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Abstract
In the context of Pavlovian conditioning, two types of behaviour may emerge within the population (Flagel et al. Nature,
469(7328): 53–57, 2011). Animals may choose to engage either with the conditioned stimulus (CS), a behaviour known as
sign-tracking (ST) which is sensitive to dopamine inhibition for its acquisition, or with the food cup in which the reward or
unconditioned stimulus (US) will eventually be delivered, a behaviour known as goal-tracking (GT) which is dependent on
dopamine for its expression only. Previous work by Lesaint et al. (PLoS Comput Biol, 10(2), 2014) offered a computational
explanation for these phenomena and led to the prediction that varying the duration of the inter-trial interval (ITI) would
change the relative ST-GT proportion in the population as well as phasic dopamine responses. A recent study verified
this prediction, but also found a rich variance of ST and GT behaviours within the trial which goes beyond the original
computational model. In this paper, we provide a computational perspective on these novel results.

Keywords Sign-tracking · Goal-tracking · Reinforcement learning

Introduction

Individual differences in response to conditioned stimuli
(CSs) have elicited much interest in the recent years as
a model of differential susceptibility to drug addiction
(Saunders and Robinson 2013). In a Pavlovian appetitive
task where a CS cue invariably predicts the occurrence of
a biologically relevant event (US) such as a food reward,
animals could be expected to direct their response towards
the locus of food delivery (goal-tracking or GT), but a
sub-population of subjects focus on the cue itself instead,
as if it had acquired incentive properties similar to those
of the reward (Meyer et al. 2012). The latter form of
behaviour, termed sign-tracking (ST), has been reported
in several species, including pigeons (Jenkins and Moore
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1973) as well as rats (Robinson and Flagel 2009) in a
Pavlovian task where the CS is the presentation of an
inactive lever. Sign-tracking is thought to be a stable trait
of individuals (sign-trackers, STs) that are more prone to
display an automatic behaviour towards reward-predicting
cues, in the sense that the same animals may be less sensitive
to extinction of conditioning (Ahrens et al. 2016) or to
devaluation of the reward (Morrison et al. 2015; Nasser et al.
2015; Patitucci et al. 2016) than individuals exhibiting goal-
tracking (known as goal-trackers, or GTs) although this has
recently been contested by Derman et al. (2018).

Many interpretations of sign-tracking have been pro-
posed, including potentiation of orienting responses depen-
dent on CS-US pairing (Holland 1980), or instrumental
conditioning due to adventitious response-reinforcer associ-
ations (Davey et al. 1981). Nevertheless, sign-tracking has
been more recently construed as the acquisition of incen-
tive motivation by the conditioned cue (Berridge 2012). One
of the arguments in favour of this interpretation is that the
acquisition of sign-tracking, but not goal-tracking, is depen-
dent upon dopaminergic signalling, specifically in the core
of the nucleus accumbens (Saunders and Robinson 2012;
Scülfort et al. 2016; Fraser and Janak 2017; Lee et al. 2018).
Moreover, goal-tracking and sign-tracking are associated
with distinctive patterns of dopamine signalling in this brain
region (Flagel et al. 2011).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00213-019-05323-y&domain=pdf
http://orcid.org/0000-0003-2921-0901
https://doi.org/10.1007/s00213-019-05323-y
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Several models have been proposed to explain the
motivational role of dopamine during acquisition and/or
expression of sign-tracking (Zhang et al. 2009; Kaveri
and Nakahara 2014; Anselme 2015), but few of them
account for individual differences in the form of conditioned
responses, namely the existence of separate populations of
STs and GTs (Kaveri and Nakahara 2014). One of the
hypotheses proposed is the existence of parallel learning
processes relying on different error signals and providing
different degrees of behavioural flexibility. In the present
computational study, we examine the ability of one such
model (Lesaint et al. 2014; Lesaint et al. 2014; Lesaint
et al. 2015) to replicate new experimental findings (Lee
et al. 2018) from an experiment specially designed to test
predictions the model had made (Lesaint et al. 2015).

Description of the original experiments
and of the original FMF-MBmodel

The model proposed by Lesaint et al. (2014) was aimed
at explaining a Pavlovian conditioning experiment designed
by Flagel et al. (2009) which consisted in the 8s-
presentation of a retractable lever as a CS which would
be immediately followed by the delivery of a food
pellet (the unconditioned stimulus, or US) in a nearby
magazine. This training took place over several sessions of
fifty trials each, and the researchers recorded behavioural
measurements during the CS period such as the number

of times the animal touched the lever or entered the food
port, the latencies between lever appearance and the first
contact with either of these stimuli and the probability
of interacting with them. The main results of this first
paper was the gradual development of different types of
responses within the population, with one sub-group known
as sign-trackers increasingly interacting with the lever, and
another sub-group called goal-trackers who preferred to
go straight towards the magazine where the food would
be delivered later. Following this first paper, Flagel et al.
(2011) investigated the role of dopamine in these types
of behaviours by training rats selectively bred for their
sign-tracking or goal-tracking tendencies on this task under
pharmacological inhibition of dopamine receptors, before
testing the rats without inhibition. In this study, they found
that dopamine was necessary for the acquisition of sign-
tracking behaviour as it was still reduced in the test session,
but this was not the case for goal-tracking which was thus
proved to be dependent on dopamine for its expression only.

These are the main results used by Lesaint et al. (2014)
to devise their model of this behaviour. Computationally,
the structure of each trial of the task is represented by a
Markovian Decision Process (MDP) consisting of seven
different states (Fig. 1) defined by the environmental
conditions, such as the presence of the lever or of the
food, and the current position of the animal (close to the
food tray or to the lever). There are six different actions
(explore the environment or goE, approach the lever or goL,
approach the magazine or goM, wait, engage the closest

a

b

Fig. 1 a MDP representation of a single trial from the original experi-
ment by Flagel et al. (2009) adapted from Lesaint et al. (2014). There
are six possible actions leading deterministically from one state to the
next: exploring the environment (goE), approaching the lever (goL),
approaching the magazine (goM), waiting, engaging with the closest
stimulus, and eating the reward. Each of these actions focuses on a

specific feature indicated in brackets: the environment (E), the lever
(L), the magazine (M), and the food (F). These are the features used
by the FMF learning component. The red path corresponds to sign-
tracking behaviour and the blue path to goal-tracking behaviour. b
Corresponding timeline of lever and food appearances
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Fig. 2 Schematic representation
of the FMF-MB
decision-making model adapted
from Lesaint et al. (2014). The
model combines a Model-Based
learning system which learns the
structure of the MDP and then
calculates the relative advantage
of each action in a given state,
with a Feature-Model-Free
system which attributes a value
to different features of the
environment which is
generalized across states (e.g.
the same value of the magazine
is used in states 1 and 4). The
advantage function and value
function are weighted by ω,
their relative importance
determining the sign- vs
goal-tracking tendency of the
individual and then passed to the
action selection mechanism
modelled by a softmax function

stimulus and eat the reward), and state transitions given a
selected action are deterministic, e.g. if an animal in state 1
chooses the action goL, it will always land in state 2. The
decision-making model itself (Fig. 2) consists of a Model-
Based (MB) and of a Feature-Model-Free (FMF) learning
system which output respectively an advantage function and
a value function for all possible actions in the current state.
These two functions are then combined into a weighted
mean defined by the ω parameter representing how much
each system contributes to final behaviour. A high ω gives
more importance to the value function computed by the
FMF system, while a low ω favours the MB system. Finally,
the weighted averages are given to a softmax function
representing the action selection mechanism (Fig. 2).

An original aspect of the FMF system compared with
other reinforcement learning algorithms is that it assigns
a value representing future expected reward not to states
or actions but to the feature which the different actions
are focused on. This allows for a generalization of values
between different states, e.g. when the animal goes towards
the magazine in state 1 or engages the magazine in state

4, it is the same feature value V (M) which is called upon.
The feature which the animal’s current action is aimed at is
defined by the feature-function f (see Table 1). After each
action, observing the delivery of the reward r (equal to 1 or 0
if delivery takes place or not, respectively) and the new state
st+1, the animal updates the value the last action was aimed
at using standard temporal-difference learning rules. Firstly,
it computes a reward prediction error (RPE), δ, which is the
difference between the observed outcome, which consists in
the presence or absence of a reward and the discounted value
of the next best possible feature, and the expected outcome,
i.e. the previous estimate of the value of the chosen feature:

δ = r + γ max
j

(V (f (st+1, aj ))) − V (f (st , at )) (1)

with γ the discounting factor bounded between 0 and 1. This
RPE is then integrated in the current estimate of the value
of the chosen feature:

V (f (st , at )) ← V (f (st , at )) + αδ (2)

Table 1 Feature function mapping state-action pairs to features as required for the feature model-free learning system. For the state-action pair s7-
eat, we used either food as originally designed in Lesaint et al. (2014) or the magazine when trying to explain dopaminergic activity, as explained
in the main text

States s0 s1 s1 s1 s2 s3 s4 s5 s6 s7

Actions goE goL goE goM eng wait eng goM goM eat

f (s, a) E L E M L E M F F F or M
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with α the learning rate bounded between 0 and 1. The
higher α is, the faster an agent can learn but at the cost of
increasing unstability which can be very detrimental in a
noisy environment (which is not our case as rewards and
transitions are all deterministic).

This learning rule applies only to the selected feature
(E, environment; L, lever; M , magazine) in a given state
transition, except in the case of food, F , which is constantly
equal to 1, the value of the reward. The initial formulation
in Lesaint et al. (2014) made the hypothesis that the value
of F also had to be learned but this leads to an artefact in
theoretical dopaminergic activity (see Fig. 7C of the original
paper (Lesaint et al. 2014)): when looking at RPEs in the
final state, when the animal receives the reward, instead
of decreasing from an initially high value in the very first
session, RPEs in the model start low and peak in session
2 before decreasing, as initially the value of food is also
small compared with that of the previous feature. By fixing
the value of F , this artefact disappears. This could mean
that the value of the sensory features of the food reward
do not need to be learnt, possibly because the animal has
already encountered similar food pellets and their value is
already learnt, or that it is learnt almost immediately with
a different and much higher learning rate than what is used
for the other features, an explanation which is reminiscent
of the hypothesis by Rescorla and Wagner (1972) that the
learning rate is dependent on the nature and saliency of the
stimulus. In addition, because the animal is likely to visit
the magazine and explore the environment during the ITI,
the values of these two features are revised between states 7
and 0:

V (M) ← (1 − uIT I ) × V (M)

V (E) ← (1 − uIT I ) × V (E) (3)

with uIT I the ITI update factor. Crucially, the level of
this down-revision is dependent on the duration of the ITI,
the longer it is, the more opportunities the animal has to
revise these values, which is why we modelled different ITI
durations by using a small (0.01) and large (0.1) value of
uIT I . Whether the animal does indeed visit the magazine
more often if the ITI is longer can be answered by looking at
figure 3 in Lee et al. (2018) where they plot the correlation
between dopaminergic activity and the number of visits
to the magazine during the ITI. Importantly for us, they
do this for a short and long ITI condition, and looking
at the scatterplots, it seems to be the case, although we
haven’t verified it statistically, that the number of visits is
smaller in the short ITI than in the long ITI scenario (for
instance the maximum number of visits to the magazine
is around 20 versus 60 for short and long ITI conditions
respectively).

Meanwhile, the MB system relies on learned transition
T and reward R functions. The transition function aims at

determining the probability of going from one state to the
next given a certain action. It is updated after each state
transition in the following manner:

T (st , at , st+1) ← (1 − α) × T (st , at , st+1) + α (4)

with initial values of T set to 0 for all possible state
and action combinations. Given that the environment is
deterministic, T should converge perfectly towards values
of 1 for all possible state transitions and stay at 0
for impossible state transitions, thus providing a perfect
knowledge of the structure of the MDP. Similarly, the
reward function is updated as follows:

R(st , at ) ← R(st , at ) + α(r − R(st , at )) (5)

with r equal to 1 for (s7, eat) and 0 otherwise. Initially,
R is equal to 0 for all state-action pairs. In this way, over
time, R will also converge perfectly to a value of 1 for
the (s7, eat) state-action pair. Using the current estimate
of these functions, the agent can then compute an action-
value function for each possible action ai in the current
state st :

Q(st , ai) = R(st , ai)+γ
∑

j

(T (st , ai, sj ) max
k

(Q(sj , ak)))

(6)

Finally, these Q-values are compared with each other so as
to compute the Advantage function A:

A(st , ai) = Q(st , ai) − max
j

Q(st , aj ) (7)

Once the FMF and MB systems have outputted the feature
values and the advantages of the possible actions, these are
integrated through a weighted sum:

P(st , ai) = (1 − ω)A(st , ai) + ωV (f (st , ai)) (8)

with ω bounded between 0 and 1, the weighting parameter
favouring the FMF sub-system. These integrated values
are then plugged into a softmax function to compute the
probability of selecting each action:

p(at = ai) = e
P(st ,ai )

τ

∑
j e

P(st ,aj )

τ

(9)

with τ the temperature parameter controlling the level of
random exploration: when τ is large, the animal tends to
disregard the difference in value of the different actions
and chooses each action equiprobably, a behaviour known
as random exploration, while if τ is small the difference
between values is exacerbated leading to exploitation of
what seems to be the most rewarding action.

In total this model has five parameters: the learning
rate α, the discounting factor γ , the softmax temperature
τ , the ITI update factor uIT I , and the integration factor
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ω. Note that the learning rate and discounting factor are
shared by the MB and FMF systems despite the fact they
could very well be different in reality. Originally, this
was done to simplify the optimization of this model on
experimental data (Lesaint et al. 2014) by reducing the
number of parameters, and we are tributary to this original
convention. Furthermore, the chosen values of α, γ , and τ

are also derived from these original optimisations (Lesaint
et al. 2015; Lesaint et al. 2014) and are fixed throughout
this article while two possible values of uIT I were hand-
tuned to best illustrate how a long or short ITI might
affect the model; as for ω, the value of this parameter
was manipulated in different ways according to the specific
aim of each section of this article. We refer the reader
to Table 2 for the exact parameter values that were used.
A more rigourous approach would of course have been
to reoptimise the parameters on an experimental dataset
such as that of Lee et al. (2018) which we attempt to
simulate, but we did not have access to the precise numerical
dataset which would have been necessary for such an
undertaking and adopted a qualitative approach instead. As
a counterpoint to this legitimate criticism, the robustness of
these parameter values has been demonstrated by the fact
that more rigourous optimisations were undertaken in two
different studies using different methodologies in Lesaint
et al. (2014) and Lesaint et al. (2015) and yielded quite
similar values.

Although the original work by Lesaint et al. (2014) and
Lesaint et al. (2015) allowed sign-trackers and goal-trackers
to have distinct sets of parameter values, we chose not to
adopt this convention as our main interest is in illustrating
how different levels of contributions of the FMF and MB
systems can produce different behaviours independently of
any other parameter effects.

Predicted effects of ITI duration
on the FMF-MBmodel

We first set out to verify the claim made in Lesaint
et al. (2014) that by decreasing the ITI duration, goal-
tracking would be favoured. This prediction, which was

Table 2 Parameter values of the model were either directly from
previous work by Lesaint et al. (2014) or hand-tuned, notably in the
case of uIT I to obtain illustrative effects; ω was either set to 1 or 0
for the FMF-only and MB-only models, or sampled from a probability
distribution

α γ τ uIT I r

Short ITI 0.03 0.8 0.15 0.01 1

Long ITI 0.03 0.8 0.15 0.1 1

made without model simulations, is based on the fact that
for the FMF system, the lever is preferable to the food cup
because the latter is present during the ITI and subject to
down-revision of value as the rat visits it without receiving
a reward (see Eq. 3). Hence, if we reduce the duration of
ITI and allow less time to experience unrewarded visits to
the food cup, the learned value of the food cup should be
higher and the preference for the lever should decrease.
Importantly, this effect is entirely dependent on the FMF
system.

To illustrate this, we present simulations of a model with
only the FMF or the MB system being used to determine
action by setting ω to either 1 (FMF system only) or 0
(MB system only) while keeping other parameters constant,
and with two different levels of food cup revision during
the ITI. In this way, only one sub-system is responsible
for producing behaviour, but the second sub-system is still
capable of learning from observation of events. Simulations
were done for ten blocks of fifty trials in accordance with
the experimental protocol of Flagel et al. (2009). After
simulation, we plotted the average number of sign-tracking
and goal-tracking choices in state 1, i.e. the number of
times the agent selects goL or goM respectively, for each
separate session (Fig. 3a, b, e and f). As predicted, when
food cup value revision is low, as should be the case during
short ITIs, the FMF-only model shows a definite increase
in goal-tracking. If we decompose action probabilities into
its FMF and MB contributions, we can verify that there
is indeed an increase in the feature value of the food cup
(Fig. 3c), and also an increase in the model-based advantage
of going towards the magazine which is probably due to the
fact that calculation of the transition function is biased by
the animal’s choices and if the animal preferentially sign-
tracks, the estimated probability of the transition from state
1 to state 3 will have less trials to converge towards 1.
These differences straightforwardly impact the downstream
outputs of the softmax function (Fig. 3d). In the case of
the MB-only model, things are much simpler with little or
no behavioural effect of down-revision of food cup value
on either type of behaviour (Fig. 3e and f), despite the fact
that there is a change in the FMF value function (Fig. 3g).
In parallel, the advantage function remains unchanged. It
is an interesting and unanticipated aspect of this model
that the FMF system, by constantly biasing action towards
the lever in the FMF-only model and thus affecting how
much calculation of the transition function has converged,
can have an impact on the MB system while the contrary
does not happen for the MB-only model. This highlights
how the two systems are complementary and how the
dominant system may affect calculations of the second
system. From these simple simulations, we can conclude
that the initial claim is indeed correct: decreasing food
cup value down-revision by shortening ITI duration should
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f

g

h
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d

Fig. 3 Behaviour of FMF-only (ω = 1, a–d) and MB-only (ω = 0,
e–h) models. For each graph, we have plotted the mean ± s.e.m. a
Approach to lever of simulations of the FMF-only model for differ-
ent ITI durations. b Approach to the food cup of simulations of the
FMF-only model for different ITI durations. c Effect of down-revision
of food cup value on FMF and MB values of the FMF-only model. d
Average softmax probabilities of engaging with either the lever or the

food cup during the CS period of the FMF-only model for different ITI
durations. e Approach to lever of simulations of the MB-only model
for different ITI durations. f Approach to the food cup of the MB-only
model for different ITI durations. g Effect of down-revision of food
cup value on FMF and MB values of the MB-only model. h Average
softmax probabilities of engaging with either the lever or the food cup
during the CS period of the MB-only model for different ITI durations
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favour goal-tracking. Importantly, this prediction has been
verified by Lee et al. (2018) as we shall see in more detail
later. However, it is important to point out that this effect is
dependent on the FMF system only: an agent using only MB
learning will not show this effect, and as such it does not
constitute hard evidence for the combination of FMF and
MB learning.

If we look at our simulations from a slightly different
angle, by taking short ITIs as our reference before
increasing their duration, and suppose that we are dealing
with a mixed population of goal-trackers and sign-trackers,
a striking asymmetry emerges. As we have just explained,
individuals with a dominant FMF system can nonetheless
display goal-tracking behaviour if the ITI is sufficiently
shortened to the point that the feature value of the magazine
is hardly devalued during the ITI. In this way, it might
be possible to obtain a population of purely goal-tracking
individuals, despite the fact that underlying individual
differences remain. On the other hand, since individuals
with a dominant model-based system are largely insensitive
to ITI duration according to this model (Fig. 3e and f),
increasing the ITI will never result in a population of purely
sign-tracking individuals but only allow what we might
call “latent” sign-trackers, i.e. FMF-dominant individuals,
to reveal themselves. In other words, this predicts that a
more or less significant portion of the population should
goal-track no matter how long the ITI lasts. Note that
in the original STGT model aimed at accounting for the
experimental results of Flagel and colleagues (Flagel et al.
2011), there were no pure MB agents, but simulated goal-
trackers had a very small parameter ω < 0.05, which
means that the FMF system was contributing to less
than 5% of their behaviour (Lesaint et al. 2014; Lesaint
et al. 2015) and that any impact on this system should
be small. If the model is correct, such individuals might
prove themselves to be practically insensitive to such an
ITI manipulation. Interestingly, while the study by Lee
et al. (2018) shows that at least a few individuals can be
categorized as goal-trackers in the long ITI condition, at
the level of the behaviour of the population the average
goal-tracking behaviour seems overall quite weak compared
with sign-tracking behaviour. Moreover, the percentage of
contacts with the food cup during the CS period (i.e.
goal-tracking behaviour) appears to progressively decrease
sessions after sessions in the long ITI condition (Lee
et al. 2018). In computational terms, this could either
mean that there are too few animals using a predominantly
model-based strategy or that the influence of the MB
system can be unstable in time (similarly to its progressive
decrease of influence on behaviour over training in favour
of the development of habits in the instrumental paradigm
(Daw et al. 2005)). We come back to this discussion
later.

Replication of main behavioural results
from Lee et al. (2018)

In reality, individuals are unlikely to be purely FMF or MB,
which is why, when aiming to replicate the results of Lee
et al. (2018), we performed simulations with a population
of twenty individuals with random ω values sampled from
a biased β distribution (Fig. 4a) aimed at reflecting the fact
that sign-trackers are supposedly more prevalent (Derman
et al. 2018), although see the study by Morrison et al.
(2015) for a case where the majority of individuals are goal-
trackers. Once sampled, the same values of ω were used in
both ITI conditions so as to perfectly isolate any effect of
this factor. Similar results from an alternative simulation in
which ω values were sampled from a uniform distribution
are presented in the Supplementary Figure 1. In the long
ITI condition, simulated rats increasingly approach the lever
and avoid the magazine, while the opposite holds for the
short ITI group (Fig. 4b and c). Because we kept the same
parameters in the long and short ITI conditions, we could
apply a repeated-measures ANOVA with two within factors
corresponding to sessions and ITI conditions (instead of
a mixed-design ANOVA with ITI as a between factor)
on the proportion of trials where the simulated animal
approached the lever and the magazine. We found very
significant effects of sessions, ITI condition and of their
interaction on both proportions (p > 0.0001). Post hoc t
tests comparing the number of trials where the lever was
chosen in each session produced significant differences for
every session except the very first (smallest mean difference
= 6.75 ± 0.84, p < 0.0001). Conversely, the number of
times the magazine was approached was significantly higher
in the short ITI group for every session, including the first
(smallest mean difference = 2.55 ± 0.82, p < 0.0059).
In summary, shortening the ITI produces an increase in
goal-tracking choices in a mixed population of goal- and
sign-trackers.

Lee et al. (2018) found similar results but preferred to
report them through the distributions of behavioural session
scores which included the response bias, the difference in
probability of approach to the lever and the food cup, a
latency of response index, and a Pavlovian Conditioning
Approach (PCA) score (Meyer et al. 2012) which consists
in the average of the three other scores. These different
indices are designed to range between −1 and 1 such that
sign-tracking behaviour corresponds to scores closer to 1
and vice-versa for goal-tracking. These indices also allow
for the possibility that an animal will interact repeatedly
with one or both of the stimuli within a same trial.
Using these metrics, the experimenters found a significant
increase in the tendency to sign-track when comparing all
four score distributions of the short and long ITI groups.
Unfortunately, the original model (Lesaint et al. 2014)
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a

d f

e

b c(8,4)
Approach to lever (%)

Fig. 4 Simulations of the behaviour of a population with random ω

parameter values. a Distribution of the ω parameters sampled from a β

distribution which were then used for the simulations. The same values
of ω were used in both short and long ITI condition. Inset: probabil-
ity density function of the original distribution is biased towards 1 in
accordance with the reported prevalence of sign-trackers. b Approach
to the lever for different ITI durations (mean ± s.e.m.). c Approach
to the food cup for different ITI durations (mean ± s.e.m.). d Dis-
tribution of differences in softmax probability of approach to lever
and magazine for the two ITI durations. There is a significant bias
towards goal-tracking choices in the short ITI group and a significant

bias towards sign-tracking choices in the long ITI group. e Distribu-
tion of differences in average simulated number of approaches to lever
and magazine for the two ITI durations. As expected from the differ-
ences in softmax probabilities, there is a significantly higher number
of goal-tracking than sign-tracking trials in the short ITI condition
and vice-versa in the long ITI condition. f Top: Effect of down-
revision of food cup value during ITI of different durations on average
FMF-values and MB action advantages. Bottom: Average softmax
probabilities of engaging with either the lever of the food cup during
the CS period for different ITI durations

allows only for a single interaction with only one of the
stimuli during the CS period of a trial, and does not attempt
to model the latencies of responses either. This means that
the only index at our disposal is the normalized difference
in the probability of approach (P (go to Lever) − P (go
to Magazine)) / (P (go to Lever) + P (go to Magazine));
the normalization was necessary given that the model
has the possibility to explore instead of interacting with
either cue. Given that the model provides direct access
to the probability of each action at each trial through the
softmax function, we used these probabilities (Fig. 4d) as
well as the frequency of different choices made in the

simulations (Fig. 4e), which is closer to the experimental
methodology. The distributions of these two scores are
significantly biased towards goal-tracking for the short ITI
group (Wilcoxon’s signed-rank test: μ < −0.74, p <

0.0001); to the contrary, the distributions corresponding
to the long ITI group are significantly biased towards
sign-tracking (Wilcoxon’s signed-rank test: μ > 0.51,
p < 0.0001). Direct comparison of the short and long
ITI groups also produced significant differences for both
scores (Wilcoxon’s signed-rank test long minus short ITI:
μ > 1.26, p < 0.0001). If we look for the origin of
this effect by examining the average feature values and
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advantages (Fig. 4f top), we see that shortening the ITI
has a significant positive effect on both the feature value
and the advantage of going towards the magazine (Welch’s
t test: p < 0.0001) and conversely a significant negative
effect on the feature value and advantage of going towards
the lever (Welch’s t test, p < 0.0001). These effects
straightforwardly translate into a significant increase in the
probability of going towards the magazine (Fig. 4f bottom,
Welch’s t test: t (27.6) = 28.12, p < 0.0001) and of
avoiding the lever (Welch’s t test: t (27.7) = −25.44,
p < 0.0001). In conclusion, shortening the ITI leads
to an increase in both magazine value and advantage of
going towards the magazine which both result in promoting
goal-tracking, as found experimentally (Lee et al. 2018).

Replication of dopaminergic patterns found
by Lee et al. (2018)

The study by Lee et al. (2018) also included measurements
of dopamine release in the Nucleus Accumbens core (NAc)
using fast scan cyclic voltammetry. These measurements
found bursts of dopaminergic activity hypothesized to
represent the RPEs computed by the FMF learning system.
A first result is that, after averaging over all sessions,
dopamine release at the time of the CS was significantly
greater for the long ITI group than for the short ITI
group. This result had not been explored by previous model
simulations, but it is in fact predicted by the model (Fig. 5a,
Welch’s t test: t (25.68) = −43.36, p < 0.0001). Indeed,
the RPE computed by the model at CS presentation is the
RPE corresponding to transition from state 0 to state 1:

δ0 = γ × max(V (M), V (L)) − V (E) (10)

To understand why this RPE should be bigger in a long
ITI condition, it should be noted that, although it was only
implied in the original paper by Lesaint et al. (2014) but
apparently not known in Lee et al. (2018), the value of the

a b c

Fig. 5 Reward prediction errors of the model at CS and US presenta-
tion for short and long ITIs a Reward prediction errors averaged across
all sessions b Reward prediction errors for the long ITI simulations

averaged in early and late sessions. c Reward prediction errors for the
short ITI simulations averaged in early and late sessions

environment V (E) is also revised during the ITI (see Eq. 3),
meaning that it is smaller after a long ITI than after a short
ITI, and the resulting RPE is greater. This increased activity
simply reflects the fact that in a setting where rewards are
less frequent, signals that predict rewards will cause more
positive surprise.

On the other hand, the authors report that dopamine
activity at US delivery is greater in the long ITI group than
in the short ITI group and they expect this to be predicted by
the model on the basis that this activity would correspond
to the discrepancy between the reward and the value of the
magazine which is smaller for the long ITI group. However,
the original MDP is designed in such a way (Lesaint et al.
2014) that this discrepancy is not necessarily calculated on
each trial because the value the reward is compared to is not
always that of the food cup. Indeed, as shown in Fig. 1a, if
the animal followed a sign-tracking strategy, then the RPE
between states 2 and 5 which corresponds to the arrival of
the US is:

δ2 = γ × V (F) − V (L) (11)

because the model hypothesizes that when the rat goes to the
magazine in state 5, the feature it is comparing the reward to
is the one it was previously focusing on, i.e. the lever and not
the food cup (see Table 1). It might be tempting to propose
an alternative feature function in which the animal focuses
on the magazine when going from state 5 to 7, but this
would make the value of the lever dependent on the value of
the magazine rather than the food, meaning that increased
ITI duration would affect both lever and magazine values.
Alternatively, we could say that the RPE at US delivery
should be measured when the reward is actually eaten, that
is the RPE generated between states 7 and 0. However, in
this case the RPE is:

δ7 = r − V (F) = 0 (12)

For this reason, we applied a simple correction to the feature
function (Table 1), which we followed throughout the rest of
this article, by supposing that the feature the animal focuses
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on when it eats is not the food but the food cup. In this case,
we do indeed have an RPE equal to the difference between
reward and value of the magazine at the cost of losing “real-
world” significance of the action-feature function. However,
a significant advantage of this new formulation is that it
allows the updating of the food cup value even in trials
during which the animal sign-tracked. Indeed, under the
previous conventions, if the animal sign-tracked it would
never perform an action focused on the food cup feature and
the corresponding value would remain the same despite the
fact that the reward really is retrieved from the food cup.
As a consequence, there is a slightly increased tendency to
goal-track using this convention compared with the previous
version of the model (comparison not shown here). Using
this new model convention, RPEs at the US are significantly
greater in the long ITI group than in the short ITI group
(Fig. 5a, Welch’s t test: t (21.80) = −252.87, p < 0.0001),
which is consistent with Lee et al. (2018).

As learning progresses and the feature values gradually
converge, the RPEs at CS and US appearance times should
evolve between early and late sessions. Lee et al. (2018)
investigated this by comparing dopamine activity between
the first three sessions and the last seven. They report
that in the long ITI group, dopamine release to lever
presentation was significantly greater in late sessions than
in early sessions, reflecting the increase in lever value, while
dopamine activity at reward delivery remains important
due to the positive surprise of receiving reward from a
low-value magazine. In simulations of the long ITI group
(Fig. 5b), there is indeed a very significant increase in
average RPE value between early and late sessions at
CS presentation (paired t test: t (19) = −56.20, p <

0.0001) which corresponds to the difference V (L) − V (E)

which increases as V (L) does, but also a very significant
decrease at US delivery (paired t test: t (19) = 65.86,
p < 0.0001). Although highly significant, it should be
noted that the magnitude of this decrease is visibly quite
modest(Fig. 5b) which might contribute to explaining why
it is not detected experimentally. Additionally, there is little
variability between rats in the simulations (as evidenced
from the standard errors of the mean in Fig. 5) probably
because they share the same parameters except for ω, which
increases the likelihood of detecting such small effects. As
previously explained, the RPE at US presentation is equal
to V (F) − V (M), and the slight decrease of this difference
is probably a sign that, through rare occasions where the
magazine is indeed selected in state 1, its value does manage
to increase slightly. Another potential explanation for the
discrepancy with the experimental data is the presence in
the animals of a process of forgetting, such as the one used
in Ito and Doya (2009) or Cinotti et al. (2019) in which
an unused action (in this case it would be a feature) sees
its value decrease. Such a mechanism would ensure that

the magazine does not slowly and incrementally accumulate
value for each time it is selected.

Concerning the short ITI group, the experimental results
(Lee et al. 2018) showed that dopamine release during the
CS period did not significantly change, while there was
a significant decrease during the US period. Similarly in
our simulations, we find a significant decrease in RPEs
during the US period (paired t test: t (19) = 78.55, p <

0.0001) reflecting the fact that a shorter ITI means that
the value of the magazine can converge towards a higher
value and thus V (F) − V (M) decreases more strongly.
However, there is also a small but significant decrease at
CS presentation (paired t test: t (19) = 9.66, p < 0.0001)
which is absent in experimental data and which we find
difficult to explain. We can suppose that the RPE at this
point corresponds to V (M) − V (E) as short ITIs enhance
goal-tracking at the expense of sign-tracking. Thus, the
decrease of this RPE could either be due to a faster decrease
of V (M) compared with V (E) which is unlikely as both
values should increase with learning until they converge
(see Supplementary Figure 2 for a more direct visualization
of RPE evolution between sessions), or to a faster increase
of V (E). Maybe, the value of the magazine reaches its
maximum value in early sessions and then evolves very
slowly, while that of the environment reaches its maximum
in later sessions as the environment value is increased less
frequently.

It is interesting to note that the simulations point to
a reversal in DA activity at CS time between short and
long ITI groups, with rats in the long ITI group seeing
a significant increase and rats in the short ITI group a
significant decrease, an effect that could perhaps be verified
experimentally with a greater number of subjects. Because
RPEs at this point correspond to the difference between
most valuable feature and the environment (see Eq. 10),
this effect is certainly due to the fact that the value of the
environment is greater in the short ITI group, as previously
explained.

Detailed analysis of behaviour during the CS
presentation window

Lee et al. (2018) also published a result which cannot be
accounted for by the original version of the FMF-MB model
as presented in Lesaint et al. (2014). Indeed, this model
was designed to account for a single behavioural response
per CS period of a trial. In contrast, in late sessions, Lee
et al. (2018) found that when the 8 s CS period is divided
in two, while in the long ITI group sign-tracking dominates
throughout the entire CS period, in the short ITI group after
learning, goal-tracking is limited to the first 4 s of the CS
period, while sign-tracking takes over in the last 4 s. This
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result is at first glance very surprising as it seems to stand
in contradiction with previous reports that food cup CRs are
usually concentrated in the last seconds of CS presentation
(Holland 1977; Nasser et al. 2015). It also stands in
contradiction with what we would expect from the original
model. Indeed, if goal-trackers are predominantly using a
MB strategy then, if we allow the model to make a second
decision during the CS period (Fig. 6a), it is plausible that
the simulated goal-trackers shift from sign-tracking during
early CS period to goal-tracking during late CS period, as
they search for the shortest possible route to the reward.
The reverse on the other hand undermines the MB strategy
by adding an intermediate step between sign-tracking and
reward consumption. To prove this, we ran simulations of
the original model with additional intermediate steps within
the CS period (Fig. 6a) and found a significant increase

in goal-tracking in the last 4 s compared with the first
4 s (Fig. 6b; Wilcoxon signed-rank test: W = 21.5, p =
0.0018).

A plausible explanation of the result by Lee et al. (2018)
might be found in the relative feature values of the lever
and the magazine. Indeed, if we turn back to the original
single-action model and plot the average FMF value of the
magazine and the lever we find that in the case of the long
ITI, both values stabilize and stay far apart, while in the
short ITI group, the value of the lever keeps increasing
despite not being selected very often (Fig. 6c). The stability
for the long ITI group could be viewed as an absence
of uncertainty about estimated feature values, and thus a
good reason to simply select one feature to focus on during
the CS period: the lever. This is consistent with the stable
sign-tracking behaviour observed after learning throughout

a b

c

Fig. 6 Simulations of the original model with added intermediate steps
within the CS presentation period. a New task structure with added
intermediate steps and possible transitions from the lever to the food
cup and vice-versa in states 2 and 3. In addition, the possibility of
exploring the environment was deleted for simplicity. b Probability of
approach to the food cup during the first and last four seconds of the
CS presentation period. Bar plot represents mean probability and grey

lines individual probabilities. c Average feature values of the lever and
magazine in the short and long ITI conditions across sessions. In the
long ITI group, the value of the less favourable feature, which is the
food cup, is stagnant, while in the short ITI the value of the lever keeps
increasing, causing possible ambiguity which could explain unstable
behaviour during the CS period
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the entire CS period in the long ITI group in Lee et al.
(2018). In contrast, the instability of the lever value for
the short ITI group might cause a growing uncertainty as
to which feature to focus on. The fact that the value of
the magazine remains superior might be the reason why
the animals first visit it. Then, after visiting the magazine,
rather than waiting for the end of the CS period, the
rats might be attracted by the lever because of the high
uncertainty associated to its estimated value, which could
be viewed as a form of directed exploration (Daw et al.
2006; Wilson et al. 2014). This might also explain some
reports that goal-tracking is an unstable phenotype (see
figure 2 in Nasser et al. (2015) and figure 3 in Meyer
et al. (2012) in which a population initially displaying
mostly goal-tracking behaviour gradually breaks up into two
goal-tracking and sign-tracking sub-populations). Indeed,
looking at the curves, it seems very likely that the feature
value of the lever will eventually catch up with that of
the magazine, as shown in simulations with an extended
number of sessions in Supplementary Figure 3. This would
predict that extending the number of acquisition sessions
could enable a slow learning process to be revealed, which
could lead some rats to ultimately sign-track. Consistent
with this interpretation, some reports show some shifting in
the distribution of responding from goal- to sign-tracking
even across just 5 days of acquisition (Meyer et al. 2012).

Discussion

In this paper, we presented novel simulations of a
sign-tracking/goal-tracking (STGT) model first proposed
by Lesaint et al. (2014). The goal was to assess
whether the model could account for all behavioural and
neurophysiological results reported in the recent paper by
Lee et al. (2018). This latter study was itself designed to
test some specific predictions of the STGT model, namely
that manipulating the duration of the inter-trial interval (ITI)
so that animals have either more or less time to visit the
unrewarded magazine during that period would change the
relative proportions of sign- versus goal-tracking behaviour
in the population, as well as the dopamine response pattern.
More precisely, the STGT model assumes a down-revision
of magazine value each time it is visited but unrewarded
during the ITI, which constitutes a possible explanation for
why the dopamine response at CS in goal-trackers does not
reflect an increase in reward expectancy (Flagel et al. 2011).
This led the model to predict that shortening the duration
during which animals could visit the unrewarded magazine
during the ITI (or simply making the magazine inaccessible
during ITI) would lead to an increase of goal-tracking
behaviours as well as a restoration of a reward prediction
error-like dopamine response pattern (Lesaint et al. 2015).

Lee et al. (2018) tested two different ITI durations and
found that increasing this duration led to increased sign-
tracking and increased dopamine phasic response to the
US. While these results are consistent with the model
predictions, the same researchers also found behavioural
and neural responses which had not been explored by
previous modelling work and which we addressed here.

Firstly, after averaging over all sessions, Lee et al. (2018)
found that dopamine release at the time of the CS was
significantly greater for the long inter-trial group than for
the short inter-trial group. This result had not been explored
by previous model simulations, but we showed here through
novel simulations that it is consistent with the STGT model
and simply corresponds to a greater valuation of rewards
and reward-predicting stimuli in a setting with less frequent
rewards. Secondly, the same authors report that dopamine
activity at US delivery is greater in the long ITI group than
in the short ITI group, a fact which cannot be accounted
for by the original formulation of the STGT model. Here
we showed that the increase of dopamine activity at US
delivery can be accounted for by extending the STGT
model by supposing that the feature the animal focuses
on when it eats is not the food but the food cup. Thirdly,
after an initial learning period, the authors report a stable
sign-tracking behaviour throughout the entire CS period in
the long ITI condition, as opposed to initial goal-tracking
during the first 4 s of the CS period followed by later sign-
tracking in the short ITI condition. This last result goes
beyond the original STGT model which had been designed
to account for a single behavioural response (Lesaint et al.
2014). Nonetheless, using this model, we showed that the
uncertainty associated to learned feature values in the model
is reduced after learning in the long ITI condition, while
the uncertainty associated to the lever remains high in the
short ITI condition due to the continuous increase in its
value. The former case would be consistent with the stability
of sign-tracking behaviour in the long ITI condition while
the latter could provide an explanation why animals in the
short ITI condition are first attracted to the food cup (which
has the highest value in the model) and then by the lever
(which has the highest uncertainty in the model). The model
further predicts that extending the number of experimental
sessions would eventually lead goal-tracking behaviour to
progressively diminish in both conditions.

These results have important implications for the under-
standing of the possible neural mechanisms underlying indi-
vidual differences in Pavlovian autoshaping. They further
confirm the computational interpretation that sign-trackers
may rely more on model-free (MF) learning processes while
goal-trackers may rely more on model-based (MB) learn-
ing processes (Lesaint et al. 2014; Dayan and Berridge
2014). They bring detailed analyses of the respective con-
tributions of MB and MF learning mechanisms which may
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explain specific results of Lee and colleagues (2018), while
remaining consistent with experimental results previously
accounted for by the model (Robinson and Flagel 2009;
Flagel et al. 2011; Saunders and Robinson 2012). They
moreover lead to testable predictions, which could lead to
future experiments aiming at further assessing the present
computational hypotheses. In particular, the model predicts
that animals whose learning process can be modelled as
pure MF should be sensitive to down-revision of food cup
value through both increase and decrease of ITI duration. In
contrast, animals whose learning process can be modelled
as pure MB should be insensitive to this manipulation of the
protocol so that a population consisting of a mix of FMF-
and MB-dominant individuals could be transformed entirely
into a goal-tracking population under short ITI conditions
but not into a purely sign-tracking one if ITI durations are
increased indefinitely.

A recent article by Derman et al. (2018) challenges
the idea that sign-tracking and goal-tracking are supported
by distinct neurological processes. More precisely, this
paper reports that, contrary to the conclusions of Morrison
et al. (2015), sign-tracking behaviour is in fact sensitive
to outcome devaluation. This could be an argument
against our model, because model-free learning systems
have become equated with habitual, i.e. insensitive to
devaluation, behaviour since the seminal article of Daw
et al. (2005) which proposed a model of the development
of habits as a transition from model-based processes to
model-free processes. However, the work of Derman et al.
(2018) suffers from the notable absence of goal-tracking
individuals for comparison. Indeed, the authors are able to
find that sign-tracking individuals are sensitive to outcome
devaluation but without a comparison with goal-tracking
individuals, we do not know whether this sensitivity
is greater or smaller than for goal-tracking individuals.
Furthermore, the equivalence between model-free and
habitual behaviour should probably be questioned. As
the model-free system continuously learns from observed
outcomes, it is in fact perfectly capable of readjusting its
behaviour after outcome devaluation. The only issue is that
it will do so much more slowly than a model-based system
in a complex environment with many states which each have
their own value which needs to be recomputed, as is the case
in the study of Daw et al. (2005). In a simple Pavlovian task,
there is no reason to believe that a model-free system will
not be able to adjust in response to outcome devaluation. A
second important result from Derman et al. (2018) which
poses a challenge to a dual-process theory of sign- vs. goal-
tracking behaviour is that, if rat subjects develop a goal-
tracking strategy in response to an auditory CS, this strategy
will then block the development of a sign-tracking strategy
for a lever CS. According to the authors, this means that goal
and sign-tracking strategies rely on a common prediction

error learning process. This result stands in contradiction
with the pharmacological experiments of Flagel et al.
(2011) which shows that dopaminergic inhibition prevents
the acquisition of sign-tracking behaviour but not of goal-
tracking behaviour. Secondly, as Derman et al. were unable
to generate a sub-population of goal-trackers in the other
experiments presented in that same paper, we are unsure
as to whether the goal-tracking behaviour in response to
the auditory tone is produced by a MB-dominant learning
system or by a FMF-dominant system. In other words,
the researchers might be dealing with animals which are
what we might call “latent” sign-trackers, individuals with
a dominant FMF system which nonetheless develop a goal-
tracking strategy, in which case the blocking of one kind
of behaviour by the other is indeed the sign of a dominant
learning system. However, this would not prove that there
are not other kinds of individuals with a more complex
learning system.

The present work also highlights a characteristic of
simulated ST and GT behaviours which had not been
addressed by previous models (Lesaint et al. 2014; Kaveri
and Nakahara 2014): the tendency to goal-track less and
less along training. This result is of particular importance
since several studies have reported that goal-tracking is
an unstable phenotype (Derman et al. 2018; Nasser et al.
2015), which sometimes may eventually disappear as
conditioning goes on. Some reports show some shifting in
the distribution of responding from goal- to sign-tracking
even across only 5 days of acquisition (Meyer et al. 2012).
In contrast, Flagel and colleagues (Flagel et al. 2011) found
that both sign-tracking and goal-tracking behaviours were
stable and robust throughout sessions. Because the present
computational model accounts for the experimental results
of Flagel et al. (2011) while at the same time predicting a
tendency to goal-track less along training, the model has the
potential to reconcile these different studies by suggesting
that small differences in protocol can lead to variability
and instability in ST and GT behaviours. It suggests that
the behavioural phenotype may be affected by not only
the duration of training, but also precise timing between
events of the task, duration of the ITI, and any manipulation
which can affect the values and uncertainties associated
to stimuli. Similarly to the apparent discrepancy between
studies showing similar proportions of STs and GTs (Flagel
et al. 2011), a prevalence of STs or in contrary a majority
of GTs (Morrison et al. 2015), it is worth noting that the
same computational model has been also applied to pigeon
negative automaintenance paradigm (Lesaint et al. 2014)
where it could explain the discrepancy between different
studies showing different proportions of individuals either
able (putatively model-based) or not (putatively model-free)
to refrain from pecking a light when this action prevents the
obtention of reward.
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Interestingly, the progressive decrease in goal-tracking
behaviour cannot here be directly linked to a relative change
in influence of the model-based system over behaviour. The
relative contribution of MB and MF modules to decision-
making in the model is indeed determined by a parameter
ω which is fixed in an individual and stable in time. In
contrast, computational models for the coordination of MB
and MF reinforcement learning tackling experimental data
in the instrumental conditioning and navigation paradigms
have commonly assumed a progressive shift from MB to
MF across learning to explain the tendency of animals to
develop behavioural habits (Daw et al. 2005; Keramati et al.
2011; Khamassi et al. 2013; Viejo et al. 2015; Dollé et al.
2018). In future work, it would be interesting to extend the
present STGT model so that it progressively shifts control
over decision-making from MB to MF, and study whether
this can further expand the model’s explanatory power with
respect to experimental data.

Finally, the present set of results have important
implications for the understanding of the mechanisms
underlying drug addiction. The present paradigm assessing
individual differences in response to conditioned stimuli
in a Pavlovian appetitive task had indeed initially been
proposed as a model of differential susceptibility to drug
addiction (Saunders and Robinson 2013). In this paradigm,
the fact that some individuals (sign-trackers) develop a
strong attraction towards stimuli that invariably predict
the occurrence of a biologically relevant event such as
a food reward, can be seen as a model for individuals
that develop a strong attraction for stimuli that predict
drug rewards. Sign-trackers have indeed been found to be
more sensitive to drug-predicting stimuli than goal-trackers
(Flagel et al. 2009). The fact that in the present model
sign-trackers rely more on relatively inflexible model-free
behaviours than on flexible model-based decisions could
provide a computational basis for further understanding
why individuals who become addicted are unable to shift
their thoughts and actions away from drugs and drug-
associated stimuli. Interestingly and consistently, sign-
trackers are more prone to display an automatic behaviour
towards reward-predicting cues, in the sense that the same
animals may be less sensitive to extinction of conditioning
(Ahrens et al. 2016) or to devaluation of the reward
(Morrison et al. 2015; Nasser et al. 2015; Patitucci et al.
2016) than goal-trackers. The present model could thus
add to a growing computational literature addressing drug
addiction in terms of model-based and model-free learning
mechanisms (Simon and Daw 2012).
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Équipe AMAC, Sorbonne Université, 4 Place Jussieu, 75252, Paris
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