical parameters (Van
Looy et al., 2017; Weber et al., 2024) that are essential for estimating water, energy, and carbon cycles in LSMs.
However, significant data gaps hinder the development of seamless multiscale PTFs, from soil profile to global
scale. These functions should account for the influence of variable soil structure and soil management effects over
time, including the occurrence of dual or multimodal pore systems (P. Lehmann et al., 2021). This underscores the
need for stronger collaborations between soil scientists, and global land surface, carbon and climate modelers to
enhance the physical realism of PTFs used in LSMs.

7.1.3. Soil Remote Sensing

From a technological standpoint, remote sensing of soils through image spectroscopy, combined with regional
and global soil spectral libraries, offers significant potential for monitoring soil properties using spectral transfer
functions. However, the application of spectral imagery for soil monitoring faces limitations, such as the need to
perceive soil as a continuous surface and separate vegetation data to extract information from the soil body.
Although soil spectroscopy approaches often treat the vegetation signal as noise, vegetation could potentially
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serve as a root‐zone sensor for gathering information on subsurface soils with the trait‐based approach (Lajoie &
Kembel, 2019). Furthermore, using vegetation as soil sensor is achievable by coupling a process‐based soil‐plant
model with a radiative transfer model, effectively linking the belowground and aboveground processes to satellite
observables across VNIR‐SWIR‐TIR‐MW domains (Zeng & Su, 2024).

7.1.4. Vegetation‐As‐A‐Soil Sensor (VaaSS)

Current remote sensing‐based vegetation indices primarily assess plant structure properties, using greenness
parameters to estimate fAPAR and GPP. These indices focus on foliage and biomass while overlooking the
influence of root zone soil water content on plants' drought responses and soil‐root interactions (Drusch
et al., 2017). Therefore, these vegetation indices alone may not be suitable to be applied to detect below ground
soil properties. Recent advances, however, involve using satellite‐derived SIF as a soil‐plant proxy to understand
photosynthetic changes associated with water‐stress impacts. This approach offers a promising observable that
can be linked to subsurface soil properties (Porcar‐Castell et al., 2021; Y. Wang et al., 2021), particularly when
considering the hydraulic connections across the SPAC continuum.

Remote sensing of soil‐plant hydraulics involves satellite observables across the electromagnetic spectrum
(Figure 2), capturing root zone soil moisture, surface soil moisture, vegetation optical depth, VWC, and SIF.
These observables are interconnected through water potentials across the soil‐plant system, including water
potential in soil, root, stem, and leaf (Figure 3). Advances in remote sensing technologies, such as the use of
microwave sensors to retrieve VWC and the growing availability of in‐situ water potential data for soil, stem, and
leaf, have opened the door to deriving leaf water potential from space (Novick et al., 2022). There is significant
potential to subsequently infer soil water potential from leaf water potential when remote sensing‐based VWC
and leaf water potential are integrated with a process‐based soil‐plant model that explicitly accounts for plant
hydraulics.

Using vegetation as a root zone soil sensor necessitates understanding the multiscale spatiotemporal dynamics of
the soil‐plant system, ranging from the plant level (1–10 m, sub‐daily scale) to the field (10–60 m, weekly scale),
landscape (60–300 m, weekly to monthly scale), and regional (greater than 1 km, monthly to annual scale) scales.
Sub‐daily observations of soil‐plant state and flux variables can reveal plants' immediate physiological responses
to water and nutrient stress (Figures 3 and 4). These soil‐plant processes are crucial for quantifying SHIs,
including metrics related to soil organic carbon content, soil structure, soil biodiversity, landscape heterogeneity,
and forest and woodland area (Panagos, Montanarella, et al., 2022).

7.1.5. Soil‐Plant Digital Twin

A soil‐plant digital twin is essential for linking soil‐plant processes with satellite observations across multiple
spatiotemporal scales. This digital twin enables the monitoring and prediction of soil health evolution across
various scales and local conditions, soil types, and climates. It also allows for exploring “what‐if” scenarios to
assess the impacts of future climate change or sustainable land management strategies on soil health (Bauer,
Stevens, & Hazeleger, 2021). For example, by applying a spatially explicit biogeochemical model, one can
examine the effects of converting global cropland to organic farming with or without the use of cover crops and
plant residue on soil carbon inputs and soil organic carbon content stocks (Gaudaré et al., 2023). Additionally, via
integrating soil‐microbiome‐plant continuum processes with radiative transfer processes, the soil‐plant digital
twin's ability to quantify multiple soil functions concurrently facilitates comprehensive assessments and helps
identify optimized synergies for sustainable soil health tailored to specific local contexts.

7.2. Where Is It Going?

7.2.1. Soil (and Plant) Spectral Libraries

The use of soil spectroscopy to predict soil properties—such as SOC, nitrogen, clay content, mineral composition,
and water retention—is rapidly expanding (Ben‐Dor et al., 2019). This growth is reflected in several global efforts
to develop standardized soil spectral libraries (SSLs), such as the Global SSL by Viscarra‐Rossel et al. (2016), the
Global Soil Laboratory Network initiative on soil spectroscopy (GLOSOLAN‐Spec) (Benedetti and van
Egmond, 2021), and the IEEE AS P4005 working group aimed at defining soil spectroscopy standards and
protocols (Ben‐Dor et al., 2024). Additionally, the Open SSL, created by the Soil Spectroscopy for Global Good
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(SS4GG) (Safanelli et al., 2024), has contributed significantly to these advancements. The LUCAS SSL also
plays a key role in supporting these global initiatives (Jones et al., 2020). Despite the proven success of spectral
measurements in characterizing soil properties, the potential to develop corresponding plant spectral libraries has
largely been overlooked by the soil research community.

Plant spectroscopy can estimate various traits across spectral domains (Hank et al., 2019; Jacquemound &
Ustin, 2019; Verrelst et al., 2023). In the VIS spectral region, it captures biochemical leaf traits, such as
photosynthetic pigments like chlorophyll and carotenoids. In the NIR region, it provides insights into ecophys-
iological processes (e.g., light use efficiency) and structural information (e.g., biomass, leaf orientation, plant
density). The SWIR region can detect NPV traits of senescent materials, such as cellulose, lignin, and proteins,
while VWC is assessed between the NIR and SWIR domains. The plant spectra reflect plant vigor, which is highly
sensitive to root‐zone soil conditions (Philippot et al., 2024). This means that any changes in soil conditions, such
as fluctuations in nutrient inputs or contamination, are manifested in the plant's biochemical, biophysical, and
structural traits, which, in turn, alter the reflectance spectra.

For example, Belgiu et al. (2023) successfully estimated nutrient concentrations in crop grains before harvest
using PRISMA and Sentinel‐2 spectral imagery. However, nutrient accumulation in grains is governed by
multiple processes and factors, including soil nutrient uptake, soil water status, internal plant transport, storage,
and remobilization from vegetative tissues during senescence. A forward model that mechanistically links these
soil‐plant interactions with reflectance spectra could enhance the application of vegetation remote sensing to infer
soil physicochemical and biological properties. The recent proliferation of hyperspectral sensors in space
(Section 4.4) offers new opportunities for advancing soil health monitoring by incorporating plant spectral data
into future soil surveys. This potential is enhanced by the development of the Open Plant Spectral library ‐
Ecological Spectral Information System (Wagner et al., 2018) and the development of SpecNet (Spectral
Network), which connects optical measurements with flux sampling worldwide (Gamon & Rahman, 2012).

7.2.2. Embracing the Digital Twin Approach

The future of soil health monitoring is shifting toward a more holistic and integrative approach, encompassing not
only soil properties but also the interactions and feedbacks within the soil‐microbiome‐plant continuum. Ad-
vancements in molecular technologies (multi‐omics) (Bernatchez et al., 2024) and trait‐based approaches are
revolutionizing our ability to understand soil health by providing insights into microbial functional traits and soil‐
plant interactions (Labouyrie et al., 2023; Lausch et al., 2016). The development of landscape genomics (Dauphin
et al., 2023) allows us to infer microbial community dynamics from environmental characteristics, offering an
opportunity to bridge the gap between laboratory‐based microbial studies and real‐world landscape‐scale pro-
cesses (Martin & van der Heijden, 2024). However, to fully harness these advancements, there is a need for global
cataloging of microbial genomes (Blaxter et al., 2022; Lewin et al., 2022), as well as cross‐site analyses that can
link microbial functional traits to biogeochemical processes, enabling more precise management of soil health.

Furthermore, to advance our understanding of soil‐plant hydraulics and its interactions with microbial processes,
and other above‐ and below‐ground ecophysiological dynamics, it is crucial to bridge the gap between soil and
plant databases. For example, existing SSLs and soil databases should actively integrate global plant databases,
such as the TRY plant trait database (Kattge et al., 2020), and new initiatives like the PSInet soil‐plant water
potential network (Novick et al., 2022). By connecting these resources, we can develop a more comprehensive
framework for understanding soil‐plant‐microbe interactions, leading to more accurate and comprehensive un-
derstanding of soil health.

The expanding variety of data sources, ranging from in‐situ measurements to remote sensing and modeling,
provides extensive insights into characterizing the soil‐microbiome‐plant continuum. The comprehensive un-
derstanding of soil health requires integrating these diverse data streams. This can only be achieved by combining
space‐based observations with complementary ground‐based and airborne measurements, whether through
dedicated campaigns (Orgiazzi et al., 2018) or long‐term networks (Ohnemus et al., 2024; Pastorello et al., 2020),
and leveraging process‐based models, including AI/ML approaches and digital twins, to handle increasing data
volumes and finer spatiotemporal and spectral resolutions (Eyring et al., 2024). Notably, process‐based modeling
is crucial for understanding soil health, as it allows us to infer “unobservable” soil properties from EO through
physically consistent frameworks like soil‐plant digital twins (Zeng & Su, 2024).
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Leveraging the soil‐plant digital twin throughout the “measure‐understand‐predict‐decide‐act cycle” is essential
for transforming data and knowledge into actionable information for various stakeholders, such as policymakers,
farmers, land managers, non‐profit organizations, and agribusinesses. To achieve this, modern, agile, and
powerful open infrastructures, grounded in the FAIR principles (Findability, Accessibility, Interoperability, and
Reusability) alongside Open Science and Open Innovation (European Space Agency, 2024), as well as the AI‐
empowered hybrid approach (physics‐informed ML) for faster and accurate modeling (Eyring et al., 2024),
serve as critical enablers (Liakos & Panagos, 2022).

Appendix A

Table A1
List of Abbreviations Used in the Paper, Along With Their Explanations and Full Spellings.

Abbreviations Explanations and full spellings

1D‐ICZ The one‐dimensional Integrated Critical Zone model

AggModel A simulation model connecting soil aggregate dynamics with
SOM dynamics

AMF Arbuscular mycorrhizal fungi

BODIUM A soil model simulating soil function dynamics under agricultural
management

BRNS Biogeochemical Reaction Network Simulator

C:N Carbon versus nutrient ratio

CAM Cellular Automaton Model

CAP Common Agriculture Policy

CAST Coupled Carbon, Aggregation and Structure Turnover model

CbM Checks by monitoring

CHIME Copernicus Hyperspectral Imaging Mission for the Environment

CMIP6 Coupled Model Intercomparison Project Phase 6

DA Data Assimilation

DEM Digital Elevation Model

DestinE Destination Earth

DNA Deoxyribonucleic acid

DSM Digital Soil Mapping

DTB Depth to bedrock

DTE Digital Twin Earth

EC European Commission

EMF Ectomycorrhizal fungi

EMIT Earth Surface Mineral Dust Source Investigation

EnMAP Environmental Mapping and Analysis Program

EO Earth Observation

EPS Extracellular polymeric substances

ESA European Space Agency

ESM Earth System Model

EU European Union

EUSO EU Soil Observatory

F:B Fungi versus bacteria ratio

FAO Food and Agriculture Organization of the United Nations (FAO)

fAPAR Fraction of Absorbed Photosynthetically Active Radiation
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Table A1
Continued

Abbreviations Explanations and full spellings

FLEX Fluorescence Explorer

GEA Genotype‐environment associations

GPP Gross Primary Production

HISUI Hyperspectral Imager Suite

HYDRUS‐1D It is a public domain software, simulating water flow, solute and
heat transport in one‐dimension

IS Image Spectroscopy

ISMC International Soil Modeling Consortium

ISS International Space Station

ITPS The Intergovernmental Technical Panel on Soils

LAI Leaf Area Index

LAPSUS Landscape Process Modeling at Multi‐dimensions and Scales

LSM Land Surface Model

LSTM Land Surface Temperature Monitoring Mission

LUCAS Land Use/Cover Area Frame Survey

LWP Leaf Water Potential

MICP Microbially induced carbonate precipitation

MW Microwave

MWIR Mid‐wave and thermal infrared

NAPESHM North American Project to Evaluate Soil Health Measurements

NDVI Normalized Difference Vegetation Index

NDVI Normalized Difference Vegetation Index

NPV Non‐Photosynthetic Vegetation

PGPR Plant growth–promoting rhizobacteria

pH Potential of hydrogen, a logarithmic scale used to specify the
acidity

POM Particulate organic matter

PRISMA PRecursore IperSpettrale della Missione Applicativa

PROSUM PROductivity and SUccession Model

PSD Particle Size Distribution

PTFs Pedotransfer functions (PTFs)

REWT Root Exudation in Watershed‐Scale Transport

RTM Radiative Transfer Modeling

RZSM Root Zone Soil Moisture

SAFE An integrated process‐oriented forest model for long‐term
sustainability assessments

SAR Synthetic Aperture Radar

SBG Surface Biology and Geology

SCOPE Soil Canopy Observation of Photosynthesis and Energy fluxes

SHI Soil Health Indicators

SIF Solar‐induced chlorophyll fluorescence

SoilGen It is a (1‐D) simulation model for the study of pedogenesis

SOM Soil organic matter

SPAC Soil plant atmosphere continuum
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Data Availability Statement
Data in Figure 4 is available from Y. Wang et al. (2021), the software used for generating this data is available on
Github: https://github.com/EcoExtreML/STEMMUS_SCOPE.
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Abbreviations Explanations and full spellings

SPHVs Soil‐Plant Hydraulics Variables

SSL Soil Spectral Libraries

SSM Surface Soil Moisture

STEMMUS Simultaneous Transfer of Energy, Momentum, and Mass in
Unsaturated Soil

STF Spectral Transfer Functions

SWIR Short Wave Infrared

TIR Thermal Infrared

USDA‐NRCS U.S. Department of Agriculture Natural Resource Conservation
Service

USSF Uppsala model of Soil Structure and Function

VaaSS Vegetation as a soil sensor

VI Vegetation Indices

VNIR Visible and Near Infrared

VOD Vegetation Optical Depth

VSWIR Visible to Shortwave Infrared

VWC Vegetation Water Content

WoSIS World Soil Information Service

WSF Water Stress Factor
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