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Abstract
Significant changes have occurred during the last few decades across the North Atlantic climate system, including in the 
atmosphere, ocean, and cryosphere. These large-scale changes play a vital role in shaping regional climate and extreme 
weather events across the UK and Western Europe. This review synthesizes the characteristics of observed large-scale changes 
in North Atlantic atmospheric and oceanic circulations during past decades, identifies the drivers and physical processes 
responsible for these changes, outlines projected changes due to anthropogenic warming, and discusses the predictability of 
these circulations. On multi-decadal time scales, internal variability, anthropogenic forcings (especially greenhouse gases), 
and natural forcings (such as solar variability and volcanic eruptions) are identified as key contributors to large-scale vari-
ability in North Atlantic atmospheric and oceanic circulations. However, there remain many uncertainties regarding the 
detailed characteristics of these various influences, and in some cases their relative importance. We therefore conclude that 
a better understanding of these drivers, and more accurate quantification of their relative roles, are crucial for more reliable 
decadal predictions and projections of regional climate for the North Atlantic and Europe.

Keywords  Atmospheric circulation · Oceanic circulation · Decadal changes · Anthropogenic forcings · North Atlantic 
climate system

1  Introduction

Considerable changes have occurred during the last few 
decades across the North Atlantic climate system, in the 
atmosphere, ocean, and cryosphere (Sutton et al. 2017; 
Robson et al. 2018; Woollings et al. 2018). Of particular 
interest are changes in large-scale circulation patterns in the 
atmosphere and ocean, since they exert a major influence on 

regional climates across the North Atlantic sector, includ-
ing on extreme events such as heatwaves, wind storms, 
floods, droughts, ocean surface waves and marine heat-
waves (Fig. 1; Hurrell 1995; Coumou and Rahmstorf 2012; 
Dong et al. 2013; Hall et al. 2015; Deser et al. 2017; Iles 
and Hegerl 2017; Piecuch et al. 2019; Volkov et al. 2019; 
Rousi et al. 2021, 2022; Hallam et al. 2022; Dunstone et al. 
2023; Schurer et al. 2023; Berthou et al. 2024; Simpson 
et al. 2024).

One of the most important features of atmospheric circu-
lation over the North Atlantic is the eddy-driven jet, char-
acterized by a band of strong westerly winds in the tropo-
sphere, with the maximum near tropopause, formed through 
westerly eddy momentum flux convergence associated with 
baroclinic eddies (Held 1975; Hoskins et al. 1983; Lorenz 
and Hartmann 2003; Barriopedro et al 2023). The North 
Atlantic jet exhibits variability on timescales from days to 
decades in both its position and intensity. This variability 
plays a vital role in shaping regional climate and extreme 
weather over the UK and western Europe (Woollings et al. 
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2010; Hall et al. 2015; Iles and Hegerl 2017; Simpson et al. 
2019; Rousi et al. 2022; Teng et al. 2022) because synoptic 
scale disturbances tend to form in the regions of maximum 
jet stream wind speed, and to propagate eastward along 
tracks that follow the jet axis (Holton 1992; Hurrell 1995).

Observations suggest there has been significant low-fre-
quency variability and/or trends in the North Atlantic jet in 
both winter and summer (Woollings et al. 2010, 2014, 2018, 
2023; Hall et al. 2015; Hanna et al. 2015; Simpson et al. 
2018; Dong and Sutton 2021; Hallam et al. 2022; Simmons 
et al. 2022). This variability has had large impacts on the 
UK and European climate (Hurrell 1995; Dong et al. 2013; 
Hanna et al. 2017; Iles and Hegerl 2017; Simpson et al. 
2018, 2019; Rousi et al. 2021, 2022). However, the detailed 
mechanisms that govern low frequency variability of North 
Atlantic atmospheric circulation remain poorly understood.

Large-scale ocean circulation in the North Atlantic is 
dominated by the wind-driven gyres, i.e. the subpolar gyre 
(SPG) and subtropical gyre (STG), and the Atlantic Meridi-
onal Overturning Circulation (AMOC). Changes in the 
wind-driven gyres can impact the AMOC and vice versa 

(Hatun et al. 2005; Buckley and Marshall 2016). Observa-
tions, reanalyses, and proxies indicate substantial decadal-
scale variability in the AMOC strength and abrupt changes 
in the SPG and STG (Robson et al. 2014; Buckley and Mar-
shall 2016; Piecuch et al. 2019; Holliday et al. 2020; Desbru-
yères et al. 2021; Jackson et al. 2022; McCarthy et al. 2023).

Changes in AMOC strength can affect the climate in the 
Atlantic sector as well as in remote regions (e.g., Manabe 
and Stouffer 1999; Vellinga and Wood 2002; Zhang et al. 
2019), such as shifts in the Intertropical Convergence Zone 
(ITCZ) (Vellinga and Wood 2002; Knight et  al. 2006), 
regional sea-level (Levermann et al. 2005; Bingham and 
Hughes 2009; Little et al. 2019), Sahel/Asian summer mon-
soon rainfall (Folland et al. 1986; Dong et al. 2006; Knight 
et al. 2006), Atlantic hurricanes (Goldenberg et al. 2001; 
Hallam et al. 2019), summer climate over Europe and North 
America (Sutton and Hodson 2005; Sutton and Dong 2012), 
and tropical Pacific variability (Dong and Sutton 2007; Tim-
mermann et al. 2007; Kucharski et al. 2016).

A wide range of drivers may influence decadal–multidec-
adal changes in large-scale North Atlantic atmospheric and 

Fig. 1   Schematic illustration of drivers (left box) of large scale 
changes in North Atlantic atmospheric and oceanic circulations (mid-
dle column) and associated impacts over the North Atlantic sector 
(right column). Images used in this figure are adapted from Crondall-
weather.co.uk, https://​svs.​gsfc.​nasa.​gov/​5036, https://​www.​esa.​int/​
SPECI​ALS/​Edusp​ace_​Weath​er_​EN/​SEM1H​YK1YHH_​1.​html#​subhe​
ad1, https://​en.​wikip​edia.​org/​wiki/​2006_​Europ​ean_​heatw​ave, https://​

www.​severe-​weath​er.​eu/​mcd/​north-​atlan​tic-​cyclo​ne-​winds​torm-​uk-​
mk/, https://​www.​eea.​europa.​eu/​data-​and-​maps/​figur​es/​obser​ved-​
regio​nal-​trends-​of-​annual, https://​www.​bbc.​co.​uk/​news/​scien​ce-​envir​
onment-​49731​591, and https://​news.​stv.​tv/​scotl​and/​seas-​around-​scotl​
and-​reach-​unpre​ceden​ted-​record-​break​ing-​tempe​ratur​es-​amid-​extre​
me-​marine-​heatw​ave

https://svs.gsfc.nasa.gov/5036
https://www.esa.int/SPECIALS/Eduspace_Weather_EN/SEM1HYK1YHH_1.html#subhead1
https://www.esa.int/SPECIALS/Eduspace_Weather_EN/SEM1HYK1YHH_1.html#subhead1
https://www.esa.int/SPECIALS/Eduspace_Weather_EN/SEM1HYK1YHH_1.html#subhead1
https://en.wikipedia.org/wiki/2006_European_heatwave
https://www.severe-weather.eu/mcd/north-atlantic-cyclone-windstorm-uk-mk/
https://www.severe-weather.eu/mcd/north-atlantic-cyclone-windstorm-uk-mk/
https://www.severe-weather.eu/mcd/north-atlantic-cyclone-windstorm-uk-mk/
https://www.eea.europa.eu/data-and-maps/figures/observed-regional-trends-of-annual
https://www.eea.europa.eu/data-and-maps/figures/observed-regional-trends-of-annual
https://www.bbc.co.uk/news/science-environment-49731591
https://www.bbc.co.uk/news/science-environment-49731591
https://news.stv.tv/scotland/seas-around-scotland-reach-unprecedented-record-breaking-temperatures-amid-extreme-marine-heatwave
https://news.stv.tv/scotland/seas-around-scotland-reach-unprecedented-record-breaking-temperatures-amid-extreme-marine-heatwave
https://news.stv.tv/scotland/seas-around-scotland-reach-unprecedented-record-breaking-temperatures-amid-extreme-marine-heatwave
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oceanic circulations, as illustrated in Fig. 1. The large-scale 
changes could result from: (1) natural internal variability in 
the atmosphere (e.g., Wunsch 1999; Feldstein 2000; Eden and 
Willebrand 2001) and/or ocean (e.g., Sévellec and Fedorov 
2013; Josey and Sinha 2022; Moat et al. 2024); (2) natural 
internal coupled ocean–atmosphere processes (Delworth et al. 
1993; Dong and Sutton 2005; Omrani et al. 2014; Davini 
et al. 2015; Peings et al. 2016; Simpson et al. 2018; Lai et al. 
2022); (3) responses to external anthropogenic forcings, such 
as anthropogenic greenhouse gas forcing (Gregory et al. 2005; 
Delworth and Dixon 2006; Graff and LaCasce 2012; Ceppi 
and Shepherd 2017; Harvey et al. 2020; Lee et al. 2021) 
and anthropogenic aerosol emissions (Delworth and Dixon 
2006; Rotstayn et al. 2013; Bellomo et al. 2018; Shen and 
Ming 2018; Undorf et al. 2018a, b; Watanabe and Tatebe 
2019; Menary et al. 2020; Dong et al. 2021, 2022; Hassan 
et al. 2021; Robson et al. 2022); and (4) responses to external 
natural forcings, such as the changes in solar ultraviolet radia-
tion (Haigh 1996; Lockwood et al. 2010; Mignot et al. 2011; 
Menary et al. 2014; Gray et al. 2016; Lu et al. 2009, 2017a, 
b; Ye et al. 2023a) and volcanic eruptions (Swingedouw et al. 
2017; Marshall et al. 2022; Paik et al. 2023).

In this paper, we review recent progress in characterizing 
and understanding decadal–multidecadal changes in North 
Atlantic atmospheric and oceanic circulations, and their asso-
ciated impacts. More specifically, we first summarize: (1) 
major observed changes in the relevant atmosphere and ocean 
circulation patterns; (2) key drivers and physical processes 
involved in decadal–multidecadal changes in these circula-
tion patterns, and to provide an overview of projected future 
changes; (3) evidence concerning the predictability of these 
circulation patterns. We then identify areas where further 
research is required.

This paper is structured as follows. We document the 
characteristics of observed decadal–multidecadal large-scale 
changes of atmospheric circulation in the North Atlantic sec-
tor during past decades, their drivers, projected changes in 
the future and physical processes in Sect. 2. Changes in oce-
anic circulation during past decades, projected changes, and 
responses to different forcing factors are presented in Sect. 3. 
The role of atmosphere–ocean coupling is described in Sect. 4, 
and evidence concerning multi-annual predictability and pre-
diction is revealed in Sect. 5. Synthesis and discussions are 
presented in Sect. 6 and outstanding challenges in Sect. 7.

2 � Changes of large‑scale atmospheric 
circulation in North Atlantic

2.1 � Observed changes

In recent decades, atmospheric circulation over the North 
Atlantic has exhibited substantial decadal–multidecadal 

change. Changes have been observed, for example, in both 
the latitude and speed of the North Atlantic eddy-driven jet 
in winter, summer and transition seasons (Woollings et al. 
2014, 2023; Hall et al. 2015; Hallam et al. 2022; Simmons 
2022). In this section we document key features of the 
observed changes.

2.1.1 � Winter

Observations show that during 1951–2022 there was a 
strengthening of wind speed on the northward flank of the 
North Atlantic eddy-driven jet and in its downstream exten-
sion into northern Europe (Fig. 2 for extended winter DJFM, 
Supplementary Fig. S1 for DJF, Woollings et al. 2014; Simp-
son et al. 2019; Blackport and Fyfe 2022), and the strength-
ening is seen in both the lower and upper troposphere. Large 
decadal–multidecadal variations (11 year running mean) are 
characterized by a strengthening (~ 1.3 m s−1) and north-
ward shift (~ 2.0 degree) of the jet from the 1960s to the 
1990s, a weakening (~ 0.6 m s−1) and southward shift (~ 1.0 
degree) from the 1990s to 2000s and recent strengthening 
(~ 0.5 m s−1) with little change in jet latitude. These low-
frequency variations of the North Atlantic jet latitude and 
jet speed are positively correlated with each other (r = 0.62, 
p = 0.14) and the changes in jet speed are also closely related 
to low-frequency variability in the North Atlantic Oscillation 
(NAO), the seesaw pattern in atmospheric pressure between 
the Icelandic Low and the Azores High (Woollings et al. 
2015). During the last few decades there has been a sig-
nificant increase in the year-to-year variability of the winter 
NAO (Hanna et al. 2022), which is linked to more extreme 
UK winter weather at both ends of the spectrum (Hanna 
et al. 2017).

Increased jet speed (and northward displacement) is 
associated with anomalously wet conditions over the north-
ern UK and northwestern Europe and dry conditions over 
southern Europe (Fig. 2; Simpson et al. 2019; Blackport and 
Fyfe 2022), and with anomalous warming over the mid-high 
latitudes in the northern hemisphere (Iles and Hegerl 2017). 
The correlation between jet speed and the UK precipitation 
is stronger in DJFM (r = 0.92, p < 0.01) than in DJF (r = 0.86, 
p = 0.01). This is consistent with Simpson et al. (2018, 2019) 
who identified pronounced multidecadal variability of the 
eddy-driven jet in March, which is significantly correlated 
to precipitation variability in western Europe.

2.1.2 � Summer

Observations also show notable multidecadal changes 
in the North Atlantic eddy-driven jet in summer dur-
ing 1951–2022, characterized by a poleward migration 
of the jet latitude (~ 0.5 degree) and a decrease in jet 
speed (~ 0.3 m s−1) from 1950 to 1970s, followed by an 
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equatorward migration (~ 1.0 degree) and an increase in 
the jet speed from 1980 to 2000s (~ 0.3 m s−1) (Fig. 3, 
Woollings et al. 2014; Dong et al. 2021; Simmons 2022). 
Since the early 2010s, a decrease in the jet speed and a 
northward displacement of the jet are evident. These low-
frequency variations of the jet latitude and jet speed are 
negatively correlated in summer; i.e. a northward shift 
of the jet is associated with decreased jet speed. Also, 
the jet latitude index is negatively correlated with the UK 
rainfall (r = − 0.73, p = 0.06) while jet speed is positively 

correlated with the UK rainfall (r = 0.64, p = 0.13). 
Thus, a northward shift of the North Atlantic jet stream 
accompanied by decreased jet speed is associated with 
decreased rainfall over the UK and northwestern Europe 
but increased rainfall over the Iberian Peninsula and south-
east Europe in summer (Fig. 3c, Supplementary Fig. S2c). 
A northward shift of summer North Atlantic jet is also 
associated with more frequent high temperature extremes, 
heatwaves and droughts over the UK and Europe (Dong 
et al. 2013, 2017; Iles and Hegerl 2017; Deng et al. 2022; 
Rousi et al. 2022).

Fig. 2   a Normalized (by standard deviation of interannual variability) 
time series of North Atlantic jet latitude and jet speed indices, based 
on ERA5 reanalysis (Hersbach et al. 2020) at 700 hPa, and UK pre-
cipitation index, based on CRUTS4.06 data set (Harris et  al. 2014) 
in DJFM with thick lines representing low frequency (11  year run-
ning mean) variations. Jet latitude and jet speed indices are defined 
as the latitude of seasonal mean maximum zonal wind averaged 
over (60°  W-0) and the corresponding maximum zonal wind speed 
at 700 hPa. The UK precipitation index is defined as the area aver-
aged precipitation over the land region (51–59° N, 6° W-0). The three 

numbers in the bracket of the panel (a) are corelation coefficients 
among the jet latitude, jet speed, and precipitation indices (e.g., jet 
latitude vs jet speed, jet latitude vs precipitation, and jet speed vs pre-
cipitation). b, c, d Spatial patterns of 200 hPa zonal wind, precipita-
tion, and 700 hPa zonal wind in DJFM regressed to the normalized 
low frequency variations of jet speed index in DJFM. Contours (b 
and d) show climatology and dots (b, c, d) highlight regions where 
regressions are statistically significant at the 10% level based on the 
two-tailed Student’s t test
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2.1.3 � Transition seasons

Research into North Atlantic circulation changes and 
their impacts on the UK and western European has 
mainly focused on the summer and winter seasons, with 
a few studies examining the transition seasons. In spring 
(March–May), the jet latitude shows a northward displace-
ment from 1950 to 1990s and then a southward displace-
ment from the mid-1990s onwards with weak change in the 
jet speed (Supplementary Fig. S3, Woollings et al. 2014). 
The low-frequency variability of the jet latitude and the 
UK precipitation are positively correlated with a correla-
tion coefficient of 0.74 with the northward displacement 
being associated with increased rainfall. The northward 
displacement of spring jet is associated with enhanced 
precipitation over the UK and western Europe (Supple-
mentary Fig. S3a, c). This is consistent with a recent study 

by Ionita et al. (2020) who showed that the recent south-
ward displacement of the North Atlantic jet is associated 
with dry conditions over the UK and western Europe in 
spring (Ionita et al. 2020). However, the relationship of 
low-frequency changes between the jet speed and jet lati-
tude is weak.

In autumn, the jet latitude index shows a northward dis-
placement from 1950 to 1970s, a southward displacement 
from 1970s to mid-1990s and a northward displacement 
from the mid-1990s onwards (Supplementary Fig. S4a, 
Woollings et al. 2014). The low-frequency variability in jet 
speed and jet latitude are not well-correlated. The northward 
displacement of the North Atlantic jet is associated with 
decreased precipitation over the northern UK and western 
Europe and an increase in the frequency of drier summer-
type circulation regimes (Vrac et al. 2014; Cotterill et al. 
2023).

Fig. 3   As Fig. 2, but for JJA. b, c, d Spatial patterns of 200 hPa zonal wind, precipitation, and 700 hPa zonal wind in JJA regressed to the nor-
malized low frequency variations of jet latitude index in JJA
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2.2 � Drivers

A range of drivers could be responsible for the observed 
decadal–multidecadal changes in the North Atlantic jet 
speed and jet latitude (Fig. 1, also see Simpson et al. 2018; 
Smith et al. 2022b). These drivers can be related to (1) 
natural internal variability in the atmosphere (e.g., Wun-
sch 1999; Feldstein 2000); (2) natural variability of coupled 
ocean–atmosphere processes (Buchan et al. 2014; Omrani 
et al. 2014; Davini et al. 2015; Duchez et al. 2016b; Pei-
ngs et al. 2016; Simpson et al. 2018; Grist et al. 2019), 
(3) responses to external anthropogenic forcings, such as 
greenhouse gas forcing (Graff and LaCasce 2012; Ceppi and 
Shepherd 2017; Harvey et al. 2020; Lee et al. 2021) and aer-
osol emissions (Rotstayn et al. 2013; Shen and Ming 2018; 
Undorf et al. 2018a, b; Watanabe and Tatebe 2019; Dong 
et al. 2021, 2022), and (4) responses to external natural forc-
ings, such as volcanic eruptions (Swingedouw et al. 2017; 
Marshall et al. 2022; Paik et al. 2023) and solar variability 
(Lockwood et al. 2010; Gray et al. 2016; Lu et al. 2017a, 
b; Drews et al. 2022; Kuroda et al. 2022). In this section, 
we summarize advances in understanding the influence of 
these drivers on decadal–multidecadal changes of the North 
Atlantic jet.

2.2.1 � Internal variability

The North Atlantic jet varies naturally on timescales from 
weeks to decades and longer, resulting from intrinsic pro-
cesses of the atmosphere that occur in the absence of exter-
nal forcing (e.g., Wunsch 1999; Feldstein 2000). Low-fre-
quency variability of the ocean is another factor that may 
contribute to changes in the characteristics of the jet (Simp-
son et al. 2018). Studies have suggested that multidecadal 
variability of sea surface temperature (SST) over the North 
Atlantic (Atlantic multidecadal variability, AMV) may influ-
ence the jet through a stratospheric pathway (Kerr 2000; 
Omrani et al. 2014), from the tropical Atlantic (Davini et al. 
2015; Peings et al. 2016) or via a local influence of the North 
Atlantic SSTs on stationary waves, baroclinicity, and/or 
eddy–mean flow interactions (Kushnir 1994; Msadek et al. 
2011; Gastineau and Frankignoul 2012; Peings et al. 2016).

Some studies have found that the response of atmos-
pheric circulation to local North Atlantic SST anomalies 
is small (Kushnir et al. 2002; Thomson and Vallis 2018a, 
b). But this conclusion has mostly been drawn from model-
based analyses. Given their apparent deficiencies e.g., the 
systematic underestimation of North Atlantic atmospheric 
circulation variability on multi-decadal timescales in cou-
pled climate models (O’Reilly et al. 2021), it is possible 
that the real-world atmosphere exhibits a greater response 
to extratropical SST anomalies. There is growing evidence 
that the atmospheric response to midlatitude SST anomalies 

might be systematically underestimated in climate models 
(Scaife and Smith 2018; Simpson et al. 2018, 2019; Czaja 
et al. 2019; Wills et al. 2019). Recent studies have found that 
models with improved representation of ocean fronts and the 
overlying atmosphere could significantly alter the nature of 
ocean–atmosphere coupling (Smirnov et al. 2015; Siqueira 
and Kirtman 2016; Parfitt et al. 2017; Famooss Paolini et al. 
2022; Seo et al. 2023).

2.2.2 � Anthropogenic forcings

2.2.2.1  The response to greenhouse gas forcing  In response 
to an increase in anthropogenic greenhouse gases (GHG) 
concentrations, the troposphere is expected to warm with 
the maximum warming in the tropical upper troposphere 
(Meehl et al. 2007; Santer et al. 2008) and at the surface in 
polar regions especially over the Arctic (Holland and Bitz 
2003; Screen and Simmonds 2010). In contrast, the strato-
sphere is expected to cool globally (Shine et al. 2003). This 
non-uniform response pattern modifies both horizontal and 
vertical atmospheric temperature gradients, with expected 
impacts on the mid-latitude atmospheric baroclinicity and 
therefore mid-latitude atmospheric circulation (Graff and 
LaCasce 2012; Shaw et al. 2016; Ceppi and Shepherd 2017; 
Shaw 2019; Harvey et al. 2020; Lee et al. 2021). The warm-
ing in the upper troposphere of the tropics and cooling in 
the stratosphere, and enhanced warming at the surface of 
the Arctic, have been shown to force opposite responses in 
the jet location and strength (e.g., Held 1993; Harvey et al. 
2014, 2015; Shaw et  al. 2016; Shaw 2019; Stendel et  al. 
2021).

In association with the tropospheric warming and strato-
spheric cooling in response to GHG increases, the midlati-
tude jet streams and storm tracks are predicted to shift pole-
ward under future climate warming (e.g., Yin 2005; Lorenz 
and DeWeaver 2007; Lu et al. 2008; Kidston and Gerber 
2010; Barnes and Polvani 2013; Shaw et al. 2016; Simp-
son and Polvani 2016; Mbengue and Schneider 2017; Shaw 
2019), accompanied by an expansion of the Hadley cell (e.g., 
Hu et al. 2013; Nguyen et al. 2015; Tao et al. 2016; Grise 
and Davis 2020). However, enhanced warming at the Arctic 
surface drives an equatorward shift in the mean jet location 
by decreasing the surface meridional temperature gradient, 
and thus baroclinic eddies that maintain the North Atlantic 
eddy-driven jet (Butler et al. 2010; Screen et al. 2013; Shaw 
2019; Chen et al. 2020; Stendel et al. 2021). Current con-
sensus across climate models is that the upper-tropospheric 
warming wins out over the Arctic surface warming, causing 
a net poleward shift of the zonal mean jet in winter and 
annual mean (Yin 2005; Barnes and Polvani 2013; Harvey 
et al. 2014; Shaw 2019). However, there is still substantial 
disagreement among models over the magnitude of the jet 
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response (Manzini et al. 2014; Grise and Polvani 2016; Pei-
ngs et al. 2018; Harvey et al. 2020, 2023).

The above results focused on zonal mean changes, and 
there is important regional variability of the jet stream and 
associated storm track responses (Woollings and Black-
burn 2012; Barnes and Polvani 2013; Oudar et al. 2020). 
For example, studies based on CMIP3 model simulations 
indicated that the winter North Atlantic jet will strengthen 
and extend eastward, with corresponding stormtrack changes 
(Bengtsson et al. 2006, 2009; Ulbrich et al. 2008; Shaw et al. 
2016). A similar but slightly weaker response is found in 
CMIP5 and CMIP6 models (Haarsma et al. 2013; Peings 
et al. 2018; Harvey et al. 2020, 2023).

The changes in North Atlantic jet stream in summer in 
response to GHG forcing, generally show a northward shift 
with weak changes in jet speed in the multimodel mean 
(Barnes and Polvani 2013; Harvey et al. 2020, 2023). How-
ever, there is a large spread in the jet response in both winter 
and summer among different models (Barnes and Polvani 
2013; Manzini et al. 2014; Harvey et al. 2020, 2023), which 
promotes the value of jet-based storylines for assessing and 
communicating uncertainty in local climate projections over 
the UK and western Europe (Zappa and Shepherd 2017; 
Harvey et al. 2023).

2.2.2.2  The response to  anthropogenic aerosol forc-
ing  Anthropogenic aerosols affect global and regional 
climate through aerosol-radiation and aerosol-cloud inter-
actions (e.g., Boucher et al. 2013). Because of their inho-
mogeneous spatial distributions, anthropogenic aerosols 
(AAer) or aerosol precursor emissions can cause changes 
in horizontal and vertical temperature gradients, which in 
turn affect atmospheric circulation (Rotstayn et  al. 2013; 
Shen and Ming 2018; Undorf et  al. 2018a), potentially 
including the strength and position of the Northern Hemi-
sphere subtropical jet stream (Undorf et  al. 2018a; Dong 
and Sutton 2021; Dong et  al. 2022). Anthropogenic aero-
sols may affect atmospheric circulation directly through fast 
responses of the atmosphere and land-surface and also more 
slowly through aerosol-induced changes in sea surface tem-
peratures (SSTs), such as a potential influence on the AMV 
(Booth et  al. 2012; Undorf et  al. 2018a, b; Watanabe and 
Tatebe 2019). For instance, it has been found that anthro-
pogenic sulphate emissions explain 46–63% of the forced 
SST variations at decadal time scales (Watanabe and Tatebe 
2019).

Pausata et al. (2015a) showed that AAer reductions in 
the near future caused a more positive winter NAO by using 
an atmospheric general circulation model that is coupled 
with a mixed layer ocean model. The positive winter NAO 
is accompanied by an eastward shift of the Azores High with 
a significant increase in blocking frequency over the west-
ern Mediterranean. AAer reductions may also result in the 

AMV being increasingly controlled by internal variability 
with reduced impact on regional precipitation (Watanabe 
and Tatebe 2019). Dong and Sutton (2021) suggested that 
AAer changes may have contributed to an observed equator-
ward trend in the North Atlantic summer jet from the 1970s 
to 2010s (see also Undorf et al. 2018a) and the impact of 
AAer changes on meridional temperature gradients in the 
lower troposphere is implicated as a key mechanism.

2.2.3 � Natural forcings

Multi-decadal changes in the eddy-driven jet over the North 
Atlantic has been found to be sensitive to external natural 
forcings, such as solar variability (Lockwood et al. 2010; 
Gray et al. 2010; Drews et al. 2022) and volcanic eruptions 
(Swingedouw et al. 2017; Marshall et al. 2022; Paik et al. 
2023). The stratospheric processes and the associated cou-
pling with the troposphere during winter and spring plays a 
part in linking North Atlantic variability with those external 
natural forcings.

Changes in the absorption of solar ultraviolet (UV) radi-
ation by stratospheric ozone over the 11-year solar cycle 
has the potential to organise/synchronise the decadal vari-
ation of the NAO whereby the strength and positioning of 
the North Atlantic westerly jet are modulated (Gray et al. 
2016; Drews et al. 2022). Lockwood et al. (2010) revealed 
a statistical link between low solar activity and cold Euro-
pean winters, consistent with Barriopedro et al. (2008) who 
found blocking episodes in the East Atlantic increased in 
both duration and intensity when solar activity was low. Dur-
ing solar maxima, the effect is significantly projected onto 
a positive NAO, thus a poleward shift of the North Atlantic 
jet (Gray et al. 2016; Drews et al. 2022). A lagged positive 
NAO response by around three years to solar maximum has 
also been found (Gray et al. 2013; Scaife et al. 2013). The 
response appears to be induced by changes in the meridi-
onal temperature gradient of the upper stratosphere, subse-
quent poleward and downward propagation of stratospheric 
wind anomalies via modulation of stratospheric polar vor-
tex and air-sea interactions that accumulate solar influences 
to favour a poleward and eastward migration of the North 
Atlantic jet (Ineson et al. 2011; Gray et al. 2016; Drews et al. 
2022). The response to solar activity may also be conditional 
upon the phases of other forcings, such as the Quasi-Biennial 
Oscillation (QBO) in the tropical lower stratosphere (e.g., 
Lu et al. 2009). The solar signal may be further modified/
amplified by other processes, including nonlinear planetary 
wave breaking, downward wave reflection, and resonance 
with the impact being on the seasonal evolution rather than 
the mean state (Lu et al. 2017a, b). A recent study based on 
ensemble simulations of a chemistry-climate coupled model 
suggests that solar influence on the jet shift is non-station-
ary and mainly associated with the solar cycles that have 



	 B. Dong et al.  113   Page 8 of 38

larger-than-average amplitude (Drews et al. 2022). Yet other 
model-based studies found no systematic solar influence on 
the North Atlantic and western European climate (Chiodo 
et al. 2019; Osman et al. 2021). To date, a complete process 
understanding of solar influence and its interaction with 
internal variability and other drivers remains inconclusive.

Observations suggest that large tropical volcanic erup-
tions may induce a poleward shift of the North Atlantic jet 
stream in winter (Robock and Mao 1995; Robock 2000). 
Volcanic eruptions inject a large amount of aerosol parti-
cles into the atmosphere, which scatter incoming shortwave 
radiation while absorbing/emitting longwave radiation, caus-
ing cooling of the Earth's surface but warming of the strato-
sphere (Stenchikov et al 2009). The enhanced meridional 
temperature gradient in the lower stratosphere may result 
in a positive phase of the NAO via a strengthening of the 
stratospheric polar vortex, thus a strengthened and poleward 
shifted jet stream over the North Atlantic in winter that lasts 
up to 5 years (Robock and Mao 1995; Marshall et al. 2009). 
Contrary to low-latitude eruptions, the response to high-
latitude eruptions can be associated with a negative NAO 
both in winter and summer (Sjolte et al. 2021).

This effect has so far been reproduced by only a few 
CMIP5 and CMIP6 models (Charlton-Perez et al. 2013; Pol-
vani and Camargo 2020; Paik et al. 2023). It seems that cli-
mate models can reproduce a pattern similar to the observed 
NAO response in the first winter following the eruption, but 
the amplitude of the response and impact on surface tem-
peratures are rather weak in comparison with observations 
(Hermanson et al. 2020). Although stratospheric warming 
tends to shift the jet poleward, uncertainty remains in terms 
of the response to surface cooling which may interface with 
the stratosphere-related eddy circulation feedbacks and their 
connection to intrinsic natural variability (DallaSanta et al. 
2019).

2.2.4 � Arctic changes and its influences on the North 
Atlantic

In recent decades, the warming in the Arctic has been much 
faster than in the rest of the world in both observations and 
climate models, a phenomenon known as Arctic amplifica-
tion (AA) (Serreze et al. 2009; Rantanen et al. 2022). The 
question to what extent Arctic amplification and related sea 
ice loss may impact mid-latitude weather and general atmos-
pheric dynamics has received a lot of attention over the past 
decades (e.g., Francis and Vavrus 2012; Cohen et al. 2014, 
2020; Barnes and Screen 2015; Overland et al. 2015; Screen 
2017; Screen et al. 2013, 2018, 2022, Zappa et al. 2018; 
Ye et al. 2023b). Separate hypotheses have been proposed 
to explain the link between amplified Arctic warming and 
mid-latitude atmospheric circulation in winter and summer 
and they involve changes in the polar vortex, storm tracks, 

jet stream, planetary waves, stratosphere-troposphere cou-
pling, and eddy-mean flow interactions (e.g., Doblas-Reyes 
et al. 2021).

In winter, it has been proposed that amplified warming 
of the Arctic, which weakens the meridional temperature 
gradient in the lower troposphere and weakens the predomi-
nant westerly wind, could cause the northern hemisphere jet 
stream to shift equatorward and result in a weaker jet and 
larger-amplitude waves (e.g., “wavier” circulation) in the 
midlatitude circulation (Francis et al. 2017). A wavier circu-
lation has been proposed to link to increased occurrence of 
extreme midlatitude weather (e.g., Francis and Vavrus 2012; 
Barnes and Screen 2015; Screen 2017; Cohen et al. 2018; 
Riboldi et al. 2020; Riebold et al. 2023).

In summer, it has been proposed that amplified warming 
of the Arctic could result in a weakening of the westerly jet 
and mid-latitude storm tracks, as suggested for the recent 
period of Arctic warming (Coumou et al. 2015; Petrie et al. 
2015; Chang et al. 2016). It is hypothesized that weaker jets, 
diminished meridional temperature contrast, and reduced 
baroclinicity might induce a larger amplitude in stationary 
wave response to stationary forcings (Zappa et al. 2011; 
Hoskins and Woollings 2015; Coumou et al. 2018; Mann 
et al. 2018), and also that a double jet structure would favour 
wave resonance (Kornhuber et al. 2017; Mann et al. 2018), 
that is associated with simultaneous heatwaves in the north-
ern hemisphere (Coumou et al. 2014; Kornhuber et al. 2019; 
Teng et al. 2022).

Studies that support the Arctic influence are mostly 
based on observational relationships between the Arctic 
temperature or sea ice extent and mid-latitude anomalies or 
extremes (Cohen et al. 2012; Francis and Vavrus 2012, 2015; 
Budikova et al. 2017). However, climate models are unable 
to simulate significant responses to Arctic sea ice loss, larger 
than the natural variability (Screen 2017, England et al. 
2018; Screen et al. 2018; Peings et al. 2017; Blackport and 
Screen 2020; Dai and Song 2020; Smith et al. 2022a). These 
divergent conclusions between model and observational 
studies, and also between different model studies continue 
to obfuscate a clear understanding of how Arctic warming 
is influencing mid-latitude weather (Blackport and Screen 
2020; Cohen et al. 2020; Dai and Song 2020; Overland et al. 
2021). The 6th Assessment Report (AR6) from the inter-
governmental Panel on Climate Change (IPCC) concluded 
“there is low confidence in the relative contribution of Arctic 
warming to mid-latitude atmospheric changes compared to 
other drivers” (Doblas-Reyes et al. 2021).

2.3 � Attribution of observed changes

A common approach to examine which drivers are respon-
sible for the observed variability (Sect.  2.1) is to ana-
lyse ensembles of free-running coupled climate model 
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simulations including all external forcings (natural and 
anthropogenic), or a subset of them. The simulations 
should, as a minimum, exhibit variability consistent with 
that observed. In that case, an attempt can be made to attrib-
ute to one or both of external forcings (if the variability is 
present in the ensemble mean) or to internal variability (if 
it is only exhibited by some members). If external forcings 
are important then single forcing experiments can be used 
to further explore the most important forcing. If, however, 
the simulations do not exhibit variability consistent with the 
observations, then the reasons for the discrepancy must be 
examined to gain confidence in the model simulations.

One important change in observations in winter was a 
tendency toward the positive phase of the winter NAO and 
a strengthening and northward shift of the jet stream from 
the 1960s to the 1990s (Fig. 2, Hurrell 1995), weakening and 
southward shift from the 1990s to 2000s and recent strength-
ening in the jet speed with weak change in the jet latitude 
(Fig. 2, Blackport and Fyfe 2022). However, climate models 
struggled to capture these observed decadal–multidecadal 
variations (Osborn 2004; Eyrin et al. 2021; Blackport and 
Fyfe 2022; Eade et al. 2022; Shaw et al. 2024). Blackport 
and Fyfe (2022) showed that over the period from 1951 to 
2020, the wintertime North Atlantic jet has strengthened, 
while model trends are, on average, only very weakly posi-
tive. The observed strengthening is greater than in any one 
of the ensemble simulations from CMIP6 climate models 
considered. Climate models also have biases in many key 
aspects of the North Atlantic circulation, including the eddy 
driven jet in winter that is displaced to the south and east in 
many models (Harvey et al. 2020), and underestimates of 
blocking frequency over the northeast Atlantic and Europe 
(Dunn-Sigouin and Son 2013). Such biases can affect model 
response to external forcings and can compound difficulties 
in detecting and attributing trends (Dong and Sutton 2021).

The weak response to external forcings in the models 
has been attributed to a number of reasons, including poor 
representation of tropical-extratropical and stratosphere-
troposphere coupling (O’Reilly et al. 2019; Klavans et al. 
2021; Shaw et al. 2024), lack of persistence in surface tem-
perature in particular over oceans (Sévellec and Drijfhout 
2019), underestimation of regime behaviour (Strommen and 
Palmer 2019), lack of eddy feedbacks (Scaife et al. 2019; 
Blackport and Fyfe 2022; Hardiman et al. 2022), and errors 
in ocean–atmosphere coupling (Zhang et al. 2021), as the 
paradox seems to be common to coupled models (e.g., Scaife 
and Smith 2018).

Observations show notable multidecadal changes in the 
summer jet during 1951–2022, characterized by poleward 
migration and decreasing jet speed from 1950 to 1970s, fol-
lowed by an equatorward migration and increasing jet speed 
from 1980s. This shift is related to increase in Greenland 
atmospheric blocking over the same time period (Hanna 

et al. 2016). However, multimodel mean of CMIP6 model 
simulations failed to capture these observed decadal–multi-
decadal changes of atmospheric circulation in the North 
Atlantic (Harvey et al. 2023). There is limited evidence that 
specific features of atmospheric circulation in the North 
Atlantic region in summer have been affected by changes 
in anthropogenic aerosol (AAer) emissions (Undorf et al. 
2018a, b; Dong and Sutton 2021). However, the causes of 
southward displacement of the summer North Atlantic jet 
from the 1980s are still poorly understood (Dong and Sut-
ton 2021).

2.4 � Projected changes

Analyses of CMIP5 and CMIP6 multimodel mean response 
in zonal wind show a strong seasonal and regional depend-
ence in the response to climate change of westerlies in the 
Northern Hemisphere. Seasonal differences of the North 
Atlantic jet response by the end of the twenty-first century 
are readily apparent, with the maximum northward jet shift 
occurring in autumn (~ 1.5 degree) and no clear shift in 
winter (Fig. 4; Woollings and Blackburn 2012; Barnes and 
Polvani 2013; Simpson et al. 2014; Harvey et al. 2020; Zhou 
et al. 2022). Furthermore, the shift of the westerlies in the 
North Atlantic in winter is uncertain and the responses in 
individual models differ considerably from the multimodel 
mean and from each other (Simpson et al. 2014; Zappa and 
Shepherd 2017; McKenna and Maycock 2021). Projected 
changes in the North Atlantic jet tend to be squeezed on both 
its equatorward and poleward flanks and to be strengthened 
in the core, together with an eastward extension into Europe 
(Fig. 5; Peings et al. 2018; Harvey et al. 2020, 2023; Oudar 
et al. 2020), indicating an enhanced jet speed at the jet exit 
region and downstream extension of the North Atlantic jet. 
This feature is more pronounced and the time of emergence 
is earlier in the extended winter season (NDJFMA) than in 
DJF (Fig. 5). This may lead to increased seasonal mean pre-
cipitation and increased risk of flooding over the UK and 
western Europe in winter (Rousi et al. 2021; Harvey et al. 
2023).

Recent studies have shown some robust patterns emerging 
regarding future changes of westerlies in the lower tropo-
sphere over the North Atlantic sector with a notably north-
ward shift of jet in summer by ~ 1.2 degree (Fig. 6; Simpson 
et al. 2014; Zappa et al. 2015; Harvey et al. 2020, 2023; Lee 
et al. 2021), which is consistent with the expected future 
drying of the UK and western Europe and exacerbated hot 
and dry extremes over the twenty-first century (Rousi et al. 
2021; Herrera‐Lormendez et al. 2023).

During the transition seasons, climate model projections 
based on CMIP5 simulations show a poleward shift by about 
0.8 and 1.5 degrees in the westerlies over the North Atlantic 
in spring and autumn, with no robust change in the jet speed 
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(Barnes and Polvani 2013; Simpson et al. 2014), being con-
sistent with a projected increase in the frequency of drier 

summer-type circulation regimes over the UK and western 
Europe in autumn (Cotterill et al. 2023).

Fig. 4   CMIP5 multimodel mean climate response (shading) in the 
zonal wind at 850  hPa by the end of the twenty-first century under 
the RCP8.5 scenario. The climate response is separately presented 
for each individual calendar month. Grey contours correspond to the 
4 (outer) and 8 (inner) m s−1 isotachs of the zonal wind at 850 hPa 

in the historical period (1960–90) in the multimodel mean. This 
image is adapted from Fig.  1 of Zappa et  al. (2015) 10.1175/JCLI-
D-14-00823.1.  © American Meteorological Society. Used with per-
mission
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Fig. 5   Multimodel mean end-of-century U850 response separately 
computed for the a meteorological winter (DJF) and b extended 
winter (NDJFMA) time averages. c, d The time of emergence of the 
U850 response evaluated for the time periods in (a) and (b), respec-
tively. In (a) and (b), stippling is applied where at least 90% of the 
models show a response of the same sign for the end-of-century 

climate change response, and the grey contours correspond to the 4 
(outer) and 8 (inner) m s−1 isotachs of U850 in the historical period 
in the multimodel mean. This image is adapted from Fig. 3 of Zappa 
et al. (2015) 10.1175/JCLI-D-14–00823.1.  © American Meteorologi-
cal Society. Used with permission

Fig. 6   Multimodel mean end-of-century U850 response separately 
computed for the a meteorological summer (JJA) and b extended 
summer (MJJASO) time averages. c, d The time of emergence of the 
U850 response evaluated for the time periods in (a) and (b), respec-
tively. In (a) and (b), stippling is applied where at least 90% of the 
models show a response of the same sign for the end-of-century 

climate change response, and the grey contours correspond to the 4 
(outer) and 8 (inner) m s−1 isotachs of U850 in the historical period 
in the multimodel mean. This image is adapted from Fig. 2 of Zappa 
et al. (2015) 10.1175/JCLI-D-14-00823.1.  © American Meteorologi-
cal Society. Used with permission
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3 � Changes of ocean circulation in North 
Atlantic

3.1 � Observed changes

Identification of historical changes to the basin scale 
North Atlantic Ocean circulation, principally the AMOC 
and the subtropical and subpolar gyres (STG and SPG 
respectively), is hampered by a paucity of measurements. 
Since the 1950s we have had reasonably good coverage 

of upper ocean temperature and salinity, much improved 
since the early 2000s with the deployment of the Argo 
float array, from which we can calculate upper ocean geo-
strophic transports. However, uncertainties in the choice of 
reference level of no motion remained until the advent of 
satellite based observations of absolute sea surface height 
from the early 1990s onwards. Direct measurements of the 
meridional overturning were not available until the deploy-
ment of trans-basin mooring arrays from the early 2000s. 
In addition to direct observations, there are three other 
potential sources of information about circulation changes: 

Fig. 7   Synthesis of observed North Atlantic Ocean circulation 
changes since the year 2000 a North Atlantic MOC timeseries (Sv) 
as estimated at ~ 16  N (MOVE array, black line), ~ 26.5  N (RAPID/
MOCHA array, red), ~ 41  N (Hobbs/Willis, cyan), ~ 47  N (N  OAC, 
magenta), OSNAP (~ 55  N, blue). A 12  month running mean filter 
has been applied to each timeseries to remove subannual variations. 
b as a with the timeseries shifted temporally to maximise coherence 
between them. c contours represent absolute geostrophic streamfunc-

tion (dynamic metres) averaged over 0–1000 m depth and over years 
1993–2021 based on the EN4 optimally interpolated temperature-
salinity dataset (1 degree latitude–longitude grid) and sea surface 
height observed via satellite altimetry (CMEMS). Shading represents 
streamfunction anomalies (relative to 1993–2021) averaged over the 
decade 2000–2009. d as c except shading represents anomalies over 
2010–2019
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numerical model based state estimates which attempt to 
minimise observation-model mismatch; free running ocean 
models forced by observation based surface meteorologi-
cal conditions; and observation based proxies which are 
thought to correlate with ocean circulation, evidenced by 
a combination of theory and model- and observation-based 
verification.

3.1.1 � Changes of AMOC

Our most reliable information about AMOC changes comes 
from synthesising estimates from the trans-basin monitoring 
arrays (Fig. 7a, see also Volkov et al. 2023). Here we focus 
on five major efforts. Going from north to south we have the 
OSNAP array (Lozier et al. 2019) at approximately 55° N, 
the NOAC array at 47° N (Wett et al. 2023), the Hobbs/Wil-
lis estimate at 41° N (Hobbs and Willis 2012), the RAPID/
MOCHA array at approximately 26.5° N (Moat et al. 2020), 
and the MOVE array at 16° N (Kanzow et al. 2006; MOVE 
is not trans-basin but useful for our purposes as it moni-
tors the transport of the main deep southward branch of the 
AMOC).

Figure 7 shows that there is a remarkable degree of coher-
ence between the AMOC timeseries on multi-year to decadal 
timescales. Leaving aside the short OSNAP record for the 
moment, a rising trend in the AMOC from 2000 to about 
2006 is well attested by RAPID, Hobbs/Willis and NOAC as 
is a subsequent downward trend until 2009–2010 (however 
continuing to about 2014 in the MOVE array). From the 
minimum at 2009–2010 RAPID, Hobbs/Willis and NOAC 
all show a rising trend, punctuated by interannual excur-
sions (which are not always coherent across latitudes) until 
the 2020s. The MOVE array seems out of phase with the 
other three timeseries, showing a declining trend from 2000 
to 2005 when the AMOC is rising at other latitudes and 
then a rising trend to 2008 when the AMOC is falling at 
other latitudes. However, from 2011 onwards, the AMOC at 
MOVE rises in a similar way to the other timeseries. Whilst 
the OSNAP timeseries is still too short to draw robust con-
clusions about decadal trends, it does show a reduction in 
overturning strength between 2015 and 2018 followed by a 
slight rise in subsequent years, opposite to the general rising 
trend of the other timeseries.

Interestingly, the coherence between all five timeseries 
can be dramatically improved by applying temporal shifts to 
the data (Fig. 7b). Remarkably, the size of the temporal shift 
depends monotonically on the latitude, with larger delays 
required at lower latitudes, being consistent with the idea 
that AMOC anomalies propagate along the western bound-
ary (Zhang 2008; Polo et al. 2014; Ortega 2021). Overall, 
changes occurring at OSNAP seem to be communicated 
to MOVE on a three year timescale. Ocean model hind-
casts (e.g., Megann et al. 2021), surface forced overturning 

circulation measures (Josey et al. 2009), state estimates and 
observation based proxies generally support the observations 
and further suggest that the changes seen in the trans-basin 
arrays are part of a longer term variability consisting of an 
increasing trend from 1980 to the mid-1990s and a decline 
since then, with the peak occurring a few years earlier in 
subpolar latitudes compared to subtropical (Jackson et al. 
2022).

3.1.2 � Changes in the horizontal circulation

To explore changes in North Atlantic upper ocean circula-
tion, we take advantage of the availability of three decades 
of concurrent satellite derived absolute sea surface height 
above geoid coupled with good quality gridded in situ tem-
perature and salinity data to determine absolute pressure as 
a function of depth. Restricting ourselves to water depths 
less than 1000 m where the data is most reliable, we plot the 
absolute pressure divided by a reference density averaged 
over 0–1000 m depth to provide an indication of a stream-
function for the upper ocean horizontal transport (con-
tours, Fig. 7c, d). The separated Gulf Stream and the North 
Atlantic Current (NAC) are well represented, with the zero 
contour (thick black) connecting Cape Hatteras on the US 
east coast with the coast of the island of Ireland off western 
Europe. The circulation in the clockwise SPG is indicated 
by the dashed contours to the north and the solid contours 
to the south indicate the STG recirculation. The shading on 
the figures indicates changes to this baseline transport dur-
ing 2000–2009 (Fig. 7c) and 2010–2019 (Fig. 7d) to cover 
the decreasing/increasing AMOC regimes pre- and post-
2010. During 2000–2009 there was a significant decrease 
in pressure all along the Gulf Stream and NAC resulting in 
a weakened cross-stream gradient and along stream trans-
port relative to the 30 year mean. Simultaneously there was 
increased pressure over the subpolar North Atlantic indicat-
ing a weaker circulation in SPG, with the largest changes 
occurring in the Irminger Sea. 2010–2019 saw a reversal 
of these anomalies, with increased Gulf Stream/NAC and 
STG transport, in the latter case, with a centre of action 
in the eastern part of the gyre. Interestingly, anomalously 
positive pressure anomalies persisted over both periods in 
the western gyre.

The results presented here are consistent with a number 
of recent studies investigating sea surface height and steric 
height variability in the SPG and its relationship with the 
horizontal circulation. Chafik et al. (2019) analyzed steric 
and dynamic sea level trends to reveal a relatively weak SPG 
during the mid-1990s with a transition to a stronger gyre 
circulation since the late 2000s. Notably, the gyre contracts 
in longitudinal extent as it gets stronger, associated with a 
northward shift of the North Atlantic current and warmer 
conditions in the eastern subpolar North Atlantic. The 
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strengthening of the gyre was found to be associated with a 
shift to stronger cyclonic windstress curl over its central part. 
Desbruyères et al. (2021) documented a more recent warm-
ing trend in the upper SPG since 2016 and used a variety 
of analysis techniques to infer that this has been associated 
with a weakening and contraction of the gyre continuing 
until the present.

3.1.3 � Relationship between changes in AMOC 
and horizontal circulation

The question of the dynamical and thermodynamic links 
between AMOC changes and horizontal gyre changes 
remains much debated. The relatively strong subpolar gyre 
in the early 1990s (Chafik et al. 2019) was coincident with 
a strengthening AMOC, itself brought about by persistent 
positive NAO related buoyancy forcing from higher pre-
cipitation and surface ocean warming (Robson et al. 2012), 
whilst the warming and weakening of the SPG in the late 
1990s and early 2000s coincided with a weakening AMOC 
related to a decline in deep convection in the Labrador Sea 
(Fig. 7c, Robson et al. 2012, 2016) also demonstrated that 
subpolar gyre strength in the 1990s and 2000s was related 
to buoyancy forcing (as opposed to wind forcing) associated 
with the NAO, although the mechanism behind this is still 
unclear.

3.2 � Drivers

There are different drivers that may influence decadal–multi-
decadal changes in large scale oceanic circulations over the 
North Atlantic (Fig. 1). These include: (1) natural internal 
variability in the atmosphere (e.g., Wunsch 1999; Feldstein 
2000; Eden and Willebrand 2001) and ocean (Sévellec 
and Fedorov 2013; Moat et al. 2024), (2) internal coupled 
ocean–atmosphere processes (Delworth et al. 1993; Dong 
and Sutton 2005; Omrani et al. 2014; Ortega et al. 2015; 
Lai et al. 2022), (3) responses to external forcings, such as 
anthropogenic forcings in greenhouse gas forcing (Gregory 
et al. 2005; Delworth and Dixon 2006; Graff and LaCasce 
2012; Lee et al. 2021) and aerosol emissions (Delworth and 
Dixon 2006; Bellomo et al. 2018; Menary et al. 2020; Has-
san et al. 2021; Robson et al. 2022), and (4) responses to 
external natural forcings, such as the changes of solar radia-
tion (Mignot et al. 2011; Menary et al. 2014; Ye et al. 2023a) 
and volcanic eruptions (Swingedouw et al. 2017; Marshall 
et al. 2022; Paik et al. 2023).

3.2.1 � Internal Variability

Ocean-only experiments suggest that decadal–multidec-
adal AMOC variability in the North Atlantic primarily 
results from buoyancy forcing over subpolar regions (Eden 

and Willebrand 2001; Marshall et al. 2001; Böning et al. 
2006; Robson et al. 2012; Yeager and Danabasoglu 2014). 
Many previous coupled atmosphere–ocean model simula-
tions with constant forcings have also exhibited substantial 
multidecadal variations in AMOC and have associated this 
variability with the internal interactions of ocean currents 
or with coupled interactions between different components 
of the coupled system (e.g., ice, ocean, and atmosphere) in 
the North Atlantic region (Delworth et al. 1993; Vellinga 
and Wu 2004; Dong and Sutton 2005; Jungclaus et al. 2005; 
Park and Latif 2008; Delworth and Zeng 2012; Menary et al. 
2015; Ortega et al. 2015; Wills et al. 2019; Jiang et al. 2021; 
Jackson et al. 2022; Lai et al. 2022; Meccia et al. 2023). 
In many of the studies the propagation of freshwater from 
the Arctic (e.g., Jungclaus et al. 2005; Jiang et al. 2021) or 
salinity anomalies from the south (Delworth et al. 1993; 
Vellinga and Wu 2004), and the dominant timescales are 
set by advective processes, such as the spin-up/spin-down 
of the North Atlantic SPG circulation or the accumulation 
of high-/low-density water in deep water formation regions. 
However, many studies also indicate an important role for 
atmospheric circulation changes due to ocean–atmosphere 
coupling (e.g., Omrani et al. 2022; Lai et al. 2022). Some 
studies also suggest that Rossby wave adjustment, with lit-
tle or no influence of the atmosphere, can be the dominant 
driver of decadal timescale AMOC variability, especially 
within the subpolar latitudes (Sevelec and Fedorov 2013; 
Muir and Fedorov 2017).

3.2.2 � Anthropogenic forcings

3.2.2.1  The response to  greenhouse gas forcing  There is 
general agreement that increasing concentrations of green-
house gases act to weaken the AMOC in climate models 
(Gregory et  al. 2005; Delworth and Dixon 2006; Stouffer 
et al. 2006; Caesar et al. 2018; Thornalley et al. 2018; Menary 
et al. 2020; Eyring et al. 2021). Weakening of the AMOC 
under greenhouse gas forcing results from both reduced heat 
loss to the atmosphere and increasing freshwater fluxes at 
high latitudes, both leading to lighter surface waters, which 
in turn may lead to a reduction of deep convection in sink-
ing regions and thus impact the strength of the AMOC (e.g., 
Gregory et  al. 2005; Manabe and Stouffer 1999; Stouffer 
et  al. 2006; Eyring et  al. 2021). Advection of heat and 
salinity anomalies into the North Atlantic deep convection 
region can also affect the AMOC. For instance, studies have 
also attributed a weakening of the AMOC in GCMs to Arc-
tic sea ice loss (Sévellec et al. 2017) and subsurface warm-
ing of the North Atlantic (Haskins et al. 2020; Levang and 
Schmitt 2020), which both increase ocean stratification and 
inhibit deep convection. However, the amount, the rate and 
the effects of this decline are highly uncertain across models 
(Gregory et al. 2005; Collins et al. 2013; Weijer et al. 2020; 
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Bellomo et al. 2021; Gulev et al. 2021; Lee et al. 2021; Fox-
Kemper et al. 2021). The response to decreasing greenhouse 
gas concentrations has recently been examined (Schwinger 
et al. 2022). Overshoot scenarios show reduction of AMOC 
and subsequent recovery (see Sect.  3.4.2). However, the 
AMOC response depends strongly on peak GHG concentra-
tions and the rate at which they are then removed.

3.2.2.2  The response to aerosol forcing  Many studies have 
highlighted that AAer forcing can have a large impact on 
the North Atlantic, and AAer forcing has been shown to 
strengthen the AMOC in climate models (Cai et al. 2006; 
Delworth and Dixon 2006; Undorf et al. 2018a, b; Andrews 
et al. 2020; Menary et al. 2020; Hassan et al. 2021; Robson 
et  al. 2022). Menary et  al. (2020) showed that the multi-
model mean AMOC increased significantly over 1850–1985 
in historical simulations of CMIP6 models. Furthermore, 
Menary et  al. (2020) attributed the AMOC increase to 
stronger AAer forcing in CMIP6 compared to CMIP5, pri-
marily due to the inclusion of aerosol–cloud interactions in 
more models although increases in the temporal variability 
of CMIP6 emissions may also play a role (Needham et al. 
2024). Hassan et al. (2021) showed that CMIP6 AAer simu-
lations yield robust AMOC strengthening (weakening) in 
response to increasing (decreasing) anthropogenic aerosols 
during 1900–2020. They argued that AMOC multi-decadal 
variability is initiated by North Atlantic aerosol optical thick-
ness perturbations to net surface shortwave radiation, sea 
surface temperature, and hence sea surface density. Robson 
et al. (2022) analyzed CMIP6 historical simulations in order 
to understand the processes leading to the anthropogenic 
aerosol AAer forced increase in AMOC over the period 
1850–1985. They split models between “strong” or “weak” 
sensitivity to AAer forcing and explained differences of 
AMOC response. They showed that in both strong and weak 
changes in AAer effects on AMOC are via changes in down-
welling surface shortwave radiation over the subpolar North 
Atlantic (SPNA), similar to Hassan et al. (2021). However, 
in models with a strong sensitivity turbulent heat loss over 
the SPNA is significantly larger because the air advected 
over the ocean is colder and drier, in turn because of greater 
AAer-forced cooling over the continents upwind, especially 
North America. Robson et  al. (2022) also argued that the 
strengthening of the AMOC also feeds back on itself posi-
tively in two distinct ways: by raising the sea surface tem-
perature and hence further increasing turbulent heat loss in 
the SPNA, and by increasing the sea surface density across 
it due to increased northward transport of saline water.

After 1985, the role of AAer forcings on AMOC is less 
clear. This lack of clarity is partly due to the fact that green-
house gases are also contributing to a simulated decline. 
However, the changes in AAer emissions become much more 
complex, with decreases over North America and Europe, 

and increases over Asia (Lamarque et al. 2010; Kang et al. 
2021) but small declines in global mean emissions that are 
associated with a global “brightening” (e.g., Wild 2016; 
Wang et al. 2022). Furthermore, there is some evidence that 
the response of AMOC to AAer emissions from different 
regions may be non-linear (e.g., Liu et al. 2024).

3.2.3 � Natural forcings

The oceanic response to solar forcing associated with the 
11-year solar cycle could be amplified by ocean–atmosphere 
coupling the North Atlantic Ocean (Gray et al. 2013; Scaife 
et al. 2013; Andrews et al. 2015; Ye et al 2023a). Andrews 
et al. (2015) and Gray et al. (2016) showed that the accumu-
lated solar energy in the mixed layer of the North Atlantic 
could generate a response lag of 3–4 years of surface atmos-
pheric pressure to the decadal solar cycle, which in turn 
could affect AMOC. For example, Ye et al. (2023a) assessed 
the influence of varied total solar irradiance (TSI) due to the 
effects of solar activity on AMOC based on an Earth System 
model with intermediate complexity and the results showed 
a significant and stable negative correlation between TSI 
and AMOC on a multidecadal timescale. However, there is 
a growing debate regarding the influence of solar activity on 
AMOC change (Ye et al. 2023a).

Volcanic eruptions may also affect the AMOC (Swinge-
douw et al. 2017; Marshall et al. 2022; Paik et al. 2023) and 
AMV. Based on a high-resolution 600-year proxy tempera-
ture record from the subtropical Atlantic, Waite et al. (2020) 
detected multidecadal temperature variability from the 
record which suggests a link between the volcanic eruption 
and the AMV. Using climate model simulations, Pausata 
et al. (2015b) found that large summer high-latitude erup-
tions in the Northern Hemisphere cause strong hemispheric 
cooling which induces an El Niño-like anomaly during the 
first 8–9 months after the start of the eruption in response 
to hemispherically asymmetric cooling. The high-latitude 
eruption also leads to a strengthening of the AMOC in the 
first 25 years after the eruption, followed by a weakening of 
the AMOC that lasts at least 35 years. However, the AMOC 
response to volcanic forcing is poorly constrained and likely 
to be sensitive to the period, distribution, and strength of 
the forcing (Mignot et al. 2011; Bilbao et al. 2024) and the 
background state (Zanchettin et al. 2013); For example, 
some models suggesting the response to volcanic forcing 
is a weakening (Zhong et al. 2011), some a strengthening 
(Stenchikov et al. 2009; Iwi et al. 2012).

3.2.4 � Arctic influences on the North Atlantic

Arctic–Subarctic heat and freshwater fluxes play a cen-
tral role in linking Arctic Ocean variability with the North 
Atlantic. On the one hand, the North Atlantic constitutes a 
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net source of heat for the Arctic. On the other hand, the Arc-
tic constitutes a source of freshwater for the North Atlantic. 
In this section, we focus on changes and driving mechanisms 
of freshwater fluxes from the Arctic into the North Atlantic.

Freshwater enters the Arctic Ocean as net precipitation, 
as river runoff from the Siberian and Alaskan-Canadian 
shelves, and as inflow from the Pacific through Bering 
Strait, and it leaves the Arctic through Davis Strait and east-
ern Fram Strait, both in the form of liquid freshwater and 
as ice (Carmack et al. 2016). For instance, over the period 
1980–2000, freshwater import and export rates were approx-
imately balanced, with estimates ranging from 7950 ± 400 
km3 yr−1 (Serreze et al. 2006) to 8800 ± 530 km3 yr−1 (Haine 
et al. 2015) for the net import rates and from 8720 ± 700 
km3 yr−1 (Serreze et al. 2006) to 8700 ± 700 km3 yr−1 (Haine 
et al. 2015) for the net export rates (Carmack et al. 2016).

The release of freshwater from the Arctic into the North 
Atlantic is not uniform but occurs in isolated time-limited 
events (Proshutinsky et al. 2015). Between 1950 and 2000, 
observations indicate four distinct, large Arctic freshwater 
releases into the North Atlantic. These observed, past Arctic 
freshwater releases are manifest as distinct periods of cold 
and fresh polar water in hydrographic observations from the 
Nordic Seas and subpolar North Atlantic (Belkin et al. 1998; 
Haak 2003; Belkin 2004; Sundby and Drinkwater 2007). A 
particularly strong freshwater event was the Great Salinity 
Anomaly from 1969 to 1972, which was associated with a 
temporary shutdown of ocean convection in the Labrador 
Sea, an important ocean convection region (Dickson et al. 
1988; Lazier 1980). Weaker freshwater anomalies occurred 
in the 1980s and 1990s (Belkin et al. 1998; Belkin 2004; 
Sundby and Drinkwater 2007). Yet, the duration of the Arc-
tic freshwater releases, and the exact pathways, propagation 
speed and arrival times in the subpolar North Atlantic and 
Nordic Seas differed between these freshwater releases.

Over the period 2000–2010, the Arctic has accumulated 
freshwater (Haine et al. 2015; Proshutinsky et al. 2019; 
Solomon et al. 2021; Wang et al. 2020; 2023; Wang 2021; 
Timmermans and Toole 2023). Most of the freshwater has 
been stored in the upper layers of the Arctic Ocean, particu-
larly in the Beaufort gyre, where it is estimated that an extra 
5000 km3(25%) of freshwater has been stored in the period 
2000–2010 compared to the period 1980–2000 (Haine et al. 
2015). After the period 2000–2010, the Arctic freshwater 
storage has stabilised (Solomon et al. 2021). Moreover, a 
comprehensive set of observations suggests that the cold 
halocline layer, which caps the warm, salty Atlantic water, 
has significantly thinned and that further thinning may allow 
for an emerging freshwater release into the North Atlantic 
(Lin et al. 2023). The recent observed changes in the North 
Atlantic salinity are thought to be influenced by the fresh-
water excess coming from the Arctic (Holliday et al. 2020). 
However, so far there is only limited evidence of the Arctic 

freshwater fluxes impacting freshwater accumulation in the 
Labrador Sea and the North Atlantic (Florindo-Lopez et al. 
2020).

The extended period of accumulation and increased stor-
age of freshwater in the Arctic over the last two decades has 
primarily been attributed to the wind forcing (Giles et al. 
2012; Haine et al. 2015; Proshutinsky and Johnson 1997). 
Specifically, a more cyclonic ocean and atmospheric circula-
tion in the Arctic have been suggested to lead to enhanced 
outflow of freshwater from the Beaufort Gyre into the Trans-
polar drift, and in the Arctic boundary currents following 
the shelf slopes, then further through Davis Strait and Fram 
Strait into the Nordic Seas and North Atlantic (Proshutin-
sky and Johnson 1997; Proshutinsky et al. 2019; Solomon 
et al. 2021). On the other hand, a more anticyclonic circu-
lation promotes an enhanced storage of freshwater in the 
Beaufort Gyre, due to wind-driven Ekman transports set-
ting up a cross-gyre pressure gradient with increased sea 
level in the central gyre (Proshutinsky and Johnson 1997). 
This accumulation can be balanced by the eddy transports 
releasing freshwater from the gyre (Armitage et al. 2020). 
This fresh water leakage from the gyre due to eddies may 
become larger as sea ice declines and the ocean spins up 
(Meneghello et al. 2018).

Over the period 2000–2015, the atmospheric and oce-
anic circulation in the Arctic have primarily been in a more 
anticyclonic regime (Armitage et al. 2017; Proshutinsky 
et al. 2015, 2019; Kelly et al. 2019; Regan et al. 2019). The 
observed changes in the Arctic surface currents for the more 
recent years were indicative of the Arctic ocean circulation 
returning to the more cyclonic state with the Beaufort Gyre 
shrinking back (Lin et al. 2023; Nishino et al. 2023).

While past Arctic freshwater releases constituted an inte-
gral part of the low-frequency, decadal variability (Zhang 
and Vallis 2006), the extent to which Arctic ice and fresh-
water releases act as a driver, a response or a side effect of 
the North Atlantic low-frequency variability is unclear. Pro-
gress is impeded by reduced spatial and temporal coverage 
of long-term salinity observations, as well as by freshwater 
biases in models (Mecking et al. 2017; Menary et al. 2015). 
In theory, Arctic releases of cold and fresh polar water into 
the subpolar region could lead to an increased meridional 
SST gradient and thus, an increase in atmospheric instabil-
ity, triggering atmospheric feedbacks (Oltmanns et al. 2020, 
2024) which give rise to predictability (Zhang and Vallis 
2006). For instance, subpolar cold and freshwater anomalies 
are typically coupled to a positive North Atlantic Oscilla-
tion, which is associated with a stronger wind stress curl 
increasing the advection of cold and fresh polar water into 
the subpolar gyre (Häkkinen and Rhines 2004; Häkkinen 
et al. 2013; Holliday et al. 2020; Oltmanns et al. 2020).

In turn, changes in the North Atlantic Ocean and atmos-
pheric circulation can feed back on processes in the Arctic 
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by modulating ice and freshwater outflows. Specifically, 
observations show an increased heat transport into the Arc-
tic due to warmer Atlantic water, resulting in a thinning of 
the halocline (Asbjørnsen et al. 2020; Polyakov et al. 2017, 
2023; Tesi et al. 2021; Wang 2021). By integrating a two-
sided coupling between the Arctic and North Atlantic into 
an idealised delayed, harmonic oscillator model, it is pos-
sible to reproduce the observed, multi-decadal variability 
of the North Atlantic Ocean (Wei and Zhang 2022). Still, 
the active role of the North Atlantic Ocean and atmospheric 
circulations in influencing the ocean and atmospheric circu-
lations in the Arctic and hence, ice and freshwater exports 
are largely unknown.

3.3 � Attribution of observed changes

Observed AMOC changes estimated from various trans-
basin monitoring arrays (Fig. 7a, see also Volkov et al. 2021; 
Jackson et al. 2022) showed a rising trend from 2000 to 
about 2006, a subsequent declining trend until about 2010, 
and a recovery afterwards. CMIP5 and CMIP6 models pro-
duce a forced weakening of the AMOC over the 2012–2017 
period relative to 2004–2008, but at 26° N the multi-model 
mean response is substantially weaker than the observed 
AMOC decline over the same period. The discrepancy 
between the modelled multi-model mean and the RAPID 
observed AMOC changes has led studies to suggest that the 
observed weakening over 2004–2017 is largely due to inter-
nal variability (Yan et al. 2018). In summary, models do 
not support robust assessment of the role of anthropogenic 
forcing in the observed AMOC weakening between the mid-
2000s and the mid-2010s and there is low confidence that 
anthropogenic forcing has influenced the observed changes 
in AMOC strength in the post-2004 period (e.g., Eyring 
et al. 2021).

Previous studies shown that increasing concentrations of 
GHG act to weaken the AMOC in climate models (Gregory 
et al. 2005; Delworth and Dixon 2006; Stouffer et al. 2006; 
Caesar et al. 2018; Thornalley et al. 2018; Menary et al. 
2020; Eyring et al. 2021) and increasing AAer forcings 
tend to strengthen the AMOC (Cai et al. 2006; Delworth 
and Dixon 2006; Menary et al. 2013; Undorf et al. 2018a, 
b; Andrews et al. 2020; Menary et al. 2020; Hassan et al. 
2021; Robson et al. 2022). These competing anthropogenic 
effects were thought to lead to relatively little externally 
forced change of AMOC over the historical period in some 
early studies (Delworth and Dixon 2006; Cheng et al. 2013). 
More recent studies showed that an increase of AMOC over 
the historical period in CMIP6 models due to AAer forced 
increases overwhelm GHG induced decreases, resulted from 
stronger AAer forcing in CMIP6 compared to CMIP5, pri-
marily due to the inclusion of aerosol–cloud interactions 
in more models (Menary et al. 2020; Hassan et al. 2021; 

Robson et al 2022). However, the increase in the historically 
simulated AMOC in CMIP6 is in stark contrast with weak-
ened AMOC, estimated since at least 1950 from observed 
surface temperatures or sea surface height (Caesar et al. 
2018, 2021) or from reconstructions based on sediment-
based proxies (Thornalley et al. 2018). In addition, models 
simulate a range of anthropogenic aerosol effective radiative 
forcing and a range of historical AMOC trends in CMIP6 
(Menary et al. 2020) and there remains considerable uncer-
tainty over the realism of the CMIP6 AMOC response dur-
ing the twentieth century. As a result, there is low confidence 
that anthropogenic forcing has had a significant influence on 
changes in AMOC strength during the 1860–2014 period 
(e.g., Eyring et al. 2021).

3.4 � Projected changes

Future climate projections in the CMIP phases 3, 5 and 6 
have consistently shown decreases in the AMOC until the 
end of the twenty-first century (Fig. 8a; Meehl et al. 2007; 
Fox-Kemper et al. 2021). According to the IPCC AR6 the 
multi-model mean AMOC is projected to decline by 24% 
with a 95% confidence interval of 4–46% and 39% with a 
95% confidence interval of 17–55% for the low emission 
scenario, SSP1-2.6, and the high emission scenario, SSP5-
8.5, respectively (Fox-Kemper et al. 2021). The reduction in 
the AMOC in CMIP6 is larger than in previous CMIP phases 
(Weijer et al. 2020), and the known minor differences in 
forcing (Lee et al. 2021, Fig. 4.35), are not enough to explain 
the differences in AMOC response (Mecking and Drijf-
hout 2023). Several studies have shown a stronger role for 
ocean warming relative to freshening in AMOC reduction 
(Gregory et al. 2005; Levang and Schmitt 2020; Couldrey 
et al. 2021), even when the AMOC decline is forced using 
freshwater hosing as opposed to global warming (Haskins 
et al. 2020).

A change in the AMOC is associated with changes in 
density in the high latitude North Atlantic, in particular, the 
Labrador and Irminger Seas (Ba et al. 2014; Heuzé 2017). 
Furthermore, recent studies linked sea ice changes (Sével-
lec et al. 2017; Sun et al. 2018; Liu et al. 2019; Dai 2022), 
diffusive upwelling in the Indo-Pacific (Baker et al. 2023), 
aerosols and air quality (Hassan et al. 2022) to AMOC 
reduction. The recent study, Asbjørnsen and Årthun (2023), 
investigated changes in the Gulf Stream and deep western 
boundary current in the CMIP6 SSP5-8.5 scenario, showing 
a weakening of 47% for the deep western boundary current 
and 29% reduction in Gulf Stream in 2090–2100 relative to 
2015–2025. Using a different method of defining the Gulf 
Stream, Sen Gupta et al. (2021) find a reduction of 15% 
in CMIP5 and CMIP6 models in 2050–2100 relative to 
1900–2000. 33% of the weakening of the Gulf Stream can 
be explained by changes in the wind (Asbjørnsen and Årthun 
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2023). Multi-model means across future climate projections 
in CMIP3/5/6 show a reduction in the strength of the sub-
polar gyre (Reintges et al. 2017; Fox-Kemper et al. 2021) 
as well as a poleward shift of the subtropical gyre (Yang 
et al. 2020). However, not all models show a reduction in the 
strength of the subpolar gyre, for example MPI-ESM1.1 ini-
tially has an increase in gyre strength in model simulations 
with CO2 emissions from pre-industrial levels increased by 
1% per year due to density differences between the east-
ern and central subpolar gyre, which after 2 K warming 

no longer changes strength and is pushed northward due a 
northward shift of the subtropical gyre (Ghosh et al. 2023).

3.4.1 � Tipping points

There are two commonly considered tipping points in North 
Atlantic circulation, the AMOC collapse on centennial time 
scales and a substantial cooling in the SPG (Fig. 9, Swing-
douw et al. 2020; Loriani et al. 2023a, b). While CMIP 
models have shown that they generally do not simulate an 

Fig. 8   The fraction of the maximum AMOC at 26.5°  N (a) and 
SPG strength (b) (defined as minimum streamfunction in 60–15° W, 
48–65° N) with respect to the 1970–1999 historical reference period 
for CMIP5 (purple) and CMIP6 (orange) and future climate projec-
tions RCP2.6/SSP1-2.6 (dotted line), RCP4.5/SSP2-4.5 (dashed 
line) and RCP8.5/SSP5-8.5 (solid line). The shading shows ± one 
standard deviation of the RCP2.6/SSP1-2.6 scenarios. For follow-

ing models were used: CMIP5 - CCSM4, CESM1-CAM5, CNRM-
CM5, CSIRO-Mk3-6-0, GFDL-ESM2G, MPI-ESM-LR, MPI-ESM-
MR, NorESM1-ME, NorESM1-M and CMIP6 - CESM2-WACCM, 
CIESM, CMCC-ESM2, CanESM5, EC-Earth3-Veg-LR, EC-Earth3, 
FGOALS-g3, HadGEM3-GC31-LL, MIROC6, MPI-ESM1-2-HR, 
MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, UKESM1-0-LL 
(Adopted and expanded from Mecking and Drijfhout 2023)
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Fig. 9   Delayed response (hysteresis) of the annual Atlantic Meridi-
onal Overturning Circulation (AMOC) strength (Sv) up to year 2100 
in the CDR-MIP esm-SSP534 concentration-driven overshoot sce-
nario integrations with the UKESM model at 26° N –corresponding 
to the “RAPID” observational array (a), at 40° N (b), and at 55° N 

(c). Only one ensemble member is shown; the colour bars indicate the 
time sequence. Note the different vertical axes (Adapted from Heinze 
et  al. 2023). d AMOC hysteresis loop in the esm-SSP534-ov emis-
sion-driven NorESM long integrations until 2300 (original analysis, 
simulations are described by Tjiputra et al. (2023)
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AMOC to collapse before the end of the twenty-first century 
(Fig. 8), recent studies warn that a collapse could happen 
sooner (Boers 2021; Ditlevsen and Ditlevsen 2023). Due 
to the short time period of available RAPID mooring array 
(2004-present) it is difficult to come to conclusions of the 
current trajectory of the AMOC behaviour, with Lobelle 
et al. (2020) suggesting that at least 29–67 year of data is 
required from the RAPID array to detect a decline in AMOC 
for the 90% confidence level of detection. Both statistical 
(Boulton et al. 2014) and physical (van Western et al. 2024) 
methods have been suggested as early warning signals for 
AMOC collapse, but they require several decades of data to 
robustly detect an abrupt change. Rapid cooling event in the 
SPG due to a collapse of deep convection on timescales of 
around a decade have been seen in the future projections of 
both CMIP5 (Sgubin et al. 2017) and CMIP6 (Swingedouw 
et al. 2021). The likelihood of this abrupt cooling event 
in the SPG has been estimated at 45.5% from CMIP5 and 
36.4% from CMIP6.

3.4.2 � AMOC recovery

The IPCC AR6 report asserts with “high confidence” that 
the projected by the CMIP6 models future AMOC decline 
can be reversible on the multi-centennial timescales if 
the anthropogenic-induced radiative forcing is reversed; 
this can be done, for example, following carbon dioxide 
removal scenarios (Sect. 4.6.2 and Table 4.10 in Lee et al. 
2021). However, the AMOC still does not recover until the 
end of the century either in the idealised simulation of the 
Carbon Dioxide Removal intercomparison (CDR) project 
(Keller et al. 2018) or in the emission-driven overshoot sce-
narios esm-SSP534 (Schwinger et al. 2022; Heinze et al. 
2023; Loriani et al. 2023a, b). In addition, there is emerg-
ing evidence that recovery of the AMOC and of the sur-
face atmospheric temperature (SAT) can vary for different 
latitudes (Fig. 9), also noted by Heinze et al. (2023) and 
Schwinger et al. (2022). Specifically, a transient, ~ 100-year 
long, strong cooling of the low atmosphere (and SAT) in 
the high latitudes can occur when a cooling climate due to 
carbon dioxide removal coincides with a still-weak AMOC 
(Schwinger et al. 2022). A transient cooling hiatus has been 
also reported in the simulation with the ramp down of CO2 
emissions to zero (but without negative emissions) (An 
et al. 2021). Both effects are indicative of a potential partial 
decoupling of poleward heat transport from AMOC decline 
(Smedsrud et al. 2022).

Hysteresis and bistability both refer to systems which can 
adopt one of two or more states for the same external forc-
ing, such as CO2 concentration, with the subtle distinction 
that bistability implies the potential for abrupt or rapid tran-
sitions between the states, whereas hysteresis does not carry 
this implication (e.g., Boucher et al. 2013). Commonly, 

this is explored by approaching the same external condi-
tions with different trajectories in model simulations, e.g. 
increasing and reversing the forcing to study reversibility. 
Bistability involving a full collapse of the AMOC by artifi-
cially flooding the North Atlantic with freshwater has been 
demonstrated (or strongly implied) in theoretical models 
(Stommel 1961) and climate models of reduced complexity 
(Rahmstorf et al. 2005) or of low resolution (Hawkins et al. 
2011; Van Westen et al. 2024). The freshwater anomalies 
required to shut down the AMOC in Hawkins et al. (2011) 
and in van Westen et al. (2024) far exceeds the freshwater 
equivalent contained in the Greenland Ice sheet. We don't 
know whether an AMOC shutdown could happen with the 
much smaller FW anomalies that could occur in the real 
world.

In more complex or higher resolution models it is diffi-
cult to conduct experiments for long enough to demonstrate 
bistability or hysteresis. However, weak states have been 
shown to be stable for at least 100 years in about half of 
a test group of CMIP6-type models (Jackson et al. 2023a) 
and in high-resolution ocean–atmosphere coupled climate 
models (Mecking et al. 2016). A recent study finds AMOC 
tipping in a CMIP6-type model in response to gradually 
increasing freshwater release in the North Atlantic thought 
to be consistent with a realistic Greenland Ice Sheet mass-
loss scenario (Van Westen et al. 2024). AMOC bistability is 
model-dependent, controlled by the balance of the positive 
and negative feedbacks that determine the salinity of the 
subpolar North Atlantic. It is not yet understood why col-
lapse occurs in some models and not others (Jackson et al. 
2023b). However, there is evidence that the present genera-
tion of climate models is too stable due to model biases in 
the distribution of ocean salinity (Liu et al. 2017; Mecking 
et al. 2017).

Bistability is harder to prove in transient climate change 
simulations because, by definition, the external forcing is 
changing, so the system is not in equilibrium and may also 
respond with a time lag to the forcing. Nevertheless, over-
shoot scenarios, where the CO2 trend is assumed to reverse 
at some point in the future, provide some useful informa-
tion about reversibility of the AMOC on human timescales. 
UKESM runs under an overshoot emission scenario exceed-
ing and returning to 500 ppm show that even if CO2 con-
centrations return to 500 ppm by 2100 the AMOC is still 
only 77 percent of the strength it was in 2050 when CO2 
concentration was also at 500 ppm (Fig. 9). Although the 
AMOC does not collapse in this model, Fig. 9d shows that 
full recovery takes on the order of 300 years in NorESM.

3.4.3 � Caveats to projected changes

Several studies looking into future projections have 
focused on the most extreme future projection scenario 
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(i.e. Asbjørnsen and Årthun 2023), but the most extreme 
scenario is often seen as misleading so caution has to be 
used when looking at results (Hausfather and Peters 2020). 
Other uncertainty arises because concentration-driven 
(with prescribed atmospheric CO2 concentration) projec-
tions in the CMIP5/6 experiments impose extra control on 
the radiative forcing, as opposed to emission-driven runs. 
This makes high-end climate projections significantly 
warmer in the emission-driven simulations due to stronger 
carbon cycle feedbacks (Friedlingstein et al. 2014).

On the other hand, models are designed to be stable in 
the present-day climate which means it is difficult to know 
whether they are capable of capturing extrema and abrupt 
changes (Valdes 2011). Coupled climate models and earth 
system models have biases in the mean state which can 
have an impact on the North Atlantic variability (Menary 
et al. 2015; Reintges et al. 2024) and AMOC reduction 
(Mecking et al. 2017). A commonly known bias is the 
fresh bias in the upper 500 m of the South Atlantic, which 
when corrected through flux adjustment leads to a larger 
decline in AMOC strength (Liu et al. 2017). Furthermore, 
the impact of melting of the Greenland Ice Sheet, a source 
of freshwater input into the North Atlantic which is not 
included in CMIP5 and CMIP6 models, varies between 
very little additional AMOC decline to almost double 
AMOC decline, dependent on the model used in AMOC 
emulators (Bakker et al. 2016). Finally, the majority of 
future climate projections in CMIP6 are using coupled cli-
mate models with an ocean resolution of ~ 1 degree, which 
does not permit or resolve eddies. The higher resolution 
models allow for stronger more realistic boundary cur-
rents, resolving and/or permitting eddies (Hirschi et al. 
2020). Higher resolution can have an impact on the model 
biases (Jüling et al. 2021) and salinity budget facilitating 
AMOC collapse (Mecking et al. 2016).

For the changes in the Arctic, CMIP6 model simulations 
mostly disagree with observations in the Arctic mean ocean 
state and variability (Zanowski et al. 2021). Moreover, in 
future projections covering the twenty-first century, CMIP6 
model simulations also exhibit substantial differences in 
the Arctic mean states and the magnitude of the freshwater 
storage and flux changes (Zanowski et al. 2021). Yet, most 
models agree that the warming of Atlantic waters flowing 
into the Arctic will continue to lead to an increased poleward 
ocean heat convergence in the twenty-first century (Wang 
et al. 2023). The models also predict an increase in freshwa-
ter input in the Arctic and in freshwater export rates into the 
North Atlantic, particularly through Fram Strait, due to both 
higher volume transports and a reduced salinity (Wang et al. 
2023). Therefore, whereas it might be challenging to have 
confidence in the overall projected Arctic changes, trends 
in the Arctic-North Atlantic linkages can be assessed with 
high confidence.

4 � Ocean–atmosphere interactions

Ocean–atmosphere interactions play a major role in shap-
ing changes in atmosphere and ocean circulation in the 
North Atlantic region. Mid-latitude atmospheric variabil-
ity over the North Atlantic is known to strongly influence 
the underlying ocean. Anomalies in air-sea heat flux drive 
ocean convection and changes in local heat content over 
the subpolar gyre (Visbeck et al. 2003; Grist et al. 2010; 
Josey et al. 2018). Changes in wind stress drive variations 
in heat content and Ekman circulations (Lozier et al. 2008; 
Williams et al. 2014). The combined effect of wind stress 
and air sea buoyancy flux changes drive variations in the 
AMOC (Lozier et al. 2010; Robson et al. 2012), which 
in turn alters SST over the Atlantic through changes in 
heat transport convergence (Delworth et al. 1993; Kushnir 
1994; Williams et al. 2014; Zhang et al. 2019; Srokosz 
et al. 2021; Jackson et al. 2023a; Robson et al. 2023).

Changes in the ocean circulation and state influence 
atmospheric circulation (Magnusdottir et al. 2004; Bray-
shaw et al. 2011; Yeager and Robson 2017; Sutton et al. 
2017; Simpson et al. 2018; Ma et al. 2020; Chemke et al. 
2022; Strommen et al. 2023). In particular ocean dynamics 
have been shown to play a significant role in controlling 
air-sea heat flux variability on interannual to multidecadal 
timescales (Josey and Sinha 2022; Moat et al. 2024). Vari-
ations in the AMOC and North Atlantic gyres have been 
argued to modify the seasonal to decadal variability of 
the North Atlantic jet stream and storm track, in part via 
changes in the AMV (Gastineau et al. 2013; Gulev et al. 
2013; Frankignoul et al. 2015; Ciasto et al. 2016; Gervais 
et al. 2019; Qasmi et al. 2020; Bellomo et al. 2021; Rug-
gieri et al. 2021). There is also evidence that the AMOC 
is an important factor in modulating the response of the 
North Atlantic jet stream and storm track in winter to 
greenhouse gas forcing in CMIP3, CMIP5 and CMIP6 
simulations (Woollings and Blackburn 2012; Bellomo 
et al. 2021). Modelling studies have shown further that 
the development of the North Atlantic “warming hole” 
(a cold temperature anomaly in subpolar North Atlantic, 
e.g. Drijfhout et al. 2012) in response to anthropogenic 
forcing changes could impact the intensity and location 
of the mid-latitude jet stream and storm tracks (Wooll-
ings and Blackburn 2012; Gervais et al. 2019; Karnauskas 
et al. 2021); these changes also influence the ocean state, 
suggesting a two-way coupling between the atmosphere 
and ocean.

Different mechanisms have been put forward to under-
stand how the AMV affects North Atlantic atmospheric 
circulations in winter, including direct modulation of 
low-level baroclinicity and stationary waves by the North 
Atlantic SST anomalies (Kushnir 1994; Kushnir et  al. 
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2002; Msadek et al. 2011; Peings et al. 2016; Zhang et al. 
2019), forcing from the tropical Atlantic (Davini et al. 
2015), and stratospheric pathways (Omrani et al. 2014). 
The relative importance of these different mechanisms, 
and how they may interact, is not known. In summer, there 
is evidence of an atmospheric circulation response to posi-
tive phase of AMV which projects on the negative summer 
NAO (Sutton and Hodson 2005; Sutton and Dong 2012; 
Qasmi et al. 2021); this may reflect a response to weaken-
ing of the meridional SST gradient between the subtropical 
and subpolar gyres.

5 � Multi‑annual predictability and prediction

5.1 � Dynamical predictability and prediction

It has long been thought that there should be significant 
potential to predict ocean circulation changes in the North 
Atlantic on multi-year to decadal timescales. For example, 
idealised prediction experiments, whereby a model attempts 
to predict its own evolution, indicated that AMOC could 
be predicted for up to a decade in advance, and sometimes 
longer (Griffies and Bryan 1997; Collins and Sinha 2003; 
Collins et al. 2006). Such predictability was thought to also 
lead to the potential to predict SSTs and other features of 
the North Atlantic (Duchez et al. 2016a). There is also evi-
dence that atmospheric circulation responds to SST changes 
(Kushnir 1994; Msadek et al. 2011; Kushnir et al. 2002; 
Peings et al. 2016) or changes in external forcings (Ortega 
et al. 2015; Sjolte et al. 2018), suggesting that prediction 
of decadal changes in atmospheric circulation could also 
be possible. However, there was little evidence in the early 
studies for significant potential predictability in the Atmos-
pheric circulation, particularly in winter (Griffies and Bryan 
1997; Collins et al. 2006).

The importance of predicting changes in ocean circulation 
has been underlined by the assessment of near-term climate 
predictions. For example, it has been argued that the ini-
tialisation of ocean circulation, and primarily the buoyancy 
forced ocean circulation (including both AMOC and gyre), 
have been key to delivering improved predictions of North 
Atlantic SST, especially on decadal timescales. For example, 
many studies have highlighted that successful predictions 
of SPNA was dependent on the initialisation of ocean cir-
culation and ocean heat transport (e.g., Robson et al. 2012, 
2014, 2018; Yeager et al. 2012, 2015; Yeager and Robson 
2017; Msadek et al. 2014; Borchert et al. 2021), and decadal 
time-scale cooling of the SPNA in the 1960s and after 2005. 
Such predictability was associated with the initialisation of 
subsurface density anomalies, which then propagate south-
ward and interact with the topography (Robson et al. 2014; 
Yeager and Robson 2017; Yeager 2020).

Although the initialisation of the ocean circulation (e.g., 
the strength of the circulation at the start of the prediction) 
has been shown to be important to deliver skillful predic-
tions of the North Atlantic Ocean, there is less evidence that 
the changes in ocean circulation are predictable themselves. 
Indeed, when assessed in depth space, the skill of AMOC 
was shown to be limited to lead times of a few years ahead, 
and significantly less predictable than related variables, 
including sub-surface density anomalies, sea surface height 
and subpolar heat content (Menary et al. 2016; Yeager and 
Robson 2017; Yeager 2020). Predictability of subsurface 
density anomalies in regions such as the Labrador Sea was 
also low (Yeager and Robson 2017). This lack of skill in the 
AMOC could be associated with the lack of consistency in 
initial conditions (e.g., Karspeck et al. 2017), complicated 
and non-linear drifts in mean-states and variability (Menary 
and Hermanson et al. 2018), or due to the lack of skill in 
predicting atmospheric circulation changes (Yeager and 
Robson 2017). However, recent work has also highlighted 
that AMOC in density space may be significantly more pre-
dictable than AMOC in depth space (Yeager 2020).

Although it was previously thought that the atmospheric 
circulation was not predictable on multi-year or longer time-
scales, there is now significant evidence that North Atlan-
tic Atmospheric circulation can be predicted on a range of 
time-scales. For example, there is evidence that the winter 
NAO can be predicted over a year ahead (Dunstone et al. 
2016), and low-frequency changes in the winter NAO are 
also predictable (Smith et al. 2020). Furthermore, skill has 
also been reported in both wintertime atmospheric block-
ing (Athanasiadis et al. 2020), and also in the jet latitude 
(Marcheggiani et al. 2023) and jet speed (Marcheggiani et al. 
2023; Strommen et al. 2023).

However, the predictable signals in the atmospheric cir-
culation are substantially weaker than would be expected. In 
particular, the signal-to-noise ratios are small yet the fore-
cast skill is relatively large, leading to the counterintuitive 
situation where the predictability of the real world exceeds 
the predictability within the model world. For example, for 
predictions of winter NAO on both 2 year timescales and 
2–9 year timescales, the predicted signals are > 2 (Dun-
stone et al. 2016) and > 10 (Smith et al. 2020) times smaller 
than expected based on the ratio of predictable component 
between real and model world (Eade et al. 2014; Weisheimer 
et al. 2024). This so-called signal-to-noise paradox (Scaife 
and Smith 2018) very much remains an open question, 
despite numerous studies exploring different facets of the 
problem and a conclusive solution to the problem has not 
yet been reached (Weisheimer et al. 2024).

In summer, the predictability of the circumglobal telecon-
nection originating in the North Atlantic region can provide 
skillful predictions of surface temperature over Europe and 
East Asia, including seasonal extremes (Monerie et al. 2018; 
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Borchert et al. 2019), but there is less evidence of successful 
predictions of atmospheric circulation such as the summer 
NAO on multi-annual-to-decadal timescales.

Unfortunately, there is less understanding of the processes 
that are leading to skill. In particular, the sources of skill 
for the winter NAO predictions for years 2–9 is currently 
unknown, which could limit confidence in future predic-
tions. There are some indications, for example, that changes 
in external forcing are able to provide some skill (e.g., Kla-
vans et al. 2021). However, the skill for NAO is sensitive to 
the time-period over which it is computed, and decadal pre-
dictions currently do not capture the return to positive winter 
NAO following 2010 (Marcheggiani et al. 2023). Changes 
in the skill in the NAO could be related to changes in the 
role of external forcings (e.g., different forcing factors), non-
stationarity in NAO predictability (e.g., Weisheimer et al. 
2017; 2020) and ENSO teleconnections (e.g., O’Reilly et al. 
2019), or degraded predictions of North Atlantic SST post 
2010 (e.g., Marcheggiani et al. 2023).

5.2 � Machine learning

Recently there has been a growing interest in utilising 
machine learning (ML) techniques as a new approach to 
weather and climate forecasting. Various studies show that 
neural network-based models trained on either reanalysis 
data or model data can produce reliable predictions, which 
in turn can be used to identify forecasts of opportunity 
(Bihlo 2021; Dueben and Bauer 2018; Weyn et al. 2021; 
Gordon and Barnes 2022). While still in its infancy, these 
data-driven approaches would enable issuing forecasts and 
mechanistic understanding of climate-related processes at 
several orders of magnitude faster than conventional NWP 
models (Pathak et al. 2022).

Such studies also use a broad hierarchy of ML method-
ologies including logistic regression (LR), neural networks 
(NN), convolutional neural networks, generative adversarial 
networks. ML techniques such as NN offer a valuable means 
of uncovering potential sources of predictability among 
large-scale factors yet such methodologies have long been 
regarded as “black boxes,” making it challenging to decipher 
the specific relationships learned by the network. Recent 
advancement of explainable machine learning (XML) meth-
ods to climate sciences (Hall et al. 2019; McGovern et al. 
2019; Toms et al. 2020; Gordon and Barnes 2022; Sun et al. 
2014) now makes it possible to gain insight into the ML's 
understanding of the complex interrelationships between 
climate factors.

Although ML techniques have effectively been used to 
predict climate variability, particularly the El Niño-Southern 
Oscillation (Ham et al. 2019; Colfescu et al. 2024), there has 
been a lack of research in using these techniques for pre-
dicting long-term, decadal to multidecadal variability, such 

as the AMV. This is largely due to the limited availability 
of data. Unlike interannual modes like ENSO, which have 
ample observational data for training and testing, predicting 
a single AMV cycle would require 60–70 years of data, mak-
ing it challenging to train and test a neural network solely on 
observational data.

Some previous studies have used climate model data to 
test ML methodologies for prediction of the north Atlantic 
sea surface temperature variability. For example, Gordon 
and Barnes (2022) have used CESM2 LE and artificial neu-
ral networks to identify initial climate states where the sig-
nals rise above the noise and obtain better predictions for 
long-term SSTs, in particular, patterns of heat in the Atlantic 
and Pacific Oceans. Mayer and Barnes (2021) demonstrate 
that neural networks can identify patterns of storminess 
ideal for predicting atmospheric circulation over the North 
Atlantic (up to 4 weeks in advance) while Mercer (2021) 
uses multiple machine learning methods to quantify the pre-
dictability of the cold-season monthly phases of four stand-
ard teleconnection indices, the North Atlantic Oscillation 
(NAO), the Pacific North American oscillation (PNA), the 
West Pacific Oscillation (WPO), and the Arctic Oscillation 
(AO). Liu et al. (2021) have used CESM1 LE and a hier-
archy of multiple machine learning models to improve the 
state of AMV prediction (Fig. 10). Their results consistently 
show that all of the models used outperform the traditional 
persistence forecast baseline. While not directly trained with 
observational data, such ensemble model trained networks 
can be used to then successfully predict long term variabil-
ity in an observational data set as in Liu et al. (2023). Their 
study shows the phasing of multidecadal variability in an 
observational data set using a ML based approach trained on 
CESM1 and examines AMV predictability with and with-
out external forcings. Similarly, Pasini et al. (2022) uses a 
data driven ML approach to investigate whether the AMO is 
forced by natural variability or external forcing and finds that 
a forced component of AMO in the last 150 years is coming 
from anthropogenic sulphates.

While such methodologies are still in their infancy, there 
is a broad range of original application of ML models to 
future predictions of the decadal to multidecadal variability, 
including prediction and mechanistic understanding of AMV 
in observational sets.

6 � Synthesis and discussions

Understanding large-scale changes in North Atlantic atmos-
pheric and oceanic circulations, their associated climate 
impacts, and their predictability is crucial for predicting 
future climate change and variability over the UK and west-
ern Europe. In this review, we have synthesized evidence 
from observations and climate simulations to provide a 
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comprehensive picture of our current understanding of 
these changes. Firstly, we documented large-scale changes of 
atmospheric and oceanic circulations over the North Atlantic 
sector with a focus on decadal–multidecadal changes during 
the recent decades. Secondly, we discussed the drivers and 
physical processes which influence these changes. Thirdly, 
we summarized projected changes in the future. Finally, we 
discussed predictability and predictions of these circulation 
features. Some of major points discussed and synthesised 
are:

•	 Observations/reanalyses showed notable decadal–multi-
decadal changes in atmospheric circulation over the 
North Atlantic sector in all seasons with some distinct 
features. Prominent decadal variations of atmospheric 
circulation in winter are characterized by a strengthen-
ing and northward shift of the Atlantic jet from the 1960s 
to the 1990s, weakening and southward shift from the 
1990s to 2000s and recent strengthening in jet speed with 
weak change in jet latitude (Fig. 2). In summer, multi-
decadal changes are characterized by poleward migration 
and decreasing jet speed during from 1950 to 1970s, fol-

lowed by an equatorward migration and increasing jet 
speed from 1980s (Fig. 3).

•	 However, climate models have struggled to capture these 
observed decadal–multidecadal variations of atmos-
pheric circulation over the North Atlantic in both win-
ter and summer (Bracegirdle et al. 2018; Simpson et al. 
2018; Blackport and Fyfe 2022; Harvey et al. 2023). 
These inconsistencies suggest either that the models 
do not correctly simulate the responses to the external 
forcings, or that external forcing datasets used to drive 
models are in error, or both. Alternatively, they could 
imply that the discrepancy between observed changes 
and model simulated changes arises simply from cha-
otic internal variability (Simpson et al. 2018; Peings 
et al. 2021; Screen et al. 2022). The weak responses to 
external forcings in the models have been attributed to 
a number of reasons. These include: weak atmospheric 
responses to sea-surface temperature (SST) anomalies 
(Peings et al. 2016; Simpson et al. 2018; Bracegirdle 
2022); weak eddy feedbacks (Smith et al. 2017; Scaife 
et al. 2019; Ruggieri et al. 2021; Hardiman et al. 2022); 
weak ocean–atmosphere coupling in the North Atlantic 

Fig. 10   Accuracy of AMV state predictions by lead year for each 
class (columns) and each machine learning model (rows). AutoML 
results (dotted black line), persistence baseline (solid black line), and 
random chance (33% for each class, dashed black line) are shown on 
each subplot for comparison. For each of the CNN and ResNet50, we 

performed 10 ensemble runs with different initial conditions, each of 
the ensemble is shown in the thin colored lines, and the thick colored 
lines indicate ensemble mean. This image is adapted from Fig. 2 of 
Liu et al. (2021) https://​arxiv.​org/​pdf/​2111.​00124

https://arxiv.org/pdf/2111.00124
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(Osso et al. 2020; Zhang et al. 2021); or model biases in 
North Atlantic atmospheric circulations and SSTs (Scaife 
et al. 2011; Keeley et al. 2012; Woollings and Blackburn 
2012; Smith et al. 2017; Harvey et al. 2020; Simpson 
et al. 2020; Ruggieri et al. 2021; Bracegirdle et al. 2022; 
Hermoso et al. 2023).

•	 Multi-model mean projected changes in the North Atlan-
tic jet show a notable poleward shift in summer and an 
eastward extension and strengthening in winter. How-
ever, a consistent picture or mechanism for these changes 
under future climate change does not exist since there 
are large uncertainties in projected changes among dif-
ferent climate models (Simpson et al. 2014; Zappa and 
Shepherd 2017; Peings et al. 2018; Harvey et al. 2020, 
2023; Oudar et al. 2020; Lee et al. 2021; McKenna and 
Maycock 2021). Opposite effects of different drivers can 
give rise to more complex patterns than simple shifts 
in the North Atlantic jet (Oudar et al. 2020; Lee et al. 
2021), including an eastward elongation and narrowing 
of the North Atlantic jet stream (e.g., Peings et al. 2018; 
Harvey et al. 2020, 2023; McKenna and Maycock 2021), 
with potential impacts on regional climates (e.g., Harvey 
et al. 2023).

•	 Surface forced ocean simulations (e.g., Megann et al. 
2021), surface forced overturning circulation measures 
(Josey et al. 2009), free running ocean models, state esti-
mates and observation based proxies generally suggest 
that the AMOC showed an increasing trend from 1980 
to the mid-1990s, and a decline since then, with the peak 
occurring a few years earlier in subpolar latitudes com-
pared to subtropical latitudes (Jackson et al. 2022). The 
relatively strong subpolar gyre in the early 1990s (Chafik 
et al. 2019) was coincident with a strengthening AMOC, 
itself brought about by persistent positive NAO related 
buoyancy forcing (Robson et al. 2012), whilst the warm-
ing and weakening of the SPG in the late 1990s and early 
2000s coincided with a weakening AMOC related to a 
decline in deep convection in the Labrador Sea (Robson 
et al. 2016, and Fig. 7c).

•	 Observed AMOC changes estimated from various trans-
basin monitoring arrays showed a rising trend from 2000 
to about 2006 and a subsequent decline trend until about 
2010). CMIP5 and CMIP6 models produce a forced 
weakening of the AMOC over the 2012–2017 period 
relative to 2004–2008, but at 26° N the multi-model 
mean response is substantially weaker than the observed 
AMOC decline over the same period. The discrepancy 
between the modelled multi-model mean and the RAPID 
observed AMOC changes has led studies to suggest that 
the observed weakening over 2004–2017 is largely due 
to internal variability and models do not support robust 
assessment of the role of anthropogenic forcing in the 
observed AMOC weakening between the mid-2000s 

and the mid-2010s. There is low confidence that anthro-
pogenic forcing has influenced the observed changes in 
AMOC strength in the post-2004 period (e.g., Eyring 
et al. 2021).

•	 The AMOC is projected to weaken over the course of the 
twenty-first century in response to increasing concentra-
tions of greenhouse gases. However, the magnitude and 
rate of decline as well as the impacts of this weakening 
are highly uncertain across models (Collins et al. 2013; 
Weijer et al. 2020; Arias et al. 2021; Bellomo et al. 2021; 
Fox-Kemper et al. 2021; Lee et al. 2021). Although cli-
mate model simulations archived in the Coupled Model 
Intercomparison Project (CMIP) do not project a shut-
down of the AMOC (Fox-Kemper et al. 2021; Lee et al. 
2021), it has been hypothesized that models may over-
look this possibility (Liu et al. 2017; van Western et al. 
2024). The collapse of the AMOC is nevertheless con-
sidered a ‘low-likelihood, high-impact’ outcome (e.g., 
Arias et al. 2021; Bellomo et al. 2023; van Western et al. 
2024). Experiments with stabilised and negative emis-
sions indicate that the AMOC may recover on timescales 
of 100 years or more (Schwinger et al. 2022; Jackson 
et al. 2023b).

•	 Future projections, till the end of the twenty-first century, 
with CMIP6 models show large divergence in the Arctic 
mean states and changes (Zanowski et al. 2021), although 
being in agreement on the increased poleward ocean heat 
transports and higher freshwater exports from the Arc-
tic into the North Atlantic (Wang et al. 2023). Models 
indicate future potential large freshwater releases from 
the Arctic, which may disrupt the North Atlantic ocean 
circulation (both AMOC and SPG). However, observa-
tions do not yet provide consistent evidence of increased 
oceanic freshwater transport from the Arctic to the North 
Atlantic (Solomon et al. 2020; Lin et al. 2023).

7 � Outstanding questions

There is clear evidence that the North Atlantic climate sys-
tem has changed over the past century (Sutton et al. 2017; 
Robson et al. 2018; Woollings et al. 2018) and we have 
strong indications that it will continue to change in the 
twenty-first century (Fox-Kemper et al. 2021; Harvey et al. 
2020, 2023; Lee et al. 2021). However, there remains large 
uncertainty in the future changes and this is a challenge for 
developing robust approaches to adapt to the risks caused 
by climate change (Deser et al. 2012; Lehner et al 2023; 
Gillett 2024).

Uncertainty in regional climate projections may be use-
fully partitioned between internal variability, uncertainties 
in the forcing of the climate system (e.g. by anthropogenic 
emissions) and uncertainties in the responses to forcings 



	 B. Dong et al.  113   Page 26 of 38

(Hawkins and Sutton 2009). All three contributions to uncer-
tainty are relevant to projections of North Atlantic climate 
change. There are substantial differences in the character-
istics of internal variability simulated by different climate 
models, and the real world characteristics, particularly on 
decadal and longer timescales, are not known. Future forc-
ing of the climate system is inherently uncertain due to 
ignorance of future human behaviour. However, it has been 
shown recently that the range of possible scenarios can be 
constrained, particularly in the near future of the next few 
decades (Beckage et al. 2018; 2022; Otto et al. 2020; Moore 
et al. 2022; Lehner et al. 2023). In addition to considering 
an appropriate range of scenarios for greenhouse gas emis-
sions, uncertain anthropogenic aerosol emissions have been 
repeatedly highlighted as a major source of uncertainty in 
future climate projections (Myhre et al. 2013; Eyring et al. 
2021; Szopa et al. 2021; Fiedler et al. 2023; Wilcox et al. 
2023); this includes the necessity to consider uncertainty of 
different types of aerosol emissions.

Perhaps the most important scientific challenge is to 
advance understanding of the responses of regional atmos-
phere and ocean circulations to both anthropogenic and natu-
ral forcings (Collins et al. 2013; Harvey et al. 2014; Voigt 
and Shaw 2015; Ceppi and Shepherd 2017; Grise and Davis 
2020; Bellomo et al. 2021; Lee et al. 2021; Robson et al. 
2022; Shaw et al. 2024). There remain substantial differ-
ences between the regional responses simulated by different 
climate models, and there is a lack of understanding of the 
key processes involved. Large ensembles provide a valuable 
opportunity to better quantify and investigate model differ-
ences (Deser et al. 2020; Smith et al. 2022b). However, sig-
nificant biases in the mean climates simulated by models 
add further uncertainty to the interpretation of model results 
(Iqbal et al. 2018; Lee et al. 2018; Harvey et al. 2020, 2023; 
Weijer et al. 2020; Fox-Kemper et al. 2021; Jackson et al. 
2023a, b; McCarthy and Caesar 2023). Some recent stud-
ies have suggested that improved resolution of ocean fronts 
and the overlying atmosphere could significantly alter the 
nature of ocean–atmosphere coupling and improve model 
simulated SST biases over the North Atlantic (Smirnov et al. 
2015; Siqueira and Kirtman 2016; Parfitt et al. 2017; Lee 
et al. 2018; Docquier et al. 2019; Athanasiadis et al. 2022; 
Moreno-Chamarro et al. 2022; Tsartsali et al. 2022). The 
extent to which higher resolution climate models change 
responses to different forcings needs to be assessed more 
thoroughly.
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