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1. Introduction

The classical Hilbert matrix

H =

⎛
⎜⎜⎜⎜⎜⎝

1 1
2

1
3 . . .

1
2

1
3

1
4 . . .

1
3

1
4

1
5 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

stands among the most studied matrices, acting as an operator on sequence spaces and 
on spaces of analytic functions of the unit disc D, of the complex plane C. When viewed 
as an operator on spaces of analytic functions, such as Hardy or Bergman spaces, the 
Hilbert matrix becomes a key tool in exploring the relationship between function theory 
and operator theory. It serves as a fundamental example in the study of Hankel matrices, 
that is, matrices whose entries hnk depend only on the sum of the indices n+ k (see [29] 
for more details). This connection between the algebraic structure of Hankel matrices 
and the analytic properties of functions provides valuable insights, making the Hilbert 
matrix a central object of study in both operator theory and complex analysis.

More specifically, the action of the matrix H as an operator on spaces of analytic 
functions was initially explored in the context of Hardy spaces Hp in [8], and later in 
[10]. It was established that its operator norm is precisely equal to the quantity π

sin(π
p )

, 
for 1 < p < ∞, while it remains unbounded in the limit cases p = 1 and p = ∞. 
Subsequently, the study of the operator focused on the Bergman spaces Ap, consisting 
of the analytic functions in Lp(D). In [7], Diamantopoulos showed that H is bounded 
on Ap if and only if p > 2, and provided a sharp upper bound for its norm when p ≥ 4. 
A precise lower bound for ‖H‖Ap was obtained in [10] for every p > 2, by utilizing 
appropriate test functions, thereby determining the exact value of the norm for p ≥ 4. In 
[4], the authors derived a sharp upper bound in the range 2 < p < 4 by applying novel 
estimates for the beta function. Specifically, it was shown that for each p > 2,

‖H‖Ap = π

sin
(

2π
p 

) =
1 ∫

0 

t2/p−1

(1 − t)2/p
dt. (1)

See also [26] where a simplified proof of (1) appears. However, several questions remain 
open regarding the behavior of the classical Hilbert matrix operator on Bergman spaces. 
While it is established that H is bounded in the standard weighted Bergman spaces Ap

α

if and only if 1 < α + 2 < p [20], the precise value of the norm ‖H‖Ap
α

has yet to be 
fully determined. The conjectured value of the norm, π(sin((2+α)π/p))−1 [21], has been 
proved to be correct in [22] when α > 0 and
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p ≥ α + 2 +

√
(α + 2)2 −

(√
2 − 1

2

)
(α + 2).

For more recent advancements, we refer to [9], and [6], where the case of negative index 
α is also explored. Additionally, [2] and the references therein provide an overview of the 
latest developments in the study of the Hilbert matrix operator, particularly its action 
on various spaces of analytic functions and sequence spaces.

Over the past two decades, various generalizations of the Hilbert matrix operator have 
been the subject of extensive research (see, for instance, [16], [5], [14], [24], [3], and [13]). 
In this paper, we investigate a recently introduced generalization [1], defined as follows: 
Let μ be a probability Borel measure on [0, 1). We then consider the infinite matrix

Γ̃μ =

⎛
⎜⎜⎜⎜⎝

γ00 γ01 γ02 . . .

γ10 γ11 γ12 . . .

γ20 γ21 γ22 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠

with entries

γnk =
(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t).

The matrix Γ̃μ is related to the classical Hausdorff matrix Kμ induced by the moment 
sequence {μn} of the measure μ, that is, for n = 0, 1, . . . ,

μn =
1 ∫

0 

tn dμ(t).

In particular,

Kμ =

⎛
⎜⎜⎝
c00 0 0 . . .
c10 c11 0 . . .
c20 c21 c22 . . .
...

...
...

. . .

⎞
⎟⎟⎠

with entries cnk given by

cnk =
(
n

k

) 1 ∫
0 

tk(1 − t)n−k dμ(t), 0 ≤ k ≤ n.

Hausdorff matrices are essential tools in summability theory, where they are used to 
analyze and adjust the convergence behavior of sequences. A classic example is the 
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Cesàro matrix, a typical example of a Hausdorff matrix, which averages sequences and 
provides insights into how transforming sequences can affect their convergence (see [18, 
Chapter 6] for a concise overview). Beyond sequences, Hausdorff matrices have also 
been explored in the context of spaces of analytic functions, further demonstrating their 
versatility and significance in mathematical analysis (see for example [17], [15] and [23]). 
The matrix Γ̃μ is obtained by shifting the entries of the k-th column of Kμ, k-places up. 
More precisely, with respect to the standard basis {en}n≥0, the matrix Γ̃μ is related to 
Kμ through the algebraic relation

Γ̃μ(en) = S∗n ◦ Kμ(en),

where S∗(e0) = 0 and S∗(en) = en−1, for n ≥ 1. If μ is the Lebesgue measure, then the 
matrix Γ̃μ reduces to the classical Hilbert matrix H.

In the sequel, we concentrate on the action of the matrix Γ̃μ as an operator on the 
Bergman spaces of the unit disc. In [1], the authors studied the action of Γ̃μ in the Hardy 
spaces Hp for 1 ≤ p < ∞, and they characterized the measures μ for which the operator 
Γ̃μ is bounded. The matrix Γ̃μ acts on the sequence of the Taylor coefficients of the 
analytic function f(z) =

∑∞
k=0 akz

k as follows:

Γ̃μ(f)(z) =
∞ ∑

n=0

⎛
⎝ ∞ ∑

k=0

ak

(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t)

⎞
⎠ zn.

We prove that Γ̃μ(f)(z) has an equivalent integral representation in Ap for 1 ≤ p < ∞, 
i.e.

Γμ(f)(z) =
1 ∫

0 

f(ϕt(z))wt(z) dμ(t) =
1 ∫

0 

Tt(f)(z) dμ(t), (2)

where Tt(f) = wt · f ◦ ϕt is a weighted composition operator with

ϕt(z) = t 
1 + (t− 1)z and wt(z) = 1 

1 + (t− 1)z .

We note that

ϕt(D) = D

(
1 

2 − t
, 

1 − t

2 − t

)

is the open disc centered at 1/(2− t) with radius (1− t)/(2− t). In particular, for every 
0 < t < 1, ϕt(D) ⊂ D with ϕt(D) ∩ ∂D = {1}.

In what follows, we focus on necessary and sufficient conditions for the continuity of 
the operators Γμ on Ap with 1 ≤ p < ∞. In order to formulate our main result it will be 
convenient to introduce the following function:
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Θp(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
2 
p−1

(1 − t)
2 
p

, if 2 < p < ∞;

√∫ 1
0 μ[0, t] log

(
e
t 
)
dμ(t) +

(∫ 1
0

1 
1−t dμ(t)

)2
, if p = 2;

1 
(1 − t)2/p

, if 1 ≤ p < 2.

We use the following convention:

μ[a, b] =
b ∫

a 

dμ(s) =
∫

[a,b)

dμ(s), 0 ≤ a < b ≤ 1.

Theorem 1.1. Let 1 ≤ p < ∞. The operator Γμ : Ap → Ap is bounded, if and only if

1 ∫
0 

Θp(t) dμ(t) < ∞.

In particular, there exist positive constants A(p), B(p) depending only on p such that

A(p)
1 ∫

0 

Θp(t) dμ(t) ≤ ‖Γμ‖Ap→Ap ≤ B(p)
1 ∫

0 

Θp(t) dμ(t). (3)

When p > 2 the constant A(p) can be chosen equal to 1 and when p ≥ 4 the constant 
B(p) can also be chosen equal to 1. Hence, when p ≥ 4

‖Γμ‖Ap→Ap =
1 ∫

0 

t
2 
p−1

(1 − t)
2 
p

dμ(t).

Observe that even for 2 < p < 4, the lower bound of the norm remains the optimal 
value for which the inequality (3) holds true for all measures μ. This is because the 
lower bound in (3) corresponds exactly to the norm of the classical Hilbert matrix H, as 
specified in (1). On the other hand, from [27, Corollary 3.2], we know that when p → 2+

sup 
a∈(0,1)

‖Γδa(1)‖Ap

/ 1 ∫
0 

Θp(t) dδa(t) > 1,

where δa is a Dirac point measure at a ∈ (0, 1). This implies that for specific measures 
and particular values of p, the constant A(p) could be chosen bigger than 1.
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The expression of Θp(t) is different when p = 2 and in Proposition 3.3 we show that 
the natural condition coming from Lemma 2.3, that is

1 ∫
0 

√
log(e/t)
1 − t 

dμ(t) < ∞, (4)

is not necessary for the boundedness of Γμ on A2.
Furthermore, we consider compactness and complete continuity. We recall that an 

operator T on a Banach space X is compact if, for any bounded sequence {xn} in 
X, the sequence {T (xn)} contains a convergent subsequence. Moreover, an operator T
is completely continuous on X if for any weakly convergent sequence {xn} in X, the 
sequence {T (xn)} converges in norm. In general, every compact operator is completely 
continuous, however the converse could be false when X is non-reflexive.

In order to prove that an operator T is non-compact, it is enough to show that its 
essential norm ‖T‖e,X is non-zero. We recall that

‖T‖e,X = inf {‖T −K‖X where K is a compact operator in X} .

It is clear that ‖T‖X ≥ ‖T‖e,X .

Theorem 1.2. Let 1 < p < ∞. If Γμ : Ap → Ap is bounded, then

‖Γμ‖e,Ap =
1 ∫

0 

t2/p−1

(1 − t)2/p
dμ(t).

It is clear from the theorem above that Γμ is never compact on Ap if 2 ≤ p < ∞. On 
the other hand, if 1 < p < 2, Γμ is compact in Ap if and only if μ = δ0, that is, if μ is 
the Dirac point mass at 0. Indeed, in this case,

Γδ0(f)(z) = f(0) 1 
1 − z

which is clearly compact as a rank one operator.

Theorem 1.3. Let Γμ : A1 → A1 be bounded. Then Γμ is compact if and only if μ = δ0. 
Nevertheless, for every probability measure μ such that Γμ is bounded on A1, Γμ is 
completely continuous.

The rest of the paper is organized as follows: In Section 2, we recall the classical 
properties of the Bergman space, and we prove that Γμ(f) is a well-defined analytic 
function and that the action of Γμ coincides with that of Γ̃μ on Ap. We also estimate 
an upper bound for ‖Tt‖Ap when 1 ≤ p < ∞. We split the proof of Theorem 1.1 into 
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Sections 3.1 and 3.2. In Section 3.1, we prove that Γμ is bounded in Ap when 1 ≤ p < ∞, 
with p �= 2. In Section 3.2, we focus on the case p = 2 and also provide some conditions 
for boundedness of which some are sufficient and some are necessary. In Section 4, we 
deal with compactness and we prove Theorems 1.2 and 1.3.

Before we delve into calculations, we first clarify the notation that we will use in the 
following sections. With T = ∂D we refer to the unit circle in the complex plane. Given a 
set M , by χM we denote the characteristic function associated to the set M . We use the 
expression ‖f‖X to denote the norm of an element f ∈ X. Moreover, if T is an operator 
from the space X to X by ‖T‖X we denote its operator norm, that is

‖T‖X = sup 
‖f‖X=1

‖T (f)‖X .

Even if the two notations coincide, this should not cause confusion in this context. Finally, 
by the expressions f ≲ g and g ≳ f , we mean that there exists a constant C > 0 such 
that f ≤ Cg. If both f ≲ g and f ≳ g hold, we write f ∼ g. We also highlight that 
by the capital letter C, we denote constants whose values may change every time they 
appear.

2. Preliminaries

First of all, we recall the properties of the Bergman spaces Ap that will be used in 
the rest of the paper. For 1 ≤ p < ∞, the Bergman space Ap consists of all the analytic 
functions in the unit disc for which

‖f‖Ap = 

⎛
⎝∫

D

|f(z)|p dA(z)

⎞
⎠

1/p

< ∞,

where dA(z) = dxdy/π is the normalized Lebesgue area measure. We recall that, if 
f ∈ Ap with 1 ≤ p < ∞, the growth estimates

|f(z)| ≤ 
(

1 
1 − |z|2

) 2 
p

‖f‖Ap , z ∈ D (5)

and for some independent C > 0

|f ′(z)| ≤ C
(

1 
1 − |z|2

) 2 
p+1

‖f‖Ap , z ∈ D (6)

hold, see [31, p. 755] and [28, p. 338] respectively. Moreover, if f(z) =
∑

n≥0 anz
n, then

‖f‖2
A2 =

∑
n≥0

|an|2
n + 1 , (7)
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see [12, p. 11]. We remark that the Taylor partial sums of f , that is, the polynomials

SN (f)(z) =
N∑

n=0
anz

n

with N ∈ N, converge in Ap-norm to

f(z) =
∞ ∑

n=0
anz

n

when 1 < p < ∞, see [12, p. 31, Theorem 4]. For more information about the Bergman 
spaces we refer to the classical monographs [12] and [19].

The first thing that needs to be verified is that the integral (2) involved in the definition 
of Γμ(f) is a well-defined analytic function in D. We follow the reasoning of [7].

Proposition 2.1. For 1 ≤ p < ∞, let

ψp =
1 ∫

0 

1 
(1 − t)2/p

dμ(t).

If ψp < ∞, then for every f ∈ Ap, Γμ(f) is a well-defined analytic function.

Proof. We first prove that for every fixed z ∈ D, Γμ(f)(z) is well-defined. Indeed, due 
to (5), we have

|Γμ(f)(z)| ≤
1 ∫

0 

1 
|1 − (1 − t)z| |f(ϕt(z))| dμ(t)

≤
1 ∫

0 

1 
|1 − (1 − t)z|1−2/p

1 
(1 − t)2/p

dμ(t) · ‖f‖Ap

(1 − |z|)2/p

≤ ‖f‖Ap

(1 − |z|)2/p+1

1 ∫
0 

1 
(1 − t)2/p

dμ(t).

In order to prove that Γμ(f) is analytic in D, we show that there exists a sequence of 
analytic functions which converges to Γμ(f) uniformly on every compact subset of D. 
Let {Pn}n be a family of polynomials such that

lim
n→∞

‖f − Pn‖Ap = 0,

see [12, p. 30, Theorems 3 and 4]. It is clear that for every n ∈ N, Γμ(Pn) is analytic in 
D. Therefore, for every z in a compact set K ⊂ D,
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∣∣Γμ(f)(z) − Γμ(Pn)(z)
∣∣ ≤ ‖f − Pn‖Ap

ψp

(1 − |z|)2/p+1

≤ ‖f − Pn‖Ap

ψp

dist(K,T )3 ,
(8)

which concludes the proof of the proposition. �
The fact that in Ap the operators Γμ and Γ̃μ coincide requires some standard estimates. 

For the sake of completeness, we will write them down.

Proposition 2.2. Let 1 ≤ p < ∞ and ψp < ∞, where ψp is defined as in Proposition 2.1. 
If f ∈ Ap, then

Γμ(f) = Γ̃μ(f).

Proof. It is clear that for every analytic polynomial

Γμ(Pn) = Γ̃μ(Pn).

We first consider the case 1 < p < ∞ and f(z) =
∑

k≥0 akz
k ∈ Ap. Then for every 

z ∈ D, by the proof of Proposition 2.1,

lim
N→∞

|Γμ(f)(z) − Γ̃μ(SN )(z)| = lim
N→∞

|Γμ(f)(z) − Γμ(SN )(z)| = 0,

where SN is the Taylor partial sum. Since Γμ(f) and Γ̃μ(SN ) are analytic functions, the 
Taylor coefficients coincide, that is, for every n ∈ N,

ˆ︂Γμ(f)(n) = lim
N→∞

N∑
k=0

ak

(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t),

which concludes the first part of the proof.
For p = 1 and f(z) =

∑
k≥0 akz

k ∈ A1, from (5) and (6), we note that

|a0| ≤ ‖f‖A1 and |a1| ≤ C‖f‖A1 .

Moreover, by the Cauchy formula, for every r ≥ 1/2 and n ≥ 2, we note that

|an| ≤ r−n

2π∫
0 

|f(reiθ)| dθ2π

= r−n(1 − r)−1

⎧⎨
⎩(1 − r)

2π∫
0 

|f(reiθ)| dθ2π

⎫⎬
⎭ ≤ r−n(1 − r)−12‖f‖A1 .
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In particular, by choosing r = 1 − 1/n, we obtain that

|an| ≤ 2
(

1 − 1 
n

)−n

(n + 1)‖f‖A1 ≤ 8(n + 1)‖f‖A1 .

Therefore, for every z ∈ D,

|Γ̃μ(f)(z)| =

∣∣∣∣∣∣
∞ ∑

n=0

⎛
⎝ ∞ ∑

k=0

ak

(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t)

⎞
⎠ zn

∣∣∣∣∣∣
≤

∞ ∑
n=0

⎛
⎝ ∞ ∑

k=0

|ak| 
(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t)

⎞
⎠ |z|n

≤ C
∞ ∑

n=0

⎛
⎝ ∞ ∑

k=0

(k + 1) 
(
n + k

k

) 1 ∫
0 

tk(1 − t)n dμ(t)

⎞
⎠ |z|n · ‖f‖A1 .

Thus, since

∞ ∑
n=0

(
n + k

k

)
(1 − t)n|z|ntk =

(
t 

1 − (1 − t)|z|

)k 1 
1 − (1 − t)|z| = ϕt(|z|)kwt(|z|),

we have that

|Γ̃μ(f)(z)| ≲
1 ∫

0 

( ∞ ∑
k=0

(k + 1)ϕt(|z|)k
)
wt(|z|) dμ(t) · ‖f‖A1

=
1 ∫

0 

1 
(1 − ϕt(|z|))2

wt(|z|) dμ(t) · ‖f‖A1

≤
1 ∫

0 

1 
(1 − t)2 dμ(t) · ‖f‖A1

(1 − |z|)2

≤ ψ1 ·
‖f‖A1

(1 − |z|)2 .

Therefore, if Pn → f in A1, due to (8), for every z ∈ D, we have

Γμ(f)(z) = lim
n→∞

Γμ(Pn)(z) = lim
n→∞

Γ̃μ(Pn)(z) = Γ̃μ(f)(z),

which concludes the proof for p = 1. �



C. Bellavita et al. / Journal of Functional Analysis 288 (2025) 110856 11

The weighted composition operator

Tt(f)(z) = 1 
(t− 1)z + 1f

(
t 

(t− 1)z + 1

)

has been intensively studied in Ap in relation to the classical Hilbert matrix operator. In 
specific, Diamantopoulos [7] estimated its norm when 2 < p < ∞. We extend this result 
to the case 1 ≤ p ≤ 2.

Lemma 2.3. Let 0 < t < 1 and f ∈ Ap, 1 ≤ p < ∞. Then

‖Tt(f)‖Ap ≤ C(p) Ψp(t) ‖f‖Ap (9)

where C(p) is a positive constant depending only on p and

Ψp(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
2 
p−1

(1 − t)
2 
p

, if 2 < p < ∞;

√
log (e/t)
1 − t 

, if p = 2;

1 
(1 − t)2/p

, if 1 ≤ p < 2.

(10)

Moreover, if p ≥ 4, we have C(p) = 1.

Proof. We recall that in [7, Lemma 2], the constant appearing in (9) was estimated for 
2 < p < ∞ as

C(p) =

⎧⎪⎪⎨
⎪⎪⎩

1, if 4 ≤ p < ∞;

(
27−p

9(p−2) + 24−p
)1/p

, if 2 < p < 4.

Let us consider 1 < p ≤ 2. For every z ∈ D, f(z) = f(z) − f(0) + f(0). Therefore

‖Tt(f)‖pAp ≤ 2p−1(‖Tt(f − f(0))‖pAp + ‖Tt (f(0)) ‖pAp

)
. (11)

We start by estimating the second term. We note that

‖Tt (f(0)) ‖pAp =|f(0)|p
∫
D

1 
|1 − (1 − t)z|p dA(z).

Applying Forelli-Rudin estimates, see [32, Lemma 3.10], and (5), we get that there is 
some constant Bp depending only on p such that
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‖Tt (f(0)) ‖pAp ≤ ‖f‖pAp ·

⎧⎪⎪⎨
⎪⎪⎩
Bp, if 1 ≤ p < 2;

B2 log(e/t), if p = 2.

For the first term in (11), a change of variables yields

‖Tt(f − f(0))‖pAp = t2−p

(1 − t)2

∫
ϕt(D)

|w|2p−4 |S∗(f)(w)|p dA(w)

≤ t2−p

(1 − t)2

∫
D

|w|2p−4 |S∗(f)(w)|p dA(w)

= t2−p

(1 − t)2
( ∫
|w|≤1/2

|w|2p−4 |S∗(f)(w)|p dA(w) +

+
∫

1/2≤|w|<1

|w|2p−4 |S∗(f)(w)|p dA(w) 
)

= t2−p

(1 − t)2 (I + II) ,

where S∗ is the backward shift and we have used the fact that

|ϕt(z)|4 = t2

(1 − t)2 |ϕ
′
t(z)|2.

Then, by using (5), we have

I ≤
∫

|w|≤1/2

|w|2p−4

(1 − |w|2)2 dA(w)‖S∗(f)‖pAp

≤ 16
9 

∫
|w|≤1/2

|w|2p−4 dA(w) ‖S∗‖pAp ‖f‖pAp

≤ 26−2p

9 
1 

p− 1‖S
∗‖pAp‖f‖pAp

and

II ≤
∫

1/2≤|w|<1

(
1
2

)2p−4

|S∗(f)(w)|p dA(w) ≤ 24−2p‖S∗‖pAp‖f‖pAp .

Thus



C. Bellavita et al. / Journal of Functional Analysis 288 (2025) 110856 13

‖Tt(f − f(0))‖pAp ≤ t2−p

(1 − t)2
25−2p

p− 1 
‖S∗‖pAp‖f‖pAp . (12)

In the case p = 1, for every z ∈ D, we consider

f(z) = f(0) + zf ′(0) + z2 · S∗2(f)(z),

where S∗2 = S∗ ◦ S∗. Therefore

‖Tt(f)‖A1 ≤ ‖Tt(z2 · S∗2(f))‖A1 + ‖Tt (f(0)) ‖A1 + ‖Tt(z · f ′(0))‖A1 . (13)

We have already estimated the second term. For the third one, by using (6), we note 
that

‖Tt(zf ′(0))‖A1 =|f ′(0)| · t
∫
D

1 
|1 − (1 − t)z|2 dA(z)

≤CB2 · [t log(e/t)] · ‖f‖A1 .

Finally, with computations similar to those done for 1 < p < 2, we have that

‖Tt(z2 · S∗2(f))‖A1 =1
t 

∫
D

∣∣∣∣ t 
1 − (1 − t)z

∣∣∣∣
3 ∣∣∣∣S∗2(f)

(
t 

1 − (1 − t)z

)∣∣∣∣ dA(z)

= t 
(1 − t)2

( ∫
|w|≤1/2

|w|3−4
∣∣∣S∗2(f)(w)

∣∣∣ dA(w) +

+
∫

1/2≤|w|<1

|w|3−4
∣∣∣S∗2(f)(w)

∣∣∣ dA(w) 
)

≤ 5t 
(1 − t)2 ‖S

∗‖2
A1‖f‖A1 .

Hence, by using (13), if p = 1, we have

‖Tt(f)‖A1 ≤
(
B1 + CB2t log (e/t) + 5‖S∗‖2

A1
t 

(1 − t)2

)
‖f‖A1

≤ C
1 

(1 − t)2 ‖f‖A1 .

By using (11), if 1 < p < 2,

‖Tt(f)‖pAp ≤ 2p−1
(
Bp + 25−2p

p− 1 
‖S∗‖pAp

t2−p

(1 − t)2

)
‖f‖pAp

≤ C
1 

(1 − t)2 ‖f‖
p
Ap .
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If p = 2,

‖Tt(f)‖2
A2 ≤ 2

(
B2 log(e/t) + ‖S∗‖2

A2
1 

(1 − t)2

)
‖f‖2

A2

≤ C
log(e/t)
(1 − t)2 ‖f‖

2
A2 .

The proof of the Lemma is now complete. �
3. On the boundedness and norm of the operators

First of all, notice that Γμ is never contractive. Indeed, if Γμ is bounded in Ap, then, 
by (5),

1 = Γμ(1)(0) ≤ ‖Γμ(1)‖Ap ≤ ‖Γμ‖Ap .

We provide the estimate from below of ‖Γμ‖Ap in a separate lemma, which will also be 
used in the computation of the essential norm of Γμ.

Lemma 3.1. Let 1 ≤ p < ∞. If Γμ : Ap → Ap is bounded, then

1 ∫
0 

t2/p−1

(1 − t)2/p
dμ(t) ≤ ‖Γμ‖Ap .

Proof. Let fa(z) = 1/(1 − z)a for 0 < a < 2/p. We know that

lim
a→2/p

‖fa‖Ap = ∞.

We consider

Γμ(fa)(z) =
1 ∫

0 

[1 − (1 − t)z]a−1

(1 − t)a dμ(t) · fa(z) = Λa(z) · fa(z),

where

Λa(z) =
1 ∫

0 

[1 − (1 − t)z]a−1

(1 − t)a dμ(t).

Let D(1, ε) be a circle of radius ε centered at 1. We have that
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‖Γμ(fa/‖fa‖Ap)‖pAp ≥
∫

D∩D(1,ε)

|fa(z)|p
‖fa‖pAp

|Λa(z)|p dA(z)

≥ inf
z∈D∩D(1,ε)

|Λa(z)|p ·
∫

D∩D(1,ε)

|fa(z)|p
‖fa‖pAp

dA(z)

= inf
z∈D∩D(1,ε)

|Λa(z)|p ·

⎛
⎜⎝1 −

∫
D\D(1,ε)

|fa(z)|p
‖fa‖pAp

dA(z)

⎞
⎟⎠ .

Consequently, since fa/‖fa‖Ap has unitary norm in Ap and

|fa(z)| <
1 
εa

≤ 1 
ε2/p when z ∈ D \D(1, ε),

we find that

‖Γμ‖pAp ≥ lim inf
ε→0 

lim inf
a→2/p 

inf
z∈D∩D(1,ε)

|Λa(z)|p ·

⎛
⎜⎝1 −

∫
D\D(1,ε)

|fa(z)|p
‖fa‖pAp

dA(z)

⎞
⎟⎠

= lim inf
ε→0 

lim inf
a→2/p 

inf
z∈D∩D(1,ε)

|Λa(z)|p

≥
(

lim inf
ε→0 

lim inf
a→2/p 

inf
z∈D∩D(1,ε)

ReΛa(z)
)p

.

Furthermore,

inf
z∈D∩D(1,ε)

ReΛa(z) ≥
1 ∫

0 

1 
(1 − t)a inf

z∈D∩D(1,ε)
Re(1 − (1 − t)z)a−1 dμ(t). (14)

Let us consider 2 ≤ p < ∞. Then, since a < 1, we note that

inf
z∈D∩D(1,ε)

Re(1 − (1 − t)z)a−1

= inf
z∈D∩D(1,ε)

1 
|1 − (1 − t)z|2(1−a) Re(1 − (1 − t)z)1−a ≥ |t|1−α

|t + ε|2(1−a) .

On the other hand, if 1 ≤ p < 2, we consider a > 1 and we get that

inf
z∈D∩D(1,ε)

Re(1 − (1 − t)z)a−1 ≥ ta−1.

Therefore, by taking the limits and applying Fatou’s Lemma, we have that



16 C. Bellavita et al. / Journal of Functional Analysis 288 (2025) 110856 

lim inf
ε→0 

lim inf
a→2/p 

inf
z∈D∩D(1,ε)

Re Λa(z) ≥
1 ∫

0 

t2/p−1

(1 − t)2/p
dμ(t).

The statement of the lemma is now proved. �
3.1. The case p �=2

We are now ready for the proof of Theorem 1.1 when p �= 2.

Proof of Theorem 1.1 when p �= 2. We start with the sufficient condition. An application 
of the generalized Minkowski’s inequality for the integrals together with Lemma 2.3 imply 
that for 1 ≤ p < ∞

‖Γμ(f)‖Ap ≤ 

1 ∫
0 

‖Tt(f)‖Ap dμ(t) ≤ B(p) 
1 ∫

0 

Θp(t) dμ(t) ‖f‖Ap ,

where B(p) is equal to C(p) from the proof of Lemma 2.3.
We prove now the necessary condition. We first consider 2 < p < ∞. Then Lemma 3.1

implies that

‖Γμ‖Ap ≥
1 ∫

0 

Θp(t) dμ(t)

from which the statement of the theorem follows.
If 1 ≤ p < 2, we consider again Lemma 3.1, but we note that

1 ∫
0 

1 
(1 − t)2/p

dμ(t) =
1/2∫
0 

1 
(1 − t)2/p

dμ(t) +
1 ∫

1/2

1 
(1 − t)2/p

dμ(t)

≤ 22/pΓμ(1)(0) + 22/p−1
1 ∫

1/2

t2/p−1

(1 − t)2/p
dμ(t)

≤
(

1 + 1
2

)
22/p‖Γμ‖Ap = 3 · 22/p−1‖Γμ‖Ap .

Therefore

‖Γμ‖Ap ≥ 1 
3 · 22/p−1

1 ∫
0 

1 
(1 − t)2/p

dμ(t) = A(p)
1 ∫

0 

Θp(t) dμ(t).

Theorem 1.1 is now proved for p �= 2. �
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3.2. The case p=2

We start this section by computing ‖Γμ(1)‖2
A2 . This quantity will be necessary for the 

conclusion of the proof of Theorem 1.1. We use some ideas inspired by [16].

Lemma 3.2. Let μ be a probability measure on [0, 1). Then

‖Γμ(1)‖2
A2 ∼

1 ∫
0 

μ[0, t] log e

t 
dμ(t).

Proof. We note that

Γμ(1)(z) =
1 ∫

0 

1 
1 − (1 − t)z dμ(t) =

∑
n≥0

1 ∫
0 

(1 − t)n dμ(t) zn.

Hence, by (7), we obtain that

‖Γμ(1)‖2
A2 =

∑
n≥0

∫ 1
0 (1 − t)n dμ(t)

∫ 1
0 (1 − s)n dμ(s)

n + 1 

=
1 ∫

0 

1 ∫
0 

∑
n≥0

[(1 − t)(1 − s)]n

n + 1 
dμ(t) dμ(s)

=
1 ∫

0 

1 ∫
0 

1 +
∑
n≥1

{(1 − t)(1 − s)}n
n + 1 

dμ(t) dμ(s)

∼
1 ∫

0 

t ∫
0 

log e 
1 − (1 − t)(1 − s) dμ(s) dμ(t).

More precisely,

1
2‖Γμ(1)‖2

Ap ≤
1 ∫

0 

t ∫
0 

log e 
1 − (1 − t)(1 − s) dμ(s) dμ(t) ≤ ‖Γμ(1)‖2

Ap .

Consequently,

‖Γμ(1)‖2
A2 ≥

1 ∫
0 

t ∫
0 

log e 
1 − (1 − t)2 dμ(s) dμ(t)
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=
1 ∫

0 

μ[0, t] log e 
t(2 − t) dμ(t)

=
1 ∫

0 

μ[0, t] log e

t 

(
1 − log(2 − t)

log (e/t)

)
dμ(t)

≥ (1 − log(2))
1 ∫

0 

μ[0, t] log e

t 
dμ(t)

and

‖Γμ(1)‖2
A2 ≤ 2

1 ∫
0 

t ∫
0 

log e 
1 − (1 − t) dμ(s) dμ(t) = 2

1 ∫
0 

μ[0, t] log e

t 
dμ(t),

which proves the statement of the lemma. �
We are now ready to prove Theorem 1.1 for p = 2.

Proof of Theorem 1.1 when p = 2. We recall that in Lemma 3.1, we have already verified 
that

‖Γμ‖A2 ≥
1 ∫

0 

1 
1 − t

dμ(t).

Therefore, if Γμ is bounded in A2, we obtain that

1 ∫
0 

μ[0, t] log
(e
t 

)
dμ(t) +

⎛
⎝ 1 ∫

0 

1 
1 − t

dμ(t)

⎞
⎠

2

≲ ‖Γμ(1)‖2
A2 + ‖Γμ‖2

A2 ≲ ‖Γμ‖2
A2 .

On the other hand, by using (12) and Lemma 3.2, we note that

‖Γμ(f)‖2
A2 ≤2‖Γμ(f(0))‖2

A2 + 2‖Γμ(f − f(0))‖2
A2

≤2|f(0)|2‖Γμ(1)‖2
A2 + 2

⎛
⎝ 1 ∫

0 

‖Tt(f − f(0))‖A2 dμ(t)

⎞
⎠

2

≤4‖f‖2
A2

1 ∫
0 

μ[0, t] log
(e
t 

)
dμ(t) + 4‖S∗‖2

A2‖f‖2
A2

⎛
⎝ 1 ∫

0 

1 
1 − t

dμ(t)

⎞
⎠

2

.
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Therefore, by fixing B(2) = 2 max(1, ‖S∗‖A2), we have that

‖Γμ(f)‖A2 ≤ B(2)‖f‖A2

√√√√√ 1 ∫
0 

μ[0, t] log
(e
t 

)
dμ(t) +

⎛
⎝ 1 ∫

0 

1 
1 − t

dμ(t)

⎞
⎠

2

from which the estimate from above follows. �
We highlight the fact that the first term in the definition of Θ2(t) is fundamental. 

Indeed, if μ = δ0, then Γδ0 is unbounded in A2 but

1 ∫
0 

1 
1 − t

dδ0(t) < ∞.

It is worth mentioning that the operator Γμ is bounded from the closed subspace 
A2

0 = {f ∈ A2 : f(0) = 0} to A2 if and only if

1 ∫
0 

1 
1 − t

dμ(t) < ∞.

This result is in accordance with the other values of p and it shows that it is ‖Γμ(1)‖A2

that has an unexpected behavior. We also note that Γμ(f)(0) = 0 is seldom true, even 
if we choose f ∈ A2

0.
When p �= 2, an application of the generalized Minkowski’s inequality is enough to 

provide the “correct” estimate for the norm of Γμ. For this reason, it is tempting to 
consider the condition

1 ∫
0 

√
log(e/t) dμ(t) < ∞, (15)

which captures the behavior of

1 ∫
0 

√
log(e/t)
1 − t 

dμ(t)

when t is close to 0, see Lemma 2.3, instead of
√√√√√ 1 ∫

0 

μ[0, t] log(e/t) dμ(t) < ∞.

However, (15) is not a necessary condition for the boundedness of Γμ on A2.
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Proposition 3.3. There exists a positive, absolutely continuous measure μ for which Γμ :
A2 → A2 is bounded, while condition (15) is not satisfied.

Proof. We consider the measure

dμ(t) = C

⎛
⎝1

2
1 

log
(
e
t 
) 3

2

1 
log
(
log
(
e
t 
)) 1

t 
+ 1 

log
(
e
t 
) 3

2

1 

log
(
log
(
e
t 
))2 1

t 

⎞
⎠χ[0, 12 ](t) dt,

where

C = log (2e)
1
2 log (log 2e) .

It follows that

μ[0, t] =

⎧⎪⎪⎨
⎪⎪⎩
C log

(
e
t 
)− 1

2 1 
log
(
log
(
e
t 
)) , if 0 < t ≤ 1

2 ;

1, if 1
2 < t ≤ 1.

We note that

1 ∫
0 

√
log(e/t) dμ(t) > C

2 

1
2∫

0 

1 
log
(
e
t 
) 1 

log
(
log
(
e
t 
)) 1

t 
dt = ∞,

even if Γμ is bounded on A2 since the condition of Theorem 1.1 is satisfied. Indeed

√√√√√ 1 ∫
0 

μ[0, t] log
(e
t 

)
dμ(t) +

⎛
⎝ 1 ∫

0 

1 
1 − t

dμ(t)

⎞
⎠

2

≤

√√√√√C2

1
2∫

0 

1
t 

1 
log
(
e
t 
) 1 

log
(
log
(
e
t 
))2
(

1 + 1 
log
(
log
(
e
t 
))
)

dt + 4 < ∞. �

Before concluding this section, we provide another necessary condition for the bound-
edness of Γμ on A2. To formulate it, we consider the adjoint of Γμ acting on the classical 
Dirichlet space D, consisting of analytic functions for which

∫
D

|f ′(z)|2 dA(z) < ∞.
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Lemma 3.4. If Γμ : A2 → A2 is bounded, then its adjoint operator Γ∗
μ is given by

Γ∗
μ(f)(z) =

1 ∫
0 

T ∗
t (f)(z) dμ(t) =

1 ∫
0 

T1−t(f)(z) dμ(t)

for every f in the Dirichlet space D.

Proof. First of all if f(z) =
∑

n anz
n and g(z) =

∑
n bnz

n belong to A2, then

〈f, g〉 =
∑
n 

anbn
n + 1 =

∑
n 

ancn = 〈f,G〉c

where cn = bn/(n+ 1) and G(z) =
∑

n cnz
n belongs to the Dirichlet space D. Since also 

the reverse inclusion holds, we can identify the dual of A2 with D by using the Cauchy 
pairing.

We first assume that f(z) and G(z) are polynomials. By using Proposition 1 of [1] 
and Fubini’s Theorem, we obtain that

〈Γμ(f), G〉c =
∫
T

Γμ(f)(ζ)G(ζ) |dζ|2π = 

1 ∫
0 

∫
T

Tt(f)(ζ)G(ζ) |dζ|2π dμ(t)

= 

1 ∫
0 

〈Tt(f), G〉c dμ(t) = 

1 ∫
0 

〈f, T1−t(G)〉c dμ(t)

= 
∫
T

f(ζ)

⎛
⎝ 1 ∫

0 

T1−t(G)(ζ) dμ(t)

⎞
⎠ |dζ|

2π =
〈
f,Γ∗

μ (G)
〉
c
.

Since the partial Taylor sums are dense in A2 and D, we have that

〈Γμ(f), G〉c = lim
n→∞

〈Γμ(Sn(f)), Sn(G)〉c

= lim
n→∞

〈
Sn(f),Γ∗

μ(Sn(G))
〉
c

=
〈
f,Γ∗

μ(G)
〉
c
,

which concludes the proof. �
Proposition 3.5. If Γμ : A2 → A2 is bounded, then

1 ∫
0 

(
log e

t 

)a/2
dμ(t) < ∞,
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for every 0 < a < 1.

Proof. We note that fa(z) = log (e/(1 − z))a/2 ∈ D. Therefore, according to Lemma 3.4,

‖Γμ‖A2 ∼ ‖Γ∗
μ‖D ≥ 1 

‖fa‖D
‖Γ∗

μ(fa)‖D

≥ 1 
‖fa‖D

|Γ∗
μ(fa)(0)|

= 1 
‖fa‖D

1 ∫
0 

(
log e

t 

)a/2
dμ(t),

from which the statement follows. �
We point out that, by monotone convergence, the condition

lim
a→1

1 ∫
0 

(
log e

t 

)a/2
dμ(t) < ∞

is exactly (15). Even if we can say that for every a < 1 this integral is finite, we do not 
have a uniform bound, since the quantity 1/‖fa‖D tends to zero.

4. Essential norm, compactness and complete continuity

In Lemma 3.1, we have already estimated the essential norm of Γμ from below. Indeed, 
let X be a reflexive space. If {wn} ⊂ X is a unitary weakly null sequence, then

‖T‖e,X = inf
K

‖T −K‖X ≥ inf
K

lim
n→∞

‖T (wn) −K(wn)‖X

≥ inf
K

lim
n→∞

|‖T (wn)‖X − ‖K(wn)‖X | = lim
n→∞

‖T (wn)‖X .
(16)

For the estimate from above of ‖Γμ‖e,Ap , we use Lemma 3.2 of [24] (see also [25]), which 
we state below.

Lemma 4.1. Let 1 < p < ∞. There exists a sequence of compact operators {Ln}n such 
that

lim sup
n 

‖I − Ln‖Ap ≤ 1.

Moreover, for every 0 < R < 1, we have

lim sup
n→∞ 

sup 
‖f‖Ap=1

sup 
|z|≤R

|(I − Ln)(f)(z)| = 0.
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We are now ready to compute the essential norm ‖Γμ‖e,Ap , 1 < p < ∞.

Proof of Theorem 1.2. By Lemma 3.1 and (16), we know that

‖Γμ‖e,Ap ≥ lim
a→2/p

‖Γμ(fa/‖fa‖Ap)‖Ap =
1 ∫

0 

t2/p−1

(1 − t)2/p
dμ(t) .

To complete the proof of the theorem, we only need to estimate the essential norm of 
Γμ from above.

Let DR,t = ϕt(D) ∩D(0, R) and Dc
R,t = ϕt(D) \D(0, R), where 0 < R < 1. Then,

‖Γμ(f)‖Ap ≤ ‖Γμ(f(0))‖Ap + ‖Γμ(f − f(0))‖Ap ≤ |f(0)|‖Γμ(1)‖Ap

+

1∫
0

t2/p−1

(1 − t)2/p

⎛
⎜⎝ ∫
ϕt(D)

|w|p−4|(f − f(0))(w)|p dA(w)

⎞
⎟⎠

1/p

dμ(t)

= I + II.

We write f(z) − f(0) = zg(z). For the second quantity, we have

II ≤
1 ∫

0 

t2/p−1

(1 − t)2/p

[⎛⎜⎝ ∫
DR,t

|w|p−4|wg(w)|p dA(w)

⎞
⎟⎠

1/p

+

⎛
⎜⎝ ∫
Dc

R,t

|w|p−4|wg(w)|p dA(w)

⎞
⎟⎠

1/p]
dμ(t),

hence

II ≤
1 ∫

0 

t2/p−1

(1 − t)2/p

[
sup 

|w|≤R

|g(w)|

⎛
⎝∫

D

|w|2p−4 dA(w)

⎞
⎠

1/p

+ sup 
w∈Dc

R,t

|w|1−4/p · ‖f − f(0)‖Ap

]
dμ(t)

≤
1 ∫

0 

t2/p−1

(1 − t)2/p

[
sup 

|w|≤R

|g(w)|Cp + sup 
w∈Dc

R,t

|w|1−4/p · ‖f‖Ap

+ sup 
w∈Dc

R,t

|w|1−4/p · |f(0)|
]
dμ(t).
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Let {Ln}n be the sequence of compact operators as described in Lemma 4.1. Then

‖Γμ‖e,Ap ≤ lim sup
n→∞ 

sup 
‖f‖Ap=1

‖(Γμ − ΓμLn)(f)‖Ap

= lim sup
n→∞ 

sup 
‖f‖Ap=1

‖Γμ(I − Ln)(f)‖Ap

and the last expression is smaller than

≤ lim sup
n→∞ 

sup 
‖f‖Ap=1

|(I − Ln)(f)(0)|

⎛
⎝‖Γμ(1)‖Ap + max{1, R1−4/p}

1 ∫
0 

t2/p−1

(1 − t)2/p
dμ(t)

⎞
⎠

+ lim sup
n→∞ 

sup 
‖f‖Ap=1

sup 
|w|=R

|S∗ ◦ (I − Ln)(f)(w)|Cp

1 ∫
0 

t2/p−1

(1 − t)2/p
dμ(t)

+ lim sup
n→∞ 

sup 
‖f‖Ap=1

‖(I − Ln)f‖Ap max{1, R1−4/p}
1 ∫

0 

t2/p−1

(1 − t)2/p
dμ(t).

The first term tends to zero because of 4.1. Moreover

sup 
|w|=R

|S∗ ◦ (I − Ln)(f)(w)| ≤ 1 
R

(
sup 

|w|≤R

|(I − Ln)(f)(w)| + |(I − Ln)(f)(0)|
)
.

Therefore, using once more Lemma 4.1,

lim sup
n→∞ 

sup 
‖f‖Ap=1

1 
R

sup 
|w|≤R

|(I − Ln)(f)(w)|

+ lim sup
n→∞ 

sup 
‖f‖Ap=1

1 
R
|(I − Ln)(f)(0)| = 0.

Consequently, by the boundedness of Γμ and Theorem 1.1, we have

‖Γμ‖e ≤ lim sup
n→∞ 

sup 
‖f‖Ap=1

‖(I − Ln)f‖Ap max{1, R1−4/p}
1 ∫

0 

t2/p−1

(1 − t)2/p
dμ(t),

and letting R → 1, we obtain the desired upper estimate. �
Next, we move to the case p = 1. We need the following preliminary lemma.

Lemma 4.2. Let {fn} ⊂ A1 be a weakly null convergent sequence. Then, for every fixed 
0 ≤ t < 1, Tt(fn) is strongly null convergent.
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Proof. Since {fn} is weakly null, fn converge to zero on every compact subset of D. 
Moreover, ϕt(D) ⊂ D touches T only at 1. Consequently, for every 0 ≤ t < 1, fn ◦ ϕt

converge in measure to zero and, due to [11, p. 295], {fn ◦ ϕt} is also strongly null. 
The Lemma is proved since the multiplication by wt does not change the behavior of 
fn ◦ ϕt. �
Proof of Theorem 1.3. Let fa(z) = 1/(1−z)a as in Lemma 3.1. We consider the bounded 
sequence

{
fa

‖fa‖A1

}
1<a<2

,

which is converging to zero uniformly on compact subsets of D. Then, if Γμ were com-
pact, [30, Lemma 3.7] would imply that Γμ(fa/‖fa‖A1) would tend to zero. However, in 
Lemma 3.1, we have verified that

lim
a→2

‖Γμ(fa/‖fa‖A1)‖A1 ≥
1 ∫

0 

t 
(1 − t)2 dμ(t).

Consequently, if μ �= δ0, then Γμ(fa/‖fa‖A1) is not strongly converging to zero and thus 
Γμ cannot be compact. On the other hand, if μ = δ0, then Γμ is compact since it is a 
rank 1 operator.

In order to show that Γμ is completely continuous, we use Lemma 4.2 which states 
that Tt is completely continuous for every t ∈ [0, 1). Consider now a sequence of functions 
{fn} which is weakly null in A1. Then, by the complete continuity of Tt we have that 
limn ‖Ttfn‖A1 = 0, for all 0 ≤ t < 1. Furthermore, using Lemma 2.3, we have

‖Ttfn‖A1 ≤ sup
n 

‖fn‖A1‖Tt‖A1 ≤ C(1) sup
n 

‖fn‖A1
1 

(1 − t)2 .

By applying the dominated convergence theorem together with Theorem 1.1, we conclude 
that

lim sup
n 

‖Γμfn‖A1 ≤ lim sup
n 

1 ∫
0 

‖Ttfn‖A1 dμ(t) = 0. �
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