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Abstract 

The functions of proteins are determined by their 3D structures, hence different methods have 

been developed in order to predict protein structures as a stepping stone to better 

understanding their functions and interactions. Protein structure modelling was a process that 

often involved two different stages: modelling and refinement. However, the release of the 

deep neural network-based AlphaFold2 (AF2) as a protein modelling tool in 2020 has enabled 

significant advances in protein bioinformatics. These advances have made it possible to 

predict models of monomeric structures that are close to structures derived experimentally. 

Thus, the effective application of machine learning approaches has reduced the need for the 

traditional refinement process. Instead, modellers use end-to-end processes for improvements 

covering both modelling and refinement. One of the most important developments in for such 

processes was the open-access release of the AF2 code. As a result, almost all recent tools 

have integrated the AF2 code into their own pipelines using different methods and parameters, 

aiming to obtain better models than those produced by the default AF2 method. However, the 

successes achieved for monomeric globular structures have not yet been realised for 

multimeric globular structures, and this has increased the need for the development of new 

modelling tools. Although many AF2 versions have been introduced in the process, the full 

effectiveness of AF2 - and indirectly, which structures it can accurately predict - is not yet fully 

understood. Therefore, the basis of this research is to investigate the features of this black box 

and to explore how to use it most effectively for the improvement of quaternary structure 

models. In this direction, we aimed to design an improved AF2-based multimeric protein 

modelling pipeline. 

The effect of recycling, a key part of the AF2 algorithm, on the refinement of models is 

investigated in Chapter 2. The results show that in both AF2 versions (AF2_Advanced and 

AF2_Multimer (AF2M)) the quality of the predicted protein model improves as the number of 

recycles increases. It is also shown that while 3 cycles is the default value for the AF2 versions, 

12 cycles may be more effective for both main versions. With the integration of the custom 

template option into the AF2M code, the effect of custom templates and recycling methods on 

protein modelling are examined in Chapter 3. It is shown that providing initial structural 

information to AF2M as an input and further recycling can lead to better quality structure 

models. It is also emphasised that using multiple sequence alignment (MSA) inputs is more 

effective in AF2M compared to providing a single sequence (SS). Another new parameter 

introduced for AF2M for improving modelling was the custom MSA option. Although the 

effectiveness of custom templates and custom MSA options have been supported by many 
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studies, the effect of altering these input features on AF2M rather than using the defaults had 

not been fully revealed. In Chapter 4, we discovered that when multimeric custom template 

structures are given to AF2M as a “single-chain” protein structure, a cumulative improvement 

in TM-scores and IDDT scores are observed, although there is no improvement in interface 

scores (QS-scores and DockQ_wave scores). Furthermore, in order to obtain custom MSAs, 

disordered residues in homologous sequences were deleted within MSAs, so that AF2M made 

its predictions only from residues corresponding to ordered regions. As a result, it was also 

observed that AF2M obtained higher quality protein structures in more than half of the targets. 

These two major results emphasise that input changes to AF2M can be more effective for 

target-specific protein modelling than for general protein modelling. Finally, based on the 

results from the previous chapters, we designed two successive versions of a protein modelling 

tool called MultiFOLD, which aims to create a pool of models with conformational sampling 

using custom template recycling followed by ranking and selection. In Chapter 5, through 

extensive analysis of benchmarking data we demonstrate that MultiFOLD is particularly 

effective in modelling multimeric globular structures, and the latest version, MultiFOLD2, 

outperformed all other servers including AlphaFold3 (AF3) that are participating in the CAMEO-

BETA project. With the acquisition of better-quality protein structures, it is now possible to 

better infer function and to model protein-ligand interactions in downstream analyses. 
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1.1 Protein structure 

 

Proteins are the material base of all living organisms and are involved in all cellular processes, 

such as guidance for biochemical reaction catalysis, ensuring the correct genetic information 

expression, and the transmission and transduction of signals (Jiang et al., 2017). Proteins are 

amino acid polymers that are bound by peptide bonds in specific linear sequences. With 

distinct physiochemical properties, the 20 essential amino acids have different side chains. 

These features determine the folding of the polymer into a three-dimensional structure: the 

native conformation (Anfinsen, 1973), which in turn make possible the astonishing variety of 

molecular functions (Kuhlman & Bradley, 2019). The amino acids are categorised as nonpolar, 

polar acidic, polar basic and polar neutral amino acids. Nonpolar side chains are the most 

frequent, whereas other residues contain side chains that range in size, shape, acidity, 

chemical reactivity, and charges that can be positive or negative (Branden & Tooze, 1991; 

Williamson, 2012). Understanding the structure of proteins is critical for understanding how 

they function. Protein structures are generally defined at 4 levels- primary, secondary, tertiary, 

and quaternary. 

 

1.1.1 Primary structure 

 

In the polypeptide chain, the primary structure of a protein relates to the amino acid sequence. 

Peptide bonds that are formed during the process of protein biosynthesis keep the primary 

structure together. The two ends of the polypeptide chain, depending on the existence of the 

free group on each terminus, are referred to as the amino terminus (N-terminus) and the 

carboxyl terminus (C-terminus). Amino acids are composed of four chemical groups: a 

carboxyl (COOH) group, an amino (NH2) group, a hydrogen (H) atom, one changeable group, 

known as a side chain or R group (Figure 1.1 A). R groups differentiate on the basis of shape, 

hydrophobicity, size, reactivity, and charge (Sanvictores & Farci, 2023). Residues that make 

each amino acid unique are bound to a carbon atom, called C-alpha. Two C-alpha atoms are 

joined by a peptide bond, involved in the atoms of C, O, N, and H in a plane: however, the 

bonds joining it to the C-alpha can rotate (Figure 1.1 B). Phi (Cα-N bond) and Psi (Cα-C bond) 

angles are the rotation angles of these bonds, which are the only flexible parts in the peptide 

chain (Song et al., 2012b). 
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1.1.2 Secondary structure 

 

Segments of folded polypeptide chains, in general, follow conformations where the main 

chain's torsion angles (Phi and Psi angle) replicate in a normal fashion and create secondary 

structure components such as α-helices and/or β-sheets (Pauling et al., 1951). α-helices are 

helical structures reinforced by the hydrogen bonds between each fourth amino acid. At the 

same time, β-sheets form from extended strands of parallel or antiparallel segments formed 

which are stabilized by longer hydrogen bonds between interacting amino acids (Jiang et al., 

2017). Turns, which are a flexible part of the protein structure, play a significant role in folds, 

loops, and interactions, i.e. the elements that bond regular secondary structure units in protein 

folding (Song et al., 2012a). Protein secondary structure can be thought of as an intermediate 

between primary sequence and tertiary structure. Hence, many computational methods for 

secondary structure prediction have been improved, with using by combining both local 

(adjacent residues) and long-range contact information (Zhang et al., 2018). 

 

1.1.3 Tertiary structure 

 

The tertiary structure level refers to the three-dimensional arrangement of atoms inside a 

protein. Secondary structures are packed in order to form varied number of folding units called 

“domains”. Generally, one domain includes approximately 100-150 residues. The 3D structure 

is folded in the way they reach the lowest energy, known as Anfinsen theory  (Anfinsen, 1973), 

which confers the functional activity. Christian Anfinsen's work in the 1950s demonstrated that 

the information included in the amino acid sequence determines the three-dimensional 

structure of a protein. He used urea and beta-mercaptoethanol to break down the secondary 

and tertiary structures of the protein while working on the ribonuclease enzyme. In his first 

experiment, when he removed the two substances together, the protein refolded and became 

active. In his second experiment, when he removed beta-mercaptoethanol first and then urea, 

the protein misfolded and became biologically inactive. This was due to the failure to form non-

covalent bonds. In his third experiment, when he exposed the misfolded protein to trace 

amounts of beta-mercaptoethanol, the protein formed the correct disulfide bonds and returned 

to its native and active state. This was because the native structure was the most 

thermodynamically stable form (Anfinsen, 1973). The folding is stabilised by hydrophobic 

interactions, hydrogen bonds, disulfide bonds and, electrostatic attractions (Cozzone, 2010). 
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Disulfide bridges are covalent bonds with strong interactions generated between the sulfhydryl 

groups of two cysteine residues (Sevier & Kaiser, 2002). Hydrogen bonds and ionic 

interactions between the polar and charged amino acids allow the tertiary structure to keep a 

unique shape. However, they can be weaker than other types of interactions (Rehman I et al., 

2024). 

Protein folding is the physical process by which a protein chain is converted to its native three-

dimensional structure, mostly a "folded" configuration that allows the protein to operate 

biologically functions. From a random coil, a polypeptide folds into its distinctive three-

dimensional structure. Many proteins begin folding even during polypeptide chain translation. 

The amino acid sequence or primary structure determines the resultant three-dimensional 

structure – this fact is termed “Anfinsen's dogma”. Folding is a process that is mainly guided 

by hydrophobic interactions, formation of intramolecular hydrogen bonds, van der Waals forces 

(Pratt & Cornely, 2012). During folding process of a protein, Chaperone proteins give an 

important role in the cell in order not to aggregate misfolded protein structures from sequences 

by binding to folded intermediate structures (Mashaghi et al., 2014). This means that 

chaperone proteins are essential molecules present in all organisms, helping other proteins in 

proper folding, refolding, and move to their correct cellular locations (Wergin, 2006). Physical 

contacts of protein-protein interactions are high specificity established between two or more 

protein molecules as a result of biochemical events steered by interactions that include 

electrostatic forces, hydrogen bonding and the hydrophobic effect (Titeca et al., 2019). 

Hydrophobic amino acids are buried within proteins, isolating them from water and this 

hydrophobic effect cause to makes a protein fold stable (van Dijk et al., 2015). 

 

1.1.4 Quaternary structure 

 

The majority of proteins in a cell interact to form complexes to perform their functions. Such 

complexes are also known as quaternary structures or oligomeric assemblies. Complexes of 

proteins, or oligomers, comprise a mixture of several separate monomeric folded tertiary 

structure chains or subunits (Marsh & Teichmann, 2015). By having various interaction 

partners, proteins regulate their functions in a cell according to changes in the surrounding 

environment (Morris et al., 2022). Protein complexes are prevalent in nature and can be 

separated into two types (Yu et al., 2006). homo-oligomers, which comprise identical subunits 

such as the homo-tetramer structure of the potassium channel (Doyle et al., 1998), and hetero-

oligomers, which comprise varied subunits such as the hetero-pentamer structure of the 
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gamma-aminobutyric acid type A (GABAA) receptor (Tretter et al., 1997). The four levels 

leading up to the formation of complex structures are illustrated in Figure 1.1 C. 

According to protein-protein interfaces extracted from the PDB, each protein can be divided 

into three subunits: interface, non-interface, and protein core. Also, these subunits include 

residue compositions with different solvent accessibility, sequence entropy, size, and 

preference of contact. Specifically, hydrophobic and aromatic residues are more common in 

the interface area than hydrophilic residues, which indicates that hydrophobic residues are a 

critical component for complex stabilisation (Yan et al., 2008). 

 

Figure 1.1 The fundamentals of protein structure. 
The figure representing the levels of protein structures from sequence to final complex structure. Part A 
shows the general structure of amino acids. Part B depicts the linkage between two amino acids, where 
one amino acid is connected to the carboxyl group of the other through a peptide bond. Part C represents 
various protein structural elements from left to right: The primary structure (where a specific colour 
represents each amino acid in a linear pattern), secondary structures (with a helical structure on the 
upper part and a sheet structure on the lower part), tertiary structure (where various combinations of 
secondary structures are folded in three dimensions), complex structures (where each colour represents 
a distinct interacting chain, resulting in the assembly of multiple tertiary structures). The molecular 
graphics in 1.A and 1.B and the protein sequences in 1.C were drawn by using Google Draw, while the 
parts of protein structures were drawn by using PyMOL. 
 

According to tissue-based protein research, Lehner and Fraser (Lehner & Fraser, 2004) 

discovered mammalian protein domains as tissue-specific and studied their cellular functions. 

Bossi and Lehner (Bossi & Lehner, 2009) further showed that protein interactions are tissue-

specific and that universally expressed proteins often interact with tissue-specific ones. This 
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suggests that proteins may undergo structural changes in response to tissue-specific 

requirements. Protein folding depends on factors such as the length of a protein, domain 

structures and intrinsically disordered regions (Anfinsen, 1973; Olzscha, 2019). Anfinsen's 

experiments (Anfinsen, 1973) showed that these factors determine protein folding. However, 

there are additional factors that influence protein folding within the cell, including molecular 

crowding and tissue-specific environmental differences (Arndt et al., 2010; van den Berg et al., 

1999). Protein structure can also be altered by post-translational modifications, resulting in 

spatially different conformations (Nussinov et al., 2012). 

 

1.1.5 Disordered regions of protein 

 

The theory that proteins carry out their functions through their unique three-dimensional 

structures (Anfinsen, 1973) has been challenged by molecular dynamic (MD) simulations (Mao 

et al., 2010) and sequence analyses (Das et al., 2015), which have shown that certain 

structures contradict this theory. These structures, known as intrinsically disordered structures, 

do not fold into a specific 3D conformation under certain physical conditions. Instead, they 

create a diverse conformational ensemble, allowing them to perform various functions 

(Uversky & Dunker, 2010). These polypeptide structures, often rich in polar and charged amino 

acids, do not have a sufficient number of hydrophobic amino acids to form stable folds (Uversky 

et al., 2000). Nevertheless, the amino acid composition of these disordered structures plays a 

constraining role in their ability to explore an unlimited conformational space (Mao et al., 2010). 

Approximately 40% of eukaryotic proteomes (Wright & Dyson, 2009) consist of disordered 

regions, and their active involvement in many human diseases such as cancer (Iakoucheva et 

al., 2002) and neurodegenerative diseases (Uversky, 2014)  has been observed. Disordered 

protein regions can also participate in the formation of functional complexes. Compared to 

interactions between structured protein regions, disordered regions often exhibit weaker 

binding affinities, resulting in more transient interactions (Latysheva et al., 2015). Interactions 

between these disordered regions are facilitated by short linear motifs (Slims) (Davey et al., 

2012) and molecular recognition features (MoRFs) (Disfani et al., 2012), which act as 

interaction sites (Tompa et al., 2014). These features, located within the disordered regions, 

often induce a specific conformation when interacting with their binding partners (Singh et al., 

2007). 
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1.2 Protein pKa 

 

Protein pKa calculations are used to determine the acid strength of amino acids in free form or 

protein complexes. pKa values of amino acids play an essential role in defining the pH-

dependent characteristics of the protein. The pKa value of a protein can fluctuate as it folds, 

depending on its three-dimensional structure and the surrounding environment. The 

determination of pKa is useful in structural bioinformatics, computational biology and molecular 

modelling. pKa accurately calculates the physical model of protein electrostatics, which can 

aid structure-based energy estimating approaches (Alexov et al., 2011). The binding changes 

the pKas of ionizable groups, which causes proton uptake/release and, as a result, the pH 

dependency of the binding energy (Jensen, 2008). Likewise, the shift in pKas upon protein 

folding causes pH dependence of the folding energy (Yang & Honig, 1993). 

Biological macromolecules are designed to perform certain roles in specific cellular 

environments (subcellular compartments or tissues); as a result, they must be compatible with 

the biophysical characteristics of the associated environment, one of which is the characteristic 

pH. Many macromolecular characteristics, including as stability and activity, are thus pH 

dependent (Talley & Alexov, 2010)  which is as a consequence of the change in protonation 

of ionise residues. Along with its effect on protein structure, stability and solubility, the types of 

interactions of polar side chains will have with their surroundings are determined by their 

protonation state (Grimsley et al., 2009). In the general meaning, the state of ionization 

depends on the pH of the solution. It is important to note that the resting pH of blood is about 

7.4, which is between the pk values of the side chains, histidine and Cysteine. Even so, 

variation by more than about 0.2 pH unit is hazardous (Lesk, 2016). 

 

1.3 Protein sequence and structure databases 

 

UniRef: The UniRef database is a system that clusters protein sequences based on similarity 

thresholds of 100%, 90%, and 50%, also aiming to remove redundant proteins. In this way, it 

serves as a core component of the Universal Protein Resource. The UniRef database 

leverages sequence clusters, which are produced from UniProtKB and UniParc data (Leinonen 

et al., 2004) provided by the UniProt Consortium. These clusters are designed to maximize the 

coverage of the sequence space by grouping related protein sequences, thus facilitating a 
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more comprehensive and effective analysis of protein variety and function (Suzek et al., 2007; 

Suzek et al., 2014). 

Uniclust: The Uniclust database, much like UniRef, clusters sequences obtained from 

UniprotKB based on three different similarity thresholds (%90, %50, %30). However, the key 

difference between these two databases lies in their sequence clustering methods. While 

UniRef utilizes the CD-HIT software system, Uniclust employs MMseq2 (Steinegger & Söding, 

2017). The primary advantage of using MMseq2 is its increased sensitivity to distant 

homologous sequences, allowing for the lowering of the sequence similarity threshold to as 

low as 30%.Furthermore, MMseq2 has developed a cascaded clustering model to cluster 

functionally homologous sequences more effectively than UniRef50 and 

UniRef90.Additionally, by utilizing HH-suite (Steinegger et al., 2019a) for Uniclust sequences, 

it has facilitated the recognition of 17% more Pfam domains (Mirdita et al., 2016). The workflow 

of the core repositories for protein sequences is detailed below. 

 

Figure 1.2 The workflow of database organisation. 
It illustrates how databases encompassing UniProt interact and operate. This workflow was designed 
using Microsoft PowerPoint, inspired by the content on www.ebi.ac.uk. Scientific literature, automatic 
annotation, sequence analysis tools, and other databases enable the integration of protein sequences 
and related functional information into the UniProt database.  

 

http://www.ebi.ac.uk/
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Mgnify: MGnify brings together data from various projects and facilitates their harmonized 

analysis, aiding in better comprehension and comparison of metagenomic data in an academic 

context. With the 2022 update, the database currently contains more than 2.4 million non-

redundant sequences representing 297 distinct biomes, and more than half of MGnify's 

analyses originate from just nine of them: human faecal, oral, digestive system, skin, and 

unspecified human; marine; soil; mammalian digestive systems; and mixed biome samples. 

As long-read sequencing data from PacBio and Oxford Nanopore Technologies becomes 

more common alongside short-read technologies like Illumina, the database was expanded to 

support both long-read-only and hybrid datasets (combining long and short reads from the 

same sample). The MGnify protein database (the last version of MGnify in 2023) consists of 

2,477,479,951 protein sequences, containing all protein sequences from analyses of 

assembled data – a combination of long and short metagenomic sequences. It plays a vital 

role as a source of additional sequences for multiple sequence alignments (MSAs) used by 

AlphaFold2, enhancing protein families underrepresented in conventional databases with 

sequences from metagenomic sources (Richardson et al., 2022). 

In addition to these databases, sequence sets generated using different algorithms have also 

emerged. MetaClust (Steinegger & Söding, 2018) was created by merging approximately 1.5 

billion protein sequence fragments from about 2,200 metagenomic/transcriptomic datasets 

using Prodigal (Hyatt et al., 2010). and clustering them. Additionally, the Big Fantastic 

Database (BFD) (Jumper et al., 2021a; Steinegger et al., 2019b) was obtained by clustering 

2.5 million protein sequences from the Soil Reference Catalog Marine Eukaryotic Reference 

Catalog, Metaclust, and Uniprot/TrEMBL+Swissprot. The Linclust (Steinegger & Söding, 2018) 

algorithm was particularly beneficial in clustering the BFD dataset, as it is independent of the 

number of resulting clusters (K), thereby revealing the rich source of information in 

metagenomic and genomic sequences. 

Protein Data Bank (PDB): The PDB, which has been organized by the Worldwide Protein 

Data Bank (wwPDB) since 2003, is a global repository that houses all of three-dimensional 

experimental structures of biological macromolecules such as proteins and DNA. This 

essential resource facilitates the collection, validation, and curation of data and provides open 

access to 3D structures. With the PDBx/mmCIF primary data format, metadata can be handled 

and stored in the PDB Core Archive (wwPDBconsortium, 2019). 

In bioinformatics, in addition to the advantage of a huge number of protein sequences, the 

presence of similar or homologous sequences in a dataset leads to redundancy, which can 
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introduce unwanted bias in certain analyses. Hence, their redundancy must eliminate in much 

research (Carugo, 2008). However, the majority of eukaryotic genes produce transcript 

isoforms through alternative splicing, which results in functional diversity in interactions 

between proteins, proteins and DNA, and ligands. These genes also encode numerous protein 

types through alternative transcription, splicing, 3′ end formation, translation, and post-

translational modifications (Pan et al., 2008; Wang et al., 2008).  Redundant sequences, which 

result from the repetition of highly identical sequences must be filtered out in the various 

research (Hobohm et al., 1992). However, isoforms are sequences derived from the same 

gene but differentiated by biological processes. Although isoforms share mostly similar 

sequences, they may have different regions or alterations (Torrens-Fontanals et al., 2021). 

Such sequences are considered variations that derive from the same gene and have biological 

significance, so they must not be removed in the sequence analysis. To remove redundant, 

various computer programs are available and utilize different alignment methods, including 

local or global alignment and clustering algorithms (Sikic & Carugo, 2010) while the homology 

detection tools identify isoforms with additional criteria such as gene annotations (Miller et al., 

2022) and functional differences (Ferrer-Bonsoms et al., 2020). 

 

1.4 Experimental methods of tertiary and quaternary structures of proteins 

 

Experimental methods that play a crucial role in structural biology for solving protein structures 

(both tertiary and quaternary structures) at resolutions allowing the elucidation of heavy atom 

positions (<3 Å), include X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, and cryo-electron microscopy (cryo-EM). These methods are widely employed, 

and the resulting structures are deposited in the PDB for further research by the wider scientific 

community. X-ray crystallography is the most widely used method for determining the 

structures of regular protein molecules, constituting approximately 89% of the PDB entries. 

NMR accounts for approximately 7% of the PDB entries, while cryo-EM represents about 3% 

of the structural data available in the PDB. However, cyro-EM has gained popularity primarily 

since it does not require crystallization (Seffernick & Lindert, 2020). Despite their widespread 

use, each of these methods has its own set of advantages and disadvantages, which are 

outlined in Table 1.1. 
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Table 1.1 Advantages and disadvantages of experimental methods for solving tertiary 
structures of proteins. 
The table representing positive and negative side of three experimental methods for solving tertiary 
protein structures including X-ray, NMR, and cryo-EM  (Dokholyan, 2020; Seffernick & Lindert, 2020). 
X-ray provides high-resolution structures; however, it has trouble with large complexes. Although peak 
overlapping and line broadening problems restrict NMR to smaller structures, it provides conformational 
flexibility. Cryo-EM does not require crystallization and can observe many conformational states, but it 
is often lower resolution and limited to large protein structures. 

 

Experimental method Advantage Disadvantage 

 

X-ray crystallography 

 

 

It provides high resolution 
structures 

 
Large complex structures,          
membrane proteins and disordered 
regions are hard to obtain and it 
requires samples to be successfully 
crystallised. 
 

 

NMR 

 
It provides information on 
conformational flexibility and can be 
done in solution 

 
Peak overlapping and line 
broadening issues restrict its 
application to smaller structures 
 

 

cyro-EM 

 
It does not require crystallization 
and can be used to observe many 
conformational states in large 
complexes 

 

It is limited to large protein 
structures and has lower resolution 

According to the multimeric complexes, after the tertiary structures were obtained, it is crucial 

to know oligomeric information for tertiary structures. While X-ray crystallography cannot 

directly acquire the functionally relevant multimeric form of a 3D structure, solution NMR or 

cyro-EM can obtain them. Rather, the PDB Depositor may supply this information as metadata 

from further experiments, infer it by using software like PISA (Proteins, Interfaces, Structures 

and Assemblies) (Krissinel & Henrick, 2007) or EPPIC (Evolutionary Protein Protein Interface 

Classifier) (Duarte et al., 2012) to make predictions before the quaternary structures are stored 

in the PDB (Korkmaz et al., 2018). 

 

1.5 Computational prediction methods on tertiary protein structures 

 

Computational methods have been growing interest in predicting tertiary structures as they 

have obtained 3D coordinates of atoms without needing the more resources and time which is 

indispensable for the experimental methods. However, the main challenge for bioinformatics 

has been to predict the 3D structures at high accuracy. The general workflow for predicting 

tertiary structures starts from the prediction of the protein fold and ends with the refinement 

process of predicted tertiary models. The main computational methods include template-based 
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and template free modelling. With the help of these methods, many different conformations for 

given proteins can be obtained, which in turn should select the appropriate structures close to 

native-like structures using model quality assessment tools. After the selection of them, the 

refinement process has been used to bring them closer to the native structure (Adiyaman & 

McGuffin, 2019).  

Template based models which use the closest homolog as a template in the database (Roche 

& McGuffin, 2016) while template free modelling use physical principles to predict tertiary 

structures when the appropriate template is not available (Dorn et al., 2014). Nevertheless, the 

template free modelling is capable of predicting proteins with up to 150 residues in order to 

obtain accurate prediction when there are no available template structures (Lee et al., 2009). 

In addition,  template free method also requires huge resources for large conformational 

structures search (McGuffin, 2008(b)). Hence, the template based approach has been a more 

used and accurate method to predict protein structures (Fiser, 2010). After AF2 was released, 

machine learning approaches have been growing interest in predicting tertiary structures, 

especially, by obtaining residue-residue distances at high accuracy. AF2 showed great 

performance in CASP13 for the category for the tertiary structure prediction, this tool managed 

to solve the folding problem and to predict the tertiary structure at very high accuracy (Senior 

et al., 2020).  Although the main approaches are the same for predicting tertiary and quaternary 

structures, predicting the quaternary structure of proteins remains the main challenge. 

Quaternary structures of proteins include interface areas, which request the higher 

computational calculation and processing time. In the next chapter, the main computational 

methods for predicting protein complexes were introduced. 
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Table 1.2 Methods for predicting tertiary structures of proteins. 
The table representing the methods and standalone refinement tools for modelling protein tertiary 
structures. Since the refinement protocols has been required to use after modelling, most of these tool 
are only used for refinement tools, after the release of AF2. The below tools have been common tool for 
tertiary structure prediction. 
 

Tool Method Reference 

AlphaFold2 (AF2) Machine-learning (Jumper et al., 2021a) 

RoseTTAFold2 Machine-learning (Baek et al., 2023) 

OmegaFold Machine-learning (Wu et al., 2022b) 

ESMFold Machine-learning (Lin et al., 2023) 

RaptorX-Contact Machine-learning (Xu, 2019) 

I-Tasser-MTD Machine-learning +Template-based (Zhou et al., 2022) 

Phyre2 Template-based (Kelley et al., 2015) 

MODELLER Template-based (Webb & Sali, 2016) 

SWISS-MODEL Template-based (Biasini et al., 2014) 

QUARK Template-free (Xu & Zhang, 2012) 

IntFOLD7 Template-free + Template based (McGuffin et al., 2023) 

ReFOLD3 Refinement (Adiyaman & McGuffin, 2021) 

GalaxyRefine Refinement (Heo et al., 2013) 

FG-MD Refinement (Zhang et al., 2011) 

ModRefiner Refinement (Xu & Zhang, 2011) 

3Drefine Refinement (Bhattacharya et al., 2016) 
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1.6 Computational structure prediction of protein complexes  

The prediction of protein quaternary structures or complexes is beneficial for drug design, 

protein engineering, and function analysis (Quadir et al., 2021). High-throughput experimental 

methods like yeast two-hybridization can determine whether two proteins establish a 

permanent or temporary interaction. However, this cannot accurately indicate the complex 

details of the interacting protein structures. Biophysical experimental methods such as X-ray 

crystallography, NMR, and cryo-EM can reveal the location and the way in which proteins 

interact. These methods, however, are costly and time-consuming (Biasini et al., 2014). Hence, 

various computational methods for rapidly modelling quaternary structures of proteins have 

been developed over the years. These predictive methods can be broadly classified as 

template-based modelling (TBM), template-free (TF) docking, and machine learning 

approaches. 

 

1.6.1 Template-Based Modelling of Complexes 

 

Template-based modelling (TBM) is built on the paradigm that proteins with similar sequences 

will constitute similar complexes structures (Chakravarty et al., 2020). TBM attempts to model 

complexes for target proteins with unknown structures by firstly identifying existing protein-

protein complexes in the PDB with either similar sequences or tertiary structures to the target. 

These identified complexes are then used as templates for building the target complex. The 

main stages of TBM include obtaining one or more available template(s) and aligning them 

with the given sequence using either template-based or profile-based alignment; constructing 

a starter model for the given target by cloning the structural fragments from the matching parts 

of the template(s); changing the side-chains to match the target sequence, building termini 

regions; and then refining the model by considering its all atomic structure (Szilagyi & Zhang, 

2014). Historically, homology modelling has been the most dependable computational 

technique and it can be applied to both tertiary and quaternary structures if templates with 

similar sequences can be found. It can be successfully performed for complex models when 

the structure of a pair of proteins has at least 30% sequence identity (Aloy et al., 2003) 

previously stored in PDB (Negroni et al., 2014). Fold recognition or threading can be used to 

successfully build tertiary structures in cases where there is less than 30% identity, but so far 

it has not been as successful for modelling quaternary structures. 
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1.6.2 Template Free (FM) Docking 

 

Protein-protein docking usually attempts to solve the problem of modelling complexes by fitting 

together either known or predicted tertiary structures of the individual protein subunits in the 

absence of any known quaternary structure templates. The concept of steric complementarity 

at the protein-protein interface area has been central to the docking process and a driving force 

in the development of docking techniques. Frequently, physicochemical complementarity 

including electrostatics (Mandell et al., 2001), hydrophobicity (Berchanski et al., 2004), and 

tendencies based on statistics (Mintseris et al., 2007) have been included in the process. The 

docking process comprises two main stages, sampling and scoring. In the sampling process, 

considering two individual structures, the docking process attempts to sample all potential 

binding patterns of a complex structure. This can be divided into a rigid body search (global 

search) and conformational search (local search) of the binding modes, considering protein 

structure flexibility along with rigid body sampling. In the scoring process, a scoring function is 

used to rank the sampled binding patterns (Huang, 2014). The rigid docking approach neglects 

differences between a bound and an unbound structure and takes into account only six 

degrees of freedom, while flexible docking comprises a larger number of internal coordinates 

(Vakser, 2014). Additionally, symmetry information is often used to predict homo-oligomer 

structures (André et al., 2008) and most tools employ information generated by experimental 

surveys, such as distance restraints (Bonvin et al., 2018). Even though there have been many 

docking conformational approaches, such as fast Fourier transform (FFT) and particle swarm 

optimization, it is still difficult to select the nearest to native (i.e.,  most accurate) models from 

a huge number of alternative models, frequently referred to as decoys (Moal et al., 2013; Wang 

et al., 2021). 

 

1.6.3 Machine Learning Approaches  

 

Machine learning (ML) is concerned with improving approaches that help to automatically 

extract information from training data in order to uncover certain regularities and use them to 

develop general and accurate models capable of making predictions for hidden data. ML 

approaches power almost every aspect of modern society from computer science to life 

science. Deep learning is a subset of ML approaches that rely on deep neural networks (DNNs) 

based on representational learning, which may be supervised, semi-supervised, or 

unsupervised (Cios et al., 2007; Schmidhuber, 2015). Specifically, a DNN is a type of machine 
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learning technique that mimics biological neural networks. Each DNN includes nodes (similar 

to neurons) communicating with other nodes through connections (similar to dendrites and 

axons). The weighting of connections between nodes in an DNN is dependent on their capacity 

to achieve the desired output, mimicking synapses between neurons that are reinforced when 

their linked neurons produce correlated outputs in a biological neural network (Choi et al., 

2020; Hastie et al., 2001).  

Deep learning approaches have recently started to be used frequently in protein bioinformatics 

(Suh et al., 2021). The ability of DNNs to utilise large amounts of suitable datasets and employ 

appropriate functions for specific tasks has made them suitable for use in protein structure 

prediction. This has provided a clearer expression of the concepts of both homology and 

evolutionary information. In addition, the use of advanced computer equipment, such as 

graphical processing units (GPUs), has further accelerated this process (Kuhlman & Bradley, 

2019; Owens et al., 2008; Rost & Sander, 1994). ML approaches generally work by inferring a 

large number of protein features from MSAs obtained from protein homologous sequences, 

using intensive computer power (Kandathil et al., 2022). 

The most notable method that has emerged in recent years was AlphaFold2 (AF2) from the 

DeepMind Group, which attained exceptional accuracy in protein structure prediction. This new 

tool provides insights into the functions of proteins with previously unknown structures and 

allows for the speedy resolution of modelling difficult targets with accuracy reaching that of X-

ray crystallography and Cryo-EM structures. The AF2 method is one of the best examples of 

a DNN-based approach, consisting of a two-stage neural network architecture capable of end-

to-end tertiary structure prediction (Baek et al., 2021; Jumper et al., 2021a). The AF2 approach 

was further applied to carry out end-to-end prediction of protein complexes with AlphaFold2-

Multimer (AF2M) (Evans et al., 2022). The most important success of such approaches is the 

use of end-to-end optimized models instead of relying on complex and multi-stage processes 

obtained through human intervention. The neural network model establishes a connection 

between local and global protein structure using geometric units, which are designed to 

optimize the overall geometry of the protein without compromising the integrity of its local 

covalent chemistry (AlQuraishi, 2019). 
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1.6.3.1 AlphaFold2 (AF2) 

 

Published by DeepMind at CASP13, in 2018, AlphaFold (version 1.0) (AF) modelled target 

proteins with the highest accuracy, including the hardest FM targets (Senior et al., 2020). 

Additionally, the method was competitive with the best template-based modelling methods in 

the TBM category, despite using no templates explicitly as part of its modelling process. AF 

used a DNN trained using MSA-based features for - 30,000 non-redundant protein structures 

in the PDB- and it was capable of accurately revealing pairwise distances between all residues 

in any given target sequence. A large number of estimated distances provided differentiated 

distance information regarding adjacent residues, covariation, and the local region of the 

structure. This neural network also allowed for the extraction of the predicted distribution of the 

backbone torsion angles (Pinheiro et al., 2021). Trained on 180,000 PDB constructs (Thornton 

et al., 2021), the next version of the method (AF2) also predicted structures more accurately 

than existing tools, with a median RMSD value of 0.96 Å backbone accuracy. Its strength was 

confirmed, in particular, by its success in predicting CASP14 targets. After the method was 

published, it was revealed that several features were key to the success of modelling including 

the reuse of process losses in iterative cycles to refine predictions (this process was termed 

“recycling”). DeepMind subsequently open sourced the AF2 code (https://github.com/google-

deepmind/alphafold) and this promising tool has since been shown to predict structures with 

significant domain accuracy and domain packing (Jumper et al., 2021a). 

In the AF2 algorithm, a general network pattern aims to predict the Cartesian coordinates of 

all heavy atoms in a given protein using only the target amino acid sequence and its aligned 

homologous sequences as an input MSA. The network includes two major parts. The first 

component is a new type of neural network called an Evoformer. It has the ability to manipulate 

information in the MSA and Nseq × Nres array (Nseq, number of sequences; Nres, number of 

residues) that allows direct display about the evolutionary and the spatial relationships. The 

second component is the structure network comprising each residue of a given protein 

structure rotationally and translationally in the form of a global rigid body. While the most 

important invention of this tool is to allow the simultaneous refinement of the entire structure 

by breaking the chain and to introduce loss terms that provide significant weight on the 

correctness of the residual orientation, it also introduces a new equivalent transformer to allow 

the reasoning of the unshown side-chain atoms. The iterative refinement process, namely 

recycling, presents an especially important part of the AF2 tool, and as the number of cycles 

increases, recycling feeds the system with the final output, allowing the structure to be 
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predicted with better quality scores. In this network, there is a relaxation section of the final 

structure that uses an Amber force field, with gradient descent minimization. This minimization 

in AF2 does not affect the backbone quality scores (GDT and IDDT-Cα) of the output 3D 

structure, so this selection is optional. However, it eliminates stereochemical violations without 

facing the loss of the quality of a structure (Jumper et al., 2021a). Figure 1.2 summarizes the 

workflow of AF2.  
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Figure 1.3 Workflow of AF2. 
The method starts from input sequence(s) to model quaternary structuress of proteins. AF2 includes two main DNN blocks: Evoformer and Structural Module. 
AF2 employs the recycling method as improvement methods. The orange arrow demonstrates the recycling process, while the red arrows show the inputs and 
outputs within the recycling process. The workflow was adapted from Jumper et al. (2021a) and prepared using Microsoft Powerpoint. 
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1.6.3.2 AlphaFold2-Multimer (AF2M) 

 

Given AF2's effectiveness in predicting protein structures, the obvious issue is whether the 

approach can also be used to accurately model protein complexes. The CASP14 results 

demonstrated that most of the residues situated at the domain-domain interfaces of 

multidomain proteins were predicted exceptionally well by AF2. Despite the lack of training of 

the methods on interacting protein chains, several of the estimated residue contacts 

nevertheless appeared to be well suited for predicting interactions between chains. As a result, 

it was proposed that similar DNN-based approaches could also be adapted directly to predict 

complex protein structures (Baek et al., 2021; Egbert et al., 2021; Ozden et al., 2021). 

AF2M is a new version of AF2, which was specifically trained on protein complexes. Several 

AF2 versions were released in recent years, including the popular AF2M method, as shown in 

Table 1.2. AF2M was released with some modification of the basic method of AF2 algorithms 

as version 2.1. Firstly, permutation symmetry was included in the multimer pipeline, which can 

pick homomer chains with the best matches relative to ground truth coordinates. Secondly, the 

aligned sequence was provided explicitly in the receiving pairwise correlation in MSA for 

heteromeric interaction. Thirdly, AF2’s clipping process was modified where the system was 

trained on a clipped region of the full-length amino acid sequence, taking into account both the 

clipped region for complex regions and well-balanced portions for interface and non-interface 

segments. Additional significant modifications addressed the Frame Aligned Point Error of 10 

Å where a better gradient signal was provided for the wrong interface followed by consideration 

of different types of chain structures based on a given amino acid pair. The second change 

involved the training and inference regimen which included a new weighted combination of 

predicted TM and interface TM confidence scores (Evans et al., 2022).   
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Table 1.3 The versions of AlphaFold so far. 
The table of the AF2 versions over time, their release dates, and the underlying important differences 
for each version. 

 

AlphaFold 
version 

Release date Key differences 

1.0.0 16/07/2021 Initial release 

2.0.1 30/09/2021 Incorporation of pLDDT scores into the 
B-factor column of output files (PDBs). 

2.1.0 02/11/2021 Adding AF2M weights 

2.1.1 05/11/2021 Minor bug fix 

2.1.2 28/01/2022 Working the relaxation method on GPU 

2.2.0 10/03/2022 Updating of AF2M model parameters 

2.2.1 13/06/2022 Integrating new CUDA version (11.1.1) 

2.2.2 13/06/2022 Minor bug fix 

2.2.3 25/08/2022 Transforming PAE json results in Colab 
to new output in order to use for AF 
database (AFDB)  

2.2.4 21/09/2022 Minor bug fix 

2.3.0 13/12/2022 
Updating of AF2M model parameters 

Smaller GPU memory footprint 

2.3.1 12/01/2023 Increasing MSA sequence length as 
input to 4,000 sequences 

2.3.2 05/04/2023 Applying the relaxation method only to 
the best unrelaxed model 

 

 

(Note: the AlphaFold3 (AF3) server was released in Summer of 2024, but no source code has 

been released at the time of writing. See Chapter 5 for benchmarking of AF3 performance 

against our in-house methods.)
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1.6.3.3 ColabFold 

 

Inspired by open source AF2 code, the prediction community has experimented with forks of 

the original AF2 code. The ColabFold (Mirdita et al., 2022) project is a fork of AF2 which, for 

efficiency, outsources the generation of MSAs to a remote alignment server called MMseq2. It 

also provides users with options to adapt the input MSAs for modelling both homo- and hetero-

oligomeric complexes using the original AF2 training data. This first code was made freely 

available and can be run using a Google Colab notebook called AlphaFold2_Advanced 

(https://github.com/sokrypton/ColabFold). 

To harness the power of AF2, powerful computer resources such as a high spec GPU with 

plenty of RAM are required for running the DNN, and significant Central Processing Unit (CPU) 

and storage capacity is needed to store the sequence databases required for creating the input 

MSA. To democratise access to the method, the Google Colaboratory notebook (the merger 

of Jupyter Notebook with Google) version of AlphaFold (ColabFold), was released, so that 

general users can now make use of AF2 without the need for investing in their own high 

computational resources. The main difference in the ColabFold fork of AF2 is the inclusion of 

fast MMseq2 (Mirdita et al., 2019) searches, so the generation of MSAs is greatly accelerated 

for both protein tertiary and quaternary structure prediction. The link of last updated Colab 

notebook of AF2 is : 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb) 

This is different from the original version of the main AF2 method, where searching databases 

happens via HMMER (Eddy, 2011) and HHblits (Remmert et al., 2012), which still requires a 

long runtime (Mirdita et al., 2022).  

MMseq2 is an open-source software package for searching and clustering large protein and 

nucleotide sequence libraries. MMseq2 outperforms BLAST, the most widely used sequence 

similarity web server, by a ratio of 10,000 to 1 in terms of speed and it has the same sensitivity 

as BLAST. The MMseq2 search process is divided into three parts: 1) a short word (‘’k-mer’’) 

match process, the most crucial step for improving a search, 2) vectorized ungapped 

alignment, and 3) gapped (Smith-Waterman) alignment (Steinegger & Söding, 2017). 

Additionally, the BFD and the Mgnify databases used in the AlphaFold algorithm were reduced 

in size, and this version of the database was referred to as BFD/MGnify with an extended 

environmental search database to better include eukaryotic protein diversity. As previously 

mentioned, BFD is a database that was designed by clustering 2.5 million protein sequences 

https://github.com/sokrypton/ColabFold
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from different sources including Soil Reference Catalog, Uniprot/TrEMBL + SwissProt, while 

Mgnify (Mitchell et al., 2020) is the database for the assembly, processing, and storage of 

microbiome data produced from microbial population sequencing (Mirdita et al., 2022). 

 

1.7 Improvement of protein quaternary structure prediction  

 

New protein structure prediction methods aim to improve upon initial structural models, 

bringing them closer towards their natural state, thereby achieving accuracy closer to that 

provided by experimental data. Prior to the AF2M era, protein structure improvement 

techniques employed conformational sampling to fine-tune a physical force field and move the 

starting structure closer to its native conformation (Bhattacharya, 2019). After the introduction 

of AF2M, DNNs that integrate existing experimental datasets such as Cyro-EM (Terwilliger et 

al., 2022) have also been employed to improve the resolution of structures. In addition, models 

generated by AF2M can be improved through the integration of sequence-based approaches, 

such as metagenomic or sequence embedding approaches or protein language models, and 

structure based approaches, including the use of experimental data, graph neural networks 

(GNNs) and exploiting the recycling process of AF2M, as shown in Figure 1.3. 

 

Figure 1.4 Methods for improving model quality before and after AF2M. 
Traditional refinement methods (energy minimization, side-chain repacking, MD simulations and 
fragment-based approach) were utilized prior to AF2M. In contrast, sequence- and structure-based 
improvements have come into play following AF2M's introduction. 
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1.7.1 Refinement of 3D structure models before AF2M 

 

Before AF2M was developed, protein structure refinement methods were typically categorized 

into four groups: MD simulations (Adiyaman & McGuffin, 2021), energy minimization (Xu & 

Zhang, 2011), side-chain repacking (Heo et al., 2013), and fragment assembly (Bhattacharya 

& Cheng, 2013) (Figure 1.3). MD simulations generate numerous MD trajectories by adhering 

to physical laws that govern how atoms interact with each other. Energy minimization 

techniques aim to discover the structure with the lowest energy by optimizing the arrangement 

of both core and side-chain atoms using physical and knowledge-driven force fields. Fragment-

based approaches leverage template fragment data obtained from the PDB in combination 

with statistical potentials (Wu et al., 2023). The process of altering the positions of the most 

probable rotamers within a structure (according to the rotamer library) is referred to as side-

chain repacking (Heo et al., 2013). 

Traditional refinement methods often necessitate substantial conformational sampling, which 

can be both time-consuming and computationally resource intensive. Therefore, incorporating 

restraints has become a common strategy in refinement protocols (Wu et al., 2023) . Various 

protocols employ this method differently: ReFOLD3's latest version (Adiyaman & McGuffin, 

2021) utilizes restraints guided by quality estimation scores, whereas Feig's approaches (Feig 

& Mirjalili, 2016) apply restraints to backbone atoms. While utilizing one of the aforementioned 

refinement methods can be beneficial for monomeric structures, more intricate protocols that 

combine multiple refinement methods are often necessary for multimeric complexes. 

The initial quaternary structure models produced by many protein-protein docking processes 

have been typically formed using rigid-body approaches. However, rigid-body docking does 

not account for minor conformational changes that may occur when bonding occurs, notably 

at the interface. Therefore, refining the complex structure with rigid docked approaches is 

essential if the complex target is to be used for downstream applications, such as determining 

‘hotspot’ residues for drug design or conducting more precise protein-protein interaction or 

structure-function research (Verburgt & Kihara, 2022). Refinement methods should aim to 

arrange more natural residue-residue contacts at the interface, improve interface 

complementarity, and provide better shape conformity with respect to the native complex. 

Additionally, scoring functions should be capable of identifying native or native-like docking 

patterns (Schindler et al., 2015). A major concern with refinement methods for both tertiary and 

quaternary models of proteins is the risk of moving the target protein structure away from, 
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rather than towards, the native protein structure, especially when the subunit already has a 

high-quality score (Adiyaman & McGuffin, 2019; Verburgt & Kihara, 2022). Schindler et al. 

(2015) recognized the relationship between the small-scale movement of interface residues 

and the large-scale displacement of protein structures. This residue movement at the interface 

can create a smooth energy landscape through a structured-based force field, potentially 

helping the complex protein escape from local minima and transition towards a near-native 

structure. 

 

1.7.2 Improvement of 3D structure models after AF2M 

 

In the present day, since most protein structure tools relies on DNN-based approaches, 

investigating which traditional methods still maintain their validity for improving such structures 

is an ongoing subject of research. It has been noted that MD simulations not only fail to 

enhance but can even deteriorate 3D structures generated by ML models like AF2M (Heo et 

al., 2021). Furthermore, within the AF2 algorithm, using an AMBER force field-based energy 

minimization method is unlikely to yield notable improvements in the structure (Jumper et al., 

2021a). Hence, emphasizing the concept of 'improvement' rather than 'refinement' could lead 

to the establishment of a novel methods that have the potential to enhance AF2M structures. 

This concept represents a combination of modelling and refinement. Table 1.3 shows the 

modelling methods with improvement methods or the standalone refinement methods.
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Table 1.4 Methods for predicting quaternary structures of proteins. 
The table representing the methods and standalone refinement tools for modelling protein quaternary 
structures. Since the protein model improvement approach is developed as the last stage of structure 
prediction tools rather than as a standalone tool, both the common prediction tools and their refinement 
parts (standalone refinement tools, if available) are shown together. Following the introduction of AF2M, 
most tools provide improvements through the integration of multiple approaches. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tool Method References 

   

AF2M AI-based (Evans et al., 2022) 

RosettaFold AI-based (Baek et al., 2021) 

DeepComplex AI-based (Quadir et al., 2021) 

MultiFOLD AI-based (McGuffin et al., 
2023) 

OpenFold AI-based (Ahdritz et al., 2022) 

ESMFold AI-based (Lin et al., 2023) 

OmegaFold AI-based (Wu et al., 2022a) 

ClusPro Docking (Kozakov et al., 
2017) 

Swarm-Dock Docking (Torchala et al., 
2013) 

LZerD Docking (Christoffer et al., 
2021) 

ZDOCK Docking (Pierce et al., 2014) 

MEGADOCK 4.0 Docking (Ohue et al., 2014) 

 

InterEvDock2 

Template-based or 
Docking (depends 

on the case) 

(Quignot et al., 
2018) 

 
EGR 

 
standalone-

refinement tool 

 
(Morehead et al., 

2022) 
   

iATTRACT standalone 
refinement tool 

(Schindler et al., 
2015) 

   
GalaxyRefineComplex standalone 

refinement tool 
(Heo et al., 2016) 

   

HADDOCK standalone 
refinement tool 

(Dominguez et al., 
2003) 

   

FiberDock refinement tool 
based docking 

(Mashiach et al., 
2010) 
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1.7.2.1 Sequence based approaches 

 

The biological and functional properties of a protein are determined by specific sequences, 

which have been shaped by mutations over evolution and recorded in a certain pattern within 

these sequences (Lin et al., 2023; Thomas et al., 2008; Yanofsky et al., 1964). By aligning 

related sequences, known as MSA, it is possible to extract the structural and functional 

features of a protein from the patterns within these sequences (Thomas et al., 2008). The 

complete sequencing of numerous genomes has opened up new opportunities for the 

generation of deeper MSAs, leading to the expansion of a reservoir of information 

encompassing residues that, while not adjacent in the amino acid chain, functionally co-evolve. 

This multitude of information has been harnessed to predict distance restraints and matrices, 

which guide the construction of three-dimensional protein structures (AlQuraishi, 2021; Marks 

et al., 2011). Thus, sequence similarity searches are the main method for protein description 

and analysis (Steinegger et al., 2019a; Steinegger & Söding, 2017; van Kempen et al., 2023) 

,aiming to seek homologous sequences in order to infer characteristics such as functions and 

structure. Improved inter-residue contact maps from earlier research and the use of distance 

information between residues (Ji et al., 2019; Jumper et al., 2021b) have enhanced prediction 

of quaternary structure of proteins.  Better contact maps have been beneficial in diminishing 

the transitive effect, which occurs when two residues contact a third residue (Ji et al., 2019). 

Following the releasing of AF2M versions, this type of deep MSA data has begun to be used 

as a training dataset.  

Since contact and distance maps are inferred from MSAs derived using various tools for 

detecting homologous sequences (Peng et al., 2022) such as HHblits (Remmert et al., 2012) 

and MMseqs2 (Mirdita et al., 2019), searching for variant sequences in sequence space, 

particularly for remote homologs of proteins, can be challenging for improving protein structure 

prediction (Ben-Hur & Brutlag, 2003). Typically, standard sequence-structure research is 

based on a 25% similarity threshold to homologous sequences (Zhang & Skolnick, 2005). 

However, this approach is not powerful to detect very remote homologs. Hence, instead of 

relying solely on sequence homology, using a hybrid approach that includes structural 

alignments (Hamamsy et al., 2023)- preserved over long evolutionary scale (Zhang & Skolnick, 

2005) - can be beneficial, especially for orphan proteins that lack homologous sequences in 

databases (Suzek et al., 2014). In this case, the structural annotation rates can increase by up 

to 70% as shown by metagenomic studies (Vanni et al., 2022). Therefore, using metagenomic 
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sequences to improve MSAs in combination with structure data has the potential to improve 

quaternary structures of proteins. 

1.7.2.1.1 The use of metagenomic sequences 

 

Beyond protein sequences, metagenomic data constitutes an extensive resource for the 

identification of novel proteins characterized by functional structures. Consequently, there is a 

growing interest in harnessing metagenomic data to extract evolutionary insights into particular 

proteins. This is accomplished by integrating metagenomic sequences into MSAs, which are 

then employed as inputs for DNNs, thus improving the accuracy of protein structure 

predictions. Due to the limitations of data available in UniProtKB (Boutet et al., 2007), 

combining genomic and metagenomic databases is increasingly important. The importance of 

incorporating metagenomic data lies in the remarkable increase in the Neff (number of effective 

sequences) value, which represents the number of protein sequences in the MSA that provides 

the most homologous information while including the fewest sequences. An Neff value of 128 

has been used in DeepMSA (Zhang et al., 2020). Nonetheless, it should be noted that 

employing additional metagenomic data does not invariably lead to a more precise MSA (Hou 

et al., 2022).  Yang et al. (2021) found that utilising one or a few specific microbes associated 

with the target protein family is more beneficial for constructing MSAs than using all similar 

metagenomic sequences. Sequences in the metagenomic databases are predominantly of 

prokaryotic origin. Despite the growing number of sequencing projects focused on fungi and 

other eukaryotic genome due to modern technology, applying approaches designed for 

prokaryotic genomes to eukaryotic-specific protein families remains a limitation (Ovchinnikov 

et al., 2017). The ESM Atlas (https://esmatlas.com/) created by ESMFold and curated by Meta 

AI, encompasses a comprehensive repository of structures for novel metagenomic sequences 

(772 million predicted metagenomic structures) that were predicted using a protein language 

model based approach (Lin et al., 2023). 

 

1.7.2.1.2 The use of sequence embedding and protein language models 

 

The utilization of next-generation sequencing technologies has resulted in a rapid and 

exponential growth in protein sequence databases, which effectively double in size 

approximately every two years. Nonetheless, annotating these proteins with precise and 

meaningful data necessitates effort, expertise, empirical research, and financial investment 

(Consortium, 2018). Hence, the so-called "sequence-structure gap" (Rost & Sander, 1996) is 
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progressively expanding. Most protein structure prediction tools rely heavily on sequence 

information (Kotowski et al., 2021). In traditional structure prediction approaches, sequence 

data for a target protein is commonly supplied in various formats, including a position-specific 

scoring matrix (PSSM) (Gribskov et al., 1987), a Hidden Markov Model (HMM) (De Fonzo et 

al., 2007) , a single protein sequence, or a k-gram (Qiu et al., 2020). In addition to relying on 

multiple homologous sequences, the emergence of AF2M has firmly established the MSA a 

crucial input for protein structure prediction (Yuan et al., 2023). However, when the average 

sequence similarity between sequences is low, MSA methods struggle to produce high-quality 

alignments, which leads to incorrect inferences in downstream applications. Most alignment 

methods attempt to find similarities using a substitution matrix-based scoring method; 

however, this approach often fails to yield an effective MSAs for proteins with low similarity 

rates (McWhite et al., 2023; Nute et al., 2019). 

Recently, there have been important advancements in Natural Language Processing (NLP), 

notably with the utilization of pre-trained language models (Otter et al., 2021; Qiu et al., 2020). 

Language models learn from vast amounts of unlabelled linear data through supervised or 

semi-supervised learning, capturing the structure patterns within sequences. Embedding 

information has proven to be valuable in downstream applications, notably in protein sequence 

analysis. Researchers have increasingly begun to employ these techniques, called Protein 

Language Models, in the analysis of protein sequences (Qiu et al., 2020).  Several language 

models have since been developed specifically for protein analysis. 

These deep learning language models are trained on large datasets of protein sequences to 

predict the identity of hidden amino acids (masked amino acids) based on their surrounding 

context in the sequence. After training, each amino acid is represented as a high-dimensional 

vector in the embedded pattern. These vectors capture the sequence context of each amino 

acid by encoding information about neighbouring amino acids and their relationships within the 

sequence (McWhite et al., 2023). ML models can then use these embeddings to predict the 

conservation or similarity of a specific amino acid position across different sequences or to 

identify homologous sequences with a common evolutionary origin (Marquet et al., 2022). 

These pre-trained models can predict structure in an unsupervised manner, whether provided 

a SS (Rives et al., 2021) or an MSA (Rao et al., 2021a) as input. This capability stems from 

their extensive training dataset (Bhattacharya et al., 2022) and the use of attention mechanism 

to transfer learned knowledge (Bahdanau et al., 2014). Attention mechanisms have recently 
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been used in the field of protein bioinformatics. These mechanisms assign different scores to 

individual positions within the input, enabling the model to focus on the most relevant 

information. In protein contact predictions, attention mechanisms assign weights to individual 

positions on a 2D image, enabling the visualisation of critical residual contacts that play an 

important role in the structure prediction during inference (Chen et al., 2021(b)). The AF2 

algorithm uses transformer structures based on attention mechanisms to predict protein 

structures with high accuracy. AF2 consists of two main transformer blocks: an encoder and a 

decoder. These blocks contain multi-head attention layers to learn the relationships between 

protein sequences. The evoformer block focuses on MSA (Multiple Sequence Alignment) and 

pair representation. The MSA attention layer performs weight calculations on a large protein 

symbol matrix. To reduce the computational cost, this attention is divided into row-based 

closed attention and column-based closed attention components. Row-based attention 

determines the relationship of amino acid pairs, while column-based attention emphasises 

pairs that it considers to contain more meaningful information. In the pair representation 

pathway, an attentional mechanism based on triangle relationships is used, where the sides 

of each triangle are updated by influencing each other. The structural module of AF2 consists 

of 8 blocks and each block updates the single representation and spine frames. Invariant Point 

Attention (IPA), an important component in this module, focuses on updating the singular 

representation and generates 3D equivalent attention values. IPA is invariant to global rigid 

motions (rotation and translation) and is not affected by them. IPA predicts the relative 

rotational and translational motions of each backbone frame, thus enabling more precise 

modelling of the structure. These attention mechanisms and transformer structures of AF2 are 

important in protein structure prediction (Yang et al., 2023(b)). Transformer models address 

numerous challenges encountered by traditional deep learning methods, which rely on 

homologous sequences. The attention module in the transformer model enables each token 

(amino acids in sequences) to influence the weights of all other tokens in the sequence. This 

capability allows the transformer model to focus on distant relationships within input tokens, 

accounting for the entire context of an input sequence and leading to improved results and 

sequence embedding. Transformer based protein language models have outperformed AF2M 

and MSA-based methods (Chandra et al., 2023). While several transformer models 

incorporate evolutionary information from MSAs during pre-training, this pre-training is usually 

a one-time process. New protein representations are typically retrieved using the transformer 

models' pre-trained hidden states. MSA-based tools involve a time-consuming (Hong et al., 

2021) alignment process with homologous sequences retrieved from the UniProt database. In 

contrast, embeddings obtained from language models provide a more extensive and detailed 
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set of information, even when the target protein has fewer homologous sequences (Wang et 

al., 2022). 

Despite the success of sequence-based homology inference, many proteins remain 

unannotated as identifying distant evolutionary relationships purely from sequences cannot 

always be achieved (Mahlich et al., 2018).  To address this, OmegaFold (Wu et al., 2022a) 

was designed as one of the first methods using attention based transformer approaches to 

predict protein structures from a single sequence (SS). OmegaFold outperformed 

RoseTTAFold and showed competitive results with AF2M, making it effective for modelling 

protein structures without relying on MSA, particularly for orphan proteins and fast-evolving 

proteins, such as those involved in antigen-antibody interactions (Wu et al., 2022a). Fine-

tuning is an effective approach for leveraging protein language models. Models such as ESM-

1b (Rives et al., 2021) and ProtTrans (Elnaggar et al., 2022) provide a fundamental framework 

for a wide range of protein-related tasks and are primarily used for feature extraction. However, 

customizing these pre-trained models for specific downstream applications by adapting them 

to specific tasks can be a more effective approach (Yang et al., 2023(a)). When labelled data 

is limited, fine-tuning is usually considerably faster and more effective than training a new 

model from scratch (Ofer et al., 2021). OpenFold (Ahdritz et al., 2022) is an open-source tool 

that reconfigures AF2M, enhancing its effectiveness (more rapid, more memory-effective) 

through the fine-tuning method. It also facilitates training on new datasets. 

 

1.7.2.2 Structure-based improvement approaches 

 

Coevolutionary and homology information has been employed to generate initial models 

(Hiranuma et al., 2021) as most tools are integrated with AF2M and/or protein language 

models, especially in the CASP15 competition. 

(https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf). Hence, the main challenge 

in improving predicted protein structures is to more effectively sample the conformational 

space of the target proteins. The structure space to search, even in close proximity of the initial 

protein structure model, is extremely huge (Feig, 2017; Heo & Feig, 2018). However, using 

data that includes initial protein structural information can be beneficial to DNNs in guiding 

conformational sampling (Tian et al., 2021). Better structural predictions can be achieved by 

using computational methods that incorporate structural knowledge of proteins. For instance, 

AF2 and RoseTTAFold2 obtain residue distance information from sequence covariation 

obtained through MSA (Baek et al., 2021; Jumper et al., 2021a). Additionally, AlphaFold-

https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf
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Phenix employs low resolution experimental atomic coordinates from the density maps 

obtained through Cyro-EM (Terwilliger et al., 2022).  

Conformational sampling described by generative DNNs such as autoencoders (Tian et al., 

2021), and generated from MD simulations can also be utilized to extract suitable 

conformational information (Degiacomi, 2019). DNNs have further improved the geometric 

properties of predicted protein structures. It has been shown that graph representations of 

protein structures can be more effective than contact or distance representations for capturing 

global information and residue correlations. 

GNNs can thus be utilised to improve models. A graph consists of nodes (such as atoms or 

residues) connected by edges (such as bonds or contacts). It is often represented with 

a feature matrix that contains information about each node and an adjacency matrix that 

describes how nodes are connected. A GNN is an algorithm that repeatedly updates each 

node's information by considering its connections with neighbouring nodes. This process is 

called "message passing”. Thus, GNNs can be trained to optimize the updating of node 

information, making them valuable for predicting the characteristics of individual proteins or 

collections of proteins (Igashov et al., 2021). GNNs are advantageous compared to 

Convolutional NNs (CNNs) because CNNs, which are typically used for generating 

contact/distance maps, require larger datasets to learn orientations in 3D input data and face 

challenges with inconsistencies on large interface surfaces within the predefined 3D grid size, 

especially when predicting protein-protein interfaces (Réau et al., 2022). SE(3)-Transformer, 

a recent method to improve the performance of GNNs, is a version of the self-attention method 

that works on 3D point clouds and graphs. This model is sensitive to the position and rotations 

of the data in 3D space and can maintain its performance unchanged according to these 

transformations. The concept of equivariance in SE(3) allows a model to change its output in 

a similar way despite transformations in the input (e.g. rotation and translation). This makes 

the model sensitive to unnecessary transformations in the data and makes the results more 

stable. For example, when an object is rotated or translated, the model reacts in the same way, 

resulting in consistent performance. This allows the equivariance approach to be used 

effectively in the modelling of 3D protein structures. This efficiency of the equivariant allows 

the model to reuse the same weights in the transformer for different transformations as they 

are sensitive to input transformations, helping the model to learn more efficiently and 

generalise better with fewer parameters (Fuchs et al., 2020).  
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For effective prediction of protein structure complexes, the protein-protein interface must be 

accurately modelled (Shuvo et al., 2023). In most ML approaches, the features obtained from 

the protein interface dataset and used for interface prediction include: amino acid types, 

physicochemical properties of amino acids such as hydrophobicity, interface propensity 

(meaning varied interaction propensities according to physicochemical properties), inter-chain 

evolutionary information, relative solvent accessibility, and surface shape. Due to the limited 

discriminatory power of individual features in distinguishing interfacial residues from the 

remaining residues within a protein, several prediction methods employ a combination of 

multiple features (Xue et al., 2015). Among these features, the most significant one identified 

thus far is the evolutionary information encapsulated in PSSMs (Yan & Wang, 2014). However, 

utilizing structural information, rather than relying solely on sequence data, has been shown to 

have significant effect on improving performance, as illustrated by studies conducted 

by  BIPSPI (Sanchez-Garcia et al., 2018) and  PAIRPred (Minhas et al., 2014). In these 

studies, it was observed that utilizing structural information instead of sequence data alone led 

to an average improvement of 10% in both precision and recall (Dai & Bailey-Kellogg, 2021). 

 

1.7.2.3 Recycling using AF2M 

 

The term "recycling" refers to the final process of AF2M's protein structure modelling, 

evaluated as the important part in ablation studies. Recycling involves reinserting the final and 

intermediate outputs into the system in an embedding format. During the training phase, 

recycling makes the network deeper without increasing the number of parameters or extending 

training time. In the inference phase, it creates a new network initialisation by utilizing the 

structural output and input features from the previous network. 

In the training process of AF2M, a different approach was adopted rather than simply running 

through every cycle (Jumper et al., 2021a). Instead of using N cycles, Equation 1 below utilizes 

intermediate outputs as an auxiliary loss to enhance predictions. It is hypothesized that this 

approach allows the network to iteratively refine its own predictions multiple times. The 

efficiency of this procedure is notably enhanced by halting gradients for the intermediate 

outputs, which in turn improves both memory usage and computational efficiency. 

 

                                                 
1

𝑁𝑐𝑦𝑐𝑙𝑒
∑ 𝑐 =  

𝑁𝑐𝑦𝑐𝑙𝑒+1

2

𝑁𝑐𝑦𝑐𝑙𝑒
𝑐=1       (1)             
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Initially, an objective was established to determine the average loss across all iterations. Then, 

the number of iterations between 1 and N cycles was sampled to construct an unbiased Monte 

Carlo estimate of this objective. Next, the flow of gradients from a specific iteration to the 

previous iterations was halted, effectively skipping the backward pass - a step in training where 

gradients are computed and used to update the model's parameters (weights and biases) 

through backpropagation. 

The output pair and first row MSA representations from the Evoformer, along with the 

estimated backbone atom coordinates from the Structure module, were recycled in AlphaFold's 

embedding form. Two types of representations were used: (zij) and (mij). These 

representations underwent a process known as "LayerNorm processing" a technique used in 

deep learning methods to normalize the inputs to a neural network layer. To calculate the 

pairwise distances between elements, predicted coordinates of beta carbon atoms (or alpha 

carbon for glycine) were used. These pairwise distances were then discretized into distinct 

intervals. In this process, the distances were divided into 15 bins of equal width, each spanning 

1.25 angstroms (Å), covering a total range of approximately 20 Å. A one-hot encoded 

distogram was processed and modified through linear projection before being added to a pair 

representation update. Additionally, recycling updates, which contain information from 

previous iterations, were integrated into the network's operation (Jumper et al., 2021a). 

 

1.8 Critical assessment of structure prediction (CASP) 

 

Established in 1994, CASP is held every two years to drive cutting-edge research and 

development of new technologies for protein structure prediction and evaluate the progress in 

accuracy. It is seen as the international gold standard for evaluating structure prediction 

approaches, and it represents a global community engaged in a competitive effort. Participants 

must predict the target protein structures from their amino acid sequences in a double-blind 

procedure, before the experimentally derived coordinates become available. Subsequently, 

once the observed structures are known, the predicted structures are compared to the 

experimentally determined ones and the best prediction methods are identified (Moult, 2005). 

The CASP14 competition (in 2020) included eight categories: high accuracy modelling, 

topology, contact and distance prediction, refinement, assembly, accuracy estimation, data-

assisted prediction, and biological relevance while the last CASP competition (CASP15 in 

2022) included six categories: single protein and domain modelling, assembly, accuracy 

estimation, RNA structures and complexes, and protein-ligand complexes. Refinement, 
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contact and distance prediction, and domain-level estimates of model accuracy were not 

included. Despite DeepMind's absence from CASP15, AF2 had continued to make a significant 

impact. The groups that integrated AF2 into their pipelines were among the most successful 

participants. These groups employed two main strategies to improve upon AF2: 1) utilizing 

more effective templates and/or MSA techniques, and 2) enhancing AF2 by implementing 

dropout methods (Elofsson, 2022). In order to evaluate the performance of their server or 

methods, participants in the CASP competition are provided with protein sequences by the 

CASP assessors, with their structures disclosed at the end of the competition. In the model 

prediction part of CASP competition, there are targets ID for each target sequence, which 

represent prefix “H” represents heteromeric proteins and prefix “T” represents homomeric 

proteins.   

 

 

1.9 Project Objectives 

 

Since 2020, AF has been continuously developed, and its evolving models have been adapted 

to tools designed by the bioinformatics community. As a result, AF2 has become a fundamental 

approach in structural bioinformatics. In light of this, the objective of this project is first to 

investigate how to effectively use the AF2 versions in order to improve the accuracy of 

modelling protein quaternary structures. Especially since both AF2 performs well for globular 

proteins and CASP targets include only globular context proteins, membrane (lipid layer) 

proteins were ignored in this research. Hence all the data were about globular proteins. 

Although the refinement category was removed in CASP15, this stage remains relevant, 

especially for protein complexes. Traditional refinement methods, when applied to structures 

generated through DNNs, have often been shown to be detrimental to model accuracy. Thus, 

ultimately, improvement methods integrated with modelling tools are used more frequently 

than standalone tools in this process. Furthermore, AF2 itself may be utilized as a tool for 

improving upon input models. Therefore, this project aims to explore the numerous options for 

integrating AF2 and utilizing parts of its pipeline to improve model quality. Among these, the 

recycling process, using custom templates, and/or custom MSAs are particularly prominent. 

Effectively using these options is crucial for better structure modelling and so the optimal 

parameters are explored. Finally, these optimal approaches are integrated with our MultiFOLD 

server versions for improved modelling with performance exceeding that of the default AF2 

versions.  
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The primary focus of protein modelling tools is to obtain the best static structure for a given 

protein. To achieve this, specific scores are used, and the best one is selected. However, the 

actual environment in which proteins function is often not mentioned. Proteins are constantly 

interacting with environmental factors such as water or lipids in their cellular membranes. An 

important limitation is that current modelling tools do not adequately take these environmental 

factors into account. For example, some proteins may form a hydration ring on part of their 

surface, while other regions may interact with lipids. A DNN-based method that takes residue-

lipid interactions into account for the interactions of transmembrane proteins with the lipid layer 

or for the detailed evaluation of fibrous structures has not yet been developed. 

A DNN-based method that takes residue-lipid interactions into account for the interactions of 

transmembrane proteins with the lipid layer or for the detailed evaluation of fibrous structures 

has not yet been developed. Therefore, it is important to understand the limitations of existing 

prediction tools. In particular, AF2 bases its predictions on co-evolutionary information rather 

than the protein's environment, making it more effective for globular proteins. Since AF2 is 

currently the most powerful algorithm, it would be more efficient to work with globular proteins 

for AF2-based studies. However, for modelling transmembrane proteins and their complex 

interactions with the environment, methods that include environmental factors are needed in 

the future. Modelling the interactions of protein structures with their environment, such as the 

interaction of surface residues with water molecules, would be more effectively accomplished 

through physics-based tools like MD simulations, which incorporate environmental factors 

rather than relying solely on evolutionary information. The specific objectives of each chapter 

follow. 

 

1.9.1 The impact of recycling on the modelling of quaternary structures of proteins: 

An evaluation of two AlphaFold2 versions (AF2_Advanced and AF2-Multimer) 

 

In the second chapter, the impact of recycling using AF2 based ColabFold versions, 

AF2_Advanced and AF2M, on structural improvements was investigated. AF2_Advanced, 

primarily trained on single structures and updated for predicting multimer structures, was 

compared with AF2M, which was trained exclusively on multimer structures, with respect to 

their recycling performance. Three standard quality scores were utilized, the global quality 

score (TM), the local quality score (IDDT), and the interface score (QS-score), to evaluate 

improvements in performance for two AF2 versions with six different numbers recycles. The 
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results provided guidance for determining an effective recycling procedure for the multimer 

modelling tool (MultiFOLD) that we developed prior to CASP15. 

 

1.9.2 The impact of the custom template recycling for the improvement of quaternary 

structures of proteins 

 

The AF2M versions allows for custom templates and MSA inputs, offering a pathway for further 

enhancing structural quality. Therefore, in the third chapter, the impact of AF2M's further 

recycling combined with the custom template option on structural improvement was 

investigated. To assess the performance improvement, the CASP14 and CASP15 datasets 

were utilized separately, and the quality of protein models generated by AF2M with both MSA 

and SS methods was evaluated using five scores: the TM-score, the IDDT score, the protein 

interface scores (DockQ-wave and QS-score), and the MolProbity score. Recycling 

assessments were carried out using 1, 3, 6, and 12 cycles. The custom templates used were 

the predicted structures of the top five groups in the CASP 14 competition and four groups in 

the CASP15 competition with the highest Z-scores, along with those from the NBIS-AF2-

Multimer and MultiFOLD groups in CASP15. Using custom templates with recycling is now a 

crucial part of the pipelines for future versions of MultiFOLD as well as our manual modelling 

protocols. 

 

1.9.3 The impact of varying custom input options on models generated by AF2M 

 

In our previous studies and published articles, the impact of externally provided structural 

information on AF2M performance was demonstrated. However, many aspects of AF2 remain 

unknown. Among the debated topics is what kind of information AF2M internally learns during 

its training. One of AF2M's successes in protein modelling is attributed to its transformer-like 

network. The attention mechanism in this network prioritizes relevant information, facilitating 

its flow through the Evoformer module. Considering that externally provided information 

passes through this attention mechanism, there are limited studies on how various input data 

affect protein models generated by AF2M. 

Hence, in the fourth chapter, investigations were conducted to assess the impact of two types 

of input modifications on AF2M, particularly examining whether these changes improve the 

modelled protein structures. Initially, alterations were made to the custom templates of AF2M, 
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and the effect of providing a custom multimer structure to AF2M as if it were a single chain 

structure was examined, to investigate whether preserving the relative orientation of structures 

led to further improvements. This approach was chosen since AF2M processes multimeric 

template structures one chain at a time, rather than as a complex structure. Therefore, 

providing complex template structures as single chains could improve the quality of the models 

generated by AF2M.  

Subsequently, changes were made to the AF2M's custom MSA input method to obtain higher-

quality protein structures. This was achieved by removing residues corresponding to 

disordered structures within the MSA, and the impact on the resulting structure models was 

investigated. This approach was chosen since AF2M's algorithm relies on MSAs with different 

weights assigned by the attention mechanisms  (Jumper et al., 2021a; Skolnick et al., 2021). 

In addition, AF2M was trained with protein structures in the PDB. Considering that AF2M infers 

structure from residue co-evolution and that missing residues in the PDB are often treated as 

disordered regions, focusing solely on MSAs derived from homologous sequences with regular 

residues can potentially enhance AF2M's performance. The effect of modifications in both 

custom methods on structural improvement was evaluated by comparing the resulting quality 

scores. 

 

1.9.4 Performance comparison of MultiFOLD1 and MultiFOLD2 using data from the 

CAMEO-BETA Project 

 

In the recent CASP15 competition, our newly designed protein structure complex modelling 

tool, MultiFOLD1, achieved a remarkable ranking. The performance of MultiFOLD1 was also 

tested weekly using the CAMEO-BETA project. Determining the optimal parameters for the 

AF2M components of MultiFOLD was essential to enhance the quality of its model outputs. 

Following the CASP15 competition, MultiFOLD1 was upgraded by combining the dropout 

method of AF2M with RoseTTAFold2 and RoseTTAFold All-Atom, resulting in the development 

of MultiFOLD2. Like MultiFOLD1, the new MultiFOLD2 server was also tested using the 

CAMEO-BETA project. The underlying method involved first creating a structure pool and then 

selecting the best structure via a quality estimation tool. The fifth chapter delves into the 

performance comparison between MultiFOLD1 and MultiFOLD2, as well as benchmarking the 

performance of two versions of MultiFOLD compared to other state-of-the-art servers 

participating in the CAMEO-BETA project. 
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2 Chapter 2: The Impact of Recycling on the Modelling of Quaternary 

Structure of Proteins: An Evaluation of Two AlphaFold2 Versions 

(AF2_Advanced and AF2-Multimer)  
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2.1 Background 

 

The majority of proteins in a cell interact to form complexes to perform their functions. By 

having various interaction partners, proteins regulate their functions in a cell according to 

changes in the surrounding environment (Swamy et al., 2021). Hence, the prediction of  

quaternary structures of proteins or complexes is beneficial for downstream analysis including 

drug design, protein engineering, and function analysis (Quadir et al., 2021). 

Historically, modelling protein quaternary structure was solely based on template based and 

docking approaches. Template based approaches proved to be more effective when a suitable 

quaternary structure template was available in the PDB, while docking approaches were more 

accurate in the absence of template and when the corresponding monomer structures have 

high quality. However, it is a challenge to find suitable templates for multimeric structures rather 

than monomer structures as there are fewer of them in the PDB (Kozakov et al., 2017; Liu et 

al., 2023a).  Additionally, the initial quaternary structure models produced by many protein-

protein docking processes have been formed using rigid-body approaches. However, rigid-

body docking does not account for minor conformational changes which may occur when 

bonding occurs, notably at the interface (Baek et al., 2017). Thus, refining the complex 

structure with rigid docked approaches is an essential step if the complex target is to be used 

for downstream application, such as the determination of ‘hotspot’ residues for drug design in 

the context of further and more precise protein-protein interaction or structure-function 

research (Verburgt & Kihara, 2022). With the release of the first version AlphaFold (AF), in 

2020, and the subsequent release of AF2 in 2022, AI-based algorithms have become 

predominant in the field of protein modelling and refinement. AF2 is a DNN-based protein 

modelling tool where evolutionary and physical information were employed in novel training 

procedures, resulting in the generation of high-quality protein structures (Jumper et al., 2021a). 

However, at the present time, following the release of AF2 (detailed in Chapter 1), refining 

complex structures via deep learning-based methods has become more popular than physical 

MD based approaches, which are more time consuming.  

After Google DeepMind, the developers of the AF2 method, released AF2 to model tertiary 

structures, Yoshitaka Moriwaki (Moriwaki, 2021) demonstrated, through his own Twitter page 

(the old version of X platform) on 19.07.2021, that AF2 can be modelled for complex protein 

structures by adding a linker between two chains. Furthermore, Baek used AF2 by balancing 

residue index in order to model complex protein structures (Baek, 2021). In the pursuit of these 

successful steps, AF2_Advanced was designed by the ColabFold team for modelling protein 

complexes (both homo- and hetero-oligomers) by adding such functionality as well as running 
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MMseqs2 (Steinegger & Söding, 2018) for generating MSAs (Mirdita et al., 2022), which 

increased the accessibility of the complex modelling method. The rationale behind this was to 

insert a 21 residue GGS linker, also called the AlphaFold-Linker between the protein chains. 

Following the last released version of AF2_Advanced, DeepMind developed AF2M (Evans et 

al., 2022) by retraining the method on complexes and releasing a new set of weights better 

adapted for modelling complex structures.  

In the new era, it remains uncertain about which type of traditional refinement process is most 

beneficial to models generated by AI-based methods. Since the AI-based models continue to 

exhibit shortcomings and there were significant energy barriers in refinement pathways after 

complex modelling, consideration of inter-domain and oligomeric interactions has become 

increasingly crucial (Heo et al., 2021).  In particular, Heo et al. (2021) found that using MD 

simulation for refinement of AF2 models was not able to improve the initial AF2 models and 

even decreased their quality. However, another ML based models were improved by physical 

simulations. Hence, it can be crucial to evolve different approaches regarding the refinement 

process for initial structures obtained via AI-based methods, especially AF2M structures. The 

DeepMind group adopted a different approach to “refinement” by evolving to feed the loss 

function of the last generated model back into the algorithm, which is called ‘recycling’ as 

mentioned in Chapter 1. In addition, AF2M was used as a refinement method for structures 

generated by ClusPro based on physical approaches and was observed the improvement in 

ClusPro structures (Ghani et al., 2021). When DeepMind first released their codes to the 

community of structural bioinformatics, its algorithm became a research focus for almost all 

groups. However, there was little information on several stages of the prediction algorithm, 

notably a key process called “recycling”. In the code, there is an optional default value of 3 as 

the maximum number of recycles for both monomer and oligomer targets.  
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2.1.1 The aim of study 

 

Using AF2, it has been verified that ML methods outperforms traditional docking methods 

based on physical laws and knowledge-based potentials. (Evans et al., 2022). The AF2 method 

predicted the tertiary protein structures very well in the CASP14 experiment, and 3 recycles 

were used by default, but it was not used in that experiment to model quaternary structures. 

Subsequently, this value was also used as the default for modelling complexes with the AF2 

versions, however, there was no detailed research on the effect of changing the recycling 

process for models of quaternary structures. Hence, we hypothesise that the further recycling 

stage can be used as a standalone refinement process. Also, in the interest of optimizing both 

the use of computing resources and maximizing model quality, it is worthwhile to investigate 

the recycling process and determine the optimum number of cycles for different targets. Thus, 

this study aims to investigate the recycling progress of the AF2 algorithm during the refinement 

stage and to determine whether altering the number of recycles affects the final quality of 

modelled protein complexes. Subsequently, it aims to identify the optimal number of effective 

cycles, comparing them with the default value of 3, which is used by both AF2M and 

AF2_Advanced.   

 

2.2 Method 

2.2.1 Data collection 

The sequences of targets for the last CASP competition at the time of the study (CASP14) 

were downloaded from the CASP website (http://prediction.org/download_area/_) and were 

used in this analysis to benchmark and compare the recycling procedure for both 

AF2_Advanced and AF2M versions. At the time of conducting the analyses in this chapter, 

CASP14 was the last CASP competition, but the findings were used to inform our strategy for 

CASP15, the results of which are presented in subsequent chapters. Models were generated 

for 10 homo-oligomers and three hetero-oligomers using two AF2 versions with varying 

numbers of recycles. These target proteins names is follow: 1-) PEX4-PEX22 (Organism: 

Arabidopsis thaliana), 2-) N4-Cytosine Methyltransferase (Organism: Serratia marcescens), 3-

) Testis-expressed protein 12 (Organism: Homo sapiens), 4-) Structural maintenance of 

chromosomes flexible hinge domain containing 1 (Organism: Homo sapiens), 5-) Inhibitor of 

the Yeast Formin Bnr1 (Organism: Saccharomyces cerevisiae), 6-) Tomato Spotted Wilt Virus 

(TSWV) glycoprotein (Organism: Semliki Forest virus), 7-) BonA (Organism: Acinetobacter 

baumannii), 8-) Tailspike protein (Organism: Escherichia virus CBA120) 9-) Hypothetical 

protein predicted by Glimmer/Critica (Organism: Bdellovibrio bacteriovorus), 10-) a small 
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secreted cysteine‐rich protein  (Tsp1) (Organism: Trichoderma virens) 11-) Nitro-histidine 

zipper coiled coils (Organism: Nitrosococcus oceani), 12-) Meio-histidine zipper coiled coils 

(Organism: Meiothermus silvanus), 13-) Tuna-histidine zipper coiled coils (Organism: 

Methylobacter tundripaludum). However, in the CASP competition, the organisator use the 

specific CASP code for each protein target sequence which the participants handle with. In the 

code, the prefix of “H”  represents heteromeric protein targets, while the prefix of “T” represents 

homomeric protein targets. The CASP14 codes of above protein targets to use are follow: 

H1045, H1065, H1072, T1032, T1034, T1038, T1054, T1070, T1073, T1078, T1083, T1084, 

and T1087, respectively. However, a common subset of targets was used in the analysis of 

quality scores for both AF2 versions.  

The target models were generated using the AF2_Advanced (listed as 

AlphaFold2_Advanced_v2 on ColabFold) and AF2M (listed as AlphaFold2_mmseqs2 on 

ColabFold) forks of AF2 that are available via the ColabFold Google Colab Notebooks 

(https://github.com/sokrypton/ColabFold). For each AF2 version, and for every cycle number, 

five models were generated for every given CASP target. In the process of getting five models 

for both AF2 versions, the optional stage “refine structures with Amber-relax” was eliminated 

to control for refinements occurring purely due to the recycling process. (Incidentally, Amber 

was originally used by the DeepMind team to achieve a marginally better 3D structure, and it 

seemed to have no significant effect on quality scores (Jumper et al., 2021a)). Therefore, the 

outputs resulted in five “unrelaxed” models of quaternary structures.  

 

2.2.2 Observed model quality scores 

2.2.2.1 TM-score 

The TM-score is an evaluation tool developed by Zhang and Skolnick (2004) to measure the 

observed topological similarity between predicted and experimental structures using structural 

alignment to superpose coordinate data. The TM-score is designed with an extension of the 

approaches used in two other global score measures- the Global Distance Score (Zemla et al., 

1999) and MaxSub (Siew et al., 2000), however the TM-score is arguably more robust measure 

for assessing the global score (Zhang & Skolnick, 2004). AF2 tools generated a predicted TM-

score (pTM-score) as an output score for ranking modelled complexes. Therefore, in this study, 

the observed TM-score of all the targets was analysed as the principle evaluated quality score. 

The observed TM-scores were generated using the MM-Align (Mukherjee & Zhang, 2009) Tool 

(for protein complex structural alignment) from the Zhang Group by superimposing the 

predicted models with the experimentally determined quaternary structures.   
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2.2.2.2 IDDT score 

The global superposition-based quality measurement score is limited if the given target is 

flexible with multiple domains that can change their relative position with respect to each other. 

In this regard, the superposition-free measurements such as IDDT score are suitable for 

considering small domain regions rather than large domain regions and for calculating the 

amount of corresponding reference protein structure within the generated protein structure 

(Mariani et al., 2013). AF2 versions also generate a predicted IDDT score (pIDDT score) as 

the output of the quality estimate score, so, in this research, the observed IDDT score was the 

second score to be analysed. The IDDT score was generated using the OpenStructure (OST) 

package (version 2.3) downloaded from https://www.openstructure.org/download/ and 

installed locally. It was run in the Ubuntu terminal with the guidance on the OST “actions” from 

the online documentation (https://www.openstructure.org/docs/2.3/actions). The measured 

IDDT value from the OST actions used in this chapter was the oligo-IDDT score. 

 

2.2.2.3 QS-score 

The QS-score is capable of considering the junctional interface as a whole and it is useful for 

comparing both homo- and hetero-complexes with different kinds of stoichiometry, various 

relative chain orientations, and various amino acid sequences. The QS-score is superior to 

alternative interface quality measurement scores like interface-RMSD (I-RMSD), which provide 

scores for assessing dimeric interfaces (Bertoni et al., 2017). The QS-score allows us to 

consider cases where the protein assembly is not only binary, thus it is more useful to evaluate 

the complete complex for protein targets without dissociating them into binary interactions. 

Therefore, the QS-score was also used as the observed interface quality score in our study. 

The method for generating the observed QS-scores is using the same OST tool as for the 

IDDT score described above. 

 

2.2.2.4 DockQ_wave score 

DockQ is a metric used to evaluate the quality of protein-protein docking models. It integrates 

various docking quality measures, including Fnat (fraction of native contacts), iRMSD 

(interface root mean square deviation), and LRMSD (ligand root mean square deviation). The 

DockQ score ranges from 0 to 1, with higher scores indicating better docking models. Recent 

updates to DockQ have extended its functionality beyond protein-protein interactions to include 

nucleic acids and small molecules. It also features advanced options like automatic chain 

mapping and support for multimeric complexes with complex stoichiometries, making it a 

https://www.openstructure.org/download/
https://www.openstructure.org/docs/2.3/actions
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versatile tool for analyzing molecular assemblies. However, one limitation of the DockQ score 

is that it evaluates protein-protein interfaces separately within a structure. For large protein 

complexes, this may reduce reliability as it does not simultaneously consider all interface 

regions. To address this, the DockQ_wave score was introduced, which calculates DockQ 

scores for each protein interface and computes a weighted average. The interface weights are 

determined by the number of native contacts. In contrast, QS-score places importance on 

symmetry in the interface contacts, which can pose challenges in unresolved structures. Like 

DockQ, DockQ_wave scores also range from 0 to 1, with higher values reflecting better models 

(Studer et al., 2023). 

2.2.2.5 Molprobity score 

MolProbity is a model validation score for protein structures that does not requires native 

structures, retrieved at http://molprobity.biochem.duke.edu. The MolProbity score merges the 

combination of the rotamer, clashscore, and Ramachandran scores into a single score. By 

integrating a number of stereochemical and geometric factors, it offers a comprehensive 

evaluation of structural validation. Models with lower Molprobity scores are more 

stereochemically correct than those with higher values, ranging from 0 to 1 (Chen et al., 

2010(a)).  

Both DockQ_wave and Molprobity score did not use for this chapter. DockQ_wave was 

released after CASP14 competition. Since we did not use the Amber relaxation method in AF2, 

the structures were not evaluated in terms of MolProbity score. 

2.2.3 Experimental design 

The first analysis aimed to determine the baseline recycling process for both AF2 versions. 

The second analysis aimed to determine the optimal number of cycles required to generate 

the best predicted models with the highest observed model quality scores for each AF2 version. 

On the Google Notebook platform, five models for every CASP target were generated by 

entering the following values: 

Within both AF2 tools, the sequences are entered by putting ‘:’ between every chain sequence. 

The AF2M (v.1.2) code was executed by selecting the following parameters:  

msa_mode: MMseqs2 UniRef+Environmental, model-type: auto, pair_mode: unparied + 

paired, num_recycles: 1, 3, 6, 12, 24 and 48 in series (The early versions of AF2 employed the 

'auto' model selection, which helped avoid biased predictions for the CASP14 targets. 

Selecting 'auto' model type provided models generated by the AF2 with v1 model). 

http://molprobity.biochem.duke.edu/
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The AF2_Advanced was run by selecting the following parameters: 

homooligomer: the number of chain, msa_method: MMseq2, msa_format: fas, pair_mode: 

unpaired, pair_cov: 50, pair_qid: 20, rank_by: pTM, use_turbo: true, max_msa: 512:1024 , 

num_models: 5, use_ptm: true, num_ensemble: 1, max_recycles: 1, 3, 6, 12, 24 and 48 in 

series, tol: 0, num_sample: 1( MMseqs2 was preferred over JackHMMER for homology search 

and MSA design). 

Both versions of AF2 was run separately for each recycling value. 

The MM-Align and OpenStructure programs were used to obtain observed scores for the TM-

score and the QS-score and IDDT score respectively by comparing the generated complex 

structures with the native complex structures. These quality scores were then used to evaluate 

the performance of the recycling process. Based on C-alpha atoms superposition with native 

structure, the TM-score was employed for analysing the global quality of the predicted 

complexes, which is the best score for measuring the overall quality of the modelled structures, 

including residues outside of the interface, as well as measuring the accuracy of the relative 

orientations of the interacting subunits. The IDDT score was used to analyse the overall quality 

of the given protein structures at a more local level, as it was based on residue accuracy in 

each chain, and so less dependent on the relative orientation of the interacting subunits.  

For measuring the accuracy of the modelled interfaces, the QS-score was used to 

simultaneously score interfaces between all interacting subunits. (Note: the DockQ-score 

(Basu & Wallner, 2016) is another popular score for analysing interface area quality. Unlike the 

QS-score, at the time of the analysis this score evaluated only binary interface areas). At the 

same time, the predicted model quality score value (pTM-score for both versions) was used to 

determine the ranking of models from 1 to 5, according to each cycle number. For ranking of 

the modelled complexes, it was advised that the global pTM-score should be used instead of 

pIDDT score, which is better for reranking tertiary structures 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_a

dvanced.ipynb). Specifically, in this study, the analysis focus was on the 1st ranked models for 

each cycle number, in order to determine the optimum number of cycles to produce the best 

observed scores.  

 

 

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
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2.2.4 Statistical Analysis 

 

After evaluating the improvements in cumulative scores, our next aim was to determine 

whether further AF2 recycling is an effective method for achieving better protein quality scores. 

To compare the performance of further recycling, a non-parametric statistical test (the paired 

Wilcoxon signed-rank test) was conducted on paired datasets, since the data did not follow a 

normal distribution. The methodologies described in AlphaFold-related publications were 

followed during the statistical analysis. In this analysis, TM-scores, IDDT, and QS-scores 

obtained using two different options (representing two recycling values) for the same protein 

targets were compared to assess whether there was a statistically significant improvement in 

quality scores with increased recycling for each target. For statistical evaluation, we adopted 

the single type of statistical analysis method mentioned above, based on the approach used 

in last AlphaFold studies (Abramson et al., 2024). Figure 2.1 summarizes the workflow of 

methods used in this chapter`s analysis. 
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Flowchart showing the process for determining optimal number of cycles in AF2_Advanced and AF2M 
using MM-Align tool and OpenStructure package as well as the comparison of both versions. The 
observed quality scores, with TM-score from MM-Align and IDDT/QS-score from OpenStructure, were 
produced by aligning the models with the native structures for each target. Subsequently, the observed 
quality scores for the rank-1 models in each cycle round were statistically evaluated using the paired 
Wilcoxon-signed-rank test. Since the high computational load is required for quaternary structures, each 
model is run once for each recycle model (n=1).  

Figure 2.1 The flowchart of the method for determining the optimal recycling 
parameters from modelling quaternary structures. 
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2.3 Results and Discussion 

 

In this study, a total of 13 CASP14 multimeric targets for calculating the observed TM-score 

and IDDT score, and QS-score, were analysed by separately selecting models obtained from 

six different cycle numbers from both AF2_Advanced and AF2M. Several CASP targets were 

not used for this research as there were either too many residues and/or too many chains 

involved in the complex (Google Colab limits the GPU RAM (16 GB) available on each node 

for each user). In addition, not all CASP targets had experimentally derived structures of the 

complexes so some models could not be evaluated against the native target structures.  

Firstly, correlation analysis was carried out to assess the relation between the predicted quality 

scores generated by the AF2 versions (pIDDT score and pTM-score) and the observed scores 

(IDDT score and TM-score), aiming to determine the reliability of these prediction scores. For 

the correlation test of the both AF2 versions, only CASP14 targets were selected since at the 

time of this research, CASP 14 was the last CASP to be held. Since the results of the 

correlation tests indicate a highly correlation between both prediction and observed scores, 

highlighting the reliability of both pIDDT and pTM scores. This suggest that the highest 

predicted scores can correspond to the highest observed scores. 

From the observed quality scores of the models which were subject to the recycling algorithm, 

it can be observed that the recycling procedure using AF2M often resulted in an improvement 

of the modelled complexes for the protein target (e.g., for T1083 see Figure 2.2). This figure 

illustrates the increase in three quality scores (TM-score, IDDT, and QS-score) for T1083 up 

to further recycling rounds. In the same figure, structural changes can be seen by 

superimposing the initial, refined, and reference models. Furthermore, improvements in model 

quality obtained from the recycling procedure can be detected using the pIDDT and pTM-score 

via their correlation with the observed quality scores (IDDT and TM-score) (Figures 2.3-2.6). 

The main principle of AF2 lies in integrating co-evolutionary information with novel machine 

learning techniques. However, it is well-known that proteins perform their functions in nature 

through different conformational states. AF2, on the other hand, predicts only a single static 

structure of a protein. The key detail here is the use of different random seeds. Protein 

prediction tools like AF2, which rely on DNN, may obtain different conformational states when 

it is run with different seeds. However, the early versions of AF2 did not incorporate random 

seed selection, and the same seed was used in every run. One significant limitation of these 

early versions was the need to rerun AF2 for each recycling value (n=1), which allowed for the 

possibility of using different seeds. To counteract this limitation, AF2 implemented a 
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mechanism where multiple models were generated during each run. These models were then 

ranked based on their quality scores (pIDDT and pTM-score), with the best structure being 

selected as rank-1, even if different seeds are run. 

 

 

 

A comparison of the native structure with the modelled complexes for target T1083 (Dimer) with cycle 
1, 3, 6, 12, 24, and 48 cycles obtained from AF2M.  It was rerun for each recycling value (n=1). Each 
image was generated using PyMOL (https://www.pymol.org). In this example, the score indicates that 
AF2M has shown an increase in model quality up to cycle 48, except QS-score for cycle 6 was lower 
than previous cycle (cycle 3). The different chains in the models and native structure are colour coded. 
In the structural superposition image, the native structure is in cyan.   
 

 

 

 

 

 

 

                        Figure 2.2 The impact of further recycling on quality scores for T1083 (CASP14 target). 
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Figures 2.3 and 2.4 show a positive correlation between the observed and the predicted quality 

scores. The Pearson’s R, Kendall’s tau B, and Spearman’s rho correlation were used to 

examine the degree of the relationship between the observed and predicted quality scores of 

78 models obtained from 13 targets (CASP14) generated by AF2M. Correlation analysis 

between the predicted quality scores (pTM-score) and the observed TM-scores shows a 

significant (p < 0.05) high positive linear correlation for the modelled complexes generated by 

AF2M with Pearson’s R = 0.80, Spearman’s Rho = 0.76, and Kendall’s tau B = 0.60. The high 

positive linear correlation indicates that the increases in the global pTM-score generated by 

AF2M will correlate with an increase in the observed quality scores (TM-score). Furthermore, 

correlation analysis between the pIDDT score and the observed IDDT scores also shows a 

significant positive correlation (p < 0.05). However, this is a stronger correlation than the 

correlation between pTM-score and observed TM-score, with Pearson’s R = 0.89, Spearman’s 

Rho = 0.78, and Kendall’s tau B = 0.62. Hence this signifies that the increase in pIDDT scores 

generated by AF2M is more strongly correlated with an increase in the observed IDDT quality 

scores. 

 

 

Scatter plot is showing linear, positive relationship between the predicted global scores (assessed by 
the pTM-score) (x-axis) versus the observed TM-scores (y-axis) of the models of CASP14 targets 
generated using AF2M with n = 13 targets (13 models from each of the 6 different numbers of recycles 
-1, 3, 6, 12, 24, and 48 cycles- for each target = 78 models). The Pearson’s R correlation is 0.80, 
Spearman’s Rho correlation is 0.76, and Kendall’s tau B correlation is 0.60. P-values for three correlation 
tests are less than 0.05. 

 

 

Figure 2.3 The correlation plot between the observed TM-scores and the predicted 
TM-scores for AF2M. 
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Scatter plot is showing linear, positive relationship between the predicted global scores (assessed by 
pIDDT score) (x-axis) versus the observed IDDT scores (y-axis) of the models of CASP14 targets 
generated using AF2M with n = 13 targets (13 models from each of the 6 different numbers of recycles 
-1, 3, 6, 12, 24, and 48 cycles- for each target = 78 models). The Pearson’s R correlation is 0.89, 
Spearman’s Rho correlation is 0.78, and Kendall’s tau B correlation is 0.62. P-values for three correlation 
tests are less than 0.05. 

Figures 2.5 and 2.6 show a positive correlation between the observed and the predicted quality 

scores. This time the Pearson’s R, Kendall’s tau B and Spearman’s Rho correlation were used 

to examine the degree of relationship between the observed and the predicted quality scores 

of 78 models which obtained from 13 targets (CASP14) generated by AF2_Advanced. 

Correlation analysis between the pTM-score and the observed TM-scores shows a significant 

(p < 0.05) linear positive correlation for the modelled complexes generated by AF2_Advanced 

with Pearson’s R = 0.83, Spearman’s Rho = 0.84, and Kendall’s tau B = 0.65. Again, here the 

positive linear correlation indicates that the increase in the global pTM-scores from 

AF2_Advanced correlates with an increase in the observed quality scores (TM-score). 

However, a weak positive (p < 0.05) correlation for complex protein models can be observed 

between the observed IDDT scores and the pIDDT scores with Pearson’s R = 0.39, 

Spearman’s Rho = 0.39, and Kendall’s tau B = 0.25. So, these data signify that the increase 

in the pIDDT scores from AF2_Advanced is more weakly correlated with an increase in the 

observed IDDT quality scores. 

 

Figure 2.4 The correlation plot between the observed IDDT scores and the predicted 

IDDT scores for AF2M. 
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Scatter plot is showing linear, positive relationship between the predicted global scores (assessed by 
pTM-score) (x-axis) versus the observed TM-scores (y-axis) of the models of CASP14 targets generated 
using AF2_Advanced with n = 13 targets (13 models from each of the 6 different numbers of recycles -
1, 3, 6, 12, 24, and 48 cycles- for each target = 78 models). The Pearson’s R correlation is 0.83, 
Spearman’s Rho correlation is 0.84, Kendall’s tau B correlation is 0.65. P-values for three correlation 
tests are less than 0.05. 
 
 

Scatter plot is showing linear, positive relationship between the predicted global scores (assessed by 
pIDDT) (x-axis) versus the observed IDDT scores (y-axis) of the models of CASP14 targets generated 
using AF2_Advanced with n = 13 targets (13 models from each of the 6 different numbers of recycles -
1, 3, 6, 12, 24, and 48 cycles- for each target = 78 models). The Pearson’s R correlation is 0.39, 
Spearman’s Rho correlation is 0.39, and Kendall’s tau B correlation is 0.25. P-values for three correlation 
tests are less than 0.05. 

 

Figure 2.5 The correlation plot between the observed TM-scores and the predicted TM-
scores for AF2_Advanced. 

Figure 2.6 The correlation plot between the observed IDDT scores and the predicted 
IDDT score for AF2_Advanced. 
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Considering the correlation test results and the appropriateness of prediction scores, it would 

be appropriate to consider the top ranked models generated by the different versions of AF2 

in order to observe whether there is an improvement in the predicted structures with increased 

cycle. Evaluating the scores cumulatively shows the overall improvement of existing high-

quality scores in structures across all targets evaluated. Observing the improvements obtained 

for each target cumulatively provides more comprehensive detectable changes, considering 

that the individual improvement rates for individual targets are expected to be relatively small. 

Therefore, the cumulative observed quality scores of the top ranked models obtained after 

different numbers of cycles were compared with AF2's default cycle values. 

With the advent of AF2, the prediction of protein structures, including complex structures, has 

improved, reducing reliance on refinement methods that were essential prior to AF2. However, 

for downstream analyses such as drug design, predicting binding site regions often requires 

additional post-modelling procedures. According to the refinement theorem, well-modelled 

structures are more likely to deviate from the native structure when subjected to these methods 

(Adiyaman & McGuffin, 2019). Therefore, even minor improvements in cumulative quality 

scores, which are used to compare modelling tools, hold importance. Since even small 

increases in cumulative scores are crucial in protein structure modelling, statistical testing can 

introduce limitations. However, to assess the significance of the differences between scores, 

we followed the approach used in AlphaFold-related studies (Abramson et al., 2024) , applying 

only the paired Wilcoxon signed-rank test. The “paired” means before and after scores for 

model generated by AF2 for each target.  Our secondary objective was to compare the 

individual paired scores across different recycle statistically after the cumulative scores was 

evaluated. AF2 unexpectedly generates a new model instead of refining an existing one for a 

given target (Adiyaman et al., 2023), leading to highly variable recycle values for certain 

targets. Consequently, a recycle value associated with the highest cumulative score may not 

necessarily yield the most statistically significant result, as in Figure 2.7 in Page 54. The null 

(H0) and alternative (H1) hypotheses are detailed in the legend of Table 2.1 (See Page 63).
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Figure 2.7 shows the cumulative observed TM-scores as the cycle number is increased for 

AF2M. Based on the cumulative TM-scores in rank-1, the different cycles can be ranked as 

follows: cycle 3 (9.22) > cycle 48 (9.18) > cycle 24 (8.95) > cycle 12 (8.92) > cycle 6 (8.84) > 

cycle 1 (8.41). The cumulative TM-scores indicate that the general structural quality of the 

modelled complexes increases as the cycle increases and cumulatively model improvement 

up to cycle 48 generates a model with quality better than the previous cycles, except for cycle 

3. In cycle 3, a model of better quality was generated cumulatively. However, the paired 

statistical analysis revealed that the cumulative TM-scores between cycles 12 and 24 were 

significantly greater (p < 0.05) than cycle 1 (Table 2.1). 

 

 

 

 

 

 
 

Figure 2.7 The improvement of TM-scores in the CASP14 models for AF2-Multimer 

(AF2M). 

The bar chart displaying the cumulative observed global quality score (assessed by TM-score) of the 
modelled complex of all targets (CASP14) generated by AF2M, based on rank-1 models. The rank-1 
models are from six cycle rounds and each cycle is a colour coded. The rank-1 model corresponds to 
the model with the best pTM-score. This graphic was drawn using R. 

 



 
  Chapter 2 

57 
 

Figure 2.8 shows the cumulative observed IDDT scores as the cycle number is increased for 

AF2M. Based on the cumulative IDDT scores in rank-1, the different cycles can be ranked as 

follows: cycle 48 (9.43) > cycle 3 (9.33) > cycle 12 (9.32) > cycle 24 (9.26) > cycle 6 (9.18) > 

cycle 1 (8.77). The cumulative IDDT scores indicate that the local quality of the modelled 

complexes increases as the cycle increases and cumulatively model improvement up to cycle 

48 generates a model with quality better than cycle 1, similar to TM-score. However, in this 

time, models generated using cycle 48 had better quality than the 5 other recycling values. 

The paired statistical analysis revealed that the cumulative IDDT scores up to cycle 12, 24, 

and 48 were significantly greater (p < 0.05) than cycle 1 (Table 2.1). 

 

 

 

 

 

 
 

Figure 2.8 The improvement of IDDT scores in the CASP14 models for AF2-Multimer 

(AF2M). 

The bar chart displaying the cumulative observed local quality score (assessed by IDDT score) of the 
modelled complex of all targets (CASP14) generated by AF2M, based on rank-1 models. The rank-1 
models are from six cycle rounds and each cycle is colour coded. The rank-1 model corresponds to the 
model with the best pTM-score. This graphic was drawn using R. 
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Figure 2.9 shows the cumulative observed QS-scores as the cycle number is increased for 

AF2M. Based on the cumulative QS-scores in rank-1, the different cycles can be ranked as 

follows: cycle 3 (7.05) > cycle 48 (6.98) > cycle 24 (6.53) > cycle 6 (6.48) > cycle 1 (6.44) > 

cycle 12 (6.16). According to cycle 1, the cumulative QS-scores indicate that the interface 

quality of the modelled complexes increases as the cycle progresses and cumulatively model 

improvement up to cycle 6 generates a model with better quality. However, after that, the 

cumulative score decreased up to cycle 24. Interestingly, with 24 cycles, better quality models 

were generated again. Cycle 3 yielded the highest cumulative score while cycle 48 was second 

recycle value that exhibited a high cumulative QS-score. The statistical analysis revealed that 

the cumulative QS-score for five different cycles (3-6-12-24-48) was not significantly greater 

(p > 0.05) than cycle 1 (Table 2.1). 

 

 

 

 

 

 
 

 

Figure 2.9 The improvement of QS-scores in the CASP14 models for AF2-Multimer 

(AF2M). 

The bar chart displaying the cumulative observed interface quality score (assessed by QS-score) of the 
modelled complex of all targets (CASP14) generated by AF2M, based on rank-1 models. The rank-1 
models are from six cycle rounds and each cycle is colour coded. The rank-1 model corresponds to the 
model with the best pTM-score. This graphic was drawn using R. 
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The cumulative observed TM-scores for AF2_Advanced are displayed in Figure 2.10 as the 

cycle number increases. The following is a ranking of the different cycles based on the 

cumulative TM-scores in rank-1:  cycle 12 (9.12) > cycle 24 (8.97) > cycle 6 (8.91) > cycle 48 

(8.77) > cycle 3 (8.35) > cycle 1 (7.80). The cumulative TM-scores demonstrate that the overall 

structural quality of the modelled complex improves as the cycle increases when compared to 

cycle 1. Model improvement up to cycle 12 results in a model with superior quality compared 

to the preceding cycles. However, according to the paired statistical analysis, cycles 24 had 

the cumulative TM-scores that were significantly higher (p < 0.05) than cycle 1 (see Table 2.1). 

 
 
 
 
 
 
 

 
 
 
Figure 2.10 The improvement of TM-scores in the CASP14 models for AF2_Advanced. 
The bar chart presents the cumulative observed global quality score (assessed by TM-score) of the 
modelled complex structures of CASP14 targets generated by AF2_Advanced, based on rank-1 models. 
The six cycle rounds from which the rank-1 models are drawn are colour coded.  The model with the 
highest pTM-score is the rank-1 model. This graphic was drawn using R. 
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The cumulative observed IDDT scores for AF2_Advanced are displayed in Figure 2.11 as the 

cycle number increases. The following is a ranking of the different cycles based on the 

cumulative IDDT scores in rank-1: cycle 12 (9.60) > cycle 24 (9.47) > cycle 6 (9.46) > cycle 48 

(9.38) > cycle 3 (9.19) > cycle 1 (8.79).  The cumulative IDDT scores demonstrate the same 

incline with the cumulative TM-score in Figure 2.10. According to the paired statistical analysis, 

all the cumulative IDDT scores up to cycle 48 were significantly greater (p < 0.05) than cycle 

1. However, between other successive cycles including cycle 3- cycle 6 and cycle 6- cycle 12, 

there was no significant difference (p > 0.05) (Table 2.1). 

 

 

 

 

 

 

 
 

Figure 2.11 The improvement of IDDT scores in the CASP14 models for AF2_Advanced. 

The bar chart presents the cumulative observed global quality score (assessed by IDDT score) of the 
modelled complex structures of CASP14 targets generated by AF2_Advanced, based on rank-1 models. 
The six cycle rounds from which the rank-1 models are drawn are colour coded.  The model with the 
highest pTM-score is the rank-1 model. This graphic was drawn using R. 
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The cumulative observed QS-scores for AF2_Advanced are displayed in Figure 2.12 as the 

cycle number increases. The following is a ranking of the different cycles based on the 

cumulative QS-scores in rank-1: cycle 12 (6.79) > cycle 24 (6.44) > cycle 6 (6.34) > cycle 48 

(6.09) > cycle 3 (5.3) > cycle 1 (4.25). Similar to both cumulative TM-score and IDDT score 

when compared to cycle 1, the cumulative QS-scores indicate an increase in the quality of the 

modelled complexes increases as the cycle increases and cumulatively model improvement 

up to cycle 12 generates a model with quality better than the previous cycles. According to the 

statistical analysis, the cumulative QS-scores up to cycle 24 were significantly greater (p < 

0.05) than cycle 1. However, between other successive cycles, there was no significant 

difference (p > 0.05) (Table 2.1). 

 
 
 
 
 
 
 
 
 

 
 
Figure 2.12 The improvement of QS-scores in the CASP14 models for AF2_Advanced. 
The bar chart presents the cumulative observed global quality score (assessed by QS-score) of the 
modelled complex structures of CASP14 targets generated by AF2_Advanced, based on rank-1 models. 
The six cycle rounds from which the rank-1 models are drawn are colour coded.  The model with the 
highest pTM-score is the rank-1 model. This graphic was drawn using R. 
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Table 2.1 shows whether the differences in the observed quality of models produced using 

varying numbers of recycles (e.g., models produced using 1 cycle versus 3 cycles, and 

successive cycles) are statistically significant (note that the model generated in cycle1 was 

considered as initial/baseline model). For AF2_Advanced, firstly, the IDDT scores exhibited 

improvement when utilizing up to 48 cycles compared to only cycle 1 whereas the QS-scores 

of models were significantly improved using up to 24 cycles versus only 1 cycle (p-value < 

0.05). Secondly, the TM-scores of models were only significantly improved using 1-12 cycles 

and 1-24 cycles (p-value < 0.05). However, no significant improvements were observed in the 

three quality scores (observed TM-score, IDDT, and QS scores) between successive cycles, 

except for 3-6 cycles and 6-12 cycles for the IDDT score. Therefore, this indicates that the 

increase in quality scores may continue with increasing cycles following cycle 24. 

Nevertheless, generating model data beyond 48 cycles was not evaluated, which is a 

challenging process because of additional computational load. Hence, considering that cycle 

12 presents highest cumulative scores for all three-quality scores evaluated and after cycle12 

the improvement is already significant versus cycle 1, selecting cycle 12 versus cycle 1 may 

lead to significant improvements on average for AF2_Advanced (Jumper et al., 2021a).  

For AF2M, the statistical analysis revealed that the observed TM-scores of models for cycle 12 

and cycle 24 were significantly greater (p < 0.05) than those from cycle 1. Furthermore, the 

observed IDDT scores for models from cycles > 12 to cycle < 48 were significantly greater (p 

< 0.05) than models produced using cycle 1, whereas no significant improvements in QS-

scores were gained from increasing cycle number (p >0.05). All p-values between consecutive 

cycles for AF2M were higher than 0.05, except for the comparison between cycles 6 and 12 

for the IDDT score. Cumulatively, complex models exhibited improvement in either cycle 3 or 

cycle 48 for all scores. Considering the computational load in cycle 48 and the lack of statistical 

significance in cycle 3, the data suggest that using 12 recycles in the official Multimer version 

of AF2 rather than the default value of 3, would be a prudent option to increase the quality of 

multimers according to IDDT and TM-scores.  

Although the cumulative score increases in recycle 3 is higher than in recycle 12, it is not 

statistically significant because the Wilcoxon test results are based entirely on the paired 

differences between individual pairs of data. The test evaluates the ranks of the differences 

between each paired pair of data, not the total or average score difference between the two 

data sets. Even if the cumulative score of recycle 3 is higher than recycle 12, if some of the 

individual differences are positive and some are negative or close to zero, the test may not find 

these differences to be ordinal significant. In contrast, if the distribution of paired differences 

between recycle is more consistently positive (i.e. most of the differences are significantly in 
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the same direction), the Wilcoxon test may consider this to be statistically significant. The 

results are therefore determined by the direction and consistency of the individual matched 

differences rather than the total scores.  In the case of AF2, this shows a substantial difference 

between the scores in the individual matches as a result of refining the structure at some 

recycle values and generating a new model at the next recycle value.  

 
Table 2.1 A comparison of performance for recycling processes (cycleX-cycleY) 
according to the cumulative scores of rank-1 models of CASP14 targets. 

One-tailed Wilcoxon signed-rank tests were used to compare the effect of recycling with different cycle numbers 
for rank-1 models. H0: according to the given pairwise cycles, the observed quality scores of models generated 
using y cycles are equal to or lower those of models generated using x cycles by the different AF2 variations, 
where x and y are integers between 1 and 48. H1: according to the given pairwise cycles, the observed quality 
scores of models produced after y cycles are greater than those generated using x cycles by the different AF2 
variations. P-values ≤ 0.05 indicate significant statistical differences. P-values where H0 was rejected are in 
boldface. (n = 78 models for the observed TM-score, IDDT, and QS-score). One-tailed Wilcoxon signed-rank test 
was performed in the R program. 
 

AF2-Multimer (AF2M) 

One-tailed Wilcoxon signed-rank test (p-value) 

Cycle-cycle TM-score IDDT score QS-score 

Cycle 1- cycle 3 3.78E-01 2.04E-01 6.63E-01 

Cycle 1- cycle 6 7.34E-02 2.52E-01 4.00E-01 

Cycle 1- cycle 12 1.88E-02 4.49E-02 6.64E-01 

Cycle 1- cycle 24 4.58E-02 2.73E-02 5.56E-01 

Cycle 1- cycle 48 2.88E-01 1.51E-02 2.21E-01 

Cycle 3- cycle 6 4.19E-01 8.47E-01 6.64E-01 

Cycle 6- cycle 12 3.80E-01 1.83E-02 2.65E-01 

Cycle 12- cycle 24 4.12E-01 3.78E-01 6.05E-01 

Cycle 24- cycle 48 6.37E-01 6.10E-01 3.36E-01 

 

 

AF2_Advanced 

One-tailed Wilcoxon signed-rank test (p-value) 

Cycle-cycle TM-score IDDT score QS-score 

Cycle 1- cycle 3 1.47E-01 1.27E-02 3.80E-02 

Cycle 1- cycle 6 1.04E-01 1.27E-02 1.04E-02 

Cycle 1- cycle 12 4.04E-02 3.96E-03 1.04E-02 

Cycle 1- cycle 24 4.03E-02 4.86E-03 1.50E-02 

Cycle 1- cycle 48 2.21E-01 7.22E-03 6.15E-02 

Cycle 3- cycle 6 3.38E-01 5.94E-03 6.38E-02 

Cycle 6- cycle 12 1.47E-01 4.94E-03 1.98E-01 

Cycle 12- cycle 24 5.83E-01 9.95E-01 8.60E-01 

Cycle 24- cycle 48 8.18E-01 7.35E-01 9.61E-01 
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On the one hand, the recycling process can be impacted by the abundance of disorder regions 

corresponding to -N and -C termini region of protein structures. These regions lack the contact 

or distance predictions based on pair residue-residue, hence, predicting -N and -C regions 

present a challenge for improving models through subsequent recycles. On the other hand, 

the flexible regions of protein structure can be better generated by more detailed physical 

approaches rather than AF2's network. Since AF2 is predominantly based on an evolutionary 

constraint in the MSA where the last 3D protein structure in the previous cycle is used to 

determine the pair residue constraint in the next cycle, the intermediate structure models with 

lower quality can generate wrong pair residues for the next cycle. Hence, the lower cycle 

numbers may be better for protein structures with more flexible regions. In addition, these 

proteins often have heterogeneous structures (e.g.: transient alpha-helices in the disorder 

regions) that may only be predicted with the integration of physical laws (MD simulation) with 

machine learning, therefore, such disordered or highly flexible structures still represent a 

challenge for the AF2 algorithm. However, it can be highlighted that intertwined regions of 

protein, such as coiled coils, can be generated well by AF2M (Evans et al., 2022). It is 

interesting to note that by using AF2 it is often possible to identify the regions with low pIDDT 

scores as being disordered (natively unstructured) regions rather than being poorly modelled 

regions of structure. This concept of associating local regions of low model quality with native 

disorder was pioneered in the DISOclust (McGuffin, 2008) method which is part of the IntFOLD 

(McGuffin et al., 2019) server. 

It is intriguing to assess AF2M in terms of QS-scores, as demonstrated by Figure 2.9 and Table 

2.1, which indicate the ongoing need for recycling beyond cycle 48 to better predict interface 

areas. Firstly, up to cycle 48, the cumulative QS-score for cycle 12 was initially lower, but then 

increased for cycle 48 compared to cycle 1. However, such an incline was not observed for 

TM-score and IDDT score. Secondly, the initial AF2M method faced challenges when the 

complex structure comprised more than two chains (Bryant, Pozzati, Zhu, et al., 2022), 

potentially causing an increase or decrease in the QS-scores for models generated by AF2M 

when further recycling was applied. For instance, T1073, including four chains, obtained a QS-

score of "0". Moreover, T1073 was evaluated as easy target by CASP assessor, thus the poor 

orientation of the subunits may result in a lower global observed score for the quaternary 

structure model after superposition, even if the individual tertiary structures of the subunits are 

well predicted. Despite the fact that AF2M was validated in terms of pairwise interface quality 

score (DockQ score), the reason for using QS-score is to evaluate all interface quality scores 

at once giving a single score. (note: since this initial study was performed, there is now an 

additional variant of DockQ, DockQ-wave  (Kryshtafovych et al., 2023b; Studer et al., 2023), 

which gives a single score for all interfaces. DockQ-wave was one of the scores used in 
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CASP15 - see subsequent chapters). The cumulative QS-scores for AF2M were higher than 

AF2_Advanced. This difference in performance might be explained by the cropping procedure 

that made training AF2 systems easier. In the training phase, the cropping of up to 384 amino 

acids in protein sequences for AF2_Advanced was made while for AF2M, it was specifically 

trained on multimers and designed to maximize chain coverage. In this way, in AF2_Advanced, 

interface information for multimer targets was somewhat lost, while in AF2M, a good balance 

was obtained between interface and non-interface regions. However, for AF2M, this cropping 

is optimized so that binding interfaces in the multiple chains are involved (Evans et al., 2022).  

Despite the main difference underlying AF2M, compared with the original AF2, is in its training 

parameters, which were specifically designed for modelling complexes, there are still notable 

drawbacks to relying solely on this method for modelling quaternary structures. Despite T1083 

and T1084 presenting highly similar structural targets and difference sequences in the 

CASP14, and both having their monomer structures evaluated as hard predictions, there was 

a substantial difference between three scores of both. When analysing the reason, T1084 

exhibited low sequence identity (< 0.4) across all positions in the MSA, whereas T1083 showed 

varied sequence coverage for separate positions in the MSA. This indicates that AF2M relies 

predominantly on the strength of MSA mining tools. The figures in Appendix Figure S.1a depict 

the difference in sequence coverage by MMseq2 for T1083 and T1084 during cycle 12, along 

with sequence numbers in Appendix Figure S.1b and reference structures in Appendix Figure 

S.1c. Furthermore,  Dapkūnas et al. (2021) found that the docking approach was better than 

the template approaches, as AF2M relies on template structures for subsampling (Jumper et 

al., 2021a)  Importantly, it is noteworthy that MMseq2 can force a search leading to false 

positives due to its masking and filtering function (Mirdita et al., 2022).  

Recycling analysis on CASP12 and CASP13 targets as well as CASP14 was analysed as well. 

However, since the AF2M training phase occurred after CASP13, models from CASP12, 13 

were not included in the general evaluation to avoid biased decisions, under the assumption 

that they would already predict well. However, when analysing the models, although AF2M is 

trained with these structures, deficiencies continue. The QS-score for the T0991 (A2) targets 

in CASP13 (PDB code: 6YFJ), for example, could not be calculated, which was unexcepted. 

The OpenStructure tool detected multiple clashes in the model and all scores displayed 'failed' 

when chemically matching the reference structure and the target structure. Therefore, this 

model had QS-score of null, or zero.  Upon detailed examination of the modelled complex, 

many irregularities such as clashes with disorder regions were observed. Even though AF2M 

was trained with these structures, models with more disorder regions were not successful, 

suggesting a need to update training processes.  
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When the differences in the cumulative observed scores for models within the same cycle 

numbers were compared between the two AF2 versions, the cumulative observed quality 

scores of models generated by AF2_Advanced were found to be lower than AF2M during the 

recycling procedure (Figures 2.7-2.12). Subsequently, the significance of the differences for 

each recycle value was analysed using Wilcoxon signed-rank tests. The observed TM-scores, 

IDDT and the QS-score for all cycle pairs were p-value > 0.05, except for one between cycle 

1 for QS-Score of both of the AF2 versions (See Appendix Table S.1). With the application of 

additional recycling, both versions seem equally effective in terms of their utilization, as there 

is no statistical difference between the two AF2 variants. Therefore, the question arising here 

is which version will undergo how many recycling rounds? Considering the potential updates 

in forthcoming versions of AF2M with further recycling, it may be suitable to specifically tailor 

them for modelling quaternary protein structures. It is significant to note that using a 

metagenomic database increases the predictive power of the AF2 versions. However, for 

efficiency the metagenomic database (MGnify) had been reduced (Jumper et al., 2021a). This 

stage of reduction of the database may have led to loss of significant information, Hence, the 

information lost with MMseqs2 could potentially be regained by providing the structural 

information of a target proteins as a template to AF2M to enable a more accurate structure. 

The last but not least, it should not be forgotten that while high-quality scores are important, 

the initially obtained structure is crucial for recycling since it is a predicted model. Protein 

structures can have highly diverse conformational states, particularly in apo and holo forms. 

Hence, comparison of protein structures with crystal structures may not fully reflect their 

inherent dynamics, because crystal structures are static, whereas proteins fluctuate and can 

adopt different conformations in aqueous environments. A crystal structure represents only a 

snapshot of a protein's state, whereas proteins are flexible and can have multiple stable 

conformations. During model evaluation, small structural differences can reflect the natural 

mobility of proteins and these variations can be biologically meaningful. Therefore, although it 

is useful to compare models to crystal structures, it is important to consider the flexible and 

dynamic nature of proteins in such evaluations. However, the structure selected and stored in 

the database is considered to be the one that best represents the conformational structures. 

However, demonstrating that the individual structure obtained by AF2 is truly the desired one 

for our purposes remains open to debate. 
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2.4 Conclusions 

Historically, the modelling methods for predicting the quaternary structures of proteins have 

involved either template-based approaches or docking approaches, starting from the individual 

tertiary structures, either observed or predicted (Mandell et al., 2001). Conventional protein-

protein docking methods have so far used knowledge-based interaction “energies” 

(Tovchigrechko & Vakser, 2006) and/or protein-protein interaction physics (Mashiach et al., 

2010) to predict quaternary structures, using this information as either constraints or as scoring 

functions for ranking various model poses. Recently, end-to-end deep learning-based 

approaches have become more of a focus as they provide results without the need for feature 

selection or handcrafting intermediate process. AF2, which uses, has been a major milestone 

for the protein structure prediction field, as it uses end-to-end deep learning methods instead 

of the traditional methods which have thus far taken the centre stage in this field.  

Using end-to-end deep learning, AF2 and related algorithms are capable of predicting a tertiary 

structure very close to a local structure. However, this predictive power is highly dependent on 

the internal structure of the given target. The predictive power of AF2 was validated through 

the CASP14 and CASP15 experiments. AF2 is dependent on the availability of comprehensive 

MSAs which reveal the coevolutionary information of the given protein structure, allowing the 

method to model the pairwise residue interactions through template structures, and ultimately 

recycle them repeatedly leading to performance gains (Jumper et al., 2021b). With DeepMind’s 

release of the code for the AF2 algorithm, the bioinformatics community has been able to 

explore how to integrate its core algorithm with existing tools. 

The recycling process of the AF2 method is akin to a model iterative refinement stage 

(Bhattacharya, 2019) in a traditional modelling pipeline; it is the final part of the algorithm, and 

it repeatedly provides intermediate losses back to the system (Jumper et al., 2021a). Indeed, 

the refinement capability of AF2’s has been demonstrated through its use to improve docking 

models from ClusPro. By using ClusPro models as “template” inputs, the AF2 recycling 

process was used which resulted in docking models with higher observed quality scores (Ghani 

et al., 2021). In both AF2 versions tested here (AF2_Advanced and AF2M), the maximum 

number of recycles is set to 3 by default. However, at the time of our study, this value had not 

been validated in detail or optimised for modelling protein complexes. In this regard, our 

research is based on statistical analysis in order to determine the optimal maximum cycle 

number for both AF2 versions, and furthermore, we compare the modelling performance of 

each version of AF2.  
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In the initial version of AF2M and AF2_Advanced, utilizing increasing cycle values may lead to 

improved results. As a result of the Wilcoxon signed-rank test, cycle 12 and 24 for AF2M 

appear to be the optimal value set for the “max_cycle” parameter, despite cycle 3 or cycle 48 

showing highest cumulative scores. It seems model improvement can be influenced by target 

context rather than obtaining the same increase rate for all protein models during recycling. 

When it comes to consecutive cycles for IDDT score, the improvement between cycle 6 and 

12 is statistically significant, hence selecting a maximum cycle number of 12 is prudent without 

prohibitive additional computational burden. For AF2_Advanced, significant differences were 

observed in the observed quality scores (TM-score, IDDT and QS-score) between models 

produced using cycle 1 and cycles > 1, and this improvement persisted up to cycle 12 and 24 

for all observed quality scores. However, again it is reasonable to use a maximum cycle 

number of 12, as it produces the highest cumulative improvements for all three observed 

quality scores. Based on the cumulative scores of the observed quality scores in Figures 2.7-

2.12 and the statistical analysis in Appendix Table S.1, it is not expected that the performance 

of the first version of AF2M will be superior for modelling quaternary structures compared to 

the AF2_Advanced version. 

Further improvements could be made to AF2 variants for more accurately modelling of 

complexes. This may involve firstly further optimisation of NN model parameters, retraining on 

alternative datasets, and/or integrating significant specific features (such as the post-

translational modification of residues) of protein complexes into the algorithms. In doing so, 

higher quality proteins may be obtained with fewer recycles, improving efficiency. Secondly, 

given the QS-score results, there is room for AF2 to improvements in this regard, perhaps by 

encoding the interface dynamics as input features for better estimation of interface space. 

Thirdly, to model the best protein, it might be possible to determine the optimal number of 

cycles from the quality (sequence depth) of MSA, or the templates used. Additionally, better 

quality MSA and templates may provide AF2 variants (input parameters referred to as 

‘custom_MSA’ and ‘custom_Template’ in ColabFold last version (v.1.5.5) of AF2M will make 

this a possibility to explore). This concept of "recycling" explored in this chapter invokes images 

of an extracting usefulness by the cleaning up initial messy/garbage information. To extend 

this metaphor, the question we have addressed here is: how much recycling is required to 

clean up the model enough to obtain a useful output? If MSAs are of sufficient quality or there 

are enough available templates with high-quality scores for a particular target, then models 

may require much less of a cleanup process. Conversely, if only shallow MSAs can be 

generated or few suitable templates exist for a target, then resulting models may require a 

more intense cleanup during recycling.
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3.1  Background 

In the CASP14 experiment, AF2`s performance represented unprecedented success in modelling 

monomeric protein structures, irrespective of the degree of structural complexity (Ozden et al., 2023). 

The success of AF2 comes from its ability to interpret the co-evolutionary structural information 

embedded in the MSAs used as inputs for the modelling process. In addition, AF2 can succeed in 

monomer protein modelling without structural template when sufficient homolog sequences in an 

MSA are provided(Jumper et al., 2021a). However, the performance drops off for more difficult 

targets, when evolutionary information is weaker (Bryant et al., 2022). In this instance, it can be 

possible to generate complex structures of higher quality through either more conformational 

sampling (Wallner, 2023b) or the incorporation of structural templates to constrain the sampling 

process (Adiyaman et al., 2023). 

Inspired by the success of AF2 in modelling monomeric structures, DeepMind enhanced AF2 by 

implementing several modifications (as indicated in Chapter 1) and released AF2M. Nevertheless, 

the success of AF2M diminishes when there is insufficient evolutionary signal and/or limited 

structural template availability. However, it has been noted that AF2M are successfully used to obtain 

refined models using similar structural templates and the augmented MSA (Liu et al., 2023a). 

Therefore, it can be suggested that modelling using suitable template structures from external 

sources may also be beneficial for certain targets.  

 

One of the most significant studies after AF2M was released was the study of (Terwilliger et al., 

2022). Terwilliger et al. argued that the information from Cyro-EM density maps, along with the AF2 

recycling process, could be used to obtain higher quality protein structure models. To demolish this, 

the AF2M models were trimmed and superimposed with the density maps before each subsequent 

cycle. Following each cycle, the resulting rebuilt model was then used as the template to guide the 

prediction of the final protein structure. Following this success of using low resolution experimental 

data for iterative structure prediction via AF2M recycling, Sergey et al. added “custom template” 

option to the ColabFold (Mirdita et al., 2022) platform.  The algorithm ran the same as Terwilliger et 

al`s AF-Phenix (Terwilliger et al., 2022), the only difference being that the input structural template 

guided the algorithm rather than a density map. Thus, the approach exploits AF2M`s attention 

mechanism, which focuses on the most pertinent structural template information from the input data 

to construct a protein structure model. 
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3.1.1 The aim of study 

The success of AF2 was demonstrated following CASP14, and the wider community began 

exploiting the AF2 algorithm in different ways including by our own group, where we used it as a 

refinement tool to generate improved models for CASP15.  After a certain period, due to AF2M's 

algorithmic approach of treating each chain of the final output as individual monomers, there exists 

a likelihood of degradation in models during successive recycles, as each iteration necessitates re-

modelling. Consequently, recycling the generated model can either further improve or worsen it. 

Moreover, since a specific numerical value for the number of recycles has not yet been determined, 

stopping at the default number of cycles poses a high risk of missing the best model. Therefore, 

finding the optimal number of cycles is crucial both in terms of time and efficiency. 

In Chapter 2, it was demonstrated that AF2 versions, utilizing input structural templates solely 

obtained from the structural databank via HHpred (Söding et al., 2005), exhibit a greater 

improvement effect on structural modelling through further recycling. This chapter aims to investigate 

the impact of providing externally structural models as “custom templates” on the improvement of 

models through recycling. To demonstrate this, two different template populations were gathered: 

Firstly, the pre-AF2M models on the CASP14 data which generated by the methods developed prior 

to the release of AF2 code and, secondly, the post-AF2M models on the CASP15 generated by the 

methods that were developed after AF2 code was released. The effect of recycling on structure 

modelling has been examined from various perspectives. Wallner et al. (2023) investigated the 

recycling of AF2M using different versions and optional parameters alongside MSA, focusing 

primarily on the Global-DockQ score by using the average of DockQ score for each protein interface 

weighted based on an interface size (Basu & Wallner, 2016; Wallner, 2023a). However, our study 

aims to evaluate models through different quality scores (TM-score, IDDT score, QS-score, 

DockQ_wave score, Molprobity) and also to examine whether recycling can still be used to refine 

input template models even in the absence of an input MSA using the SS option. Thus, this 

investigation is unique in its aims to explore the effects of exploiting various custom template inputs 

for AF2M, with the goal of enhancing recycling effectiveness while considering performance and 

efficiency aspects.   
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3.2 Methods 

3.2.1  Data collection 

3.2.1.1 Data collection of CASP14 models 

The CASP14 multimeric models were downloaded from CASP website 

(https://predictioncenter.org/download_area/CASP14/predictions/), according to the CASP target 

codes. 10 CASP14 targets, including H1045 (PEX4-PEX22 (Organism: Arabidopsis thaliana)), 

H1065 (N4-Cytosine Methyltransferase (Organism: Serratia marcescens)), H1072 (Testis-expressed 

protein 12 (Organism: Homo sapiens)), T1032 (Structural maintenance of chromosomes flexible 

hinge domain containing 1 (Organism: Homo sapiens)), T1054 BonA (Organism: Acinetobacter 

baumannii)), T1070 (Tailspike protein (Organism: Escherichia virus CBA120)), T1073 (Hypothetical 

protein predicted by Glimmer/Critica (Organism: Bdellovibrio bacteriovorus)), T1078 (a small 

secreted cysteine‐rich protein  (Tsp1) (Organism: Trichoderma virens)), T1083 (Nitro-histidine zipper 

coiled coils (Organism: Nitrosococcus oceani)), and T1084 (Meio-histidine zipper coiled coils 

(Organism: Meiothermus silvanus)) were selected. The criteria for target inclusion in the study were 

the submission of same target by six different groups during CASP14, the presence of experimentally 

validated structures, and the limit on the number of residues which could be modelled using AF2M. 

The top models (model-1) for each target were taken from the top-performing groups (according to 

the assessor`s Z score ranking), including Baker-experimental (Baek et al., 2021), Venclovas 

(Dapkūnas et al., 2021), Takeda-Shitaka, Seok (Park et al., 2021), and DATE. For each target, each 

model was used as an input template, or initial model, for AF2M (v.1.2) prior to recycling. Also, as 

the DeepMind group did not submit models for multimeric targets in CASP14, AF2M models were 

generated for the same targets and were also used as input templates for AF2M. 

3.2.1.2 Data collection of CASP15 models 

The CASP15 multimeric models were also downloaded from the CASP website  

(https://predictioncenter.org/download_area/CASP15/predictions/), according to the CASP target 

codes. 24 CASP15 targets, including H1106 (YscY-YscX protein (Organism: Yersinia enterocolitica)), 

T1109 (D180A isocyanide hydratase (Organism: Ralstonia solanacearum)), T1110 (wild-type 

isocyanide hydratase (Organism: Ralstonia solanacearum)), T1113 (Glycoprotein 2 (GP2) 

(Organism: Bacteriophage PA1C)), T1121 (the Wadjet nuclease subunit JetD (Organism: 

Pseudomonas aeruginosa PA14)), T1123 (Capsid protein (Organism: Human Astrovirus MLB1)), 

H1129 (Receptor-binding protein pb5 (Organism: enterobacteriophage T5)), T1132 (Antibiotic 

biosynthesis monooxygenase (Organism: Pseudomonas aeruginosa)), H1134 (Chymotrypsin 

digested toxin/immunity complex for a T6SS lipase effector (Organism: enterobacter cloacae)), 

H1140 (CNPase-Nb (Organism: mouse/alpaca)), H1141 (CNPase-Nb7e (Organism: 

mouse/alpaca)), H1142 (CNPase-Nb8c (Organism: mouse/alpaca)), H1143 (CNPase-Nb10e 

(Organism: mouse/alpaca)), H1144 (CNPase-Nb8d (Organism: mouse/alpaca)), H1151 (Probable 

https://predictioncenter.org/download_area/CASP14/predictions/
https://predictioncenter.org/download_area/CASP15/predictions/
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transcriptional regulator WhiB6 (Organism: Mycobacterium tuberculosis)), T1153 

(Endonuclease/exonuclease/phosphatase family domain-containing protein 1(Organism: Human)), 

T1160 (The mk2h_deltaMILPYS peptide(Organism: Ancient protein reconstruction)), T1161 (The 

dimeric DZBB fold protein Ph1(Organism: Ancient protein reconstruction)), H1166 ( Human Fab S24-

188 in the complex with the N-teminal Domain of Nucleocapsid protein from SARS CoV-2 (Organism: 

Human)), H1167 (Human Fab S24-1379 in the Complex with the N-teminal Domain of Nucleocapsid 

Protein from SARS CoV-2 (Organism: Human)), H1168 (Human Fab S24-1063 in the Complex with 

the N-teminal Domain of Nucleocapsid Protein from SARS CoV-2(Organism: Human)), T1173 (Cell 

wall surface anchor family protein (Organism: Bdellovibrio bacteriovorus)), T1174 (the C-terminal 

domains of the Bdellovibrio bacteriovorus Bd2133 fibre (Organism: Bdellovibrio bacteriovorus)), and 

T1179 (the murine astrovirus capsid spike (Organism: Murine astrovirus)) were selected. Again, the 

criteria for target inclusion in the study were the submission of same target by six groups during 

CASP15, the presence of experimentally validated structures, and the limit on the number of 

residues accepted by AF2M. The top models were again taken from the top-performing groups 

(according to the assessor`s Z score ranking), which this time included Zheng, Venclovas, Wallner, 

and Yang-Multimer. Additionally, the NBIS-AF2-Multimer group was selected to evaluate the 

performance of AF2M models while MultiFOLD was selected (our group’s automated server multimer 

prediction tool), which was ranked 8th in CASP15. For each target, each model was used as an input 

template for AF2M prior to recycling. 

3.2.2 Experimental design 

Each model PDB file was transformed to mmCIF format using the RSCB PDB MAXIT conversion 

tool (https://mmcif.pdbj.org/converter for CASP14 target). The transformed model files were then 

uploaded to the Google Colaboratory hosted by ColabFold [v1.3.0 (4-March-2022)] for CASP14 

target while the model structure was then uploaded to the Google Colaboratory hosted by ColabFold 

[v1.5.3 (After 4-March-2023)] for the CASP15 targets as “custom templates” along with their 

corresponding amino acid sequences. Two separate sub-populations of recycled models were then 

created for each individual model: “MSA models” for which ColabFold was permitted to construct an 

MSA prior to recycling and “Single-Sequence (SS)” models for which an MSA was not used. Every 

initial model was subjected to 1, 3, 6, and 12 recycles separately in both the MSA and SS modes. In 

all cases, Amber relaxation was disabled to ensure that we were solely testing for the recycling effect. 

Rank-1 models created for each ColabFold run were collected along with their pTM-scores and 

pIDDT scores.  
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The ColabFold settings used were:  

For the CASP14 models, Template_mode: custom; msa_mode: MMseqs2 (UniRef+Environmental) 

OR single sequence; pair_mode: unpaired+paired; model-type: auto; num_recycles: 1, 3, 6, 12. 

(N.B. auto was specified as the model type, which at the time defaulted to the original pre-CASP14 

model `alphafold2_Multimer_v1`, avoiding biased structure prediction for the test set).   

For  the CASP15 models, Template_mode: custom; msa_mode: MMseqs2 (UniRef+Environmental) 

OR single sequence; pair_mode: unpaired+paired; model-type: alphafold2_Multimer_v2; 

num_recycles: 1, 3, 6, 12. (N.B. ‘alphafold2_Multimer_v2’ was specified as the model type, which 

was the original pre-CASP15 model, in order to avoid biased structure prediction to the test set).  

3.2.3 Structure analysis 

The baseline initial models (the input template models prior to recycling) and the models generated 

by each number of recycles were then directly compared with the native structure obtained from the 

PDB, to generate observed quality scores (expect for the Molprobity score (Chen et al., 2010(a)), 

which evaluated the stereochemistry of each model). The scores were then compared between the 

baseline models and the recycled models. For evaluating each modelled multimeric structure, the 

MM-Align (Mukherjee & Zhang, 2009) and OpenStructure (https://openstructure.org/).  Programs 

were employed to obtain observed scores for the TM-score and IDDT score, respectively. The IDDT 

score referred to in this chapter is the Oligo-IDDT. Additionally, the QS-score from the OpenStructure 

program was used to measure the interfaces of multimers. The QS-score proves valuable in 

comparing homo- and hetero-complexes with different stoichiometries, diverse orientations of 

relative chains, and varied amino acid sequences (Bertoni et al., 2017). At the time of the analysis 

of the CASP14 targets the latest version, OpenStructure 1.1, was utilized. However, for the CASP15 

targets, OpenStructure 2.1 was available and used to produce equivalent scores. In addition, 

DockQ_wave scores (Studer et al., 2023) were obtained for the CASP15 targets. The DockQ_wave 

scores for CASP15 targets were acquired using OpenStructure version 2.1 (DockQ_wave was not 

available in the 1.1 version, while the Molprobity scores were obtained using the server 

(http://molprobity.biochem.duke.edu/). Statistical analysis was conducted by comparing the 

performance of methods based on the increase in observed scores for models when using to custom 

template recycling options. The statistical method used is explained in detail in the methods section 

of Chapter 2. Figure 3.1 summarises the workflow of methods used in the analysis for this chapter.  

 

 

 

 

https://openstructure.org/
http://molprobity.biochem.duke.edu/
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Figure 3.1 The flowchart of the method for using the custom template recycling options from 
modelling quaternary structures. 
Flowchart showing the process for evaluating custom template cycles in AF2M using MM-Align tool and 
OpenStructure package. The observed quality scores for CASP14 and CASP15 models, with TM-score from 
MM-Align and IDDT/QS-score from OpenStructure, were produced by aligning the models with the native 
structures for each target. Also, DockQ_wave score was generated via OpenStructure only for CASP15 
models. Subsequently, the observed quality scores for rank-1 models for each group in each cycle round were 
statistically evaluated using the paired Wilcoxon-signed-rank test (compared with the initial scores). 

 

3.3 Results and Discussion 

The results comprise the top modelling results for the 10 CASP14 and 24 CASP15 targets. Our initial 

aim is to seek the effectiveness of using the custom template option with further recycles in AF2M 

with a view to integrate these improvements as part of our complex protein structure prediction tool, 

called MultiFOLD. Additionally, in order to control for the effect of the inclusion of an MSA, models 

were processed both with MSA and in SS methods specified prior to recycling. The custom template 

option of AF2M is the most important input to guide conformational space searching of the target 

proteins. Hence the models from the top groups were used as the custom templates, and these initial 

models were generated by different methods other than AF2M, thereby giving the AF2M algorithm a 

different starting point for modelling. The most effective way of evaluating multimeric structure 

improvement with further recycle is to align the models with the known structures and then compare 
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the resulting observed quality scores. For this reason, the TM-score and IDDT scores were used as 

scores to evaluate the observed model quality at the overall fold level while QS-score and 

DockQ_wave scores are used for comparing the quality of the modelled interfaces compared with 

the experimentally determined structure. The TM-score was used as the principal evaluation score 

to observe the improvement from one cycle to the next, as AF2M relies on pTM-score and then ipTM 

(predicted interface TM-score) to select the best multimeric prediction target. Additionally, the 

Molprobity score was employed to analyse prediction models in each cycle, which considers the 

stereochemistry of all atoms in a model and does not require comparison of experimental structures. 

Firstly, the effect of custom template recycling on the 60 models (CASP14) and 144 models 

(CASP15) generated by AF2M using MSA and SS methods was investigated. Table 3.1 

demonstrates that the initial models were refined when used the custom template along with further 

recycling. This refinement is evident in terms of four cumulative quality scores: TM-score, IDDT, 

Qs_score, and Molprobity score. The improvement was linear during further recycling when 

compared to the scores for the refined models and baseline models. In addition, without MSA 

information, the improvement remained consistent, although all quality scores for the MSAs method 

were higher than that of the SS method during each cycle. These results suggest that structural 

information can be valuable when AF2M is run using MSAs. Without using MSA, custom templates 

with further recycling were used to generate models. The results show that improvements were 

observed as the number of recycles was increased; however, no improvement was observed when 

the initial models were compared. To analyse the effect of the quality of initial protein structure on 

models generated AF2M using custom template recycling, the analysis of refinement during 

recycling process starts by comparing the quality of the initial baseline AF2M models ( models 

generated by ColabFold for the CASP14 targets and those generated by NBIS-AF2M for the 

CASP15 targets) and non-AF2M models (models generated by the 5 top-ranked groups in the 

CASP14 competition and those generated by the four top-ranked groups plus, MultiFOLD in the 

CASP15 competition). Testing of both the CASP14 and CASP15 models has provided an opportunity 

to historically examine the recycling algorithm of AF2M for use on pre-AF2 and post-AF2 models. 

Table 3.2 supports the refinement effect of custom template recycling on the CASP models. 

Compared to the baseline cumulative scores, the cumulative TM-score, IDDT, QS-score for the 

models generated by AF2M using the MSA method are statistically significant (p < 0.05) for recycles 

3, 6, and 12. However, the differences in the cumulative IDDT and QS-score between baseline and 

recycle 1 are not statistically significant.  Moreover, these appears to be a significant increase in the 

quality of models generated during three separate recycles after recycle 1, compared to its previous 

recycle. 
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Table 3.1 A comparison of the cumulative quality scores for the CASP models versus the 
baseline models after recycling. 
The table showing the cumulative scores of the starting models, known as, baseline and of the CASP14 and 
CASP15 models obtained after four various recycling (1-3-6-12) using the MSA and SS methods. The increase 
in cumulative scores for TM-scores, IDDT, QS-scores indicates that the refined models were obtained following 
further recycling (between cycle 6 and cycle 12).  It is significant to note that the lower Molprobity score 
presents higher quality model. 

 

Method Baseline Cycle-1 Cycle-3 Cycle-6 Cycle-12 

 ∑TM-score 

MSA 163.595 167.067 170.364 170.978 171.181 

SS 160.482 145.749 152.019 156.602 150.913 

 ∑IDDT 

MSA 159.625 160.351 164.33 166.974 167.037 

SS 156.216 140.092 143.284 145.259 155.004 

 ∑QS-score 

MSA 115.47 119.5 126.26 128.21 128.78 

SS 112.38 87.92 101.78 108.02 111.47 

 ∑Molprobity score 

MSA 341.07 528.14 520 507.81 505.6 

SS 348.95 583.17 575.47 572.76 571.12 

 
 
Table 3.2 A statistical comparison of the cumulative quality scores for the CASP models 
versus baseline models after recycling. 
Computed p-values resulting from the Wilcoxon signed-rank test for TM-scores (a), IDDT (b), and QS-scores 
(c) in relation to both baseline and recycled models, considering both CASP14 and CASP15 models generated 
by AF2M. 

 

 
*MSA: Multiple Sequence Alignment, Ho: Recycling, as stated by column, produces models of equivalent or lower quality 
than the template structures used as baseline templates, or the models generated in previous cycles. H1: Recycling, as 
stated by column, produces models of higher quality than the template structures used as baseline templates, or the 
models generated in previous cycles. P-values ≤0.05 indicate there is significant differences, as in highlighted in bold. The 
one-tailed Wilcoxon signed-rank tests were used to measure the (A) TM-scores, (B) IDDT scores, (C) QS-scores for 60 
models (CASP14) and 144 models (CASP15). 

Recycle type Baseline to 
1 recycle 

1 recycle to 3 
recycles 

Baseline to 3 
recycles 

3 recycles to 
6 recycles 

Baseline to 6 
recycles 

6 recycles to 
12 recycles 

Baseline to 
12 recycles 
 

a)                                                                                    TM-score 
 

MSA 9.147e-3 8.547e-2 8.924e-4 4.816e-1 3.789e-4 9.671e-1 1.102e-3 
 

b)                                                                                      IDDT 
 
MSA 8.869e-1 1.307e-08 1.464e-2 1.531e-07 7.678e-3 7.357e-1 1.937e-3 

 

c)                                                                                   QS-score 
 
MSA 2.335e-1 1.56e-4 8.676e-3 1.676e-2 1.04e-3 4.959e-2 2.815e-4 
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3.3.1 The impact of custom template recycling with MSA on multimeric CASP14 models 

In Chapter 2, it was observed that further recycling has a refinement effect on multimeric targets. 

Here, the effect of recycling on the refinement of custom template models where initial structure 

guides to the AF2M modelling process was measured. Analysing the TM-scores, 70% of AF2M 

models improved, whereas 98% non-AF2M models demonstrated a more substantial improvement. 

In terms of IDDT scores, the recycling of multimeric models resulted in an improvement in 80% of 

AF2M models, compared to 94% of non-AF2M models. Additionally, considering QS-scores, 50% of 

AF2M models exhibited improvement, while 86% of non-AF2M models showed an improvement. 

When it comes to the SS approach, analysing the TM-scores showed that 80% of AF2M models 

refined, whereas 82% of non-AF2M models demonstrated a more substantial improvement.  In terms 

of IDDT scores, the recycling of multimeric models resulted in an improvement of 30% of AF2M 

models, compared to 64% of non-AF2M models. Lastly, considering QS-scores, %30 of AF2M 

models had better quality after recycling, while 60 % of non-AF2M models also showed refinement 

(See Appendix Figure S.2).  

In Adiyaman et al. (2023), these above results were published and the effect of custom template 

recycling on the multimeric CASP14 targets was showed. The results for multimers were consistent, 

indicating a higher quality of protein models was achieved through custom templates along with 

further recycle. The reason why the number of high-quality AF2M models is lower than the number 

of models that could not be predicted with AF2M is that the DeepMind group did not participate in 

CASP14 for multimeric targets. Therefore, AF2M models were obtained by us using the updated 

version of AF2 (AF2_Advanced) available at that time. AF2M ranks the models based on pTM-score, 

however, TM-score was used for the calibration of AF2M (Evans et al., 2022), while IDDT score was 

employed for the calibration of the first version AF2 (AF2_Advanced) (Jumper et al., 2021a; 

Tunyasuvunakool et al., 2021). As a result, both AF2M and non-AF2M models may demonstrate a 

different trend in terms of rank-1 model quality.  

Examples of the refinement effect of the recycling process on models based on the quality scores 

are shown in Figure 3.2. AF2M for T1078 in Figure 3.2A exhibited a notably lower QS score in the 

initial model and a considerably higher QS score in the refined model. In addition, when comparing 

other two baseline and refined models shown in Figures 3.2B and 3.2C, all tree quality scores was 

substantially improved. Interestingly, it was observed remodelling rather than more effective 

improvement in model quality as seen in T1078 in the Figure 3.2. It appears that the quality of initial 

model can affect the rate of improvement after an increase in cycles, potentially leading to divergence 

from the original structure.  
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The comparison of the refined multimeric models and the starting models with the observed structures in the 
superposition way. The starting superposition models are located in the first column, while the refined 
superposition models are situated in the last column. In the columns, the figures of the starting models (red), 
the refined figures generated by AF2M (blue) and the reference structures (cyan) were represented. These 
figures were generated by PyMOL. 

 

The scatter plot in Figure 3.3A shows the improvement conditions based on the initial models 

(baseline). Figure 3.3B indicates that the majority of models (86%) exhibit improvement according 

to TM-scores. When compared based on the number of recycles, 87%, 85%, 90%, 84% of targets 

were improved after recycle-1, 3, 6, 12, respectively (See Appendix Figure S.3). These results 

suggest that further recycling can improve starting models for the majority of target proteins in terms 

of TM-scores. While non-AF2 models generally showed more pronounced improvements in the 

overall structures, the AF2M models exhibited the poorest performance improvement for all number 

of recycles. Among these structures are H1045, H1065, and T1054 CASP14 models. Since AF2 did 

not participate in multimer category of CASP14, there is no independent validation of its 

performance. The recycled AF2M models for H1065 and T1054 fell below baseline. These targets 

were classified as difficult by CASP14 assessors. Additionally, earlier versions of AF2M show 

decreased predictive power beyond two chains and T1054 has a tetrameric structure.  

Figure 3.2 Example of the refinement effect of the recycling on three CASP14 targets. 
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Figure 3.3B illustrates that the cumulative improvement per group in model quality exhibited a non-

linear trend with increasing numbers of recycles; higher recycle numbers (>3) did not consistently 

result in greater improvement across all model types. Nevertheless, models from almost all groups 

except for Takeda-Shitaka and Baker demonstrated noticeable improvement with further recycling. 

The data show a more pronounced improvement in non-AF models, and this can be attributed to two 

factors. Firstly, the initial lower quality of the baseline template models offers more room for 

improvement. Secondly, there's the likelihood of a certain degree of remodelling occurring during the 

recycling process. It is imperative to ascertain the extent of this remodelling and strive to illustrate 

that substantial improvement occurred solely through recycling. To determine whether the 

improvement comes from the template structures themselves or from evolutionary information, a 

direct comparison between SS recycling and MSA recycling was conducted. 

 

A)                                                                              B)              

 

 

A) Scatter plot showing the improvement of models following recycling. The plot compares the observed TM-
scores for the improved models (y-axis) versus the baseline TM-scores (x-axis) for CASP14 models generated 
during all recycles (1-3-6-12) for six group models using MSAs in the AF2M recycling process. The minimum 
value for TM-scores is 0, while the maximum value is 1. B) Bar charts representing the change of cumulative 
in observed TM-scores generated from the baseline models and the models generated through varying 
numbers of recycling (1-3-6-12). Each colour corresponds to different group models, with orange representing 
Baker, red representing Venclovas, black representing Takeda_Shitaka, purple representing Seok, green 
representing DATE, and blue representing AF2M. This scatter plot was drawn using R. 
 

 

 

 

Figure 3.3 A comparison of the observed and baseline TM-scores for the CASP14 models 
during all recycles and based on group. 
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The scatter plot in Figure 3.4A shows the improvement conditions based on the initial models 

(baseline). Figure 3.4B indicates that the majority of models (79%) show enhancement according to 

the IDDT scores. When compared based on the number of recycles, 75%, 78%, 78%, and 85% 

targets were improved after recycle-1, 3, 6, and 12, respectively (See Appendix Figure S.4). These 

results suggest that further recycling can improve initial models for the majority of target proteins in 

terms of the IDDT scores. When the Takeda-Shitaka group models were subjected to further 

recycling, the modelled structures exhibited the most pronounced deterioration. The Takeda-Shitaka 

models which demonstrated that the most deterioration were for three targets (T1070, T1073, 

T1083). 

Figure 3.4B illustrates that the cumulative enhancement per group in model quality exhibited a linear 

trend (up to 6 recycle) with increasing numbers of recycles. Even though higher recycle numbers 

(>1) consistently resulted in greater improvement across all model types, models from all groups 

except for Baker demonstrated noticeable improvement with 6 and 12 recycles. Nevertheless, 

deterioration in AF2M models was observed with further recycling (Cumulative IDDT score for 6 

recycle > cumulative TM-score for 12 recycle). There was the deterioration for AF2M models in cycle 

1, yet these models were improved with further recycling (> 3). 

 

A)                                                                                       B) 

 

 

A) Scatter plot showing the improvement of models following recycling. The plot compares the observed IDDT 
scores for the improved models (y-axis) versus the baseline IDDT scores (x-axis) for CASP14 models 
generated during all recycles (1-3-6-12) for six group models using MSAs in the AF2M recycling process. The 
minimum value for IDDT is 0, while the maximum value is 1. B) Bar charts representing the change of 
cumulative in observed  IDDT scores generated from the baseline models and the models generated through 
varying numbers of recycling (1-3-6-12). Each colour corresponds to different group models, with orange 
representing Baker, red representing Venclovas, black representing Takeda-Shitaka, purple representing 
Seok, green representing DATE, and blue representing AF2M. This scatter plot was using R. 

Figure 3.4 A comparison of the observed and baseline IDDT scores for the CASP14 models 
during all recycles and based on group. 
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The scatter plot in Figure 3.5A shows the improvement conditions based on the initial models 

(baseline). Figure 3.5B indicates that the majority of models (85%) exhibit enhancement according 

to QS-scores. When compared based on the number of recycles, 85%, 83%, 85%, and 87% of 

targets were improved after recycle-1, 3, 6, 12 (See Appendix Figure S.5). This result suggests that 

further recycling can improve starting models for greater part of target proteins in terms of QS-scores. 

When the Takeda-Shitaka group models were subjected to all four recycle, the modelled structures 

exhibited the most pronounced deterioration. The Takeda-Shitaka models which demonstrated the 

most deterioration was for three targets (T1054, T1070, T1073). Figure 3.5B illustrates that the 

cumulative refinement per group in model quality exhibited a non-linear trend with increasing 

numbers of recycles; higher recycle numbers (>1) did not consistently resulted in greater 

improvement across all model types. The improvement in models for Baker, Venclovas, and AF2M 

groups were approximately same, while there was an improvement in the models for Seok and DATE 

groups. However, only one group (Takede-Shitaka) belonged to the deterioration models after 

recycling (<3). The main reason for the increased deterioration of the QS-score for Takeda-Shitaka 

may lie in the utilization of proper monomers first and then template-based docking, relying on TM-

align and residue-residue score (CAB-align) (Terashi & Takeda-Shitaka, 2015). The other methods 

incorporate both template docking and MSA searching 

(https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf). Interestingly, cumulative change 

in QS-score for the two lower quality models except for AF2M models was observed greater, which 

is likely to search better conformational structure for lower model whose structure is not close to 

natural structure in the sampling space.  

 A)                                                                                                         B) 

A) Scatter plot showing the improvement of models following recycling. The plot compares the observed QS -scores for 
the improved models (y-axis) versus the baseline QS-scores (x-axis) for CASP14 models generated during all recycles (1-
3-6-12) for six group models using MSAs in the AF2M recycling process. The minimum value for QS-score is 0, while the 
maximum value is 1. B) Bar charts representing the change of cumulative in observed QS-scores generated from the 
baseline models and the models generated through varying numbers of recycling (1-3-6-12). Each colour corresponds to 
different group models, with orange representing Baker, red representing Venclovas, black representing Takeda_Shitaka, 
purple representing Seok, green representing DATE, and blue representing AF2M. This scatter plot was drawn using R. 

Figure 3.5 A comparison of the observed and baseline QS-scores for the CASP14 models 
during all recycles and based on group. 

https://predictioncenter.org/casp14/doc/CASP14_Abstracts.pdf
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All in all, the scatter plots and bar charts in Figure 3.3 to 3.5 indicate that the majority of models 

exhibit enhancement in terms of three quality scores, when the further recycling was applied. 

However, it is evident once again that the improvement in IDDT scores (Figure 3.4A) is less uniform 

rather than TM-scores (Figure 3.3A). Figure 3.3 highlights a great improvement in TM-scores for 

both AF2M and non-AF2M models, with fewer models experiencing decrease in their own quality 

following increases in the recycling. The output models generated by AF2M tend to have higher TM 

scores because it selects a best model as rank-1 based on the ipTM scores, making it more likely to 

choose models with lower IDDT scores. After a comparison of structural differences between models 

and experimental observed protein structures with the help of TM-score, IDDT, and QS-score, 

Molprobity score was employed to evaluate geometric form for models. 

MolProbity score (Chen et al., 2010) is calculated by analysing bond length, torsion angles, atom 

contacts in the structure, atom clashes, and sidechain rotamers, which is frequently used to analyse 

the geometric validity of experimentally observed structures before they get stored in the PDB. A 

lower MolProbity for model implies it has greater all-atom quality and belongs to a more natural 

protein structure. Figure 3.6 demonstrates a majority of CASP14 models exhibit that Molprobity 

scores were around 2 and lower than baseline after four recycling (1-3-6-12), indicating clashes, 

particularly between sidechains, which are reasonably acceptable at this level. Both IDDT and 

Molprobity scores, being independent of the superposition state, were lower compared to the TM-

score (See Figures 3.3A and 3.4A), further supporting the abundance of clashes between 

sidechains. It can be highlighted that the CASP14 models obtained are unrelaxed form, hence, it is 

likely that there can be a decrease in Molprobity scores upon the application of relaxation methods. 

Nevertheless, rather than relying solely on energy minimization methods or recycling, physical 

approaches aimed at broadening conformational sampling in modelled structures could significantly 

reduce clashes between sidechains in AF2M. 
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The density plot showing the Molprobity scores (lower Molprobity scores are better) for the CASP14 models 
generated by AF2M using MSA, with red for cycle 1 (R1M), blue colour for cycle 3 (R3M), green colour for 
cycle 6 (R6M), magenta colour for cycle 12 (R12M) and black colour for baseline as starting model. This plot 
compares the geometric correctness rate for models after recycles, without using experimentally observed 
protein structure. Molprobity scores were generated by http://molprobity.biochem.duke.edu/. The density plot 
was drawn using R. 

Unlike IDDT score, TM-scores and QS-scores for SS methods in Appendix Figure S.6 show similarity 

compared to that of the MSA method. This can vary depending on the content of the structure, as a 

significant portion of the secondary structures is predicted by AF2M necessarily relying on MSA-

derived information. The increase in both scores with the SS method also indicates effective research 

even without MSA, as the provided models serves as a template. Structural representations have 

especially proven to be more effective than sequence-based methods, as information obtained by 

MSA of protein sequence can lead to false positives, potentially resulting in the loss of valuable data. 

Interestingly, the template structure of higher quality did not generate better quality structures.  

It was observed that TM-scores and QS-scores for models generated by MSA methods have shown 

greater improvement following further recycle (See Figure 3.3B, 3.5B). Interestingly, models 

generated by SS methods exhibited a non-linear development when to apply advanced recycling, 

except for IDDT score (See Appendix Figure S.6 (middle)). Furthermore, interface scores of models 

produced with SS methods, except for the top two groups (Baker and Venclovas groups), have also 

shown greater development after further recycling. However, when compared based on the group 

level, it is evident that the lower the initial structure quality, the more susceptible the structure is to 

improvement. Models of lower quality (both non-AF2M and AF2M models) are more prone to 

improvement with SS methods. This may be due to the constraining effect of coevolutionary 

information derived from MSA. The same findings were applicable for interface region of models. 

The only difference was that the higher the initial quality of the structure, the greater the difference 

Figure 3.6 A comparison of the observed and baseline Molprobity scores for the CASP14 
models after recycling. 

http://molprobity.biochem.duke.edu/
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between MSA and SS methods. This phenomenon may stem from MSA subsampling, which is more 

effective in generating structural information for interface regions.  

It was also observed that models generated by the SS method had lower IDDT values following 

further recycling. In fact, it shows that there was no improvement in IDDT scores for models, but 

rather a deterioration. The reason for the decrease in the IDDT scores, despite the improvement in 

TM-scores and QS-scores without utilizing coevolution information from MSA, could be attributed to 

be the custom template.  The Molprobity scores of models generated by AF2M using the SS method 

were higher compared to the scores for models generated by AF2M using the MSA methods. A 

greater number of models had scores between 4 and 5, which may not be acceptable score for 

protein structure quality score (See Appendix Figure S.7). 

Table 3.3 compares the models generated using further recycling to the baseline models which were 

used as custom templates. For the non-AF2M models, statistically significant enhancements were 

observed across three quality scores (TM-score, IDDT, and QS-score) after four different recycles 

when utilized the MSA method (p > 0.05). In contrast, the AF2M models consistently exhibited 

significant improvements in the IDDT (recycle 6 and 12) and TM-score (recycle 1 and 6) (p < 0.05). 

Additionally, when employed the SS method, significant improvements were evident in both TM-

score and QS-scores for the non-AF2M models generated by four various recycles (p < 0.05). There 

was only a statistically significant difference between the TM-scores for the AF2M models generated 

by three type of recycling and the baseline models. Analysing the p-values for all models and scores 

appears that both recycles 6 and 12 may be optimal parameters for achieving higher quality 

multimeric protein structures.  
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Computed p-values resulting from the Wilcoxon signed-rank test for IDDT scores (a), TM-scores (b), and QS-
scores (c) in relation to both baseline and recycled models, considering both non-AF2M and AF2M models, 
specifically for CASP14 multimeric targets. 

 

 

*MSA: Multiple Sequence Alignment, SS=Single sequence. Ho: Recycling, as stated by column, produces models of 
equivalent or lower quality than the template structures used as baseline templates, or the models generated in 
previous cycles. H1: Recycling, as stated by column, produces models of higher quality than the template structures used 
as baseline templates, or the models generated in previous cycles. P-values ≤0.05 indicate there is significant differences, 
as in highlighted in bold. The one-tailed Wilcoxon signed-rank tests were used to measure the (A) IDDT scores, (B) TM-
scores, (C) QS-scores for 10 AF2 models and 50 non-AF2 models from various CASP14 targets. 

 

In Table 3.4, concerning all quality scores, the baseline models were refined following further 

recycling. However, for the TM-scores and IDDT scores, deterioration was observed after reaching 

recycle 6. Conversely, for the QS-score, it appears that the models with better interface quality scores 

could be obtained when run AF2M using further recycling. Given all the scores and statistical 

analysis, a specific recycle number, such as 6, can be suggested to achieve an improved multimeric 

structure. It is noteworthy that during the training of neural networks, increasing the number of hidden 

layers and nodes can lead to issues such as trapping in local minima (Wang & Cao, 2018), which 

can persist during inference. Since AF2M uses a DNN, this might explain why AF2M does not always 

a IDDT-scores 

 

Models 

Recycle 

type 

Baseline to  

1 recycle 

1 recycle to 3 

recycles 

Baseline to 3 

recycles 

3 recycles to 

6 recycles 

Baseline to 6 

recycles 

6 recycles to 

12 recycles 

Baseline to 12 

recycles 

AF2M MSA 1.106e-1 5.203e-1 1.795e-1 7.679e-2 4.157e-2 1.106e-1 5.146e-2 

SS 9.966e-1 4.157e-2 9.369e-1 6.177e-2 9.369e-1 9.736e-1 9.369e-1 

non-

AF2M 

MSA 3.748e-3 4.267e-05 1.398e-05 6.915e-3 1.02e-06 9.565e-1 4.935e-07 

SS 8.492e-1 1.475e-2 5.116e-1 1.611e-1 4.197e-1 1.013e-2 3.285e-1 

         

b                                                                                TM-scores  

AF2M MSA 3.327e-2 2.704e-1 6.314e-2 6.314e-2 2.075e-2 8.205e-1 1.54e-1 

SS 5.146e-2 1.795e-1 2.075e-2 6.201e-1 1.247e-2 6.202e-1 2.075e-2 

non-

AFM2 

MSA 2.066e-09 2.715e-1 1.453e-09 9.428e-1 2.926e-09 9.858e-1 6.889e-09 

SS 3.338e-3 3.97e-3  5.516e-4 7.458e-1    1.367e-4 3.75e-1 2.946e-4 

         

c                                                                                 QS-scores 

AF2M MSA 4.161e-1 5.724e-1 1.976e-1 4.27e-1 5e-1 5e-1 5e-1 

SS 7.992e-1 5.017e-2 5e-1 1.855e-1 3.422e-1 8.618e-1 3.375e-1 

non-

AFM2 

MSA 1.577e-07 2.268e-1 2.578e-07   1.575e-1 1.09e-07 2.326e-1 6.799e-08 

SS 3.491e-2 1.118e-2 4.175e-3 3.083e-1 2.548e-3 2.406e-1 4.089e-3 

Table 3.3 A statistical comparison of the cumulative scores for the CASP14 models versus 

the baseline models after recycling. 
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generate a more refined protein structure after each cycle. When model improvement was analysed 

based on the type of multimeric structure, the heteromeric models were observed to exhibit better 

improvement compared to the homomeric models (See Appendix Figure S.8). 

 

The table showing the cumulative scores of the starting models, known as, baseline and of models obtained 
after four various recycling (1-3-6-12) using MSA and SS methods. The cumulative scores for TM-scores, 
IDDT, QS-scores highlighted in red represented the reduction in cumulative score for TM-scores and IDDT 
scores when applied to further recycling (between cycle 6 and cycle 12), unlike other quality scores.  It is 
significant to note that the lower Molprobity score presents higher quality model. 

 

 

 

 

 

 

 

 

  

Table 3.4 A comparison of the cumulative scores for the CASP14 models versus the baseline 

models after recycling. 

Method Baseline Cycle-1 Cycle-3 Cycle-6 Cycle-12 

 ∑TM-score 

MSA 34.205 43.797 43.814 43.958 43.431 

SS 31.092 34.559 35.659 36.292 28.663 

 ∑IDDT 

MSA 33.315 37.911 40.510 41.944 41.897 

SS 29.906 26.192 27.554 28.219 36.194 

 ∑QS-score 

MSA 15.71 32.23 32.39 32.52 32.7 

SS 12.62 16.18 18.94 19.61 19.74 

 ∑Molprobity score 

MSA 124.08 169 166.44 160.03 159.88 

SS 131.96 202.55 199.72 198.72 197.12 
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3.3.2 The impact of custom template recycling with MSAs on multimeric CASP15 models 

The impact of custom template recycling was measured using four quality scores (TM-score, IDDT, 

QS-score, and DockQ_wave). Different from the quality scores of the CASP14 models, DockQ_wave 

score was included as a quality score of the CASP15 models, since DockQ_wave score was not 

introduced at the time of the analysis of the CASP14 targets. The DockQ_wave score was released 

after the CASP15 competition, which is more sensitive than the QS-score (Kryshtafovych et al., 

2023b; Studer et al., 2023). Notably, the CASP15 competition involved more multimeric targets and 

thus focused on the modelling of the multimeric structures. The CASP14 competition included 84 

monomeric and 29 multimeric targets (https://predictioncenter.org/casp14/numbers.cgi), while the 

CASP15 competition included 81 monomeric and 47 multimeric targets 

(https://predictioncenter.org/casp15/numbers.cgi). Similar to the CASP14 targets, 576 models from 

six groups which participated in the CASP15 competition were used to observe any improvements 

following further recycling. Out of 576 models, 262 models (45%) in terms of TM-score and 115 

models (20%) in terms of IDDT were improved, while 153 models (27%) in terms of QS-score and 

197 models (35%) in terms of DockQ_wave score showed improvement after further recycling. When 

it comes to the SS method, 231 models (40 %) and 98 models (17%) out of 576 models showed 

improvement in terms of TM-score and IDDT, respectively. Meanwhile, 142 models (25%) and 135 

models (25%) were refined in terms of QS-score and DockQ_wave score, respectively, following 

further recycling (See Appendix Figure S.9 - S.10). These results indicate that when compared to 

the MSAs with the SS approaches, using MSAs can be more effective, along with further recycling. 

Three CASP15 models were selected as examples to demonstrate the improvements in the quality 

scores, as shown in Figure 3.7. The H1151 model belongs to the best group (Zheng group), whilst 

the H1143 models belong to NBIS-AF2-Multimer and our group (MultiFOLD). All three models 

demonstrated an increase in all four quality scores after recycling. However, the rate of increase in 

all scores for the NBIS-AF2-Multimer and Zheng models was lower than that of the MultiFOLD 

model. Interestingly, a similar increase was observed in scores for other models which may be 

explained as the consequence of limited conformational sampling. Specifically, when a starting 

model is very close to natural structure of a protein and within the conformational space, the rate of 

increase in scores may be affected. This increase could either be very minimal, or in some cases, 

model deterioration may even be observed. The Zheng model was the best models, whereas the 

NBIS-AF2-Multimer model may have evaluated as the high-quality model when used as custom 

template, given that these models were already generated by AF2M before. Consequently, it is highly 

possible to deviate from the correct refinement path while searching through the conformational 

space. 

  

https://predictioncenter.org/casp14/numbers.cgi
https://predictioncenter.org/casp15/numbers.cgi


 
  Chapter 3 

90 
 

The comparison of the refined multimeric models with the starting models. The starting models are in the first 
column, while the refined models are situated in the second column. The figures in both columns were coloured 
based on the reference and modelled structures. The columns represent the alignment figures of the starting 
models (red), the refined figures generated by AF2M (magenta) and the reference structures (cyan). The 
figures were generated by PyMOL. 

 

The scatter plot in Figure 3.8A indicates that less than half of models (45%) exhibit enhancement in 

terms of TM-score during at least one of the four types of recycling (1, 3, 6 ,12). When analysed 

based on the number of recycles in Figure 3.9, the percentage of improved models after recycles 1, 

3, 6, and 12 were 46%, 45%, 56%, and 55%, respectively. These results suggest that further 

recycling can improve general structure of target proteins in terms of TM-scores. Interestingly, most 

of the NBIS-AF2-Multimer models seemed to deteriorate during recycle 1, and the Zheng models 

showed the least improvement when further recycling was applied. Figure 3.8B illustrates that the 

cumulative change in model quality based on groups exhibited a linear trend after further recycling; 

higher recycles consistently resulted in greater improvement in the TM-scores for five group models. 

The MultiFOLD models only showed improvement during further recycling (≥ 3 recycles). Notably, 

the H1143 and T1132 models were refined after recycle 1, while the H1166 model was not improved 

after recycling. It is noteworthy that the cumulative score changes exhibited a negative trend when 

compared to the quality scores for the baseline models; the difference reduced following further 

recycling. The improvement of the MultiFOLD models reflects what we expect with traditional 

refinement. However, the majority of the models used were generated by the most successful groups 

in the CASP15 competition, which are expected to have the very highest-quality initial scores. It is 

interesting to note that the homomeric models (48%) exhibited a greater rate of improvement 

compared to the heteromeric models (41%) (See Appendix Figure S.11(top)).  

Figure 3.7 Examples of the refinement effect of the recycling on three CASP15 targets. 
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A) Scatter plot representing the comparison of the observed TM-scores for the improved models (y-axis) 
versus baseline TM-scores (x-axis) for the CASP15 models generated during all recycles (1-3-6-12) for six 
group models using the MSA method. The minimum value for TM-score is 0, while the maximum value is 1. 
The red circles represent the refined models, while the black ones represent the unrefined models. B) Bar 
chart representing the cumulative change in the observed TM-scores generated from the baseline models and 
the models generated by recycling (1-3-6-12). Each colour corresponds to different group models, with orange 
representing Zheng, red representing Venclovas, black representing Wallner, purple representing Yang-
Multimer, green representing NBIS-AF2-Multimer, and blue representing MultiFOLD. Both the scatter plot and 
bar chart were drawn using R. 

A 

B 

Figure 3.8 A comparison of the observed and baseline TM-scores for the CASP15 models 
after recycling. 



 
  Chapter 3 

92 
 

 

 

Four scatter plots representing the comparisons of the observed TM-scores for the improved models of six 
groups (y-axis) versus the baseline TM-scores (x-axis) for the CASP15 models generated during recycles 1 
(top-left), 3 (top-right), 6 (bottom-left), 12 (bottom-right), separately, using the MSA method. Each colour 
corresponds to different group models, with orange representing Zheng, red representing Venclovas, black 
representing Wallner, purple representing Yang-Multimer, green representing NBIS-AF2-Multimer, and blue 
representing MultiFOLD. The scatter plots were drawn using R. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 A comparison of the observed and baseline TM-scores for the CASP15 models 
during each recycles (1-3-6-12). 
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The scatter plot in Figure 3.10A indicates that the majority of models (20%) exhibit enhancement in 

terms of IDDT score during at least one of the four types of recycling (1, 3, 6 ,12). When analysed 

based on the number of recycles in Figure 3.11, the percentage of improved models after recycles 

1, 3, 6, and 12 were 45%, 55%, 62%, and 63%, respectively. These results suggest that further 

recycling can improve general structure of target proteins in terms of IDDT score. When the NBIS-

AF2-Multimer models were subjected to further recycling, the final models generated by AF2M 

exhibited the most pronounced deterioration. Figure 3.10B illustrates that the cumulative change in 

model quality based on the CASP15 groups exhibited a linear trend after further recycling (<3); 

higher recycle numbers consistently resulted in greater improvement in the IDDT scores for five 

group models. Even though the cumulative score for the models was less than that of the baseline 

models, as seen in TM-score, the Yang-Multimer models inclined toward a positive difference in 

score during recycle 6 and 12. The positive trend observed in the Yang-Multimer models generated 

by AF2M during further recycling may be attributed to the exclusion of MSA pairing in the methods 

utilized by Yang-Multimer group (CASP15 Abstracts, 2022). This improvement can enhance the 

heteromeric models, as supported by Bryant et al. (Bryant, Pozzati, & Elofsson, 2022). Furthermore, 

the improved number of the heteromeric models (53%) were higher than the number of the 

homomeric models (42%) (See Appendix Figure S.11(bottom)). The MultiFOLD models exhibited the 

lowest negative cumulative change among the other groups, indicating that slightly lower-quality 

models (compared to the top groups) are more likely to be improved during recycling. This suggest 

that there may be more room to for improvement of local errors in such models.
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A) Scatter plot representing the comparison of the observed IDDT scores for the improved models (y-axis) 
versus the baseline IDDT scores (x-axis) for the CASP15 models generated during all recycles (1-3-6-12) for 
six group models using the MSA method. The minimum value for IDDT score is 0, while the maximum value 
is 1. The red circles represent the refined models, while the black ones represent the unrefined models. B) Bar 
chart representing the cumulative change in the observed IDDT scores generated from the baseline models 
and the models generated by recycling (1-3-6-12). Each colour corresponds to different group models, with 
orange representing Zheng, red representing Venclovas, black representing Wallner, purple representing 
Yang-Multimer, green representing NBIS-AF2-Multimer, and blue representing MultiFOLD. Both the scatter 
plot and bar chart were drawn using R.

B 

A 

Figure 3.10 A comparison of the observed and baseline IDDT scores for the CASP15 models 
after recycling. 
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Four scatter plots representing the comparisons of the observed IDDT scores for the improved models of six 
groups (y-axis) versus the baseline IDDT scores (x-axis) for the CASP15 models generated during recycles 1 
(top-left), 3 (top-right), 6 (bottom-left), 12 (bottom-right), separately, using the MSA method. Each colour 
corresponds to different group models, with orange representing Zheng, red representing Venclovas, black 
representing Wallner, purple representing Yang-Multimer, green representing NBIS-AF2-Multimer, and blue 
representing MultiFOLD. The scatter plots were drawn using R. 

 

 

 

 

 

Figure 3.11 A comparison of the observed and baseline IDDT scores for the CASP15 models 
during each recycles (1-3-6-12). 
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The scatter plot in Figure 3.12A indicates that the majority of models (27%) exhibit enhancement in 

terms of QS-score during at least one of the four types of recycling (1, 3, 6 ,12). When analysed 

based on the number of recycles in Figure 3.13, the percentage of improved models after recycles 

1, 3, 6, and 12 were 58%, 65%, 70%, and 68%, respectively. The Yang-Multimer models generated 

by AF2M using recycles 1 and 3 showed more deterioration, whereas the number of Zheng models 

exhibited consistent improvement during more recycles (recycles 6 and 12). It was observed that 

after further recycling, the models that initially had very low interface scores were found to have poor 

interface quality. Furthermore, If AF2M managed to generate higher quality scores for the models 

than QS-scores for the baseline models, this improvement persisted following further recycling. 

Nevertheless, if this did not occur during recycle 1, then the interface quality for the models did not 

improve. Figure 3.12B illustrates that the cumulative change in model quality based on groups 

exhibited a linear trend after further recycling; higher recycle numbers consistently resulted in greater 

improvement in QS-scores for all group models. Even though the cumulative QS-score for the 

CASP15 models exhibited a negative difference, similar to the global quality scores (TM-score and 

IDDT) for the models, the NBIS-AF2-Multimer and MultiFOLD models showed an inclination towards 

a positive difference when recycles 3 and more were used. The highest positive difference for both 

tools was during recycles 6. When the impact of further recycling on homomeric and heteromeric 

models was analysed, it was observed that a greater number of improvements were evident in the 

homomeric models (%70), rather than the heteromeric models (61%) (See Appendix Figure 

S.12(top)). 
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A) Scatter plot representing the comparison of the observed QS-scores for the improved models (y-axis) 
versus the baseline QS-scores (x-axis) for the CASP15 models generated during all recycles (1-3-6-12) for six 
group models using the MSA method. The minimum value for QS-score is 0, while the maximum value is 1. 
The red circles represent the refined models, while the black ones represent the unrefined models. B) Bar 
chart representing the cumulative change in the observed QS-scores generated from the baseline models and 
the models generated by recycling (1-3-6-12). Each colour corresponds to different group models, with orange 
representing Zheng, red representing Venclovas, black representing Wallner, purple representing Yang-
Multimer, green representing NBIS-AF2-Multimer, and blue representing MultiFOLD. Both the scatter plot and 
bar chart were drawn using R.

B 

A 

Figure 3.12 A comparison of the observed and baseline QS-scores for the CASP15 models 
after recycling. 
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.  

 

 

 

Four scatter plots representing the comparisons of the observed QS-scores for the improved models of six 
groups (y-axis) versus the baseline QS-scores (x-axis) for the CASP15 models generated during recycles 1 
(top-left), 3 (top-right), 6 (bottom-left), 12 (bottom-right), separately, using the MSA method. Each colour 
corresponds to different group models, with orange representing Zheng, red representing Venclovas, black 
representing Wallner, purple representing Yang-Multimer, green representing NBIS-AF2-Multimer, and blue 
representing MultiFOLD. The scatter plots were drawn using R.

Figure 3.13 A comparison of the observed and baseline QS-scores for the CASP15 models 
during each recycles (1-3-6-12). 
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DockQ_wave score (Studer et al., 2023) is an interface quality metric that emerged after the CASP15 

competition. Therefore, when analysed the effect of AF2M’s recycling on protein model refinement 

historically, DockQ_wave score alongside QS-score for the CASP15 models was also investigated. 

The scatter plot in Figure 3.14A indicates that the majority of models (35%) demonstrated refinement 

in terms of DockQ_wave during at least one of the four types of recycling (1, 3, 6 ,12). When analysed 

based on the number of recycles in Figure 3.15, the percentage of improved models after recycles 

1, 3, 6, and 12 were 57%, 64%, 63%, and 61%, respectively, suggesting that further recycling can 

refine the general structure of target proteins in terms of the interface quality scores.  However, when 

the Venclovas models were subjected to more than recycles 3, the models exhibited the most 

pronounced deterioration. In Figure 3.14B even though the cumulative score for the models showed 

a negative cumulative difference similar to the global quality scores (TM-score and IDDT) and 

another interface score (QS-score), the MultiFOLD models showed an inclination towards positive 

cumulative score differences during recycles 3, 6, and 12. The highest positive difference for the 

MultiFOLD models were observed during recycles 6 and 12. Only the cumulative change in the 

Venclovas models exhibited an inverse trend among all groups` models. Again, it was observed that 

a greater number of improvements were evident in the homomeric models (71%), rather than the 

heteromeric models (51%) (See Appendix Figure S.12(bottom)).  
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A) Scatter plot representing the comparison of the observed DockQ_wave scores for the improved models (y-
axis) versus the baseline DockQ_wave scores (x-axis) for the CASP15 models generated during all recycles 
(1-3-6-12) for six group models using the MSA method. The minimum value for DockQ_wave score is 0, while 
the maximum value is 1. The red circles represent the refined models, while the black ones represent the 
unrefined models.  B) Bar chart representing the cumulative change in the observed DockQ_wave scores 
generated from the baseline models and the models generated by recycling (1-3-6-12). Each colour 
corresponds to different group models, with orange representing Zheng, red representing Venclovas, black 
representing Wallner, purple representing Yang-Multimer, green representing NBIS-AF2-Multimer, and blue 
representing MultiFOLD. The scatter plot and bar chart were drawn using R.

A 

B 

Figure 3.14 A comparison of the observed and baseline DockQ_wave scores for the CASP15 
models after recycling. 
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Four scatter plots representing the comparisons of the observed DockQ_wave scores for the improved models 
of six groups (y-axis) versus the baseline DockQ_wave scores (x-axis) for the CASP15 models generated 
during recycles 1 (top-left), 3 (top-right), 6 (bottom-left), 12 (bottom-right), separately, using the MSA method. 
Each colour corresponds to different group models, with orange representing Zheng, red representing 
Venclovas, black representing Wallner, purple representing Yang-Multimer, green representing NBIS-AF2-
Multimer, and blue representing MultiFOLD. The scatter plots were drawn using R.

Figure 3.15 A comparison of the observed and baseline DockQ_wave scores for the CASP15 
models during each recycles (1-3-6-12). 
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The residue clashes for the CASP15 models were investigated using Molprobity score after 

modelled via AF2M, similar to the CASP14 models. In Figure 3.16, Molprobity scores of the 

models were worse than the baseline models since the models were purposefully generated 

in an unrelaxed form to control for the effect of Amber relaxation (see methods). However, after 

subsequent recycling, an improvement in the MolProbity scores was observed. The results 

suggest that there is still the need for MD simulations to resolve clashes and relaxation may 

be useful rather than relying solely on effective MSAs and templates for refining protein 

structures. When compared MSAs versus SS methods, a decrease in residue clashes is 

generally observed during recycles 6 and 12, indicating the acquisition of more geometrically 

accurate structures (See Appendix Figure S.13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Density plot showing the Molprobity scores (lower Molprobity scores are better) for the CASP15 models 
generated by AF2M using MSA method, with red for cycle 1 (R1M), blue colour for cycles 3 (R3M), green 
colour for cycles 6 (R6M), magenta colour for cycles 12 (R12M) and black colour for baseline as the 
initial model. This plot compares the geometric correctness rate for models after recycling, without using 
experimentally observed protein structure. The Molprobity scores were generated by 
http://molprobity.biochem.duke.edu/. The density plot was drawn using R. 
 
 

 

 

 

 

Figure 3.16 A comparison of the observed and baseline Molprobity scores for the 
CASP15 models after recycling. 

http://molprobity.biochem.duke.edu/
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Following further recycling, MSA was disregarded to understand whether the improvement in 

the final output was solely attributable to the feedback network of AF2M, similar to the CASP14 

models. In table 3.5, the MSA method can be better than SS method in terms of five quality 

scores. AF2M using SS method, did not show improvement in the initial models during recycles 

1, 3, 6, and 12 (See Appendix Figure S.14). It can be note that the cumulative scores for models 

generated by AF2M using custom template recycling with SS method were expected to be 

lower. According to Molprobity score, even in the absence of MSA, with the increasing 

recycling, the template structure demonstrates the potential for obtaining more accurate 

geometric structures.  

 

3.3.3 What was the wrong for CASP15 models when AF2M custom template recycling 

was used?  

AF2M succeeded in improving the initial models after further specific recycling, in terms of 

IDDT, QS-score, and DockQ_wave score. In addition, around half of the models were improved 

in terms of TM-score.  In Table 3.5, the cumulative score improvement for the CASP15 models 

was observed for the five different scores (TM-score, IDDT, QS-score, DockQ-wave, and 

Molprobity score) following further recycling. However, when compared the initial models with 

the CASP15 models generated by AF2M using four different recycling (1-3-6-12), a cumulative 

improvement was not observed in terms of all scores. It seems that the CASP14 and CASP15 

models differ in their susceptibility to be successfully refined when used as custom templates 

for AF2M with further recycling. This difference may be explained by two main reasons:  

• The methods used for generating the CASP models: with the release of the AF2M 

code, almost every group in CASP15 integrated AF2M into their own servers or 

prediction methods. Hence, the CASP14 models were generated by the methods 

designed by group that attended in the CASP14 competition prior to the availability of 

AF2M, while the CASP15 models were generated by the methods derived from or 

integrated with AF2M. As a result, AF2M may already (often correctly) perceive these 

models as being of high quality. This implies that the initial models of high quality may 

lead to the generation of alternative conformations, rather than making small 

refinements to the existing models. It seems it is compatible with traditional refinement 

phenomenon that the higher quality score initial model has, the worse quality score can 

obtain following refinement. The likelihood of increasing structural deterioration, similar 

to the trend observed in global quality scores for refinement, rises with further recycling, 

especially when starting with a good-quality initial structure (Adiyaman & McGuffin, 

2019). However, positive changes were observed in cumulative scores despite using 
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the best-quality models from the CASP14 competition as initial structures. In addition, 

AF2M may undertake re-modelling after each cycle. That is to say, remodelling the 

structure implies exploring the conformational space of the target proteins again, which 

increases the likelihood of getting trapped in a local minimum, if the initial structure is 

closer to the native structure. 

• Version difference of AF2M: During each cycle, AF2M recycling can conduct 

sampling, which can explore various conformational structures and select the best one 

based on its own scoring term, such as ipTM-score and Frame Aligned Point Error 

(FAPE) (Evans et al., 2022). However, the difference in versions of AF2M may limit 

sampling in order to search the conformational space. Specifically, AF2M trained_v2 

mode may restrict the search to a smaller conformational space compared to AF2M 

trained_v1 mode, since v2 mode is more sensitive to residue clashes. Notably, the 

difference between two modes of AF2M is that the loss function of v1 mode includes 

residue clash penalty term.  Hence, the effect of custom recycling template on the 

CASP15 models generated AF2M using v2 mode may be limited in terms of refining 

the CASP15 models. AF2M using v1 mode may have more room to search for the 

higher quality CASP14 models when compared the baseline CASP14 models. Wallner 

(2023a) found similar results in their research. 

 

To investigate why the initial models could not be improved despite obtaining improved models 

following further recycles, the cumulative scores for only TBM hard, FM, and FM/TBM hard 

targets were calculated, as these targets are typically easier to refine (as the starting models 

are often lower in quality). However, the results of Table 3.5 and 3.6 showed the same trend. 

Again, this could be due to the two reasons mentioned above as post CASP14, there are more 

methods available, which have higher success at accurate modelling of targets with no known 

templates. 
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The table showing the cumulative score of the starting models, known as baseline, and the CASP15 
models generated during all recycles (1-3-6-12) for both the MSAs and the SS methods. The cumulative 
scores include TM-score, IDDT, QS-score, DockQ_wave, and Molprobity score. Note that the lower 
Molprobity score means higher quality.    

 

 

 

 

 

 

 

 

 

 

 

Table 3.5 A comparison of the cumulative quality scores for the CASP15 models versus 

the baseline models after recycling. 

 

Method Baseline Cycle-1 Cycle-3 Cycle-6 Cycle-12 

 ∑TM-score 

MSA 129.39 123.27 126.55 127.02 127.07 

SS 129.39 111.19 116.36 120.31 122.25 

 ∑IDDT 

MSA 126.31 122.44 123.82 125.03 125.14 

SS 126.31 113.90 115.73 117.04 118.81 

 ∑QS-score 

MSA 99.76 87.27 93.87 95.69 96.08 

SS 99.76 71.74 82.84 88.41 91.73 

 ∑DockQ_wave 

MSA 78.17 68.20 71.94 72.65 73.02 

SS 78.17 55.61 64.21 67.98 71.15 

 ∑Molprobity score 

MSA 216.99 359.14 353.56 347.78 345.72 

SS 216.99 381.17 375.75 374.04 374.00 
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The table showing the cumulative score of the starting models, known as baseline, and the CASP15 
models (only TBM hard, FM, and FM/TBM hard targets) generated during all recycles (1-3-6-12) for both 
the MSAs and the SS approaches. The cumulative scores include TM-score, IDDT, QS-score, 
DockQ_wave, and Molprobity. Note that the lower Molprobity score means higher quality.   

 

 

 

Last but not least, another reason for the discrepancy between the high number of developed 

models and the lower cumulative scores compared to the initial models could be that AF2M 

does not detect the available recycle number for each protein target. Thus, due to differences 

in internal protein structures, the specific number of cycles required for improvement may vary. 

This implies that a default or optional cycle number may not yield the positive outcome for each 

protein target, and a better quality models may be found at different recycles. This rationale 

can be attributed to the impact of the content of protein targets on AF2M confidence scores. In 

other words, disordered or flexible regions of protein models can influence pTM-score, which 

in turn can negatively affect ipTM-score, even if the multimeric models are predicted accurately. 

Table 3.6 A comparison of the cumulative quality scores for the only TBM hard, FM, and 

FM/TBM hard CASP15 models versus the baseline models after recycling. 
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Since AF2M primarily ranks models based on ipTM-score and, in such case, it may prioritize 

the lower quality protein models. 

The refinement effect of recycling is based on an underlying deep neural network, which 

predominantly requires structural information during inference. The utilization of structural 

information as a template was researched by Liu et al. (2023). They demonstrated that AF2M 

can generate refined models when provided with different similar structures as templates and 

utilized this method in their own tool, MULTICOM. However, MultiCOM (Liu et al., 2023a) did 

not focus on recycling and instead ran AF2M five times. Wallner et al. suggest the positive 

effect of using templates, as demonstrated by the differences between AF2M trained _v1 and 

_v2 modes, along with recycling. We also tested custom template recycling in the CASP15 

competition by integration it into our multimeric protein modelling tool, MultiFOLD, which 

ranked 8th among server groups and outperformed NBIS-AF2-Multimer, which employs the 

baseline method. More detailed analysis for MultiFOLD can be found in Chapter 5.  The 

recycling method of AF2M resembles iterative refinement methods. Before the release of 

AF2M, this type of refinement approach was used to improve protein quality (Bhattacharya et 

al., 2016). 

Comparing the recycling process with MD simulation, a powerful tool (Zhang et al., 2009) that 

reflects protein behaviour in nature (Hollingsworth & Dror, 2018), can be prominent for 

evaluating the refinement effects of Al-based techniques. However, evaluating the refinement 

effect of MD simulation on multimeric targets can be challenging due to the need to update 

force fields, such as better representations of solvents (Yu & Dalby, 2020) for the interfaces of 

multimeric targets. At the time of writing this chapter, there is no standalone MD simulation tool 

like ReFOLD3 (Adiyaman & McGuffin, 2021) for multimeric targets. Our research on the 

monomeric targets indicated that MD simulations (the latest version of ReFOLD) can be used 

as an alternative to the recycling approach of AF2M and is particularly effective with use of 

restraints based on local quality scores. ReFOLD3 employs the per-residue scores generated 

from ModFOLD9 (McGuffin & Alharbi, 2024) as restraints. Making these types of comparisons 

is not currently possible for multimeric targets. Possibly, a comparison in terms of energy 

minimization, called relaxation, as used by GalaxyRefineComplex (Heo et al., 2016), could be 

made. However, the AF2 paper (Jumper et al., 2021a) mentioned that relaxation does not 

make sense for AF2M targets. Additionally, making comparisons with unrelaxed AF2M models 

(relaxation was omitted – as a control), can generate misleading results compared with relaxed 

models. The high Molprobity scores in Figures 3.6 and 3.16 support this idea. 
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3.4 Conclusions 

This chapter investigates the impact of AF2M`s custom template recycling on multimeric 

protein structures using four separate quality scores (TM-score, IDDT, QS, Molprobity) for 

models generated from all CASP targets. The results show that the improved models can be 

obtained when used AF2M using both custom template recycling and MSA method. For 

CASP14 models, it was observed that using the AF2M_v1 mode resulted in model 

improvements following further recycling and particularly, with recycle 6 or more, yielding more 

effective results. However, when the CASP15 models were refined using the AF2M_v2 mode, 

this led to improvements in models during further recycling, but it did not improve upon the 

initial models. This can be due to difference in training between v1 and v2 modes of AF2M. 

Furthermore, all initial CASP15 models were generated by the methods that were already 

integrated with or based on AF2M. Similar to the CASP14 models, recycle 12 or more could 

generate higher quality models than initial models, however determining an effective recycle 

number beyond 12 for the CASP15 targets remains challenging. Generally, the IDDT scores 

were prone to change around baseline, while the TM-scores exhibited varied change as the 

number of cycles increased. The change in interface scores occurred for models generated 

during recycle 1. It was observed that if lower quality models than the initial model were 

generated during recycle 1, then they did not show improvement following further recycling. 

Apart from the AF2M models (from the CASP14 dataset) and the NBIS-AF2-Multimer and 

MultiFOLD models (from the CASP15 dataset), the models used for research included those 

submitted by the very top groups in each CASP competition. It was demonstrated that even 

the highest quality models, expect for AF2M models, were improved when the AF2M_v1 mode 

was used, while the models generated by AF2M_v2 mode showed the least improvement due 

to limited conformational sampling in the recycling. Interestingly, our group models, the 

MultiFOLD models, were improved during further recycling except for IDDT scores. Hence, 

custom template recycling was used to refine an initial model, and different AF2M versions 

were employed to generate more conformational structures were in MultiFOLD. Considering 

that AF2M`s MSA subsampling was used for modelling different conformational structures, it 

is conceivable that within the algorithm, optimization may become stuck in a local minimum 

during conformational sampling. Additionally, if the intermediate structure closely resembles 

the native structure, further optimization may worsen the structure, which aligns with 

phenomena observed with previous refinement methods (Adiyaman & McGuffin, 2019). 
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Along with custom template recycling, the models generated by the MSA method exhibit better 

quality structures after recycling compared to the SS method. In addition to the MSA methods, 

the given structural information leads to improved models, especially using the AF2M_v1 

mode, even with the SS approach. Regarding the type of models, the heterometric CASP14 

and homomeric CASP15 models showed better improvement following further recycling. This 

could be attributed to AF2M using template structures as single chains even when they are 

multimeric, leading to a loss of information between two chains and potential deterioration in 

heterometric models. Furthermore, minimizing residue clashes within the models is crucial for 

improving protein models. More intensive relaxation methods, such as MD simulations, may 

be more effective for this purpose than simple relaxation methods like energy minimization. 

However, for AF2M, the simple relaxation method is deemed unnecessary due to a small 

increase in quality scores. Additionally, the scope of the study does not encompass extensive 

conformational sampling.  Therefore, Molprobity score is not the most appropriate quality score 

for this chapter, as models generated by AF2M without relaxation option support a decline in 

residue clashes following further recycling. 

In conclusion, AF2M demonstrates effectiveness in refining models, particularly coupled with 

MSAs and custom template recycling. However, our detailed results highlight the variability in 

the required number of recycles for each protein targets. Moreover, in the post-AF2 era, 

downstream analyses like protein-ligand prediction have gained importance over modelling. 

To enhance model refinement with AF2M, it is crucial to determine specific recycles tailored to 

protein families or individual structures rather than applying a generic approach. With the 

introduction of AF2M_v3 version, this challenge has been addressed somewhat by automating 

the determination of the recycling value (--num_recycles auto--

recycle_early_stop_tolerance_auto) for each protein structure, eliminating the need for manual 

intervention and streamlining the refinement process.
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4 Chapter 4: The Impact of Varying Custom Input Options on Models 

Generated by AF2M  
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4.1 Background 

 

Deep neural networks (DNNs) have played a crucial role in the field of protein structure 

prediction, perhaps most notably after the release of AF2, which was as a major milestone of 

structural bioinformatics (Osadchy & Kolodny, 2021). The remarkable progress achieved can 

be attributed to the availability of large amounts of labelled data and the development of 

increasingly powerful computational hardware (GPUs). DNNs learn the complex features of 

datasets in models consisting of millions of parameters, drawing certain inferences such as 

classification or regression from the features they have learned. When training the parameters 

within the network, DNNs internally learn these features either by minimizing the loss function 

through backpropagation or through optimization techniques (Kingma & Ba, 2014). This is what 

sets DNNs apart from classical ML applications. Namely, in traditional ML applications, hand-

crafted features are used, and when these features are not well-designed, there is a likelihood 

of the model making incorrect inferences (Osadchy & Kolodny, 2021). Hence, end-to-end 

DNNs have been the key factor behind the power of AF2M due to their ability to extract 

necessary structural information for a given target from MSA.  

The unexpectedly high accuracy of AF2M, end-to-end DNN, is mainly based on information 

from MSA and structural templates. One of the other major factors of AF2M's success is the 

iterative process from improving models through multiple passes through the network, which 

is called recycling. However, a broader search for conformational changes in important 

proteins, such as G-Protein Coupled Receptors (GPCRs), could broaden the scope of possible 

model solutions, resulting in lower convergence and greater structural variance. The initial trials 

to utilize the default implementation of AF2M to obtain a collection of structures spanning holo 

and apo states or to capture the flexibility of disordered regions in protein structures failed 

because the default options did not sample the anticipated structural heterogeneity. 

Researchers have begun examining modifications to the AF2M platform, including custom 

options to obtain multiple conformational structures (Sala et al., 2023; Saldaño et al., 2022). 

Detailed analysis using the AF2M “custom template” option was provided in Chapter 3. The 

AF2M “custom MSA” option will be explored in this chapter. 

MSAs are fundamentally based on an amino acid substitution matrices and when homologous 

sequences obtained from databases exhibit 20% or higher similarity (Rost, 1999), protein 

sequence alignments can be used to reveal similarities and differences between protein 

structures. Amino acid substitutions are vital for revealing information about protein evolution 

and function (Dayhoff, 1978), and they are a crucial consideration in designing MSAs (Fox et 

al., 2015). Additionally, within protein MSAs, there are residues corresponding to both ordered 
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and disordered structures. Ordered structures provide significant information in terms of 

evolutionary context, whereas disordered structures may offer less evolutionary information 

due to a higher frequency of mutations (Brown et al., 2002).   

An intrinsically disordered protein may contain short or long regions of disorder. Short 

disordered regions are frequently noted in the shape of hinges, which facilitate controlled 

movement of a domain, or loops that exhibit both open and closed shapes (DeForte & Uversky, 

2016). Molecular Recognition Features (MoRFs) are also considered short disorder region, 

which experience a contextual shift from disorder to order upon binding (Vacic et al., 2007). 

Theoretical analysis of disordered regions led to categorizations of short disorder as ≤30 

residues and long disorder as >30 residues. Additionally research has uncovered distinct 

tendencies towards specific amino acid residues (Zhang et al., 2012). The amino acid content 

of disordered regions typically shows a distinctive character, with a higher rate of residues that 

promote disorder (such as A, R, G, Q, S, P, E, K) and a lower rate of residues that promote 

order (such as W, C, F, I, Y, V, L, N) (Szilágyi et al., 2008). In addition, intrinsically disordered 

regions (IDRs), spanning a length of 20 to 30 residues or more, may also exhibit associations 

with globular protein partners, akin to structured domains. These segments of disordered 

proteins or regions are termed disordered interacting domains (Tompa et al., 2009). These 

regions possess conserved functions, sequences, and disorder (Chen et al., 2006).  Types of 

disordered residue is demonstrated in Table 4.1. 

 

Table 4.1 Types of disordered residues within protein structure. 
This table presents three types of disordered regions within protein structures according to the number 
of disordered residues within the protein sequence. Regions within the protein structure that include 
fewer than 30 subsequent disordered residues are known as short disordered regions, while more than 
30 disordered residues within structure create long disordered structures. There is one other group 
known as intrinsically disordered region with a length of 20 to 30 residues.  
 

Types of disordered residues The number of disordered residues 

Short disordered region ≤30 

Long disordered region >30 

Intrinsically disordered region a length of 20 to 30 

 

Eukaryotic protein structures are known to exhibit a higher prevalence of disorder regions 

compared to prokaryotic structures (Ward et al., 2004). However, the presence of high disorder 

rates in single-cell structures indicates that there is still much to understand about the functions 

and evolution of disordered structures (Kastano et al., 2020). Although disordered regions 

contain fewer co-evolved residues compared to globular structures, EVfold (Toth-Petroczy et 

al., 2016) was updated to uncover evolutionary coupling information within disordered protein 
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chains (Pancsa et al., 2018). Recent advancements in the field of deep learning that have 

significantly impacted protein structure modelling have also included co-evolution or contact-

based methods. At present, the most successful protein structure modelling has been entirely 

dependent on ML methods in order to understand how evolutionarily coupled residues govern 

protein structure (Suh et al., 2021).  

Various approaches have been used to improve the quality of protein structures by integrating 

MSAs into DNNs.  The first method (A DNN-based method that employs an end-to-end 

differentiable method to extract information directly from an MSA) involves inputting embedded 

protein sequences (Kandathil et al., 2022). The rawMSA (Mirabello & Wallner, 2019) takes the 

MSA directly as input and transforms the entire MSA into a numerical vector form (embedding 

method). This approach does not require the handcrafted features typically used to extract 

evolutionary information from sequence profiles. Traditional methods rely on expert-designed 

features to extract such information, which involves specific computations to understand the 

similarities and evolutionary relationships among the sequences. In contrast, the rawMSA 

approach eliminates the need for these additional processing steps by incorporating raw 

sequence data directly into the model's input. This allows the model to automatically learn 

evolutionary information, offering a more efficient learning process by removing the need for 

manual feature engineering. Another tool used is MSA Transformers (Rao et al., 2021b), 

distinguished by its incorporation of both row and column attention mechanisms, providing an 

advantage over standard transformers. Further to these approaches, AF2 (Jumper et al., 

2021a) and RoseTTAFold (Baek et al., 2021) have emerged, which produce protein structures 

of excellent quality, especially for single chains, via the end-to-end method using the 

embedding method directly to input MSA (Kandathil et al., 2022). 

The use of an end-to-end DNN exemplifies AF2M's strength. One of the most significant 

advancements is the use of AF2M’s transformer neural networks. Transformer models play an 

important role in addressing the drawback of traditional DNN-based methods. Specifically, they 

can determine which information in a dataset is most important for a specific task, thanks to 

the attention mechanism. This is accomplished by assigning weights to different elements 

within the data. In the field of protein modelling, transformers leverage valuable information 

within protein sequences. AF2M`s transformer combines the information generated from 

residue co-evolution in homologous sequences within MSAs with the information obtained from 

pair presentation, determining which residue pairs are more effective after 48 iterations in the 

Evoformer block. Namely, the underlying algorithm combines the residual pairs information 

obtained from the template database with the knowledge in the MSA transformer in the 

Evoformer block, strengthening the attention mechanism by adding bias, and revealing key 
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residue pairs. In AlphaFold, the attention mechanism called the ‘triangle multiplicative update’ 

is used to find missing links between residues (amino acids) in a protein. In a triangle of three 

residues, this mechanism uses the information from two sides to predict the missing third side. 

Thus, the relationships between residues are completed, and a protein structure is modelled 

more accurately. This method helps the model understand the complex interactions within the 

protein and better predict the structure. In addition, during the training of AF2M, the 'masked 

token in the MSA' method was employed, involving masking 15% of the sequence, to improve 

performance  (Jumper et al., 2021a). 

Another significant advancement is to combine homologous sequences in the MSA obtained 

from a combination of databases and to use exact information via Transformers. ColabFold 

(Mirdita et al., 2022) can be used as an more efficient alternative to AF2M which processes 

many homologous sequences extracted from UniRef30, BFD/Mgnify including a combination 

of BFD and Mgnify, ColabFold DB including BFD/Mgnify, MetaClust2 (Steinegger & Söding, 

2018), Metagenomic Gut Virus catalogue (Nayfach et al., 2021),  MetaEuk (Levy Karin et al., 

2020), Human gut bacteriophage catalogue (Camarillo-Guerrero et al., 2021), Marine 

planktonic eukaryotes-SMAG (Delmont et al., 2022), TOPAZ (Alexander et al., 2023) 

databases. ColabFold employs MMseqs2 (Mirdita et al., 2019) in order to create an MSA by 

aligning homologous sequences extracted from these databases, which is more practical 

compared with the default AF2M MSA generation.    

A large number of disordered proteins have been revealed experimentally. Most of these 

proteins are collected in two sources rich in disorder proteins, one of which is DisProt (Quaglia 

et al., 2021) and the other is the PDB (Rose et al., 2017). However, since the PDB database 

generally hosts ordered structures, missing regions in X-ray experimental structures and high 

mobility regions in NMR are considered as disordered segments (Monastyrskyy et al., 2014). 

Intrinsic disordered residue (IDR) predictors can utilise amino acid sequence only without the 

need for sequence dependent emergent properties such as backbone dynamic of protein 

structures  (Orlando et al., 2022). However, most research indicates that AF2M predict only 

single state model (Jumper et al., 2021b), while Guo et al. (2022) suggest that AF2M translates 

protein sequences to residue flexibility though predicted aligned score (PAE) and pIDDT score 

(Guo et al., 2022). While deeper MSAs lead to increased protein structure quality, a high Neff 

value (Guo et al., 2021),  the number of effective homologous sequence in the MSA,  may not 

always produce protein structures with better quality scores (Yang et al., 2021). Therefore, the 

success of a prediction using AF2M can be affected by depth and the number of homologous 

sequences in the MSA. AF2M models can be improved by MD-based tools, such as ReFOLD4 

(Adiyaman et al., 2023). This type of physical approach can be more suitable for the refinement 
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of disordered regions in models and the alternative models produced can reflect structural 

dynamics. Heo et al. (2021) demonstrated that MD-based tools in CASP14 could be used to 

improve models from many AI-based protein structure modelling methods, with the exclusion 

of AF2M models. However, our later results (Adiyaman et al., 2023) demonstrated that most 

of CASP14 monomer models from AF2M can be refined using ReFOLD4.     

Several gaps and challenges still exist in improving AF2M multimeric models through physical 

approaches, such as tailored force fields for multimeric structures. In addition to the challenges 

of  physical approaches, aligning tens of thousands of homologs using computer-based tools, 

can lead to alignment problems (Iantorno et al., 2014). Nevertheless, numerous studies have 

been conducted to enhance the quality of MSAs. In the latest CASP (CASP15), these studies 

involved the combination of homologous sequences obtained from various databases, a 

method that can be termed horizontal MSA filtering. Recently, the optimal effective number of 

sequences (Neff) using the DeepMSA tool (Zhang et al., 2020) was found to be 128. With this 

approach, sequences that are not effective are excluded from the MSA. Another method, 

SpliVert (Zhan et al., 2020), focuses solely on vertical alignment and filtering to achieve a more 

efficient MSA. The technique of filtering entire columns within the MSA is also frequently 

employed, although such methods may lead to information loss. However, there is a lack of 

detailed studies on the impact of filtering sequences on AF2M model quality, as most research 

on filtered MSAs focuses on evolutionary analysis (Ashkenazy et al., 2019; Steenwyk et al., 

2020; Tan et al., 2015; Zhang et al., 2021). 

 

4.1.1 The aim of study 

 

In Chapters 3, it was demonstrated that AF2M can model multimeric structures more effectively 

by using the custom template recycling method. In the current version, the number of recycles 

in the AF2M network is set to 'auto' by default, meaning that AF2M can determine the effective 

number of recycles automatically. This determination is provided by the “early stop tolerance” 

which activates to stop recycling if the angstrom differences in distance matrices are below the 

specified tolerance value.  In addition, by default all chains in a template structure are 

considered individually in the modelling process and so relative chain orientation information 

may be lost. Hence, the first aim is to evaluate the impact of using “single-chain” custom 

template on AF2M models, whereby all of the template chains are considered as a single entity, 

rather than as separate templates for each chain in the modelling process. In summary, single-

chain templates were a type of template created by converting multi-chain structures into 

single-chain forms using the methods described in the "Methods" section with the PyMOL 
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program, while standard custom templates, on the other hand, were external protein structures 

that are supplied straight to AF2 as input without any processing or changes. 

Another input option for AF2M is the “custom MSA”. By inputting custom MSAs into AF2M, 

there is the potential to generate better models. Thus, the second aim here will be to the 

“custom MSA” and investigate whether AF2M may be able to produce higher quality models 

as a result. Petti et al. (2022) investigated the impact of “low-quality” self-inconsistent 

sequences in the MSAs on AF2M models. Seemingly paradoxically, the self-inconsistent 

MSAs, with higher complexity, were found to have a positive adversarial effect on models 

predicted by AFM2. Inspired by study, the effectiveness of excluding disorder information in 

MSAs used by AF2M will also be evaluated by applying a filtering method, whereby disordered 

residues are ignored in each protein sequences. The rationale for filtering out the low 

complexity disordered regions is to introduce self-inconsistency into the MSA inputs for AF2M. 

Overall, this research aims to contribute to the understanding of the potential effect of various 

custom inputs on protein models during AF2M`s inference time. 

 

4.2 Methods 

4.2.1 Data collection 

For testing the effect of using “single-chain” custom templates, the best four groups of models, 

the NBIS-AF2-Multimer models, and our prediction models (MultiFOLD) were selected from 

the CASP15 website, according to the assessor evaluation in the CASP competition (z-score). 

The dataset included a total of 120 models for 20 targets (Table 4.2), which were transformed 

into “single-chain” custom templates using PyMOL. In the models’ PDB files, all chain letters 

were changed to ‘A’ and all residues in the PDB file were numbered consecutively from the 

beginning to the end of the files. To test for the effect of varying the MSA complexity, the 

available method for assessing the improvement effect on protein modelling is to observe the 

score difference between the models and the reference structures. Again, the most appropriate 

targets for this assessment are those associated with CASP, particularly the last CASP 

(CASP15) targets, as they provide observed structures for the given targets. 13 CASP15 

targets and six relevant targets from the CASP14 competition were included to further 

investigate homomeric models (Table 4.3). For the target selection process, consideration was 

given to the presence of the observed structures, the presence of residues corresponding to 

disorder structures in the MSA, and whether the total number of residues was within the 

bounds that AF2M could handle in a single run. In MSAs for heteromeric models generated by 

AF2M, there are both separate homologous sequences and paired homologous sequences for 

given protein sequences. Since the impact of paired homologous sequences on model quality 

is more complex, homomers rather than heteromers were preferred for this initial analysis.  
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Table 4.2 “single-chain” custom template targets from the CASP15 competitions. 
The table listing the CASP15 multimeric targets used as the “single-chain” custom template. There are 
several information (description of proteins including PDBID in blanket if there are any, stoichiometry, 
PDBID about the CASP15 targets. 

 
Targets Descriptions Stoichiometry 

 
T1109 

 

D180A isocyanide hydratase (Organism: 
Ralstonia solanacearum) 

 
A2 

T1110 
 

wild-type isocyanide hydratase (Organism: 
Ralstonia solanacearum) 

A2 

T1113 
 

Glycoprotein 2 (GP2) (Organism: 
Bacteriophage PA1C) 

 

A2 

T1121 
 

The Wadjet nuclease subunit JetD (Organism: 
Pseudomonas aeruginosa PA14) 

 

A2 

T1123 
 

Capsid protein (Organism: Human Astrovirus 
MLB1) 

 

A2 

T1127 
 

L-ornithine N5-acetyltransferase NATA1 
(Organism: Arabidopsis thaliana) 

A2 

T1132 
 

PA0709 with glyoxal and BME modifications 
(Organism: Pseudomonas aeruginosa) 

 

A6 

T1153 
 

Endonuclease/exonuclease/phosphatase 
family domain-containing protein 1 (Organism: 

Human) 
 

A2 

T1160 
 

The mk2h_deltaMILPYS peptide homodimer 
(Organism: HAncient protein reconstruction) 

 

A2 

T1161 
 

The dimeric DZBB fold protein Ph1 (Organism: 
HAncient protein reconstruction) 

 

A2 

T1174 
 

(the C-terminal domains of the Bdellovibrio 
bacteriovorus Bd2133 fibre (Organism: 

Bdellovibrio bacteriovorus) 
 

A3 

T1178 
 

Neuronal HAstV VA1 capsid spike domain 
(Organism: Human Astrovirus VA1) 

 

A2 

T1179 
 

GenBank: QBQ83077.1 (8tn8) A2 

T1187 
 

Tobacco lectin Nictaba in complex with 
triacetylchitotriose (Organism: Nicotiana 

tabacum) 
 

A2 

H1106 (YscY-YscX protein (Organism: Yersinia 
enterocolitica) 

 

A1B1 

H1134 (Chymotrypsin digested toxin/immunity 
complex for a T6SS lipase effector (Organism: 

enterobacter cloacae) 
 

A1B1 

H1140 
 

CNPase-Nb (Organism: mouse/alpaca) 
 

A1B1 

H1141 
 

 CNPase-Nb7e (Organism: mouse/alpaca) A1B1 

H1142 
 

CNPase-Nb8c (Organism: mouse/alpaca) 
 

A1B1 

H1151 Probable transcriptional regulator WhiB6 
(Organism: Mycobacterium tuberculosis) 

A1B1 
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Table 4.3 The custom MSA targets from the CASP14 and the CASP15 competitions. 

The table shows the multimer targets of the CASP competition used to filter the MSA. The first 
column shows the target name, the second column shows the description of protein with 
PDBID in the blankets if there are any, the third column shows stoichiometry, and the last 
column indicates the CASP to which targets belong. There are 19 multimer targets. 
 

Multimeric Targets 

Target Name of Protein Stoichiometry CASP 

T1032 Structural maintenance of chromosomes 
flexible hinge domain containing 1 

(Organism: Homo sapiens) 

A2 14 

T1034 Inhibitor of the Yeast Formin Bnr1 
(Organism: Saccharomyces cerevisiae) 

A4 14 

T1038 Tomato Spotted Wilt Virus (TSWV) 
glycoprotein (Organism: Semliki Forest 

virus) 
 

A2 14 

T1078 a small secreted cysteine‐rich 
protein (Tsp1) (Organism: Trichoderma 

virens) 

A2 14 

T1083 Nitro-histidine zipper coiled coils (Organism: 
Nitrosococcus oceani) 

A2 14 

T1087 Tuna-histidine zipper coiled coils 
(Organism: Methylobacter tundripaludum) 

A2 14 

T1109 D180A isocyanide hydratase (Organism: 
Ralstonia solanacearum) 

A2 15 

T1110 wild-type isocyanide hydratase (Organism: 
Ralstonia solanacearum) 

A2 15 

T1113 Glycoprotein 2 (GP2) (Organism: 
Bacteriophage PA1C) 

A2 15 

T1121 The Wadjet nuclease subunit JetD 
(Organism: Pseudomonas aeruginosa 

PA14) 

A2 15 

T1123 Capsid protein (Organism: Human 
Astrovirus MLB1) 

A2 15 

T1124 MfnG (Organism: Streptomyces 
drozdowiczii) 

A2 15 

T1127 L-ornithine N5-acetyltransferase NATA1 
(Organism: Arabidopsis thaliana) 

A2 15 

T1132 PA0709 with glyoxal and BME modifications 
(Organism: Pseudomonas aeruginosa) 

A6 15 

T1153 Endonuclease/exonuclease/phosphatase 
family domain-containing protein 1 

(Organism: Human) 

A2 15 

T1160 The mk2h_deltaMILPYS peptide 
homodimer (Organism: HAncient protein 

reconstruction) 

A2 15 

T1161 The dimeric DZBB fold protein Ph1 
(Organism: HAncient protein reconstruction) 

A2 15 

T1178 Neuronal HAstV VA1 capsid spike domain 
(Organism: Human Astrovirus VA1) 

A2 15 

T1187 Tobacco lectin Nictaba in complex with 
triacetylchitotriose (Organism: Nicotiana 

tabacum) 

A2 15 



 
 Chapter 4 

119 
 

4.2.2 Experimental design 

 

Firstly, AF2M was run on the CASP targets producing for a total of 120 models using “single-

chain” templates with the “custom template” option (renaming the multiple chains in the PDB 

as one chain). Secondly, AF2M was run for 19 targets using low quality custom MSAs (filtering 

MSA to remove residues corresponding to disordered regions in the 3D structure). Low quality 

MSAs were obtained by filtering residues corresponding to the various types of disorder 

separately from the initial MSA of the given protein. Various methods have been developed to 

identify residues corresponding to disordered structures within protein sequences. Among 

these methods, IUPred3 (Erdős et al., 2021) has been widely utilized. IUPred3 typically 

provides probabilistic values, considering a residue as disordered if the probability value is 

above 0.5. These probability values are generated based on energy-based methods. The 

baseline MSA was obtained via AF2M using the default values, while the filtering methods were 

implemented using an in-house python script (See Appendix Table S.2). The code for running 

IUPred3 is provided in Appendix Table S.3. After determining the potential disorder for each 

target residue, if the disorder score of a residue is 0.5 or higher, a residue was removed and 

replaced with "-" in the corresponding position. This ensures uniform length across 

homologous sequences. Subsequently, the obtained MSA was adjusted for compatibility with 

the custom MSA input of AF2M by adding residue and chain numbers, and primary protein 

sequences to the first three lines of the MSA file.  

 

Models were generated using ColabFold (version 1.5.3), which was executed with the following 

parameters for multimeric structures: 

 

*** template_mode: (none for custom MSA); msa_mode:  (MMseqs2 (UniRef+Environmental) 
for baseline and custom for the filtered MSA); pair_mode: unpaired+paired; model-type: v1 for 
CASP14 and v2 for CASP15; num_recycles: auto. (N.B. Selecting 'alphafold2_Multimer_v1 or 
_v2' from the model type was intended to avoid bias in structure prediction). 
 

For “single-chain” custom templates, the template mode ”custom” was selected, while 

msa_mode was selected as “MMseqs2 (UniRef+Environmental)”. 

 

4.2.3 Evaluation 

 

In order to investigate the impact of the “single-chain” custom template and of the low quality 

MSA, four different model quality scoring metrics were employed. The commonly used metrics 

for complex model quality were the TM-score, IDDT. The IDDT scores refers to the Oligo-IDDT 

scores. However, for the “single-chain” custom template analysis, Molprobity score was not 
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included due to the need for relaxation of models compared to the initial models.  Additionally, 

the QS-scores and DockQ_wave scores, which specifically demonstrate improvements in the 

interface structures, were obtained. The TM-scores for the models were obtained through the 

MM-Align server and the IDDT and interface scores were obtained using the OpenStructure 

package (2.1).  The improvements or deteriorations in these scores were examined both 

cumulatively for the models generated AF2M using the “single-chain” custom template and on 

a target-by-target basis for models predicted by AF2M using filtered custom MSAs. To assess 

the statistically difference in model quality using the “single-chain” custom template approach, 

the paired Wilcoxon signed-rank test was conducted using R, as in previous chapters. This 

analysis aimed to ascertain whether there were significant improvements in the scores of 

models generated by AF2M with the “single-chain” custom template compared to those 

generated by the standard custom template approach and the initial models. The statistical 

method used is explained in detail in the method part of Chapter 2. Figures 4.1 and 4.2 

summarise the workflow of methods used in the analysis for this chapter, subsequently.  

 

Figure 4.1 The flowchart of the method for evaluating the effect of a “single-chain” 
custom template on modelling quaternary structures. 
Flowchart showing the process in which multi-chain CASP15 models are first converted into single-chain 
forms using PyMOL. These single-chain structures are then used as template inputs for AF2M to 
generate rank-1 models. Four different quality scores are applied to evaluate these models. The 
observed quality scores, with TM-score from MM-Align and IDDT/QS-score/DockQ_wave from 
OpenStructure, were produced by aligning the models with the native structures for each target. Initially, 
the cumulative scores are assessed, followed by the evaluation of individual pairwise scores for each 
model using the Wilcoxon-signed-rank test. 
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Figure 4.2 The flowchart of the method for evaluating the effect of an MSA without 
disordered residues on modelling quaternary structures. 
Flowchart showing a two-step process demonstrating the impact of removing disordered residues from 
sequences comprising the MSA on the model quality of AF2 predictions. The green arrows represent 
the first step, where an MSA devoid of disordered residues is generated, referred to as the "custom 
MSA" in the subsequent phase. The black arrows indicate how the custom MSA is used in the second 
step and how models are evaluated using four distinct scoring metrics. The observed quality scores, 
with TM-score from MM-Align and IDDT/QS-score/DockQ_wave from OpenStructure, were produced 
by aligning the models with the native structures for each target. 

 

4.3 Results and Discussion 

4.3.1 The impact of using “single-chain” custom templates” for quaternary structures 

modelling 

 

The primary aim is to compare the results of models generated by AF2M using different custom 

template inputs to evaluate the effectiveness of treating all chains in a template complex as a 

single chain. Thus, the various quality scores (TM-score, IDDT, QS-score, and DockQ_wave) 

for the models predicted by AF2M using the “single-chain” custom templates are compared to 

those of models generated by AF2M using the default custom template and to the initial models 

(the template structures). Table 4.4 demonstrates the cumulative effects on the model 

improvement for models generated by AF2M using two different custom template inputs. The 

cumulative TM-scores and IDDT scores of the models generated by AF2M using the “single-

chain” custom templates were higher than those of the models obtained by AF2M using the 

standard custom templates, as well as those of initial models. In terms of interface scores, the 

initial models were not improved; however, the models generated by AF2M using “single-chain” 

custom templates were better predicted than the models generated by AF2M using standard 

custom template. The results suggest that using “single-chain” custom templates can be more 

effective than using the standard custom template options. In addition, AF2M using a “single-

chain” custom template input can produce protein models with higher global and local quality 
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compared to the initial models. The paired Wilcoxon signed-rank test (See Method section in 

Chapter 2) result demonstrated that the increase in TM-scores and IDDT scores for the models 

generated by AF2M using “single-chain” custom template were significantly different compared 

to both the standard custom templates and the initial models (Statistically, p=3.0E−02  < 0.05 

for TM-score and p=4.04E−02 < 0.05 for IDDT-score between “single-chain” custom template 

models and initial models while p=1.04E−02 < 0.05 for TM-score and p=3.96E−03 < 0.05 for 

IDDT-score between “single-chain” custom template models and initial models. No other 

statistically significant differences were observed between the given two variables). This result 

also supports Figures 4.3, 4.4, 4.5 and 4.6. 

 

Table 4.4 The cumulative global and interface scores for the AF2M models and initial 

models. 

The table comprising of the cumulative TM-scores, IDDT scores, and interface scores (QS-scores and 
DockQ_wave scores) for the homomeric and heteromeric models generated by AF2M using both 
“single-chain” custom templates and standard custom templates, compared to the initial models. 

 
Table 4.5 shows the effect of using a “single-chain” custom template on AF2M models in terms 

of different types of multimeric models. Nearly half of homomeric models generated using 

“single-chain” custom template exhibited improved predictions across all four quality metrics 

compared to the initial models. Furthermore, greater than half of the homomeric models 

achieved higher quality scores with “single-chain” custom templates compared with those 

generated by AF2M using the standard custom templates. The cumulative scores were 

generally higher when the “single-chain” custom templates compared to both the initial models 

and the models generated AF2M using the standard custom templates. The standard custom 

template method also showed good performance except for the cumulative IDDT scores, 

where the models generated by AF2M using standard custom templates surpassed the initial 

models (Table 4.5a). According to the heteromeric models, more of the heteromeric models 

generated by AF2M using “single-chain” custom templates exhibited higher quality in terms of 

TM-score and DockQ_wave score when compared to initial models, rather than the 

heteromeric models generated by AF2M using the standard custom template.  Due to the 

higher sensitivity of DockQ_wave scores, fewer models were expected to show better quality 

compared to analysis using the QS-scores. Interestingly, when the DockQ_wave scores are 

considered, more initial models were of higher quality compared to AF2M using “single-chain” 

custom templates. The cumulative scores of initial heteromeric models were the highest among 

all considered models (Table 4.5b).  

Cumulative scores 
Single-chain custom template Standard custom template Initial model 

TM-
score 

IDDT QS-
score 

DockQ_ 
wave 

TM-
score 

IDDT QS-
score 

DockQ_ 
wave 

TM-
score 

IDDT QS-
score 

DockQ_ 
wave 

 
95.08 

 
92.82 

 
73.87 

 
57.44 

 
94.72 

 
91.71 

 
73.52 

 
57.27 

 
94.87 

 
92.75 

 
74.4 

 
57.86 
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Table 4.5 The number of improved models and cumulative global, local, and interface 

scores for the AF2M and initial homomeric and heteromeric models. 

The tables demonstrating the number of improved models and comparing the cumulative TM-scores, 
IDDT scores, and interface scores (QS-scores and DockQ_wave) for the models. Tables a and b 
compare the number of improved models and cumulative scores separately for the homomeric and 
heteromeric models generated by AF2M using both “single-chain” custom templates and standard 
custom templates, compared to the initial models. The blank scores indicate the highest cumulative 
scores for quality scores.  

 

a)  
 

“Single-chain” custom template and standard custom template (Homomers) 
The percentage of the improved models 

TM-score IDDT QS-score DockQ-wave 
 55 62 58 51 

 

“Single-chain” custom template and initial model (Homomers) 
The percentage of the improved models 

TM-score IDDT QS-score DockQ-wave 
42 43 46 44 

 

Cumulative scores of the homomeric models (using “single-chain” custom template) 
TM-score IDDT QS-score DockQ-wave 

65.90 63.49 55.79 42.63 
 

Cumulative scores of the homomeric models (using standard custom template) 
TM-score IDDT QS-score DockQ-wave 

65.60 62.53 55.55 42.52 
 

Cumulative scores of the initial homomeric models  
TM-score IDDT QS-score DockQ-wave 

65.25 63.35 54.92 42.01 

 

 

b) 

 
“Single-chain” custom template and standard custom template (Heteromers) 

The percentage of the improved model 
TM-score IDDT QS-score DockQ-wave 

37 45 28 37 
 

“Single-chain” custom template and initial model (Heteromers) 
The percentage of the improved model 

TM-score IDDT QS-score DockQ-wave 
53 45 28 48 

 

Cumulative scores of the heteromeric models (using “single-chain” custom template) 
TM-score IDDT QS-score DockQ-wave 

29.18 29.32 18.08 14.8 
 

Cumulative scores of the heteromeric models (using normal custom template) 
TM-score IDDT QS-score DockQ-wave 

29.12 29.18 17.97 14.75 
 

Cumulative scores of the initial heteromeric models  
TM-score IDDT QS-score DockQ-wave 

29.61 29.40 19.48 15.85 
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The above scores indicate that the input of multi-chain templates as a single chain is more 

effective in both global and local folding and interface areas in the homomer models. However, 

in the heteromeric models, according to the TM-scores and DockQ_wave scores, although the 

models generated using "single chain" custom templates are more than the initial models, the 

cumulative scores decrease, indicating that more models are distorted than the initial models. 

The AF2M developers highlighted that the standard AF2M predicted homomeric interface 

regions better than heteromeric interface regions (Jumper et al., 2021b). In addition, the first 

version of AF2M faced the issue of stoichiometry. Namely, AF2M did not manage to predict 

well for models with more than two chains.  Therefore, this observation helps to explain why 

improvements were also more noticeable here in homomeric models, since the symmetry 

information for homomeric models can be more advantageous (Gaber & Pavšič, 2021). 

Figure 4.3A illustrates that out of 120 initial models, only 54 models were not improved when 

the “single-chain” custom templates were used. The remaining initial models achieved higher 

quality (63 models) scores. However, when compared to the models generated by AF2M using 

standard custom template, fewer models showed improvement, and 38 models have higher 

TM-scores (Figure 4.3B). This suggests that using “single-chain” custom templates may be 

more effective than using standard templates in terms of improving the TM-score of models. 

In addition, the plots show the distribution of TM-scores for both refined and non-refined 

models, which peak around 0.9 to 1.0. They demonstrate a strong agreement between the TM-

scores of the models obtained using the standard custom template option and those obtained 

using the “single-chain” custom templates, particularly at higher scores (Figure 4.3A). This 

agreement also suggests that both methods are fairly consistent in their TM-scores. High TM-

scores with one method mostly correspond to high scores in the other. 
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Density scatter plot presenting the comparison of TM-scores for (A) the models generated by AF2M 
using “single-chain” custom template versus the initial models, and also (B) the models generated by 
AF2M using the standard custom templates versus that of the initial models. The red pluses indicate the 
refined models. The black pluses indicate the unrefined models while the green pluses represent that 
the model quality do not change. The density scale ranges from purple to yellow. The scatter plots were 
drawn through R. 

 

Figure 4.3 Comparison of observed TM-scores between the AF2M models using the 
custom template option with recycling and the initial models. 
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Figure 4.4 shows the improvement in protein models according to the IDDT scores after using 

the “single-chain” custom template option. The IDDT scores of all models ranged from 0.35, 

with the majority falling between 0.75 and 1. However several models exhibited the lower TM-

scores and high IDDT scores. Typically, initial models with TM-score as low as 0.5 might be 

considered random; however, AF2M can potentially generate models with TM-scores of 0.5 or 

higher following the recycling process. For the “single chain” custom templates compared to 

the initial models, 52 models were deteriorated, and 65 models were improved (Figure 4.4A), 

whereas for the standard custom templates, 36 out of 120 models showed improvement and 

75 models had lower IDDT score (Figure 4.4B). This suggests that using “single-custom” 

custom templates may influence local improvements of initial models. There are two models 

which are outliers. One model (T1179 MultiFOLD) showed a very low IDDT score and did not 

improve after AF2M using both types of custom template inputs. The second model (T1110 

Zheng) exhibited very high improvement when the “single-chain” custom template was used, 

which had lower IDDT score when using the standard custom template.  

Modelling performed using single-chain custom templates showed higher global and local 

quality compared to both standard custom templates and initial models Presenting results on 

a target-specific basis visualisation even minor improvements in modelling scores. Additionally, 

while AF2 recycling can improve the structure in one cycle value, it can model a different 

conformational structure in the next cycle. In given cases, it is possible that the initial models 

the initial models may remain unchanged (neither improvement nor deterioration). However, in 

the latest versions of AF2, the recycling process is controlled automatically, allowing the model 

to perform recycling until it identifies the best structure based on the given template. As a result, 

the differences between the generated structures can be minimal, leading to stacking in certain 

regions. 
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Density scatter plot presenting the comparison of IDDT scores for (A) the models generated by AF2M 
using “single-chain” custom template versus the initial models, and also (B) the models generated by 
AF2M using the standard custom templates versus that of the initial models. The red pluses indicate the 
refined models. The black pluses indicate the unrefined models while the green pluses represent that 
the model quality do not change. The density scale ranges from purple to yellow. The scatter plots were 
drawn through R 

Figure 4.4 Comparison of observed IDDT scores between the AF2M models using the 
custom template option with recycling and the initial models. 
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Interface quality scores were crucial for comparing the improvement effect of using a “single-

custom” template against using a standard custom template. With the “single-chain” custom 

templates, AF2M can refine the entire structure simultaneously, potentially viewing these 

structures as a single chain rather than distinct chains and thereby maintaining the modelled 

interface. In such cases AF2M will recognize the separate chains as “domains” within a single 

structure, which can lead to improvements. Firstly, in terms of the QS-score, 51 models showed 

deterioration, and 48 models show improvement when the models generated by AF2M using 

the “single-chain” custom template were compared to the initial models (Figure 4.5A). 

However, 57 of the initial models were deteriorated while 32 models showed improvement 

when using the “standard custom template” (Figure 4.5B). In general, most of the QS-scores 

for the models predicted by both custom template methods tended to be high and around the 

baseline, similar to TM-score and IDDT scores. This is because a normal custom template 

processes AF2M structures chain by chain, whereas a “single-chain” custom template treats 

the structure as a whole. However, since it may not correctly detect the interface regions that 

are crucial for forming the complex structure, its effectiveness might be limited. For models 

that include more than two chains the AF2M success rate can decrease. For example, T1179 

consists of four chains, and the lowest performing model was T1179 MultiFOLD across all 

quality scores. Thus, the success of the approach may decrease as the number of chain 

increases. It should be note that the MultiFOLD versions are AF2M based tools.  
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Density scatter plot presenting the comparison of QS-scores for (A) the models generated by AF2M 
using “single-chain” custom template versus the initial models, and also (B) the models generated by 
AF2M using the standard custom templates versus that of the initial models. The red pluses indicate the 
refined models. The black pluses indicate the unrefined models while the green pluses represent that 
the model quality do not change. The density scale ranges from purple to yellow. The scatter plots were 
drawn through R. 

Figure 4.5 Comparison of observed QS-scores between the AF2M models using the 
custom template option with recycling and the initial models. 
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In terms of DockQ_wave score, it was observed that more models had lower scores compared 

to the QS-scores for the models. Additionally, for the models generated by AF2M using “single-

chain” custom templates, 54 models showed improvement, and 57 models showed 

deterioration (Figure 4.6A) compared to the initial models, while for the models generated by 

AF2M using standard custom templates, there were improvement in 56 models and 

deterioration in 17 models (Figure 4.6B). It can be observed that there are more outlier models 

compared to the initial models, and less of a difference between using a standard or “single-

chain” custom templates in terms of interface score, as evidenced by the lower number of 

models that show improvement. The data both after and before the use of custom template 

methods are summarised in Appendix Table S.4. In our previous research, it was shown that 

the models recycled with AF2M do not show any improvement in terms of initial scores 

according to Molprobity scores, mainly due to the lack of the relaxation protocol, which was 

removed as a control (see Chapter 3; Amber relaxation was not enabled as a control measure 

to ensure we were testing for the recycling effect only). Therefore, the Molprobity score 

evaluations were not conducted for the models in this section. 

In general, the interface quality scores for NBIS-AF2-Multimer initial models tended to either 

improve or remain consistent after running AF2M with the “single-chain” custom templates. 

Nevertheless, all quality scores for the initial MultiFOLD models showed improvement. It is 

noteworthy that MultiFOLD, except for NBIS-AF2-Multimer, was selected as the last group. 

AF2M using the “single-chain” custom templates generated models with varying quality scores 

for the best initial group models. In Chapter 3, the MultiFOLD initial models were showed 

improvement with increasing recycling. However, in this chapter, AF2M run ‘auto’ recycle 

number for all initial models, suggesting that AF2M needs more room to explore new 

conformations. Yet, the coordinates of structures in good quality models may impose stringent 

restraints for AF2M`s optimization protocol.   
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Density scatter plot presenting the comparison of DockQ_wave scores for (A) the models generated by 
AF2M using “single-chain” custom template versus that of initial models, and also (B) the models 
generated by AF2M using the standard custom templates versus that of the initial models. The red 
pluses indicate the refined models. The black pluses indicate the unrefined models while the green 
pluses represent that the model quality do not change. The density scale ranges from purple to yellow. 
The scatter plots were drawn through R. 

Figure 4.6 Comparison of observed DockQ_wave scores between the AF2M models 
using the custom template option with recycling and the initial models. 
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4.3.2 The impact of using “Filtered Custom MSAs” on the quality of predicted 

quaternary structure of proteins 

 

The evaluation was based on structure quality using the four different scores for the CASP14 

and CASP15 multimeric models. An improvement in the structure quality score indicates that 

using MSAs with filtered disordered residues can generate higher quality models compared 

with including the entire homologous sequences in the MSA. Hence, the quality of 3D protein 

structures generated by AF2M using the different filtered MSA methods can be evaluated by 

comparing them with the observed structures, in the same way as we have previously done. 

However, to evaluate the effect of using disorder filtered custom MSAs, a target-by-target 

based evaluation was preferred rather than the cumulative score of models since each target 

includes different disorder types. As detailed in Table 4.3, 13 CASP15 and 6 CASP14 

homomeric targets were used. However, in addition to the research indicating the effectiveness 

of MSA-pairing (Bryant, Pozzati, & Elofsson, 2022), there is also research suggesting that it 

may not be particularly effective in large protein structures (Bryant, 2023); this dilemma 

constitutes a separate topic of discussion. Hence, heterometric CASP targets were not 

evaluated since AF2M uses MSA-pairing to obtain MSAs for heteromeric models. In the 

remaining section, if the AF2M is provided with the MSA inputs where short, long, domain 

disordered residues are filtered, it is referred to as AF2M-SF, AF2M-LF, and AF2M-DF, 

respectively. In addition, if AF2M utilizes its standard MSA, it is referred to as AF2-MSA 

(baseline). 

 

4.3.2.1 Evaluation of AF2M score reliability with disorder filtered MSAs 

 

To assess the predicted score reliability of multimer structures generated by AF2M-SF, AF2M-

LF, and AF2M-DF, correlations were measured between the predicted model quality scores of 

AF2M-SF, AF2M-LF, and AF2M-DF and the observed model quality scores. These results 

demonstrate the score reliability of AF2M`s predicted quality is maintained using a filtered 

MSA. The assessment of correlation results was based on the interpretation of correlation 

coefficient ranges from (Akoglu, 2018), corresponding to none, weak, moderate, strong, and 

perfect. Figures 4.7A, B, and C show a moderate positive correlation between the observed 

and the predicted quality scores for three different filtered methods. In addition to Pearson’s R, 

Kendall’s tau B and Spearman’s Rho correlation test were used to examine the degree of the 

relationship between the observed and the predicted scores of the models. The correlation 

analysis between the pTM-scores and the observed TM-scores shows a moderate linear 

positive correlation for the modelled complexes generated by AF2M-SF, AF2M-LF, AF2M-DF 

with Pearson’s R= 0.66, 0.57, and 0.65, respectively. The positive linear correlation indicates 
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that the increases in the pTM-scores generated by AF2M-SF, AF2M-LF, AF2M-DF correlate 

with an increase in the observed TM-scores. Furthermore, the correlation analysis between 

the pIDDT scores and the observed IDDT scores in Figure 4.8A, B, and C show a weak and 

moderate linear positive correlation. Additionally, the Pearson’s R = 0.28 for AF2M-LF was 

observed, while Pearson’s R = 0.43 for AF2M-DF and Pearson’s R = 0.65 for AF2M-SF was 

observed. This signifies that the increase in pIDDT scores generated by AF2M-SF is more 

highly correlated with an increase in the observed IDDT quality scores. Further test results 

(Kendall’s tau B and Spearman’s Rho correlation) for TM-scores and IDDT scores are included 

in the legend of Figure 4.7 and 4.8. In the general context, MSAs without disorder co-evolution 

information may be used to model structures, although the AF2M-SF approach may maintain 

more reliable predicted model quality scores due to the highest correlations between both 

predicted and observed scores.  

 

 

Scatter plots showing linear, positive relationship between the predicted global scores (pTM-scores) 
versus the observed TM-scores of the models of CASP14-15 targets generated using A) AF2M-SF B) 
AF2M-LF C) AF2M-DF with n = 19 multimer targets. These above scatter plots belong to the Pearson’s 
R correlation test as an example. The Pearson’s R correlation is 0.66, Kendall’s tau B correlation is 0.51 
and Spearman’s Rho correlation is 0.70 for AF2M-SF, the Pearson’s R correlation is 0.57, Kendall’s tau 
B correlation is 0.46 and Spearman’s Rho correlation is 0.62 for AF2M-LF, the Pearson’s R correlation 
is 0.65, Kendall’s tau B correlation is 0.44 and Spearman’s Rho correlation is 0.59 for AF2M-DF. This 
plot was drawn via R.  

Figure 4.7 The correlation between the observed and predicted TM-score for three 

filtered MSA methods. 
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Scatter plots showing linear, positive relationship between the predicted global scores (pIDDT) versus 
the observed oligo-IDDT scores of the models of CASP14-15 targets generated using A) AF2M-SF B) 
AF2M-LF C) AF2M-DF with n = 19 multimer targets. These above scatter plots belong to the Pearson’s 
R correlation test as an example.  The Pearson’s R correlation is 0.65, Kendall’s tau B correlation is 
0.40 and Spearman’s Rho correlation is 0.65 for AF2M-SF, the Pearson’s R correlation is 0.28, Kendall’s 
tau B correlation is 0.48 and Spearman’s Rho correlation is 0.41 for AF2M-LF, the Pearson’s R 
correlation is 0.43, Kendall’s tau B correlation is 0.30 and Spearman’s Rho correlation is 0.30 for AF2M-
DF. This plot was drawn via R. 

 

 

In order to have confidence in the approach, the predicted scores for the three types of filtered 

MSA methods need to show correlations with the predicted scores for AF2M with standard 

MSA. Hence, the predicted scores of targets generated by AF2M using standard MSA were 

correlated with those of AF2M using the filtered methods. In terms of the pTM scores, the score 

for all the filtered methods showed a great correlation with the score for AF2M with standard 

MSA. Pearson’s R = 0.94, 0.88, and 0.94 for AF2M-LF, AF2M-SF, and AF2M-DF were 

observed respectively. In terms of pIDDT score, the trend was the same and also showed the 

great correlation. Pearson’s R = 0.89, 0.92, and 0.89 for AF2M-LF, AF2M-SF, and AF2M-DF 

were observed respectively. These results suggest that the predicted scores obtained by AF2M 

with all filtered MSA methods can be consistent with the predicted scores obtained by AF2M 

using the standard MSA method (See Appendix Figure S.15 and S.16).

Figure 4.8 The correlation between the observed and predicted IDDT score for three 

Filtered MSA methods. 
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4.3.2.2 Improvement of the multimeric structures generated by AF2M using the custom 

MSA complexity  

 

The first aim was to investigate whether only including ordered residues within the custom 

MSA for AF2M is sufficient for generating homomeric structures. Thus, the TM-scores of the 

models produced by AF2M using both default values and the custom MSA were initially 

calculated. The reason this score was selected first is that AF2M uses the pTM based 

confidence scores to rank the models for multimeric targets. Additionally, the TM-score is 

crucial for providing information on how well the overall structure of the relevant protein 

improves or deteriorates compared to the observed structure after filtering in MSA. In addition 

to the TM-score, the IDDT is used as a superposition free score, which gives more of an 

indication if the improvement of the local regions within models. 

An improvement in the models was observed for 19 targets according to the four different 

values when the short, long, or domain options of IUPred3 were used for screening the input 

MSA. When the filtered disorder sequences were applied to sequences in the MSA, models 

for 11 out of the 19 targets (58%) were improved, as shown in Figure 4.9. The remaining 

models did not exhibit a significant decrease in the TM-scores, except for T1038 for AF2M-SF 

and T1123 for AF2M-DF. Notably, among these models, 9, 11, and 9 models were improved 

using AF2M with the short, long, and domain option in terms of the TM-scores. In terms of the 

IDDT scores, the models for over half of targets were improved, (12 out of 19 models; 63%), 

as shown in Figure 4.10. The models for the rest of the targets did not exhibit a significant 

decrease in the IDDT scores, except for T1038 which had a low IDDT score for AF2M-SF 

(<0.4). Among 19 models, 9 models were improved using AF2M-SF. In addition, 13 models 

were refined using AF2M-LF, while the IDDT scores for 11 models were increased using AF2M-

DF. The IDDT and TM-scores for T1038 exhibited the same trend. However, the IDDT of T1187 

was decreased for AF2M-DF, although the TM-score for T1187 remained the same across all 

filtering methods.
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The model-based bar charts comparing the TM-scores for the models generated by AF2M using the filtered MSA methods to the models generated by AF2M using the default 
MSA. Each colour represents a different filter method for disordered residues in the MSA. Blue, red, green, and orange bar charts represent the quality scores for the CASP14-
15 models generated by AF2M-MSA (indicating the use of standard MSA method), AF2M-SF (indicating the use of filtered short disordered MSA method), AF2M-LF (indicating 
the use of filtered long disorder MSA method), and AF2M-DF (indicating the use of filtered domain disordered MSA method), respectively. All quality scores range from a minimum 
value of 0 to a maximum value of 1. The bar chart was created using R. 
 
 

Figure 4.9 The global scores of models generated by AF2M, and AF2M with three filtered MSAs. 
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The model-based bar charts comparing the IDDT scores for the models generated by AF2M using the filtered MSA methods to the models generated by AF2M using the default 
MSA. Each colour represents a different filter method for disordered residues in the MSA. Blue, red, green, and orange bar charts represent the quality scores for the CASP14-
15 models generated by AF2M-MSA (indicating the use of standard MSA method), AF2M-SF (indicating the use of filtered short disordered MSA method), AF2M-LF (indicating 
the use of filtered long disorder MSA method), and AF2M-DF (indicating the use of filtered domain disordered MSA method), respectively. All quality scores range from a minimum 
value of 0 to a maximum value of 1. The bar chart was created using R.

Figure 4.10 The local scores of models generated by AF2M, and AF2M with three filtered MSAs. 
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Two distinct interface quality scores were employed to assess the improvement of the interface 

regions in the models generated by AF2M, particularly when disorder information was not 

provided. The first score utilized was the QS-score, and the second one was the DockQ_wave 

score. In Figure 4.11, 12 out of 19 models (63%) were observed to improve for at least one 

filtering method. It is noteworthy that, unlike general structure scores (TM-scores and IDDT 

scores), when there was no disordered residue information was included in the MSA, either a 

strict improvement or strict deterioration in the models was observed, except for T1083, T1109 

and T1153. The TM-scores and IDDT scores did not change greatly when the QS-scores were 

not much lower or much higher than that of baseline. When the DockQ_wave scores are 

examined in Figure 4.12 it can be seen that models from AF2M-DF demonstrated 

improvements in their interface regions, with 12 out of 19 models (63%) showing improvements 

with at least one filtering methods. Out of the 19 targets, 9, 6, and 8 targets showed improved 

models using AF2M with the short, long, and domain residue options, respectively. When 

comparing both interface scores, although the total improved models is same, discrepancies 

in the number of improved models were observed in terms of the filtered MSA methods. This 

could be because DockQ_wave score is more sensitive than QS-score. Especially, when 

targets are not fully resolved, QS-score can be problematic for targets due to non-symmetric 

interface contacts. However, DockQ_wave averages weight of interface DockQ scores 

representing the number of interface contacts (Studer et al., 2023) Ultimately, it can be 

observed that AF2M model quality does not necessarily depend on whether disordered residue 

information is included in the MSA or not, as the scores exhibit variability depending on the 

target structure.  

The models for T1123 showed intriguing trend where the use of filtered domain disordered 

residues decreased in the TM-score and IDDT score, yet the QS-score for the model 

increased. One explanation for the improved TM-scores could be the presence of structures 

transitioning from disorder to order in the interface area when they form a complex. 

Considering that short disordered residues can be flexible linkers or loops (Monzon et al., 2020; 

Necci et al., 2018), in the monomeric structure for T1123, these residues were flexible linkers 

(up to 30 residues), which was also a domain disordered area (See Appendix Figure S.17). 

With transition from disorder to order, the increase in QS-score was observed. Moreover, While 

the TM-score increased as a result of applying long disordered residue filtering, no change 

was observed in the TM-score when short disordered residue filtering was applied. This 

indicates that the regular regions within the long disordered region are better improved. In 

addition, the TM-score is above 0.5 for both filtering methods, indicating that the predicted 

structures are not randomly predicted (Figure 4.9). This supports the result showing the 

increase in local residue improvement (IDDT) when using the short disordered residues filter 
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(Figure 4.10). It should be noted that short disordered residues can also be present within the 

long disordered regions (See Appendix Figure S.17) (Monzon et al., 2020). Target T1123 was 

Human Astrovirus MLB1 protein. Interestingly, for this target, it has been emphasized that 

template-based ML methods are more effective than homologous sequenced-based ML 

methods (Delgado-Cunningham et al., 2022). Thus, the need for a template that narrows down 

the sampling of disordered structures was indicated to provide better guidance in modelling 

than protein sequences (Delgado-Cunningham et al., 2022).  

 

Most tools provide numerous decoys for given protein sequences. Among the most intriguing 

tools for obtaining the decoys are MassiveFold (Brysbaert et al., 2024) and AFSample (Wallner, 

2023b). Generating lots of conformational structure for protein sequence requires huge 

computational calculation, which can be time consuming. MassiveFold addressed this issue 

by using lots of batches to model each conformational structure of protein in parallel, along 

with utilizing the combination of AF2 versions (Brysbaert et al., 2024). In addition, using 

different parameters they managed to obtain a wider variety of protein structures. This supports 

the importance of for using different versions of AF2M, as discussed in Chapter 2 and Chapter 

3. Conformational sampling, especially for multichain protein structures like antigen-antibody 

interactions, has become more feasible with advances in computational methods such as AF2. 

Hence, it can be crucial to evaluate the efficiency of AF2, along with using different parameters, 

for generating structures specifically for challenging protein targets, rather than just general 

protein structure prediction.
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The model-based bar charts comparing the QS-scores for the models generated by AF2M using the filtered MSA methods to the models generated by AF2M using the default 
MSA. Each colour represents a different filter method for disordered residues in the MSA. Blue, red, green, and orange bar charts represent the quality scores for the CASP14-
15 models generated by AF2M-MSA (indicating the use of standard MSA method), AF2M-SF (indicating the use of filtered short disordered MSA method), AF2M-LF (indicating 
the use of filtered long disorder MSA method), and AF2M-DF (indicating the use of filtered domain disordered MSA method), respectively. All quality scores range from a minimum 
value of 0 to a maximum value of 1. The bar chart was created using R.  

Figure 4.11 The interface QS-scores of models generated by AF2M, and AF2M with three filtered MSA. 
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The model-based bar charts comparing the DockQ_wave scores for the models generated by AF2M using the filtered MSA methods to the models generated by AF2M using the 
default MSA. Each colour represents a different filter method for disordered residues in the MSA. Blue, red, green, and orange bar charts represent the quality scores for the 
CASP14-15 models generated by AF2M-MSA (indicating the use of standard MSA method), AF2M-SF (indicating the use of filtered short disordered MSA method), AF2M-LF 
(indicating the use of filtered long disorder MSA method), and AF2M-DF (indicating the use of filtered domain disordered MSA method), respectively. All quality scores range from 
a minimum value of 0 to a maximum value of 1. The bar chart was created using R. 

Figure 4.12 The interface DockQ_wave scores of models generated by AF2M, and AF2M with three filtered MSA. 
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Obviously, during the generation of AF2M models, the relaxation method to alleviate clashes 

is left as an optional choice for the user. This leads to an increase in clash scores within the 

structures. However, Wallner's research (Wallner, 2023a) has highlighted the need for more 

effective conformational sampling based on dynamic simulations, rather than simple relaxation 

methods like minimization, to improve modelled structures. Currently, the force fields are not 

too sufficient to introduce interchain information. This result supports ignoring the evaluation 

of the Molprobity scores for models (See Figure 4.13 on Page 143). By applying filters to 

sequences in the MSA, the decrease in the MSA depth could potentially affect the quality of 

protein structures. However, it was observed that most models showed improved quality. Yin 

et al. (2022) indicate that for large proteins with small interface sizes relative to their overall 

size, these factors may be more significant than the limited MSA depth in achieving better 

protein structures. While general disorder filtering or increasing MSA complexity did not lead 

to optimization for AF2M on multimeric models, a notable improvement was observed when 

specific disorder patterns unique to each target were identified beforehand, and a custom MSA 

was prepared for AF2M. Chains that form homomeric structures often undergo structural 

rearrangements during complex formation. One frequently observed phenomenon is the 

transition of disordered regions to ordered structures, aiming to achieve the lowest energy 

confirmation (Mendoza-Espinosa et al., 2009).  

Our observations from Chapters 2 and 3 indicate that homomeric structures require a longer 

modelling period with AF2M. Therefore, the impact of MSA filtering on the modelling of 

homomers was investigated. The models generated by AF2M-MSA (cumulative time: 384 m) 

exhibited shorter modelling time for homomers compared to the other three filtering methods 

(cumulative time of AF2M-SF, AF2M-LF, AF2M-DF: 520 m, 470 m, 408 m, respectively).  This 

difference can be attributed to AF2M potentially needing more extensive exploration of 

conformational space for multimer models, resulting in a higher tendency for recycling and 

consequently a longer modelling time. In addition, considering proteins have various 

conformers to fulfil their specific function, disregarding residues corresponding to small 

disorder regions in the MSA can result in the lost disorder-to-order information. Especially, 

conformational changes within side chain and backbone including disorder-to-order structures 

can be challenging for obtaining high quality models for docking methods. In response to this 

challenge, DNNs based methods like AF2 shows an advantage due to its end-to-end method 

(Yin et al., 2022). 

Quaternary structures within a protein family exhibit less conservation compared to monomeric 

structures. When two chains interact, and if these complexes play functional roles, preserving 

the interface structures becomes crucial. Hence, there will be an increase in evolutionary 
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constraints in the interface region. In such cases, residues involved in contacts are expected 

to be structured rather than unstructured like disordered residues. However, even with high 

sequence similarity, protein chains can form a diverse array of possible quaternary structures. 

Therefore, using homologous structures as templates in homology modelling, may be 

preferable over employing various MSAs, under the assumption that the interface evolution is 

more predictable (Bertoni et al., 2017). Moreover, by ignoring disordered residues in the MSAs, 

it is possible to redirect AF2M`s attention towards structured residues in the attention 

mechanism. R.Yin et al. (2022) emphasized that the performance of AF2M and ColabFold 

(Mirdita et al., 2022) correlates with the specific case studies. AF2M achieves accurate 

structure predictions using its own scoring metrics, such as pTM-score, pIDDT, and PAE, which 

can be influenced by the characteristics of the protein under study. Moreover, differences 

among various MSA inputs may be masked when the AF2M training set includes the relevant 

complexes to be analysed (Yin et al., 2022). Therefore, utilizing the CASP data can be 

particularly effective in order to being most updated models in the PDB.  

T1038 was one of the most striking targets with models that had drastically worse TM-scores 

after filtering the MSA for the short disordered regions. When the MSA of T1038 was filtered in 

terms of the long and domain disorder residues, improvements in models were observed, 

however the model generated using the short disorder filtered MSA resulted in a sharp decline 

in the TM-score. Although all three quality scores were identical for the model, the 

DockQ_wave scores were different when comparing AF2M-LF to AF2M-DF in Figure 4.13. 

T1038 in the CASP14 competitions was a homodimer structure of TSWV glycoprotein. In its 

monomeric form, a short disorder structure is experimentally observed at the N- and C- 

terminal. However, despite the presence of long disorder residues in the N-terminal of its 

homomeric form (indicated by missing electron density between residues 36-107 in the 

experimental structure) (Bahat et al., 2020), the removal of residues from the MSA 

corresponding to this region may suggest that AF2M can generate the region of structures by 

utilizing the learned information from protein tunnel indirectly (Chakravarty et al., 2023). 

Another possibility could be related to the complexity of the MSA. By partially designing 

complexity in the MSA through filtering disordered co-evolution information, MSA complexity 

can be used to force AF2M to predict better protein structures.  
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The models of the T1038 multimeric target (CASP14-A2) are depicted above. The models which generated by AF2M-MSA (indicating the use of standard MSA 
method), AF2M-SF (indicating the use of filtered short disordered MSA method), AF2M-LF (indicating the use of filtered long disorder MSA method), and AF2M-
DF (indicating the use of filtered domain disordered MSA method) were aligned with the reference structure. While the reference structures are shown in green, 
the AF2M-MSA, AF2M-SF, AF2M-LF, AF2M-DF models are represented in blue, red, magenta, and yellow colours, respectively.  Below each model, the observed 
scores corresponding to the models and the baseline structure. Notably, the AF2M-SF model exhibits a markedly different alignment compared to the other 
models, resulting in considerably lower observed scores. For the models generated by AF2M-LF and AF2M-SF, all scores except for the DockQ_wave scores, 
are identical. This underscores DockQ_wave`s greater sensitivity in evaluating interface regions. The detailed methods for scoring the T1038 multimeric model 
are mentioned in the "method" section. The PDB structures were visualized and aligned using PyMOL.

Figure 4.13 The comparison of five quality scores for the models generated by AF2M using default MSA and three filtered MSA. 
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4.4 Conclusions 

 

In this chapter, the impact of using different custom inputs on AF2M model quality was 

investigated. Specifically, two types of custom inputs were examined: “single-chain” custom 

templates and disordered residue filtered custom MSAs. The improvement effect was 

measured for the models generated by AF2M using “monomeric” template models derived 

from multi chain models, as well as custom MSAs with the residues corresponding to disorder 

regions filtered out. The rationale for choosing these two custom input methods is as follows: 

for custom templates,  by default AF2M  consider each chain separately, even if multimer 

templates are provided, leading to a potential loss of interface information which may not occur 

if they are considered instead as a single-chain templates, for custom MSAs, ignoring the 

disordered residues in the MSA will reduce the redundancy of evolutionary information, 

increasing complexity and potentially leading to lower quality MSA, which may lead to 

prediction of better models.  

 

Firstly, when “single-chain” custom templates were used, the cumulative TM-scores and IDDT 

scores were higher than those of the initial models, however the initial models had higher 

interface quality scores. Hence, using AF2M with a “single-chain” custom templates may be 

more beneficial for models with fewer chains. However, the “single-chain” custom template 

inputs led to greater improvements of the AF2M models compared to the standard custom 

template inputs. In addition, different custom template applications may vary the model 

structures. Rather than relying solely on better custom templates, the AF2M architecture could 

possibly be adjusted to improve interface regions via an interface-based attention mechanism.  

Secondly, when the disorder filtered custom MSAs were employed, higher quality models were 

generated compared to standard AF2M-MSA when at least one of the filtered MSAs was used. 

Our study suggests that, rather than employing the standard MSA for all protein structures, an 

effective strategy for AF2M may involve initially filtering homologous sequences of the relevant 

protein based on disorder information. Target-specific information, particularly for custom 

MSAs, has proven to be beneficial for AF2M, indicating its usefulness in a targeted manner 

rather than applied generally for all protein models. This suggests that while target-specific 

disorder-filtered MSA may be advantageous for AF2M models, it should not be applied 

universally for all models. Following the launch of AF2M, the process of protein structure 

modelling has transitioned from a challenging phase to one that facilitates specific analyses, 

such as protein binding site identification and protein design. The general process now involves 

the need for a more improved model to effectively utilize structures generated by AF2M, 

emphasizing the preference for target-specific methods to improve models. In our approach, 
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we introduce a level of disorder in the MSA input specifically tailored for AF2M. Similar work 

conducted by (Petti et al., 2022) and colleagues also supports our findings, noting the more 

effective modelling capabilities of AF2M with custom MSAs.  

The markers of disorder in the PDB structures may not be ideal for the specified definitions, as 

defining disorder solely based on regions lacking spatial coordinates or exhibiting high mobility 

may no longer be suitable. Considering that AF2M modelling derives its power from co-

evolutionary information, truly disordered residues may persist in the MSA even after filtering 

for disorder-order separation, potentially causing a bias effect in the results. In the past, it was 

observed that the spatial coordinates of flexible hinged structural domains in crystal lattices 

were unclear, leading to annotation errors (Huber, 1979). With the current version of ColabFold, 

the v3 weights were released. By utilizing a combination of these weight, more conformation 

structures can be researched. Alternatively, a strategy aiming to identify the best structure 

could involve generating decoy structures using either AF2M with different custom template or 

with MSA options (Brysbaert et al., 2024; Wallner, 2023a). Model quality prediction tools could 

then be employed to determine the optimal structure among these decoy structures. Although 

there has been substantial research on the effect of templates on AF2M models, a more 

detailed analysis is required to evaluate the custom MSAs without disorder information on 

AF2M models. Additionally, the lack of data for benchmarking AF2M on proteins with 

disordered regions is an issue, given that it was trained on PDB structures. However, an NMR 

dataset could be designed for benchmarking AF2M since it was trained on X-Ray and Cryo-

EM datasets. This approach would provide a more comprehensive evaluation of the 

performance of AF2M models in handling disorder information.  

Finally, the results in this chapter suggest that it may not be possible to create the ideal MSAs 

for every target using generic setting. Filtering out specific types of disordered regions within 

the MSA can lead to better quaternary structure predictions for specific targets. Additionally, 

preserving the quaternary structural information for interacting chains with “single-chain” 

custom template inputs can lead to greater improvements in AF2M models with fewer chains 

compared to using the standard custom template inputs. 
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5 Chapter 5: Performance Comparison of  MultiFOLD1 and MultiFOLD2 

Servers in the CAMEO-BETA project  
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5.1 Background 

 

In the post-AF2 era, various adaptations of AF2M have become integrated into different tools 

to address issues adjacent to the tertiary structure prediction problem, including complex 

protein structure prediction  (McGuffin et al., 2023),  protein-ligand binding sites (Gazizov et 

al., 2023), protein design (Goverde et al., 2023), the conformational sampling of proteins 

(Wallner, 2023b), drug design (Borkakoti & Thornton, 2023), protein-DNA (Yuan et al., 2022), 

and protein-RNA (Darai et al., 2023) interaction prediction. With each updated version of the 

AF2M method, better results have been obtained for the remaining problems.  At the time of 

writing this thesis, the latest version of AF2M has been used with the version 3 weights, and 

ColabFold (5.5.1) has been released incorporating this weight set. The other versions of the 

methods continue to be tested for reliability in blind competitions like the CASP competition. In 

the latest CASP (CASP15), almost all prediction tools integrated a version of the AF2M 

algorithm into their own approaches 

(https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf). As a result, the average 

prediction performance was higher than that of the previous CASPs. Specifically, in the 

assembly modelling part of the CASP15 competition, the interface contact score (ICS, also 

known F1-score) was twice as high as in the CASP14 competition, while the Oligo-IDDT score 

was approximately 33% higher than in the CASP14 competition 

(https://predictioncenter.org/index.cgi).  

The accurate prediction of protein structures paves the way for obtaining the improved results 

in downstream analysis. Hence, after AF2 successfully predicted monomeric structures, it 

became necessary to design new tools that predict higher quality multi-chain protein 

structures. The efficacy of these emerging tools must be continuously tested due to the 

dynamic nature of protein bioinformatics field. Therefore, the prediction community organized 

various blind competitions to continuously evaluate new and existing prediction tools, beyond 

just CASP, which just provides a snapshot every 2 years (Kryshtafovych et al., 2023a). In this 

regard, the Continuous Automated Model EvaluatiOn project (CAMEO) serves as a more up-

to-date standard for the blind evaluation of current prediction methods. 

 

5.1.1 CAMEO-BETA: evaluation of methods for modelling complexes  

 

CAMEO is a project that aims to provide easy access to performance information for the 

current modelling methods, so that life scientists may predict 3D structures more effectively. 

https://predictioncenter.org/casp15/doc/CASP15_Abstracts.pdf
https://predictioncenter.org/index.cgi


Chapter 5 

150 
 

With this project, it will be possible to obtain evaluation and validation criteria for all protein 

models through a comprehensive comparison of theoretical and experimental structures. The 

Protein Model Portal (PMP) is an adjacent project, which serves as a point of entry for the best 

new techniques established by CAMEO project and the community, such as novel modelling 

servers for producing homology models and new quality estimation servers for model 

validation (Haas et al., 2013).  

CAMEO is similar to CASP, in that it provides a platform for blind predictions to be made and 

evaluated, however CAMEO makes fully automated assessments of 3D models for weekly 

releases of protein sequences, prior to the experimental structures being published in the PDB. 

CAMEO publishes the weekly results based on models collected over a 4-day period, 

evaluating approximately 100 targets over about 5 weeks. The assessment data is consistently 

generated simultaneously for all participating techniques, enabling developers to evaluate and 

cross-validate the efficiency of their techniques. Furthermore, their benchmark data are open 

and can be directly referenced in publications (Haas et al., 2018). 

The rapid advancements of methods alongside AF2M have not marked the end of structural 

bioinformatics but rather have sparked new beginnings. These new beginnings, primarily 

downstream analyses of complexes, should encourage greater community involvement and 

more frequent testing of protein modelling methods. Consequently, despite the CASP 

competition being considered as a valuable biennial milestone and the “world championships” 

that galvanises the community, it has become a bottleneck in terms of large scale continuous 

evaluation. However, while the CASP competition evaluates methods biennially, CAMEO 

performs this task weekly based on the data it publishes, serving as a complementary role to 

the CASP competition (Haas et al., 2019). Furthermore, with the performance demonstrated 

by AF2M in de novo protein predictions during CASP14, many challenges related to protein 

folding have been largely addressed. However, issues persist particularly concerning 

interactions in complex structures. To shift the focus towards multi-chain complexes rather than 

single chains, the CAMEO-BETA project, a branch of CAMEO, has been launched (Robin et 

al., 2021).  

With the expansion of CAMEO, CAMEO-BETA tests the capacity of participant servers to 

properly model the oligomeric form of a target sequence and predict its proper assembly based 

on amino acid sequences. Since targets are provided as only a single amino acid sequences, 

participants need to predict the protein's correct stoichiometry before modelling the correct 

folds of the subunits and interfaces between them. Thus, the modelling challenges in the 

complex structure effort require: (1) predicting the complex's stoichiometry; (2) predicting the 

3D structures of all entities:  proteins-peptides, protein-DNA, protein-RNA, and protein-ligands, 



Chapter 5 

151 
 

indicating their orientation and interfaces; and (3) providing per-residue confidence estimations 

for the model.  The CAMEO-BETA category operates on an opt-in model, allowing tools that 

generate single-chain protein structures to participate and receive targets. The beta version of 

CAMEO `Structures & Complexes` is accessible at https://beta.cameo3d.org/ and registration 

is available to all. Since October 2020, it has been sending multiple targets comprising protein-

protein, protein-RNA, protein-DNA, and protein-ligand complexes to enrolled servers once a 

week. Predicted structures may be submitted by servers in either PDB or mmCIF format 

and they are subsequently evaluated utilising an entirely automated workflow that includes 

measure of local fold accuracy (Oligo-lDDT) and interface acuracy scores (QS-scores). 

Following the expiry of targets and the release of the experimental structures in the PDB, 

the weekly predicted models and the observed experimental structures are provided, along 

with the assessment of the results through the CAMEO-BETA website (Robin et al., 2021).  

 

5.1.2 Model quality assessment (MQA) 

 

Protein modelling tools, designed with various algorithms and scoring techniques, can predict 

a wide and diverse variety of alternative structural models for a given protein sequence. 

Therefore, methods for assessing a protein model's quality are needed in order to select the 

very best predicted models. The provision of additional conformational structures through 

various applications of AF2M, such as dropout (Srivastava et al., 2014), has further highlighted 

these needs. Initially, structure prediction techniques incorporated methods for selecting the 

best model as a component, but in recent years, an increasing number of stand-alone 

techniques have been developed (Chen & Siu, 2020). Methods for model ranking include both 

consensus and single-model methods.  Consensus methods in model evaluation calculate an 

average similarity score among models, with the presumption that better models exhibit greater 

similarity with others in the pool. Single-model approaches consider models on an individual 

basis, extracting output features from other tools (predicted secondary structures, solvent 

accessibility scores), utilizing evolutionary information from homologous sequences and 

physics-based information, such as energy scores (Ouyang et al., 2020). 

ML-based techniques for estimating model accuracy (EMA) combine various forms of 

information, whereas traditional EMA methods are mainly based on energy, physicochemical 

or statistical factors. In recent years, significant advances in protein structure prediction have 

been achieved through the integration of features via DNNs, especially in accurately predicting 

inter-residue structural constraints. For instance, in the CASP13 competition, the use of inter-

residue contact information and deep learning techniques minimised the loss of GDT-TS score 

https://beta.cameo3d.org/
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in ranking protein structural models. This approach played an important role in the success of 

DeepRank (Renaud et al., 2021). Similarly, in the subsequent CASP14 competition, 

DeepAccNet (Hiranuma et al., 2021), a deep residual network for the prediction of local quality 

scores, was more successful than other networks in minimising IDDT score loss (Chen et al., 

2021).  

When it comes to AF2M, it employs an encoder and decoder network based on evolutionary 

blocks to establish the connection between sequence, structure, and model quality, thereby 

enhancing the accuracy of model quality assessment by integrating structure, sequence, 

physicochemical information, and DNN architecture, as demonstrated by previous research 

(Liu et al., 2023). AF2M generates scoring metrics such as the pIDDT score and pTM-scores 

and provides information on the quality of protein structure without the need for external EMA 

methods (Jumper et al., 2021a). However, independent MQA still plays a critical role in protein 

structure prediction, because methods such as ModFOLD9 (McGuffin & Alharbi, 2024) 

produce more consistent scores that can be used to directly compare models ranging in quality 

from a variety of different methods more accurately. Therefore, they offer an unbiased 

comparison of models from multiple different methods regardless of the modelling approach 

used. This independent assessment ensures the reliability and efficiency of prediction models, 

which in turn affects the efficiency of target discovery and drug design (Hiranuma et al., 2021). 

 

5.1.3 Dropout algorithm in AF2M 

 

Further to improving upon the quality assessment of models, an additional focus of research 

is to improve the sampling of the conformational space for model generation. The dropout 

technique can be applied to standard NNs. What distinguishes the dropout method from using 

a default NNs is the ignoring of certain neurons within a layer, thereby increasing the attention 

on the remaining neurons (Figure 5.1). Using the dropout technique during inference creates 

a perturbation in the model by randomly excluding some information from each prediction. In 

this way, the robustness of the network is increased by enabling a variety of outputs to be 

obtained. In NN based methods, such as AF2M, randomisation of features during training is 

used to encourage the network to adopt different learning strategies. Activating dropout layers 

during the inference phase encourages the network to use alternative solutions that might 

otherwise be ignored and may sacrifice some predictive power to achieve a wider range of 

solutions. The use of dropout during inference has been proposed as a method of incorporating 

uncertainty and building an ensemble of models without the need for additional training time. 

(Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017). The "is_training" parameter in 
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ColabFold enables users to select dropout during inference, triggering the stochastic part of 

the model and generating a wider range of predictions. Iterating with different seeds captures 

the uncertainty resulting from co-evolutionary constraints obtained from MSA, allowing 

improved sampling of various structure predictions  (Mirdita et al., 2022) and uncertainty from 

the model (Gal & Ghahramani, 2016). 

These images represent a) a standard fully connected NN b) a NN after applying dropout. In the standard 
NN, each neuron (circles) connects each neuron within the next layer, while only activated neurons 
connect to each other between layers in the neural network with dropout. The deactivated neurons are 
presented as ‘Xs’ in the circles. 

 

In the AF2M algorithms, dropout is implemented with customized modifications specific to 

various self-attention methods and residual revisions, incorporating a dropout rate ranging 

from 10% to 25% according to different network modules (Jumper et al., 2021a). The dropout 

parameters in AF2M are as follows as shown in Figure 5.2 and 5.3: 

**DropoutRowwisex: This variation employs a dropout method known as DropoutRowwise, 

in which dropout masks are shared between rows [1, Nres, Nchannel]. This technique is 

denoted by the operator "DropoutRowwisex," with "x" representing the dropout rate.  It is used 

in triangular self-attention around the initial node and in residual revisions after row-wise self-

attention in MSA. Similar channels are set to zero for every row in every residue (column) 

throughout these updates. 

Figure 5.1 The difference between a standard NN and a NN with dropout. 
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**DropoutColumnwisex: This variation employs a dropout method known as 

DropoutColumnwise, in which dropout masks are shared between columns [Nres, 1, 

Nchannel]. This technique is denoted by the operator "DropoutColumnwisex.  It is employed 

in triangular self-attention around the last node, after residual revision. For each row, identical 

channels are deactivated across all columns. 

These parameters are used in the two main modules of AF2M: 

**Evoformer Stack: Row-wise dropout is utilised in the main Evoformer stack during residual 

revisions for triangular multiplicative calculations on the pair of stacks. This configuration is 

preserved for both the template pair stack and the unclustered MSA stack. 

**Structure Module: Within the Structure module, dropout is implemented on the outcomes of 

the Transition layer and the Invariant Point Attention. 

These dropout adjustments improve the capacity of the model to adapt and adjust to different 

structural attributes across various components. This provides higher efficiency and 

robustness in the face of the model sampling challenges encountered in protein structure 

prediction (Jumper et al., 2021a). 
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The figure shows one of the main modules of AF2M known as the Evoformer. Evoformer takes as input MSA and pair presentations and gives as output updated 
MSA and pair presentations via self attention mechanism and triangle multiplicative updates. In the Evoformer module, dropout methods specially designed for 
AF2M are used. DropoutRowwise is used within the row-wise self attention, the triangle self attention around initial node and the triangle updates, while 
DropoutColumnwise is employed the triangle self attention around last node in order to residue updates. This graphic was taken from (Jumper et al., 2021a) 
and prepared using Microsoft Powerpoint.   

Figure 5.2 The Evoformer module of AF2M. 
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The figure shows one of the main modules of AF2M known as the Structure module. This module takes as input the first sequence within the MSA and backbone 
frames and gives as output 3D protein structure via IPA module and updating the backbone frames by predictig their rotations and translations. In the Structure 
module, the standard dropout method are used for AF2M. This graphic was taken from (Jumper et al., 2021a) and prepared using Microsoft Powerpoint.  

 

Figure 5.3 The Structure module of AF2M. 
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5.1.4 RoseTTAFold2 and RoseTTAFold All-Atom 

 

RoseTTAFold All-atom is an extension of RoseTTAFold2, designed to model proteins and 

other non-protein complex, as well as protein-protein interactions. The key aspect of this 

extension is the integration of diffusion models to simultaneously predict interactions among 

proteins and other components (Krishna et al., 2024). Diffusion models have gained popularity, 

leading to the release of a new version of AlphaFold, AF3, which integrates diffusion models 

following AF2M (AF3 code is not available at the time of writing). Since diffusion models were 

designed to predict protein-nonprotein interactions, RoseTTAFold2 remains the main 

specialised method for predicting protein complexes. RoseTTAFold2 was developed following 

the incorporation of several AF2M methods, including recycling, using FAPE loss as the 

predicted structure loss function, and leveraging distillation data, where highly reliable network 

results were used as a new training dataset to feed the network (Baek et al., 2023). 

Furthermore, RoseTTAFold2 incorporates various methods not found in AF2M, and both tools 

have been validated for their strong performance in predicting complex protein structures 

(Baek et al., 2023; Evans et al., 2022). These different methods include: a) the integration of a 

third track in the RoseTTAFold1 main block based on 3D structure, b) using  biaxial attention 

in the 2D pair track, replacing triangle multiplication and attention in AF2M, c) the adoption of 

the SE3-equivariant transformer for structural revisions instead of Invariant Point Attention 

(IPA) used in AF2M (Baek et al., 2023). 

 

5.1.5 The aim of study 

 

Since the CASP14 competition, with the diminished emphasis on refinement methods such as 

MD simulations and the increased use of ML applications, the refinement process has been 

integrated into the modelling process. End-to-end DNNs, such as AF2M, produce higher 

quality protein structures without requiring additional refinement methods. However, given that 

AF2M relies on MSA mining methods and is unable to predict more than two chains effectively, 

there remains a need for new methods to predict multi-chain structures. Hence, a standalone 

multi-chain structure prediction method known as MultiFOLD1 has been developed, building 

on previous research presented in this thesis and elsewhere. MultiFOLD1 was blind tested and 

achieved good results in the CASP15 competition (McGuffin et al., 2023). Currently, 

MultiFOLD1 is utilized for downstream analysis such as protein-ligand interaction modelling; 

however, it still requires ongoing testing against other state-of-the-art and emerging methods. 

Therefore, MultiFOLD1 is currently being tested in the ongoing CAMEO-BETA competition. 
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According to the CAMEO-BETA results, MultiFOLD1 needed updates using current 

applications, particularly to improve the prediction of multimeric models. In addition to following 

the CASP15 competition, the latest version of MultiFOLD, MultiFOLD2, was released. This 

new version includes improved sampling using the dropout technique from AF2M, 

RoseTTAFold2 and RosettaFold All-Atom, the new version of ModFOLDdock (Edmunds et al., 

2023) known as ModFOLDdock2 for MQA, as well as refinement of the final selected models 

using recycling. Overall, this chapter critically evaluates the performance of MultiFOLD1 and 

MultiFOLD2 in comparison with other servers and with each other, using the CAMEO-BETA 

data. 

5.2 Methods 

5.2.1 MultiFOLD1 and MultiFOLD2  

 
MultiFOLD is a specialised tool developed for modelling multimeric structures of proteins. In 

the CASP15 competition, MultiFOLD performed well, ranking among the top ten servers 

(https://predictioncenter.org/casp15/index.cgi) (McGuffin et al., 2023). MultiFOLD consists of 

three main components: structure prediction and assembly, evaluation of assembled structures 

using quality estimation, and refinement of the quaternary structure models. In the first stage, 

20 different multimeric structures were generated based on the protein sequence using 

localColabFold (v1.0.0) and (v1.3.0).  

**The parameters to be used for LocalColabFold v.1.0.0 are listed below: 

“homooligomer”, “use_ptm”, “use_turbo” “max_recycle 3", and " num_relax Top5 

 

**The parameters to be used for LocalColabFold v.1.3.0 are listed below: 

“templates”, “amber”, “num-recycle 3”, and “model-type auto” 

 

The primary goal of using both versions was to explore the conformational space more broadly 

using different weights to improve sampling. It has been previously indicated that different 

versions have an impact on the structure. (For v1.3.0, the 'templates' and 'amber' parameters 

were not applied to targets longer than 1000 residues but shorter than 2500 residues.) 

In the second stage, the 20 different multimeric structures modelled (5 unrelaxed and 5 relaxed 

models for each LocalColabFold version) were scored and ranked using ModFOLDdockR, our 

model quality evaluation tool, and the top 5 models were selected. Subsequently, these top 5 

models were fed back into LocalColabFold as templates. All models were prepared as mmCIF 

https://predictioncenter.org/casp15/index.cgi
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files via MAXIT, and then following appropriate recycling, the final refined models were 

obtained. For the refinement protocol, LocalColabFold v1.3.0 was used with the template 

option. (In CASP15, any targets with sequences longer than 2500 residues were split into 

segments and modelled separately, due to limited GPU capacity. After submission to 

MultiFOLD, these divided structures were manually combined using PyMOL to generate the 

final models of the protein.) 

 

The two sets of refinement parameters to be used for LocalColabFold v.1.3.0 are: 

**“custom_templates”, “amber” if < targets with 1000 residues, “num-recycle 12”, and “model-
type auto” 

**“custom_templates”, “no_amber if > targets with 1000 residues”, “num-recycle 3”, and 
“model-type auto” 

 

For MultiFOLD2, the method was similar to MultiFOLD1. The main difference was the 

integration of RoseTTAFold2, RoseTTAFold All-atom, AF2M dropout into along with the two 

previous LocalColabFold methods to improve sampling. 10 models were generated with each 

method resulting in 50 models, which were then ranked with ModFOLDdock2. The top 5 ranked 

models were used as templates for custom template recycling, resulting in the final 5 refined 

models.  

 

5.2.2 ModFOLDdock 

 

ModFOLDdock is our server for the quality assessment of quaternary structures, utilizing three 

different variants that are optimised for the different facet of the quality estimation problem: 

ModFOLDdock, ModFOLDdockS, and ModFOLDdockR. The ModFOLDdock server employs 

a hybrid consensus method that integrates seven different quality scores to produce estimates 

of both local (interface) and global model accuracy. These quality scores include the 

DockQJury, QSscoreJury QSscoreOfficialJury, lDDTOfficialJury, voronota-js-voromqa, CDA, 

and ModFOLDIA. Various optimal combinations of these scores are combined to derive the 

variant of ModFOLDdock.  ModFOLDdockR is used in MultiFOLD to select the top models. 

More detailed information about ModFOLDdock can be found in the server articles (Edmunds 

et al., 2023; McGuffin et al., 2023). 

The standard ModFOLDdock scores were optimised for correlations of the predicted scores 

with the observed quality scores. However, ModFOLDdockR was optimized for ranking, i.e., to 



Chapter 5 

160 
 

just score the very best models as the highest, regardless of how well scores correlate with 

the actual mode quality. Using ModFOLDdockR for ranking, the total fold correctness was 

determined by the mean of the lDDTOfficialJury, QSscoreJury, and voronota-js-voromqa 

scores. In addition, the total interface correctness was determined by the mean of the 

QSscoreOfficialJury, DockQJury, and voronota-js-voromqa scores. Confidence scores for all 

interface residues in each model were calculated as the mean of the per-residue scores from 

ModFOLDIA and voronota-js-voromqa. The calculation of final interface accuracy is detailed 

in the server article (Edmunds et al., 2023).  However, due to CPU and GPU limitations, it was 

not feasible to perform structural comparisons for large complexes (>1500 residues). 

Therefore, scores for all models were calculated using only a single model. Finally, to compare 

the generated structures, 30 reference structures were selected. 

Additionally, the ModFOLDdockS variant used a quasi-single method, which uses the 30 

reference models generated by MultiFOLD1 to score each model. For ModFOLDdockS, the 

mean of DockQJury and lDDTOfficialJury scores were used to determine the overall fold 

accuracy, while the mean of DockQJury and QSscoreOfficialJury scores were used to 

calculate the overall interface accuracy score. For individual residue confidence scores, the 

mean of the CDA scores, ModFOLDIA, and voronota‐js‐voromqa were used. 

For MultiFOLD2, ModFOLDdock2 is used. Several changes were made to the 

ModFOLDdockS variant, including the addition of a NN for improved interface residue scoring, 

which integrates the input from VoroMQA, VoroIF, IDDTJury, CADJury, PatchQSJury, 

PatchDockQJury, ModFOLDIA, and CDA score. The NN includes 48 inputs comprising these 

eight input scores for the six closest residues to each interface. For ModFOLDdock2S, the 

mean of DockQ_waveJury and QS-bestJury scores were used to determine the global 

interface score, while the mean of TM-scoreJury and oligo-GDTJury scores were used to 

calculate the global fold score. A flow chart comparing the processes used in versions of 

MultiFOLD is shown in Figure 5.4.  
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Figure 5.4 Flowchart of MultiFOLD1 and MultiFOLD2. 
The flowchart illustrates the process from inputting at least two sequences to selecting the best model. 
The path for MultiFOLD1 is indicated by a blue line, while MultiFOLD2 is represented by a red line. 
Initially, a pool of modelled structures is generated using two versions of LocalColabFold. The five best 
models are then selected through ModFOLDdock1. Each model is subsequently refined with 
MultiFOLD_refine (using the custom template recycling methods), and the final 5 refined models are 
generated. Key differences for MultiFOLD2 include the incorporation of RoseTTAFold2, RoseTTAFold 
All-Atom, and the dropout approach from AF2M, which improves the sampling for the structure pool. 
Additionally, ModFOLDdock2 is used instead of ModFOLDdock1 for improved scoring. 
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5.2.3 Experimental analysis 

 

Every Thursday, result files for weekly models generated by two version of MultiFOLD and the 

four other anonymous servers were downloaded after logging in to the CAMEO-BETA website. 

While the 3D structures in these files were in PDB format, the result files were JSON files in 

OpenStructure format. The Oligo-IDDT and QS-scores for each model from Server 1, Server 

2, Server 4, Server 5, Server 76, and AF3 were extracted from the JSON files using in-house 

python code and then organized into common subsets to fairly compare the performance of 

each server against one another. The statistical analysis of the increase in quality scores for 

both MultiFOLD1 (Server1) and MultiFOLD2 (Server5) was performed using a one-tailed 

Wilcoxon signed-rank test, comparing to the quality scores for each of the other servers. The 

statistical method was explained in detail in the methods section of Chapter2. 

 

5.3 Results and Discussion 

5.3.1 Performance comparison of MultiFOLD1 against other servers using the 

CAMEO-BETA data 

 

We initially compared the performance of four protein structure prediction methods, including 

Server 1 (MultiFOLD1), Server 2, Server 4, and Server 76, using the Oligo-IDDT and the QS-

scores obtained from the JSON files for the multimer targets. Only these two scores were used 

to compare the modelling tools, as CAMEO-BETA only provides these two scores as part of 

their official evaluation. The dataset was obtained using results from CAMEO-BETA over the 

last 1.5 years for all targets (Table 5.1). Comparing all servers at once was not possible due to 

the limited number of common targets among them. Therefore, pairwise server comparisons 

were performed on common subsets of the data. Since CAMEO-BETA does not disclose 

information about the methodology used by Server 2 and Server 4, it is impossible to explain 

the differences in performance these anonymous group from an algorithmic standpoint. 

However, they serve as useful benchmarks as to the current state-of-the-art performance in 

complex modelling servers that are being developed and tested.  
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Table 5.1 Number of CAMEO-BETA common targets submitted by servers. 
Table showing the total number of multimeric targets provided by CAMEO-BETA for the performance 
comparison of Server 1 (MultiFOLD1) with Servers 2, Server 4, and Server 76. The number of targets 
reflects those submitted to CAMEO-BETA by both servers. Collection of common targets between 
Server 4 and Server 1 commenced in December. The "After" refers to the number of targets collected 
following the resolution of the stoichiometry problem in MultiFOLD1 (see main text). The targets were 
collected from January 2023 to April 2024. 
 

 

 The number of common targets 
 Before bug fix After bug fix 

MultiFOLD1-Server 2 77 50 
MultiFOLD1-Server 4 -- 104 
MultiFOLD1-Server 76 226 146 

 

 

The prediction of quaternary structure of complex protein generated by MultiFOLD1 is 

continually evaluated by the CAMEO-Beta project. No models were delivered for any target on 

server 4 until December 2023. Initially, the comparison was conducted among MultiFOLD1, 

Server 2, and Server 76. According to Table 5.2a, when MultiFOLD1 was compared to Server 

2, the Oligo-IDDT and QS-score for Server 2 were higher. Comparing MultiFOLD1 to Server 

76, the Oligo-IDDT for MultiFOLD1 was higher than that for Server 76, while the QS-score for 

MultiFOLD1 was lower. In Table 5.2b, when comparing Server 1 to other servers in terms of 

structure types (homomeric or heteromeric models), MultiFOLD1 outperformed Server 76 in 

the Oligo-IDDT for both heteromeric and homomer structures, as well as in the QS-score for 

heteromeric structures. However, Server 2 was found to predict models better than 

MultiFOLD1 according to both quality scores. Based on these results, we evaluated what went 

wrong and identified a problem with the stoichiometry prediction, where all homomers were 

mistakenly predicted as monomers by MultiFOLD1. This situation explains why the QS-score 

for MultiFOLD1 was lower compared to other servers, resulting in a cumulative QS-score of 

zero for homomeric models in MultiFOLD1. However, evaluating the comparison between two 

servers in terms of heteromeric structures was not possible, as there are no common 

heteromeric targets between MultiFOLD1 and Server 2.  
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Table 5.2 Performance comparison of multimeric structure predictions servers using 

CAMEO-BETA data before bug fixing. 

(a) Table showing the performance results of three servers over a period of approximately one year, 
from 1 January 2023 to 5 December 2023. The CAMEO-BETA project provided direct results for the 
oligo-IDDT and QS-scores, and the table shows the cumulative scores for the paired servers. The 
highest cumulative scores are highlighted in bold. (b) Table comparing the cumulative Oligo-IDDT and 
QS-scores for multimeric structure prediction tools separated into the homomeric and heteromeric target 
types. No heteromeric targets for Server2 were submitted to CAMEO-BETA. 

 

a) 

 Cumulative Oligo-IDDT Cumulative QS-score 

Paired servers MultiFOLD1 Server 2 MultiFOLD1 Server 2 

MultiFOLD1-Server2 26.54 36.18 0 7.91 

 

Paired servers 

 

MultiFOLD1 

 

Server 76 

 

MultiFOLD1 

 

Server 76 

MultiFOLD1-Server76 92.50 45.84 7.28 17.50 

 

**Server4 

 

Data were collected from December 2023 

 

b) 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Heteromer Heteromer Homomer Homomer 
MultiFOLD1 Server 

2 

MultiFOLD1 Server 2 MultiFOLD1 Server 2 MultiFOLD1 Server 2 

-- -- -- -- 26.54 36.18 0 7.91 

 

MultiFOLD1 

 

Server 

76 

 

MultiFOLD1 

 

Server76 

 

MultiFOLD1 

 

Server76 

 

MultiFOLD1 

 

Server76 

41.78 13.60 24.29 6.65 50.72 32.23 0 11.61 

 

So, until 5 December 2023, MultiFOLD1 incorrectly predicted multimer targets as monomers, 

resulting in lower cumulative oligo-IDDT score and QS-score. The accuracy of monomer 

prediction for MultiFOLD1 was evaluated due to the misprediction of homomers, since 

homomeric models consist of two or more copies of the same chain. The Oligo-IDDT score is 

calculated based on superposition-free alignments. Hence, even when the stoichiometry is 

incorrectly predicted as monomer, Oligo-IDDT is always measured. Therefore, comparing the 

QS-scores for multimeric models and the monomer-IDDTs for monomeric models produced by 

MultiFOLD1 against other servers will provide more information about its performance. 
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MultiFOLD1`s monomeric models outperformed those of Server 2 and Server 76 in Table 5.3 

and 5.4. These results indicate that if MultiFOLD1 had correctly predicted these homomer 

targets, the current oligo-IDDT would have been higher than that of Server 2. Moreover, 

MultiFOLD1 could achieve better result, possibly obtaining higher cumulative QS-score. 

Table 5.3 Performance comparison of monomer structure predictions for MultiFOLD1 

using the CAMEO-BETA data. 

The performance results of three servers are displayed over a period of about one year, from 1 January 
2023 to 5 December 2023. CAMEO-BETA provides monomer-IDDT as an output for the models. The 
table displays the cumulative scores for all servers, along with the number of joint targets. The 
cumulative scores for the MultiFOLD1 are highlighted in bold. Results of all Wilcoxon signed-rank tests 
that were statistically significant (p < 0.05) are also highlighted in bold. 

 

  

Servers Number of targets Cumulative 
Monomer-IDDT 

Cumulative  
Monomer-IDDT 

 

MultiFOLD1-Server 2 

 

127 

 

94.53 

 

80.26 

    

      MultiFOLD1-Server 76 180 151.17 136.23 

 

**Server 4 

 

Data were collected from December 2023 

 

 

Table 5.4 Performance comparison of monomer structure predictions for MultiFOLD1 

using the CAMEO-BETA data, after the stoichiometry issue was fixed. 

The performance results of three servers are displayed over a period of about seven months, from 5 
December 2023 to 8 June 2024. CAMEO-BETA provides monomer-IDDT as an output for the models. 
The table displays the cumulative scores for all servers, along with the number of joint targets. The 
cumulative scores for the MultiFOLD1 server are highlighted in bold. Additionally, the mean scores for 
each server are shown in the parentheses and the highest mean value highlighted in black. Unlike the 
comparison of MultiFOLD1 and Server 4, the results of all Wilcoxon sign-ranked test that were 
statistically significant (p < 0.05) are also highlighted in bold. 

 

 

  

Servers Number  
of targets 

Cumulative 
Monomer-IDDT 

Cumulative 
Monomer-IDDT 

Wilcoxon Test 

 

MultiFOLD1-Server 2 

 

45 

 

32.71 (0.73) 

 

27.25 (0.61) 

 

p = 1.95e-07< 0.05 

     

   MultiFOLD1-Server 4 36 24.42 (0.68) 24.06 (0.67) p = 5e-1 > 0.05 

     

MultiFOLD1-Server 76 100 46.11 (0.46) 41.94 (0.41) p = 3.34e-06< 0.05 
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Data were then collected weekly from the CAMEO-BETA website starting from 5 December 

2024, until the release of MultiFOLD2. MultiFOLD1 was determined to be the best performing 

server overall compared with the other three competing servers based on the cumulative oligo-

IDDT and QS-scores in pairwise common subset server comparisons (Table 5.5a). According 

to the Wilcoxon signed-rank test in Table 5.5c, there were no statistical differences in the oligo-

IDDT scores between MultiFOLD1 and Server 4 (p=0.33>0.05), which supports all the 

aforementioned results (p<0.05). 

These results highlighted the stoichiometry issue with MultiFOLD1 had been resolved. 

According to Table 5.5b, both the oligo-IDDT and QS-score for homomeric structures 

generated by MultiFOLD1 outperformed the other three servers. Specifically, it is these data 

that indicate the stoichiometry bug was fixed (Table 5.5a). Regarding the heteromeric models 

generated by MultiFOLD1, MultiFOLD1 was not compared with Server 2 again due to the 

absence of any common heteromeric targets in the CAMEO_BETA dataset. The oligo-IDDT 

for heteromeric models generated by MultiFOLD1 was higher than that of Server 76, while it 

was lower than that of Server 4 (Table 5.5b). However, in all heteromeric models, the QS-score 

for MultiFOLD1 indicated poor performance. MultiFOLD1 utilises various versions of AF2M in 

order to obtain high-quality protein structures, with the best models selected by 

ModFOLDdock1. Therefore, it is crucial for MultiFOLD1 to achieve higher quality models 

before selecting the best ones. The performance of Server 4 was better than that of 

MultiFOLD1. In addition, given that Server 4 was released in December 2023, while the 

algorithms underlying MultiFOLD1 were based on progress in DNN before the CASP15 

competition, Server 4 is likely to use later, more up-to-date methods. Server 76 is one of the 

main and older servers in the CAMEO-BETA project. The lower cumulative QS-score for 

MultiFOLD1 heteromeric models compared to that of Server 76 indicates a need for 

improvement in predicting higher quality interface heteromeric models. Thus, MultiFOLD1 may 

need to explore more extensive conformational sampling to generate higher quality models.    
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Table 5.5 Performance comparison of multimeric structure predictions servers using CAMEO-

BETA data after bug fixing. 

(a) Table showing the performance results of three servers over a period of approximately six months, from 5 
December 2023 to 23 March 2024. The CAMEO-BETA project provided direct results for the oligo-IDDT and 
QS-scores, and the table shows the cumulative scores for the paired servers. The highest cumulative scores 
are highlighted in bold. Additionally, the mean scores for each server are shown in the parentheses and the 
highest mean value highlighted in black. (b) Table comparing the cumulative Oligo-IDDT and QS-scores for 
multimeric structure prediction tools separated into the homomeric and heteromeric target types. No 
heteromeric targets for Server 2 were submitted to CAMEO-BETA. (c) Table showing the statistical significance 
(p-value) of the cumulative Oligo-IDDT and the cumulative QS-scores for MultiFOLD1 compared to the three 
servers. The p-values with below 0.05 are highlighted in black.  

a) 

 Cumulative Oligo-IDDT Cumulative QS-score 

Paired servers MultiFOLD1 Server 2 MultiFOLD1 Server 2 

MultiFOLD1-Server 2 23.70 (0.33) 16.95 (0.24) 11.44 (0.16) 8.02 (0.11) 

 

Paired servers 

 

MultiFOLD1 

 

Server 4 

 

MultiFOLD1 

 

Server 4 

MultiFOLD1-Server 4 49.27 (0.47) 43.31 (0.41) 27.35 (0.26) 23.36 (0.22) 

 

Paired servers 

 

MultiFOLD1 

 

Server 76 

 

MultiFOLD1 

 

Server 76 

MultiFOLD1-Server 76 81.61 (0.56) 61.63 (0.42) 44.76 (0.30) 33.79 (0.23) 

 

b) 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Heteromer Heteromer Homomer Homomer 

MultiFOLD1 Server 2 MultiFOLD1 Server 2 MultiFOLD1 Server 2 MultiFOLD1 Server 2 

-- -- -- -- 26.29 19.28 12.42 8.99 

 

MultiFOLD1 

 

Server 4 

 

MultiFOLD1 

 

Server 4 

 

MultiFOLD1 

 

Server 4  

 

MultiFOLD1 

 

Server 4 

26.12 26.53 13.26 16.38 34.90 28.86 20.85 13.93 

 

MultiFOLD1 

 

Server 76 

 

MultiFOLD1 

 

Server76 

 

MultiFOLD1 

 

Server76 

 

MultiFOLD1 

 

Server76 

38.52 37.72 19.66 27.28 54.73 33.87 30.84 12.89 

 

c) 

 Wilcoxon signed-rank test (p-values) 

Paired servers Cumulative Oligo-IDDT Cumulative QS-score 

MultiFOLD1-Server 2 1.05e-05 8e-3 

MultiFOLD1-Server 4 3.3e-1 3.6e-2 

MultiFOLD1-Server 76 2.25e-10 1e-2 

 

 



Chapter 5 

168 
 

According to the CAMEO-BETA results, overall MultiFOLD1 was the best performing server, even 

for monomeric models. However, despite the fix, the heteromeric models generated by MultiFOLD1 

did not exhibit good interface quality, indicating a need to integrate more up-to-date methods.  As of 

23 March 2024, MultiFOLD2 was released as Server 5 and we began testing it in the CAMEO-BETA 

project, alongside MultiFOLD1. 

 

5.3.2 Performance comparison of MultiFOLD2 against other servers using the CAMEO-

BETA data 

 

After building on the lessons learned from MultiFOLD1, the new version, MultiFOLD2, was 

developed (see Methods section), and tested in the CAMEO-BETA project (as Server 5). The main 

goal with the new method was to improve the protein structure modelling performance compared to 

the previous version of MultiFOLD. Consequently, the differences in the cumulative scores (oligo-

IDDT and QS-score) between MultiFOLD1 and MultiFOLD2 were evaluated. Table 5.6 presents the 

number of CAMEO-BETA targets for the paired servers. Servers 2 and 4 were excluded from the 

evaluation of MultiFOLD2's performance due to no target submission for both servers. During the 

data collection period, AF3 was released, and the CAMEO-BETA community began publishing 

results based on the models obtained from the AF3 server. Therefore, the results of AF3 were 

included to the comparison of MultiFOLD2. 

 

Table 5.6 Number of CAMEO-BETA common multimeric targets submitted by servers. 

This table shows the total number of models for common multimeric targets provided by the CAMEO-BETA 
project for comparisons between Server 5 (MultiFOLD2), Server 1 (MultiFOLD1), Server 76, and AF3. 

 

Servers The number of common targets 

MultiFOLD2 - MultiFOLD1 139 

MultiFOLD2 - Server 76 116 

MultiFOLD2 - AF3 55 
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Following the success of MultiFOLD1, MultiFOLD2 demonstrated superior performance in terms of 

Oligo-IDDT and QS-score (Table 5.7a). The primary method in MultiFOLD1 involved designing an 

extensive structure model pool and then selecting the best models from this pool using 

ModFOLDdock1. Given that ModFOLDdock1 ranked as one of the best performing quality estimation 

servers in the CASP15 competition (Edmunds et al., 2023), the more structures generated by the 

MultiFOLD, the better the quality of the best model obtained. AF2M's limitation in predicting a single 

state of the proteins is noted in the literature (Sala et al., 2023). The higher performance of 

MultiFOLD2 can be attributed to the integration of three components: RoseTTAFold2, RoseTTAFold 

All-Atom, and a dropout approach, which aimed to achieve better sampling of higher quality protein 

models. These approaches enabled MultiFOLD2 to obtain higher quality pool of conformations to 

select from. RoseTTAFold2 and RoseTTAFold All-Atom likely provided orthogonal model sampling, 

which could yield more variety in conformations. The dropout method also introduced minor 

pertubations to the existing intermediate conformational structures in the network. This extended 

sampling potentially achieved more optimal performance in predicting higher quality disorder regions 

or transient interactions (Johansson-Åkhe et al., 2019). However, searching the conformational 

landscape could still lead to traps in local minima while aiming for a broader range of conformational 

structures (Roney & Ovchinnikov, 2022). This issue was somewhat addressed in the last stage of 

the pipelines for part of both versions of MultiFOLD, known as MultiFOLD_refine, by employing 

recycling approaches to refine the final models. 

AFsample (Wallner, 2023b) utilized a combination of the dropout method and extensive sampling, 

resulting in an increase in the average DockQ score in the CASP15 competition. It is noteworthy that 

MultiFOLD2 relies on AF2M`s inference dropout rate, which was 15-20%. Hence, the diversity 

generated by MultiFOLD2 was comparable to AF2M's success. However, increasing the dropout rate 

could further enhance diversity (Wallner, 2023b). In light of this, two versions of RoseTTAFold2 were 

used to generate more diversity in MultiFOLD2, along with the dropout method. Furthermore, it was 

demonstrated that RoseTTAFold All-Atom can predict larger protein complexes more effectively 

(Krishna et al., 2024) due to its use of  structure based attention rather than triangle attention for 

updating pair features. For better conformational sampling, FAPE loss can be highly beneficial, as 

used in RoseTTAFold All-atom similar to AF2M. The FAPE loss compares the predicted atom 

positions with the actual positions. The predicted frames are aligned to the actual frame and the 

distances between the atom positions of each frame are calculated. These distances are penalised 

by an L1 loss. This method ensures that atoms are correct with respect to the local frame and that 

side chain interactions work properly (Jumper et al., 2021a). Specifically, FAPE loss allows models 

to follow the right path to the native structure in conformational space by providing smooth gradients 

(Baek et al., 2023). MD simulations are the most convenient way to sample proteins. Before the 

advent of AF2M, MD simulations were often used to refine modelled protein structures, and the 

resulting trajectories could be used to obtain different structures in conformational space. However, 
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the time-dependent nature of MD trajectories makes them CPU/GPU intensive and thus time-

consuming to obtain for complex proteins with current computational techniques (Kožić & Bertoša, 

2024). 

In addition to the success of MultiFOLD2 compared to the first version of MultiFOLD, MultiFOLD2 

outperformed Server 76 and even AF3 (Table 5.7b). The success of MultiFOLD2 against other 

servers may also be attributed to our built-in quality estimation tool (Edmunds et al., 2024), 

ModFOLDdock (Edmunds et al., 2023). Since most tools rely on AF2M`s main method, each tool 

implicitly benefits from the strengths of DNN methods. In addition, groups tend to obtain better 

conformational ensembles by using MSA subsampling (Wayment-Steele et al., 2024). Hence, almost 

all methods manage to predict targets with a certain quality for downstream analysis. The 

combination of tools used can provide a variety of protein structures, with the main challenge being 

to detect the best one. ModFOLDdock1 address this issue by using a combination of different scores 

generated by various tools, whereas AF2M rely solely on pIDDT and pTM-score for ranking after the 

generation of structure models, which is inferior to ModFOLDdock for model ranking (Edmunds et 

al., 2024). Along with multimeric model predictions, MultiFOLD2 also performed better than Server1 

and Server76 for monomeric models; however, it did not show better performance compared to AF3 

on monomers (Table 5.8). The Wilcoxon signed-rank test showed that there was a significant 

difference in the cumulative scores between MultiFOLD2 and MultiFOLD1, Server 76, and AF3 (p < 

0.05) for both multimeric and monomeric models, except for the monomeric models generated by 

MultiFOLD2 and AF3 (Table 5.7c).  
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Table 5.7 Comparison of the cumulative scores for MultiFOLD2, MultiFOLD1, and other 

servers. 

(a) The table representing the comparison of cumulative oligo-IDDT and QS-score for the models generated 

by MultiFOLD2 and MultiFOLD1. (b) The table showing the comparison of the same cumulative scores for the 

models generated by MultiFOLD2 against those of Server76 and AF3. The cumulative scores for the best 

performing servers are highlighted in bold. Additionally, the mean scores for each server are shown in the 

parentheses and the highest mean value highlighted in black in (a) and (b) parts.  (c) Table showing the 

statistical significance (p-value) of the cumulative Oligo-IDDT and the cumulative QS-scores for MultiFOLD2 

compared to the three servers. The p-values with below 0.05 are highlighted in black. 

 

a) 

 Cumulative oligo-IDDT Cumulative QS-score 

Paired servers MultiFOLD2 MultiFOLD1 MultiFOLD2 MultiFOLD1 

MultiFOLD2 – MultiFOLD1 81.83 (0.59) 79.24 (0.57) 52.56 (0.37) 50.22 (0.36) 

 

b) 

 Cumulative Oligo-IDDT Cumulative QS-score 

Paired servers MultiFOLD2 Server 76 MultiFOLD2 Server 76 

MultiFOLD2 - Server76 69.52 (0.60) 53.50 (0.46) 45.66 (0.40) 34.72 (0.30) 

 

Paired servers 

 

MultiFOLD2 

 

AF3 

 

MultiFOLD2 

 

AF3 

MultiFOLD2 - AF3 34.33 (0.62) 27.03 (0.50) 24.28 (0.44) 13.98 (.025) 

 

c) 

 Wilcoxon signed-rank test (p-values) 

Paired servers Cumulative Oligo-IDDT Cumulative QS-score 

MultiFOLD2-MultiFOLD1 1.41e-06 3.566e-2 

MultiFOLD2-Server 76 1.39e-09 4.729e-3 

MultiFOLD2-Server AF3 4.984e-2  3.242e-3 
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Table 5.8 Performance comparison of monomer structure predictions for MultiFOLD2 using 

the CAMEO-BETA data. 

The performance results of four servers are displayed over the period from 30 March 2024 to 08 June 2024. 
CAMEO-BETA provides monomer-IDDT as an output for the models. The table displays the cumulative scores 
for all servers, along with the number of joint targets. The highest cumulative scores for each server are 
indicated in bold. Additionally, the mean scores for each server are shown in the parentheses and the highest 
mean value highlighted in black.  Unlike the comparison of MultiFOLD2 and AF3, the results of all Wilcoxon 
signed-rank tests that were statistically significant (p < 0.05) are also highlighted in bold. 

 

  

Servers Number 
 of targets 

Cumulative 
monomer-IDDT 

Cumulative 
monomer-IDDT 

Wilcoxon Test 

 

MultiFOLD2-MultiFOLD1 41 35.45 (0.86) 35.24 (0.85) p = 9e-3<0.05 

     

MultiFOLD2-Server 76 46 36.29 (0.79) 35.64 (0.77) p = 3e-4<0.05 

     

MultiFOLD2-AF3 22 18.59 (0.85) 18.68 (0.85) p = 9e-1>0.05 

 

MultiFOLD2 outperformed MultiFOLD1 and other servers in terms of both homo and hetero types of 

complexes. Only the cumulative QS-score for the heteromeric models generated by Server 76 was 

higher than that of the MultiFOLD2 heteromeric models (Table 5.9). Server 76  (disclosed by the 

CAMEO authors as being Swiss-Model) (Biasini et al., 2014) is based on homology modelling, which 

is successful for modelling the conserved interface of complex proteins; hence, homomeric models 

may be better predicted than heteromeric models. However, heteromeric predictions for Server 76 

outperformed MultiFOLD2 in terms of QS-score, which could be due to incorrect stoichiometric 

information, despite the fact that the Oligo-IDDT score for MultiFOLD2 was higher. When analysing 

the heteromeric models generated by both servers (MultiFOLD2 and Server 76), MultiFOLD2 tended 

not to predict well for the heteromeric models with more than four chains. The QS-score for the only 

model (target:8JLC) generated by MultiFOLD2 was zero despite it being a di-heteromeric model, 

while the QS-score for the same target generated by Server 76 was 0.46. Interestingly, the Oligo-

IDDT score for 8JLC generated by MultiFOLD2 was twice as high as that of Server 76. This suggests 

that MultiFOLD2 can predict the monomeric structures of dimers well; however, it does not predict 

the interface accuracy for dimeric interface as effectively. An observation for AF3 was that it predicted 

all homomeric models as monomers, similar to MultiFOLD1, resulting in an QS-score of zero.  
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Table 5.9 Comparison of MultiFOLD2, MultiFOLD1, and other servers in terms of the type of 

multimeric structures. 

The table representing the comparison of cumulative oligo-IDDT and QS-scores for the homomeric and 
heteromeric models generated by MultiFOLD2 and those generated by MultiFOLD1, Server76, and AF3. The 
cumulative scores for the best servers are indicated in bold. 

 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Cumulative  
Oligo-IDDT 

Cumulative  
QS-score 

Heteromer Heteromer Homomer Homomer 
 

MultiFOLD2 

 

MultiFOLD1 

 

MultiFOLD2 

 

MultiFOLD1 

 

MultiFOLD2 

 

MultiFOLD1 

 

MultiFOLD2 

 

MultiFOLD1 

46.43 44.51 28.10 27.28 35.40 34.73 24.45 22.93 

 

MultiFOLD2 

 

Server 76 

 

MultiFOLD2 

 

Server 76 

 

MultiFOLD2 

 

Server 76 

 

MultiFOLD2 

 

Server 76 

34.12 33.29 21.21 26.67 35.40 20.21 24.45 8.053 

 

MultiFOLD2 

 

AF3 

 

MultiFOLD2 

 

AF3 

 

MultiFOLD2 

 

AF3 

 

MultiFOLD2 

 

AF3 

21.99 21.15 14.28 13.98 12.33 5.87 10.00 0 

 

MultiFOLD1 tended to predict the models that either underestimated or overestimated when 

compared to reference structures in terms of the number of chains. This was an issue of 

stoichiometry, which was addressed for MultiFOLD2. However, the stoichiometry of 57%, 50%, and 

59% of the models in the common subsets were predicted correctly when MultiFOLD2 was 

compared to MultiFOLD1, Server 76, and AF3, respectively. Specifically, as the number of chains 

increased, the likelihood of an issue with correct stoichiometry prediction occurring also increased. 

Compared to MultiFOLD1, MultiFOLD2 predicted the wrong stoichiometry for 69 models out of 139 

targets (Table 5.10).  MultiFOLD2 was not designed in order to solve the stoichiometry issue. Similar 

to MultiFOLD1, MultiFOLD2 relies on template-based stoichiometry prediction. Instead of predicting 

a greater number of chains compared to the reference structures, MultiFOLD2 tended to predict 

fewer chains compared to the reference structures, especially when compared to the other three 

methods. In addition, when comparing common targets between MultiFOLD1 and MultiFOLD2, 

MultiFOLD2 predicted 11 multimer targets as monomers, while MultiFOLD1 predicted 12 such 

targets, with seven of these being the same for both. It is clear that stoichiometry prediction is an 

area for further improvement for all methods.  
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Table 5.10 Evaluation of stoichiometry for joint models generated by servers. 

The table representing incorrect estimations of chain numbers for models generated by the servers. It also 
includes the target numbers for joint targets submitted by the servers. Comparisons are made between Server5 
(MultiFOLD2) to Server 1 (MultiFOLD1), Server 76 and AF3. The servers` predictions were assessed for either 
underestimation or overestimation. In addition, multimers predicted as monomeric structures are included in 
the underestimation column.    

 

Servers Target 

Number 

Underestimation Overestimation 

MultiFOLD2 - MultiFOLD1 139 38 (11 monomer) 11 

MultiFOLD2 - Server 76 116 40 (11 monomer) 8 

MultiFOLD2 - AF3 55 25 (5 monomer) 4 

 

To create a diverse structure pool, various approaches have been employed in MultiFOLD, including 

different versions of AF2M and varying recycling parameters in the MultiFOLD_refine section. In 

addition, to access a more effective conformational space, the efficacy of generative models as a 

replacement for AF2M has been investigated. Research has demonstrated that these models can 

produce functional structures that are not present in the Protein Data Bank (PDB) (Tian et al., 2021). 

Since MultiFOLD2's structure search relies on AF2M and other similar approaches, there is a 

possibility of getting trapped in local minima, potentially limiting the quality of the obtained models. 

However, generative models can overcome such issues as they are not constrained by kinetic 

barriers (Janson et al., 2023). This issue might be addressed by the diffusion model used in the latest 

stage of AF3, however the code for AF3 is not available at the time of writing. Despite these short 

comings, MultiFOLD2 has outperformed AF3 in predicting complex structures without employing 

generative models. This can be attributed to MultiFOLD2’s use of built-in stoichiometry prediction, 

independent scoring, along with improved sampling, which allows for a diverse conformational 

search strategy.  
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5.4 Conclusions 

Despite the breakthroughs in protein structure modelling achieved using DNNs, such as AF2M and 

RoseTTAFold2, significant challenges remain in accurately predicting protein complexes. These 

challenges include modelling stoichiometrically correct multi-chain structures and generating 

comprehensive conformational ensembles. Addressing these fundamental issues has driven the 

development of new methods. Consequently, MultiFOLD1 was developed in order to predict complex 

protein structures with accuracy beyond that of AF2M (McGuffin et al., 2023). While the algorithm of 

MultiFOLD1 relies on AF2M for generating multiple structures from the given protein sequence, it 

improves upon them through better selection using an independent MQA known as ModFOLDdock, 

and refinement through custom template recycling. The further success of the latest version of 

MultiFOLD, MultiFOLD2, can be attributed to several additional factors: accessing a broader 

conformational space by using two version of RoseTTAFold and a dropout approach, utilizing 

different combinations of quality assessment scores, and employing recycling with the improved 

version of ColabFold. The positive impact of using varied recycling values on complex structures 

was demonstrated in the previous chapters. 

Our primary objective was to demonstrate the superiority of MultiFOLD2 over MultiFOLD1 and to 

benchmark the performance of both versions against other servers using the CAMEO-BETA data. 

Results indicate that MultiFOLD2 has emerged as the top-performing server according to the 

CAMEO-BETA project, surpassing even the latest version of the AF methods, known as AF3. 

Analysis the cumulative performance of the servers shows improved modelling of homo and hetero 

multimeric structures. The only exception was that AF3 outperformed MultiFOLD2 in monomeric 

structure predictions. This discrepancy may be attributed to our ModFOLDdock method, which was 

optimised with scores tailored for multimer protein models, which potentially affecting the accurate 

selection of the best homomer model. 

The most critical problem for MultiFOLD2 is the stoichiometry issue, which is a common challenge 

for all similar methods. MultiFOLD2 often predicted multi-chain reference structures with fewer 

chains, sometimes even as monomers, compared to the reference structures. When MultiFOLD1 

was first introduced, it predicted all homomer structures as monomers, resulting in poor QS-scores. 

However, after a bug in the template-based stoichiometry assignment was fixed, this issue was 

resolved in December 2023, leading to improved scores. While MultiFOLD1 exhibits lower 

performance for heteromeric structures, MultiFOLD2 has shown improved success in this area 

compared to other servers, with the exception of the Oligo-IDDT scores from Server 76. Efforts to 

improve complex protein structure predictions are inherently constrained by computational 

limitations. Currently, MultiFOLD can only process protein sequences up to the residue capacity of 

AF2M. Therefore, manual prediction is required for protein sequences exceeding ~6000 residues, 

which is the current size limit based on the latest 48GB GPU cards. 
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The development of MultiFOLD can be advanced through three distinct avenues. Firstly, if Google 

DeepMind release their code, then AF3 method will be integrated with the pipeline. Secondly, the 

integration of the next version of ModFOLDdock, trained using different DNNs and new quality 

scores, may be expected to enhance the performance beyond that of MultiFOLD2. With the high-

quality protein structures obtained from AF2M and RoseTTAFold2, research has increasingly shifted 

focus towards studying interactions between proteins and non-protein structures. Consequently, 

accurately identifying binding sites on proteins has become increasingly important. Therefore, 

integrating scores that identify and score binding site regions into ModFOLDdock could further 

enhance its capabilities. Additionally, incorporating generative models to explore previously 

uncharted regions of conformational space would enrich the structural model pool. At the time of 

writing, MultiFOLD2 is currently being tested in the CASP16 competition, and its performance will 

be announced at the CASP16 conference in December.



 
  

Chapter 6 

177 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Chapter 6: Synthesis, Conclusions and Next Directions  



 
  

Chapter 6 

178 
 

6.1 Synopsis of study 

 
Structural bioinformatics has been revolutionised following the release of AF2, which predicts both 

monomeric and multimeric structures with up to two chains at close to experimental accuracy. 

Hence, following the CASP14 competition and the release of the AF2 code 

(https://github.com/google-deepmind/alphafold), most existing tools were upgraded to integrate 

various AF2 versions into their own methods, and new specific functional tools were released using 

the different parts of the AF2 code. Over the last few years, several different AF2 versions have been 

released, and each new version has outperformed the previous versions incrementally. Although it 

is known that the most recent AF2 versions predict monomeric structures very well, it remains 

uncertain how the code can be used effectively to obtain high quality models for larger multimeric 

structures.  

With the growing use of DNNs in protein structure modelling, many new methods have managed to 

obtain high quality models for both monomeric and multimeric structures, and in turn, the use of 

traditional refinement methods has decreased. Alternatively, predictors have sought to include other 

techniques for the improvement of intermediate models rather than refining the final modelled 

structures to fix the errors using traditional methods such as MD simulation (Heo et al., 2019). This 

change in practice occurred along with the removal of the CASP15 refinement category. However, 

research has shown that the models generated by even the very latest AF2 versions are still 

imperfect and that procedures need to be developed to improve them (Heo & Feig, 2020). Rather 

than using the traditional refinement tools for the improvement of multimeric models, the various AF2 

input parameters can be effectively exploited to obtain higher quality multimeric structures. This 

study first focused on the optimisation of parameters for the AF2M version, particularly the use of 

further recycling, custom MSAs and custom templates, to improve models of the quaternary 

structures of proteins. Subsequently, these optimisations, described in Chapters 2, 3 and 4, were 

integrated with our MultiFOLD (McGuffin et al., 2023) server versions, which have shown leading 

performance in gold-standard blind prediction experiments, such as the CASP competition and the 

CAMEO project. 

 

 

6.1.1 The impact of recycling on the modelling of quaternary structures of proteins: An 

evaluation of two AlphaFold2 versions (AF2_Advanced and AF2-Multimer) 

 
 
Inspired by the success of AF2 in predicting single chains (Jumper et al., 2021a), research was 

conducted to apply AF2 methods to protein complexes. AF2_Advanced and AF2M were developed 

as forks of the original AF2 version to model the quaternary structures of proteins, but the issue of 

improving the accuracy of the models remained. One of the most intriguing parts of the AF2 code 

https://github.com/google-deepmind/alphafold
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was the concept of the recycling process, which was used to improve models by passing them 

through the DNN multiple times. Three recycling steps were found to be sufficient for accurately 

predicting single chains (Jumper et al., 2021a); however, the optimal number of recycling steps for 

modelling protein complexes is not yet fully understood.   

One aim of Chapter 2 was to identify the effect of further recycling on multimeric structures and to 

find, if available, the most suitable number of recycles for both main AF2 versions in order to obtain 

multimeric models with the highest model quality. In terms of quality score (TM-scores (Zhang & 

Skolnick, 2004), IDDT scores (Mariani et al., 2013) and QS-scores (Bertoni et al., 2017)), an increase 

in the number of recycles has been observed to have a positive impact on the quality of quaternary 

structure models of proteins. However, increases in the number of cycles do not always result in 

higher-quality models of complexes. Additionally, there is no significant difference between 

AF2_Advanced and the first versions of AF2M regarding model improvement with increased 

recycling. The analysis indicated that 12 recycles can be more effective for both AF2M and 

AF2_Advanced than the default 3 recycles. This result shows that higher quality complex structures 

can be obtained through the use of further recycling.  

(Following this study, the “auto” recycling parameter was introduced by the ColabFold developers, 

which now automatically determines the optimal number of according to the score produced for a 

given protein structure; hence, a user does not necessarily need to manually select the number of 

recycling cycles when running AF2M). 

 

6.1.2 The impact of the custom template recycling for the improvement of quaternary 

structures of proteins 

 
 
The AF2M method has demonstrated the benefits of the use of end-to-end DNNs for protein structure 

prediction (Evans et al., 2022). Over time, changes have been made to AF2's methods to improve 

its ability to predict structures. New versions of AF2M, v1 and v2, have been developed that offer 

two options, mainly in terms of different trained weights. Another important change was the addition 

of the custom template option, which can greatly enhance the initial quality of the structure predicted 

by AF2M. This is because template structures can be created using other modelling methods, 

particularly those based on physical laws, leading to better results. In Chapter 3, the best-modelled 

structures from the CASP14 and CASP15 targets were used as templates, as well as the AF2-NBIS-

Multimer and MultiFOLD models. Separate weights were employed to ensure that these targets were 

not part of the AF2M training set. The result shows that custom templates with further recycling can 

be employed to obtain higher quality multimeric structures. However, for the CASP14 models, the 

improved model quality correlated with an increase in further recycling with the custom templates, 
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while the CASP15 models show that the way AF2M is trained affects the quality of multimeric models 

(Wallner, 2023a). This discrepancy may be attributed to the use of v2 for the CASP15 models; 

AF2M_v2 is more recent than AF2M_v1 and was adjusted to improve MolProbity scores (Chen et 

al., 2010(a)), which were designed to reduce clashes. This aligns with traditional refinement theory, 

suggesting that higher-quality initial structures tend to degrade rather than improve during 

conformational sampling. Therefore, there may be connection between the quality of the template 

used and which version (v1 or v2) is used. Additionally, the CASP15 templates were higher quality 

starting models (https://predictioncenter.org/casp15/results.cgi?tr_type=multimer) than the CASP14 

templates (https://predictioncenter.org/casp14/results.cgi?view=targets&tr_type=multimer) since 

tools in the CASP15 competition employed AF2M in their methods.  Along with custom templates, 

the use of MSAs is advantageous for models generated by AF2M using further recycling compared 

to using a SS approach (Adiyaman et al., 2023).  

 

6.1.3 The impact of varying custom input options on models generated by AF2M  

 

The most important factors in the model development of AF2M are the input features designed within 

AF2, namely, custom templates and custom MSAs. These two inputs have been shown to be used 

in different ways, particularly in the CASP15 competition, demonstrating the advanced performance 

of AF2M (Kryshtafovych et al., 2023a). Therefore, in Chapter 4, the impact of changing the way 

inputs are given on AF2M models was examined. When the custom templates were provided as 

“single-chain” custom templates instead of the default setting being used, it was demonstrated that 

AF2M can be influenced by external custom structural input. When AF2M uses template structures 

as guides for conformational sampling, it individually processes each chain for multichain protein 

structure templates (Evans et al., 2022), which affects multimeric model quality. Therefore, providing 

complex templates to AF2M as “single-chain” custom templates was examined, as such provision 

may allow the simultaneous evaluation of the entire structure, preserving the interfaces between 

chains. While the results showed improvements in TM-scores and IDDT scores, no improvement 

was observed in the interface scores (QS-scores and DockQ-waves).  

Co-evolution information derived from MSAs has significantly contributed to AI-based tools for 

structure prediction. AF2 is among the most impactful methods developed for extracting valuable 

insights from MSAs by leveraging coevolutionary data. Therefore, a high quality MSA must be 

provided as input for the power of AF2 to be of benefit. The most important factor here is that residues 

corresponding to ordered regions give strong coevolution signals. However, residues corresponding 

to disordered regions, or natively unstructured regions, lack some coevolution information (Iserte et 

al., 2020). Parts that cause such a weak signal are also likely to cause incorrect alignment within the 

MSA, which reduces the accuracy of predictions during the inference phase of AI-based tools. MSAs 

https://predictioncenter.org/casp15/results.cgi?tr_type=multimer
https://predictioncenter.org/casp14/results.cgi?view=targets&tr_type=multimer
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that lack disordered structures also mean that they have increased complexity. However, Petti et. al 

(2022) have shown that high complexity MSAs are more effective inputs for AF2M, and thus AF2M 

can be forced to make better use of co-evolution information. In the case of the MSAs filtered to 

screen out disordered residues, it was observed that more than half of the multimeric models were 

improved across the four quality scores. The results show that when suitable disorder filtering is 

applied to input an MSA, AF2M can produce higher quality protein models by strengthening the co-

evolutionary signal within the ordered regions.  

 

6.1.4 Performance comparison of MultiFOLD1 and MultiFOLD2 using data from the CAMEO-

BETA project  

 
In the CASP15 competition, AF2M-based tools modelled the quaternary structures of proteins very 

well. Although AF2M provides higher quality protein models, its drawback is that it predicts only a 

single conformation (Sala et al., 2023), highlighting the need for a new multichain protein modelling 

tools that improve conformational sampling. This issue can be solved by designing an extended 

structure pool with models obtained from other tools or methods. To this end, we developed an 

AF2M-based server called MultiFOLD (McGuffin et al., 2023), employing custom templates with 

further recycling to model complexes. The main  MultiFOLD server algorithm performs more effective 

conformational sampling to generate diverse structures (Brysbaert et al., 2024; Wallner, 2023b), 

selecting the best ones from a structure pool using our quality estimation tool known as 

MultiFOLDdock (Edmunds et al., 2023). ModFOLDdock, designed by our group, ranked second in 

the CASP15 competition. Consequently, selecting the best models from the generated multichain 

protein structure pool using ModFOLDdock enabled MultiFOLD to achieve better results than other 

servers. Both MultiFOLD1 and the subsequently developed MultiFOLD2 outperformed other 

methods in modelling monomeric and multimeric models. While the latest version of AlphaFold (AF), 

AlphaFold3 (AF3), achieves more effective results for monomeric models, the two versions of 

MultiFOLD have shown superior performance for multimeric models.  

Initially, in MultiFOLD1, the structure pool was created by utilizing two different local versions of 

ColabFold (Mirdita et al., 2022), which is a local and website variant of AF2M, with varying 

parameters. This approach is based on the hypothesis that different versions of AF2M with different 

parameters can produce more orthogonal sampling of models through recycling, as explored in 

Chapters 2 and 3. In MultiFOLD2, the conformational sampling space was further enhanced by 

incorporating RoseTTAFold2 (Baek et al., 2023) and RoseTTAFold2 All-Atom (Krishna et al., 2024) 

and dropout methods of AF2M (Jumper et al., 2021a), resulting in a more extensive structure pool.  
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6.2 Conclusions 

 

AF2M was examined in terms of the combination of modelling and refinement, and it’s appropriate 

and effective use were determined. AF2 has evolved, with new versions also appearing since the 

first day it was released. Here, the most effective way to use AF2M in terms of improvement is by 

increasing conformational sampling, which produces a large number of conformational structures in 

the same way that traditional refinement methods do. It has been observed that this generally 

involves using either recycling or dropout methods. Additionally, more recycling gave better results 

in both main versions of AF2. Assuming that the external templates provided to AF2M are beneficial 

input, the quality of the template structure - that is, the starting structures - obtained by externally 

templating AF2M_v1 and AF2M_v2 varies, depending on which AF2M version is used and whether 

the MSA information is used or not. If the template structure is of good quality, AF2M_v1 tends to 

give better structures, while the inclusion of MSA information along with a custom template and 

further recycling has been observed to increase the quality of both the global assembly and the 

modelled interface residues in the structures. 

Since it is important to provide an effective MSA to AF2M which benefits from clear co-evolutionary 

information, a custom MSA input has been provided. In this way, residues that lack co-evolutionary 

information on the MSA produced by AF2M are removed and MSAs are replaced with those that 

have strong coevolutionary information. When an MSA input is given, AF2M ordered structure signal 

will be improved, and higher quality structures will be likely to emerge. However, there is not a single 

set of parameters for MSA filtering that can be applied generally to each protein structure. Therefore, 

performing generic MSA filtering for each protein structure does not always provide improvements 

in models, and it is not possible to determine what kind of disordered structures filtering a given the 

protein target will benefit from. We wanted a consistently effective improvement process in a protein 

modelling tool, so we designed the AF2M-based MultiFOLD server by focusing on both the sampling 

and refinement phases. To ensure effective use of the structural information of the AF2 versions, 

different versions of AF2M, as well as RoseTTAFold2 and dropout methods of AF2M, were used to 

produce different conformations in modelling, and in the refinement process with initial models as 

custom template inputs, 12 recycles of AF2M was used to ensure that higher quality structures were 

prepared. The effectiveness of two MultiFOLD servers was benchmarked with other servers in the 

CAMEO project based on both Oligo-IDDT and QS-scores. MultiFOLD2 was found to outperform 

MultiFOLD1 and furthermore, it was determined the best among the other servers, even 

outperforming AF3, according to the modelling of the quaternary structures of proteins. 
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6.3 Future directions 

 

As the use of AI-based methods on multichain protein structure modelling has increased and higher 

quality models of complex proteins have been predicted, the focus on modelling has now given way 

to specific areas, the most important of which are protein design and protein ligand prediction. 

Sampling low-energy conformational structures of proteins for protein design and modelling binding 

sites in protein structures for ligands are likely to be the main focuses for “improvements” from now 

on. Hence, future research will focus on extending the existing structure pool used for MultiFOLD2 

by examining the following major topics.  

A) I will aim to develop a standalone mechanism that will integrate AF methods with the models 

in trajectories obtained by using open source MD simulations, such as OpenMM (Eastman 

et al., 2024). Since force fields are insufficient for multimeric models, I will follow 

developments in this field. 

 

B) MultiFOLD2 is currently being tested in the CASP16 competition. After the CASP16 

conference, new methods introduced by the community will be evaluated and integrated into 

MultiFOLD version 3 to produce higher quality structures. Comparisons with AF3 (Abramson 

et al., 2024) indicate that, while MultiFOLD2 performs well, there is still a need for better tools 

to create even higher-quality models of complex structures. 

 

At the time of this writing, the AF3 code has not been released, so it is impossible to make 

use of the strength of the diffusion model in AF3 (Abramson et al., 2024). Therefore, 

integrating deep generative models into future versions of MultiFOLD is a potential further 

step. By doing so, I may achieve more effective conformational sampling for multimeric 

structures.  

 

C) It was shown in Chapter 4 that modifications to the inputs given to AF2M can affect the quality 

of the model predicted by AF2M. The main factor is the transformer method, which decides 

which information in the input structures is more beneficial. Transformers determine this by 

using neurons weighted according to certain information and allowing AF2M to benefit 

effectively from coevolution information. Furthermore, even if disorder residue information is 

not available in MSAs, the improvement in model quality changes may be attributed to 

changes in the weights created in the neurons of the DNNs within the transformer structure. 

Consequently, investigating this effect can provide faster modelling and increased efficiency 

in terms of time by examining whether other information can be reduced.
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Data availability: 

A Data is open access from The Critical Assessment of Protein Structure Prediction (CASP) 

Community Resource CASP14 DATA: (https://predictioncenter.org/download_area/CASP14/) and 

CASP15 DATA (https://predictioncenter.org/download_area/CASP15). Since the data for chapters 

(2, 3, and 4) based on open access, data can be reproducible using Alphafold2. The data in Chapter 

5 is maintained by the Continuous Automated Model EvaluatiOn (CAMEO) organization. 
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Appendix 1 

 

a)                                                                                  

 

 

     b) 

 

T1083(A2):  

GAMGSEIEHIEEAIANAKTKADHERLVAHYEEEAKRLEKKSEEYQELAKVYKKITDVYPNIRSYMVLHYQNLTR
RYKEAAEENRALAKLHHELAIVED 

 

 T1084(A2): 

MAAHKGAEHHHKAAEHHEQAAKHHHAAAEHHEKGEHEQAAHHADTAYAHHKHAEEHAAQAAKHDAEHHA
PKPH 
 

 

     c) 

 

 

 

 

 

 

 

 

 

These graphics demonstrated that the differences between sequence identity generated by AF2M integrated 
with MMseq2. The difference means the MSA in T1084 target can be failed. A) The sequence coverage of 
T1083 (left) and T1084 (right). B) Number of sequences of T1083 (above), of T1084 (below) C) Reference 
structures of T1083 (left) and T1084 (right).  

 

Figure S.1 The drawback of AF2M in terms of homology sequence mining. 
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Appendix 2 

 

 

 

Table S.1 Performance comparison between AF2M and AF2_Advanced using the same 
recycling process, according to the cumulative scores of the modelled complexes of CASP 
14 targets. 
The Wilcoxon signed-rank tests were used to evaluate whether the quality scores of models generated by 
AF2M are statistically different from those of models predicted by AF2_Advanced, given a certain recycle 
value. H0: The observed quality scores of models generated using y cycles by AF2M are equal to or lower 
those of models generated using x cycles by AF2_Advanced, where x and y are same integers between 1 and 
48. H1: The observed quality scores of models produced after y cycles AF2M are greater than those generated 
using x cycles by AF2_Advanced. P-values ≤ 0.05 indicate significant statistical differences. P-value where H0 
was rejected are in boldface. (n = 78 models for the observed TM-score, IDDT, and QS-score) Wilcoxon signed-
rank test was performed in the R program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cumulative scores of CASP targets generated by the AF2 versions 

 
Wilcoxon signed-rank test 

 
p-value 

For pairwise cycles 
(AF2-Multimer and AF2_Advanced) 

 

TM-score IDDT score QS-score 

cycle 1 - cycle 1  2.42E-01 5.83E-01 3.78E-02 
cycle 3 - cycle 3  2.01E-01 2.88E-01 9.26E-02 
cycle 6 - cycle 6  5.83E-01 7.12E-01 2.07E-01 

cycle 12 - cycle 12  6.63E-01 7.35E-01 4.19E-01 
cycle 24 - cycle 24  5.28E-01 7.35E-01 4.19E-01 
cycle 48 - cycle 48  3.63E-01 5.28E-01 1.54E-01 
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Appendix 3 

 

 

 

 

 

                                                                                

 

 

 

 

 

 

 

 

Three scatter plots showing the improvement of models following recycling. The plots compare the observed 
TM-score, IDDT, and QS -scores for the improved models (y-axis) versus the baseline TM-score, IDDT, and 
QS-scores (x-axis) for the CASP14 models generated during all recycles (1-3-6-12) for six group models 
generated by AF2M using the SS method with recycling, respectively. The minimum values for TM-score, IDDT, 
and QS-score are 0, while the maximum values are 1. Each colour corresponds to different group models, with 
orange representing Baker, red representing Venclovas, black representing Takeda_Shitaka, purple 
representing Seok, green representing DATE, and blue representing AF2M. The scatter plots were drawn using 
R. 

Figure S.2 A comparison of the observed and baseline three quality scores for the CASP14 
models after recycling in the SS method. 
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Appendix 4 

 

 

Four scatter plots representing comparisons of the observed TM-scores for the improved models of six groups 

(y-axis) versus the baseline TM-scores (x-axis) for the CASP14 models generated during recycles 1-3-6-12, 

separately, using the MSA method. Each colour corresponds to different group models, with orange 

representing Baker, red representing Venclovas, black representing Takeda-Shitaka, purple representing 

Seok, green representing DATE, and blue representing AF2M. The scatter plots were drawn using R.

Figure S.3 A comparison of the observed and baseline TM-scores for the CASP14 models 
during each recycles (1-3-6-12) in the MSA method. 
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Appendix 5 

 

 

Four scatter plots representing comparisons of the observed IDDT scores for the improved models of six 

groups (y-axis) versus the baseline IDDT scores (x-axis) for the CASP14 models generated during recycles 1-

3-6-12, separately, using the MSA method. Each colour corresponds to different group models, with orange 

representing Baker, red representing Venclovas, black representing Takeda-Shitaka, purple representing 

Seok, green representing DATE, and blue representing AF2M. The scatter plots were drawn using R. 

 

Figure S.4 A comparison of the observed and baseline IDDT scores for the CASP14 models 
during each recycles (1-3-6-12) in the MSA method. 
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Appendix 6 

 

Four scatter plots representing comparisons of the observed QS-scores for the improved models of six groups 

(y-axis) versus the baseline QS-scores (x-axis) for the CASP14 models generated during recycles 1-3-6-12, 

separately, using the MSA method.  Each colour corresponds to different group models, with orange 

representing Baker, red representing Venclovas, black representing Takeda-Shitaka, purple representing 

Seok, green representing DATE, and blue representing AF2M. The scatter plots were drawn using R. 

 

Figure S.5 A comparison of the observed and baseline QS-scores for the CASP14 models 
during each recycles (1-3-6-12) in the MSA method. 
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Appendix 7 

Bar charts representing the cumulative change in observed A) TM-score (left), B) IDDT (middle), C) QS-score (right) generated from alignment between the baseline 
models and the CASP14 models generated by AF2M using the SS method after recycling (1-3-6-12).  Each colour-coded bar corresponds to a distinct group. The bar 
charts were drawn using R.

Figure S.6 A comparison of the observed and baseline three quality scores for the CASP14 models after recycling in the SS method. 
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Appendix 8 

 

          

 

 

 

 

 

 

 

 

 

 

 

           

 

 

The density plots showing Molprobity scores (lower Molprobity scores are better) for the CASP14 models 

generated by AF2M using SS, with red for cycle 1 (R1M), blue colour for cycles 3 (R3M), green colour for 

cycles 6 (R6M), magenta colour for cycles 12 (R12M) and black colour for baseline as starting model. These 

plot compares the geometric correctness rate for models after cycles, without using experimentally observed 

protein structure. The Molprobity scores were generated by http://molprobity.biochem.duke.edu/. The density 

plots were drawn using R.

Figure S.7 A comparison of the observed and baseline Molprobity scores for the CASP14 
models after recycling in the SS method. 

http://molprobity.biochem.duke.edu/
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Three scatter plots showing the improvement of homomeric and heteromeric models following further 
recycling. The plot for TM-scores (top), plot for IDDT (middle), and plot for QS-scores (bottom) compare the 
observed scores for the improved models (y-axis) versus the baseline scores (x-axis) for the CASP14 models 
generated by AF2M using the MSAs during all recycles (1-3-6-12) for six group models. The minimum values 
for TM-score, IDDT, and QS-scores are 0, while the maximum values are 1. The homomeric models highlight 
in blue, the heterometric models highlight in red. The scatter plots were drawn using R.  

Figure S.8 A comparison of the observed TM-scores, IDDT score, and QS-scores with the 
baseline in the MSA method, in terms of types of the CASP14 protein targets. 
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Scatter plot representing the comparison of the (A) observed TM-scores (y-axis) and (B) observed IDDT scores 
(y-axis) with the baseline (x-axis) and models generated during all recycle (1-3-6-12) for six group models in 
the SS method. The minimum values for TM-scores and IDDT scores are 0, while the maximum values are 1. 
The red circles represent the refined models, while the black ones represent the unrefined models. This scatter 
plot was drawn using R

Figure S.9 A comparison of the observed TM-scores and IDDT scores for the CASP15 models 
with the baseline in the SS method. 
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Scatter plot representing the comparison of the (A) observed QS-scores (y-axis) and (B) observed 
DockQ_wave scores (y-axis) with the baseline (x-axis) and models generated during all recycle (1-3-6-
12) for six group models in the SS method. The minimum values for QS-scores and DockQ_waves are 
0, while the maximum values are 1. The red circles represent the refined models, while the black ones 
represent the unrefined models. This scatter plot was drawn using R.

Figure S.10 A comparison of the observed QS-scores and DockQ_wave scores for the 
CASP15 models with the baseline in the SS method. 
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Appendix 12 

Two scatter plots showing the improvement of homomeric and heteromeric models following recycling. The 
plot for TM-scores (top) and plot for IDDT (bottom) compare the observed scores for the improved models (y-
axis) versus the baseline scores (x-axis) for the CASP15 models generated by AF2M using the MSAs during 
all recycles (1-3-6-12) for six group models. The minimum values for both TM-scores and IDDT scores are 0, 
while the maximum values are 1. The homomeric models highlight in blue, the heterometric models highlight 
in red. The scatter plots were drawn using R.  

Figure S.11 A comparison of the observed TM-scores and IDDT scores with the baseline in 
the MSA method, in terms of types of the CASP15 protein targets. 
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Two scatter plots showing the improvement of homomeric and heteromeric models following recycling. The 
plot for QS-scores (top) and plot for DockQ_wave scores (bottom) compare the observed scores for the 
improved models (y-axis) versus the baseline scores (x-axis) for CASP15 models generated by AF2M using 
the MSAs during all recycles (1-3-6-12) for six group models. The minimum values for both QS-scores and 
DockQ_wave scores are 0, while the maximum values are 1. The homomeric models highlight in blue, the 
heterometric models highlight in red. The scatter plots were drawn using R. 

 

Figure S.12 A comparison of the observed QS-scores and DockQ_wave scores with the 
baseline in the MSA method, in terms of types of the CASP15 protein targets. 
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Appendix 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The density plots showing Molprobity scores (lower Molprobity scores are better) for the CASP15 models 
generated by AF2M using SS, with red for cycle 1 (R1M), blue colour for cycles 3 (R3M), green colour for 
cycles 6 (R6M), magenta colour for cycles 12 (R12M) and black colour for baseline as starting model. These 
plot compares the geometric correctness rate for models after cycles, without using experimentally observed 
protein structure. The Molprobity scores were generated by http://molprobity.biochem.duke.edu/. The density 
plots were drawn using R.

Figure S.13 A comparison of the observed and baseline Molprobity scores for the CASP15 
models after recycling in the SS method. 

http://molprobity.biochem.duke.edu/
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Bar charts representing the cumulative changes in the observed TM-score (Top-left), IDDT (Top-right), DockQ_wave (Bottom-left), QS-score (Bottom-right) 
generated from alignment between the baseline models and the CASP15 models generated by AF2M using the SS method after recycling (1-3-6-12).  Each 
colour-coded bar corresponds to a distinct group, with orange representing Zheng, red representing Venclovas, black representing Wallner, purple representing 
Yang-Multimer, green representing NBIS-AF2-Multimer, and blue representing MultiFOLD. The bar charts were drawn using R.

Figure S.14 A comparison of the observed and models baseline four quality scores for the CASP15 after recycling in the SS method. 
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Appendix 16  

 

Table S.2 The python script for preprocessing for the disorder filtering MSAs. 

The script provides to ignore the specific types of disordered residues within homologous sequences 

and designs MSAs as an input for AF2M. 

 
import requests 
from Bio import SeqIO 
 
# Specify the name of the FASTA format file 
fasta_file = "input.fasta" 
 
# Open the FASTA file and retrieve the sequence names 
sequences = SeqIO.to_dict(SeqIO.parse(fasta_file, "fasta")) 
 
# Open a file to write the results 
with open("result1.txt", "w") as output_file: 
    # For each sequence name, search the UniRef100 database and write the sequence to the file 
    for seq_name in sequences: 
        output_file.write("Sequence Name: " + seq_name + "\n") 
 
        # Create a URL for searching using the UniProt REST API 
        url = f"https://www.uniprot.org/uniref/{seq_name}.fasta" 
 
        # Send a GET request and receive the response 
        response = requests.get(url) 
 
        # Check the response 
        if response.status_code == 200: 
            # Retrieve the text of the response 
            fasta_text = response.text 
 
            # Write the FASTA format sequence to the file 
            output_file.write("Sequence:\n") 
            output_file.write(fasta_text + "\n") 
            output_file.write("--------------\n") 
        else: 
            output_file.write("An error occurred during the search.\n") 
 
# Read the output file and extract the desired sections into a new file 
inside_desired_section = False 
 
with open("result1.txt", "r") as input_file, open("result2.txt", "w") as output_95_file: 
    for line in input_file: 
        if line.startswith(">"): 
            inside_desired_section = True 
 
        if inside_desired_section: 
            output_95_file.write(line) 
 
        if line.startswith("-------"): 
            if inside_desired_section: 
                inside_desired_section = False 
                output_95_file.write(line) 
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with open('result2.txt', 'r') as input_file: 
    lines = input_file.readlines() 
 
filtered_lines = [line for line in lines if line.count('-') < 6] 
 
with open('result3.txt', 'w') as output_file: 
    output_file.writelines(filtered_lines) 
 
with open('result3.txt', 'r') as input_file: 
    lines = input_file.readlines() 
 
filtered_lines = [line.strip() for line in lines if line.strip() != ""] 
 
with open('result4.txt', 'w') as output_file: 
    output_file.writelines('\n'.join(filtered_lines)) 
 
 
#### After the result4.txt, a code for IUPRED3 is run as shown in Appendix Table 1.3 result5.txt is 
obtained 
 
 
def merge(file_path): 
    combined_line = '' 
    with open(file_path, 'r') as file, open('result6.txt', 'w') as result_file: 
        for line in file: 
            if '>' in line: 
                if combined_line: 
                    result_file.write(combined_line.rstrip(',') + '\n')  # Removing the last comma 
                    combined_line = '' 
                result_file.write(line) 
            else: 
                combined_line += line.strip() + ', '  # Adding a comma at the end of each line 
 
        if combined_line: 
            result_file.write(combined_line.rstrip(',') + '\n')  # Removing the last comma 
 
file_path = 'result5.txt' 
merge(file_path) 
 
 
def merge_sequences(file1, file2, output_file): 
    seq1 = {} 
    seq2 = {} 
 
    # Process the lines of file 1 
    with open(file1, 'r') as f1: 
        lines1 = f1.readlines() 
        i = 0 
        while i < len(lines1): 
            line = lines1[i].strip() 
            if line.startswith('>'): 
                seq_id = line[1:].split()[0]  # Skip the '>' character and get the sequence ID 
                i += 1 
                seq = '' 
                while i < len(lines1) and not lines1[i].startswith('>'): 
                    seq += lines1[i].strip() 
                    i += 1 
                seq1[seq_id] = seq 
 
    # Process the lines of file 2 
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    with open(file2, 'r') as f2: 
        lines2 = f2.readlines() 
        i = 0 
        while i < len(lines2): 
            line = lines2[i].strip() 
            if line.startswith('>'): 
                seq_id = line[1:].split()[0]  # Skip the '>' character and get the sequence ID 
                i += 1 
                seq = '' 
                while i < len(lines2) and not lines2[i].startswith('>'): 
                    seq += lines2[i].strip() 
                    i += 1 
                seq2[seq_id] = seq 
 
    # Merge common sequences 
    merged_seqs = [] 
    for seq_id in seq1: 
        if seq_id in seq2: 
            merged_seq = f">{seq_id}\n{seq1[seq_id]}\n{seq2[seq_id]}\n" 
            merged_seqs.append(merged_seq) 
 
    # Write the result to the output file 
    with open(output_file, 'w') as result_file: 
        result_file.writelines(merged_seqs) 
 
    print(f"Result file created as '{output_file}'.") 
 
 
# Change file paths here or use the file names directly 
file1 = 'result6.txt' 
file2 = 'input.fasta' 
output_file = 'result7.txt' 
 
merge_sequences(file1, file2, output_file) 
 
def main(): 
    try: 
        with open("result7.txt", "r") as file: 
            lines = file.readlines() 
 
        new_lines = [] 
        prev_lines = [] 
 
        for i in range(2, len(lines), 3): 
            prev_line = lines[i - 2].strip() 
            prev_lines.append(prev_line)  # Store the value of prev_line 
            current_line = lines[i - 1].strip().split(", ") 
            next_line = lines[i].strip() 
 
            extra_line = "" 
            for character in next_line: 
                score_char = current_line[0] 
                char_and_score = score_char.strip("[]").split(",") 
                y = float(char_and_score[1].strip("[]")) 
                x = char_and_score[0] 
                if character == x: 
                    if y >= 0.50:                         #### It is the line of code that gives the ratio corresponding 
to the disorder residues and shows that values above this ratio will be ignored 
                        extra_line += "-" 
                    else: 
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                        extra_line += character 
                else: 
                    extra_line += character 
            new_lines.append(extra_line) 
 
        with open("Filtered_MSA.txt", "w") as output_file: 
            for prev_line, extra_line in zip(prev_lines, new_lines): 
                output_file.write(prev_line + "\n") 
                output_file.write(extra_line + "\n") 
 
    except FileNotFoundError: 
        print("File not found.") 
 
if __name__ == "__main__": 
    main() 
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Appendix 17  

Table S.3 The script for application of IUPRED3 for residue detection and filtering in the 
MSAs. 
The script was used to run IUPred3 in the Ubuntu terminal, enabling the measurement of the potential 
disorder rate for each residue within every homologous sequence in the MSA. Residues scoring 0.5 or 
higher are deemed disordered and consequently deleted from the MSA in order to design a low quality 
MSAs.  

 
 
In the script, (…….) indicates an optional part that includes ‘long’ for long disordered residues, ‘short’ 
for short disordered residues, ‘glob’ for domain disordered residues. 
 

 

#!/bin/bash 
 
input_file="result4.txt" 
output_folder="output_files" 
total_output="result5.txt" 
 
# Create the output folder 
mkdir -p "$output_folder" 
 
# Read the FASTA file line by line and process it 
while IFS= read -r line 
do 
  if [[ $line == ">"* ]]; then 
    # Header line 
    seq_name="${line#*>}"  # Get all characters after the ">" symbol 
    output_file="${output_folder}/$(echo $seq_name | awk '{print $1}').txt" 
    seq="" 
  else 
    # Sequence line 
    seq="${seq}${line}" 
    echo "$seq" > temp_seq.txt 
    python3 iupred3.py temp_seq.txt long > "$output_file" 
    rm temp_seq.txt 
  fi 
done < "$input_file" 
 
# Merge all output files into one 
cat "${output_folder}"/*.txt > "$total_output" 
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Appendix 18 

 

 

Table S.4 Comparison of model quality for AF2M models generated using “single-
chain” and standard custom templates. 
The table summarises the number of models generated by AF2M using both “single-chain” custom 
template and standard custom template compared to the initial models’ numbers. The comparison is 
presented in terms of decreasing, increasing and unchanged numbers. In terms of TM-score and IDDT 
score, the increasing number of models is greater than the decreasing number of models when 
comparing the “single-chain” custom templates to the initial models. However, when using the standard 
custom template methods, the decreasing number of models is more than the increasing number of 
models in terms of all four quality metrics.   

 

Comparing “single-chain” custom template with initial models 
The number of the models 

Scores Increasing Decreasing Unchanged 
TM-score 63 54 3 

IDDT 65 52 3 
QS-score 48 51 21 

DockQ_wave 54 57 9 
 

Comparing standard custom template with initial models 
The number of the models 

Scores Increasing Decreasing Unchanged 
TM-score 38 77 5 

IDDT 36 75 9 
QS-score 32 57 31 

DockQ_wave 56 17 47 
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Appendix 19 

 

Scatter plots showing linear, positive relationship between the pTM-scores generated by AF2M with standard MSA method versus the pTM scores of the models 
of CASP14-15 targets generated using A) AF2M-SF B) AF2M-LF C) AF2M-DF with n = 19 multimer targets. These above scatter plots belong to the Pearson’s 
R correlation test as an example.  The Pearson’s R correlation is 0.88, Kendall’s tau B correlation is 0.79 and Spearman’s Rho correlation is 0.93 for AF2M-SF, 
the Pearson’s R correlation is 0.94, Kendall’s tau B correlation is 0.95 and Spearman’s Rho correlation is 0.95 for AF2M-LF, the Pearson’s R correlation is 0.94, 
Kendall’s tau B correlation is 0.85 and Spearman’s Rho correlation is 0.95 for AF2M-DF. This plot was drawn via R. 

 

Figure S.15 The correlation between the pTM scores for three filtered MSA methods and the pTM scores for standard MSA methods. 
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Appendix 20 

Scatter plots showing linear, positive relationship between the pIDDT scores generated by AF2M with standard MSA method versus the pIDDT scores of the 
models of CASP14-15 targets generated using A) AF2M-SF B) AF2M-LF C) AF2M-DF with n = 19 multimer targets. These above scatter plots belong to the 
Pearson’s R correlation test as an example.  The Pearson’s R correlation is 0.92, Kendall’s tau B correlation is 0.71 and Spearman’s Rho correlation is 0.89 for 
AF2M-SF, the Pearson’s R correlation is 0.89, Kendall’s tau B correlation is 0.77 and Spearman’s Rho correlation is 0.90 for AF2M-LF, the Pearson’s R correlation 
is 0.89, Kendall’s tau B correlation is 0.71 and Spearman’s Rho correlation is 0.87 for AF2M-DF. This plot was drawn via R.

Figure S.16 The correlation between the pIDDT scores for three filtered MSA methods and the pIDDT scores for standard MSA methods. 
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Appendix 21 

 

The three figures show the long (A), short (B) and glob (C) disordered residues within monomeric 
structure for the T1123 target, respectively. A cut off value of 0.5 and above represents the likelihood of 
a residue being disorder. The figures were obtained through IUPred3. 

Figure S.17 The disorder/order residues within amino acid positions for the T1123 
CASP15 target. 
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Artificial Intelligence (AI): AI describes the replication of human intelligence in machines that 

are programmed to understand, learn, and solve issues. 

CAMEO: It is a project that aims to provide easy access to weekly performance information 

for the current modelling methods. 

CASP: It is a project held every two years to drive cutting-edge research and the development 

of new technologies for protein structure modelling and evaluate progress in accuracy, which 

is seen as the international gold standard. 

CD-HIT software system: Cluster Database at High Identity with Tolerance (CD-HIT) is a tool 

intended for clustering and analyzing biological sequence datasets. 

Consensus Method: Consensus methods in model evaluation calculate an average similarity 

score among models, with the presumption that better models exhibit greater similarity with 

others in the pool. 

CPU: Central Processing Unit is the main component that performs the majority of the 

operations by executing commands from programs through fundamental arithmetic, logic, 

control, and input/output operations. 

Deep Learning (DL): DL is a distinct subset of ML that leverages multi-layered ANN to process 

complex data and extract features implicitly. 

Diffusion Model: A model is a probabilistic ML model that is trained to produce data by 

repeatedly denoising a noisy sample, effectively reversing the noise addition method. 

Disorder-to-order structure: IDRs or IDPs evolving from a flexible, unstructured state to a 

more ordered and organized conformation—often due to interaction with a binding partner or 

specific environmental changes—is referred to as a disorder-to-order transition in protein 

structures. 

Dropout: It is a regularization strategy that enhances generalization using random selection 

to deactivate a subset of neurons during training, reducing the network's reliance on particular 

neurons. 

Embedded protein sequences: These types of proteins are numerical representations of 

protein sequences. They are converted into numerical vectors using protein language models 

(e.g. ProtT5, ESM, and ProtBERT). Such methods are used to better understand and analyse 

biological meaning and structural features in protein sequences. 

Fine-tunning: Rather than training from scratch, fine-tuning in deep learning is the process of 

fine-tuning a pre-trained model for a particular task by training it for a few more epochs on a 

smaller, task-specific dataset. 

Force Field: A force field for protein refinement is a quantitative model used to compute atomic 

interactions within a protein in order to stabilize and optimize its structure. 

GPU: Graphics Processing Unit is a customized processor designed to accelerate the building 

and rendering of visuals, animations, and videos. 

Homomeric proteins: They are proteins formed by the assembly of subunits of the same type, 

i.e. all subunits consist of the same polypeptide chain.  
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Heteromeric (non-homomeric) proteins: They are formed by the combination of different 

types of subunits and may have more complex structure and function. 

Hidden Markow Model (HMM): A HMM is a statistical model employed to describe systems 

that transition between a limited number of hidden states, in which the state of system at a 

given time is not directly observable but can be deduced from observed data. 

Invariant Point Attention (IPA): IPA is a mechanism in models dealing with data that exhibit 

symmetry or invariance, such as GNNs. It focuses on "invariant" or "stable" points to guarantee 

that the model performs consistently, regardless of the transformations applied to the input 

data. 

Language Model (LM): LM is a statistical or NN-based model trained to predict the likelihood 

of a sequence of words in a language, playing a fundamental role in natural language 

processing (NLP) tasks. 

Machine Learning (ML): ML is a category of AI that provides systems to learn patterns and 

make decisions from information within data without explicit programming. 

Neff value: It refers to the ‘substantial number of sequences’ used in bioinformatics in the 

context of MSA and protein structure prediction, which estimates the sequence diversity or 

information content in an MSA. 

PDBx/mmCIF: This file format and its corresponding data dictionary serve as the foundation 

for wwPDB data upload, annotation, and documentation. This template offers PDB data 

derived from all experimental methods. 

Position-Specific Scoring Matrix (PSSM): For bioinformatics applications like protein 

domain analysis, sequence alignment or motif discovery, a PSSM is a matrix employed to 

represent sequence motifs or patterns, encoding the probability of different amino acids or 

nucleotides appearing at each position of a sequence in applications such as sequence 

alignment, protein domain analysis, or motif discovery. 

Quasi-single method: The quasi-single method for protein model quality estimation describes 

techniques that, without the need for multiple models, assess the quality of a single model 

based on characteristics like structural geometry, energy-based evaluations, and consistency 

with the statistical or physical properties of proteins. 

Root-mean-square deviation (RMSD): A value that expresses the difference between the 

the observed measurement and the value predicted by a model. 

Single-chain template: It was a type of template created by converting multi-chain structures 

into single-chain forms using the PyMOL program 

Standard custom template: It was external protein structures that are supplied straight to 

AF2 as input without any processing or changes. 

Stoichiometry: The number and composition of the subunits in the assembly are described 

by stoichiometry. In the CASP competition, “A” is an abbreviation for one type of protein chain. 

For example, “AB” corresponds to two different chains, while A represents a first chain. 

 




