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ABSTRACT
In this article, we develop two families of sequential monitoring procedure to (timely) detect changes in the parameters of a
GARCH(1,1) model. Our statistics can be applied irrespective of whether the historical sample is stationary or not, and indeed
without previous knowledge of the regime of the observations before and after the break. In particular, we construct our detectors
as the CUSUM process of the quasi-Fisher scores of the log likelihood function. To ensure timely detection, we then construct
our boundary function (exceeding which would indicate a break) by including a weighting sequence which is designed to shorten
the detection delay in the presence of a changepoint. We consider two types of weights: a lighter set of weights, which ensures
timely detection in the presence of changes occurring “early, but not too early” after the end of the historical sample; and a heavier
set of weights, called “Rényi weights” which is designed to ensure timely detection in the presence of changepoints occurring
very early in the monitoring horizon. In both cases, we derive the limiting distribution of the detection delays, indicating the
expected delay for each set of weights. Our methodologies can be applied for a general analysis of changepoints in GARCH(1,1)
sequences; however, they can also be applied to detect changes from stationarity to explosivity or vice versa, thus allowing to
check for “volatility bubbles”, upon applying tests for stationarity before and after the identified break. Our theoretical results are
validated via a comprehensive set of simulations, and an empirical application to daily returns of individual stocks.
JEL Classification: Primary 62M10, 91B84, secondary 60G10, 62F12

1 | Introduction

In recent years, developing tools for the (ex-ante or ex-post)
detection of the onset or the collapse of a bubble in financial
markets has been one of the most active research areas in
financial econometrics; we refer the reader, in particular, to the
seminal articles on ex-post detection by Phillips et al. (2011), and
Phillips et al. (2015a) and also to Skrobotov (2023) for a review.
As far as ex-ante detection – that is, finding the onset or collapse
of a bubble in real time, as new data come in – is concerned,
this important issue has also been studied in numerous recent
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contributions. Although a comprehensive literature review goes
beyond the scope of this article, we refer to the articles by Homm
and Breitung (2012), Phillips et al. (2015b), and Whitehouse
et al. (2023), inter alia. In particular, the article by Whitehouse
et al. (2023) also contains a comprehensive literature review
of in-sample and online bubble detection methods. A com-
mon trait to the vast majority of the existing literature is its
reliance on a linear specification, usually an AutoRegressive
(AR) model, to capture regime changes in the dynamics of log
prices. Whilst such a modelling choice can be justified from
the theoretical point of view and it is analytically tractable
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(see, e.g., Phillips and Yu 2011, and Aue and Horváth 2007), a
major issue is that using an AR model is fraught with difficul-
ties when monitoring for changes from an explosive towards
a stationary regime. Several promising solutions have been
proposed such as the reverse regression approach by Phillips
and Shi (2018), Horváth and Trapani (2023). propose a different
model, based on a random coefficient autoregressive specifica-
tion – viz. 𝑦𝑖 =

(
𝜌 + 𝜖1,𝑖

)
𝑦𝑖−1 + 𝜖2,𝑖 – where inference is always

standard normal irrespective of stationarity or the lack thereof
(Aue and Horváth 2011), and develop a family of sequential
monitoring procedures based on the weighted CUSUM process,
to check whether the coefficient 𝜌 changes over time. Such a
testing set-up also encompasses both the case of a switch from
a stationary to an explosive regime (thus indicating the start of
a bubble phenomenon), and a change from an explosive to a
stationary regime (thus signalling the collapse of a bubble).

The theory developed by Horváth and Trapani (2023) paves the
way to a more general research question. Namely, developing
sequential monitoring techniques which are robust to both the
initial regime (i.e., which can be used irrespective of whether
the observations in the training/historical sample are station-
ary or explosive) and the type of change which occurs after a
changepoint (i.e., which can detect changes from stationarity to
another stationary regime, or to an explosive regime; or from
an explosive regime to another explosive regime or a station-
ary one). From a technical viewpoint, this question is nontrivial
for at least three reasons. First, proposing a changepoint detec-
tion methodology whose asymptotics is the same irrespective of
stationarity or explosivity is not easy per se, because the par-
tial sum processes which constitute the building blocks of, e.g.,
CUSUM-based statistics require completely different approxima-
tions depending on whether the observations are stationary or
not. Second, in order to ensure timely changepoint detection,
weighted versions of the CUSUM process need to be considered,
with different sets of weights ensuring optimal detection delays
for different changepoint locations within the monitoring hori-
zon. Third, it is important to offer, to the applied user, a set of
results on the limiting distribution of the detection delays, so as
to gauge the expected detection delay depending on the location
of the changepoint and the weighing scheme used.

Hence, in this article, we investigate, with an emphasis on com-
pleteness, the issue of sequential detection for changes in the
parameters a GARCH(1,1) sequence1

𝑦𝑖 = 𝜎𝑖𝜖𝑖 and 𝜎2
𝑖
= 𝜔 + 𝛼𝑦2

𝑖−1 + 𝛽𝜎2
𝑖−1, 1 ≤ 𝑖 < ∞ (1)

In particular, we develop two families of detectors based on the
weighted CUSUM process of the quasi-Fisher scores associated
with (1): one with “mild” weights, designed to detect changes that
may occur “not too early” after the start of the monitoring period;
and one with heavy weights, designed instead to detect changes
occurring “very early” after the start of the monitoring period.
The latter is based on applying to the CUSUM process a set of
(heavy) weights, resulting in a family of test statistics known as
Rényi statistics (see Horváth et al., (2020a), for in-sample tests,
and Ghezzi et al. 2024, for sequential monitoring). Our method-
ologies can, in principle, be applied to detect any type of change
in the vector (𝜔, 𝛼, 𝛽); however, given that our main interest is
in detecting changes between regimes (e.g., from stationarity

to nonstationarity, or vice versa) and that 𝜔 is not identified
under nonstationarity, we focus on monitoring for changes only
in the sub-vector (𝛼, 𝛽). Detecting shifts in the behaviour of the
(conditional) volatility process 𝜎𝑖 is important in general; as
Hillebrand (2005) notes, when neglecting a break inference is
biased in finite samples, and the sum of the estimated autoregres-
sive parameters 𝛼 and 𝛽 converges to one. Furthermore, changes
(and, occasionally, explosions) in the volatility of time series
are often observed in practice (see e.g., Bloom 2007, and Jurado
et al. 2015). Our methodologies can detect all types of changes,
including those which involve a change from a stationary to a
non-stationary regime, or vice versa a change from an explosive
to a stationary regime. Finding the start or the end of an explo-
sive regime in 𝜎𝑖 is of practical relevance because, as Richter
et al. (2023) put it, one “often sees sudden, integrated, or mildly
explosive behaviour in the second moment of the process which
bounces back after a while” (p. 468). Changes between stationar-
ity and explosivity in (1) can be interpreted as volatility bubbles,
i.e., events in which the second moment of the data (rather than
the data, e.g., prices, themselves) experiences periods of exhuber-
ance. The link between a volatility phenomenon and a “prop-
er” bubble has not been fully explored yet (see Jurado et al. 2015),
and, empirically, explosive regimes in volatility can be ascribed
to various sources in addition to bubbles (Sornette et al. 2018).
Nevertheless, as Jarrow and Kwok (2023) put it, “price bubbles
result from excess speculative trading decoupled from the asset’s
fundamentals (dividends and liquidation value), which increases
the asset’s price volatility to extreme levels” (p. 478). Hence,
analysing the regimes of the volatility of financial variables can
contribute to a better understanding of bubbles.

Based on the discussion above, in this article we propose a battery
of tests for the sequential monitoring of the volatility of financial
variables, which – being able to also capture changes between
stationarity and explosivity – complements the existing tests for
bubbles based on the conditional mean. Specifically, we make
at least three contributions. First, we study online detection of
changes by proposing a family of test statistics which can be used
irrespective, and with no previous knowledge, of the stationar-
ity or not of the observations, thus lending themselves to being
used also to detect changes between stationarity and explosiv-
ity and vice versa, which – to the best of our knowledge – is a
novel result in the literature, and which complements the ex-post
detection statistics studied in Richter et al. (2023). Second, we
develop the full-blown theory for Rényi statistics in the context of
sequential monitoring of a GARCH(1,1) model. Third, we derive
the limiting distribution of detection delays for all our monitor-
ing schemes, including those based on Rényi statistics; this is an
entirely novel result, which complements the results by Horváth
et al. (2020a).

The remainder of the article is organised as follows. We discuss
our workhorse model and the main assumptions, as well as the
test statistics, in Section 2. The theory is reported in Section 3: in
particular, the asymptotics under the null is in Section 3.1, and
the full-blown asymptotics of the detection delay in the presence
of a changepoint is in Section 3.2. We validate our theory through
a comprehensive set of simulations (Section 4), and an empiri-
cal application to daily returns of individual stocks (Section 5).
Section 6 concludes.
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Notation. We define the Euclidean norm of a vector 𝑎 as ||𝑎||.
We use: “a.s” for “almost sure(ly)”; “→” for the ordinary limit;
“


−−→ ” for convergence in distribution; “

𝑃
−−→ ” for convergence in

probability; “

=” for equality in distribution. Positive, finite con-

stants are denoted as 𝑐0, 𝑐1, . . . and their value may change from
line to line. Other, relevant notation is introduced later on in
the article.

2 | Model, Assumptions and Hypothesis Testing

2.1 | Model, Assumptions and Hypotheses
of Interest

The time dependent GARCH(1,1) sequence is defined by the
recursion

𝑦𝑖 = 𝜎𝑖𝜖𝑖 and 𝜎2
𝑖
= 𝜔𝑖 + 𝛼𝑖𝑦

2
𝑖−1 + 𝛽𝑖𝜎

2
𝑖−1, 1 ≤ 𝑖 < ∞ (2)

where 𝜎2
0 , 𝑦2

0 are initial values, and 𝛼𝑖, 𝛽𝑖 and 𝜔𝑖 are positive
parameters.

Whilst the hypothesis testing framework is spelt out below, our
monitoring schemes are all based on the maintained assumption
that we have 𝑚 observations which form a stable period (this
is also known as the non-contamination assumptionin Chu
et al. 1996), viz.

(𝜔1, 𝛼1, 𝛽1) = (𝜔2, 𝛼2, 𝛽2) = . . . = (𝜔𝑚, 𝛼𝑚, 𝛽𝑚) (3)

The value of 𝑚 is, de facto, the only tuning parameter of our
procedures (and it is, in general, an important tuning parame-
ter in all applications of online changepoint detection). As our
theory shows, it is required that 𝑚 → ∞ but, on the other hand,
larger values of 𝑚 correspond to larger detection delays – as such,
the choice of 𝑚 is an empirical matter which reflects the usual
trade-off between size and power.

We denote the value of the common parameter in (3) as 𝜽0 =
(𝛼0, 𝛽0, 𝜔0)⊤. We now review the conditions for the stationarity of
𝑦𝑖 (see e.g., Nelson 1991, Bougerol and Picard 1992, Francq and
Zakoïan 2012 and Horváth and Wang 2024):

1. if𝐸 log
(
𝛼0𝜖

2
0 + 𝛽0

)
< 0, 𝜎𝑖 converges almost surely exponen-

tially fast to a unique, strictly stationary and ergodic solu-
tion

{
𝜎𝑖,−∞ < 𝑖 < ∞

}
for all 𝜖0 and 𝜎0;

2. if 𝐸 log
(
𝛼0𝜖

2
0 + 𝛽0

)
> 0, then 𝜎𝑖 is nonstationary with

𝜎𝑖

𝑎.𝑠.
−−−→∞ exponentially fast;

3. if 𝐸 log
(
𝛼0𝜖

2
0 + 𝛽0

)
= 0, then 𝜎𝑖 is nonstationary Horváth

and Wang (2024); show that exp
(
−𝑖𝜁
)
𝜎𝑖

𝑃
−−→ 0, for all

𝜁 < 1∕2.2

Note also that, since log
(
𝛼0𝜖

2
0 + 𝛽0

)
= log

(
𝛼0𝜖

2
0 + 𝛽0

)
𝐼
{
𝛼0𝜖

2
0 ≤ 1

}
+
(
𝛼0𝜖

2
0 + 𝛽0

)
𝐼
{
𝛼0𝜖

2
0 > 1

}
log 𝛽0 ≤ log

(
𝛼0𝜖

2
0 + 𝛽0

)
𝐼
{
𝛼0𝜖

2
0 ≤ 1

}
≤ log

(
1 + 𝛽0

)
log 𝛽0 ≤ log

(
𝛼0𝜖

2
0 + 𝛽0

)
𝐼
{
𝛼0𝜖

2
0 > 1

}
≤ 𝛼0𝜖

2
0 + 𝛽0

which, under our assumptions, entails that it always holds that
𝐸
|||log
(
𝛼0𝜖

2
0 + 𝛽0

)||| < ∞.

We will develop several monitoring schemes for the null
hypothesis that the parameter 𝜽0 undergoes no changes after the
training period 1 ≤ 𝑖 ≤ 𝑚, i.e.,

𝐻0 ∶
(
𝜔𝑚+𝑘, 𝛼𝑚+𝑘, 𝛽𝑚+𝑘

)
=
(
𝜔0, 𝛼0, 𝛽0

)
, for all 𝑘 ≥ 1 (4)

Under the alternative, we assume that there is a change
at time 𝑚 + 𝑘∗; whilst this would correspond to having(
𝜔𝑚+𝑘∗−𝑗 , 𝛼𝑚+𝑘∗−𝑗 , 𝛽𝑚+𝑘∗−𝑗

)
≠
(
𝜔𝑚+𝑘∗+𝑗 , 𝛼𝑚+𝑘∗+𝑗 , 𝛽𝑚+𝑘∗+𝑗

)
for

all 𝑗 ≥ 0, it is well known that the 𝜔𝑖’s cannot be identified in
explosive, nonstationary regimes (Francq and Zakoïan 2012).
Hence, we will test for

𝐻𝐴 ∶ (𝛼𝑚, 𝛽𝑚) = (𝛼𝑚+1, 𝛽𝑚+1) = (𝛼𝑚+2, 𝛽𝑚+2)

= . . . = (𝛼𝑚+𝑘∗−1, 𝛽𝑚+𝑘∗−1) ≠ (𝛼𝑚+𝑘∗ , 𝛽𝑚+𝑘∗ )

= (𝛼𝑚+𝑘∗+1, 𝛽𝑚+𝑘∗+1) = . . . (5)

i.e., for the possible presence of changes in 𝛼𝑖 and 𝛽𝑖 only. Note
that these are anyway the parameters of interest, since the sta-
tionarity (or lack thereof) of 𝑦𝑖 is not affected by 𝜔𝑖.

We require the following assumptions on 𝜽0, and on the innova-
tions {𝜖𝑖,−∞ < 𝑖 < ∞}.

Assumption 1. It holds that: 𝛼0 > 0, 𝛽0 > 0 and 𝜔0 > 0.

Assumption 2. It holds that: (i) {𝜖𝑖,−∞ < 𝑖 < ∞} are inde-
pendent and identically distributed random variables; (ii) 𝜖2

0 is
nondegenerate and (iii) 𝐸𝜖0 = 0, 𝐸𝜖2

0 = 1, and 𝐸|𝜖0|𝜅 < ∞ with
some 𝜅 > 4.

Assumptions 1 and 2 are standard. In particular, it is worth not-
ing that, in Assumption 1, there is no requirement as to the sta-
tionarity properties of

{
𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑚

}
: the observations in the

training sample can belong to a stationary or explosive volatil-
ity regime. Conversely, Assumption 1 excludes from our analysis
the case where the parameters are on the boundary of the param-
eter space. In principle, it would be possible to consider the case
where the parameters sit at the boundary: this case has been
explored in several contributions, starting from Chernoff (1954).
Applications to the GARCH family have been considered by
Iglesias and Linton (2007), Francq and Zakoian (2007), Francq
and Zakoïan (2009), and Pedersen (2017), inter alia. The main
conclusion of all these articles is that, when the parameters lie
on the boundary, limiting distributions are no longer Gaussian,
but “reflected Gaussian” (more precisely, they are given by the
projection of a Gaussian multivariate distribution onto a con-
vex cone). All our results below are based on the properties of
Gaussian processes, and therefore the case where a parameter is
on the boundary requires a separate treatment, which we leave
for future study.

2.2 | Estimation and Monitoring Schemes

As stated in the Introduction, the main purpose of our analysis is
to offer a detection scheme which finds changes in the parame-
ters of a GARCH(1,1) model as soon as possible after the training
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period. In this section, we propose several detectors, all based on
the CUSUM process of the quasi-Fisher scores.

As is typical, we estimate the parameter 𝜽0, using the training
sample, by Quasi Maximum Likelihood (QML). The log likeli-
hood function (ignoring a negative scaling factor) is

𝓁𝑖(𝜽) = log 𝜎
2
𝑖
(𝜽) +

𝑦2
𝑖

𝜎
2
𝑖
(𝜽)

, 1 ≤ 𝑖 ≤ 𝑚

where 𝜽 = (𝜔, 𝛼, 𝛽)⊤, 𝜔 > 0, 𝛼 > 0 and 𝛽 > 0; the random func-
tions 𝜎2

𝑖
(𝜽)

𝜎
2
𝑖
(𝜽) = 𝜔 + 𝛼𝑦2

𝑖−1 + 𝛽𝜎
2
𝑖−1(𝜽), 1 ≤ 𝑖 ≤ 𝑚

and we denote the initial values from which the recursions start
as 𝑦0 and 𝜎

2
0, respectively. The QML estimator computed from the

historical sample is denoted as 𝜽̂𝑚, with

𝜽̂𝑚 = argmin

{
𝑚∑
𝑖=1

𝓁𝑖(𝜽) ∶ 𝜽 ∈ 𝛩

}

where the (compact) space 𝚯 is defined as 𝚯 ={
𝜽 ∶ 𝜔 ≤ 𝜔 ≤ 𝜔, 𝛼 ≤ 𝛼 ≤ 𝛼, 𝛽 ≤ 𝛽 ≤ 𝛽

}
, 0 < 𝜔,𝜔, 𝛼, 𝛼, 𝛽, 𝛽 < ∞.

The compactness requirement is standard in this theory (indeed,
Jordan 2003 considers the case for ARCH models, but we are not
aware of similar results in the context of GARCH models). How-
ever, whilst we do need to exclude the cases where parameters
are on the boundary of the parameter space, we do not require
any upper bounds on 𝛼 or 𝛽, which is compatible with the idea
that we explicitly allow for the GARCH process to be explosive
at times (thus allowing for 𝛼 > 1 and/or 𝛽 > 1).

Starting with the initial values 𝑦𝑚 and 𝜎2
𝑚

, we define the random
functions 𝜎

2
𝑚+𝑘(𝜽) based on the observations after the historical

sample by the recursion

𝜎
2
𝑚+𝑘(𝜽) = 𝜔 + 𝛼𝑦2

𝑚+𝑘−1 + 𝛽𝜎
2
𝑚+𝑘−1(𝜽), 𝑘 ≥ 1

with the log likelihood function (again ignoring a negative scaling
factor) given by

𝓁𝑚+𝑘(𝜽) = log 𝜎
2
𝑚+𝑘(𝜽) +

𝑦2
𝑚+𝑘

𝜎
2
𝑚+𝑘(𝜽)

, 𝑘 ≥ 1

Hence, we define the CUSUM process of the quasi-Fisher
scores as

𝓇𝑚,𝑘(𝜽) =
𝑚+𝑘∑

𝑖=𝑚+1

(
𝜕𝓁𝑖(𝜽)
𝜕𝛼

,
𝜕𝓁𝑖(𝜽)
𝜕𝛽

)⊤

, 𝑘 ≥ 1 (6)

Heuristically, under the null of no change, the scores have
zero mean. Hence, the partial sum process 𝓇𝑚,𝑘(𝜽) calculated at
𝜽̂𝑚 should also fluctuate around zero with increasing variance.
Conversely, in the presence of a break (at, say, 𝑘∗), 𝜽̂𝑚 is a biased
estimator for the “new” parameter𝜽𝑚+𝑘∗ ; thus,𝓇𝑚,𝑘(𝜽), calculated
at 𝜽̂𝑚, should have a drift term. In the light of these heuristic con-
siderations, we propose the following detector

𝑚(𝑘) = 𝓇⊤
𝑚,𝑘

(𝜽̂𝑚)D̂
−1
𝑚
𝓇𝑚,𝑘(𝜽̂𝑚) (7)

where

D̂𝑚 = 1
𝑚

𝑚∑
𝑖=1

(
𝜕𝓁𝑖(𝜽̂𝑚)

𝜕𝛼
,
𝜕𝓁𝑖(𝜽̂𝑚)

𝜕𝛽

)⊤(
𝜕𝓁𝑖(𝜽̂𝑚)

𝜕𝛼
,
𝜕𝓁𝑖(𝜽̂𝑚)

𝜕𝛽

)

Based on (7), a break is flagged as soon as the detector 𝑚(𝑘)
exceeds a threshold. We call such a threshold the boundary func-
tion. Similarly to Chu et al. (1996), Horváth et al. (2004), Horváth
et al. (2022), Homm and Breitung (2012), we use the boundary
function, designed for a closed-ended procedure – i.e., for a pro-
cedure which terminates at a certain time, say 𝓃, if there is no
change

𝑔𝑚(𝑘) = 𝒸𝓃(𝑘∕𝓃)𝜂, with 0 ≤ 𝜂 < 1 (8)

On account of (7) and (8), a changepoint is found at a stopping
time 𝜏𝑚 defined as

𝜏𝑚 =
⎧⎪⎨⎪⎩

min
{
𝑘 ∶∈ [1, 2, . . . ,𝓃 − 1], 𝑚(𝑘) ≥ 𝑔𝑚(𝑘)

}
𝓃, if 𝑚(𝑘) < 𝑔𝑚(𝑘) for all 1 ≤ 𝑘 ≤ 𝓃 − 1

(9)

The (user-chosen) parameter 𝜂 in (8) determines the timeliness
of changepoint detection of our sequential monitoring proce-
dure. Aue and Horváth et al. (2004) and Aue et al. (2008) show
that, as 𝜂 approaches 1, changepoints are detected with a smaller
and smaller delay depending on their location. On the other
hand, different values of 𝜂 work better for different changepoint
locations, as also pointed out in a recent contribution by Kirch
and Stoehr (2022b). In particular, values of 0 ≤ 𝜂 < 1 are able
to offer short detection delays for breaks that do not occur “too
early” after 𝑚.

To detect earlier changes Ghezzi et al. (2024), suggest using Rényi
type statistics, with

𝜏𝑚 =
⎧⎪⎨⎪⎩

min
{
𝑘 ∶∈ [𝑟, 2, . . . ,𝓃 − 1], ∶ 𝑚(𝑘) ≥ 𝑔𝑚(𝑘)

}
𝓃, if 𝑚(𝑘) < 𝑔𝑚(𝑘) for all 𝑟 ≤ 𝑘 ≤ 𝓃 − 1,

(10)

where 𝑟 is a trimming sequence specified in Assumption 4, and

𝑔𝑚(𝑘) = 𝒸𝑟(𝑘∕𝑟)𝜂, with 𝜂 > 1 (11)

We note that (9) and (10) exclude the case 𝜂 = 1. Indeed Aue and
Horváth (2004), show that, as far as stopping times under the
alternative are concerned, using 𝜂 = 1 would produce the shortest
detection time, at least when the changepoint is located very close
to the beginning of the monitoring period. However, as far as the
asymptotic theory is concerned, as we discuss before presenting
Theorem 2, the case 𝜂 = 1 requires to be treated separately, using
a different limiting theory and different boundary functions, fol-
lowing Horváth et al. (2007). Let

𝑎(𝑥) = (2 log 𝑥)1∕2 and 𝑏2(𝑥) = 2 log 𝑥 + log log 𝑥

We use the boundary functions

𝑔∗
𝑚
(𝑘) = 𝑘

(
𝒸 + 𝑏2(log𝓃)

𝑎(log𝓃)

)2

(12)

𝑔
∗
𝑚
(𝑘) = 𝑘

(
𝒸 + 𝑏2(log(𝓃∕𝑟))

𝑎(log(𝓃∕𝑟))

)2

(13)
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The stopping times – denoted as 𝜏∗
𝑚

and 𝜏
∗
𝑚

– are defined in the
same way as 𝜏𝑚 and 𝜏𝑚 in (9) and (10), respectively, using now the
boundaries 𝑔∗

𝑚
(𝑘) and 𝑔

∗
𝑚
(𝑘).

As mentioned above, we consider a closed-ended scheme, which
terminates 𝓃 periods after 𝑚. The following assumptions char-
acterise the length of the monitoring horizon and of the trim-
ming sequence 𝑟 defined in (10). In particular, Assumption 3 is
designed in order to consider only early changepoint detection;
the actual choice of the length of the monitoring horizon𝓃 is also
an empirical matter; Assumption 3 only requires that 𝓃 should
pass to infinity, but should not be “too large” (using the size of
the training sample 𝑚 as a benchmark) – thus suggesting that,
after 𝓃 periods, the monitoring procedure should be terminated
and, if need be, restarted.

Assumption 3. It holds that 𝑚 → ∞ and 𝓃 = 𝓃(𝑚) → ∞,
with 𝓃∕𝑚 → 0.

Assumption 4. It holds that, in Equation (10), 𝑟 → ∞ and
𝑟∕𝓃 → 0.

3 | Asymptotics

3.1 | Asymptotics Under the Null

Let W(𝑡) = (𝑊1(𝑡),𝑊2(𝑡)), 𝑡 ≥ 0 be a two dimensional standard
Wiener process – i.e., {𝑊1(𝑡), 𝑡 ≥ 0} and {𝑊2(𝑡), 𝑡 ≥ 0} are two
independent Gaussian processes with 𝐸𝑊1(𝑡) = 𝐸𝑊2(𝑡) = 0, and
covariance kernel 𝐸𝑊1(𝑡)𝑊1(𝑠) = 𝐸𝑊2(𝑡)𝑊2(𝑠) = min(𝑡, 𝑠).

Theorem 1. We assume that 𝐻0 of (4) and Assumptions 1–3
hold.

i. If 0 ≤ 𝜂 < 1, then we have

lim
𝑚→∞

𝑃 {𝜏𝑚 = 𝓃} = 𝑃

{
sup

0<𝑡≤1

1
𝑡𝜂
‖W(𝑡)‖2 ≤ 𝒸

}
ii. If in addition, Assumption 4 also holds and 𝜂 > 1, then we

have

lim
𝑚→∞

𝑃 {𝜏𝑚 = 𝓃} = 𝑃

{
sup

1≤𝑡<∞

1
𝑡𝜂
‖W(𝑡)‖2 ≤ 𝒸

}
Theorem 1 offers a rule to calculate the asymptotic critical values;
for a given nominal level 𝛼, the critical value 𝒸𝛼 is defined as

𝑃

{
sup

0<𝑡≤1

1
𝑡𝜂
‖W(𝑡)‖2 ≤ 𝒸𝛼

}
= 1 − 𝛼, for all 0 ≤ 𝜂 < 1

𝑃

{
sup

1<𝑡<∞

1
𝑡𝜂
‖W(𝑡)‖2 ≤ 𝒸𝛼

}
= 1 − 𝛼, for 𝜂 > 1

Using the scale transformation of the Wiener process, it immedi-
ately follows that {W(𝑡), 𝑡 > 0}


= {𝑡W(1∕𝑡), 𝑡 > 0}. Hence, for all

𝜂 > 1
sup

1≤𝑡<∞

1
𝑡𝜂
||W(𝑡)||2 

= sup
0<𝑡≤1

1
𝑡1−𝜂
||W(𝑡)||2

In conclusion, we note that using 𝜂 < 1 or 𝜂 > 1 results in a
similar limit, but the range on which the supremum is taken is

“swapped” from (0, 1) to (1,∞). The proofs show that the cross-
ing of the boundary happens on different sets when we have 𝜂 < 1
and 𝜂 > 1.

Theorem 1 does not consider the case 𝜂 = 1, which corre-
sponds to the stopping times 𝜏∗

𝑚
and 𝜏

∗
𝑚

based on the bound-
aries defined in (12) and (13), respectively. Intuitively, Theorem 1
fails when 𝜂 = 1 because – by the Law of the Iterated Log-
arithm – sup0<𝑡≤1 𝑡

−1‖W(𝑡)‖2 = ∞ a.s. Hence, the proof of
Theorem 1 cannot be extended to the case 𝜂 = 1 (in essence,
there can be no convergence to a limit which does not exist):
when 𝜂 = 1, a different normalisation (based on 𝑎(𝑥) and 𝑏2(𝑥)),
and a different limit theorem (the Darling-Erdős theorem – see
Darling and Erdős 1956 – which is an Extreme Value-type
theorem), need to be used. We study such a case in the following
theorem.

Theorem 2. We assume that 𝐻0 of (4) and Assumptions 1–3
hold.

i. Then, for all −∞ < 𝒸 < ∞, it holds that lim𝑚→∞ 𝑃 {𝜏∗
𝑚
=

𝓃} = exp(−𝑒−𝒸).

ii. If in addition Assumption 4 also holds, then we have
lim𝑚→∞ 𝑃 {𝜏∗

𝑚
= 𝓃} = exp(−𝑒−𝒸).

Theorem 2 stipulates that the asymptotic critical values, for a
given nominal level 𝛼, can be calculated as

𝒸𝛼 = 𝒸𝛼 = − log
(
− log(1 − 𝛼)

)
(14)

using 𝒸𝛼 or 𝒸𝛼 according as (12) or (13) is used.

3.2 | Asymptotics Under the Alternative

We now study the behaviour of our monitoring schemes under
the alternative, focussing, in particular, on the limiting distribu-
tion of the detection delay. The limiting distribution of the detec-
tion delay when 0 ≤ 𝜂 < 1 is in Section 3.2.1. In Section 3.2.2,
we report the limiting distribution of the detection delay when
using 𝜂 > 1. In both cases, we require a great deal of notation; no
to overshadow the main arguments, we relegate some of this to
Appendix A in the Supplement.

In both cases, under the alternative𝐻𝐴, of (5), the parameter𝜽0 =
(𝛼0, 𝛽0, 𝜔0)⊤ changes to 𝜽𝐴 = (𝛼𝐴, 𝛽𝐴, 𝜔𝐴)⊤ satisfying

Assumption 5. 𝛼𝐴 > 0, 𝛽𝐴 > 0, 𝜔0 > 0, 𝜽0 ≠ 𝜽𝐴,
𝜽0 = (𝛼0, 𝛽0)⊤ and 𝜽𝐴 = (𝛼𝐴, 𝛽𝐴)⊤.

3.2.1 | Detection Delays With 0 ≤ 𝜼 < 1

We begin by investigating the asymptotic behaviour of the stop-
ping time 𝜏𝑚 defined in (9). Whilst the result in Theorem 3 is valid
for all cases, we need to introduce some preliminary notation,
separately, for the two cases: (1) when the sequence is stationary
after the change and (2) when the sequence is explosive after the
change.
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We begin by introducing some preliminary notation for the for-
mer case, i.e.,

𝐸 log(𝛼𝐴𝜖2
0 + 𝛽𝐴) < 0 (15)

Under (15), after the change the observations are exponentially
close to {𝑥̂𝑖,−∞ < 𝑖 < ∞}, a stationary GARCH(1,1) sequence3

given by

𝑥̂𝑖 = ℎ̂𝑖𝜖𝑖 and ℎ̂2
𝑖
= 𝜔 + 𝛼𝐴𝑥̂

2
𝑖−1 + 𝛽𝐴ℎ̂

2
𝑖−1 (16)

We also define the log likelihood function

𝓁̂𝑖(𝜽) = log ℎ̂2
𝑖
(𝜽) +

𝑥̂2
𝑖

ℎ̂2
𝑖
(𝜽)

where ℎ̂2
𝑖
(𝜽) = 𝜔 + 𝛼𝑥̂2

𝑖−1 + 𝛽ℎ̂2
𝑖−1(𝜽). Let

𝓇(1)(𝜽) = 𝐸

(
𝜕𝓁̂𝑖(𝜽)

𝛼
,
𝜕𝓁̂𝑖(𝜽)

𝛽

)⊤

and define the size of the change as

𝚫 = 𝓇(1)(𝜽0) ≠ 𝟎 (17)

We define the covariance matrix

𝚺1 = 𝐸

[(
𝜕𝓁̂𝑖(𝜽0)

𝛼
,
𝜕𝓁̂𝑖(𝜽0)

𝛽

)
− 𝚫
]⊤

×

[(
𝜕𝓁̂𝑖(𝜽0)

𝛼
,
𝜕𝓁̂𝑖(𝜽0)

𝛽

)
− 𝚫
]

(18)

and

𝑡∗ = lim
𝑚→∞

𝑘∗
/(

𝓃1−𝜂 𝒸
𝐴𝑚

)1∕(2−𝜂)

(19)

where 𝐴𝑚 = 𝚫⊤D̂−1
𝑚
𝚫. Finally (as far as preliminary notation

is concerned), we define 𝑢𝓃 > 0 as the unique solution of the
equation

𝑢2
𝓃 =

(
𝑢𝓃 + 𝑘∗

/(
𝓃1−𝜂 𝒸

𝐴𝑚

)1∕(2−𝜂)
)𝜂

(20)

and 𝑢∗ > 0 as the solution of

𝑢∗ = (𝑢∗ + 𝑡∗)𝜂∕2 (21)

It is easy to see that 𝑢𝓃 → 𝑢∗ and that 𝑢∗ = 1, if 𝑡∗ = 0.

We now introduce the preliminary notation for the case when
the observations turn into an explosive sequence after the time
of change, i.e.,

𝐸 log(𝛼𝐴𝜖2
0 + 𝛽𝐴) ≥ 0 (22)

Jensen and Rahbek (2004) proved that

lim
𝑘→∞

1
𝑘

𝑚+𝑘∗+𝑘∑
𝑖=𝑚+𝑘∗+1

𝐸

(
𝜕𝓁𝑖(𝜽)

𝛼
,
𝜕𝓁𝑖(𝜽)

𝛽

)⊤

= 𝓇(2)(𝜽)

exists when 𝐸 log(𝛼𝐴𝜖2
0 + 𝛽𝐴) > 0; Horváth and Wang (2024)

extend the validity of this result to the case 𝐸 log(𝛼𝐴𝜖2
0 + 𝛽𝐴) = 0.

Similarly to 𝚫 in Equation (17), we define the size of the change
under 𝐻𝐴 as 𝚼 = 𝓇(2)(𝜽0) ≠ 𝟎. Similarly to (19), we define

𝑡
∗ = lim

𝑚→∞
𝑘∗
/(

𝓃1−𝜂 𝒸
𝐵𝑚

)1∕(2−𝜂)

where 𝐵𝑚 = 𝚼⊤D̂−1
𝑚
𝚼. Finally, similarly to 𝑢𝓃 and 𝑢∗ we define 𝑢̃𝓃

and 𝑢̃∗ as the solutions of the equations

𝑢̃2
𝓃 =
(
𝑢̃𝓃 + 𝑘∗

/(
𝓃1−𝜂 𝒸

𝐵𝑚

))𝜂

, and 𝑢̃∗ =
(
𝑢̃∗ + 𝑡

∗)𝜂∕2

After the change in the parameters, the gradient of the likelihood
function is approximated with the sequences

𝓋𝑚+𝑘∗+𝑖,1 =
∞∑
𝑗=1

𝜖2
𝑚+𝑘∗+𝑖−𝑗

1
𝛽𝐴

𝑗∑
𝑘=1

𝛽𝐴

𝛼𝐴𝜖
2
𝑚+𝑘∗+𝑖−𝑘 + 𝛽𝐴

𝓋𝑚+𝑘∗+𝑖,2 =
∞∑
𝑗=1

1
𝛽𝐴

𝑗∑
𝑘=1

𝛽𝐴

𝛼𝐴𝜖
2
𝑚+𝑘∗+𝑖−𝑘 + 𝛽𝐴

Analogously to 𝚺1 in (18), we finally introduce

𝚺2 = 𝐸
(
1 − 𝜖2

𝑚+𝑘∗+1
)2
𝐸

(
𝓋𝑚+𝑘∗+𝑖,1

𝓋𝑚+𝑘∗+𝑖,2

)(
𝓋𝑚+𝑘∗+𝑖,1,𝓋𝑚+𝑘∗+𝑖,2

)
(23)

We are now ready to present our results. To do so, we need
some further notation which we report in Appendix A.1. As
shown in Theorem 3, in several cases the delay 𝜏𝑚 − 𝑘∗ con-
verges to a standard normal random variable after being centred
and rescaled; the centring and rescaling for 𝜏𝑚 − 𝑘∗ depend on
whether 𝑡∗ < ∞ or 𝑡∗ = ∞ (𝑡∗ < ∞ or 𝑡

∗ = ∞, equivalently). We
define the Gaussian process {𝚪(𝑡), 𝑡 ≥ 0}, with 𝐸𝚪(𝑡) = 𝟎 and
𝐸𝚪(𝑡)𝚪⊤(𝑠) = min(𝑡, 𝑠)D; we let  denote a standard normal
random variable; and we define

lim
𝑚→∞

𝑘∗

𝓃
= 𝑢̄

Theorem 3. We assume that 𝐻𝐴 of (5) and Assumptions 1–3
and 5 hold. Then, for all 0 ≤ 𝜂 < 1

i. If
lim
𝑚→∞

𝑘∗

𝓃(1−𝜂)∕(2−𝜂) < ∞ (24)

then
𝜏𝑚 − 𝑘∗ − 𝑣1,𝓃

𝑣2,𝓃


−−→ 𝑠1 (0, 1)

where 𝑣1,𝓃 and 𝑣2,𝓃 are defined in (A.1) and (A.2), and 𝑠1 is
defined in (A.7).

ii. If
lim
𝑚→∞

𝑘∗

𝓃(1−𝜂)∕(2−𝜂) = ∞ (25)

and 𝑢̄ = 0, then

𝜏𝑚 − 𝑘∗ − 𝑣3,𝓃

𝑣4,𝓃


−−→ 𝑠2 (0, 1)

where 𝑣3,𝓃 and 𝑣4,𝓃 are defined in (A.3) and (A.4), and 𝑠2 is
defined in (A.8).
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iii. If 0 < 𝑢̄ < 1, then

lim
𝑚→∞

𝑃

{
𝜏𝑚 − 𝑘∗

(𝑘∗)1∕2 > 𝑥

}
= 𝑃
{
𝑢̄1−𝜂 max

(
1,2(𝑥)

)
≤ 𝒸
}

where 1 and 2(𝑥) are defined in (A.5) and (A.6).

To understand the practical implications of Theorem 3, note that
(up to some positive and finite constant)

𝑣1,𝓃 ≈
(
𝑚1−𝜂)1∕(2−𝜂)

, 𝑣2,𝓃 ≈
(
𝑚1−𝜂)1∕(4−2𝜂) ≈ 𝑣

1∕2
1,𝓃

𝑣3,𝓃 ≈
[
𝓃1−𝜂(𝑘∗)𝜂

]1∕2 and 𝑣4,𝓃 ≈ (𝑘∗)1∕2

The case (24) corresponds to a “very early” break. In this case,
Theorem 3 states that the expected delay is approximately 𝑣1,𝓃,
i.e., that it is approximately equal to

(
𝑚1−𝜂)1∕(2−𝜂). Clearly, as

𝜂 increases, 𝑣1,𝓃 decreases; the dispersion around the expected
delay, measured by 𝑣2,𝓃, also decreases, indicating that the choice
of 𝜂 plays a role in determining the delay in detecting (very early)
changepoints and that larger values of 𝜂 reduce such a delay. In
the presence of an “early, but not so early” break – corresponding
to case (ii) of the theorem, where recall that 𝑘∗ = 𝑜(𝓃), the
expected delay 𝑣3,𝓃 still decreases as 𝜂 increases, as long as 𝑘∗ =
𝓃𝛾 , for 𝛾 > 1∕(2 − 𝜂), but the dispersion around the expected
delay – given by the standardisation 𝑣4,𝓃 – does not depend
on 𝜂. Finally, the case of a late(r) change is studied in part (iii)
of the theorem: in such a case, 𝜂 – and therefore the weight
function in the definition of the detector – does not play any
role. Part (iii) of the theorem also states that, in the case of a
late(r) change, the delay increases as the changepoint location,
𝑘∗, increases. To better understand this, we note that our proce-
dure is tailored to detect early changes, in essence by comparing
the sample mean of 𝑘 observations sequentially against the sam-
ple mean of the training sample. If 𝑘∗ is large, then the sample
mean of the observations after the training sample is dominated
by observations which still satisfy the null hypothesis. So the pro-
cedure would need more time to cumulate a large amount of
observations whose behaviour is that implied by the alternative.
This corresponds to the “stylised fact” noted in this literature that
it is virtually impossible to propose one rule which is optimal for
any changepoint location (see e.g., Kirch and Stoehr 2022b, and
Kirch and Stoehr 2022a).

3.2.2 | Detection Delays When 𝜼 > 1

We now investigate the asymptotic behaviour of the stopping time
𝜏𝑚 defined in (10) – that is, when the detector is a Rényi type
statistic with 𝜂 > 1. In such a case, the asymptotic behaviour of
the detection delay uses the same notation irrespective of whether
𝐸 log(𝛼𝐴𝜖2

0 + 𝛽𝐴) < 0 or ≥ 0. Here, we spell out only some of the
relevant notation; further notation is in Appendix A.2. Let

𝒶 = lim
𝑚→∞

𝑘∗

𝑟
∈ [0,∞]

We define two independent normal random vectors N1 and N2
such that 𝐸N1 = 𝟎, 𝐸N2 = 𝟎, 𝐸N1N⊤

1 = D and

𝐸N2N⊤
2 =

{
𝚺1, if 𝐸 log(𝛼𝐴𝜖2

0 + 𝛽𝐴) < 0
𝚺2, if 𝐸 log(𝛼𝐴𝜖2

0 + 𝛽𝐴) ≥ 0

Theorem 4. We assume that 𝐻𝐴 of (5) and Assumptions 1–3
and 5 hold. Then, for all 1 < 𝜂 < 2.

i. If 𝑘∗ ≤ 𝑟 and 𝒶 = 0 hold, then

lim
𝑚→∞

𝑃 {𝜏𝑚 = 𝑟} = 1

ii. If 𝑘∗ ≤ 𝑟 and 𝒶 > 0 hold, then

lim
𝑚→∞

𝑃 {𝜏𝑚 = 𝑟} = 𝑃
{
(𝒶1∕2N1 +𝒶𝚫 + N2)⊤D−1(𝒶1∕2N1

+𝒶𝚫 + N2) > 𝒸
}

iii. If 𝑘∗ > 𝑟 and 𝒶 < ∞, then

lim
𝑚→∞

𝑃
{
𝜏𝑚 > 𝑘∗ + 𝑥𝑟1∕2} = 𝑃

{
max
(
1,2(𝑥)

)
≤ 𝒸
}

where 1 and 2(𝑥) are defined in (A.9) and (A.10).

iv. If 𝑘∗ > 𝑟, 𝑢̄ < 1 and 𝒶 = ∞ hold, then

𝜏𝑚 − 𝑘∗ − 𝑣5,𝓃

𝑣6,𝓃


−−→ 𝑠2

where 𝑣5,𝓃 and 𝑣6,𝓃 are defined in (A.11) and (A.12).

Similarly to Theorem 3, Theorem 4 describes the detection delay
when using Rényi type statistics depending on the location of the
break; to the best of our knowledge, this is the first time such a
result has ever been derived. Part (i) of the theorem is also derived
in Ghezzi et al. (2024), and, in essence, it states that if the break
occurs before the trimming sequence 𝑟 in the Rényi type statistics,
then it is identified straight at 𝑟 – that is, as soon as the Rényi type
statistics starts the monitoring. Parts (ii) and (iii)of the theorem
refine and extend the results in Ghezzi et al. (2024). Finally, part
(iv) states that, in the case of a break occurring late – or, better,
much later than 𝑟 – a large value of 𝜂 could even be detrimental
because the centring sequence 𝑣5,𝓃 diverges with 𝑘∗, at a faster
rate as 𝜏 increases. This confirms the common wisdom (see Kirch
and Stoehr 2022a and Kirch and Stoehr 2022b), and the findings
in Ghezzi et al. (2024), that Rényi type statistics are designed for
the fast detection of very early occurring breaks, whereas they
may yield suboptimal results for later breaks.

In conclusion, we point out that all the test statistics proposed
above are, essentially, nuisance free, as can be expected in a
likelihood-based set-up. On the other hand, the one tuning
parameter which needs setting – and which does impact on
the performance of the test statistics – is the length of the
training sample 𝑚. Such a choice reflects the typical trade-off
between size and power: on the one hand, 𝑚 is required to
pass to infinity in order for the asymptotic approximations to
be accurate (and therefore, practically, 𝑚 should be as large as
possible); on the other hand, the results in Theorems 3 and 4
indicate that the larger 𝑚, the longer the detection delay. This
issue characterises all applications of sequential monitoring (see
e.g., the discussion, and the references, in He et al. 2024), and
a possible solution, which we recommend by way of guideline,
is to decide a minimum 𝑚 based on simulations for a given
combination of 𝜂 and of the length of the monitoring horizon
which ensures size control, and use such a minimum 𝑚 as the
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TABLE 1 | Critical values.

Based on Theorem 1(i) Based on Theorem 1(ii)

𝜼∕𝜶 10% 5% 1% 𝜼∕𝜶 10% 5% 1%

𝜂 = 0.0 5.838 7.215 10.474 𝜂 = 1.3 5.609 7.024 10.235
𝜂 = 0.3 6.173 7.556 10.819 𝜂 = 1.5 5.516 6.909 10.090
𝜂 = 0.5 6.537 7.934 11.188 𝜂 = 1.7 5.436 6.822 10.014
𝜂 = 0.7 7.191 8.622 11.861 𝜂 = 2.0 5.340 6.715 9.913

size of the training sample. In the next section, we provide a set
of simulations which could form the basis for the selection of
𝑚. The “non-contamination” assumption – which requires no
break within the training sample – can also be tested for, using
e.g., the test by Horváth and Wang (2024).

4 | Simulations

In this section, we assess the finite sample performance of our
monitoring procedures via Monte Carlo simulations. We use ⌊⋅⌋
to denote the integer part of numbers.

According to the theory in Section 3, we can have two classes
of monitoring schemes, based on 𝜂 ≠ 1 (covered by Theorem 1)
and 𝜂 = 1 (covered by Theorem 2). For the sake of brevity, here
we only focus on the case 𝜂 ≠ 1. We consider several data gen-
erating processes (DGP). We use three lengths of the training
sample 𝑚 = 500, 1000, 5000 and two lengths of the monitoring
𝓃 = 250, 500. The sequential procedure is performed 5,000 times
with independently generated samples, and the percentage
of simulations for which the detector crosses the boundary
functions is reported for several values of 𝜂. For the Rényi type
statistic based on Theorem 1 (ii), we follow Horváth et al. (2021a)
and set 𝑟 =

⌊√
𝓃
⌋

. Guidelines on implementation are provided
in Section B.1 of the Supplement. To obtain critical values, we
simulate two independent standard Wiener processes 𝑊1(𝑡) and
𝑊2(𝑡) on a grid of 100,000 equally spaced points in the unit
interval [0, 1] and compute sup0<𝑡≤1

(
𝑊 2

1 (𝑡) +𝑊 2
2 (𝑡)
)
∕𝑡𝜂 and

sup0<𝑡≤1
(
𝑊 2

1 (𝑡) +𝑊 2
2 (𝑡)
)
∕𝑡1−𝜂 . We repeat this by 100,000 times

and obtain the empirical 90%, 95% and 99% percentiles of the
above two quantities, corresponding to the critical values at 10%,
5% and 1% levels based on Theorem 1 (i) and (ii). Critical values
are shown in Table 1.

The boundary functions in Section 2 are designed for the case
𝑚 → ∞. However, preliminary simulations show that the empiri-
cal sizes based on those boundary functions tend to be larger than
the nominal levels in finite samples, in particular for DGPs with
the Student’s 𝑡 errors. To make our monitoring schemes more
practical under small finite samples, we suggest to “tune” the
boundary functions as

𝔤𝑚(𝑘) = 𝒸𝓃
(

1 + 1
log(𝑚)

)2(
1 + 𝑘

𝑚

)2( 𝑘

𝓃

)𝜂
, with 0 ≤ 𝜂 < 1

(26)

𝔤𝑚(𝑘) = 𝒸𝑟
(

1 + 1
log(𝑚)

)2(
1 + 𝑘

𝑚

)2(𝑘
𝑟

)𝜂
, with 𝜂 > 1

(27)

for (8) and (11), respectively. The intuition underpinning the term(
1 + 1∕ log(𝑚)

)2 is to boost the boundary function in small sam-
ples. The term (1 + 𝑘∕𝑚)2 as is typically used when the mon-
itoring horizon is “long” (see Horváth et al., (2022), Horváth
et al., (2021b), and Horváth et al. 2022). To understand the term
(1 + 𝑘∕𝑚)2, we note that, in the case of 𝑐 > 0, the limiting distri-
bution is determined by

max
1≤𝑘≤𝓃

1
𝑚

(
𝑘

𝑚 + 𝑘

)−𝜂(
1 + 𝑘

𝑚

)−2||||𝑊2(𝑘) −
𝑘

𝑚
𝑊1(𝑚)

||||2

= max

1∕𝑚≤𝑡≤𝓃∕𝑚

(
𝑡

1 + 𝑡

)−𝜂
(1 + 𝑡)−2||𝑊2(𝑡) − 𝑡𝑊1(1)||2(1 + 𝑜𝑃 (1))

where
{
𝑊1(𝑡), 𝑡 ≥ 0

}
and

{
𝑊2(𝑡), 𝑡 ≥ 0

}
are two independent

Wiener processes. By computing the covariance kernel, one
gets that

{
𝑊2(𝑡) − 𝑡𝑊1(1), 𝑡 ≥ 0

} 
= {(1 + 𝑡)𝑊 (𝑡∕(1 + 𝑡)), 0 < 𝑡}

where 𝑊 (⋅) is a Wiener process. We conclude

max
1≤𝑡≤𝓃∕𝑚

(
𝑡

1 + 𝑡

)−𝜂 1
(1 + 𝑡)2

||𝑊2(𝑡) − 𝑡𝑊1(1)||2

= max

1≤𝑡≤𝓃∕𝑚

(
𝑡

1 + 𝑡

)𝜂||||𝑊 ( 𝑡

1 + 𝑡

)||||2
The term (1 + 𝑘∕𝑚)2 at the denominator is needed to get a
weighted Wiener process in the limit, i.e., a “simple” limit. If 𝑐 =
0, the term (1 + 𝑘∕𝑚)2 collapses onto 1, so it is inconsequential on
the limiting distribution our monitoring scheme. Although this
term is inconsequential for the asymptotic theory in our set-up,
we find that it can further improve the empirical size. Both tuning
terms are asymptotically negligible. and only play a role in finite
samples to achieve better size control at no expense for power.
The proposed tuning is tailored to DGPs with Student’s 𝑡 errors,
rather than Gaussian errors; indeed, heavy tails are a well-known
stylised fact of financial returns.

4.1 | Empirical Size Under the Null

Under the null, the realisation of GARCH(1,1) in the
training period (1 ⩽ 𝑖 ⩽ 𝑚) and in the monitoring period
(𝑚 + 1 ⩽ 𝑖 ⩽ 𝑚 +𝓃) is

𝑦𝑖 = 𝜎𝑖𝜖𝑖, and 𝜎𝑖 = 𝜔0 + 𝛼0𝑦
2
𝑖−1 + 𝛽0𝜎

2
𝑖−1, 1 ≤ 𝑖 ≤ 𝑚 +𝓃

where 𝜖𝑖 follows a standard normal distribution or the Stu-
dent’s 𝑡 distribution with 7 degrees of freedom. Since our
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TABLE 2 | Empirical size based on Theorem 1 (i).

𝝐𝒊 ∼  (0, 1) 𝝐𝒊 ∼ Student’s 𝒕

𝒎 = 500 𝒎 = 1000 𝒎 = 5000 𝒎 = 500 𝒎 = 1000 𝒎 = 5000

Stationary GARCH(1,1)
𝓃 = 250

𝜂 = 0.0 6.5% 4.8% 3.5% 8.3% 8.0% 6.2%
𝜂 = 0.3 7.1% 5.5% 3.8% 10.1% 8.9% 7.5%
𝜂 = 0.5 8.5% 6.2% 4.5% 11.3% 10.8% 9.1%
𝜂 = 0.7 10.1% 8.8% 6.6% 14.5% 13.2% 10.9%
𝜂 = 0.9 13.9% 10.5% 9.9% 18.2% 14.7% 10.3%

𝓃 = 500
𝜂 = 0.0 5.2% 4.3% 2.7% 8.3% 5.4% 4.6%
𝜂 = 0.3 5.8% 4.8% 2.9% 9.3% 6.1% 5.2%
𝜂 = 0.5 6.6% 5.4% 3.7% 11.4% 8.2% 6.9%
𝜂 = 0.7 8.7% 7.4% 5.6% 14.3% 10.5% 8.8%
𝜂 = 0.9 13.9% 10.9% 8.4% 18.1% 16.1% 11.5%

Nonstationary GARCH(1,1)
𝓃 = 250

𝜂 = 0.0 5.4% 4.3% 3.7% 8.8% 5.2% 5.0%
𝜂 = 0.3 6.2% 5.2% 4.2% 10.7% 6.5% 5.5%
𝜂 = 0.5 7.5% 6.7% 5.1% 12.3% 8.5% 6.8%
𝜂 = 0.7 9.9% 9.4% 5.9% 14.7% 12.2% 9.1%
𝜂 = 0.9 13.6% 11.0% 11.4% 17.3% 14.3% 11.6%

𝓃 = 500
𝜂 = 0.0 2.6% 2.9% 2.9% 5.7% 4.4% 4.0%
𝜂 = 0.3 3.8% 3.2% 3.0% 7.2% 5.3% 4.1%
𝜂 = 0.5 4.5% 3.9% 3.6% 8.7% 7.7% 5.3%
𝜂 = 0.7 7.4% 6.0% 5.1% 13.0% 9.6% 8.1%
𝜂 = 0.9 12.1% 10.3% 9.6% 17.2% 13.8% 11.0%

monitoring procedure does not require the historical sam-
ple to be stationary or not, we choose the following two set of
GARCH(1,1) parameters, taken from Francq and Zakoïan (2012):
(i) (𝜔0, 𝛼0, 𝛽0) = (0.10, 0.18, 0.80), which represents the stationary
case; (ii) (𝜔0, 𝛼0, 𝛽0) = (0.10, 0.30, 0.80), corresponding to the non-
stationary case since 𝐸 log(𝛼𝜖2

0 + 𝛽) > 0 under errors following
either the standard normal or the Student’s 𝑡 distributions.

Table 2 reports the empirical sizes at 5% significance level for
the monitoring scheme based on Theorem 1(i) for different val-
ues of 𝜂. A noticeable feature is that a larger 𝜂 results in a
higher rejection rates and a smaller 𝜂 is more conservative in
rejection; this can be expected, since, as 𝜂 approaches 1, the
limit undergoes a transition from a Gaussian to a non Gaussian,
Extreme-Value-type limit, which is compounded by the noto-
riously slow convergence towards Extreme Value distributions
(see e.g., Hall 1979, for a general reference, and Gombay and
Horváth 1996, for a more specific treatment). Under the Stu-
dent’s 𝑡 errors, 𝜂 = 0.3 is a good choice because the monitoring
procedure has reasonably good empirical sizes when 𝑚 = 1,000,
and the empirical sizes for 𝑚 = 5,000 are closer to the theoretical
level of 5%. Under Gaussian errors, the monitoring procedure
is slightly under-sized, which is mainly due to the additionally

tuning we imposed in (26). For practical use, the tendency to
under-reject with Gaussian errors may not necessarily be a con-
cern, because the empirical power does not seem to be affected, as
shown in Section 4.2. Lastly, the simulation results show that our
monitoring schemed works reasonably well for both stationary
and nonstationary GARCH(1,1) models.

Table B.1 in the Supplement contains the empirical sizes for
Rényi type statistics. The rejection rates are slightly higher than
the 5% nominal level. We note that, in principle, it would be pos-
sible to design a different tuning for Rényi type statistics.

4.2 | Empirical Power Under 𝑯𝑨

We now turn to the analysis of the empirical power. Under the
alternative, the data is generated by

𝑦𝑖 = 𝜎𝑖𝜖𝑖

𝜎𝑖 =
⎧⎪⎨⎪⎩
𝜔0 + 𝛼0𝑦

2
𝑖−1 + 𝛽0𝜎

2
𝑖−1, if 1 ≤ 𝑖 < 𝑚 + 𝑘∗

𝜔𝐴 + 𝛼𝐴𝑦
2
𝑖−1 + 𝛽𝐴𝜎

2
𝑖−1, if 𝑚 + 𝑘∗ ≤ 𝑖 ≤ 𝑚 +𝓃
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TABLE 3 | Empirical power based on Theorem 1 i) for a change at 𝑘∗ = ⌊√𝓃⌋.
𝓷 = 500 𝑯𝑨,1 𝑯𝑨,2

Before 𝒌∗ =
√
𝓷 𝜷0 = 0.80 𝜷0 = 0.80

After 𝒌∗ =
√
𝓷 𝜷1 = 0.60 𝜷1 = 0.90

𝝐𝒊 ∼  (0, 1) 𝒎 = 500 𝒎 = 1000 𝒎 = 5000 𝒎 = 500 𝒎 = 1000 𝒎 = 5000

𝜂 = 0.0 96.76% 99.94% 100.00% 99.76% 100.00% 100.00%
𝜂 = 0.3 96.38% 99.94% 100.00% 99.76% 100.00% 100.00%
𝜂 = 0.5 96.06% 99.94% 100.00% 99.74% 100.00% 100.00%
𝜂 = 0.7 95.44% 99.84% 100.00% 99.72% 100.00% 100.00%
𝜂 = 0.9 93.70% 99.74% 100.00% 99.42% 100.00% 100.00%
𝜖𝑖 ∼ Student’s 𝑡
𝜂 = 0.0 80.26% 96.22% 99.92% 96.28% 99.44% 100.00%
𝜂 = 0.3 79.16% 95.80% 99.92% 96.04% 99.36% 100.00%
𝜂 = 0.5 78.20% 95.40% 99.92% 95.94% 99.34% 100.00%
𝜂 = 0.7 76.88% 94.48% 99.92% 95.76% 99.18% 99.98%
𝜂 = 0.9 71.96% 90.76% 99.48% 94.62% 98.94% 100.00%

𝓷 = 500 𝑯𝑨,3 𝑯𝑨,4

Before 𝒌∗ =
√
𝓷 𝜷0 = 0.90 𝜷0 = 0.90

After 𝒌∗ =
√
𝓷 𝜷1 = 0.80 𝜷1 = 1.00

𝝐𝒊 ∼  (0, 1) 𝒎 = 500 𝒎 = 1000 𝒎 = 5000 𝒎 = 500 𝒎 = 1000 𝒎 = 5000

𝜂 = 0.0 100.00% 100.00% 100.00% 99.82% 100.00% 100.00%
𝜂 = 0.3 100.00% 100.00% 100.00% 99.74% 100.00% 100.00%
𝜂 = 0.5 100.00% 100.00% 100.00% 99.70% 100.00% 100.00%
𝜂 = 0.7 100.00% 100.00% 100.00% 99.60% 100.00% 100.00%
𝜂 = 0.9 99.98% 100.00% 100.00% 99.18% 100.00% 100.00%
𝜖𝑖 ∼ Student’s 𝑡
𝜂 = 0.0 99.96% 100.00% 100.00% 94.00% 98.90% 100.00%
𝜂 = 0.3 99.94% 100.00% 100.00% 93.76% 98.84% 100.00%
𝜂 = 0.5 99.94% 100.00% 100.00% 93.40% 98.70% 100.00%
𝜂 = 0.7 99.94% 100.00% 100.00% 92.98% 98.42% 99.98%
𝜂 = 0.9 99.92% 100.00% 100.00% 92.06% 98.06% 99.90%

where the parameter 𝜽0 = (𝛼0, 𝛽0, 𝜔0)⊤ changes to 𝜽𝐴 =
(𝛼𝐴, 𝛽𝐴, 𝜔𝐴)⊤ at time 𝑚 + 𝑘∗. We consider two scenarios for
the time of change: (a) 𝑘∗ = ⌊√𝓃⌋ corresponds to a change
occurring “early, but not too early” after the historical sample;
(b) 𝑘∗ = ⌊0.5𝓃⌋ indicates a change happening much later than 𝑟.

There are many possible ways of changes under the alternative.
To keep our results clean, we set 𝜔0 = 𝜔𝐴 = 0.1 and 𝛼0 = 𝛼𝐴 =
0.18, and concentrate on a change in 𝛽 under the following four
representative alternatives:

HA,1: 𝛽0 = 0.8, 𝛽𝐴 = 0.6, i.e., a change from a stationary to
another stationary regime,

HA,2: 𝛽0 = 0.8, 𝛽𝐴 = 0.9, i.e., a change from a stationary to an
explosive regime,

HA,3: 𝛽0 = 0.9, 𝛽𝐴 = 0.8, i.e., a change from an explosive to a
stationary regime,

HA,4: 𝛽0 = 0.9, 𝛽𝐴 = 1.0, i.e., a change from an explosive to
another explosive regime.

Tables 3 and 4 show the empirical power of the monitoring
scheme based on Theorem 1 (i) at 5% significance level when
𝓃 = 500 for a change at 𝑘∗ = ⌊√𝓃⌋ and 𝑘∗ = ⌊0.5𝓃⌋, respec-
tively.4 There are five major observations. First, our monitoring
scheme is highly effective in detecting changes under 𝐻𝐴,2 and
𝐻𝐴,3 for both early and late changes. These alternatives result in
a change between a stationary regime and an explosive regime,
which is relatively easy to detect. Second, the monitoring scheme
exhibits high power in detecting early changes under 𝐻𝐴,1 and
𝐻𝐴,4. These alternatives represent a change within either a
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TABLE 4 | Empirical power based on Theorem 3.1(i) for a change at 𝑘∗ = ⌊0.5𝓃⌋.
𝓷 = 500 𝑯𝑨,1 𝑯𝑨,2

Before 𝒌∗ = 0.5𝓷 𝜷0 = 0.80 𝜷0 = 0.80
After 𝒌∗ = 0.5𝓷 𝜷1 = 0.60 𝜷1 = 0.90

𝝐𝒊 ∼  (0, 1) 𝒎 = 500 𝒎 = 1000 𝒎 = 5000 𝒎 = 500 𝒎 = 1000 𝒎 = 5000

𝜂 = 0.0 50.26% 77.88% 98.46% 82.08% 96.04% 99.90%
𝜂 = 0.3 47.84% 76.16% 98.12% 80.92% 95.74% 99.90%
𝜂 = 0.5 46.38% 74.32% 97.56% 79.80% 95.26% 99.88%
𝜂 = 0.7 43.26% 70.56% 96.60% 77.86% 94.12% 99.86%
𝜂 = 0.9 39.26% 62.12% 93.92% 73.26% 91.56% 99.74%
𝜖𝑖 ∼ Student’s 𝑡
𝜂 = 0.0 25.68% 43.10% 72.88% 72.42% 84.98% 97.02%
𝜂 = 0.3 25.02% 41.18% 70.48% 71.70% 84.30% 96.68%
𝜂 = 0.5 24.80% 39.46% 68.18% 70.62% 83.44% 96.22%
𝜂 = 0.7 25.18% 37.68% 64.14% 69.76% 81.90% 95.56%
𝜂 = 0.9 25.30% 31.70% 53.44% 66.16% 78.54% 93.40%

𝓷 = 500 𝑯𝑨,3 𝑯𝑨,4

Before 𝒌∗ =
√
𝓷 𝜷0 = 0.90 𝜷0 = 0.90

After 𝒌∗ =
√
𝓷 𝜷1 = 0.80 𝜷1 = 1.00

𝝐𝒊 ∼  (0, 1) 𝒎 = 500 𝒎 = 1000 𝒎 = 5000 𝒎 = 500 𝒎 = 1000 𝒎 = 5000

𝜂 = 0.0 100.00% 100.00% 100.00% 76.78% 93.14% 99.90%
𝜂 = 0.3 100.00% 100.00% 100.00% 75.64% 92.36% 99.88%
𝜂 = 0.5 100.00% 100.00% 100.00% 74.40% 91.58% 99.86%
𝜂 = 0.7 100.00% 100.00% 100.00% 71.98% 89.88% 99.66%
𝜂 = 0.9 98.32% 99.84% 100.00% 66.42% 86.74% 99.40%
𝜖𝑖 ∼ Student’s 𝑡
𝜂 = 0.0 99.96% 100.00% 100.00% 64.16% 78.82% 94.30%
𝜂 = 0.3 99.94% 100.00% 100.00% 63.22% 78.14% 93.76%
𝜂 = 0.5 99.94% 100.00% 100.00% 62.38% 77.00% 93.26%
𝜂 = 0.7 99.94% 100.00% 100.00% 61.28% 75.30% 92.16%
𝜂 = 0.9 96.74% 98.96% 99.94% 59.60% 70.92% 88.54%

stationary or an explosive regime. Third, there is a deterioration
in power when detecting late changes under 𝐻𝐴,1 and 𝐻𝐴,4,
although satisfactory levels can be achieved by using a large(r)
training sample size of 𝑚 = 5, 000. Fourth, the power is relatively
lower when using the Student’s 𝑡 distribution errors compared to
normal errors. Lastly, there is only a marginal decline observed
in the power with a larger value of 𝜂.

Tables B.2 and B.3 in the Supplement provide the empirical
power for the Rényi type statistics based on Theorem 1 (ii) under
the same setting. When detecting early changes at 𝑘∗ = ⌊√𝓃⌋,
similar observations as above apply; the monitoring schemes
with 𝜂 = 1.3 and 1.5 proves to be effective. However, one notice-
able difference is that a larger value of 𝜂 is detrimental in the
power. In particular, 𝜂 = 1.7 and 2 suffer a remarkable loss of
power under 𝐻𝐴,1. As far as late changes (𝑘∗ = ⌊0.5𝓃⌋) are
concerned, the Rényi type statistics become much less effective,

as predicted by the theory. This is because Rényi type statistics
are devised for the fast detection of very early changes, whilst
being suboptimal for late changes.

It is also worthwhile to examine the stopping time 𝜏𝑚 and 𝜏𝑚 to
investigate the detection delays of our monitoring procedures.
Figure 1 shows the boxplot of the detection delays of 𝜏𝑚 and
𝜏𝑚 for a change at 𝑘∗ = ⌊√𝓃⌋ under 𝐻𝐴,2 when 𝑚 = 500, 𝓃 =
500. For the monitoring procedure based on Theorem 1 (i), it
is consistent with our theory that larger values of 𝜂 reduce the
detection delay. Considering the Rényi type statistics based on
Theorem 1 (ii), there is only a marginal difference in using var-
ious values of 𝜂. Comparing the detection delay between the
monitoring procedures based on Theorem 1 (i) and (ii), we can
clearly see the merit of the Rényi type statistics for the fast
detection of early changes, as evidenced by shorter detection
delays.
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FIGURE 1 | Boxplot of detection delays when 𝑚 = 500, 𝓃 = 500 for a change at 𝑘∗ = ⌊√𝓃⌋ under 𝐻𝐴,2. Left Panel: the monitoring procedure based
on Theorem 1 (i); Right Panel: the monitoring procedure based on Theorem 1 (ii).

5 | Empirical Illustration

We use daily returns of individual stocks, focusing on four
stocks: Apple Inc. (ticker: AAPL, Permno: 14593), Middlefield
Banc Corp. (ticker: MBCN, Permno: 14932), Genetic Technolo-
gies Ltd (ticker: GENE, Permno: 90899) and NTS Realty Holdings
LP (ticker: NLP, Permno: 90508); daily returns (without dividend)
are downloaded from the CRSP database.5 We consider two peri-
ods to showcase the detection for four types of changes. Depend-
ing on the specific purpose of the researcher, one can choose
between the monitoring procedures based on Theorem 1 (i) and
(ii). Based on our simulations, if the aim is to quickly detect very
early changes, we suggest using the Rényi type statistics based on
Theorem 1(ii), with some tolerance for the compromise in size
and power; conversely, if the purpose is to have good size control
and high power, it is recommended to use the monitoring proce-
dure based on Theorem 1 (i). In this application, our preference
is to have a good balance of size and power, and the procedure
based on Theorem 1 (i) (with the choice of 𝜂 = 0.3) delivers a
good performance with sample sizes similar to the dataset used
in this section.6 Before applying our monitoring procedure, we
use the test developed by (Horváth and Wang 2024, HW(2024)
henceforth) to detect changes in GARCH(1,1). A rejection indi-
cates there is no change of (𝛼, 𝛽) in the GARCH(1,1) during the
historical sample. Further, we examine whether our historical
sample is stationary or not by using the nonstationarity test devel-
oped by (Francq and Zakoïan 2012, FZ(2012) henceforth). At the
end of our monitoring horizon, we use the FZ(2012) test again
to check the stationarity of the samples after the change (if there
is one).

5.1 | Change From a Stationary Regime

To illustrate changepoint detection from a stationary regime,
we choose the training period of 2016–2019 (1,007 trading

days) and the monitoring period of 2020–2021 (507 trading
days). The training period is before the outbreak of COVID-19,
whereas the monitoring period is in the pandemic. We apply
our monitoring procedure for the stocks of AAPL and MBCN
during this period. Table 5 (Columns 1 and 2) reports the results
of the sequential monitoring procedure, as well as other infor-
mation, including HW(2024) test, FZ(2012) test, and parameter
estimates. HW(2024) test indicates that there is no parameter
change during the training sample for AAPL and MBCN. The
nonstationarity test of FZ(2012) indicates that they are both sta-
tionary during the training sample. Our sequential monitoring
detects a change of AAPL on July 31st, 2020 and a change of
MBCN on May 8th, 2020. Based on the FZ(2012) test for the sam-
ple after the change, we can conclude that AAPL experienced a
change from a stationary to another stationary regime, whereas
MBCN shifted from a stationary regime to a nonstationary one.
Figure 2 contains returns series (upper panel) during the mon-
itoring period and the detector versus the boundary function
(lower panel).

5.2 | Change From a Nonstationary Regime

We now consider detection from a nonstationary regime, and
use 2007–2010 (1, 011 trading days) as the training period and
2011–2022 (505 trading days) as the monitoring period. The
training period covers the global financial crisis (GFC), whereas
the monitoring period follows the GFC but includes the European
debt crisis. In this period, we monitor GENE and NLP. The results
of the sequential monitoring procedure, alongside other Support-
ing Information, are displayed in Columns 3 and 4 of Table 5.
Based on the HW(2024) test, we cannot reject that the return
series of GENE and NLP have change in the training period. As
evidenced by the nonstationarity test of FZ(2012), both stocks
are in the nonstationary regime during the training period. Our
sequential monitoring procedure reveals a change of GENE on

12 of 16 Journal of Time Series Analysis, 2025
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TABLE 5 | Monitoring results of the four stocks.

AAPL MBCN GENE NLP

Training Sample
Start date 2016-01-04 2016-01-04 2007-01-03 2007-01-03
End date 2019-12-31 2019-12-31 2010-12-31 2010-12-31
Sample size 1006 1006 1006 1008
HW(2024) test
Test stat 1.463 1.395 1.176 1.258
Rej. of HW(2024) Not Rej. Not Rej. Not Rej. Not Rej.
FZ(2012) NS test
𝑝-value 0.00% 0.00% 35.29% 33.81%
Stationary or not Stationary Stationary Nonstationary Nonstationary
Parameter estimates
𝛼̂0 0.135 0.183 0.287 0.099
𝛽0 0.745 0.579 0.816 0.916

Monitoring sample
Start date 2020-01-02 2020-01-02 2011-01-03 2011-01-03
End date 2021-12-31 2021-12-31 2012-12-31 2012-12-31
Sample size 505 505 494 502
Our sequential monitoring
Rejection Rej. Rej. Rej. Rej.
Time of Change 2020-07-31 2020-05-08 2011-04-27 2012-09-04
After the change
FZ(2012) NS test
𝑝-value 0.00% 10.38% 0.00% 100.00%
Stationary or not Stationary Nonstationary Stationary Nonstationary
Parameter estimates
𝛼̂𝐴 0.052 0.091 0.488 0.001
𝛽𝐴 0.935 0.913 0.528 1.053

FIGURE 2 | Upper panel: The return series of AAPL (left) and MBCN (right) during the monitoring period; Lower panel: The detector 𝑚(𝑘) versus
the boundary function 𝔤𝑚(𝑘) of AAPL (left) and MBCN (right).
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FIGURE 3 | Upper panel: The return series of GENE (left) and NLP (right) during the monitoring period; Lower panel: The detector 𝑚(𝑘) versus
the boundary function 𝔤𝑚(𝑘) of GENE (left) and NLP (right).

April 27th, 2011 and a change of NLP on September 4th, 2012.
After applying FZ(2012) nonstationarity test on the sample after
the change, it is found that the change of GENE is from a non-
stationary regime to a stationary regime, whilst the change of
NLP is from a nonstationary to another nonstationary regime.
It is also interesting to note that GENE after the change is in
a strict stationary regime, but not in a second-order stationary
regime. Figure 3 shows their returns series (upper panel) during
the monitoring period and the detector versus the boundary func-
tion (lower panel). The sudden jump of the detector for NLP can
be attributed to a “going private” proposal made on August 31st,
2012 and kept in negotiation until a definitive merger agreement
announced on December 27th, 2012.7 This is a prolonged event,
rather than an outlier, that is associated with the change in the
GARCH(1,1) parameters of the stock.

6 | Conclusions and Discussions

In this article, we complement the existing literature on (ex-ante)
testing for bubble phenomena by proposing a family of weighted,
CUSUM-based statistics to detect changes in the parameters
of a GARCH(1,1) process. Our monitoring procedure can be
applied irrespective of whether, in the training sample, the obser-
vations are stationary or explosive, and it is able to detect all
types of changes: (a) from a stationary to another stationary
regime (which is helpful to avoid the issues concerning the con-
sistent estimation of a GARCH(1,1) process spelt out in Hille-
brand 2005); (b) from a stationary to an explosive regime (which
contains information on the possible inception of a bubble); (c)
from an explosive to a stationary regime (which, in the light of
the previous point, could shed light on the cooling off the tur-
bulence associated with a bubble on a financial market); and (d)
from an explosive to another explosive regime (which, depending
on the direction of the change – towards a more or a less explosive
regime – could indicate whether exuberant volatility is heating

up or cooling down). On account of their nature as omnibus tests,
it is important to emphasise that our procedures only indicate a
change in the parameters of a GARCH(1,1) model. Subsequent
analysis, after a changepoint has been found, is required in order
to ascertain the stationarity/explosivity of the (volatility of the)
observations before and after the break. Hence, our methodolo-
gies constitute the first step of the analysis – with the (major)
advantage that they can be used with no previous knowledge as
to the nature of the data – and can be complemented a posteriori
by the application of a test for stationarity like the one proposed in
Francq and Zakoïan (2012). Building on the theory developed in
this article, further statistics can be proposed which are tailored
to more specific changes: for example, a detector could be based
on 𝛼̂ + 𝛽, monitoring when this quantity exceeds 1 (thus indicat-
ing a change to explosivity).8 An important question is also how
to select the “optimal” 𝜂, which guarantees the shortest detection
delay; as mentioned above, such an optimal value of 𝜂 does not
exist in general. However, building on the theory developed in
this article, one could consider a combination of different values
of 𝜂, along the same lines as Ghezzi et al. (2024). Another possi-
ble approach would be to use a rolling, as opposed to recursive,
estimator.

Technically, we propose two families of statistics, both based on
weighted versions of the CUSUM process of the quasi-Fisher
scores: one family uses lighter weights, and it is designed to
detect, optimally, changes occurring not immediately after the
start of the monitoring horizon; the other family uses heavier,
Rényi-type weights, which make it more sensitive to change-
points occurring immediately after the end of the training period.
For both cases, we study the limiting distribution of the detec-
tion delays; to the best of our knowledge, no such results exist for
the case of a GARCH(1,1) models, and no results in general exist
for the case of Rényi statistics. Given the interest in the detection
of bubble phenomena, and the scant amount of contributions in
the context of detection of changes in the volatility, we believe
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that our article should be a useful addition to the toolbox of the
financial econometrician.

Conflicts of Interest

The authors declare no conflicts of interest.

Endnotes
1 A complete literature review on (the very popular) GARCH models goes

beyond the scope of this article; we refer to the book by Francq and
Zakoian (2019) as a state-of-the-art reference.

2 Such divergence can be shown in probability, but a.s. divergence to
infinity cannot be established.

3 Note that the sequence 𝑦𝑖−1, per se, needs not be stationary since it starts
from an initial value, whence its replacement with its stationary approx-
imation 𝑥̂𝑖−1.

4 The empirical power of 𝓃 = 250 (not reported) is marginally lower than
the empirical power of 𝓃 = 500.

5 We choose to use the daily returns without dividend, rather than log
difference of prices, to avoid the complication due to stock splits.

6 We relegate the results using Rényi weights to Section B.4 of the
Supplement.

7 https://www.sec.gov/Archives/edgar/data/1278384/
000127838412000029/ex_99-1.htm, assessed on 1 February 2025.

8 We are grateful to an anonymous Referee for suggesting this to us.
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