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Abstract
Intraclass correlation coefficients (ICCs) are a commonly used metric in test–retest reliability research to assess a measure’s 
ability to quantify systematic between-subject differences. However, estimates of between-subject differences are also influ-
enced by factors including within-subject variability, random errors, and measurement bias. Here, we use data collected from 
a large online sample (N = 150) to (1) quantify test–retest reliability of behavioural and computational measures of reversal 
learning using ICCs, and (2) use our dataset as the basis for a simulation study investigating the effects of sample size on 
variance component estimation and the association between estimates of variance components and ICC measures. In line with 
previously published work, we find reliable behavioural and computational measures of reversal learning, a commonly used 
assay of behavioural flexibility. Reliable estimates of between-subject, within-subject (across-session), and error variance 
components for behavioural and computational measures (with ± .05 precision and 80% confidence) required sample sizes 
ranging from 10 to over 300 (behavioural median N: between-subject = 167, within-subject = 34, error = 103; computational 
median N: between-subject = 68, within-subject = 20, error = 45). These sample sizes exceed those often used in reliability 
studies, suggesting that sample sizes larger than are commonly used for reliability studies (circa 30) are required to robustly 
estimate reliability of task performance measures. Additionally, we found that ICC estimates showed highly positive and 
highly negative correlations with between-subject and error variance components, respectively, as might be expected, which 
remained relatively stable across sample sizes. However, ICC estimates were weakly or not correlated with within-subject 
variance, providing evidence for the importance of variance decomposition for reliability studies.

Keywords  Reliability · Test retest · Sample size · Reinforcement learning · Computational modelling · Reversal learning · 
Cognitive flexibility

Introduction

The study of learning and decision-making processes in 
psychology and neuroscience research typically relies on 
the use of conditioning tasks to assay behaviour. These 
include instrumental conditioning tasks where subjects 

learn associations between actions and outcomes, such as 
pulling a slot machine lever and winning money, through 
experience. These associations either increase or decrease 
the likelihood of a given action being made in the future, 
depending on whether the outcome was rewarding or pun-
ishing. However, these associations also need to be updated 
flexibly for an individual to respond adaptively to dynamic 
and changing environments. Supporting this flexible updat-
ing of action–outcome associations relies on cognitive flex-
ibility. Cognitive flexibility, broadly defined, is a complex 
competence that enables the maintenance of a given goal 
(such as winning money) while appropriately updating 
the required actions to achieve that goal (Dajani & Uddin, 
2015), by identifying, selecting, and executing the optimal 
response strategy (Yu et al., 2019).

A commonly used measure of cognitive flexibility is 
the reversal learning task (Izquierdo et al., 2017). In this 
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task, actions are associated with differing probabilities of 
rewards and/or punishments. These varying probabilities 
mean that different actions will, on average, have outcomes 
that make them more or less favourable than other actions. 
During the task, the probabilities associated with the avail-
able actions change such that previously favourable actions 
become less favourable, and vice versa. When this occurs, a 
cognitively flexible agent shifts action selection towards the 
newly favourable and away from the previously favourable 
outcomes to maintain goal-directed behaviour (assuming the 
agent’s goal is to maximise gains). Performance in the rever-
sal learning task can be indexed using summary measures 
of behaviour, such as choice accuracy, reaction time, and 
the pattern of win–stay/lose–shift behaviour, or by deriv-
ing latent descriptors of performance using computational 
modelling. For these latter indices, reinforcement learning 
models can be fitted to choice behaviour to estimate param-
eters that describe features of behaviour, such as the rate of 
learning, or to what degree behaviour is driven by estimates 
of expected value.

The reliability of reversal learning behaviour has been 
previously reported in several papers using behavioural and 
computational modelling (Schaaf et al., 2023; Waltmann 
et al., 2022), in schizophrenia (Reddy et al., 2016), and using 
functional magnetic resonance imaging (Freyer et al., 2009). 
At the group level, reversal learning performance has been 
shown to produce reliable activation in regions of prefrontal 
and parietal cortices and the cingulate gyrus (Freyer et al., 
2009), and reliable behavioural effects in both individuals 
with schizophrenia (Reddy et al., 2016) and healthy non-
clinical populations (Schaaf et al., 2023; Waltmann et al., 
2022). However, there appears to be less agreement in the 
current literature about the reliability of parameters derived 
using computational modelling.

Two recent studies are particularly pertinent to this issue, 
both exploring the test–retest reliability of computational 
model parameters, but drawing somewhat different con-
clusions. Waltmann et al. (2022) assessed the reliability 
of behavioural and computationally derived measures of 
performance during reversal learning. They used several 
approaches, including the calculation of intraclass cor-
relation coefficients (ICCs), split-half reliability, variance 
decomposition, and simulation work. Behavioural measures 
of performance (e.g., reaction time, accuracy, stay behav-
iour, and perseveration) had good to excellent reliability 
(based on ICC and correlation coefficients). Waltmann et al. 
(2022) also used variance decomposition to demonstrate that 
some behavioural measures (such as accuracy and staying 
after losses) had high between-subject variability while oth-
ers (such as reaction time measures) had high within-subject 
variability. Similarly, parameter estimates from the best-fit-
ting computational model were found to have good to excel-
lent reliability. Schaaf et al. (2023) assessed the reliability 

of behaviour and computational measures of performance 
during both a reversal learning and a two-armed bandit task. 
Using the same ICC coefficient interpretations as Waltmann 
et al. (2022), Schaaf et al. (2023) found fair reliability for 
accuracy and lose–shift behaviour and good reliability for 
win–stay behaviour in the two-armed bandit task. Addition-
ally, Schaaf et al. (2023) found good reliability for accu-
racy and lose–shift behaviour and excellent reliability for 
win–stay behaviour in the reversal learning task. Schaaf 
et al. (2023) also found that parameter estimates showed 
good identifiability (meaning equivalent likelihoods cannot 
be produced by different sets of parameter estimates during 
fitting (Gershman, 2016)) for simulated behaviour but not 
for human subject data. Thus, this suggests that although 
computational models can recover parameters reliably 
when behaviour is truly stable (i.e., generated by an artifi-
cial agent), they struggle with behaviour from real subjects, 
which is variable and influenced by context. Indeed, Schaaf 
et al. (2023) also demonstrate that momentary mood can 
influence model parameters estimated from behaviour, with 
happiness and stress being associated with decreased and 
increased sensitivity to negative feedback, respectively, in 
the two-armed bandit task.

ICCs are widely used in reliability studies as an indica-
tor of a method’s ability to measure systematic differences 
between subjects. However, a method’s ability to capture 
systematic differences between subjects is influenced by 
factors including within-subject variability, random errors, 
and measurement bias (Liljequist et al., 2019). Generally, 
an ICC is calculated by taking the ratio of between-subject 
variance and the total amount of variance for a given meas-
ure (McGraw & Wong, 1996). However, because an ICC is 
a ratio, the individual contributions of variance components 
to the overall coefficient cannot be accounted for. A second 
limitation for only using ICCs to determine reliability is that 
ICC calculations are more heavily influenced by increases 
in between-subject variance than session variance effects 
(Barnhart et al., 2007, 2016; Gorgolewski et al., 2013). 
Therefore, stable between-subject effects over time are 
essential to minimise disproportionate biasing of ICC esti-
mates. Variance decomposition, by contrast, keeps the vari-
ance of a given measure in its composite parts; in the case of 
ICC(A,1), this includes measures of within-subject session 
variance, between-subject variance, and error variance.

Waltmann et al. (2022) used variance decomposition to 
demonstrate that some behavioural measures (such as accu-
racy and staying after losses) and some computational model 
parameters (learning rate) had high between-subject variabil-
ity, while others (such as reaction time measures and reinforce-
ment sensitivities for wins and losses) had high within-subject 
variability. Schaaf et al. (2023) did not use variance decom-
position to assess the reliability of their computational mod-
elling parameters, but they measured subjects’ mood at each 
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time point and found some evidence that changes in mood can 
explain within-subject variability in some model parameters.

Important factors to consider when assessing the reliabil-
ity of a variable are the precision and accuracy of the metric 
used to quantify its variability. One factor that influences pre-
cision and accuracy is sample size, with smaller sample sizes 
generally producing less precise estimates of reliability (Chen 
et al., 2023; Clarke & Wheaton, 2007; Maas & Hox, 2004, 
2005; Neubauer et al., 2020). Previous work has also suggested 
that the precision of variance component estimates can be 
improved by increasing sample size (Paccagnella, 2011), and 
increasing sample sizes can reduce bias in estimates of reli-
ability measures within subjects (Neubauer et al., 2020). Here, 
we present results on the reliability of reversal learning using a 
sample size larger than in previous reports (Freyer et al., 2009; 
Reddy et al., 2016; Schaaf et al., 2023; Waltmann et al., 2022).

To complement previous research, we firstly replicate 
the analytical pipeline of Waltmann et  al. (2022) using 
data from a large sample of subjects (N = 150) on a similar 
reversal learning task. We then build upon previous research 
by investigating the effect of sample size on estimates of 
reliability using synthetic datasets based on the statistical 
properties of the collected “ground truth” data. To pre-empt 
our results, our replication analysis showed that behavioural 
variables and computational modelling parameters had simi-
lar reliability patterns to Waltmann et al. (2022) as assessed 
using ICCs. We then used simulation to investigate the 
effects of sample size on estimates of variance components, 
and the association between these variance components and 
ICC values. We generated synthetic datasets based on the 
underlying distributions and associations between sessions 
from our collected data. We generated 1000 synthetic data-
sets with a sample size of 300 for each task performance 
measure. For each synthetic dataset we calculated estimates 
of variance components and ICC measures at each sample 
size from 10 to 300. We then determined at what sample 
sizes the proportions of variance components stabilised in 
our synthetic dataset, based on our ground truth data. Our 
results show that the critical sample size for stable estimates 
of variance components for our task performance measures 
change as a function of the level of precision (half-width) 
and confidence (point of stability percentile). Stable esti-
mates of variance components required sample sizes ranging 
from 10 to over 300 participants (behavioural median N: 
between subjects = 167, within subjects = 34, error = 103; 
computational median N: between subjects = 68, within 
subjects = 20, error = 45) with ± 0.05 precision and 80% 
confidence, which exceeds sample sizes typically observed 
in test–retest research. Thus, our results suggest that a larger 
than usual sample size (and/or data density) is required to 
accurately estimate variance components and, in turn, infer 
reliability.

Methods

Subjects

The Prolific online recruitment platform (https://​www.​proli​
fic.​co/) was used to enrol eligible subjects (filters described 
in supplementary materials) in this study over two waves 
(wave 1: August–September 2021; wave 2: March–April 
2022). A total of 251 subjects completed the experiment in 
the first part of the study. After the first phase, two subjects 
were excluded because they failed instructional attention 
check questions, and 14 were excluded because they failed 
nonsensical attention check questions or careless/insuf-
ficient effort (C/IE) responding checks (further described 
below). A total of 222 subjects completed the second part 
of the experiment. After the second phase, one subject was 
excluded because they failed instructional attention check 
questions, and eight were excluded because they failed non-
sensical attention check questions or the C/IE responding 
checks. The mean interval between the two sessions was 
12.53 days (SD = 1.89, range = 11.45–22.25 days). Lastly, 
we used a binomial test to identify 58 subjects performing 
at or below chance level in the reversal learning task in at 
least one session, and excluded them from further analy-
ses (Zorowitz et al., 2023). Our final sample used for sta-
tistical analysis included 150 subjects (mean age = 35.450, 
SD = 13.30, range = 19–73, female = 97), and demographic 
information for these participants is summarised in Table 1.

Subjects who successfully completed the first phase of 
the study were reimbursed £1.75 for their time, framed as 
a basic pay rate of £1.25 plus a 50p bonus based on their 
performance in the reversal learning task. This was done to 
maximise the likelihood that subjects would remain focused 
while completing the task. Subjects who successfully com-
pleted the second phase of the study were reimbursed £2.50 
for their time, framed as a basic rate of £1.25 plus a perfor-
mance bonus of £1.25. This payment bonus was larger dur-
ing the second phase of the study than the first to encourage 
subjects to complete both parts of the study. This study was 
approved by the research ethics committee of the University 
of Reading (2021–50-AC).

Reversal learning task

Task overview

Subjects were presented with two visually distinguishable 
abstract stimuli that would appear randomly on screen, one 
left of centre, and one right of centre. Subjects selected one 
of these stimuli by pressing the ipsilateral arrow key on their 
keyboard. Subjects were given up to two seconds to make 
a valid choice response. After stimulus selection, subjects 

https://www.prolific.co/
https://www.prolific.co/
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were presented with the outcome of their choice. Choice out-
comes were either the gain or loss of a single point. Initially, 
one stimulus was randomly assigned as the “correct” stimu-
lus. Selection of the correct stimulus meant subjects had a 
75% chance of gaining a point and 25% chance of losing a 
point. The “incorrect” stimulus had the inverse probabilities 

for gains and losses. Outcomes for the correct and incor-
rect stimuli were pseudorandomised, so the assigned out-
come probabilities were true over contiguous blocks of four 
trials. Subjects experienced nine reversals during the task, 
with each reversal occurring every 15 ± up to 3 trials (uni-
form distribution). At the point of reversal, the identity of the 

Table 1   Demographic information for the participants included in this study

Mean SD Min Max

Age 35.45 13.30 19 73
Prolific approvals 511.27 442.50 32 2672

Range Frequency
Age 19–25 43

26–39 59
40–59 39
60–75 8
NA 1

Sex Male 53
Female 97

Student No 106
Yes 32
NA 12

Prolific approvals 0–100 15
101–200 20
201–300 24
301–400 17
401–500 18
501–750 23
751–1000 16
1001–1500 11
1501–2000 4
2001–2500 0
2501–3000 2

Prolific rejections 0 57
1 42
3 13
2 25
4 8
6 2
5 3

Country of residence United Kingdom 143
Portugal 3
Greece 3
Poland 1

Employment status Full-time 74
Not in paid work 13
Other 10
Part-time 28
Unemployed (and job-seeking) 10
Due to start a new job within the next month 2
NA 13
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correct stimulus was changed, such that the correct stimu-
lus became the incorrect stimulus and vice versa. If subjects 
did not make a valid choice response within the two-second 
time limit, then they were told they were too slow, and lost 
a single point. Subjects completed 150 trials of the rever-
sal learning task. This task was created using the JavaScript 
library jsPsych (https://​www.​jspsy​ch.​org/) version 6.1.0, and 
custom JavaScript code (Fig. 1). The JavaScript code for run-
ning the task is available in the following GitHub repository: 
(https://​github.​com/​bwill​iams96/​SR_​Online_​task). Testing 
was hosted on the Gorilla online platform (https://​goril​la.​sc).

Careless/insufficient effort responding checks

The reversal learning task included automated careless/
insufficient effort (C/IE) responding checks that terminated 
the task prematurely if met. These conditions were (1) not 
making a valid choice over five consecutive trials, or (2) not 
making a valid choice for over 5% of the total number of 
trials. As part of the study, subjects completed the 12-item 
version of the Intolerance of Uncertainty Scale (Carleton 
et al., 2007) (data not reported here). To check for C/IE, 
we added two instructional attention check questions and 
one infrequency attention check question (see supplemen-
tary materials), following best practice guidelines for online 
research (Huang et al., 2015; Zorowitz et al., 2023). Subjects 
were made explicitly aware of the use of attentional checks, 
and that their responses to the Intolerance of Uncertainty 
Scale questions would not influence their bonus payment.

Behavioural measures

Behavioural measures of task performance were derived 
from choices made in the reversal learning task. Accuracy 
is the probability of selecting the “best” (most likely to 
be rewarding) choice on trial n, regardless of whether a 
reward was obtained or not. Perseveration is a measure of 
persistence in choosing the previously “best” choice after 
reversal, and is defined as the probability of selecting the 
“worst” (least likely to be rewarding) choice on trial n, 
after receiving two losses when making that choice fol-
lowing a reversal. Stay/switching behaviour is determined 
as the probability of making the same choice as on the 
previous trial, and is defined as the probability of staying 
both overall and after either a win or loss on the previ-
ous trial. Reaction time is defined as the amount of time 
the participant took to make a choice on trial n and, like 
staying behaviour, is calculated both overall and whether a 
win or loss was experienced on the previous trial. We also 
calculated the difference in reaction time following a win 
and loss (win RT − loss RT). Behavioural measures were 
calculated using (1) simple means (referred to as “mean”), 
estimated from mixed-effects logistic/linear (dependent on 
whether the variable was binary) regression models that 
either (2) calculated estimates for each session using sepa-
rate regression models (referred to as “separate”), or (3) 
calculated estimates for each session using a single model 
which explicitly modelled the effect of session (referred 
to as “joint”).

Fig. 1   Reversal learning task overview. Subjects completed 150 tri-
als. On each trial they were presented with two abstract stimuli, one 
of which was associated with reward on 75% of trials, and the other 
on 25% of trials (true over consecutive blocks of four trials). After 

subjects made their choice, they received either reward (+ 1 point) or 
punishment (− 1 point). The assigned reward probabilities reversed 
nine times during the task, and this reversal occurred every 15 ± up to 
3 trials, based on a uniform distribution

https://www.jspsych.org/
https://github.com/bwilliams96/SR_Online_task
https://gorilla.sc
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Computational modelling

Overview

Reinforcement learning models, which are commonly used 
for modelling reward learning tasks, were fitted to reversal 
learning behaviour, replicating the methods of Waltmann 
et al. (2022). We fit two families of models, differentiated 
by how the expected value determined choice. The first fam-
ily used an inverse temperature parameter (β) in the softmax 
choice function to define choice stochasticity by determin-
ing the steepness of the softmax function. The second fam-
ily used a reinforcement sensitivity parameter (ρ) to deter-
mine the maximum difference in expected values between 
choices, placing a lower bound on choice stochasticity. To 
determine the best-fitting model within each family, we fit-
ted a range of models with combinations of parameters that 
are commonly used in the reinforcement learning literature. 
Models had either a single inverse temperature (β)/sensitiv-
ity parameter (ρ) or separate inverse temperature ( �win∕loss)/
sensitivity parameters ( �

win∕loss ) for wins and losses.
Expected values for actions were updated using predic-

tion errors 
(

�t − Vk
t

)

 , the difference in value of the actual 
(λ) and expected outcome ( V  ) of action k on trial t  ( Vk

t
 ). 

The rate of expected value updating was captured by the 
learning rate, with models having either a single learn-
ing rate ( � ) or separate learning rates for wins and losses 
( �+∕− , dual learning rate models). Models either updated 
the expected value of only the chosen action (single update 
models) or of both the chosen and unchosen actions (dual 
update models) using the inverse outcome for updating the 
unchosen action. The dual update models were fitted with 
and without a discount weight ( � ) for the unchosen action. 
An in-depth explanation of model variants can be found in 
the supplementary materials.

Model fitting

Our model fitting replicated the approach taken by Waltmann 
et al. (2022). Briefly, each model described in the previous 
section was fitted to the data with one of three estimation 
methods, maximum likelihood (ML), maximum a posteriori 
estimation with uninformative priors (MAP0), and maximum 
a posteriori estimation with empirical priors inferred from 
the multivariate distribution of parameter estimates across 
subjects (expectation–maximisation [EM]). The best-fitting 
model for each family was determined using the integrated 
Bayesian information criterion (iBIC) from the EM fitting 
approach, with a lower iBIC indicating a better model fit 
(Huys et al., 2011, 2012; Waltmann et al., 2022).

Synthetic dataset generation and reliability assessment

We firstly replicated the ICC, correlational, split-half, and 
variance decomposition-based reliability assessment of 
behavioural and computational measures as reported by Walt-
mann et al. (2022) (for a detailed overview see supplementary 
materials and the original publication). We assessed the effect 
of sample size on components of between-subject, within-
subject session, and error variance for our behavioural and 
computational modelling measures of task performance ( X ). 
To do this, we used a regression-based approach to generate 
statistically related and plausible synthetic two-session data 
based on the underlying statistical properties of our collected 
data (Fig. 2). Firstly, we regressed session 2 measures of task 
performance ( X2 ) onto session 1 measures ( X1 ), then extracted 
the residuals ( e ) from this regression for each participant. We 
used histograms to estimate the probability density function 
of our task performance measure in session 1 and the residu-
als from the regression model, using the Freedman–Diaconis 
estimator (a robust estimator that accounts for data variability 

1. Regress session 2 data onto 
session 1 data

2. Calculate residuals from regression 
model

3. Calculate best fitting distribution for 
session 1 data and residuals from 

regression model 

4. Generate a random sample for 
session 1 data ( 1 ) and residual ( ) 

from best fitting distributions

5. Take intercept ( ) and scalar ( ) from regression model, plus randomly sampled data for session 1 ( ) and the 
residual ( ) to generate statistically related two-session synthetic data: 

Fig. 2   Regression-based method for generating plausible, statistically related two-session synthetic data from our “ground truth” behavioural 
data
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and sample size) to determine the optimal number of bins. 
We used the Fitter Python package (Cokelaer et al., 2024) to 
identify the best-fitting probability distribution function and 
calculated its parameters (from the 80 available in SciPy using 
sum of squares error as the fitting metric) for our task perfor-
mance measure in session 1 ( X1 ) and the residuals ( e ) from the 
regression model. We then drew n random samples from the 
probability distribution functions of task performance meas-
ure in session 1 ( X1synth ), and the residuals from the regression 
model ( esynth ). Lastly, we took the intercept ( �0 ) and scalar ( �1 ) 
coefficients from regressing our task performance measure 
from session 2 onto session 1, and generated session 2 values 
using the following equation: X2synth = �0 + �1X1synth + esynth . 
We used this regression-based approach to generate 1000 syn-
thetic datasets with sample sizes of n = 300.

For each synthetic dataset we iterated through sample 
sizes ranging from 10 to 300 and calculated variance com-
ponents and ICC(A,1) values. We used the following for-
mulae to calculate components of between-subject, within-
subject session, and error variance. Between-subject 
variance was calculated as Between =

k

n−1

∑n

i=1

�

xi − x
�2 , 

where k is the number of sessions and n is the number of 
subjects. Within-subject session variance was calculated as 
Within =

n

k−1

∑k
j=1

(xj − x)
2 . Error variance was calculated as 

Error =
SS−(n−1)MSr−(k−1)MSc

(n−1)(k−1)
 , where SS is the total sum of squares, 

MSr is the between-subject variance, and MSc is the within-
subject session variance. We then corrected within-subject 
session variance to control for varying sample sizes by mul-
tiplying Within by k

n
 (as is the case when calculating 

ICC(A,1)), and normalised variance components so they 
summed to one. Lastly, we calculated ICC(A,1) for each 
synthetic dataset. This reliability assessment procedure was 
carried out using our three methods for estimating behav-
ioural measures of task performance and the computational 
model parameter estimates from the best-fitting model. 
ICCs were interpreted following guidelines from Cicchetti 
(1994; but also see Gell et al., 2023, for an overview of how 
even a small change in reliability can affect accuracy), with 
poor:  ICC < 0.4;  fa i r :  0 .4  ≤ ICC < 0.6;  good: 
0.6 ≤ ICC < 0.75; excellent: 0.75 ≤ ICC.

To test whether the effect of sample size on variance 
component estimates changed as a function of between-
session variance, we also generated synthetic datasets with 
noise added to the session 2 estimates. To ensure noise 
was equally scaled across measures, we first generated sta-
tistically related two-session data as above (Fig. 2), then 
z-scored the data from the two sessions (mean = 0, SD = 1) 
and added Gaussian noise to values from session 2 sampled 
from a normal distribution (mean = 0) with varying levels 
of noise (SD = [0.25, 0.5, 1, 1.5, 2]). Finally, values for 
both sessions were reverse z-scored. Using this procedure 

we generated 1000 independent synthetic datasets with 
sample sizes of n = 300 for each behavioural and computa-
tional modelling variable, for each noise level (SD = [0.25, 
0.5, 1, 1.5, 2]).

To determine the critical sample size at which variance 
component estimates stabilised, we determined the point 
of stability using the method described by Schönbrodt and 
Perugini (2013). The point of stability was determined 
based on two values. These were the parameters g, which 
was the ground truth of a given measure, and w, which 
was the half-width of a corridor of stability around g, 
(CoS = g ± w). Here, g was defined using variance com-
ponent proportions calculated from our observed data col-
lected from participants, and we had corridors of stability 
with half-widths w = [0.025, 0.05, 0.75, 0.1, 0.15, 0.2]. 
The point of stability was defined as the smallest sample 
size in a vector of values (in our case these were variance 
component estimates for sample sizes ranging from 10 
to 300 for one iteration of our simulation) from which 
all subsequent sample sizes had values that fell within 
the defined corridor of stability. This procedure was per-
formed for each synthetic dataset for each variance compo-
nent, meaning a distribution of points of stability could be 
generated. Critical sample sizes were then calculated for 
a given percentile (here, we use 80th, 90th and 95th per-
centiles) of the distribution of points of stability(Fig. 3). 
If a vector of variance components never stabilised within 
the corridor of stability then the point of stability was 
defined as the maximum sample size (300), while a vec-
tor of variance components that never deviated outside 
the corridor of stability had the point of stability defined 
as the minimum sample size (10), as in Schönbrodt and 
Perugini (2013). We determined critical sample sizes for 
our synthetic datasets that were generated both with and 
without additional Gaussian noise (Figs. 4, 5 and 6).

Results

Reversal learning performance reliability

First, we assessed reversal learning task performance using 
data collected from our participants. Behavioural perfor-
mance in the reversal learning task was measured using 
accuracy, perseveration, staying behaviour (making the 
same choice on trial t as t − 1), and reaction time. Sim-
ple means and regression models were used to estimate 
behavioural measures from trial-wise measures; both a 
separate regression model for each session (separate) 
and a single model which explicitly estimated the effect 
of session (joint) were used. Accuracy, perseveration, 
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and stay behaviour were calculated as proportions, while 
reaction time measures were calculated in milliseconds. 
Summary statistics for mean, standard deviation, and 
range are presented in Table 2 for all behavioural esti-
mates. Overall, behavioural estimates of task perfor-
mance show small but statistically significant increases 
in performance between sessions 1 and 2 (e.g., increased 
accuracy, reduced perseveration, increased staying after 
wins; paired-samples t-tests, all p values < [0.05/27]), 
although staying after losses also significantly increased 
between sessions 1 and 2. A mixed-effects logistic regres-
sion revealed a main effect of previous feedback on 
staying behaviour, with subjects switching more after 
losses than wins ( 𝛽 = 3.665, z = 31.756, p < 0.001 ) , 
while a mixed-effects linear regression revealed a main 
effect of previous feedback on reaction time, with sub-
jects responding more quickly after wins than losses 
( 𝛽 = −23.748, t(149.4) = −6.84, p < 0.001).

Test–retest reliability of task performance was assessed 
by replicating the statistical methods of Waltmann et al. 
(2022). These results are briefly summarised here, but see 

supplementary materials for a detailed overview. Accu-
racy reliability estimates ranged from good when jointly 
estimating the effect of session to poor when using mean 
values. Staying behaviour showed good reliability across 
all estimation methods, and showed good to excellent reli-
ability for staying after losses, but only fair (mean and 
separate estimation) to good (joint estimation) reliability 
for staying after wins. Perseveration reliability was poor 
when using mean and separate estimation methods, and 
fair when using joint estimation. Reaction time showed 
good reliability when estimated using mean and separate 
estimation methods, and excellent reliability when using 
joint estimation, and the same pattern was observed for 
reaction time after a win. Reaction time after a loss had 
good reliability across all estimation methods; poor reli-
ability was found for the difference in reaction between 
wins and losses when estimated using separate and sepa-
rate estimation measures, but was good when joint estima-
tion was used.

Computational measures of task performance were 
derived by fitting reinforcement learning models to choice 

Fig. 3   Actual (thick black line) and simulated (transparent grey lines, 
each line represents one iteration of the simulation) variance propor-
tions for a synthetic dataset, where the true variance proportion (g) is 
equal to 0.5. For a given width (0.05), the nth percentile of the point 
of stability (PoS) can be calculated within a corridor of stability (CoS 

range = g ± w), with the corridor of stability half-width in this example 
equal to 0.05 (CoS range = 0.45–0.55). More explicitly, this is the sam-
ple size at which the nth percentile of simulations had variance pro-
portions that no longer exceeded the range of the corridor of stability 
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behaviour during the task. We fit two families of models 
that either altered the softmax choice function to define 
choice stochasticity (by varying the inverse temperature 
parameter β), or used a reinforcement sensitivity param-
eter (ρ) to determine the maximum difference in expected 

values between choices, placing a lower bound on choice 
stochasticity.

Comparisons of model fit were performed using each 
model’s integrated Bayesian information criterion (iBIC) 
from the EM fitting approach (supplementary Fig.  3), 

Fig. 4   Distributions of between-subject variance proportions for 
simulated measures of behavioural performance generated using our 
regression-based approach. These data were generated using behav-
ioural measures estimated using the “joint” regression model, which 
explicitly modelled the effect of session. The mean proportion of var-

iance for each sample size (purple), 90th inter-percentile range (dark 
pink), and interquartile range (light pink) are overlaid on individual 
data points (blue). Distributions of simulated data generated using 
behavioural measures from the “separate” regression model and using 
simple means can be found in the supplementary figures
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Fig. 5   Distributions of within-subject variance proportions for simu-
lated measures of behavioural performance generated using our 
regression-based approach. These data were generated using behav-
ioural measures estimated using the “joint” regression model, which 
explicitly modelled the effect of session. The mean proportion of var-

iance for each sample size (purple), 90th inter-percentile range (dark 
pink), and interquartile range (light pink) are overlaid on individual 
data points (blue). Distributions of simulated data generated using 
behavioural measures from the “separate” regression model and using 
simple means can be found in the supplementary figures
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Fig. 6   Distributions of error variance proportions for simulated meas-
ures of behavioural performance generated using our regression-
based approach. These data were generated using behavioural meas-
ures estimated using the “joint” regression model, which explicitly 
modelled the effect of session. The mean proportion of variance for 

each sample size (purple), 90th inter-percentile range (dark pink), and 
interquartile range (light pink) are overlaid on individual data points 
(blue). Distributions of simulated data generated using behavioural 
measures from the “separate” regression model and using simple 
means can be found in the supplementary figures
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Table 2   Summary statistics for behavioural measures of reversal learning task performance in sessions 1 and 2

Behavioural measure Estimation method Session Mean SD Min Max

Accuracy Mean 1 0.69 0.07 0.57 0.85
2 0.73 0.06 0.6 0.87

Joint 1 0.7 0.05 0.61 0.81
2 0.72 0.05 0.62 0.82

Separate 1 0.7 0.05 0.61 0.8
2 0.73 0.04 0.64 0.82

Perseveration Mean 1 0.13 0.06 0.01 0.28
2 0.11 0.06 0.01 0.27

Joint 1 0.13 0.05 0.03 0.26
2 0.11 0.05 0.03 0.25

Separate 1 0.13 0.05 0.04 0.26
2 0.1 0.05 0.03 0.25

Reaction time Mean 1 546.2 111.4 319.9 917.1
2 509.6 99.89 349.5 915.1

Joint 1 540.5 108.8 316.6 894.8
2 506.7 98.48 349 908.5

Separate 1 544.8 109.8 317.9 911.7
2 507.1 98.56 351.3 906.4

Reaction time wins Mean 1 528.8 109.3 312.2 891
2 499.4 99.75 334.8 933.4

Joint 1 528.7 105.7 316.2 875
2 499.4 97.19 338.4 910.2

Separate 1 528.8 105.8 315.1 876.4
2 499.4 96.86 340.5 913

Reaction time loss Mean 1 560.7 120.9 313.7 1028
2 514.6 106.3 354.4 892.8

Joint 1 558 117.1 317.1 986.9
2 517.6 103.4 359.4 905.9

Separate 1 560.8 116.6 320.8 994.8
2 514.7 102.5 360.2 899.8

Reaction time win − loss Mean 1  − 31.85 54.39  − 230.9 86.51
2  − 15.22 46.63  − 181 123.3

Joint 1  − 29.3 37.58  − 180.6 64.52
2  − 18.2 31.94  − 148.1 69.05

Separate 1  − 32.03 36.53  − 171.4 44.83
2  − 15.38 30.51  − 124.6 71.86

Stay Mean 1 0.73 0.12 0.45 0.93
2 0.77 0.11 0.51 0.93

Joint 1 0.83 0.11 0.46 0.97
2 0.86 0.09 0.56 0.98

Separate 1 0.77 0.12 0.42 0.95
2 0.82 0.12 0.48 0.96

Stay wins Mean 1 0.93 0.07 0.66 1
2 0.96 0.05 0.68 1

Joint 1 0.94 0.06 0.69 0.99
2 0.96 0.05 0.69 1

Separate 1 0.93 0.06 0.68 0.99
2 0.96 0.05 0.7 0.99

Stay loss Mean 1 0.44 0.23 0.03 0.83
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which provided the best model fit scores and reliability of 
parameter estimates. The best-fitting model for the softmax 
family was the dual update model with a discount weight 
for the unchosen option with separate learning rates plus 
softmax temperatures for wins and losses (DU-2β2ακ). The 
best-fitting model for the reinforcement sensitivity family 
was the dual update model with separate reinforcement 
sensitivities for wins and losses plus a single learning 
rate parameter (DU-2ρα), which was also the best-fitting 
model overall (Table 3). This model had good to excellent 
estimates of reliability for all parameters (learning rate, 
reinforcement sensitivity for win, reinforcement sensitivity 
for loss) when model parameters were fitted using the EM 
approach. The parameters from the best-fitting model from 
the softmax family had reliability that ranged from poor 
to good. Model parameters had poor reliability when esti-
mated using maximum likelihood methods (Supplementary 
Figs. 4 and 5).

Overall, the reliability of both our behavioural and com-
putational modelling measures of reversal learning per-
formance were in line with those presented by Waltmann 
et al. (2022). Moreover, we found that the best-fitting mod-
els from both the softmax and reinforcement sensitivity 
families were the same reported by Waltmann et al. (2022). 
Next, we tested how robust these reliability effects were 
across varying sample sizes by investigating the effect of 
sample size on the individual components of variance used 
when calculating ICCs.

Effects of sample size on behavioural measures 
of task performance

We generated synthetic two-session data using our regression-
based approach to investigate the effect of sample size on esti-
mates of variance components for behavioural performance 
measures. These behavioural performance measures were 
derived from our three estimation methods. Figure 4 show 
the variance component estimates for data simulated using the 
distributions of behavioural measures, themselves estimated 
using a regression model that explicitly modelled the effect 
of session on behavioural performance (for figures using sim-
ple mean estimates and estimates using separate regression 
models for each session, see supplementary Figs. 8–13). Each 
point represents a given sample size between 10 and 300 for 
each iteration from the simulation, and overlaid are mean esti-
mates for each sample size (purple), interquartile range (light 
pink), and the 90th inter-percentile range (dark pink).

We then calculated at what sample size variance com-
ponent estimates stabilised. Using variance component 
proportions from our collected data as the ground truth, 
we determined the point of stability for variance compo-
nent estimates from each iteration of our simulation, using 
a range of half-widths (0.025, 0.05, 0.75, 0.1, 0.15, 0.2) 
for the corridor of stability (Fig. 3). For each half-width 
we determined the critical point of stability by calculat-
ing the 80th, 90th, and 95th percentiles of the calculated 
points of stability (Fig. 7, “joint” estimation method; see 

Table 2   (continued)

Behavioural measure Estimation method Session Mean SD Min Max

2 0.49 0.23 0.05 0.85
Joint 1 0.44 0.21 0.07 0.82

2 0.49 0.22 0.07 0.83
Separate 1 0.44 0.21 0.07 0.81

2 0.49 0.21 0.08 0.83

Measures were estimated either using simple means (mean), or from mixed effects regression models calculated using separate regression mod-
els (separate) or a single model which explicitly modelled the effect of session (joint). Accuracy, perseveration, and stay behaviour are presented 
as proportions, and reaction times are presented in milliseconds.

Table 3   Summary statistics 
for parameter estimates from 
the best-fitting computational 
model in sessions 1 and 2

Parameters were estimated from a dual update model from the reinforcement sensitivity family, with sepa-
rate reinforcement sensitivities for wins and losses, and a single learning rate. Parameters were fitted using 
expectation–maximisation.

Mean SD Min Max

Reinforcement sensitivity win (session 1) 2.05 0.92 0.36 4.43
Reinforcement sensitivity win (session 2) 2.51 1.14 0.42 5.5
Reinforcement sensitivity loss (session 1)  − 0.7 0.43  − 1.56 0.56
Reinforcement sensitivity loss (session 2)  − 0.71 0.41  − 1.62 0.58
Learning rate (session 1) 0.71 0.18 0.35 0.96
Learning rate (session 2) 0.71 0.15 0.34 0.95
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Fig. 7   Critical point of stability of variance component estimates for 
synthetic behavioural measures across a range of corridor of stability 
half-width values, calculated based on the distribution of data from 

the “joint” regression model. Critical point of stability calculations 
using behavioural measures from the “separate” regression model and 
using simple means can be found in the supplementary figures
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supplementary Figs. 14 and 15 for points of stability using 
data from the “separate” and “mean” estimation methods). 
As the half-width of the corridor of stability increased, 
the sample size required for variance component estimates 
decreased (Table 4). At narrower corridor of stability half-
widths (i.e., at more precise estimates of variance compo-
nent proportions), the sample size where variance compo-
nent estimates stabilised were, on average, between sample 
sizes of 126.84 and 193.99 for half-widths of 0.05 (ground 
truth variance proportion ± 0.05) and were between 250.15 
and 290.41 for half-widths of 0.025 (ground truth variance 
proportion ± 0.025) (4).

Effects of sample size on computational modelling 
parameter measures of task performance

To test for the effects sample size on estimates of variance 
components for computational modelling parameter esti-
mates (for our best-fitting model), we generated synthetic 
two-session data using our regression-based approach (as 
above for our behavioural data, Fig. 8). We then calculated 
the critical point of stability for variance components of 
our simulated computational modelling parameters in the 
same way as we did for our behavioural measures (Fig. 9). 
As observed for our behavioural data, as the half-width 
of the corridor of stability increased, the sample size 
required for variance component estimates decreased. At 
narrower corridor of stability half-widths (i.e., at more 
precise estimates of variance component proportions), 
the sample size where variance component estimates sta-
bilised were, on average, between sample sizes of 51.67 
and 106.59 for half-widths of 0.05 (ground truth variance 
proportion ± 0.05), and were between 173.31 and 249.58 
for half-widths of 0.025 (ground truth variance propor-
tion ± 0.025) (Table 5).

Effects of sample size on ICC(A,1) and variance 
component associations

We tested for associations between individual variance 
components and ICC(A,1) measures of reliability. To do 
this, we calculated Spearman’s correlation coefficient and 
p values (Bonferroni-corrected) between each variance 
component measure and ICC(A,1) across the 1000 syn-
thetic datasets generated at each sample size n, for each 
behavioural (Fig. 10, Fig. 11, Fig. 12) and computational 
modelling parameter (Fig. 13) measure of task perfor-
mance. Overall, we observe that between-subjects vari-
ance had a strong positive correlation with ICC(A,1), error 
variance had a strong negative correlation with ICC(A,1), 
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and within-subject variance had a weak/no correlation 
with ICC(A,1). Secondly, these associations are true for 
most behavioural and computational measures of task 
performance. Yet, where there are inconsistencies (e.g., 

staying after wins for between-subject variance and accu-
racy for within-subject variance), we find that the strength 
of these associations is consistent even when the behav-
ioural measures were estimated using different methods 

Fig. 8   Distributions of within-subject, between-subject, and error 
variance proportions for parameter estimates from our best-fitting 
computational model estimated for different sample sizes generated 
using our regression-based approach. The mean proportion of vari-

ance for each sample size (purple), 90th inter-percentile range (dark 
pink), and interquartile range (light pink) are overlaid on individual 
data points (blue)
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(see supplementary Figs. 16–21). We also find that the 
strength of these associations appears relatively stable 
across different sample sizes, as indexed by the consist-
ency of Spearman correlation coefficients.

Effects of noise on variance estimates

Lastly, we tested how adding noise to our simulated data 
influenced the calculation of points of stability. We gener-
ated synthetic two-session data using our regression-based 
synthesis approach as described above, with an additional step 
of adding Gaussian noise to the calculated value for session 2. 
We generated multiple datasets with varying levels of noise; 
by sampling noise from normal distributions with mean = 0 
and SD = [0.25, 0.5, 1, 1.5, 2], we were able to investigate 
the effects of increasing levels of noise on point of stability 
calculations, in comparison to the originally simulated data 
(SD = 0). Adding noise to simulated data caused a monotonic 
change in the point of stability of all variance components 
with increasing levels of noise (Fig. 14). Across a range of 
percentile values (80th, 90th, 95th) the point of stability is 
equal to the largest sample size (300), indicating that a point of 
stability was not reached for a majority of variance component 
estimates, meaning that variance component estimates did not 
stabilise as simulated noise increased. These results were con-
sistent across point of stability percentiles, corridor of stabil-
ity half-widths (w), and behavioural estimation approaches 
(“joint”, “separate”, and “mean” modelling approaches; see 
supplementary Figs. 22 and 23; included code can be used to 
recreate figures with different corridor widths).

Discussion

In this paper we investigated the test–retest reliability of 
behavioural and computational measures of performance 
on a reversal learning task, and the effects of sample size 
on such estimates of reliability. We calculated the reliability 
of these measures using several approaches, including ICCs 
and variance decomposition, replicating a previous study 
on this topic (Waltman et al., 2022). The retest–reliability 
of ICCs for our behavioural measures were good to excel-
lent for staying and reaction time behaviour, while accuracy 
and perseveration were less reliable between sessions. ICCs 
for parameter estimates from our best-fitting computational 
model (single learning rate and separate reinforcement sen-
sitivity parameters for wins and losses) showed good reli-
ability when estimated using an expectation–maximisation 
(EM) model fitting approach. These results were broadly in 
line with the previous findings of Waltmann et al. (2022). 
Using our behavioural and computational measures of task 
performance, we then investigated the effects of sample size 
on individual components of variance. We used a regression-
based approach to generate statistically related and plausible 
synthetic two-session datasets based on the underlying statis-
tical properties of our collected data. Sample size influenced 
estimates of within-subject, between-subject, and error vari-
ance for all behavioural measures of task performance and all 
computational modelling parameter estimates. Importantly, 
we demonstrate that variance component estimates do not 
stabilise until sample sizes much greater than those often 
used in test–retest research are achieved.

Fig. 9   Critical point of stability of variance component estimates for synthetic computational modelling parameters across a range of corridor of 
stability half-width values
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We also tested the effects of sample size on the association 
between measures of reliability, as assessed using ICC(A,1) 
and individual variance components. This is important to 
understand because individual variance component calcula-
tion decomposes an ICC coefficient into its constituents and 
enables the investigation of how sources of variance contrib-
ute to the summary reliability statistic represented by ICCs 
(the ratio of between-subject variance over the total amount of 
variance). ICCs had significant and large positive correlations 
with between-subject variance and negative correlations with 
error variance across a broad range of performance meas-
ures, and these correlations remained relatively stable across 
sample sizes. However, ICCs were either weakly or non-sig-
nificantly correlated with within-subject variance, a finding 
that also remained relatively stable across sample sizes. These 
results suggest that ICCs may be insufficient for discriminat-
ing reliability, particularly for within-subject variance. Lastly, 
we demonstrate that increasing noise between data from ses-
sions 1 and 2 increases the critical point of stability, meaning 
that data from more participants are required before stable 
estimates of variance components are reached. Therefore, 
studies of reliability should ensure they use variance decom-
position methods alongside larger sample sizes to more infor-
matively measure the reliability of task performance.

The results presented here highlight the importance of 
sample size considerations for test–retest reliability work, 
and support existing work indicating that greater sample 
sizes than are often used are required for reliable (individual 
differences) research (Button et al., 2013; de Winter et al., 
2016; Hedge et al., 2018; Hirschfeld et al., 2014; Kretzsch-
mar & Gignac, 2019; Marek et al., 2022; Paccagnella, 2011; 
Schönbrodt & Perugini, 2013). For instance, Schönbrodt and 
Perugini (2013) suggest there are few scenarios where per-
sonality psychology using correlational methods should jus-
tify sample sizes smaller than 150, while Marek et al. (2022) 
and Gell et al. (2023) suggest that thousands of participants 
may be required for reliable brain–behaviour associations, 
although this depends on the reliability and validity of the 
measures used (see also Spisak et al., 2023, for discussion).

A viable alternative to collecting large samples is to instead 
improve reliability by increasing the density of data collected 
within a set of individuals (Kraus et al., 2023; Smith & Little, 
2018; Tiego et al., 2023). In precision research, each sub-
ject acts as their own replication unit, with a large amount of 
data collected within small/single-subject units. This may be 
particularly useful in situations where practical impediments, 
such as time and funding restrictions or specialist populations, 
would prevent collection of data from hundreds or thousands 
of individuals. This approach may also enhance the predic-
tion of momentary factors that influence the rank order of a 
given data point. For instance, intensive longitudinal designs 
(Lydon-Staley et al., 2019) could be used to enhance estimates 
of both within- and between-subject effects. This would have Ta
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the added benefit of providing insight into how momentary 
changes in cognitive and affective state influence behaviour 
and model parameter estimates, which are missed in large-N 
studies with a single time point, since temporal dynamics can-
not be modelled. One relevant example of the utility of this 
approach comes from Schaaf et al. (2023), who found that 
the current state of an individual significantly influences their 

reward learning (using data from two time points). Yet, this 
is a nascent field of research, and few insights into temporal 
aspects and predictors of reward learning behaviour exist.

One important similarity between the work presented 
here and previous work looking at the reliability of reversal 
learning task performance (Schaaf et al., 2023; Waltmann 
et al., 2022) is the consistency of the best-fitting models 

Fig. 10   Effects of sample size on the association between ICC coef-
ficients and variance component estimates for behavioural measures. 
For each behavioural measure and at each sample size, we took the 
set of 1000 simulated datasets and calculated correlation coefficients 
to measure the strength of the association between each dataset’s 
respective ICC(A,1) and variance component estimates. The point 
estimate for the correlation coefficient and its statistical significance 
(coloured green for significant, red for non-significant; Bonferroni-

corrected) were then plotted. Overall, between-subject variance was 
strongly positively correlated with ICC(A,1). These plots were gen-
erated from synthetic data generated using the distribution of behav-
ioural measures from the “joint” regression approach, which explic-
itly modelled the effect of session. See supplementary figures for 
plots generated using data from the “separate” regression approach 
and using simple means
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despite differences in task structure. For instance, the best-
fitting model of Waltmann et al. (2022) was the same as our 
best-fitting model here (dual update, single learning rate, 
and separate reinforcement sensitivity parameters for wins 
and losses). Similarly, although Schaaf et al. (2023) only 
fit models from the softmax family, our best-fitting model 
in the softmax family (dual update, separate learning rates 

for wins and losses, and an update discount weight for the 
unchosen option) matched the best-fitting model of both 
Schaaf et al. (2023) and Waltmann et al. (2022). This con-
sistency suggests these models are useful for approximating 
latent processes underlying reversal learning. The common-
ality of counterfactual updates across all these models makes 
sense in the context of two-choice reversal learning, where 

Fig. 11   Effects of sample size on the association between ICC coef-
ficients and variance component estimates for behavioural measures. 
For each behavioural measure and at each sample size, we took the 
set of 1000 simulated datasets and calculated correlation coefficients 
to measure the strength of the association between each dataset’s 
respective ICC(A,1) and variance component estimates. The point 
estimate for the correlation coefficient and its statistical significance 
(coloured green for significant, red for non-significant; Bonferroni-

corrected) were then plotted. Overall, within-subject variance was 
weakly or not correlated with ICC(A,1). These plots were generated 
from synthetic data generated using the distribution of behavioural 
measures from the “joint” regression approach, which explicitly mod-
elled the effect of session. See supplementary figures for plots gen-
erated using data from the “separate” regression approach and using 
simple means
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only one of the two outcomes can be optimal at any given 
moment. Therefore, when an agent updates the expected 
value of an action based on an outcome, simultaneously 
updating the expected value of the unchosen action using a 
counterfactual outcome makes behaviour more responsive 
and able to rapidly adjust in response to a change, in line 
with Bayesian state inference approaches to reversal learn-
ing (Bartolo & Averbeck, 2020; Costa et al., 2015). With 
experience, this dual updating should reduce perseverative 

responding as the agent learns with greater fidelity when 
transitions in the optimal choice assignment occur. This 
assumption is supported by our finding of lower levels of 
reliability for both accuracy and perseveration between 
sessions (which typically increase and decrease, respec-
tively, for subjects) versus other behavioural measures, and 
suggests that subjects get “better” at the task. It may also 
explain why we observed lower reliability for our learning 
rate parameter estimates relative to other model parameters, 

Fig. 12   Effects of sample size on the association between ICC coef-
ficients and variance component estimates for behavioural measures. 
For each behavioural measure and at each sample size, we took the 
set of 1000 simulated datasets and calculated correlation coefficients 
to measure the strength of the association between each dataset’s 
respective ICC(A,1) and variance component estimates. The point 
estimate for the correlation coefficient and its statistical significance 
(coloured green for significant, red for non-significant; Bonferroni-

corrected) were then plotted. Overall, error variance was strongly 
negatively correlated with ICC(A,1). These plots were generated 
from synthetic data generated using the distribution of behavioural 
measures from the “joint” regression approach, which explicitly mod-
elled the effect of session. See supplementary figures for plots gen-
erated using data from the “separate” regression approach and using 
simple means
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as the rate at which expected values are updated is refined 
through experience, while other parameters (e.g., reinforce-
ment sensitivity) may be less experience-dependent.

Another similarity is that our work here shows that reli-
ability, as assessed using ICCs, is broadly in line with previ-
ous work (Schaaf et al., 2023; Waltmann et al., 2022). For 
instance, our confidence intervals around ICC measures 
for our collected behavioural data overlapped with those 
presented by Waltmann et  al. (2022) for all behavioural 

measures (except for lose–stay behaviour estimated from the 
joint session regression model) and parameter estimates from 
our best-fitting model using the EM approach (dual update, 
single learning rate, and separate reinforcement sensitivity 
parameters for wins and losses). Given our larger sample size 
and narrower confidence intervals relative to Waltmann et al. 
(2022), we suggest that our estimates of reliability presented 
here may be more representative of the true underlying reli-
ability of reversal learning performance measures.

Fig. 13   Effects of sample size on the association between ICC coeffi-
cients and variance component estimates for computational modelling 
parameters. For each parameter and at each sample size, we took the 
set of 1000 simulated datasets and calculated correlation coefficients 
to measure the strength of the association between each dataset’s 
respective ICC(A,1) and variance component estimates. The point 

estimate for the correlation coefficient, and its statistical significance 
(coloured green for significant, red for non-significant; Bonferroni-
corrected) were then plotted. Overall, between-subjects variance 
was strongly positively correlated with ICC(A,1), error variance was 
strongly negatively correlated with ICC(A,1), and within-subjects 
variance was weakly or not correlated with ICC(A,1)
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One important sample size-related consideration for 
test–retest reliability studies is ensuring they are sufficiently 
powered, and this could be achieved by using expected ICC 
values in power calculations. This approach is similar to the 
use of effect sizes for a priori sample size calculations. In the 
latter case, effect sizes from previously published work are 
used to identify the sample size required to achieve the given 
effect size at a particular level of statistical power. For ICCs, 
Doros and Lew (2010) present a method where the width of 
confidence intervals is used to estimate appropriate sample 
sizes for reliability studies.

While the work presented here provides valuable insight 
into the reliability of reversal learning task performance meas-
ures, there are several limitations worth mentioning. Firstly, it 
is important to highlight that these behavioural data were col-
lected from an online sample. Although online data collection 
enables large amounts of data to be more readily collected, 
as researchers we are unable to control the environment in 
which each subject completed the reversal learning task. To 
mitigate this we included response checks in our task and 
questionnaire measures to identify and exclude subjects that 
were clearly inattentive. However, there may be nuanced and 
non-systematic differences in the behaviour of our subjects 
that influenced how reliable their performance was over the 
two testing sessions. To account for some of these challenges, 

future work could, as previously mentioned, collect data from 
the same subjects over a greater number of testing sessions or 
could use tools such as WebGazer (Papoutsaki et al., 2016) to 
track gaze directions for compliance monitoring.

A second limitation of the work presented here is that 
point estimates of model parameters across subjects were 
taken using the best-fitting model at the group level. How-
ever, the best-fitting model for a given subject will not nec-
essarily be the same as that for the group, and alternative 
approaches to model fitting can be used to infer the best-
fitting model at the level of both the subject and the group 
(Piray & Daw, 2020; Piray et al., 2019; Williams & Christa-
kou, 2022). Coupling individualised model fits with momen-
tary measures of individual state could, again, improve the 
explanatory power of model parameters.

Finally, it may be the case that task performance or within-
subject variance changes as subjects gain further experience on 
the task. Although we provide subjects with explicit instruction 
about the task’s general structure, such as one choice is better 
than the other and that the better choice will change through-
out the task, subjects may still be refining their understanding 
of aspects of the task structure (the statistical relationships 
between actions and outcomes, their time estimate since last 
reversal, etc.), even after two sessions. Therefore, measuring 
reliability while subjects are still learning these representations 
will place an upper bound on reliability, and will be dependent 
on how quickly a stable representation of the task environment 
is generated, which in turn will vary between individuals. In 
the future, it may be worth considering how reliable perfor-
mance is after sufficient overtraining on a given task.

In summary, we assessed the reliability of reversal learn-
ing behaviour using data collected from a large online sample 
and found good reliability of behavioural and computational 
model parameters at the group level, in line with findings 
from previous literature. However, our results also suggest 
that while behaviour may appear stable at the group level 
based on ICC values, sample size contributes significantly 
to variability in the estimates of variance components that 
underlie ICCs. Moreover, associations between estimates of 
variance components and calculated ICC values appear to 
remain relatively stable across sample sizes, with between-
subject variance being highly positively and error variance 
being highly negatively correlated, but within-subject vari-
ance being weakly or non-significantly correlated with ICC 
values. This effect for within-subject variance challenges 
traditional practices in assessing test–retest reliability, and 
demonstrates the importance of understanding individual fac-
tors that contribute to (un)reliability. For instance, within-
subject variance could be due to momentary differences 
in cognition and/or affect, and future work should aim to 
address how momentary state influences behaviour. These 
results also hold for the effects of sample size on estimates 
of computational modelling parameters, suggesting further 

Fig. 14   Effects of noise on point of stability calculations for syntheti-
cally generated data. As the amount of noise added to synthesised 
behavioural and computational measures of task performance is var-
ied, a monotonic change in the point of stability for variance compo-
nents is observed. For the majority of variance components, increas-
ing amounts of simulated noise cause variance components to fail 
to reach a point of stability before the largest sample size is reached, 
meaning that variance component estimates remain unstable. These 
plots were generated from synthetic data generated using the distri-
bution of behavioural measures from the “joint” regression approach, 
which explicitly modelled the effect of session
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characterisation of the stability of model parameters within 
and across tasks over time is needed before point estimates of 
parameter values can be considered stable trait-like measures.
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