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H I G H L I G H T S

• The relationship between weather and agricultural output is changing over time.
• This may lead to biased climate impact estimates, especially in developing countries.
• Farmers’ experiential knowledge of climate impacts can add context to this problem.
• In a national survey of Zambia, farmers identified consistent patterns of pas shocks.
• Thus, farmers’ knowledge may be a more stable basis for impact estimates than yields.
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A B S T R A C T

Climate adaptation policies rely on accurate estimates of weather-related impacts on community-level food 
insecurity. These estimates must capture local livelihoods and their varying sensitivity to climate extremes. This 
paper develops a novel methodology to address this need through incorporating farmer knowledge into robust 
drought impact assessments.

Using a new dataset of 925 farmer focus groups in Zambia, we investigate whether farmers’ recollection can 
identify consequential drought events more consistently than crop yields, which are conventionally used for this 
purpose. Zambia, like many countries, has experienced structural changes in its crop production systems over the 
last 30 years. Staple crop yields are therefore a weak proxy for food insecurity without wider socio-economic and 
agricultural context. We posit that in settings like this, farmers’ knowledge can provide the missing context for 
what constitutes a meaningful climate shock.

We conduct a statistical analysis of the dominant patterns of variability in farmers’ recollected drought years 
as compared to satellite rainfall. We find that farmers’ recall identifies meteorologically consistent patterns in 
shocks, going back 40 years. In contrast, conventional methods of regressing weather on maize yields to measure 
shocks would result in estimates that are biased and overconfident. Our analysis demonstrates, for the first time 
at a national scale, that farmers’ knowledge of climate shocks is a uniquely reliable source of impact data.

Practical implications

Climate adaptation policies that compensate farmers on the basis 

of observed or forecasted weather shocks are increasingly com
mon. Such policies include parametric weather insurance, catas
trophe bonds and forecast-based anticipatory action. In all cases, 
these policies rely on some quantitative “climate impact” formula 
which relates the measured weather in a given season and locality 
to the relative severity of livelihood shocks, and thus to the 
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amount of financial resources disbursed to farmers in that area.

Drought insurance for farmers in Africa is a leading example of 
such a policy, having been initially piloted by NGOs and now 
adopted as national policy by the governments of Zambia and 
Ethiopia, among others. In the case of drought insurance, con
structing a climate impact formula typically involves estimating 
the amount of staple crop yield per hectare farmers would expect 
to receive given a certain amount of rainfall. In doing so, practi
tioners make the implicit assumption that the relationship be
tween weather, agricultural yields and community-level food 
insecurity is consistent over time and place, and can be inferred 
from past performance. However, our study contends that this is a 
very strong assumption that is likely to be violated in a number of 
consequential ways. In such settings, we posit that farmers’ 
knowledge of historical climate events is a better source of infor
mation on impacts than yield data alone.

Zambia, where this study is set, is a typical case of the issues with 
the “status quo” approach to estimating climate impacts using 
yields. Agricultural policy in Zambia has changed dramatically 
over the last 30 years, as the government has introduced subsi
dized fertilizer for smallholder farmers via its Farmer Input Sup
port Programme (FISP). This has led to dramatic changes in the 
structure of Zambian agriculture, with smallholder farmers −
many now able to access fertilizer for the first time − leading a 
takeoff in agricultural growth. This structural shift means that the 
relationship between weather and agricultural production now is 
very different than it was 20 or even 10 years ago, as prior studies 
have noted. Zambia also has a diversity of agro-ecological pro
duction systems within its borders, each of which has different 
agricultural inputs and practices.

We argue that given the difficulty of modeling these diverse 
adaptation responses − which are typical of many places in the 
agrarian Global South − farmers’ own recollection of the years in 
which they were impacted by weather can provide a better basis 
for measuring livelihood shocks than administrative data, like 
crop yields, could alone. Farmer knowledge is significant not only 
because of the paucity of historical yield data, but also because of 
the importance of knowledge co-generation and representing 
farmer perspectives in official decision-making. At the same time, 
farmers’ surveyed recall of historical events may be subject to 
cognitive biases or under-representation of marginalized per
spectives, so it is important to test its coherence and reliability 
systematically, which most past studies have lacked the data to do.

Farming communities tend to have strong memories of the years in 
which the community had notably “good” or “bad” harvests. Thus, 
communities can often reliably identify which years were rela
tively worst in terms of a qualitative ranking, which is the meth
odology employed here. This knowledge embodies aspects of the 
local climatology, cropping practices used, expected production 
and community needs – context which administrative data or 
models alone cannot provide. In Zambia, the government has 
collected this kind of focus group data on ranked drought years 
from a nationally representative survey of nearly 1,000 villages 
across the country, which we use as the basis for this study.

We hypothesize that if farmers’ knowledge is a reliable source of 
data on drought shocks, it will exhibit patterns of variation over 
time and space that are both internally coherent and consistent 
with the patterns of variation in rainfall deficit that we can 
observe. We further hypothesize that if the relationship between 
weather and agricultural yields is changing over time due to 
adaptation policy, then the typical approach to estimating 
weather shocks to livelihoods via the proxy of yields will only be 
consistent over a short time span (in which agricultural practices 
can be held constant), and will be biased and / or overconfident 
over a longer time horizon.

In the first part of the study, we investigate how farmers’ recol
lected worst drought years in Zambia compare to the weather 
record across time − i.e., which years had the worst droughts −
and place − i.e., which locations tend to experience drought 

around the same time. We find that farmers’ recollections of 
drought are strongly consistent with rainfall deficits over both 
space and time, as measured against an index of meteorological 
drought which is similar to the one the Government of Zambia 
uses for insurance. We use the government of Zambia’s official 
drought insurance index as our measure of weather, as it repre
sents local decision-makers’ judgement on which aspects of 
weather (times of the season, etc.) should be prioritized 
financially.

We also compare farmers’ recollected worst drought years against 
historical data on estimated maize production. We find that 
farmers’ top recollected drought years are associated with a 
drought-induced disruption from the typical yield in that time and 
place, even as the absolute amount of yield associated with 
farmers’ worst years varies. However, since the historical record 
of yields is relatively short (~20 years) and missing for some 
years, we are limited in the systematic conclusions we can draw 
from this comparison.

In the second part of the study, we estimate the bias that might 
arise from ignoring farmer knowledge and instead using a “status 
quo” approach to estimating climate impacts through the direct 
relationship of weather to yield. We find that such an approach, 
typical of prior work, would be biased over time, leading to over- 
estimates of drought impact in more recent years and under- 
estimates of drought impact in the more distant past. Including 
controls for agricultural policy mitigates this bias, but also limits 
the generalizability of the estimates, underlining how yields are 
only a meaningful proxy for climate impacts in a narrow spatio- 
temporal context.

Taken together, these findings have strong and actionable impli
cations for the practice of climate services. First, we find that 
farmers’ experiential knowledge is a strong proxy for weather 
shocks to livelihoods, across a wide variety of spatial and temporal 
contexts. Second, we find that assuming constancy in the rela
tionship between weather, yield and livelihoods, as agricultural 
climate impact studies have typically done, would lead to inac
curate and overconfident conclusions. These shortcomings could 
be avoided, or at least mitigated, by starting from farmers’ own 
experience as the basis for estimating climate impacts. For 
example, while farmers’ self-reported impacts cannot be used 
directly to determine index insurance payouts, they could be used 
to tune a model of drought impacts to better reflect local context. 
The methodology for collecting this kind of historical climate 
impact data is increasingly standardized and can be applied at 
scale, as the Government of Zambia did. Future work could 
explore this kind of community-based climate impact assessment 
in other settings, including how it could be used to optimize a 
model of drought severity for policies like parametric insurance 
and forecast-based anticipatory action.

1. Introduction

1.1. Motivation

Climate adaptation policies rely on quantitative estimates of 
weather-related impacts on community-level food insecurity. Para
metric drought insurance, forecast-based anticipatory action, and ca
tastrophe bonds are just a few examples of policies that use impact data 
to relate weather severity to a financial decision, or to evaluate the 
adequacy of a decision rule retrospectively. However, there is never a 
single source of “ground-truth” data on impacts. Decision-makers must 
instead rely on a variety of proxy data sources that are associated with 
different aspects of impact. Staple crop yield is a common proxy for the 
impacts of drought, particularly in Africa, where rain-fed smallholder 
agriculture predominates (Lobell et al., 2011). Survey data on farmers’ 
self-reported climate impacts is another (Enenkel et al., 2020; Osgood 
et al., 2018). Both sources of data have potential biases and practical 
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limitations, and the choice of which to use has significant implications 
for decision-making. However, no prior work has systematically 
compared which type of data is a more reliable basis for measuring 
drought. This paper does so, taking advantage of a novel, nationally 
representative dataset of farmer focus groups in Zambia.

Yield data is readily available in most countries and distills agricul
tural livelihood down to a single number. However, its use as a proxy for 
drought shocks may be confounded by a number of factors. First, the 
non-weather factors of agricultural production − input use, farm 
structure, planting practices, crop varieties, and so on − vary greatly 
over time and space due to changes in government policy and commu
nities’ adaptation practices. For this reason, decision rules which rely on 
the empirical relationship between drought and yield to approximate 
shocks to livelihood, without accounting for context, may lead to biased 
or inaccurate choices of when and where to allocate assistance. In sta
tistical terms, the relationship between yields and weather over time 
may exhibit bias from spurious trends and / or imprecision from serial 
correlation that cannot be easily modeled (Wooldridge, 2002). Second, 
this issue is exacerbated by the limited availability of yield data in the 
Global South – the historical record from administrative data is typically 
short and may contain gaps and inconsistencies (Tenorio et al., 2024). 
Third, the relationship between agricultural production and household 
livelihoods depends on farmers’ place in the food system − a given 
amount of yield does not mean the same thing to a large-scale com
mercial farmer and a smallholder subsistence farmer.

Given these challenges, farmers’ experiential knowledge of shocks 
may provide more relevant information on livelihood impacts than 
administrative data alone (Rodrigues and Shepherd, 2022). Previous 
work in the region has shown that in surveys, farmers tend to reliably 
recall specific instances in which weather shocks disrupted their ex
pected crop output (Dorward et al., 2020; Osbahr et al., 2011; Young 
et al., 2021). Farmers’ event-based knowledge has shown utility in ap
plications like ground-truthing weather index insurance (Enenkel et al., 
2020; Osgood et al., 2018). However, farmers’ accurate knowledge of 
events does not necessarily translate to accurate knowledge about 
summary statistics like the long-term average or trend in weather (Moyo 
et al., 2012). Relatedly, studies have observed that recall-based data is 
subject to cognitive biases like recency bias and telescoping, and may be 
driven by the political and social salience of specific events (Beegle et al., 
2012). There is thus a need for more systematic investigation of the 
relationship between farmers’ recall and weather shocks.

This paper speaks to this growing literature on climate impact met
rics by studying farmers’ perceptions of historical climate events on a 
nationally comprehensive scale. We wish to understand whether there is 
a statistically identifiable signature of major rainfall deficits in farmers’ 
perceptions of their worst drought years. If so, then farmers’ experiential 
knowledge could be a reliable basis for measuring livelihood shocks in 
spatio-temporal context, particularly where other sources of ground- 
truth data are unavailable.

By way of contrast, we also wish to understand whether there is 
probable bias or overconfidence in estimates of weather impact on yields 
due to un-modeled adaptation policy. If so, then the typical approach to 
estimating weather shocks to livelihoods via the proxy of yields will only 
be valid over a short time span (in which agricultural practices can be 
held constant), and will be inconsistent and / or inefficient over a longer 
time horizon.

To answer these questions, we take advantage of a novel survey 
dataset on farmers’ recollected worst drought years sampled from nearly 
1,000 villages across a nationally representative cross-section of 
Zambia. As detailed in Section 1.3, Zambia is an ideal case for studying 
the problems of heterogenous weather impacts and adaptation: while 
much of the country faces risk from drought, there is a diversity of agro- 
ecological zones within its borders, each of which has different clima
tology, agricultural factors of production and typical cropping practices. 
Zambia has also experienced large-scale changes in national agricultural 
policy over time, including the introduction of subsidized fertilizer for 

smallholder farmers.
Previous work has lacked the data to study how these large-scale 

variations relate to community-level impacts. We address this gap 
through the use of a novel, large-scale (n = 925 villages) and 
geographically representative government survey dataset, which allows 
us to rigorously analyze how patterns in farmers’ recollected drought 
years relate to patterns of climate shocks. Then, we compare these 
findings against estimates of drought impact based on yield alone, in 
order to understand whether farmers’ knowledge can provide a better 
contextual basis for measuring and evaluating weather shocks.

1.2. Literature review

Across timescales − near-term insurance policy evaluation, medium- 
term forecast-based anticipatory action, and long-term climate change 
impact studies − and disciplines − economics, agronomy, meteorology 
− a great deal of established work has relied on linear regression-based 
estimates of the effect of temperature and / or precipitation on crop 
yield as a proxy for weather’s impact on community food insecurity 
(Benami et al., 2021; Carleton and Hsiang, 2016; Lobell et al., 2011). 
Subsequent work has pointed out that these estimates are often biased 
over time and place due to confounding trends in the factors of pro
duction (Mukherjee et al, 2018) or other time-dependent factors 
(Lemoine, 2018; Mérel et al., 2024), and that they fail to capture the 
dynamic aspects of climate adaptation (Haasnoot et al., 2020). These 
omissions can lead to estimates that are biased due to spurious trends 
and / or inefficient due to serial correlation (Wooldridge, 2002). Case 
studies of parametric policies like weather index insurance have related 
these modeling shortcomings to farmers’ frequent mistrust of these 
policies when put into practice (Lobell et al., 2020; Michler et al., 2021; 
Michler et al., 2022).

Climate impact estimates that attempt to account for adaptation 
have typically done so through the inclusion of a time trend or inter
action term in the impact regression estimation (e.g. Hultgren et al., 
2022); however, these approaches do not account for non-linearities, 
like the sudden introduction of a new agricultural policy (Benso et al., 
2023), and the choice of functional form is typically arbitrary, lacking a 
principled basis (Bearpark and Palomba, in review). Direct modeling of 
the non-weather factors of production (e.g. fertilizer use, seed variety, 
soil type, etc.) in climate impact estimates has been limited due to a lack 
of comprehensive data on such factors − particularly in the Global South 
(Myeni et al., 2019) − and the assumptions imposed by crop models, 
which introduce significant model uncertainty (Rosenzweig et al., 
2014). Machine learning approaches to impact estimation also struggle 
in these settings, due again to the sparseness of data, as well as the lack 
of transparency on how such estimates are obtained, which limits their 
practical applicability (Lam et al., 2023; Sutanto et al., 2020).

In the study of food insecurity, many authors have emphasized the 
importance of “shocks”; i.e., unexpected disruptions to a community’s 
typical livelihood due to exogenous changes in food production and/or 
distribution (Enenkel et al., 2020). Most relevant for this work, the 
model of “dynamic resilience” (Peterson et al., 2018) emphasizes how 
the relationship between community livelihoods, agricultural produc
tion and weather catastrophes varies over time as a function of adap
tation measures, resource stocks and other factors that can rarely be 
fully modeled. This dynamic or contextual nature of climate risk is 
apparent in studies which ask participants to self-report the impact of 
weather events – for instance, Guiteras et al. (2015) observes how in 
Bangladesh, farmers’ reported impacts from a flood event bear a strong 
relationship with satellite measures of flooding in communities which 
rarely flood, but do not in communities in which flooding occurs 
routinely. This type of community-level adaptation is a significant 
mediator of climate risk, but is rarely accounted for in large-scale 
studies.

Prior work on the role of farmer perceptions in climate impact 
studies has largely fallen into one of two parallel literatures. One 
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research agenda, focused on policy applications such as insurance, has 
noted the utility of farmers’ recollected worst weather events as a 
heuristic way of “ground-truthing” policy (Blakeley et al., 2020; Brahm 
et al., 2019; Enenkel et al., 2020; Osgood et al., 2018). A large amount of 
this work has been confined to “grey” literature like policy reports due to 
its limited analytic scope (e.g. Madajewicz, 2013). A second agenda has 
focused on the social and behavioral determinants of farmers’ climate 
perceptions, often conceptualized in terms of how they perceive trends 
(Dorward et al., 2020; Moyo et al., 2012; Mulenga et al., 2017; Osbahr 
et al., 2011; Osbahr et al., 2010) or make farming investment decisions 
under uncertainty (Gine et al; Patel, 2023; Zappalà, 2024).

Relatively little work has systematically studied patterns in farmers’ 
historical recollections of climate shocks and how they relate to bio
physical factors across a large spatial scale. This work contributes to that 
body of knowledge, drawing on the notion of farmer recall as a partial 
signal of information about climate impact proposed in Mauerman et al 
(2022). It also relates to the “impact-based forecasting” agenda that 
leading users of these functional estimates, such as the Red Cross, have 
advanced (Sutanto et al., 2019).

1.3. Study setting

This study focuses on the impact of drought on maize production in 
Zambia. Zambia typifies the ways in which changes in production sys
tems can mediate the relationship between climate and livelihood 
shocks. Most notably, over the last 20 years, the government of Zambia 
has significantly invested in subsidized fertilizer for smallholder farmers 
under its Farmer Input Support Programme (FISP). This program was 
introduced in the wake of less than satisfactory maize production in the 
1990 s culminating in the El Nino-induced drought that negatively 
affected maize yields in the 2001/2002 farming season. FISP was 
initially introduced in 2002 as the Fertilizer Support Programme and 
scaled up in 2011, and has led to a nearly twofold increase in average 
fertilizer usage per hectare among smallholders. The program is large- 
scale and has recently taken up as much as 10 percent of the govern
ment’s annual revenues (International Monetary Fund, 2022), and has 
been associated with an increase in yields as well as with Zambia moving 
from a net importer to a net exporter of maize over this period (Burke 
et al., 2010; Mason et al; Mumba and Edriss, 2018).

Over the same period, Zambia has experienced a great deal of year- 
to-year weather variability, much of which is associated with multi-year 
tendencies in the El Nino Southern Oscillation (ENSO) cycle. El Nino 
events have driven some of the region’s worst droughts in recent history 
(Pomposi et al., 2018). Previous work has noted how the coincidence of 
these major policy and weather events has confounded empirical at
tempts to isolate the impact of each (Burke et al., 2010; Jain, 2007; 
Kawaye et al., 2018). Most notably for this paper, Mulungu et al. (2021)
observed temporal bias in estimates of the impact of rainfall on yield in 
Zambia that is likely due to the timing of these policy changes. Fig. 1
shows an overview of these trends – a steady expansion in maize pro
duction has coincided with an increase in fertilizer usage (the intro
duction and scale-up of FISP noted in the dotted lines). At the same time, 
these long-term adaptation trends coincide with multi-year cycles of 
good and bad weather conditions as measured by the official FISP 
drought index (the bottom panel). In such a setting, it is difficult to parse 
out the effects of weather on yields from the effects of adaptation 
measures.

Zambia also has a great deal of spatial diversity in its agricultural 
production systems, with three official agro-ecological zones which 
differ in their climatology, topography, typical cropping practices and 
typical scale of farming (Mulungu et al., 2021). The agro-ecological 
regions (Fig. 2 below) are mainly defined by the amount of rainfall 

received. Region I is characterized by having low rainfall and arid 
conditions. Region II is determined by having moderate rainfall while 
Region III receives the highest amount of rainfall.1 Farmers in Region III 
tend to have higher yields per hectare but cultivate relatively less land; 
commercial farming is beginning to emerge here, but is still relatively 
uncommon. Farmers in Region II tend to be larger-scale producers with 
consistently higher yields – this is the only part of the country where 
commercial farming is currently practiced at significant scale. Finally, 
Region I has the lowest yields of any part of the country, but a moderate 
amount of cultivated area (see Appendix D for further descriptive details 
of spatial patterns in production, including differences in planting 
timing, landholding size, fertilizer usage rate and crops cultivated).

We focus on maize for this study, as it is by far the most widely grown 
crop in Zambia, the most important for livelihoods, and the most 
consistently measured. Compared to other crops, disruptions in maize 
production tend to be the most salient event to many farmers (compare 
(Dakurah and Osbahr, 2023)) and tend to be most disruptive for the 
wider economy. Maize price dynamics constitute a major driver of 
overall inflation in Zambia (Chapoto, 2014). Furthermore, even though 
in principle FISP is available to all crops, in practice it has tended to 
favor the production of maize, which is another motivation for focusing 
on it. Likewise, we focus on drought for its relative importance and its 
relative ease of measurement as compared to other hazards like excess 
rainfall or flooding. While these choices were made for analytical clarity, 
there is room for future work to explore a greater diversity of crops and 
hazards.

As part of FISP, farmers pay into a parametric drought insurance 
scheme. This scheme has faced difficulties in developing a parametric 
measure of drought that is robust to farming differences over space and 
time (“2021- Technical Report on Zambia’s Farmer Input Support 

Fig. 1. Recent trends in national maize yield, fertilizer usage, and meteoro
logical drought severity in Zambia.

1 Strictly speaking Region II is further divided into two sub-classifications, IIa 
and IIb, based on the amount of rainfall received and the topography.
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Program (FISP) Index Insurance Product Improvement | World Food 
Programme,” 2021). It is with these practical difficulties in mind that the 
Zambian government conducted a large-scale community survey of 
farmers’ historical climate impacts in 2021, which provided the core 
data for this study.

By studying how farmers’ recollection compares to the government 
drought severity index, we can triangulate which weather events were 
the most significant in context, and estimate the degree to which this 
self-reported data is a reliable proxy for shocks. We can further compare 
this approach to measuring drought shocks against the typical approach 
of regressing weather on yields, and quantify that method’s probable 
bias or inefficiency from omitting adaptation factors like the expansion 
of FISP.

2. Methods and materials

2.1. Hypotheses and methodology

Our formal analysis proceeds in two parts. The hypothesis statement 
for each, and its accompanying statistical test, are as follows:

2.1.1. H1: Farmers’ recollected drought shocks exhibit discernible patterns 
over space and time that reflect differences in weather and factors of 
production

For H1, we wish to understand whether farmers’ recollections reflect 
a statistically identifiable signature of major climate shocks, or whether 
they are indistinguishable from noise. We do this by partitioning both 
the farmer and weather data into distinct axes of variability using 

principal component analysis (PCA), then comparing the similarity of 
the dominant spatiotemporal patterns from each dataset.

By using a variance decomposition method like PCA, we allow the 
data itself to tell us which patterns of spatiotemporal variability best 
characterize it, without imposing any ex ante structure. We chose PCA as 
a statistical method for H1 because it has commonly been used in 
climatological analysis to identify distinct patterns of spatial variability 
in weather (along with similar techniques like empirical orthogonal 
functions) (Hannachi et al., 2007), as well as in survey data analysis to 
identify distinct response profiles to a large number of survey questions 
(Desarbo et al., 2007).

PCA partitions out the distinct (i.e., orthogonal to one another) linear 
combinations of variables which explain the most variation in a dataset 
(Equation (1): 

T = Xi=1...n,j=1...pWj=1...p,l=1...L (1) 

Where X is the original data matrix of n observations over p features, W 
is a matrix of basis vectors transforming the p features into L orthogonal 
combinations (henceforth, the feature “loadings”), and T is a re- 
projected version of X in which each observation n has been projected 
onto the basis vectors of W (henceforth, the observation “coordinates”).

In this case, we first code the farmer and weather data to be 
commensurate in scale. In both datasets, each row represents a district, 
and each column (feature) represents one agricultural year, 1983–2020. 
Column values represent the relative drought severity of that year in that 
place. The worst year is coded with a value of 8, the second worst year a 
value of 7, and so on down to the 8th worst year. Years that are not 
among the worst drought years are all coded as 0; i.e., not bad but not 

Fig. 2. Farmer focus group sites (yellow) and official agro-ecological zones. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
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differentiated from one another.
After applying PCA to the farmer focus group information, we ask 

whether the first several components explain a meaningful amount of 
variance in the data, and if so, whether those components correspond to 
coherent patterns over time and space. We do this by comparing the first 
several principal components from the farmer data to those from a 
comparable analysis of the weather data. If farmer recall is meaningful 
and not just noise, we would expect areas with distinct climate vulner
abilities (in terms of weather shocks but also cropping practices, farm 
size, input use, etc.) to present distinct principal component patterns in 
an analysis of the recall data. We quantify this through the Spearman 
correlation between the farmer and weather principal component co
ordinates of each observational unit (district). We also cross-reference 
these findings with what we know about geographic differences in 
farming systems, as described in Section 1.3.

Furthermore, we would expect that the specific years that farmers in 
each region recall as the worst would also be among the relatively driest 
years in terms of weather. We quantify this by estimating the correlation 
between the year-by-year farmer and weather principal component 
loadings, which tell us which years drive the distinctiveness of each 
component.

2.1.2. H2 conventional estimates of drought shocks using a regression of 
weather on yields are biased and / or inefficient due to the omission of 
adaptation factors

For H2, we wish to understand whether estimates of drought shocks 
based on yield–data alone − the ‘status quo’ approach – would lead to 
estimates which are biased and / or inefficient due to the omission of 
adaptation factors which vary over time – namely, the large-scale 
introduction of fertilizer subsidies under FISP.

We test H2 by comparing different panel regression specifications of 
yield and weather measured over districts (i) in each year (j). Equation 
(2) represents the “status quo” approach – a regression of weather on 
yield and a linear trend term. 

yieldi,j = β1droughti,j + β2yearj +Ui + εi,j (2) 

Where U is a district-specific random effect and e is a Gaussian error 
term.

We use a random effects model for this and the subsequent specifi
cations, as weather should be exogenous from the district-specific 
idiosyncratic effects; this assumption is supported by a Hausman test 
(shown in Appendix F).

We compare this “status quo” specification against two different 
models which attempt to account for adaptation factors. Equation (3)
includes lags of yield in the regression, meant to account for un-modeled 
time-dependent processes like the fertilizer subsidy amount in that 
district. We use a lag order of 3, based on the observed autocorrelation 
structure in yield (shown in Appendix F). 

yieldi,j = β1droughti,j + β2yearj +ϕ1,2⋯nyieldj− 1,j− 2⋯j− n +Ui + εi,j (3) 

Equation (4) directly includes the fertilizer usage rate per hectare as an 
explanatory variable. Since this information is only available from 2007 
onward, our available time series data is short, and thus lags are omitted. 

yieldi,j = β1droughti,j + β2yearj + β3fertilizerj +Ui + εi,j (4) 

If adaptation factors are relevant, the status quo model may exhibit two 
significant issues. The first potential issue is bias in the estimates of 
weathers’ effect on yield due to spurious trends. For example, the 
expansion of FISP coincided with a multi-year period of good rainfall. 
This may lead to systematic over- or under-estimation of weather shocks 
to agricultural livelihoods.

The second potential issue is inefficiency – that is, inaccurate esti
mates of the regression coefficient standard errors due to serial corre
lation. Inefficiency can arise even when the regression is asymptotically 

unbiased, and serial correlation tends to lead to over-confident esti
mates. This is a particularly salient issue in relatively short time series 
like the one used for this paper (Wooldridge, 2002).

We test for bias in the conventional approach to estimating shocks by 
comparing the size of the weather coefficient in our various specifica
tions. If there is no bias from omitted adaptation factors, then the co
efficient should only change minimally between specifications. 
However, if it is very different in the status quo model than the others, 
there is likely bias.

We test for inefficiency in the conventional approach by using the 
panel Breusch-Godfrey test for serial correlation in errors (Wooldridge, 
2002). If the null hypothesis of the Breusch-Godfrey test is rejected, it 
means that there is serial correlation in the error structure, and the 
standard errors of the regression coefficients are inaccurate, meaning 
the model may be over-confident.

Since our district-level time series is fairly short, we supplement our 
analysis by comparing Equations (2) and (3) in the province-level 
version of the CFS data, which goes back to 1987 on a coarser spatial 
scale.

2.2. Data

We spatially averaged all data to the district (administrative level 2) 
level, and temporally aggregated all data to the year level. We code all 
data according to the year of harvest – for example, the data associated 
with “2015” includes the measured drought severity over the 2014/15 
rainy season, the yield statistics for the 2015 harvest, and farmers’ 
recollection of how severe the drought was during that agricultural year.

2.2.1. Farmer recall data
Our primary source of data is the perspectives of farmers themselves. 

This data comes from a nationally representative survey of 925 farmer 
focus groups held in 2021, collected by Ministry of Agriculture extension 
workers and supported by the World Food Programme.

The primary goal of this survey was to obtain a participatory ranking 
of the 8 worst drought years out of the period 1983–2020 in each 
community’s perspective. Data was collected using a consensus-based 
focus group methodology in which 20–30 participants per village 
were first asked to discuss the question in small groups, and then 
convene to compare the groups’ results. Any discrepancies between the 
groups’ rankings had to be reconciled through community discussion. In 
this way, the survey aimed to identify which drought events were the 
most salient in each community, without the need to precisely estimate 
the amount harvested in each year (which is known to exhibit significant 
noise and bias in self-reported surveys, and may not be the only relevant 
aspect of how farmers experience drought).

The survey also collected data on farmers’ cropping practices, 
including the community’s typical cropping calendar. Surveyed villages 
were selected on the basis of being geographically representative of 
where the majority of farmers live in each district, with a minimum of 4 
villages per district (spatial distribution shown in Fig. 2). The full survey 
protocol is described in Appendix B.

2.2.2. Agricultural production data
Our data on agricultural inputs and outputs comes from the Crop 

Forecast Survey (CFS) that is conducted by the Zambia Statistics Agency. 
The CFS, which has been conducted regularly since the 1980 s, is based 
on annual surveys of select farmers in each district of the country. The 
results of these surveys are used by the Ministry of Agriculture in 
conjunction with census data to extrapolate the total amount of each 
major crop that is harvested that year (in kg) and the total amount 
planted (in Ha). Since 2007, the CFS has also included data on fertilizer 
usage and disaggregated its results by small-scale and large-scale pro
ducers (the latter defined as those cultivating > 20 Ha of land). The full 
CFS methodology is described in Appendix C.

We use district level maize yield (kg/Ha) as our primary measure of 
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agricultural productivity in this study. Our analysis period for studying 
yield begins in 2000, since gaps in the data and changes in adminis
trative designations make systematic analysis at the district level diffi
cult for earlier years. There are two post-2000 years with missing CFS 
data: the 2015/16 and 2020/21 harvest seasons.

Importantly, these limitations on data length and availability are 
typical of the ground-truth data commonly used for climate impact 
studies in the Global South. Since we wish to understand the biases that 
might arise from using such data as the basis for measuring livelihood 
shocks, these limitations are salient to the hypotheses of the paper. 
However, to test our statistical findings for robustness, we supplement 
our analysis by looking at data on the province level, which goes back −
with less geographic precision − to 1987.

Note that the CFS uses the 2000 Census district definitions to ensure 
measurement consistency over time. Any other data (like drought 
severity) that were measured using a more recent set of district 
boundaries were first aggregated to the 2000 Census district level.

2.2.3. Weather data
Our data to measure drought comes from the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) dataset (Funk et al., 
2015), a gridded statistical composite of satellite-estimated precipita
tion and weather station precipitation.

To transform CHIRPS into an annual measure of drought severity, we 
apply a drought index methodology based on the one used for para
metric drought insurance as part of FISP. The methodology, documented 
in full in Appendix A, is based on measurement of rainfall deficits during 
two crucial periods of the year − one around the time of maize sowing, 
and another around the time of tasseling. For each of these periods 
(“windows”),cumulative rainfall is first computed by year, 1983–2020, 
and then the driest 20th percentile of the historical data is calculated. 
This quantity defines the “trigger” − the level of rainfall deficit below 
which we count the year as a drought. As rainfall decreases, the drought 
severity index increases linearly, reaching 1 at the driest recorded 
amount on record. We compute this index separately for each window, 
then average the window-level indices together to arrive at our final 
drought proxy, which is thus normalized to each area’s climatology.

The specifics of this drought index were determined in consultation 
with stakeholders in the Government of Zambia, World Food Pro
gramme Zambia, and participating insurance companies, and thus rep
resents a locally validated approach for determining drought severity. 
Most notably, the timing of the windows in each district were tuned by 
local experts to reflect differences in cropping practices between areas.

3. Results

3.1. H1 − Coherence of farmers’ perceptions

If farmers’ recall is a reliable source of data on climate impacts, we 
would expect it to exhibit a couple of important qualities. First, we 
would expect it to show coherence over space − that is, neighboring 
farmers who experience similar climate shocks and use similar agricul
tural factors of production should report similar answers. Second, we 
would expect it to show coherence over time − that is, within a region, 
there should be some degree of correspondence between farmers’ 
consensus years and the worst measured droughts in that region.

To address both of these questions, we use the presentation of PCA to 
show which features, i.e. years, explain the predominant patterns of 
variation between districts. We follow this process for both the farmer 
recall data and the drought index data, each of which have been 
normalized to express a ranking of the worst 20 % of drought years in a 
given district, and compare / contrast them.

In both datasets, the first three principal components explain a ma
jority of the variance (50 % in the case of farmer data, 76 % in the case of 
drought data), so we retain only those three components for the subse
quent analyses.

Fig. 3 shows the coordinates of the first three principal components 
in the farmer data (top panel) and drought index data (bottom panel). 
These coordinates tell us which geographic areas are associated with 
distinct combinations (i.e., components) of worst years. In both datasets, 
the first component identifies droughts which are commonly felt across 
most of the country; the second component identifies droughts with a 
differential impact between the east and west, and the third component 
identifies a similar gradient between the north and south.

The coordinates of these three principal components in the farmer 
and drought datasets are highly correlated across space (Table 1), and 
are consistent with geographic differences in farming systems (as 
detailed in the Study Setting). The first components (nationwide 
droughts) have a 70 % correlation over space; the second and third 
components (east/west only and north/south only droughts) have a 38 
% and 43 % correlation, respectively. Thus, we can conclude that the 
dominant patterns in farmers’ recall over space are consistent with the 
dominant patterns in climate shocks.

The Table 1 results tell us that the two datasets are correlated over 
space, but do not tell us which specific years farmers tend to recall as 
bad. It may be the case that the two datasets are spatially correlated not 
because farmers’ recall is related to bad weather, but because of some 
unrelated factor imposing patterns over space, such as which enumer
ator team carried out the survey in each province. Thus, we also want to 
compare the principal component loadings; i.e., which years drive the 
distinctive patterns in each dataset. Fig. 4 shows this comparison, with 
the drought component loadings on the X axis and the farmer loadings 
on the Y axis. If the two datasets identify similar years, then the X-Y plot 
should show a positive, linear relationship – that is, the worst years that 
are distinctively associated with a particular region should be similar in 
both datasets.

We see that not only were years with larger overall droughts more 
likely to be mentioned by farmers (Component 1, in green below), e.g. 
2001 and 1999, but also that years with differential drought impact 
between the east and west (Component 2, in orange below) are reflected 
in both datasets, e.g. 1993 and 1994. This leads us to conclude that 
farmers’ recall is not only spatially coherent, but reflects specific his
torical events of interest in that time and place.

The strength of correlation in year-by-year loadings (Table 2) varies 
by component. PC1 (country-wide droughts) and PC2 (east–west 
gradient) have a strong and positive correlation (54 % and 49 %, 
respectively), while PC3 (north–south gradient) has a near-zero corre
lation. This may be explainable by differences in farming practices and 
climate vulnerability across the country − farmers in the north are the 
least exposed to drought, and thus their recall may bear the least 
empirical relationship to anomalies in rainfall. Appendix E presents a 
full cross-correlation analysis between each pair of components.

Notably, we also see that farmers’ worst years are relatively spread 
out over the recall period (1983–2020) and are not clustered around the 
most recent years. Furthermore, farmers’ worst years tend to be asso
ciated with multi-year climate cycles like ENSO (visualized and 
described in Section 1.3). These findings suggest that farmers’ percep
tions are not subject to recency bias, in contrast to what some other 
studies of farmer perceptions have found.

We can further explore these findings by imposing a discrete classi
fication on the PCA results, and examining the patterns and trends in 
agricultural output within each distinct farming region that results. We 
do this by applying a k-means classification with a k of 3 to the farmer 
principal component coordinate dataset. This yields a classification into 
southern, northern and central areas (Fig. 5) which broadly mirrors the 
three official agro-ecological zones (Fig. 2). This similarity in patterns 
further suggests that farmers’ recollected shocks are related to the agro- 
ecological factors of maize production.

Using these region designations, we identify the years of strongest 
farmer consensus within each region since 2000 (when consistently 
measured yield data became available), and compare them against 
aggregate maize yields and weather, as shown in the top and bottom 
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panels of Fig. 6, respectively.
A couple things are immediately apparent from this figure. First, we 

see that within each time period and region, farmers’ worst years are 
related both with drought and with a year-on-year decline in yields. 
Second, we see that between regions and time periods, the absolute level 
of agricultural productivity associated with a drought shock varies 
greatly.

These observations comport with previous work that finds that 
household-level resilience is more related to year-on-year consistency in 
agricultural production than to absolute levels of production (Benso 
et al., 2023). They are also consistent with prior, more qualitative 
studies of farmers’ climate recollections which find that the salience of 
specific “bad” years depends predominantly on what farmers expected to 
produce in that year, and less on absolute deviations in rainfall amounts 
or harvest quantities (Singh et al, 2018).

We cannot make a systematic statistical comparison between 
farmers’ bad years and yields because of the differing lengths of the two 
datasets and the missing yield data. However, our H1 results suggest that 
farmers’ recollected worst years reflect drought shocks across a variety 
of spatio-temporal contexts, even if farmers’ recall is not an exhaustive 
inventory of all drought events (by construction, farmers could only 
rank the worst 8 years out of the last 40).

3.2. H2 − Bias in estimates of drought on yield

In H1, we established that farmers’ recollected drought years have a 
strong statistical relationship with drought shocks over time and space, 
and that farmers’ recall does not appear to exhibit recency bias. This 
suggests that farmers’ recall is a reliable basis for establishing when and 
where major drought shocks occurred.

However, most previous work in the area of climate impact estimates 
has not considered or has not had access to such experiential data. 
Instead, the conventional approach to estimating drought shocks in 
agriculture is to use yield data as the basis for measuring impact, and to 
assume that weather exhibits a constant relationship to yield over time. 
As apparent from Fig. 1, this assumption is unlikely to hold in Zambia, 
where there have been large-scale changes in agricultural adaptation 
policy over the past decades.

In H2, then, we test whether estimates of the impact of drought based 
on yield data alone − the “status quo” approach to estimating livelihood 
impacts − are systematically biased and / or overconfident. If so, de
cisions derived from such models may not consistently reflect the con
ditions which are actually disruptive to farmers’ livelihoods.

We test this by comparing our “status quo” model against two 
alternative specifications which attempt for account for adaptation 
policy. Table 3 shows the results:

The estimated coefficient of drought on yields is much larger in the 
status quo model (model 1) than in the other two (models 2,3). This 
suggests that there is likely bias in the status quo approach due to 
spurious correlation between weather, yields and the omitted factor of 
adaptation policy. Since data on the most salient aspect of adaptation 
policy – fertilizer usage – is only available from 2007 onward, we only 
have limited data with which to test this proposition directly (model 3). 
However, since the coefficients on the lagged values of yield likely pick 
up policy-related factors which are dependent over time, the second 
model tells a similar story to the third.

Fig. 3. Principal component coordinates of farmers’ recollected livelihood shocks and meteorological drought shocks.

Table 1 
Spearman correlation of farmer and drought principal component co
ordinates both overall and for PCs 1–3.

Principal Component Coordinate Correlation

PC1 0.709***
PC2 0.385***
PC3 0.432***
Overall (PC1-PC3 Pooled) 0.780***

*=p < 0.1,**=p < 0.05,***=p < 0.01.
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Table 4 shows a similar comparison with the province-level CFS data, 
which goes back to 1987 on a coarser spatial scale:

Over this longer time horizon, the estimated drought impact coeffi
cient does not vary much with the inclusion of lags, suggesting that the 
biasing effect of spurious trends is diminished when more historical data 
is available. Notably, the drought impact coefficients in the Table 4
models are closer to those of the adjusted models in Table 3 than to the 
status quo model.

We can also test for potential inefficiency in the estimates arising 
from serial correlation in errors. Serial correlation due to the omission of 
time-varying factors like adaptation policy may lead to model estimates 
with an inaccurate degree of confidence (i.e., standard error), even when 
the model is unbiased. Table 5 shows the results of the panel Breusch- 
Godfrey test for nonstationarity of residuals in each model:

We see that the district-level models which include policy controls 
(2,3) do not exhibit serial correlation, while the status quo model (1) 
does. Both of the province-level models (4,5) exhibit serial correlation, 
suggesting there may be other un-modeled factors over this longer time 
horizon, or that it is harder to account for idiosyncratic policy effects 
through the inclusion of lags at this coarser spatial scale. Notably, 
however, the serial correlation is less for the model with lags (5) than the 
one without (4).

Taken together, these findings suggest that failing to account for 
adaptation factors in estimates of weathers’ impact on agricultural yield 
would lead to impact estimates that are at least inefficient, and in some 
cases biased as well. Since many studies rely on these types of estimates 
to evaluate weather insurance, predict the probable impacts of climate 
change, or other decision support applications, these statistical issues 
have major practical implications for applied work. This failure to ac
count for adaptation is particularly salient in settings with relatively 
little historical data on agriculture, as is common in the global South.

4. Conclusion

4.1. Takeaway messages

In the first part of the paper, we find that farmers’ recollected worst 

Fig. 4. Loadings of specific years in farmer and drought principal components, PCs 1–3. Solid line shows a fitted slope-intercept relationship between the drought 
index and farmer loadings for each component.

Table 2 
Spearman correlation of farmer and drought principal component load
ings both overall and for PCs 1–3.

Principal Component Loading Correlation

PC1 0.544***
PC2 0.497***
PC3 − 0.139
Overall (PC1-PC3 Pooled) 0.438***

*=p < 0.1,**=p < 0.05,***=p < 0.01.

Fig. 5. “Region” designation derived from k-means classification of farmer bad 
year data with k = 3.
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drought years are correlated with patterns of rainfall anomaly over 
space (similar areas experience droughts together) and over time 
(similar drought years are identified in a given area). This is the case 
even for years in the distant past, suggesting that farmers do not exhibit 
recency bias in their recall. The patterns in farmers’ recall are also 

consistent with Zambia’s distinct agro-ecological regions. Farmers’ 
recall appears to be associated with year-on-year declines in yield, 
although we lack sufficient historical yield data to test this 
systematically.

In the second part of the paper, we find that a regression of rainfall 
anomaly on yield – a more typical approach to measuring livelihood 
shocks than asking farmers directly – would result in biased and 

Fig. 6. Yield (top panel) and cumulative drought severity (bottom panel) in each farmer region. Farmers’ top worst recollected years in each region shown as yellow 
lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3 
Comparison of climate impact regression specifications using district-level yield 
data, 2000–2020.

Dependent variable:

yield

(1) (2) (3)

​
drought − 2.689*** − 1.498*** − 1.643***

​ (0.286) (0.429) (0.285)
lag(yield, 3) ​ − 0.045 ​
​ ​ (0.035) ​
lag(yield, 2) ​ 0.192*** ​
​ ​ (0.039) ​
lag(yield, 1) ​ 0.483*** ​
​ ​ (0.036) ​
fertiliser_rate ​ ​ 7.006***

​ ​ ​ (0.224)
year 0.174*** 0.005 0.118***

​ (0.011) (0.016) (0.018)
Constant 2.184*** 1.313*** 0.955***

​ (0.229) (0.155) (0.173)
​
Observations 1,204 833 808
R2 0.208 0.381 0.565
Adjusted R2 0.207 0.378 0.563
F Statistic 313.933*** 509.831*** 1,043.198***

​
Note: *p < 0.1; **p < 0.05; ***p < 0.01

Table 4 
Comparison of climate impact regression specifications using province-level 
yield data, 1987–2020.

Dependent variable:

yield

(4) (5)

​
year 0.007** 0.004
​ (0.003) (0.003)
drought − 1.846*** − 1.908***

​ (0.307) (0.286)
lag(yield, 3) ​ 0.290***

​ ​ (0.051)
lag(yield, 2) ​ 0.258***

​ ​ (0.051)
lag(yield, 1) ​ 0.238***

​ ​ (0.052)
Constant 1.839*** 0.460***

​ (0.177) (0.104)
​
Observations 306 303
R2 0.124 0.522
Adjusted R2 0.118 0.514
F Statistic 42.994*** 324.639***

​
Note: *p < 0.1; **p < 0.05; ***p < 0.01
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overconfident estimates of weather’s impact. Adding controls for 
adaptation policy reduces the bias. Using a longer (~35 years instead of 
20) but less spatially precise data source on yields also reduces the bias, 
but this approach still exhibits inefficiency. These results underline how 
the lack of community-level, historically representative data on climate 
shocks can trouble the conventional approach to climate impact mea
surement, which relies on readily available administrative data like 
agricultural yields.

Taken together, our findings suggest that farmers’ experiential 
knowledge of the worst drought events is a better basis for measuring 
community livelihood shocks than agricultural yields. The use of yield 
data is problematic due to the confounding effects of adaptation policy, 
which mediate the relationship between drought and agricultural output 
but are difficult to model, and the limited historical record of yield, 
which limits the number of observed rare drought events. In contrast, 
surveying farmers directly about which years had the worst drought 
shocks leads to a more representative sample of rare disaster events, and 
captures what matters to a community in spatio-temporal context.

4.2. Discussion & future work

Our findings suggest that using farmers’ experiential knowledge to 
establish when and where the worst climate shocks occurred is a 
promising methodology, even in large-scale quantitative studies. Most 
past work in this area has relied on administrative data as the basis for 
measuring impacts, without considering how its limited temporal span 
or models’ tacit assumptions of constancy may bias their findings. 
Asking farmers directly about what events mattered to them offers a way 
to fill in important data gaps when studying the human impacts of 
climate variability and change.

Our findings have implications beyond Zambia and beyond drought. 
The methodology of surveying farmers about their climate experiences 
in a semi-quantitative way could be applied to a variety of other contexts 
and questions. For example, the impact of flooding on agricultural 
livelihoods depends heavily on adaptation measures – some farmers are 
accustomed to and even rely on regular inundation, while others rarely 
experience flooding, and so any amount of water could be disruptive. 
The difference between the two is difficult to model with readily 
available sources of administrative or geographic data. Our ongoing 
work in Kenya and Bangladesh explores how data on farmers’ self- 
reported flood impacts could improve remote sensing-based estimates 
of flood risk.

Our finding that farmers’ recall is consistently related to livelihood 
shocks, even if the absolute amount of yield varies from event to event, 
stands in contrast to past studies which conclude that farmers’ percep
tion of the climate bears little relationship to observed conditions (e.g., 
Moyo et al., 2012). Importantly, many of those studies asked farmers to 
make statements about long-term climate averages or trends, rather than 
identifying specific years which mattered. The latter methodology may 

better comport with how farmers actually experience the climate − an 
epistemology which is more about “episodic” knowledge of particular 
events than about “semantic” knowledge of long-term summary statis
tics (per Sheppherd (2007)).

As more and more NGOs and governments adopt a “participatory” 
approach to addressing climate risk, this kind of local knowledge is of 
increasing relevance to practitioners working on climate adaptation 
policies that require community validation, such as agricultural insur
ance and anticipatory action. Focus group data is relatively inexpensive 
to collect, and can fill in knowledge gaps over time and space where 
administrative data is lacking. Thus, understanding how to work with it 
systematically is crucial − the formal statistical study of climate change 
has conventionally excluded such experiential data, as it does not 
comport easily with common methods of quantitative analysis.

Future work could explore a more systematic method for relating 
metrics of climate variability to farmers’ recollected impact. Our find
ings in this paper show that there is some relationship between a simple 
drought index and farmers’ worst years, but the specific aspects of 
climate variability that matter the most may vary from context to 
context. Future work could more rigorously quantify the statistical 
relationship between a range of climate metrics and farmers’ impact at a 
local level using probabilistic methods. Such methods could form a more 
robust basis for bottom-up estimates of climate’s impacts on agricultural 
livelihoods than administrative data alone.

CRediT authorship contribution statement

Max Mauerman: Writing – original draft, Visualization, Software, 
Project administration, Methodology, Investigation, Formal analysis, 
Data curation, Conceptualization. Henny Osbahr: Writing – review & 
editing, Validation, Supervision, Resources. Emily Black: Writing – 
review & editing, Visualization, Validation, Supervision, Resources, 
Conceptualization. Daniel Osgood: Writing – review & editing, Vali
dation, Supervision, Resources, Project administration, Investigation, 
Funding acquisition, Conceptualization. Grieve Chelwa: Writing – re
view & editing, Validation, Investigation, Data curation, Conceptuali
zation. Bernadette Mushinge: Writing – review & editing, Validation, 
Investigation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Emily Black reports financial support was provided by National Centre 
for Atmospheric Science. If there are other authors, they declare that 
they have no known competing financial interests or personal re
lationships that could have appeared to influence the work reported in 
this paper.

Acknowledgements

Emily Black was supported by the National Centre for Atmospheric 
Science through the NERC National Capability International Pro
grammes Award (NE/X006263/1).

We thank the United Nations World Food Programme Zambia office 
and the Zambian Ministry of Agriculture for leading the farmer focus 
group data collection effort. The data used for this paper is shared with 
their kind permission.

Table 5 
Test for serial correlation in residuals for each model in Tables 3 and 4.

Model Breusch-Godfrey test statistic Serial Correlation?

Status quo, district (1) 167.3*** YES
Lags, district (2) 0.30 NO
Fertilizer, district (3) 6.67 NO
Status quo, province (4) 101.34*** YES
Lags, province (5) 67.64*** YES

*=p < 0.1,**=p < 0.05,***=p < 0.01.
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Appendix 

A. Drought index formula

The drought index used for this paper, which is based on the one used for parametric drought insurance in Zambia’s FISP program, is based on the 
measurement of district-level CHIRPS rainfall during agriculturally important times of the year. A maximum 10-day value (“cap”) of 50 mm / dekad is 
applied to the rainfall before calculation of the drought index, to smooth over any extreme rainfall values that are unlikely to be agriculturally 
beneficial.

Calculating the drought index involves three steps: 1) Computing trigger and exit values over each measurement period (“window”), 2) computing 
a 0–1 drought severity index for each window, and 3) averaging the windows’ indices together to arrive at a single metric of drought severity.

Index triggers are calibrated with the goal of providing a meaningful payout for the worst 20 % years in the historical record of 1983–2020. The 
exit is likewise based on the value of the driest observed year in the historical record.

To address the key times of the season, 4 separate index windows have been developed: An early and a late simple sum window, and an early and a 
late rolling average window. For the sum windows, which are meant to capture prolonged rainfall deficits during agriculturally important times of the 
year such the maize planting and tasseling period, the formula below determines the 0–1 drought severity for a given trigger and exit value: 

Severity = (1 − ((Capped Rainfall Sum Over Window − Exit) / (Trigger − Exit)))

While for rolling average windows, which are meant to capture any brief dry spells over a longer measurement period, the formula is: 

Severity = (1 − ((Min(2 Dekad Rolling Average of Rainfall Over Window) − Exit) / (Trigger − Exit)))

The final drought severity index is an average of the four index window severity values.
The timings of the measurement windows were determined by local government and insurance company stakeholders in a participatory process, 

and were based on analysis of farmers’ cropping calendar in each district, as well as how well the potential index would capture farmers’ reported 
historical bad years. The window timings vary by district, and a full table is available on request. A summary of the range of possible timings is as 
follows:

Table A1 
Minimum-to-maximum range of drought index window timings.

Window Start Time End Time

Early Sum Oct 21-Jan 21 Dec 1-Feb 21
Late Sum Dec 1-Mar 11 Jan 21-Apr 21
Early Rolling Nov 1-Dec 1 Dec 1-Jan 21
Late Rolling Dec 21-Feb 21 Mar 1-Apr 1

B. Farmer survey protocol

The protocol followed for the farmer focus groups is reproduced below:
For this exercise, farmers will identify the worst drought years and they will discuss the reasons why they were the worst. During this exercise, 

farmers will name the worst drought 8 years (that they can remember) in the past ~ 40 years (the period 1983–2020) for their primary crop.

Fig. B1. Example of Flip Chart for Interactive Exercise

• Assign participants in groups of 4–5 people. At least one person in each group should be able to read/write (can be a farmer or an assistant). Provide 
each group with several post-its of the same color (or other objects suitable to use in the field). Each group should have 3–6 post-its.

• Ask each group to select a representative who would be responsible to place the post-its in the appropriate place on the board once the group 
reaches consensus on the worst 8 years.
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• Discuss with the farmers and the participants to identify which part of the season caused the loss in production: early, late, or both. It’s important to 
know which months the farmers consider part of the “early” season and which months correspond to the “late” season.

• Explain to each group that this is an interactive exercise where participants in each group must discuss which years were the worst, based on their 
experience and memory. Ask each group to discuss and identify the 8 worst years. The eight worst years will be represented by the post-its each 
group receives (or other objects that groups receive). The groups should rank the worst years (with the worst year being 1). Remember to designate 
the elected group representative to lead the discussion.

• Give the groups 30 min to decide on the worst 8 years.
• Now, ask the group representative to walk to the chart and place the post-its next to the worst years decided by his/her group.
• After all groups have placed all their post-its on the flipchart, compare the years reported by the different groups. If there are differences, give the 

participants a chance to discuss in one big group until they reach agreement on 8 common worst years going back to 1983.
• Groups will also have to specify if the rainfall was particularly low at the start or at the end of the season. The facilitator can give an example like: 

“If you had the worst year for your main crop because of a drought, was the precipitation lower than usual in the early or the late part of the rainy 
season?”

• From all the years that the farmers listed, select the years for which there was strong disagreement between the farmer groups, and discuss the 
effects of the worst years until consensus is reached.

C. Yield data protocol and QC

C.1 Yield data protocol

The yield data used for this paper comes from the Government of Zambia Crop Forecast Survey (CFS). The following description of the dataset 
comes from the Zambia Statistics Agency website:

The CFS obtains estimates from agricultural holdings (farmers) on the area under major crops as well as expected production and sales estimates, 
quantity and variety of seed, type of fertilizer used, carry over stocks, crop marketing and labour costs, among others during the season. The pro
duction estimates that are generated are used to assess the food security situation in the country and also to develop the National Food Balance Sheet 
(NFBS), which is used to determine the surplus or deficit of major cereals and tubers in the country.

The CFS covers all provinces of the country and is conducted in what ZamStats calls Enumeration Areas (EAs). A sample of EAs involving agri
cultural households is drawn using probability proportional to size sampling scheme. The EA is the smallest area with well-defined boundaries 
identified on a census map. A total sample of 680 EAs are allocated nationally to each province and district proportional to its size (in terms of 
households). Twenty households are randomly selected from each of the 680 EAs in the sample and interviewed in detail.

The CFS covers three categories of agricultural households namely: Small-scale farmers, Medium-scale farmers and Large-scale farmers. The Small 
and Medium scale farmers are covered on a sample basis while the Large-scale farmers are covered on a 100 percent basis. A fixed number of 20 
households are canvassed in each selected EA for Small and Medium scale farmers. The Large-scale farmers are captured in a separate sub-survey 
under the CFS on a 100 percent enumeration basis.

A Small-scale household is defined as a household cultivating 4.99 ha of area under crops or less. Households cultivating between 5 and 19.99 ha of 
area under crops are classified as Medium-scale households. All households cultivating 20 or more hectares of land and/or raising a specified number 
of poultry and/or livestock are classified as Large-Scale farmers.

The CFS collects information on area planted for each crop, expected production and sales, seed type, tillage method used, acquisition and usage of 
fertilizer etc. This information is based purely on farmer recall and estimation. The survey does not involve area measurement or direct field 
observation by the data collector as there are no field visits conducted. One of the reasons for relying on farmer recall and estimation is to reduce on 
measurement bias and error by the data collector.

Area expected to be harvested is also collected but is not used in the computation of yield. Only the area planted is used in yield computation. Yield 
is not calculated by the farmer but by the analysts at the data analysis stage. Yield is derived from quantity of expected production divided by the 
estimated area planted for each crop.

C.2 Yield quality control checks

To verify the quality of the CFS, we compare it against an independently measured source of data on maize yields: A nationally representative 
sample of crop cut data collected by the insurance company Pula during the 2021/22 season. This dataset, which is publicly available, covers a 
nationally representative sample of farming areas: 
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Fig. C1. Farmer focus group sites (yellow), Pula crop cut sites (green), and estimated WorldPop population density (white).

If the CFS is a reliable source of data, we would expect it to be broadly consistent with the Pula dataset in terms of which areas presented above- or 
below-average maize yields during the 2021/22 season. To determine this, we normalize both datasets against the 1987–2020 provincial mean and 
standard of yield from CFS to obtain a yield anomaly z-score, and compare their spatial similarity:

Fig. C2. Comparison of Pula and CFS maize yield anomaly estimates for the 2021/22 season. Gray areas indicate missing values for that district.

We see that the two datasets indicate similar areas as above or below average yield for the 2021/22 season. This leads us to believe that the CFS is a 
sufficiently reliable source of data to be used for historical analysis.

As detailed in Appendix F, historical CFS yields also have a physically plausible and statistically significant relationship with both measured 
drought and fertilizer usage, suggesting that consistent mis-reporting of yields is unlikely.
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D. Descriptive plots of farming practices

D.1 Time series of agricultural inputs and outputs for small vs. Large-scale farmers

Fig. D1. Planted area, yield and fertilizer usage rate for small- vs large-scale farmers, 2007–2019.

D.2 Map of small-scale contribution to production

M. Mauerman et al.                                                                                                                                                                                                                            Climate Services 38 (2025) 100543 

15 



Fig. D2. Average share of maize production from small-scale farmers, 2007–2020.

D.3 Map of typical planting and harvesting time

Fig. D3. Earliest day of planting period from FISP farmer surveys.
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Fig. D4. Latest day of harvesting period from FISP farmer surveys.

D.4 Map of crops grown

Fig. D5. Share of villages reporting growing various types of crops, from FISP farmer surveys.

E. Full H1 results

E.1 PCA variance explained

.
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Table E1 
First 10 principal components for drought data.

PC # PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Standard deviation 0.67 0.27 0.17 0.15 0.14 0.13 0.12 0.11 0.10 0.10
Proportion of variance explained 0.62 0.11 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01
Cumulative proportion 0.62 0.73 0.77 0.80 0.83 0.85 0.87 0.89 0.91 0.92

Table E2 
First 10 principal components for farmer bad year data.

PC # PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Standard deviation 11.60 5.33 4.60 4.38 4.02 3.85 3.69 3.58 3.38 3.27
Proportion of variance explained 0.35 0.07 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03
Cumulative proportion 0.35 0.42 0.47 0.52 0.57 0.60 0.64 0.67 0.70 0.73

E.2 Cross-correlation matrix for first 3 PCs

Fig. E1. Cross-correlation of coordinates for first 3 PCs.
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Fig. E2. Cross-correlation of loadings for first 3 PCs.

F. H2 regression auxiliary material

F.1 Panel vs fixed effect model diagnostic

Hausman Test.
data: yield ~ payout + as.numeric(year).
chisq = 0.25684, df = 2, p-value = 0.8795.
alternative hypothesis: one model is inconsistent.

F.2 Test for unit roots in yield

Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts).
data: yield ~ 1.
Wtbar = -9.4618, p-value < 2.2e-16.
alternative hypothesis: stationarity.

F.3 Yield autocorrelation plot

Fig. F1. Plot of district-level yield autocorrelation function.
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Data availability

All of the data and code necessary to replicate the results of this 
paper is available on the project Github repository. Please note that for 
privacy purposes, the original village-level farmer focus group data is 
not included in this public repository. Instead, we only share the district- 
level aggregate data.
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R., Mendiondo, E.M., 2023. Review article: design and evaluation of weather index 
insurance for multi-hazard resilience and food insecurity. Nat. Hazards Earth Syst. 
Sci. 23 (4), 1335–1354. https://doi.org/10.5194/nhess-23-1335-2023.

Blakeley, S.L., Sweeney, S., Husak, G., Harrison, L., Funk, C., Peterson, P., Osgood, D.E., 
2020. Identifying precipitation and reference evapotranspiration trends in west 
africa to support drought insurance. Remote Sens. (Basel) 12 (15), 2432. https://doi. 
org/10.3390/rs12152432.

Brahm, M., Vila, D., Martinez Saenz, S., Osgood, D., 2019. Can disaster events reporting 
be used to drive remote sensing applications? A Latin America weather index 
insurance case study. Meteorol. Appl. 26 (4), 632–641. https://doi.org/10.1002/ 
met.1790.

Burke, W., Jayne, T., Chapoto, A., 2010. Factors Contributing to Zambia’s 2010. Maize 
Bumper Harvest.

Carleton, T.A., Hsiang, S.M., 2016. Social and economic impacts of climate. Science 353 
(6304), aad9837. https://doi.org/10.1126/science.aad9837.

Chapoto, A., 2014. The Political Economy of Food Price Policy in Zambia. In: Pinstrup- 
Andersen, P. (Ed.), Food Price Policy in an Era of Market Instability: A Political 
Economy Analysis. Oxford University Press. https://doi.org/10.1093/acprof:oso/ 
9780198718574.003.0008.

Dakurah, G., Osbahr, H., 2023. No tuozaafi no food among the Dagaaba of Ghana: 
understanding the cultural aspects of the uses of food. Food Cult. Soc. 1–24. https:// 
doi.org/10.1080/15528014.2023.2246237.

Desarbo, W., Hausman, R., Kukitz, J., 2007. Restricted principal components analysis for 
marketing research. J. Model. Manag. 2, 305–328. https://doi.org/10.1108/ 
17465660710834471.

Dorward, P., Osbahr, H., Sutcliffe, C., Mbeche, R., 2020. Supporting climate change 
adaptation using historical climate analysis. Clim. Dev. 12 (5), 469–480.

Enenkel, M., Brown, M.E., Vogt, J.V., McCarty, J.L., Reid Bell, A., Guha-Sapir, D., 
Vinck, P., 2020. Why predict climate hazards if we need to understand impacts? 
Putting humans back into the drought equation. Clim. Change 162 (3), 1161–1176. 
https://doi.org/10.1007/s10584-020-02878-0.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Michaelsen, J., 
2015. The climate hazards infrared precipitation with stations—a new 
environmental record for monitoring extremes. Sci. Data 2 (1), 150066. https://doi. 
org/10.1038/sdata.2015.66.

Gine, X., Townsend, R.M., Vickery, J., n.d. Forecasting When it Matters: Evidence from 
Semi-Arid India.

Guiteras, R., Jina, A., Mobarak, A.M., 2015. Satellites, self-reports, and submersion: 
exposure to floods in Bangladesh. Am. Econ. Rev. 105 (5), 232–236. https://doi.org/ 
10.1257/aer.p20151095.

Haasnoot, M., van Aalst, M., Rozenberg, J., Dominique, K., Matthews, J., Bouwer, L.M., 
Poff, N.L., 2020. Investments under non-stationarity: economic evaluation of 
adaptation pathways. Clim. Change 161 (3), 451–463. https://doi.org/10.1007/ 
s10584-019-02409-6.

Hannachi, A., Jolliffe, I.T., Stephenson, D.B., 2007. Empirical orthogonal functions and 
related techniques in atmospheric science: a review. Int. J. Climatol. 27 (9), 
1119–1152. https://doi.org/10.1002/joc.1499.

Hultgren, A., Carleton, T., Delgado, M., Gergel, D. R., Greenstone, M., Houser, T., Yuan, 
J., 2022, September 16. Estimating Global Impacts to Agriculture from Climate 
Change Accounting for Adaptation [SSRN Scholarly Paper]. Rochester, NY. Doi: 
10.2139/ssrn.4222020.

International Monetary Fund, 2022. Zambia: Request for an Arrangement Under the 
Extended Credit Facility-Press Release; Staff Report; Staff Supplement; Staff 
Statement; and Statement by the Executive Director for Zambia. Retrieved from 
https://www.imf.org/en/Publications/CR/Issues/2022/09/06/Zambia-Request-for- 
an-Arrangement-Under-the-Extended-Credit-Facility-Press-Release-Staff-523196.

Jain, S., 2007. An empirical economic assessment of impacts of climate change on 
agriculture in Zambia. The World Bank. https://doi.org/10.1596/1813-9450-4291.

Kawaye, F.P., Hutchinson, M.F., 2018. Are Increases in Maize Production in Malawi Due 
to Favourable Climate or the Farm Input Subsidy Program (FISP)? In: Alves, F., Leal 
Filho, W., Azeiteiro, U. (Eds.), Theory and Practice of Climate Adaptation. Springer 
International Publishing, Cham, pp. 375–390. https://doi.org/10.1007/978-3-319- 
72874-2_22.
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Mérel, P., Paroissien, E., Gammans, M., 2024. Sufficient statistics for climate change 
counterfactuals. J. Environ. Econ. Manag. 124, 102940. https://doi.org/10.1016/j. 
jeem.2024.102940.

Michler, J. D., Josephson, A., Kilic, T., & Murray, S. (2021). Estimating the Impact of 
Weather on Agriculture [Working Paper]. Washington, DC: World Bank. Doi: 
10.1596/1813-9450-9867.

Michler, J.D., Viens, F.G., Shively, G.E., 2022. Risk, crop yields, and weather index 
insurance in village India. Journal of the Agricultural and Applied Economics 
Association 1 (1), 61–81. https://doi.org/10.1002/jaa2.9.

Moyo, M., Mvumi, B.M., Kunzekweguta, M., Mazvimavi, K., Craufurd, P., Dorward, P., 
2012. Farmer perceptions on climate change and variability in semi-arid Zimbabwe 
in relation to climatology evidence. Afr. Crop Sci. J. 20, 317–335.

Mukherjee, S., Mishra, A., Trenberth, K.E., 2018. Climate change and drought: a 
perspective on drought indices. Current Climate Change Reports 4 (2), 145–163. 
https://doi.org/10.1007/s40641-018-0098-x.

Mulenga, B.P., Wineman, A., Sitko, N.J., 2017. Climate trends and farmers’ perceptions 
of climate change in Zambia. Environ. Manag. 59 (2), 291–306. https://doi.org/ 
10.1007/s00267-016-0780-5.

Mulungu, K., Tembo, G., Bett, H., Ngoma, H., 2021. Climate change and crop yields in 
Zambia: historical effects and future projections. Environ. Dev. Sustain. 23 (8), 
11859–11880. https://doi.org/10.1007/s10668-020-01146-6.

Mumba, M., Edriss, A.-K., 2018. Determinants and change in total factor productivity of 
smallholder maize production in Southern Zambia. Journal of Sustainable 
Development 11, 170. https://doi.org/10.5539/jsd.v11n6p170.

Myeni, L., Moeletsi, M.E., Clulow, A.D., 2019. Present status of soil moisture estimation 
over the African continent. J. Hydrol.: Reg. Stud. 21, 14–24. https://doi.org/ 
10.1016/j.ejrh.2018.11.004.

Osbahr, H., Twyman, C., Adger, W., Thomas, D., 2010. Evaluating successful livelihood 
adaptation to climate variability and change in Southern Africa. Ecol. Soc. 15 (2). 
https://doi.org/10.5751/ES-03388-150227.

Osbahr, H., Dorward, P., Cooper, S., Stern, R., 2011. Supporting agricultural innovation 
in Uganda to respond to climate risk: linking climate change and variability with 
farmer perceptions. Exp. Agric. 47 (2), 293–316.

Osgood, D., Powell, B., Diro, R., Farah, C., Enenkel, M., Brown, M.E., McCarty, J.L., 
2018. Farmer perception, recollection, and remote sensing in weather index 
insurance: an Ethiopia case study. Remote Sens. (Basel) 10 (12), 1887. https://doi. 
org/10.3390/rs10121887.

Patel, D., 2023. Learning about a warming world: attention and adaptation in 
agriculture. SSRN Electron. J. https://doi.org/10.2139/ssrn.4636825.

Peterson, C.A., Eviner, V.T., Gaudin, A.C.M., 2018. Ways forward for resilience research 
in agroecosystems. Agr. Syst. 162, 19–27. https://doi.org/10.1016/j. 
agsy.2018.01.011.

Pomposi, C., Funk, C., Shukla, S., Harrison, L., Magadzire, T., 2018. Distinguishing 
southern Africa precipitation response by strength of El Niño events and implications 
for decision-making. Environ. Res. Lett. 13 (7), 074015. https://doi.org/10.1088/ 
1748-9326/aacc4c.

Rodrigues, R.R., Shepherd, T.G., 2022. Small is beautiful: climate-change science as if 
people mattered. PNAS Nexus 1 (1), pgac009. https://doi.org/10.1093/pnasnexus/ 
pgac009.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Jones, J.W., 
2014. Assessing agricultural risks of climate change in the 21st century in a global 
gridded crop model intercomparison. Proc. Natl. Acad. Sci. 111 (9), 3268–3273. 
https://doi.org/10.1073/pnas.1222463110.

Singh, C., Osbahr, H., Dorward, P., 2018. The implications of rural perceptions of water 
scarcity on differential adaptation behaviour in Rajasthan. India. Regional 
Environmental Change 18 (8), 2417–2432.

Sutanto, S.J., van der Weert, M., Wanders, N., Blauhut, V., Van Lanen, H.A.J., 2019. 
Moving from drought hazard to impact forecasts. Nat. Commun. 10 (1), 4945. 
https://doi.org/10.1038/s41467-019-12840-z.

M. Mauerman et al.                                                                                                                                                                                                                            Climate Services 38 (2025) 100543 

20 

https://doi.org/10.1016/j.jdeveco.2011.09.005
https://doi.org/10.1038/s43017-020-00122-y
https://doi.org/10.1038/s43017-020-00122-y
https://doi.org/10.5194/nhess-23-1335-2023
https://doi.org/10.3390/rs12152432
https://doi.org/10.3390/rs12152432
https://doi.org/10.1002/met.1790
https://doi.org/10.1002/met.1790
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0035
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0035
https://doi.org/10.1126/science.aad9837
https://doi.org/10.1093/acprof:oso/9780198718574.003.0008
https://doi.org/10.1093/acprof:oso/9780198718574.003.0008
https://doi.org/10.1080/15528014.2023.2246237
https://doi.org/10.1080/15528014.2023.2246237
https://doi.org/10.1108/17465660710834471
https://doi.org/10.1108/17465660710834471
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0060
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0060
https://doi.org/10.1007/s10584-020-02878-0
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1257/aer.p20151095
https://doi.org/10.1257/aer.p20151095
https://doi.org/10.1007/s10584-019-02409-6
https://doi.org/10.1007/s10584-019-02409-6
https://doi.org/10.1002/joc.1499
https://doi.org/10.1596/1813-9450-4291
https://doi.org/10.1007/978-3-319-72874-2_22
https://doi.org/10.1007/978-3-319-72874-2_22
https://doi.org/10.5194/nhess-23-2915-2023
https://doi.org/10.1126/science.1204531
https://doi.org/10.1126/science.1204531
https://doi.org/10.1093/ajae/aaz051
https://doi.org/10.1093/ajae/aaz051
https://doi.org/10.1175/WCAS-D-22-0019.1
https://doi.org/10.1016/j.jeem.2024.102940
https://doi.org/10.1016/j.jeem.2024.102940
https://doi.org/10.1002/jaa2.9
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0175
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0175
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0175
https://doi.org/10.1007/s40641-018-0098-x
https://doi.org/10.1007/s00267-016-0780-5
https://doi.org/10.1007/s00267-016-0780-5
https://doi.org/10.1007/s10668-020-01146-6
https://doi.org/10.5539/jsd.v11n6p170
https://doi.org/10.1016/j.ejrh.2018.11.004
https://doi.org/10.1016/j.ejrh.2018.11.004
https://doi.org/10.5751/ES-03388-150227
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0210
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0210
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0210
https://doi.org/10.3390/rs10121887
https://doi.org/10.3390/rs10121887
https://doi.org/10.2139/ssrn.4636825
https://doi.org/10.1016/j.agsy.2018.01.011
https://doi.org/10.1016/j.agsy.2018.01.011
https://doi.org/10.1088/1748-9326/aacc4c
https://doi.org/10.1088/1748-9326/aacc4c
https://doi.org/10.1093/pnasnexus/pgac009
https://doi.org/10.1093/pnasnexus/pgac009
https://doi.org/10.1073/pnas.1222463110
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0245
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0245
http://refhub.elsevier.com/S2405-8807(25)00004-4/h0245
https://doi.org/10.1038/s41467-019-12840-z


Sutanto, S.J., van der Weert, M., Blauhut, V., Van Lanen, H.A.J., 2020. Skill of large-scale 
seasonal drought impact forecasts. Nat. Hazards Earth Syst. Sci. 20 (6), 1595–1608. 
https://doi.org/10.5194/nhess-20-1595-2020.

2021- Technical Report on Zambia’s Farmer Input Support Program (FISP) Index 
Insurance Product Improvement | World Food Programme. (2021, July 19). 
Retrieved February 21, 2023, from https://www.wfp.org/publications/2021- 
technical-report-zambias-farmer-input-support-program-fisp-index-insurance.

Tenorio, F.A.M., Rattalino Edreira, J.I., Monzon, J.P., Aramburu-Merlos, F., 
Dobermann, A., Gruere, A., Brihet, J.M., Gayo, S., Conley, S., Mourtzinis, S., 

Mashingaidze, N., Sananka, A., Aston, S., Ojeda, J.J., Grassini, P., 2024. Filling the 
agronomic data gap through a minimum data collection approach. Field Crop Res 
308, 109278. https://doi.org/10.1016/j.fcr.2024.109278.

Wooldridge, J.M., 2002. Econometric analysis of cross section and panel data. MIT Press.
Young, H.R., Shepherd, T.G., Acidri, J., Cornforth, R.J., Petty, C., Seaman, J., Todman, L. 

C., 2021. Storylines for decision-making: climate and food security in Namibia. Clim. 
Dev. 13 (6), 515–528. https://doi.org/10.1080/17565529.2020.1808438.
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