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Abstract 

Bayesian Belief Networks (BBNs) are a promising but underutilized probabilistic graphical tool for 

modelling water quality for Environmental Impact Assessment, with their ability to include uncertainty 

in the predictions being relevant to catchment and water managers. This thesis explores the application 

of these tools to predict phosphorus (P) losses in terms of total reactive phosphorus (TRP) 

concentrations in four Irish agricultural catchments, with high P concentrations being a major concern 

in at least three of them. A hybrid Bayesian Belief Network combining discrete and continuous variables 

was developed for a surface hydrology-dominated grassland catchment, using daily concentration data 

to build the BBN priors and assess model performance. The step-wise introduction of different P 

sources, combined with high-frequency data and detailed catchment understanding improved the first 

model iteration’s predictive ability. In all model applications, the models’ predictions presented wider 

distributions than the observations, which was noted in similar work, and remains a property of BBNs. 

Transferring the BBN across catchments allowed testing the model’s structural uncertainty and showed 

that the developed BBN could perform well in surface-driven catchments. The BBN was enhanced by 

improved process representation and catchment-specific parameterization. Model transferability across 

catchment typologies (surface vs groundwater-dominated, grassland vs tillage land use) is explored, 

and the BBNs are used to predict future P concentrations under climate change scenarios. The 

application of the catchment-specific BBNs to predict future P concentrations under climate change 

revealed the need for further BBN sensitivity analysis to aid result interpretation. The potential for 

BBNs to be used as a tool to inform compliance with regulatory standards is discussed. The discussion 

considers learnings from current BBN research, P processes represented in both BBNs and process-

based models, and the model application in this study. Limitations of the approach and future research 

avenues are explored.  
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Plain language summary 

Bayesian Belief Networks (BBNs) are a useful but not widely used tool for predicting water quality. 

They can account for uncertainty, making them valuable for water and catchment managers. This study 

looks at using BBNs to predict phosphorus (P) levels in four agricultural catchments in Ireland, where 

high P levels are a big concern. The first model development focused on a grassland area where P losses 

in surface water flow are significant, examining how data availability affects the BBN's performance. 

The model's predictions improved by gradually adding different P sources. However, the BBN's 

predictions were generally more spread out than the actual observations, a common trait of BBNs. 

Testing the model in different catchments showed that it worked well in surface-driven ones, needing 

improvements (more detailed processes and catchment-specific data) to work well in groundwater- 

dominated catchments. When using the BBN to predict future P levels under climate change, it became 

clear that BBN sensitivity analysis is needed to understand the results better. We discuss if BBNs can 

help to inform regulatory standards, whether they can be adapted to different types of catchments 

(surface vs. groundwater-dominated and grassland vs. crop), and their utility in predicting future P 

levels under climate change. The study compares current BBN research with traditional models and 

discusses the strengths and weaknesses of using BBNs. Finally, areas for future research are suggested.  
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1. Introduction 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Harmful algal bloom in Lake Erie, 2009. T. Archer, NOAA/Flickr, CC BY-SA, as seen on 

https://theconversation.com/. Lake Erie is part of the Experimental Lakes Area, originally created in response to global 

concerns about algal blooms due to Nitrogen and Phosphorus pollution (Elser and Haygarth, 2021). 
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1.1 Phosphorus impacts water quality through eutrophication 

Phosphorus (P) is an essential nutrient for plant growth (Elser et al., 2000). P fertilizer utilization 

doubled since the 1950s (Carey, 2016), with some studies noting a four-fold increase over the past 75 

years (Powers et al., 2016; Villalba et al., 2008). This scale of P application has led to accumulation in 

soil, water, and solid waste. Globally, agriculture is estimated to contribute 75-90% of total P in river 

catchments (Villalba et al., 2008; Drohan et al., 2019). Therefore, the phosphorus paradox is twofold: 

on one hand, agricultural production increases P demand, and on the other, this finite resource can 

accumulate in soils, sediments, and estuaries, which decreases the plant bioavailable P pool, increasing 

agronomic requirements and exacerbating eutrophication (Figure 1.1), which makes it necessary to limit 

its pollution potential in waters. There is historical consensus that P is the nutrient that limits 

eutrophication in surface waters, whilst nitrogen (N) is considered the limiting factor in estuaries and 

coastal waters (Hecky and Kilham, 1988; Moss et al., 2013), due to the strong relationship between P 

and chlorophyll-a (Mischler et al., 2014). However, there is a growing consensus that not all freshwater 

systems are P-limited, with some being N-limited, with co-limitation by N and P being common (Elser 

et al., 2007; Mischler et al., 2014; Moss et al., 2013), and N:P ratios changing seasonally, leading to a 

potentially prevalent N limitation during plant growth season (Edwards et al., 2000; Mischler et al., 

2014). Nevertheless, this research focusses on modelling of P losses from agricultural catchments to 

surface waters. Testing of new modelling approaches is particularly relevant due to the complexity of 

P transport and the inadequacy of process-based P models (Hollaway et al., 2018; Jackson-Blake et al., 

2015; Vadas et al., 2013), which will be further explored in the following chapters.  

Haygarth et al., (2005) introduced the interdisciplinary concept of the phosphorus transfer continuum, 

where they framed the issue of diffuse P loss from land to waters as sources (P inputs), mobilization (P 

detachment and solubilization from soils), delivery (where P enters waters), and impact (biological and 

ecological impacts of P in running and/or standing waters). Phosphorus sources in agricultural 

catchments can be natural (soil P and atmospheric deposition) and anthropogenic (fertilizers and manure 

applied to the fields, fertilizers, animal feed, and manure on hard standings). A typical way to describe 

pollution is by discriminating between diffuse and point sources. Diffuse sources are described as 
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pollution generated from land use activities, followed by dispersion over a large area, such as a field or 

(sub-)catchment. Discharges enter surface waters at intermitted intervals and diffuse sources are related 

to meteorological events. The core characteristics of diffuse pollution are that 1) it transits overland 

before reaching the unsaturated soil, surface waters or infiltrating the aquifer, and 2) is difficult to track 

and monitor its point of origin (Campbell et al., 2005). On the contrary, point sources come from a 

precise input location, such as pipes, sewers and discharge channels. Edwards and Withers, (2007), 

have shown that distinguishing sources can improve the understanding of P impacts in water bodies. 

However, rural point sources can have intermediate behaviour and become constant P sources, 

independent of transfers. For example, septic tanks can behave as a diffuse source when their collective 

number over a catchment is high. More recently, Stutter et al., (2022), challenged the source load 

apportionment models and showed that examining separate P fractions (the operationally defined total 

P, dissolved P, particulate P, and bioavailable P, summarized in Figure 1.2), can improve understanding 

of nutrient dynamics. In another recent example, Vero and Doody, (2021), show how the nutrient 

transfer continuum can be applied to farmyards, a source that is usually modelled and conceptualized 

as a point source. While increasing the P supply in a stream may initially boost ecosystem biomass and 

diversity, the longer-term effects will be ecosystem stress due to algal growth and increased speed of 

the eutrophication process. In short, crossing the threshold between P subsidy (supply that is healthy to 

the system) and P stress, will result in an ecosystem no longer able to buffer the impacts of P supply 

(Jarvie et al., 2019; Withers and Jarvie, 2008). Finally, P concentration changes in response to land use 

change can impact the dominance of autotrophs, lead to changes to the invertebrate community 

(specifically, increased excretion of P from invertebrates to maintain stochiometric C:N:P balance) and 

reduction of species diversity. Increased algal growth can cause anoxia, which in turn impacts fish eggs 

survival, and soluble reactive P (SRP) release from bed sediments. Nutrient enrichment has both a 

chronic (constant nutrient input from point sources) and an acute (short spikes from diffuse pollution) 

effect on macroinvertebrates, with chronic effects being worse (Davis et al., 2019). In addition, albeit 

nutrients may not be the major stressor, they exacerbate the negative effects of sediment enrichment 

(Davis et al., 2019). Therefore, management efforts should concentrate on limiting point sources, 

especially at low-flow periods, when concentrations increase. This is especially important considering 
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that climate change will increase the frequency of droughts (therefore intensifying the effects of chronic 

stress), and the frequency and magnitude of storms (therefore intensifying the effects of acute stress) 

on macroinvertebrates.  

 

Figure 1.2 Phosphorus species and their definition by analytical methods. The filtration methods refers to filtration with 45 

µm membrane. All species are derived by colorimetric determination, except Particulate P (PP) and Soluble Unereactive P 

SUP), which are calculated by subtraction.Figure updated and adapted from (Glendell et al., 2020). 
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1.2 Phosphorus pollution in Ireland: sources and key findings 

The European Water Framework Directive 2000/60/EC (The European Commission, 2000), WFD 

hereafter, mandates that all water bodies in the European Union should have achieved a “good status” 

by 2015. However, only 40% of surface water bodies across the EU were in good ecological status 

according to the EEA report 7/2018, and Ireland had not yet reported the data relative to the River Basin 

Management Plan (RBMP) required by the WFD (European Environment Agency, 2018). However, 

the Environmental Protection Agency, (2019) reported that in 2018, 42.7% of Irish surface waters were 

in moderate, poor, or bad ecological status, while 52.8% had either good or high ecological status. As 

stated in the EEA report 7/2018, the major pressure on water body quality is diffuse pollution, 

particularly nitrogen and phosphorus from agriculture. Many countries have implemented legislation to 

address this issue. However, according to Amery and Schoumans, (2014), although the Nitrates 

Directive 91/676/EEC (The European Commision, 1991) states that eutrophication due to agriculture 

should be prevented, phosphorus is not specifically mentioned. Following Drohan et al., (2019), the 

need to limit soil P accumulation in Northern Ireland and in the Republic of Ireland, is written into the 

EU Nitrates Action Programs by the European Commission, but there is no mandatory soil test to check 

that farms are operating within the 170 kg ha1 limit of organic N application. Furthermore, support is 

needed to tackle P pollution, as it remains one of the major causes of water quality failure and ecological 

impact in Irish freshwaters (Environmental Protection Agency, 2017). In Ireland, the Environmental 

Quality Standard (EQS) for phosphate is equivalent to a 0.035 mg l-1 threshold established in Ireland to 

comply with the WFD (European Communities Environmental Objectives (Surface Waters) 

Regulations, 2009). Water quality failure becomes evident when looking at the loss of high-status sites 

since 2009: high-status rivers are now 8.5% compared to 13% in the WFD baseline assessment, 

representing an additional 115 poor-status surface bodies (Environmental Protection Agency, 2019). 

The decline in sites with high ecological status has been estimated at 50% since 1987 (Gaffney et al., 

2021). Moreover, time lags of 15 to 20 years beyond the initial 2015 WFD deadline are estimated for P 

to reach the optimum index in Irish soils (Schulte et al., 2010). Time lags could further increase, 
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considering that Ireland is one of the few remaining EU countries where derogation from the END will 

be allowed until 2026 (Gleeson, The Irish Times, 2023). 

Following the concept of phosphorus transfer continuum introduced by Haygarth et al., (2005), a review 

of the recent literature regarding the issue of P pollution in Ireland was conducted in this thesis. In this 

conceptual framework, pollutant sources are only delivered to receiving waters if transport pathways 

exist (Thomas et al., 2016a). The majority of the studies reported that the main source of P in Irish 

agricultural catchments was soil P content or excess plant available P, which can derive from excess 

manure and mineral fertilizer application (Regan et al., 2012), while a smaller number of studies pointed 

out the limited importance of point-source pollution (Campbell et al., 2015; Mockler et al., 2017). As a 

general conclusion, we could see that transport and delivery of P in Irish agricultural catchments is 

dominated by weather and hydrological conditions rather than initial soil P content (Mellander et al., 

2015, 2018; Mockler et al., 2017). This seems to contrast with the idea that a significant correlation 

exists between soil test P (STP) and P loss to surface water in Ireland (Doody et al., 2012). The main 

pathways identified were overland flow, subsurface flow, and groundwater flow. In addition, soil 

chemistry and structure also play an important role in determining the preferential P pathways. In the 

study by Mellander et al., (2016) P colloids were proven to bypass the soil matrix and leach into the 

groundwater table. In a study by Fresne et al., (2022) colloidal P was found in high proportions in 

below-ground pathways in catchments with contrasting land use and similar hydrology. In one case 

(grassland-dominated catchment), colloidal P was mainly delivered by quick surface pathways (quick 

surface pathways, 37%) and slow below-ground pathways via groundwater (deep baseflow, 33%), 

while in the other (arable) it was delivered by below ground pathways (92%). Extensive research has 

been done with regards to P pollution risk at field and catchment scales, while a smaller number of 

studies considered the whole of Ireland as a study area for modelling approaches. This is confirmed by 

a review study conducted by Doody et al., (2012), overviewing recent literature regarding P pollution 

from agricultural land in Ireland, where the need for catchment management tools and Decision Support 

Tools (DSTs) is identified.  
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Since this review, decision support approaches in Ireland have focussed on the optimization of plant 

available P following the guidelines set out in the Teagasc green book (Wall and Plunkett, 2016), with 

online nutrient management calculators (e.g., Teagasc Nutrient Management Planning Online) (Teagasc 

- Agriculture and Food Development Authority, 2017). These calculators are usually freely available to 

the farmers and are used voluntarily (Drohan et al., 2019). Among these tools are high spatial resolution, 

field scale, P-indexes, used in USA, UK, Sweden, Republic of Ireland, and Norway (Drohan et al., 

2019). In Ireland, the Nitrates Action Programme (NAP) determined by the European Nitrates Directive 

(END), sets limits on the agricultural use of both N and P inputs, and P regulations are based on the soil 

agronomic P (Morgan’s phosphorus test), which is measured with a buffered acetate-acetic reagent 

(Daly and Casey, 2005; McDonald et al., 2019). P advice for crops and tillage is based on four categories 

of soil Morgan P index, where the optimum P is set at 5.1-8.0 mg l-1 (grassland) and 6.1-10.0 mg l-1 

(tillage), and only maintenance fertilizer rates are required (Regan et al., 2012). A possible explanation 

for the observed lack of effectiveness of measures is that there are consistent lags between treatment 

(mitigation measure) and water quality response (Meals et al., 2010). In addition, legacy phosphorus 

might be so abundant as to control water quality long term (Bieroza et al., 2019, 2018). Lastly, some 

mitigation measures might bring about pollutant swapping, where the decrease of a pollution source 

might lead to the increase of another, although research has shown that reduced P can increase N 

concentrations, not the opposite (Bieroza et al., 2019). If flow pathways (transport) are to be taken into 

consideration and incorporated in P pollution mitigation strategies (Daly et al., 2016; Deakin et al., 

2016), then it is clear that the DSTs and Decision Support Systems (DSSs) available should be 

implemented firstly at field, farm and catchment scale and secondly at regional and/or national scales. 

A few risk-based approaches to the management of P pollution have been undertaken by Thomas et al., 

(2017, 2016a). These studies have mostly been conducted at the subfield scale and applied in four 

Agricultural Catchments Programme catchments of ~10 km2 in the Republic of Ireland, as well as ~100 

km2 catchment in Northern Ireland. In the first instance, a tool that accounts for microtopography, 

elevation and hydrological connectivity was built to predict and map the Hydrologically Sensitive Areas 

(HSAs). These areas generate overland flow and therefore have the highest propensity for sediment and 

phosphorus transport and delivery (Thomas et al., 2016a). Secondly, Thomas et al., (2016b) developed 
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a Geographical Information System (GIS) risk-based tool for mapping Critical Source Areas (CSAs), 

merging the HSA Index (which identifies high run-off generating areas and the locations for targeting 

mitigation measures) and field-scale soil P data. Both tools can target legacy P mitigation measures and 

P management best practices. More recently, Thomas et al., (2019) also applied the CSAs tool at the 

national scale, using a 5 m digital elevation model and the microtopographic characteristics identified 

in the previous study (Thomas et al., 2017). However, these are labour-intensive source-focused tools 

for mitigation measures, and they might be ineffective or insufficient to tackle P pollution. Hence the 

development of risk-based DSSs is needed (Drohan et al., 2019) to inform the choice of the most 

effective mitigation measures.   
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1.3 Bayesian Belief Networks 

Bayesian Networks or Bayesian Belief Networks (BBNs) are probabilistic graphical models firstly 

introduced by Pearl in the 1980s (Pearl, 1986). Bayesian Networks are described as directed acyclic 

graphs (DAGs) of probability distributions, where the term “acyclic directed” means there is a 

sequential flow of information among variables and no dynamic feedback loops (Barton et al., 2012; 

Kragt, 2009). The relationships between variables in a BBN are parameterized using conditional 

probability distributions or conditional probability tables when variables are discrete (CPTs) (Borsuk 

et al., 2004). In a BBN, variables encoded in distributions or CPTs are defined as nodes, and the arrows 

pointing to nodes are called arcs, which are directed. The arcs represent the causal relationship between 

parent (where the arcs are directed from) and child nodes (where the arcs are directed to). Such causal 

relationships are calculated for a child node from the probability distribution of its parents according to 

Bayes' Theorem, which describes the probability of an event conditional on prior knowledge of that 

event (Moe et al., 2021). BBNs allow the integration of quantitative and qualitative information (e.g., 

experimental data, model outputs, and expert opinion) in one model. There are several advantages to 

the use of the Bayesian Network approach. BBNs provide a transparent representation of causal 

relationships between variables because such relationships are displayed graphically and the model can 

be built with the participation of experts; they allow better understanding of risk as variables are 

modelled as probability distributions rather than as mean values, and they provide understanding of the 

system because it is possible to learn about the effects given the causes and to know the causes given 

the effects. BBNs can work in data-sparse environments and can incorporate new evidence; they can be 

used as Decision Support Tools, as the outputs of the probabilistic analysis are often considered robust 

and can be used to recommend actions to policy-makers and to communicate best practices to 

stakeholders; they account for uncertainty without increasing calculation time, and can include both 

knowledge and system uncertainty (Aguilera et al., 2011; Barton et al., 2012; Brabec et al., 2019; Forio 

et al., 2015; Kragt, 2009; Sahlin et al., 2021; Uusitalo, 2007). However, there are still some challenges 

to overcome in the use of Bayesian Networks. For instance, authors have reported limitations of BBNs 

in handling continuous variables which leads to the necessity of discretizing data (Kragt, 2009; Landuyt 
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et al., 2013), and the absence of feedback loops makes the analysis of spatial and temporal variations 

problematic (Duespohl et al., 2012; Landuyt et al., 2013). However, Henderson and Pollino, (2010), 

affirm that if the feedback occurs on the same time scale as that of the dynamic BN then a feedback 

loop can be represented. An increased number of layers (nodes) between input nodes and output nodes 

can weaken the relationship between input and output (Marcot et al., 2006). Moreover, Landuyt et al., 

(2013), have reported on the difficulties of using commercially available software, as they are less 

flexible compared to open-source. However, this difficulty has been overcome by coupling such 

software with GIS tools (Piffady et al., 2021; Stritih et al., 2020; Troldborg et al., 2022) and using 

general-purpose software languages and packages (Jin et al., 2020; Scutari, 2010). Further, expert 

elicitation can be difficult, particularly when it comes to expressing the relationship between nodes in 

terms of probability distribution (Landuyt et al., 2013), and a literature review revealed that expert 

knowledge is more easily used to construct DAGs than to contribute to constructing CPTs (Pérez-

Miñana, 2016; Phan et al., 2016). Lastly, Kaikkonen et al., (2021), recommend more transparency is 

needed with regards to the role of experts knowledge when building BBNs.  

1.4 Bayesian Belief Networks and water quality modelling 

BBNs have been used in the past in multiple decision-making setting and to understand causal 

relationships in different contexts, such as oil spills (Lu et al., 2019; Pascoe, 2018), medicine (Rodrigues 

et al., 2017; Seixas et al., 2018), epidemiology (Fuster-Parra et al., 2016; Lau et al., 2017) and machine 

learning (Hu et al., 2018). Furthermore, since the 1990s, BBNs have also been used to help with 

ecological risk-based decision-making (Barton et al., 2012), although as of 2011, the vast majority of 

papers published around the use of BBNs was relative to the subjects of Computer Science and 

Mathematics, while only 4% of the papers were published under the item “Environmental Sciences” 

(Aguilera et al., 2011). However, interest in the use of Bayesian probability theory in hydrogeology and 

environmental risk assessment has grown since (Höge et al., 2019; Kaikkonen et al., 2021). The 

limitations of a BBN modelling approach for environmental systems also represent an opportunity for 

tool development. In many settings, environmental systems represent a considerable statistical 
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modelling challenge both because of their complexity, their highly non-linear interlinked nature 

(temporally and spatially), and a relative lack of data in many scenarios. These issue may be overcome 

with BBNs because there is a broad range of validation tools that can be used, e.g. expert and/ or 

stakeholder evaluation (Landuyt et al., 2013), and BBNs can integrate various sources of data at various 

frequencies resolutions, thus overcoming datasets disparities (Glendell et al., 2022; Moe et al., 2021).  

Analogously, modelling water quality and nutrient transport is hindered by a number of constraints 

associated with input data gathering, knowledge gaps in mathematically describing biogeochemical 

processes, the presence of highly non-linear interactions, temporal and spatial scale representation 

issues, as well as complications related to calibration and validation approaches (Blöschl et al., 2019; 

Harris and Heathwaite, 2012; Hollaway et al., 2018; Rode et al., 2010; Wellen et al., 2015). Wellen et 

al., (2015) set out to test whether 257 research papers applied best practices in watershed modelling. 

They found that 92% of the distributed models analysed were discretizing time in daily or monthly time 

steps, implying that biogeochemical processes that might occur in a few hours are not well represented. 

Other sources of uncertainty refer to the fact that there is no universal law of hydrology, because the 

data required to test the hypotheses would never be observable (Beven, 2006) and physical relationships 

used to close the water balance (e.g. hydraulic conductivity) are likely to be scale dependant (Bierkens, 

1996). Furthermore, traditional water quality modelling techniques (i.e. mechanistic models) often 

produce over-parameterized models (Jackson-Blake et al., 2017) especially when upscaling to 

watershed scale (Radcliffe et al., 2009). There is therefore a need for new approaches that can 

incorporate available evidence with Decision Support Tools also in view of the Integrated Catchment 

Management (ICM) criteria promoted by European legislation (Holzkämper et al., 2012). Furthermore, 

there is an increasing necessity to incorporate uncertainty estimates in hydrological modelling (Beven, 

2019; Pappenberger and Beven, 2006), also in view of future climatic changes (Ockenden et al., 2017; 

Sperotto et al., 2019a). Therefore, Bayesian Belief Networks, with their ability to incorporate 

uncertainty as well as disparate sources of data, are well suited to tackle these hydrological modelling 

issues. However, a systematic review by Phan et al., (2016) covered 111 articles (1997-2016) on the 

topic, and highlighted that only 7% of studies use the full functionality of BBNs, including the capacity 
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to learn from data. Table 1.1 reports a short literature review of studies developing BBNs targeted at 

water quality with regards to P pollution. Note that studies that involved Bayesian inference, Bayesian 

Hierarchical models, or Bayesian methods for parameter estimation were excluded from the review 

(e.g., Gudimov et al., (2012); Kim et al., (2017, 2014); Neumann et al., (2023); Zobrist and Reichert, 

(2006)). The objective of Table 1.1 was to compare existing BBNs aimed at modelling P in terms of 

area of interest (i.e., regulatory, ecological, economic), methods (data used, expert opinion, validation) 

and main results. We note here that some of the issues reported by Phan et al., (2016) are also evident 

when modelling P with BBNs. Firstly, the BBNs collated here are applied at a variety of scales, not just 

for catchments; they have been evaluated with a series of goodness of fit metrics, but often the data for 

validation is lacking (Ames et al., 2005; Lucci et al., 2014; McDowell et al., 2009); they have been 

applied spatially only in two instances (Glendell et al., 2022 and Sperotto et al, 2019a, 2019b) 

Additionally, these BBNs have been developed with data at low resolution, either due to the low 

frequency of the monitoring datasets (i.e., using weekly or monthly grab samples for laboratory 

analyses), or because they have been using hydrological model outputs as inputs, and therefore have 

been developed as yearly or seasonal BBNs. However, these low-frequency datasets will necessarily 

hide P variations due to changes in temperature, light, and precipitation (Bieroza et al., 2023), which 

can change by the hour and are likely to affect P mobilization, delivery, and in-stream uptake. Therefore, 

high-frequency (i.e. sub-hourly continuous sampling, even if summarized at the daily timestep) water 

quality datasets should be used to develop new BBNs and to test their predictive ability. Further, aside 

from Glendell et al., (2022) and Adams et al., (2023), these BBNs are not aimed at modelling P stream 

concentrations, but rather at modelling P loading, ecological processes dependent on P, or are aimed at 

evaluating Best Management Practices (BMPs). However, estimating P concentrations rather than loads 

remains important to understand future eutrophication risk and to design mitigation measures in running 

waters (Charlton et al., 2018; Glendell et al., 2019; Stamm et al., 2014), also given future climate and 

the WFD.  

To date, only one BBN aimed at modelling water quality has been tested across multiple catchments. 

Glendell et al., (2022), tested a hybrid BBN (including both discrete and continuous variables) 
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predicting P concentrations in the stream and applied it with the same structure to seven Scottish 

catchments, showing wider predictive ranges in the BBN outputs than in the observations (a summary 

is given in Table 1.1). However, transferability, which involves adapting a model created for one setting 

to another, makes the model applicable across management scenarios and areas. Testing between-

catchment transferability is necessary if we are to generalize biogeochemical models and to improve 

their predictive power (Mieleitner and Reichert, 2006). Transferability in geographical areas and across 

management applications increases confidence in the model formulation because it decreases the 

likelihood of the model performing well due to wrong reasons (Schuwirth et al., 2019). Models that can 

be applied across multiple cases are also more useful and, therefore more justifiable in terms of 

development and application effort (Schuwirth et al., 2019). Transferable BBNs can also inform future 

research by providing a clear motivation for the scope and scale of the data collection required to use 

the model at new sites (Hatum et al., 2022).  

Table 1.1 further reports the four instances in which hybrid BBNs were used (Adams et al., 2023; 

Glendell et al., 2022b; Jin et al., 2020; McVittie et al., 2015). BBNs were originally developed to deal 

with discrete variables (expressed as CPTs). However, environmental and ecological problems involve 

both continuous and discrete variables, or a mix of both (Ropero, 2016). Despite this, the application of 

hybrid Networks in Environmental Risk Assessment is still rare, perhaps because they present several 

methodological challenges, including legacy software designed to deal with discrete variables only, the 

limited number of available distributions in such software, and the need for more assumptions and 

statistical expertise for the model set-up and end use (Kaikkonen et al., 2021).  

Lastly, Table 1.1 reports the only three instances where the BBNs were aimed at modelling future P 

under climate change (Adams et al., 2023; Moe et al., 2016; Sperotto et al., 2019a), even though 

incorporating uncertainty is critical to water quality decision-making (Kotamäki et al., 2024). 
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Table 1.1 Summary of literature (2003-2023) of BBNs aimed at modelling P pollution across various scales (i.e., farm, catchment, watershed) and thematic areas (i.e., climate change and water resources 

management, ecology, ecosystems services). The studies are analysed in terms of methodology (use of experts, software, discretization, goodness of fit methods used), and a summary of results is given. 

Study Area & Objectives  Area of interest Methodology and BBN details Goodness of Fit, Validation Results Reference 

River Eden catchment in 

Scotland. Objective is to 

engage with stakeholders to 

consider multiple stressors in 

the catchment and to simulate 

future climate and socio-

economic-driven impacts in. a 

single framework. 

Implications for five capitals 

(natural, social, 

manufactured, financial and 

intellectual) are considered.  

Management • BBN is iteratively built with experts and 

stakeholders 

• Conceptual model of each sub-catchment 

• P concentration as indicator of water quality 

•  GeNIe software (BayesFusion, 2019a) for model 

development  

• Representative Concentration Pathways (RCPs)  + 

Socio-economic Pathways (SSP) + land cover 

projections + population projections 

• one at a time parameter sensitivity 

• hybrid BN 

Evaluated with percentage bias 

(PBIAS) against regulatory 

low-frequency (bimonthly) 

Reactive P concentrations at 

the catchment outlet. 43 % of 

observations were within 

the ±50 % threshold, 31 % of 

simulated values were above, 

and 26 % were below. 

• BN modelling facilitates stakeholder 

recognition of future risks and inter-

sectoral interaction  

• Participatory modelling methods 

improved the structure of the BN  

• BN allows systems-thinking approach for 

considering river basin catchment 

resilience 

Adams et al., 

(2023) 

Scottish agricultural 

catchments. Objective is to 

facilitate understanding of the 

effects of land use on P 

pollution risk. 

 

Management • co-developed with experts 

• SHELF (Oakley, 2020) elicitation framework to 

derive some of the nodes’ parameters  

• two BBN version tested, one hybrid and one 

discretized and applied spatially with bnspatial 

(Masante 2019) 

• GeNIe software (BayesFusion, 2019a) for model 

development  

• seasonal discretization, static model  

• the model is integrated with spatial information 

• hybrid BN 

PBIAS calculated against 

median annual SRP. The 

hybrid model version showed 

good agreement with the 

observations in 46% of cases, 

whilst the discrete spatial 

Network had a -2 ≤bias 

≤.292%. A comparison 

between the simulated and 

observed probabilities of 

exceeding EQS was also used 

to evaluate the model and 

showed that in two catchments 

the agreement was high.  

• management scenarios tested 

• importance of hydrology for P dilution in 

these catchments 

• importance of farmyard losses  

Glendell et al., 

(2022) 

Objective is to test the effects 

of changes in stressor levels 

for ecosystem services in 

three different catchments in 

Ireland. The study areas were 

the River Dodder (urban 

catchment), River Suir 

(agricultural catchment), 

River Moy (mixed land use 

catchment). 

Ecosystem 

services 
• calibration with data and expert judgement 

• P concentration is one of the parent nodes, the 

BBN is not aimed at modelling P 

• expert judgements were weighted to give a 

measure of confidence 

• climate projections included 

• Netica software (Norsys Software Corp, 2016) for 

model development 

• GeNIe software (BayesFusion, 2019a) for strength 

of influence and sensitivity analysis 

N/A • Phosphate main nutrient driver of effects 

on riverine ecosystem services  

• paper highlights how common non-

linearity can be in these systems even 

though it is generally not represented in 

models  

Penk et al., (2022) 
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Lowland streams in the 

Netherlands. A BN to 

simulate the response of 

macroinvertebrates to 

stressors. 

Ecology • model structure developed with literature + expert- 

based knowledge 

• discretization with equal intervals, then tested also 

equal frequency 

• management scenarios analysis with the best 

performing model. 

• Total P concentrations is an input node 

• static model assumes equilibrium  

• Netica software (Norsys Software Corp, 2016) for 

model development 

• discretized continuous variables 

Training and testing with k-

fold cross-validation. Two-

thirds of the dataset for 

training and one third for 

performance. Performance 

evaluation was done by 

calculating the correlation 

between the observed and 

predicted EQS scores 

(predictive performance was 

poor).  

 

• BN shows the positive influence of the 

restoration measures on ecological quality 

• ecological quality overall underpredicted 

by the model 

• equal frequency gave better performance  

• gaps in the dataset make it difficult to 

train knowledge-based CPTs.  

de Vries et al., 

(2021) 

The Grand River watershed 

of Ontario. To develop a 

BBN simulating the 

probability of TP and DRP 

load reductions due to BMPs 

and to identify which BMPs 

are most likely to achieve the 

policy objective of 40% load 

reductions from tributaries of 

Lake Erie.  

Management • ISO 31010:2009 as a framework to identify 

drivers, pressures, and risk pathways 

• Netica software (Norsys Software Corp, 2016),  

• P sources: mineral P application, manure P 

application, livestock P losses 

• it includes mitigation measures  

• social component: considers drivers such as 

cultural, economic, and political factors 

N/A • TP and DRP effective measures had high 

probability of achieving load reduction 

objectives at high adoption rates 

• The most commonly used BMPs (reduced 

application, reduced tillage, crop rotation 

grass filter strips), while reducing TP 

loads, had the unintended consequence of 

a moderate probability of increasing DRP 

loads 

Igras and Creed, 

(2020) 

Huaihe River Basin (HRB), 

China. To analyse the 

response of Suspended 

Sediments (SS) and Total 

Phosphorus (TP) to catchment 

characteristics, land use and 

sewage outfalls, under 

different rainfall patterns.  

Management & 

Environment 

(land use, 

rainfall patterns) 

• used bnlearn (Scutari, 2010),  

• rainfall intensity was inputted as discrete data, 

while the rest of the dataset was continuous (log-

transformed TP and SS, water temperature, land 

use, soil erosion area, catchment area, slope, TP 

from sewage outfalls) 

• Total P as input 

• three models were developed: TP with and without 

SS (to check SS effect on TP loads), plus a SS 

model  

• variable choice was carried out with an arrow 

strength test 

• hybrid BN 

Two thirds of data for 

calibration and one third for 

validation. Pearson Correlation 

and Nash-Sutcliffe Efficiency 

against observations. The 

observations were repeated 

10000 times to match the 

model realizations.  

• the contribution of SS is more significant 

when rainfall intensity is high  

• area, slope, soil erosion area, all have 

positive correlation with SS and TP, but 

lower than the human activity 

contribution  

• land use and sewage outfalls had a 

significant influence on the SS and TP 

loads. 

Jin et al., (2020) 

The Stanovice reservoir 

situated in North-West 

Bohemia, Czech Republic. 

Catchment area of 92 km2. 

Determining whether the 

“good status” required by the 

EU WFD can be achieved 

with a set of selected 

measures. 

WFD and 

mitigation 

measures 

• Total P is the variable of interest, and it represents 

the probability of reducing the targeted amount of 

phosphorus 

• Total P is discretized only in 2 intervals (failure 

and success)  

• Netica software (Norsys Software Corp, 2016) 

• yearly discretization, static.  

• main sources of P are wastewater and agriculture 

• evaluation of mitigation measures 

N/A • the adjusted good status can be achieved 

with a 72.4% probability 

• the model can be used to see which 

combinations of measures are the most 

effective 

• model shows how effective the individual 

groups of measures are compared to how 

effective they were expected to be. 

 

Brabec et al., 

(2019) 
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To determine catchment 

buffer capacity in three UK 

catchments with different data 

availability and levels of 

stakeholder interaction.  

Management • yearly discretization 

• static 

• software N/A 

N/A N/A Forber et al., 

(2019) 

Zero river basin, Northern 

Italy. 73% of land use is 

agricultural. To create an 

integrative tool (the BBN) for 

structuring and combining the 

information available in 

existing hydrological models, 

climate change projections, 

historical observations and 

expert opinion producing 

alternative risk scenarios to 

communicate the probability 

of changes in nutrients 

delivered from the basin 

under different climate 

change projections in mid- 

(2041–2070) and long-term 

(2071–2100) periods with 

respect to the baseline (1983–

2012). 

Climate change, 

scenario 

analysis 

• seasonal discretization 

• BN is integrated with a climate model (Global 

Climate Model, Regional Climate Model, RCPs 

4.5 and 8.5)  

• expert judgment (agronomic and irrigation 

practices, fertilizer use) 

• model training 2004-2013 

• HUGIN Expert software (Bromley et al., 2005) 

• P as input 

• sources of P: wastewater treatment plants, 

agriculture 

• spatially distributed hydrological simulations. 

• use of an independent dataset for validation 

• scenario analysis with climate change projections 

(1976-2100) 

• discretized continuous variables 

• Confusion matrices with 

available dataset 

• Comparison of variance 

and standard deviation of 

both predicted and 

observed 

• the BN was able to 

correctly classify 87.50% 

of instances for PO4
3-. 

 

• sensitivity analysis: PO4
3- loading is 

mostly influenced by runoff (111% of 

change), P in the runoff (102%) and 

diffuse sources (101%) 

• increased temperature and decreased 

precipitation in spring and summer will 

lead to increased immobilisation of P in 

soil 

• flow reduction equals a reduction P 

sediment transport 

• increase of dry prolonged conditions 

might speed up the process of soil erosion 

• “PO4
3- loadings” highly sensitive to “total 

P Loading”, “P runoff”, “P diffuse 

sources”  

• large uncertainty for spring and summer 

loadings 

• nutrient loadings sensitive to hydrological 

conditions. 

Sperotto et al., 

(2019a, 2019b) 

The link future climate 

change scenarios and land-use 

management to ecological 

status (cyanobacteria 

biomass) in Lake Vansjø in 

Norway. 

Policy, Ecology • the effects of the climate and management 

scenarios on river hydrology and chemistry 

modelled by the catchment models PERSiST 

(Futter et al., 2013) and INCA-P (Wade et al., 

2002) 

• Total P produced is used as input in the lake 

model 

• outcomes of the process-based models are used as 

BN input and considered a source of uncertainty 

Comparison of different model 

versions. Accuracy in terms of 

bias is considered for node 

states against the observations. 

• BN helped with understanding the 

mismatch between process-based models 

and observations because it accounted for 

uncertainties 
• the BN approach allows the inclusion of 

biological indicators which aren’t present 

in traditional process-based models 

• BNs are limited in their ability to model 

ecological processes due to their inability 

to model feedback loops. 

Moe et al., (2016) 

To assess and value the 

delivery of ecosystem 

services from riparian buffer 

strips in a generic ecosystem 

to investigate the general 

effectiveness of policy 

interventions with different 

scenarios relevant to the East 

and West of England.  

Policy • co-development with experts 

• riparian vegetation as buffer strips examined in 

alternative management practices  

• output nodes: “flood risk”, “water quality” (BOD 

as water quality indicator).  

• Netica software (Norsys Software Corp, 2016) 

• regional scale 

• static model 

• hybrid BN 

N/A • natural vegetation optimal buffer zone 

management for all scenarios 

• riparian buffers have greater impact on 

flood control in scenarios with steeper 

slopes  

• utility values show little variation but that 

might be due to the parameterization 

choice (generic), more context specific 

parameterization may lead to different 

results. 

• further exploration of sensitivity analysis 

is needed. 

McVittie et al., 

(2015) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/river-hydrology
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Saginaw Bay, Lake Huron, 

USA. Objectives: to assess 

the effects of including 

uncertainty in predictor and 

response variables on 

parameter estimation and 

prediction by comparing the 

observation error model and 

simple model results and to 

use these models to support 

the development of P targets. 

Ecology • monitoring data 

• TP concentration was used as a driver for water 

quality 

N/A • compared with results from an analogous 

simple model using sample averages, the 

observation error model has a lower 

predictive uncertainty and predicts lower 

chlorophyll and P concentrations under 

contemporary lake conditions. 

Cha and Stow, 

(2014) 

A typical dairy farm in the 

south Otago region, New 

Zealand. The development of 

a robust tool that could be 

used to investigate and 

identify which sources and 

processes are dominating total 

phosphorus losses and under 

which conditions they occur. 

This information may be used 

to evaluate the probability of 

risk and reward for different 

mitigation strategies. 

Farm 

management 
• annual discretization  

• Netica software (Norsys Software Corp, 2016) 

• BBN incorporates expert opinion and literature 

data 

• A single finding sensitivity analysis expressed as a 

variance reduction  

• discretized continuous variables 

Used data from other sites to 

compare. 

 

• relative importance of network variables: 

annual R, average slope of the farm, 

proportion of overland and subsurface 

flow had the largest effects on TP loads 

exported from dairy farms  

• in this region farmers need to be 

especially attentive to hilly or steep areas 

of the farm by keeping Olsen P levels in 

the target range, grazing cows at lower 

stocking rates, and keeping to other BMPs 

(e.g., avoiding grazing during wet 

periods). 

Lucci et al., 

(2014) 

The Bunyip and Lang Lang 

rivers catchment in southern 

Australia; three dairy farms 

used as case studies. 

Management of 

TP exports in 

New Zealand 

and Australian 

dairy farms 

• expert knowledge of hydrological processes and 

point sources  

• BBN describes P exports  

• annual time step, BN defined at farm scale 

• Netica 3.17 (Norsys Software Corp) 

Validation by expert opinion 

due to lack of data. 
• sensitivity analysis revealed that the total 

exports were more sensitive to the diffuse 

P load than the point P loads, and that 

surface transport was more important than 

subsurface transport. 

McDowell et al., 

(2009) 

The East Canyon Reservoir, 

northern Utah, USA. The 

river is approximately 26 km 

long. Modelling management 

alternatives whilst 1. 

decreasing the risk of P 

pollution and 2. increasing the 

probability of recreational 

use. 

Management • no mention of expert elicitation in the case study, 

only mention of that in the generalised approach 

• probability distributions gathered from modelled 

data (water quality) and historical data  

• no explicit time step 

Lack of independent data to 

validate the model. 

 

• the optimal management scenario is non-

point source reduction in the headwaters 

+ improvement of the TP to target 0.05 

mg l-1 P effluent. Results showed a 

probability of increased fruition of the 

park of 58% and a risk of violating the in-

stream P standard of 17%. 

Ames et al., 

(2005) 

The lake Kanteleenjärvi 

basin, located in the 

Porvoonjoki river basin, 

Finland. Land use is mostly 

water, agriculture, or forest. 

To assess the effects of the 

buffers zones already 

established in the area. Two 

types of buffer zones were 

Management • model fully based on expert elicitation, carried out 

via questionnaires rather than interview in order 

not to influence the experts  

Posterior distributions of 

mowing, P-status, dissolved 

phosphorus and plant diversity 

diverged significantly from 

prior distributions indicating 

inconsistency in the 

assessment. 

• slope, soil type and plant coverage were 

the most influential variables on erosion 

and soil P for water experts, but none of 

the variables was predominant. Field 

length and orientation were also essential 

• gap in knowledge with respect to how 

much erosion affects particle bound P 

• Water protection experts estimated that P-

status, soil fertility, management 

Tattari et al., 

(2003) 
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analysed: (1) zones located 

along waterways and (2) dry 

meadows between forest and 

field south facing. 

measures, particle bound P, and soil type 

influenced dissolved P. The link strength 

direction of the variables grazing and 

rotational grazing to dissolved P varied 

between the experts 

• most water protection experts strongly felt 

that buffer zones did not affect the P-

status of the soil. On dry meadows, the P-

status may decrease significantly. 
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1.5 Research aims and thesis structure 

This research aims to develop and test the application of Bayesian Belief Networks in modelling 

phosphorus concentrations in four Irish agricultural catchments monitored at high frequency, described 

in Chapter 2. To achieve the overall aim, the thesis explores the following questions:  

(1) Can high-frequency and high-resolution data, coupled with detailed understanding of catchment 

processes based on long-term monitoring, reduce a BBN’s predictive uncertainty? Chapter 3 describes 

the model parameterization for a hybrid BBN aimed at predicting P concentrations at the outlet of a 

grassland-dominated catchment monitored at high frequency. Advantages and limitations of this 

modelling approach are also discussed in the chapter.  

(2) Are Bayesian Belief Networks transferable across agricultural catchments with diverse land uses 

and hydrology? Chapter 4 describes the steps taken to parameterize the BBN to further three agricultural 

catchments and discusses the transferability of the approach. In this chapter, an expert elicitation 

exercise is deployed to fill data gaps outlined in the previous chapter. 

(3) What are the projections of climate-induced changes in P concentrations for different hydrological 

regimes and land uses using a Bayesian Network approach? Chapter 5 explores the application of 

multiple downscaled discharge scenarios in the BBNs developed in Chapter 4 to predict P 

concentrations under climate change. Advantages and limitations of applying the scenarios are also 

discussed. 

A summary of research achievements and limitations, as well as the implications for environmental 

modelling and management are discussed in Chapter 6. The conclusions are presented in Chapter 7 with 

recommendations for future research.  
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2. Study areas 

 

 

 

 

 

 

 

 

 

Figure 2.1 View of the Castledockrell catchment, Ireland, photo taken by me during a field visit. 
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2.1 Introduction 

This study focusses on four (< 1200 ha) agricultural catchments in the east and south of Ireland: 

Timoleague, Ballycanew, Castledockrell (Figure 2.1), and Dunleer, monitored by the Agricultural 

Catchments Programme (ACP), Teagasc (Wall et al., 2011). Ireland (Figures 2.2, 2.3, and 2.4) is located 

in the Northern Hemisphere, with an average altitude of 118 meters above sea level. The highest 

mountain peak is Carrauntoohil at 1039 meters, located in the south-west. The geology of Ireland 

includes metamorphic rocks, such as slates and quartzites, found in Counties Donegal, Kerry, and 

Wicklow. Igneous rocks are common in the north-east, while granites can be seen in Counties Donegal, 

Armagh, Down, Wicklow, and Galway. Sedimentary rocks are common in the south-west, while 

limestones cover much of Ireland, including the midlands (Geological Survey) (Figure 2.3). The mean 

annual precipitation in Ireland was 1230 mm for the period 1981-2010 (Walsh, 2012), which is shown 

for the RoI in Figure 2.4, bottom left panel. Meanwhile, the annual precipitation in 1991-2020 was 1288 

mm, and the mean annual air temperature for the period 1991-2020 was 9.8°C (Curley et al., 2023). 

In 2005, the agri-food sector collectively constituted approximately 8.6% of the RoI’s gross domestic 

product (GDP) (Hynes et al., 2013). Primary agriculture retains greater significance in the Irish 

economy compared to many other EU member states, with agriculture contributing 2.7% to Ireland's 

GDP in 2005, contrasting with the EU average of 1.6% (Hynes et al., 2013). Land use (Corine 

Landcover released in 2018) is shown in Figure 2.4 (top left panel, data available from EPA, 2018). 

Agricultural outputs have increased from 313 million € per year to 8.1 billion € (2009-2019), which is 

linked to increased herd sizes for both total cattle and dairy cattle. This period of economic growth and 

change is linked with a deterioration of water quality in lakes and rivers, which are also part of the RoI’s 

natural capital (Mellander and Jordan, 2021). The EU Water Framework Directive River Waterbody 

Status for the RoI is shown in Figure 2.4 (bottom right panel, data available from (EPA, 2019)).  

The Agricultural Catchments Programme (ACP) was initiated to evaluate the Good Agricultural 

Practice measures implemented under the EU Nitrates Directive and funded by the Irish Department of 

Agriculture, Food and Marine (Jordan et al., 2012). The programme started in 2009 in six agricultural 
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catchments with contrasting hydrology and land uses, equipped with high-frequency water quality 

monitoring infrastructure. Within the ACP, extensive monitoring and research have been undertaken to 

understand the drivers and controls on nutrient loss, and catchment responses to changing weather 

conditions and agricultural practices, including impacts of climate change and mitigation measures 

(Mellander and Jordan, 2021). The catchments are located primarily along the East and Southern coast 

of Ireland (Figure 2.2) and have different agricultural land uses, geology, and contrasting hydrology 

(see Table 2.2 for baseflow and flashiness indices). The catchments were chosen because the only 

significant anthropogenic pressure is from agriculture, with housing density being low, and domestic 

waste generally treated with septic tank systems (Jordan et al., 2012). A brief description of each 

catchment is given in this Chapter, and further information regarding management, hydrological 

characteristics, phosphorus loss, and connectivity, is provided in Table 2.2. Each catchment is equipped 

with a bankside analyser located at the catchment outlet (marked in the figures as “Outlet Hydro-

Station”) to measure river discharge (Q, m3 s-1), total phosphorus (TP, mg l-1), total reactive phosphorus 

(TRP, mg l-1) concentrations, and turbidity (NTU) at a sub-hourly rate (every 10 minutes). The 

catchments are also equipped to monitor nitrate fluxes (reported for example in Mellander and Jordan, 

(2021)), which, however, are not an object of this study. Additional information on the catchments is 

also reported in Negri and Mellander, (2024). 
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Figure 2.2 Location of the Republic of Ireland and of the four catchments. Mapped vectors are sourced from the R package 

naturalearthdata (South, 2017) 
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Figure 2.3 Basic information on the Republic of Ireland, including relief (top left, from the Copernicus Land Monitoring 

Service), the Corine Land Cover, showing 5 main categories of land use (Agricultural, Artificial, Seminatural, Water bodies 

and Wetlands, top right, from the Copernicus Land Monitoring Service), the average annual rainfall 1981-2010 (data from 

Met Eirann, bottom left), and the WFD Rivers Ecological Status (bottom right).
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Figure 2.4 Bedrock geology (1:1 million) in the Republic of Ireland as published by Geological Survey Ireland in 2014. 
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2.2 Timoleague 

The Timoleague catchment (Figures 2.5 and 2.6) is located near Clonakilty, in County Cork. It extends 

over 758 ha, of which 85-89% is grassland (86% of enterprises were dedicated to dairy, 14% to dry 

stock, in 2020) and 4-5% to tillage. This catchment, located in West Cork, is representative of the most 

intensively farmed area in Ireland, having the highest concentration of dairy farms (Teagasc - 

Agriculture and Food Development Authority, 2018). Stocking rates are estimated at 1.98 livestock 

units (LU) ha-1 (Sherriff et al., 2015) and many of the dairy farms are managing soils under derogation 

(i.e. deviation from the EU Nitrates Directive, with organic nitrogen (N) loading between 170 and 250 

kg ha-1year-1), (Jordan et al., 2012). Dominant geology in the area is sand and siltstone. In general, the 

soils are well drained except for small areas neighbouring the stream at the valley bottom. Overall, this 

means that the catchment is mostly groundwater-fed, and more than half the P load (59%) is delivered 

via belowground pathways (Mellander et al., 2016). Given the predominantly free-draining nature of 

the soils, N is considered the main nutrient at loss risk via leaching to groundwater (Fealy et al., 2010), 

however, TRP (total reactive phosphorus) concentrations are above the European Environmental 

Quality Standards (EQS) (Mellander et al., 2022).   



44 

 

 

Figure 2.5 Study area: the Timoleague catchment in County Cork. Elevation varies between 2 m a.s.l. and 122 m a.s.l. 

Location of the monitoring equipment is shown as dot (Outlet Hydro-Station), while magenta lines represent streams, and 

yellow lines represent artificial drainage. 

 

Figure 2.6 Average Morgan P index as surveyed in the catchment Timoleague in 2014. Soil Morgan P is measured every 4 

years in each ACP catchment. 
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2.3 Ballycanew 

The Ballycanew catchment (Figures 2.7 and 2.8) is located near Gorey, County Wexford, and the total 

area amounts to 1191 ha, with 78% grassland and approximately 20% tillage. None of the farms in this 

catchment are tillage only, all of them have a combination of tillage plus grassland. The dominant 

geology is rhyolite and slate. Here, the soils have poor drainage characteristics due to deposits of heavy 

clays. Landowners in the area have improved soil drainage for grass production by installing tile and 

mole drains (Shore et al., 2015). Due to the low soil permeability, the catchment has a flashy hydrology 

and a high risk of phosphorus loss to water through quick and erosive surface pathways during heavy 

rain events (Mellander et al., 2015). This is the catchment with the highest runoff flashiness index: 

Q5\Q95 was 126 for the period 2010-2020 (Mellander et al., 2022), whereby Q5 represents high- flow 

and Q95 represents low flow. Because it is a surface-driven catchment, the main pressure for P pollution 

is not related to sources but rather to transport, and TRP concentrations are above the 0.035 mg l-1 EQS 

(Mellander et al., 2022). In addition, these characteristics make the catchment less at risk of N pollution 

(Mellander et al., 2015), and NO3
- concentrations are below the European Environmental Quality 

Standards. 
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Figure 2.7 Study area: the Ballycanew catchment in County Wexford. Elevation varies between 21 m a.s.l. and 232 m a.s.l. 

Location of the monitoring equipment is shown as dot (Outlet Hydro-Station), while magenta lines represent streams, and 

yellow lines represent artificial drainage. 

 

Figure 2.8 Average Morgan P index as surveyed in the Ballycanew catchment in 2013. Soil Morgan P is measured every 4 

years in each ACP catchment. 
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2.4 Castledockrell 

This catchment (Figures 2.9 and 2.10) is located between Enniscorty and Bunclody, also in County 

Wexford. Total area is 1117 ha, with approximately 54% dedicated to tillage and 39% to grassland. 

Soils are typically well drained: free-draining brown earths with slate and shale or siltstones beneath, 

which are ideal for spring barley (main tillage in this area). However, some of the lower lying areas 

near the stream (East- Southeast of the catchment) present poorly drained gley soils that are mostly 

artificially drained. Based on these characteristics, the catchment is considered at risk of N losses to 

water through leaching, but not at P loss risk: NO3
- concentrations are above the European EQS. This 

catchment represents an exception within the ACP study catchments in that there is a single central 

wastewater treatment plant (Jordan et al., 2012). P concentrations in this catchment are relatively low, 

and the chance of TRP concentrations exceeding EQS limit was 22.5 % for the period 2010-2020 

(Mellander et al., 2022). 
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Figure 2.9 Study area: the Castledockrell catchment in County Wexford. Elevation varies between 18 m a.s.l. and 215 m 

a.s.l. Location of the monitoring equipment is shown as dot (Outlet Hydro-Station), while magenta lines represent streams, 

and yellow lines represent artificial drainage. 

 

Figure 2.10 Average Morgan P index as surveyed in the Castledockrell catchment in 2013. Soil Morgan P is measured every 

4 years in each ACP catchment. 
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2.5 Dunleer 

The Dunleer catchment (Figures 2.11 and 2.12) is located near the village of Dunleer in County Louth. 

Total area is 948 ha with tillage (33-42%) and grassland (49%). In this catchment soil drainage classes 

are a mixture of well, moderately, imperfectly and poorly drained soils (Thomas et al., 2016b), the latter 

covering up to 70% of the total area (Teagasc - Agriculture and Food Development Authority, 2018). 

Soils are underlain by a mix of greywacke, mudstone, and limestone geology. Hence, P is considered 

the main nutrient at risk of loss though overland flow, although there is not a single dominant P transport 

pathway (Mellander et al., 2012). N is also considered at risk through leaching on the more freely 

drained part of the catchment (Eastern part of the area). This is because both TRP and NO3
- 

concentrations are above the EQS.  
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Figure 2.11 Study area: the Dunleer catchment in County Louth. Elevation varies between 26 m a.s.l. and 223 m a.s.l. 

Location of the monitoring equipment is shown as dot (Outlet Hydro-Station), while magenta lines represent streams 

(artificial drainage not mapped). 

 

Figure 2.12 Average Morgan P index as surveyed in the Dunleer catchment in 2014. Soil Morgan P is measured every 4 

years in each ACP catchment. 
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2.6 Soil Phosphorus in the study areas 

Figures 2.6, 2.8, 2.10 and 2.12 show the Morgan P index in each catchment fields obtained in 2013 

(Castledockrell and Ballycanew) and 2014 (Dunleer and Timoleague) surveys, adjusted for land use as 

described in Thomas et al., (2016b). Morgan P index interpretation is given in Table 2.1: Index 3 

indicates optimum agronomic levels of P, while Index 4 indicates surplus levels. Morgan P is used in 

the National Action Programme (NAP) soil P test to determine the phosphorus allowance for each farm 

when the level is either 1 or 2. The P allowance quantifies Total P in terms of Organic P (produced and 

or imported) and Inorganic P (bought). For farms that are not under derogation from maximum 

permitted organic N loading up to 170 kg ha-1year-1, the allowances only allow for soil P maintenance; 

This means that the Total P applied should not lead to an increase in the Morgan P Index. Farms under 

derogation from the maximum permitted organic N loading are required to keep a soil P test inventory  

on grassland and not to apply any inorganic P to fields with Morgan P Index 4 (Jordan et al., 2012). In 

this thesis, Morgan P levels are used as a basis to characterise soil P sources, as described in the 

following chapter.  

Table 2.1 Morgan P Index levels per land use as reported in (Wall and Plunkett, 2020). 

 
Grassland Tillage 

P (mg l-1) P (mg l-1) 

Index 1 (deficient) 0.0-3.0 0.0-3.0 

Index 2 (low) 3.1-5.0 3.1-6.0 

Index 3 (optimum) 5.1-8.0 6.1-10.0 

Index 4 (excessive) Above 8.0 Above 10.0 
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Table 2.2 Characteristics of study sites. 

  Grassland A* Grassland B Arable A Arable B Reference 

General 

Name Timoleague Ballycanew Castledockrell Dunleer - 

Description 
Well-drained, grassland 

dominated 

Poorly-drained, grassland 

dominated 

Well-drained, tillage 

dominated 

Moderately drained, 

tillage dominated 
- 

Location 51°38’N, 8°47’W 52°36’N, 6°20’W 52°34’N, 6°36’W 53°49’N, 6°27’W Sherriff et al., (2015) 

Size 758 ha 1191 ha 1117 ha 948 ha 
Teagasc - Agriculture and Food 

Development Authority, (2018) 

Median slope 4° 3° 3° 3° Sherriff et al., (2015) 

Altitude (m a.s.l.) 2-122 19-230 18-215 26-223 
Teagasc - Agriculture and Food 

Development Authority, (2018) 

30-year average 

rainfall 

(mm yr-1)a 

1228 906 906 758 Sherriff et al., (2015) 

Average field size (ha) 2.0 3.04 3.32 2.70 Thomas et al., (2016b) 

Management 

Land use 
85% grassland, 4% 

tillage 

78% grassland, 20% 

tillage 

54% tillage, 39% 

grassland 

33% tillage, 49% 

grassland 
Thomas et al., (2016a) 

Stocking rate 

(LU ha-1) 
1.98 1.04 0.40 0.77 Sherriff et al., (2015) 

Mean total P fertilizer 

(kg ha-1 yr-1) 2010-

2013b 

N/A N/A 28.0 33.4 McDonald et al., (2019) 

Mean total organic P 

fertilizer 

(kg ha-1 yr-1) 2010-

2013b 

N/A N/A 3.43 21.9 McDonald et al., (2019) 

Surplus P range 

(kg ha-1 yr-1) 2010-

2013b 

N/A N/A 1.9 to 7.5 -0.42 to 25.5 McDonald et al., (2019) 

Average areal 

proportion of P applied 

(%) as less than, equal 

to or exceeding NAP 

limit in 2010-2013 and 

mean NAP limit  

(kg ha-1 yr-1)b 

N/A N/A 

Less than (56%), equal 

(7%), exceeding (37%), 

allowance was 26.8. 

Less than (50%), equal 

(17%), exceeding (33%), 

allowance was 26.4. 

McDonald et al., (2019) 

Organic application 

other than farmyard 

manure closed period 

1st October - 13th January 1st October - 13th January 1st October - 13th January 1st October - 16th January 

https://www.teagasc.ie/news--

events/daily/grassland/fertiliser-

spreading-deadline-looms.php 
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Chemical fertilizer 

closed period 

15th September – 27th 

January 

15th September – 27th 

January 

15th September – 27th 

January 

15th September – 30th 

January 

https://www.teagasc.ie/news--

events/daily/grassland/fertiliser-

spreading-deadline-looms.php 

Farmyard manure 

application closed 

period 

1st November -12th 

January 

1st November -12th 

January 

1st November -12th 

January 

1st November -15th 

January 

https://www.teagasc.ie/news--

events/daily/grassland/fertiliser-

spreading-deadline-looms.php 

Hydrology 

Soil series 

Typical Brown Earths + 

Typical Brown Podzols 

(84%), Typical Surface-

water Gleys (5%), 

Humic/ Typical Alluvial 

Gleys (4%) 

Typical Surface-water 

Gleys or Groundwater 

Gleys (71%), Typical 

Brown Earths (29%) 

Typical Brown Earths 

(88%), Gleyic Brown 

Earths (5%), Typical 

Groundwater Gleys (5%) 

Stagnic Brown Earths 

(35%), Typical Surface-

water Gleys (25%), 

Typical Brown Earths 

(22%) 

Thomas et al., (2016a) 

Drainage class Well-drained 
Poorly drained, well 

drained in the uplands 
Well drained 

Well, moderately, 

imperfectly and poorly 

drained 

Thomas et al., (2016a) 

Proportion of poorly 

drained soils on total 

area 

N/A 85% 20.1% N/A Shore et al., (2014) 

Dominant flow 

pathway 
Sub-surface Surface Sub-surface Surface Thomas et al., (2016a) 

Stream order 2 2 3 3 Mellander et al., (2012) 

Runoff coefficient 

2009-2014 
0.55 0.48 0.54 0.48 Thomas et al., (2016b) 

Runoff flashiness 

(Q5:Q95) 
77 202 55 140 Thomas et al., (2016b) 

Runoff flashiness 

(Q5:Q95) in 2010-2020 
34 126 31 61 Mellander et al., (2022) 

Baseflow index (BFi) in 

2010-2020 
0.73 0.63 0.78 0.66 Mellander et al., (2022) 

Ditch density (km2km-

2) and area of channel 

network 

(% of catchment area) 

1.7 1.3 (1.26%) 5.7 (0.53%) 2.3 
Shore et al., (2015), Thomas et 

al., (2016a) 

Channel density (%) 

per sediment retention 

class 

N/A 

Low (15%), low-

moderate (10%), 

moderate-high (26%), 

high (49%) 

Low (44%), low-

moderate (8%), 

moderate-high (32%), 

high (16%) 

N/A Shore et al., (2015) 

Stream length (m, 

calculated from 
6515 12188 10979 16898 - 
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existing spatial data, 

ditches are excluded) 

P loss 

Mean suspended 

sediments 

concentration 

2009-2012 (mg l-1) 

< 6 14 < 6 17 Sherriff et al., (2015) 

Mean suspended solids 

loads 

2009-2012 (t km-2yr-1) 

15.43 26.64 11.96 24.39 Sherriff et al., (2015) 

Average P losses 

(kg TP ha-1) 2010-2013 
N/A 1.035 0.342 N/A Mellander et al., (2015) 

Total Dissolved P (mg l-

1) ~ Total Reactive P 

(mg l-1) at catchment 

outlet 

N/A 
TDP = 1.1475*TRP + 

0.0078 

TDP = 1.1975*TRP + 

0.0058 
N/A Shore et al., (2014) 

% areas at highest risk 

of legacy soil P 

transfers in baseline 

and (resampled) years 

with CSA Index 

threshold ≥ 5 

2.9 (2.4) 5.6 (4.1) 1.4 (1.1) 2.9 (3.0) Thomas et al., (2016b) 

Water Extractable P 

(WEP) ~ Soil Morgan P 

WEP = 

0.57*SoilMorganP+0.22 

WEP = 

0.58*SoilMorganP+1.13 

WEP = 

0.09*SoilMorganP+2.07 

WEP = 

0.31*SoilMorganP+1.73 
Thomas et al., (2016b) 

Connectivity 

Mean HSA size m2 

(% of catchment)c 
216738 (2.9) 703147 (6) 215014 (1.9) 398789 (4.3) Thomas et al., (2016a) 

% hydrologically 

disconnected area over 

total catchment areac 

33.4 24.9 16.8 27.6 Thomas et al., (2016a) 

a1981-2010 mean annual rainfall 
bCalculated on an area of 1043.6 ha (Arable A) and 750.4 (Arable B) 
cCalculated based on quick-flow and rainfall depths based on storm events (2009-2014) 

*in Grassland A monitoring started in 2010 rather than 2009 
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3. Bayesian network modelling of phosphorus pollution in 

agricultural catchments with high-resolution data 

To avoid repetitions, this Chapter has been redrafted from the published: Negri, C., Mellander, P.-E., 

Schurch, N.J., Wade, A.J., Gagkas, Z., Wardell-Johnson, D.H., Adams, K., Glendell, M., 2024. 

Bayesian network modelling of phosphorus pollution in agricultural catchments with high-resolution 

data. Environmental Modelling & Software 106073. https://doi.org/10.1016/j.envsoft.2024.106073, 

published under a Creative Commons License (https://creativecommons.org/licenses/by/4.0/), and the 

Supplementary Materials can be found in Chapter 8. 

 

 

 

 

 

Figure 3.1 The conceptual framework underpinning Chapter 3, where high-frequency and high-resolution datasets informed 

the compilation of the BBN’s CPTs and equations, and, where data was lacking, priors were identified through literature 

review and the aid of experts. 

  

https://doi.org/10.1016/j.envsoft.2024.106073
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Abstract 

A Bayesian Belief Network was developed to simulate phosphorus (P) loss in an Irish agricultural 

catchment. Septic tanks and farmyards were included to represent all P sources and assess their effect 

on model performance. Bayesian priors were defined using daily discharge and turbidity, high-

resolution soil P data, expert opinion, and literature. Calibration was done against seven years of daily 

Total Reactive P concentrations. Model performance was assessed using percentage bias, summary 

statistics, and visually comparing distributions. Bias was within acceptable ranges, the model predicted 

mean and median P concentrations within the data error, with simulated distributions more variable 

than the observations. Considering the risk of exceeding regulatory standards, predictions showed lower 

P losses than observations, likely due to simulated distributions being left-skewed. We discuss model 

advantages and limitations, the benefits of explicitly representing uncertainty, and priorities for data 

collection to fill knowledge gaps present even in a highly monitored catchment. 

3.1 Introduction 

Phosphorus (P) losses from farmland to surface waters (diffuse P losses) continue to be a major cause 

of water quality deterioration and eutrophication (European Environment Agency, 2019). P remains a 

major source of water quality failures in Ireland, particularly due to the slow release of soil legacy P 

(Schulte et al., 2010), which is often unaccounted for in soil P tests (Thomas et al., 2016b). There are 

multiple challenges facing land managers, stakeholders, and policymakers when tackling P pollution in 

agricultural catchments in Northwest Europe (Bol et al., 2018). Smaller catchments (<50 km2) vary in 

their vulnerability to P losses, necessitating a catchment-specific understanding of stressor-impact 

relationships and targeting of mitigation measures (Glendell et al., 2019). Drivers of P transfer differ 

across spatial scales (point, plot, field, hillslope, and catchment), and the understanding gained from 

laboratory or field measurements may not be directly applicable at the catchment scales represented in 

models (Brazier et al., 2005; Wade et al., 2008). Additionally, the understanding of key drivers of 

catchment vulnerability is complicated by different P sources and pathways that result in similar 

concentration-discharge hysteresis relationships at the catchment outlet. This confounding often makes 
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it difficult to determine the most important P sources and pathways to target with P reduction measures 

and to predict their likely effect (Bol et al., 2018). 

Soil P content and excess plant available P, derived from fertilizer application, have been identified as 

the main sources of diffuse P in Irish agricultural catchments (Regan et al., 2012), while some studies 

stress the importance of point pollution sources (Campbell et al., 2015; Gill and Mockler, 2016a; Vero 

et al., 2019) as well as legacy P (Thomas et al., 2016b). In addition, the transport and delivery of P in 

Irish agricultural catchments are dominated by weather and hydrological conditions rather than initial 

soil P (Mellander et al., 2018, 2015b). To investigate diffuse P pollution sources in Irish agricultural 

catchments, modelers have used two main approaches: 1) the critical source areas (CSAs) approach 

(Packham et al., 2020; Thomas et al., 2021, 2016c), and 2) the load apportionment approach (Crockford 

et al., 2017; Mockler et al., 2017). CSAs methods aim at identifying and mapping areas of high 

hydrological activity connected with areas of elevated P mobilization, thus facilitating the transfer of P 

from terrestrial to aquatic ecosystems (Djodjic and Markensten, 2019). One of the biggest advantages 

of CSAs is that they provide the basis to spatially identify potential locations for mitigation measures, 

however, these approaches require extensive sampling and mapping of P sources and hydrological 

connectivity, and provide qualitative results that might be difficult to interpret for policy, to validate, or 

evaluate at larger scales (Djodjic and Markensten, 2019). In contrast, Load Apportionment Models 

(LAMs), calculate nutrient loads from all sources and then estimate factors to reduce such loads to 

account for treatment (e.g. wastewaters) or environmental attenuations. Estimated loads are then 

compared with loads calculated from measurements (Mockler et al., 2016a). This method can identify 

the dominant pollution contributors in catchments and sub-catchments, while also assessing 

management strategies (Mockler et al., 2016a). However, LAMs can be difficult to interpret for non-

experts, because of the uncertainties around load estimation, especially when used with low-frequency 

datasets, which limits their utility as management tools (Crockford et al., 2017).  

Catchment nutrient models are crucial to summarize current knowledge and process understanding, as 

well as to test land use and climate scenario effects on water quality, which can inform mitigation action 

(Jackson-Blake et al., 2015). However, mechanistic models of water quality (e.g. catchment scale P 
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models like INCA-P, (Jackson-Blake et al., 2016), can have parameters that are unmeasurable yet 

heavily influence model outputs (Jackson-Blake et al., 2017) and are often over-parameterized, 

especially when upscaling to watershed scales (Radcliffe et al., 2009). Additionally, P models often 

perform inadequately in rural catchments where diffuse sources are dominant, and model outputs’ 

accuracy is limited by current knowledge (Jackson-Blake et al., 2015). Furthermore, water quality and 

nutrient transport models are frequently hindered by constraints associated with available data, the 

presence of non-linear interactions, and temporal and spatial scale representation issues (Blöschl et al., 

2019; Harris and Heathwaite, 2012; Rode et al., 2010; Wellen et al., 2015). Hence, there is a recognition 

of the importance of incorporating uncertainty explicitly in hydrological and water quality modelling, 

not only through error bounds on output values, but by representing uncertainty as an intrinsic aspect 

of inexact environmental science (Beven, 2019; Pappenberger and Beven, 2006). Additionally, given 

the high levels of uncertainty and complexities involved in water quality mitigation and modelling, 

there is a pressing need to develop and apply probabilistic modelling tools for Environmental Risk 

Assessment (ERA) as an alternative to deterministic methods, and Bayesian Belief Networks (BBNs) 

are particularly well suited for this purpose (Moe et al., 2021). BBNs are a probabilistic graphical 

modelling framework that represents a set of variables and their conditional dependencies using a 

Directed Acyclic Graph (DAG) i.e., a network that has no cycles. BBNs are a powerful tool for 

modelling complex systems and have been used to integrate the disparate physicochemical, biotic/ 

abiotic, and socio-economic aspects (Penk et al., 2022) needed to simulate P in river catchments (Jarvie 

et al., 2019). BBNs show promise as decision support tools in water resource management (Phan et al., 

2019) because they represent causal relationships between variables transparently and graphically, 

making it straightforward to understand and build BBNs with the participation of experts. BBNs 

facilitate an improved understanding of risk by explicitly representing the uncertainties and assumptions 

in the model as probability distributions, and they provide a systems-level understanding of a problem 

(Aguilera et al., 2011; Barton et al., 2012; Forio et al., 2015; Glendell et al., 2022; Kaikkonen et al., 

2021; Kragt, 2009; Uusitalo, 2007). BBNs’ can make predictions with sparse data (Forio et al., 2015; 

Glendell et al., 2022; Uusitalo, 2007); and the probabilistic outputs from BBNs can be used to 

recommend actions to policy makers, and to communicate best practices to stakeholders (Barton et al., 
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2012; Kaikkonen et al., 2021; Uusitalo, 2007). The probability distributions used in BBNs represent 

(most) model parameters explicitly encoding the uncertainties in the prior knowledge, data, and 

parameters (Sahlin et al., 2021). These prior distributions can be assumed, elicited from expert 

knowledge, or quantified using prior data. However, hybrid Bayesian Networks (BBNs that have a 

combination of continuous and discrete variables) are rarely applied in water quality modelling, and 

they have not been tested in a catchment with high-resolution monitoring data. Glendell et al., (2022) 

found that a hybrid BBN developed using standard regulatory data in seven test catchments in Scotland 

performed well, albeit with relatively large predictive uncertainty. In this work, we test whether a hybrid 

BBN can perform better when applied and calibrated in a catchment with long-term high-resolution 

data to understand whether the wide predictive uncertainty can be reduced or whether it is an irreducible 

property of this stochastic modelling approach. Hence, in this study we developed a hybrid BBN model 

of in-stream P concentrations in a poorly drained Irish agricultural catchment to: (1) model P losses in 

a data-rich meso-scale agricultural catchment using high-resolution observational data and expert 

advice; (2) evaluate the impact of rural point sources (septic tanks and farmyards), which are seldom 

represented in catchment water quality models, on P losses, and (3) evaluate the strengths and 

weaknesses of using BBNs as a modelling framework for high-resolution observational hydrological 

data. 

3.2 Materials and Methods 

3.2.1 Study area and data collection 

This study focusses on the Ballycanew catchment (in older papers, also referred to as Grassland B, for 

example in Sherriff et al., (2015), Figure 3.2) located near Gorey, county Wexford, Ireland. The 

catchment covers 1207 ha and comprises of 78% grassland and 20% tillage land use, while the 

remainder 2% is considered seminatural land use (Table 3.1). The reader is referred to Chapter 2.3 and 

Table 2.2 for further information on the catchment. The Ballycanew catchment is equipped with a river 

bank-side kiosk where the instrumentation is installed, its location is marked in Figure 3.2 as Outlet 

Hydro-Station (Mellander et al., 2012; Jordan et al., 2007). River water level is recorded every 10 
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minutes in a stilling well in the catchment outlet using an OTT Orpheus Mini vented-pressure 

instrument. The river discharge is calculated from a rating curve developed in a flat-V weir using an 

Acoustic Doppler Current meter. Total phosphorus (TP) and total reactive phosphorus (TRP) 

concentrations are monitored with a Hach-Lange Phosphax within the range of 0.01– 5.00 mg l-1, co-

located with a Solitax Hach-Lange turbidity (turbidity units, NTU, also recorded every 10 minutes) 

sensor field-calibrated to suspended sediment concentration (mg l-1) (Sherriff et al., 2016). 

 

Figure 3.2 Study area: the Ballycanew catchment in County Wexford. Elevation varies between 21 m a.s.l. and 232 m a.s.l. 

The location of the hydrometric station is marked with the black dot, while magenta lines represent streams, and yellow lines 

represent artificial drainage. 

 

Data from the bank-side monitoring station (Figure 3.2, Outlet Hydro-Station) collected every 10 

minutes (total discharge, average total reactive P concentrations, and average turbidity), were 

aggregated to daily average values for this study.  

3.2.2 Bayesian Belief Network development 

Bayesian Networks are directed acyclic graphs (DAGs), that represent a set of variables and their 

conditional dependencies using a graphical model. The term “directed acyclic” means that there is a 

sequential flow of information among variables and no dynamic feedback loops (Barton et al., 2012; 

Kragt, 2009). An introduction to Bayesian Networks and their application in ERA can be found in Moe 

et al., (2021), and won’t be repeated here. The relationships between variables in a BBN are 
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parameterised using conditional probability distributions or conditional probability tables when 

variables are discrete (CPTs), and the graphical network is a description of such relationships (Borsuk 

et al., 2004). A hybrid Bayesian network combines both discrete and continuous variables represented 

as probability distributions. In this study, a conceptual BBN was developed in GeNIe 2.4 (BayesFusion, 

2019) visualizing the ‘source-mobilisation-transport-continuum’ (Haygarth et al., 2005) and identifying 

the main drivers of phosphorus pollution in the catchment. The initial DAG comprised of 63 nodes and 

81 arcs, with 325 independent parameters out of 483, with parameter count defined as the total size of 

CPTs while independent parameters are those not implied by other parameters. The average number of 

node parents (indegree) was 1.3, and the maximum number of node parents was 5. An extensive 

literature review was conducted summarizing the knowledge base for the subject which was used to 

inform the priors (distribution shapes, parameter values, and CPTs) for key parameters in the models, 

as shown in Table 3.1. Catchment-specific information was also collated and used to inform the model 

structure and priors (Chapter 2, Table 2.2).   

From the initial parameterization, two models were developed: Model A, which only accounts for 

diffuse reactive P sources (i.e., losses from soil matrix and topsoil), and Model B, which also includes 

P losses from farmyards, which is infrequent in P modelling (Harrison et al., 2019) and septic tanks, 

which are often overlooked as P sources, as opposed to centralized wastewater treatment centres 

(Withers et al., 2014). The models aim at integrating all the total reactive P losses from the different 

compartments at the catchment outlet (“Total catchment in-stream P load”, T month-1) and then 

converting the loads into concentrations (mg l-1) by dividing by the monthly discharge (m3 month-1).  

3.2.3. Expert input to inform key aspects of the model 

Experts from the Agricultural Catchments Programme, the James Hutton Institute, and the Irish EPA 

with relevant areas of expertise (hydrology, hydrochemistry, land management, farm consultancy, 

policy making, and environmental modelling) were consulted in 1-to-1 meetings, and in a group 

workshop. Excluding the authors of this paper, whom we also consider part of the experts’ pool, a total 

of thirteen experts were consulted, and their personal information anonymized. Before the interviews 
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and workshops, experts were provided with a topic information sheet describing the model and the aims 

and objectives of the session. The experts were asked to provide their input on the conceptual model 

structure to ensure that the causal dependencies between variables made sense and none were missing; 

parameterising variables and their relationships using equations; approving the CPT values for the 

“Buffers” (proportion of each type of buffer strip present in the catchment) node, as well as deciding 

which loads were impacted by the buffer reduction (i.e., only surface-pathway derived nodes); and were 

asked to provide recommendations for further information sources (e.g., reports, publications, or 

datasets). 

3.2.4 Model structure 

The model structure is presented in Figure 3.3. The complete structure and specification of both models 

are included in Table 3.1 to allow reproducibility and further model application in different contexts. 

Table 3.1 describes the model structure and the conditional probability distributions and describes 

which CPTs were logical, contained expert judgement, and which were derived from data or literature, 

highlighting which sub-models and variables are part of Model A or Model B. In particular, the 

“Hydrology, “Management”, and “Soil erosion and soil P” sub-models are represented in both Model 

A and B, while the sub-models “Septic Tanks” and “Farmyards” are only represented in Model B. An 

illustration of the BBN showing the full distributions is reported in Figure 8.4. 
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Table 3.1 Model specifications organized by sub-model. The “Hydrology, “Management”, and “Soil erosion and soil P” sub-models belong to both Model A and B. 

Variable (symbol) [unit] Conditional Probability Table or states and discretisation boundaries for continuous nodes Description 

Hydrology sub-model (Drivers) 

Month Each month  Calculated as No. days in the month/ 365 

Calculated variables 

Mean total monthly Q (discharge) [m3] 

Very Low 0-109424 Bootstrapped from daily total discharge 

observations (2009-2016) to obtain a Lognormal 

(µ; ơ) discharge distribution with base e for each 

month. Each month’s parameters are shown in the 

table. Discretization of states is based on 

percentiles calculated from the average monthly 

observations (very low<= 5th percentile, low= 5th-

25th percentile, medium= 25th-50th percentile, high= 

50th-75th percentile, very high= 75th-100th 

percentile). 

  µ ơ 

January 13.8 0.17 

February 13.5 0.18 

March 12.9 0.17 

April 12.5 0.19 

May 12.2 0.21 

June 11.8 0.30 

July 11.3 0.32 

August 11.8 0.50 

September 11.5 0.36 

October 12.8 0.40 

November 13.7 0.21 

December 13.8 0.21 

Low 109424-227082 

Medium 227082-373942 

High  373942-806788 

Very High 806788-1124380 

Mean total monthly Surface Flow 

(surface runoff) [m3] 

Very Low 0-28450 Calculated as a portion of mean monthly runoff 

(26%), via hydrograph separation method described 

in Mellander et al., (2012). Discretization of states 

is based on percentiles calculated from 

observations (very low<= 5th percentile, low= 5th-

25th percentile, medium= 25th-50th percentile, high= 

50th-75th percentile, very high= 75th-100th 

percentile). 

Low 28450-59042 

Medium 59042-97225 

High  97225-209765 

Very High 209765-292338 

Mean total monthly Sub-surface 

Stormflow (subsurface runoff) [m3] 

Very Low 0-19696 Calculated as a portion of mean monthly runoff 

(18%), via hydrograph separation method described 

in Mellander et al., (2012). Discretization of states is 

based on percentiles calculated from observations 

(very low<= 5th percentile, low= 5th-25th percentile, 

medium= 25th-50th percentile, high= 50th-75th 

percentile, very high= 75th-100th percentile). 

Low 19696-40875 

Medium 40875-67309 

High  67309-145222 

Very High 145222-202388 
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Mean total monthly Baseflow [m3] 

Very Low 0-61277 Calculated as a portion of mean monthly runoff 

(56%), via hydrograph separation method described 

in Mellander et al., (2012). Discretization of states is 

based on percentiles calculated from observations 

(very low<= 5th percentile, low= 5th-25th percentile, 

medium= 25th-50th percentile, high= 50th-75th 

percentile, very high= 75th-100th percentile). 

Low 61277-127166 

Medium 127166-209407 

High  209407-451801 

Very High 451801-629651 

Management (Drivers) 

Land use 

Arable 0.20 
As reported by Teagasc - Agriculture and Food 

Development Authority, (2018). 
Grassland 0.78 

Seminatural 0.02 

Buffers 

Land use Arable Grassland Seminatural 

2 m 0.98 0.1 1.01*10-6 

>2 m 0.019 0.1 1.01*10-6 

none 0.001 0.8 0.999 
 

Buffer strips are defined as being 2 m in width, more 

than 2 m in width, or absent. Probabilities of having 

either type of buffer according to land use were 

agreed upon with one of the ACP advisors (expert) 

during consultation.  

Calculated variables 

Buffer effectiveness for Particulate P 

(PP) and suspended sediments (SS) 

Very Low 0-0.2 Dependent on the variable Buffers. For 2 m buffers, 

effectiveness is defined as Beta (α=2.9; β=4.5); for 

>2 m buffers it is defined as Beta (α=1.44; 

β=0.789); for no buffers, effectiveness is equal to 0. 

The distributions were fitted to the dataset 

published in Stutter et al., (2021), where negative 

retention data was deleted from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 
0.8-1 

Buffer effectiveness for Total 

Dissolved P (TDP) 

Very Low 0-0.2 Dependent on the variable Buffers. For Buffers 0-2 

m, Buffer effectiveness is defined as Beta (α=1.8; 

β=2.7), for >2 m buffers it is defined as Beta (α=1; 

β=0.8); for no buffers, effectiveness is equal to 0. 

The distributions were fitted to the dataset 

published in Stutter et al., (2021), where negative 

retention data was deleted from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 
0.8-1.0 

Soil erosion and soil P sub-model  

Morgan P 

 Arable Grassland Seminatural 

Morgan1 0.40 0.46 0 

Morgan2 0.49 0.35 0.6 

Morgan3 0.09 0.14 0.3 

Morgan4 0.02 0.05 0.1 
 

Based on land use, proportions of land for each level 

and in each land use category were calculated based 

on the soil survey carried out in 2013 in the 

catchment. Where the Morgan P index was 

unknown, that proportion of land was assigned to the 

dominant index category. For the interpretation of 

the Soil Morgan P Index, the reader is referred to 

Regan et al., (2012). 

Calculated variables 

Monthly Turbidity [NTU month-1] 

Very Low 0-1402 Bootstrapped from daily average turbidity 

observations (2009-2016) to obtain a Lognormal 

(µ; ơ) turbidity distribution with base e for each 

month. Each month’s parameters are shown in the 

Low 1402-1665 

Medium 1665-2270 

High  2270-3391 
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Very High 3391-4344 

table. Discretization of states is based on 

percentiles calculated from the average monthly 

observations (very low<= 5th percentile, low= 5th-

25th percentile, medium= 25th-50th percentile, high= 

50th-75th percentile, very high= 75th-100th 

percentile). 

 
  µ ơ 

January 6.3 0.25 

February 6.0 0.23 

March 5.6 0.23 

April 5.5 0.20 

May 5.3 0.15 

June 5.5 0.15 

July 5.2 0.13 

August 5.2 0.13 

September 5.2 0.12 

October 5.7 0.24 

November 6.2 0.30 

December 6.2 0.30 

Monthly Suspended Sediment 

concentration [mg l-1 month-1] 

Very Low 0-133.3 Calculated as: a * Monthly Turbidity [NTU month-

1] b, where a= 0.567, and b= 1.1109, as described in 

Sherriff et al., (2015). Discretization of states is 

based on percentiles calculated from the average 

monthly calculated observations (very low<= 5th 

percentile, low= 5th-25th percentile, medium= 25th-

50th percentile, high= 50th-75th percentile, very 

high= 75th-100th percentile). 

Low 133.3-165 

Medium 165-237.6 

High  237.6-369.3 

Very High 369.3-480.0 

Water Extractable P (WEP) [mg l-1] 

Low 0-3 Based on variable “Morgan P levels” and “land 

use” (data from 2013) it is calculated with the 

equations available in (Thomas et al., 2016b): for 

Grassland, WEP=0.60 * Morgan P + 1.46, for 

Arable: WEP= 0.45 * Morgan P + 0.19, where 

Morgan P is defined as a Uniform distribution with 

the following parameters: 

Morgan P 

Index 

Grassland Arable 

Index 1 a=0; b=3 a=0; b=3 

Index 2 a=3.1; b=5 a=3.1; b=6 

Index 3 a=5.1; b=8 a=6.1; b=10 

Index 4 a=8.1; b=30 a=10.1; 

b=30 

 

Medium 3-5 

High  5-8 

Very High 8-15 
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For the Seminatural Land use, WEP was assumed 

constant to 0.001. Discretization is based on 

Morgan P discrete levels. 

Sediment Water Soluble P [mg kg-1] 

Very Low 0-0.0995 Defined as a Lognormal distribution (µ=-0.9, ơ=1), 

fitted with the SHELF R package (version 1.8.0, 

Oakley, 2020) to observed Water Extractable P in 

the catchment sediments (Shore et al., 2016). 

Discretization of states is based on percentiles 

calculated from the observations (very low<= 5th 

percentile, low= 5th-25th percentile, medium= 25th-

50th percentile, high= 50th-75th percentile, very 

high= 75th-100th percentile). 

Low 0.0995-0.2100 

Medium 0.2100-0.3550 

High  0.3550-0.9100 

Very High 0.9100-8 

Predicted Dissolved P Concentration 

[mg l-1] 

Low 0-3 Dependant on Water Extractable P, it is defined 

with the linear model: Predicted Dissolved P = 

β(WEP)+α, where β =0.08, α =0.158, derived from 

(Thomas et al., 2016b). This equation is derived 

from data gathered during the closed period only, 

that is, when farmers are forbidden from spreading 

fertilizer. An assumption is made that when the 

linear model yields a negative value, that is 

resampled as a zero. Water Extractable P is 

considered a good in-stream TRP/ TDP predictor in 

the ACP catchments by the experts, however 

careful consideration is needed when choosing a 

soil P test in a different setting.  

Medium 3-5 

High  5-8 

Very High 8-15 

Sub-surface Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P 

concentration and Subsurface Storm-flow. High 3-200 

Baseflow Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P 

concentration and Baseflow. High 3-200 

Modified Dissolved P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Total Dissolved 

P”, for effective buffers, modified Dissolved P load= 

Sub-surface Dissolved P load *(1-Buffer 

effectiveness for TDP). Based on expert 

recommendation.  

High 3-200 

Monthly Sediment P load  

[kg month-1] 

Low 0-3 
Calculated as the product of Sediment Water 

Soluble P [mg kg-1], Monthly Suspended Sediment 

concentration [mg l-1 month-1], and Mean total 

monthly surface flow [m3] .  High 3-200 

Modified Sediment P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Suspended 

Sediments and Particulate P”, for effective buffers, 

Modified Sediment P load= Monthly Sediment P 

load [kg month-1]*(1-Buffer effectiveness for SS 

and PP). Based on expert recommendation. 

High 3-200 

Septic Tanks (ST) sub-model (Point P sources), included in Model B only 

P concentration per tank Absent (to represent 0 STs)  0-1*10-8  
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[mg l-1] 

  
Low 1*10-8-1 P concentration is dependent on the treatment type. 

If the treatment is unknown, the concentration is 

defined as a Lognormal distribution (µ=2.9, ơ 

=1.25), based on a literature review of data available 

for Ireland (Environmental Protection Agency 

Ireland (EPA), 2003, 2000; Gill et al., 2005, 2007) 

(n=8). Fitting was done with R package fitdistrplus 

(version 1.1-8, Delignette-Muller et al., 2020). 

Otherwise, for primary and secondary treatment 

concentration is defined as Truncated Normal 

distribution (µ=10; ơ=1), and (µ=5; ơ=0.5) 

respectively, as described in Glendell et al., (2021) 

and derived from SEPA guidelines (Brownlie et al., 

2014). All tanks are assumed to be maintained.  

Discretization was also based on the literature 

review. 

Medium 1-18 

High 18-35 

Very High 35-100 

Management related variables  

Direct discharge 
Present  0.16 Probabilities are derived from the report by the 

Environmental Protection Agency Ireland (EPA, 

2015). Absent  0.84 

Treatment  

Unknown 0.50 Probability of having “unknown”, “primary” or 

“secondary” treatment of the effluent in a septic 

tank. Probabilities based on a survey conducted 

within WaterProtect, a research project supported by 

the European Union research and innovation 

funding programme Horizon 2020 [grant no. 

727450]. 

Primary 0.31 

Secondary 0.19 

Connectivity related variables 

Degree of Phosphorus Saturation 

(DPS) [%] 

Very Low_0_20 0.978 Discretization is equal to the 20th, 40th, 60th, and 80th 

quantiles, however 0< DPS <60 in this catchment. 

Probabilities were calculated from available spatial 

data (Wall et al., 2012). 

Medium_20_40 0.017 

High_40_60 0.005 

Soil risk factor [adimensional] 

Very Low 9.9*10-6 An indicator to describe the combined risk of 

effluent leaching to the groundwater table with the 

risk of the effluent being transported with surface 

runoff. This approach is a simplification of the one 

adopted in Glendell et al., (2021). The risk factor 

was obtained by overlaying the soil series (Thomas 

et al., 2016b) with information on the position of the 

groundwater table (0- 2 m below ground or more 

than 2 m below ground). Because little is known 

regarding the septic tanks in the catchment (i.e. age, 

type of treatment, maintenance), and the 

groundwater table position (few datapoints within 

the catchment) experts recommended a 

precautionary principle. This meant that the class at 

most risk of effluent transfer was applied when data 

Low 0.374 

Medium 9.9*10-6 

High 0.620 

Very High 0.006 

 Groundwater Table Position 

Soil Series 0-2 m below 

surface 

>2 m below 

surface 

Brown earths High Risk Moderate Risk 

Alluvial High Risk Moderate Risk 

Luvisol High Risk Moderate Risk 

Gley  Very High Risk Very High Risk 
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was unavailable. The table to the left represents a 

synthesis of the classification approach. 

Probabilities are based on land cover proportion.  

Leachfield removal 

Soil risk factor DPS Low Medium High 

Very low 

Very Low 0.0 0.0 1.0 

Medium 0.0 0.5 0.5 

High 0.5 0.5 0.0 

Low 

Very Low 0.0 0.3 0.7 

Medium 0.0 0.7 0.3 

High 0.3 0.7 0.0 

Medium 

Very Low 0.0 0.5 0.5 

Medium 0.0 1.0 0.0 

High 0.5 0.5 0.0 

High 

Very Low 0.0 0.7 0.3 

Medium 0.3 0.7 0.0 

High 0.7 0.3 0.0 

Very High 

Very Low 0.0 0.5 0.5 

Medium 0.5 0.5 0.0 

High 1.0 0.0 0.0 
 

The node refers to P removal from septic drains. 

Conditional on P leaching risk from Degree of 

Phosphorus Saturation (DPS). The conditional 

probability table is a logical one.  

Leachfield connectedness 

HSA 

rescaled 
None Low Medium High 

Direct 

discharge 
pres abs pres abs pres abs pres abs 

low 0 1 0 1 0 0 0 0 

medium 0 0 0 0 0 1 0 0 

high 1 0 1 0 1 0 1 1 
 

Probabilities are conditional on the 

presence/absence of Direct ST discharge, and HSA 

(node: Connectivity rescaled HSA). Where Direct 

discharge is present, connectedness is assumed as 

‘high’. Where Direct discharge is absent, the risk 

class of the HSA is assigned. 

Septic Tank connectedness 

Leachfield 

removal 
Low Medium High 

Leachfield 

connectedness 
Low Medium High Low Medium High Low Medium High 

Low 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.5 0.0 

Medium 0.0 1.0 0.0 0.0 1.0 0.5 0.0 0.5 1.0 

High 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 
 

Probabilities are conditional on Leachfield removal 

and Leachfield connectedness. Where Leachfield 

removal is ‘low’ or ‘High’, Leachfield 

connectedness remains unaltered.  

Connectivity rescaled HSA 

[adimensional] 

None_0 0.60 Data extracted from spatial layers of 

Hydrologically Sensitive Areas (HSAs) rescaled 

between 0 and 10 was provided by the Agricultural 

Catchments Programme (Thomas et al., 2016a). 

Discretization is also based on the spatial layers.  

Low_1_3 0.18 

Medium_4_7 0.20 

High_8_10 0.02 

Calculated variables 

Load per tank [kg month-1]  

Absent 0-1*10-6 Specified as the product of ST density [No ha-1] * 

ST concentration [mg l-1] * 120 [L] average daily 

water consumption per person * 365/12 days in a Very Low 1*10-6-0.1 
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Low 0.1-0.5 month* average No of persons per household 

2.7/1*106. Discretisation is based on interpolation to 

represent plausible probabilities for combination of 

extreme risk classes (e.g. High+high=high, 

low+low=low). 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-30 

Total Realized load [T month-1] 

Very Low 0.0-0.1 

Calculated as the product of septic tank load and 

delivery factors (D) related to the connectedness of 

a septic tank, based on the median estimated fraction 

to be delivered in Table 13 of the report by Glendell 

et al., (2021) and the number of septic tanks present 

within catchment boundary (N): Realised load per 

tank [kg month-1] * N * D / 1000. In this case, N= 

88. Discretisation based on interpolation to represent 

plausible probabilities for combination of extreme 

risk classes. 

 

 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-12 

Septic tank 

connectedness 

Delivery 

factor (D) 
Reference 

Low 0.05 
“very low” category in Appendix A3, 

Glendell et al., (2021) 

Medium 0.30 
“medium” category in Appendix A3, 

Glendell et al., (2021) 

High 0.80 
“very high” category in Appendix A3, 

Glendell et al., (2021) 
 

Farmyards sub-model (Point P sources), included in Model B only 

Farmyard size area [m2] 

Very Low 0-56 Based on available farmyard survey, a distribution 

was fitted to farmyard area data: Lognormal (µ=-

5.6; ơ=0.98). Discretization of states is based on 

percentiles calculated from the observations (very 

low<= 5th percentile, low= 5th-25th percentile, 

medium= 25th-50th percentile, high= 50th-75th 

percentile, very high= 75th-100th percentile). 

Low 56-127 

Medium 127-277 

High  277-586 

Very High 586-4500 

Farmyard P concentration [mg l-1] 

Very Low 0-0.01 Using the SHELF R package (version 1.8.0, 

Oakley, 2020), a distribution was fitted to the data 

in Table 2 in Harrison et al., (2019): Lognormal 

(µ=-1.8; ơ=1.6 ). The best fit would have been the 

LogT distribution, however, that is not available for 

GeNIe, so we opted for Lognormal. Discretization 

is also based on the literature. For simplicity, here 

we have used SRP to mean TRP.  

Low 0.01-0.50 

Medium 0.50-1.00 

High  1.00-2.50 

Very High 2.50-60 

Incidental losses per average yard  

[kg month-1] 

Very Low 0-1*10-9 
Based on average farmyard size, losses are 

calculated as Surface runoff [m3] / catchment area 

[m2]* Farmyard size area [m2]* Farmyard P 

concentration [mg l-1]/ 103. 

Low 1*10-9-0.001 

Medium 0.001-0.01 

High  0.01-0.10 

Very High 0.10-60 

Total incidental losses [T month-1] 

Very Low 0-1*10-5 
Incidental losses per average yard [kg month-1] * 

N, where N is the total number of yards present 

within the catchment boundary. In this case, N =70. 

Low 1e-05-0.007 

Medium 0.007-0.070 
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High  0.07-0.700 

Very High 0.700-10 

Catchment outlet integration sub-model 

Total catchment in-stream P load  

[T month-1] 

Low 0-0.02 Equal to the sum of Baseflow Dissolved P load [kg 

month-1], Modified Dissolved P load [kg month-1],  

Modified Sediment P load [kg month-1], Total 

incidental losses [T month-1], and Total Realized 

load [T month-1], all converted to appropriate units.  

Medium 0.02-1 

High 
1-10 

In-stream P concentration [mg l-1] 

Good 0-0.035 Defined as the Total catchment in-stream P load 

[T] * 109 / Mean total monthly Q (discharge) [m3] * 

1000, where mean monthly discharge is equal to 

the total catchment discharge measured at the 

outlet. 

Bad 0.035-10 

Environmental Quality Standard [TRP 

concentration mg l-1] 

TRP 

concentration 
Good Bad 

Good 1 0 

Bad 0 1 
 

Discretization of the variable “In-stream TRP 

concentration [mg l-1]”. For simplicity, in-stream 

TRP is here considered equal to in-stream Dissolved 

Reactive Phosphorus, as in previous studies the 

mean DRP accounted for 98–99% of the flow-

weighted mean TRP  (Shore et al., 2014). 
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3.2.5 Model evaluation 

P models typically struggle to produce positive performance indicators (Jackson-Blake et al., 2015). 

Additionally, BBNs cannot be evaluated with the traditional metrics used for hydrological models (for 

example, Nash-Sutcliffe Efficiency or Root Mean Square Error), because the number of observations 

does not correspond to the number of model realizations. Therefore, the model performance was 

evaluated following the procedures suggested by Jackson-Blake et al., (2015), using a suite of strategies 

comparing predicted TRP concentrations (mg l-1) with the observed TRP concentrations (available as 

daily average, mg l-1) (2009-10-01 to 2016-12-31) by 1) calculating percentage bias (PBIAS), 2) 

comparing summary statistics (median, mean, upper and lower limit, interquartile ranges), and 3) 

visually comparing the full posterior distributions with the observations. Using the R SHELF package 

(version 1.8.0, Oakley, 2020), a monthly lognormal distribution was fitted to the observed TRP 

concentrations using 100 quantiles and 0 as the lower limit. This distribution was used to compute the 

PBIAS % in the R package hydroGOF (version 0.4-0, Zambrano-Bigiarini, 2020). Percentage Bias is 

calculated in hydroGOF as shown in Equation 3.1: 

Equation 3.1 

𝑃𝐵𝐼𝐴𝑆 = 100
∑ (𝑆𝑖 − 𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 

Whereby 𝑆𝑖 indicates the simulated TRP values and 𝑂𝑖 the observed ones. Percentage bias measures the 

tendency of simulated values to be larger or smaller than the observations, with a zero-value indicating 

optimum, positive values indicating overestimation, and negative values underestimation. Additionally, 

a bootstrapping method was applied to the available observations to obtain a lognormal distribution 

fitted to each month’s TRP concentration data. Percentage bias was used to evaluate the BBNs 

performances in each month, in this case with 10,000 data points from the posterior distribution 

simulated by the BBNs by selecting each month as evidence, and 10,000 data points drawn from each 

month’s lognormal distribution fitted to the observational data using bootstrapping. For the overall and 

the monthly performance evaluation, data points outside the instrument’s limits of detection (0.01 – 

5.00 mg l-1) were excluded from the model evaluation.  
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When computing the PBIAS, observations and simulations need to have the same dimension, and the 

hydroGOF package will return one value for each column of simulations and observations. The reader 

is referred to the GitHub repository accompanying this Chapter to reproduce how the PBIAS function 

was applied here (https://github.com/CamillaNegri/Ballycanew_Ptool/blob/main/GenieResults.Rmd). 

3.3 Results and discussion 

3.3.1 Model structure 

As a result of the discussions with experts and the extensive data review, the final model versions (A 

and B) are considerably less complex than was initially conceptualized. As mentioned, the original BBN 

comprised 63 nodes and 81 arcs, while the resulting Model B comprises 38 nodes, 46 arcs, 106 

independent parameters out of 153, average indegree of 1.2, and maximum indegree of 5. The original 

model structure (not shown here) included variables that were excluded from the final structure as a 

result of the consultations with experts. Fertilizer (organic plus inorganic) application based on stocking 

rates was excluded from the BBN as soil P fertilizer is applied only to maintain Morgan P levels, 

available at field scale. Erosion rates were also not included in the final version of the model as 

catchment-specific data was unavailable. Incidental losses due to animal poaching were also excluded 

as fencing of water courses is in place in the ACP catchments. The final BBN structure is shown in 

Figure 3.3, which highlights which nodes were part of Model A and which ones were added for Model 

B. The model structure (Table 3.1) directly reports which variables were influenced by experts, in an 

attempt to address some of the transparency issues raised by Kaikkonen et al., (2021) regarding expert 

role. 

  

https://github.com/CamillaNegri/Ballycanew_Ptool/blob/main/GenieResults.Rmd
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Figure 3.3 Structure of the final BBNs, including the additional nodes for Model B highlighted inside the box. The nodes in 

orange represent variables that pertain to Management, those in yellow represent Soil variables, those in turquoise 

represent the Hydrology variables, those in light blue represent the Turbidity-related variables, those in lilac represent the 

Loads within the catchment, and those in cyan represent the Concentrations integrated at the catchment outlet. Full 

distributions are illustrated in Figure 8.4. 

   

3.3.2 Phosphorus concentrations  

3.3.2.1 Phosphorus concentrations in the stream – overall performance  

Overall model performance is shown in Table 3.2, where mean, lower and upper limit, and meaningful 

percentiles of the BBN TRP concentration distributions are shown against the average monthly 

distribution fitted to the observations. The 5th percentile shows that the model concentrations are more 

skewed towards low concentrations than the observations. This may be related to the equation used to 

calculate the variable “Predicted Dissolved P Concentration [mg l-1]”, reported in Table 3.1 and derived 

from Thomas et al., (2016b). The node was set up to substitute the negative values with zeroes as 

recommended by Thomas et al., (2016b). 25% of the simulated values for the “Predicted Dissolved P 

Concentration [mg l-1]” node equalled zero (meaning no TRP from the soil matrix would be measured 
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at the catchment outlet) and currently included when computing the final TRP concentration distribution 

prior to censoring it by instrument’s limits of detection (0.01– 5.00 mg l-1), which may have skewed the 

model predictions. However, the model results are also skewed towards larger concentrations in the 

upper percentiles compared to the observations. The median modelled TRP concentration approximates 

the observed median, and as discussed, the tails of the modelled distributions are wider than those in 

observed mean daily data, which is also shown in Figure 3.4.  

Table 3.2 The two models’ overall performances in terms of mean, standard deviation, quantiles, and percentage bias. Data 

outside the instrument’s limit of detection (0.01-5.00 mg l-1) were excluded from the calculations. Both observed and predicted 

TRP concentrations were log-transformed before calculating the statistics, and then converted back to normal values. 

 
Observed TRP 

(time-weighted) 

Predicted TRP Diffuse 

P 

(flow-weighted) 

Predicted TRP Diffuse 

+ Point P 

(flow-weighted) 

 mg l-1 mg l-1 mg l-1 

lower limit (µ-1ơ) 0.03 0.03 0.03 

mean 0.06 0.08 0.08 

upper limit (µ+1ơ) 0.10 0.20 0.21 

5th percentile 0.02 0.02 0.01 

25th percentile 0.04 0.05 0.04 

50th percentile 0.06 0.09 0.10 

75th percentile 0.08 0.14 0.14 

  
Model A 

(Diffuse P) 

Model B 

(Diffuse + Point P) 

Percentage bias against 

distribution fitted to 

observations (%) 

- 76 80 
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Figure 3.4 Overall distribution density of log10 TRP concentrations fitted to observations versus those predicted by the two 

developed BBNs. BBN predictions show a larger variance, the full extent of which is shown in the plot by the density and box 

plots and scattered data points. Data outside the instrument’s limit of detection (0.01-5.00 mg l-1) were excluded from the 

plot, and the text shows the number of valid samples for each model. This plot was produced with the ggdist R package 

version 3.3.0 (Kay, 2023). 

Figure 3.4 shows the overall model distributions compared to the lognormal distribution fitted to the 

observations. The boxplots and the density plots at their right-hand side show the full distributions 

excluding data points outside the instrument’s limit of detection, while the dots scattered on top of the 

boxplots show only a sample (n = 30).  
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3.3.2.2 Phosphorus concentrations in the stream – monthly performance  

Each month’s modelled and observed TRP concentrations are shown as histogram plots in Figure 3.5 

A and as density plots in Figure 3.5 B. The histograms show that the distributions from the simulations 

from both models approximate the peak of the distribution of the observations, however, the simulated 

concentration distributions have a lower tail that is not seen in the observed data. This discrepancy could 

be a product of how the predicted dissolved P concentration is being calculated in the model (see 3.2.1). 

The observations reported are aggregated daily mean values calculated from monitoring observations 

taken every 10-minutes. These daily means necessarily do not reflect the full range of concentration 

variability in the monitoring data, especially for extreme or short duration hydrological events, and they 

do not show diel P variations due to changes in temperature, light, and precipitation (Bieroza et al., 

2023), which are likely to affect P mobilisation, delivery, and in-stream uptake. For example, see Table 

3.3 for a comparison between the daily mean P and the 10-minutes P observations. Furthermore, the 

detection of low P concentrations is restricted by the instrument detection limits (0.01– 5.00 mg l-1). 

Although neither model reproduces the width of the observed data distributions, the simulated 

distributions from Model A are broader than those from Model B suggesting that Model B is marginally 

better constrained. Importantly, the models predict flow-weighted concentrations (normalized by both 

time and discharge) rather than time-weighted (mean concentration in stream water as it passes the 

sampling point), which could in some cases better represent nutrient concentrations (i.e., for lakes, 

Rowland et al., (2021)). This may result in the different dilution effect in the model compared to the 

observations (see mean (µ) total discharge (Q, m3), in Table 3.4). Monthly density plots show little to 

no seasonality, probably masked by model assumptions, which are further discussed in Table 3.5. 

Overall, the model represents the observed distribution between the 25th and 75th percentile very well, 

indicating strong predictive performance. This is especially notable when considering the small units 

(P concentrations) that are being reproduced and the complexities of processes affecting P dynamics in 

river catchments. 
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Table 3.3 Monitored TRP concentrations (mg l-1) characteristics (correlation between the two datasets was 0.91). The two 

datasets have not been censored with the instrument’s detection limits for this analysis, nor log-transformed. 

 10-minute concentration data Daily mean concentration data 

 mg l-1 mg l-1 

Min 0.002 0.015 

25th percentile 0.042 0.043 

Median 0.057 0.058 

75th percentile 0.082 0.085 

Mean 0.075 0.075 

Max 3.095 1.065 
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Figure 3.5 A represents the histograms of each month’s log10 of TRP concentrations (mg l-1), observations are shown in 

blue, predictions obtained from the Diffuse P model (Model A, top figure) and Diffuse + Point P model (Model B, bottom 

figure) are shown in yellow. The histograms placed inside the grey box show values outside the limit of detection (0.01-5.00 

mg l-1). B represents the monthly density plots of log10 observations (top), the Diffuse P model (middle), and the Diffuse + 

Point P model (bottom). Data outside the instrument’s limit of detection (0.01-5.00 mg l-1) were excluded from the plots in 

box B, and the text shows the number of valid samples for each model. The density plots in box B were produced with the 

ggdist R package version 3.3.0 (Kay, 2023). 
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Table 3.4 summarizes each month’s characteristics in terms of mean and median P concentrations, as 

well as mean discharge and model percentage bias calculated for the two BBNs. Percentage bias shows 

that the difference between the two models is minimal, corroborated by the nearly identical performance 

in terms of mean predicted concentrations. Mean total discharge (Q, m3) is shown for Model B and the 

observations, assuming to be the same for Model A. The ratio between the modelled and the observed 

discharge shows how the models simulate 80-100% of flow correctly in most cases, except the summer 

months, when the modelled discharge is 60-70% of the observed. This underprediction can explain why 

the model average concentrations are higher than the80-100% of flow correctly in most cases, except 

the summer months, when the modelled discharge is 60-70% of the observed. This underprediction can 

explain why the model average concentrations are higher than the than the observed ones (less 

discharge, less dilution). 
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Table 3.4 Summary of monthly characteristics and results, including model bias. Percentage bias and TRP concentrations have been calculated excluding data outside the instrument’s limit of detection (0.01-5.00 

mg l-1). “A” columns show results for Model A and “B” columns show results for Model B. Both observed and predicted TRP concentrations were log-transformed before calculating the statistics, and then 

converted back to normal values. 

 

Percentage 

bias of 

simulations 

against 

distribution 

fitted to 

observed 

mean (µ) concentrations median concentrations 
lower limit concentrations 

(µ-1ơ) 

upper limit concentrations 

(µ+1ơ) 
Mean total discharge (Q) 

(mg l-1) (mg l-1) (mg l-1) (mg l-1) m3  

 A B A B obs A B obs A B obs A B obs Models obs 

model/ 

observations 

ratio 

Jan 69.4 74.5 0.08 0.08 0.05 0.09 0.10 0.04 0.03 0.03 0.03 0.20 0.21 0.07 9.99*105 11.0*105 0.9 

Feb 74.5 70.9 0.08 0.08 0.04 0.09 0.09 0.04 0.03 0.03 0.03 0.21 0.20 0.07 7.42*105 7.48*105 1 

Mar 67.5 70.7 0.08 0.08 0.04 0.09 0.09 0.04 0.03 0.03 0.03 0.20 0.20 0.07 4.07*105 4.83*105 0.8 

Apr 69.9 77.9 0.08 0.08 0.05 0.09 0.09 0.04 0.03 0.03 0.03 0.20 0.21 0.09 2.73*105 3.06*105 0.9 

May 69 81 0.08 0.08 0.05 0.10 0.10 0.05 0.03 0.03 0.02 0.20 0.22 0.07 2.03*105 2.28*105 0.9 

Jun 73.5 89.2 0.08 0.09 0.07 0.10 0.10 0.07 0.03 0.03 0.03 0.20 0.23 0.13 1.40*105 2.24*105 0.6 

Jul 70.3 101 0.08 0.09 0.09 0.09 0.10 0.07 0.03 0.03 0.05 0.20 0.24 0.14 0.85*105 1.15*105 0.7 

Aug 68.5 89.1 0.08 0.09 0.09 0.09 0.10 0.09 0.03 0.03 0.05 0.20 0.23 0.16 1.51*105 2.52*105 0.6 

Sept 76.5 95.6 0.09 0.09 0.07 0.10 0.10 0.06 0.04 0.03 0.04 0.21 0.24 0.12 1.05*105 1.03*105 1 

Oct 72.2 73.8 0.08 0.08 0.07 0.10 0.09 0.07 0.03 0.03 0.04 0.2 0.21 0.13 3.94*105 4.41*105 0.9 

Nov 73.8 71.8 0.09 0.08 0.07 0.10 0.10 0.07 0.03 0.03 0.04 0.21 0.21 0.12 9.10*105 9.83*105 0.9 

Dec 73.8 72.5 0.08 0.08 0.06 0.09 0.09 0.05 0.03 0.03 0.04 0.20 0.20 0.09 10.10*105 11.20*105 0.9 
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3.3.2.3 Phosphorus concentrations in the stream – risk of exceeding WFD standards  

For a speedy evaluation of the P loss risk, in-stream P concentrations were discretized according to the 

Environmental Quality Standard (EQS) for both models and evaluated against similarly discretised 

lognormal distribution fitted to the observed in-stream TRP. The EQS was classified as good (between 

0 and 0.035 mg l-1) and bad (above 0.035 mg l-1), as 0.035 mg l-1 is the phosphate threshold established 

in Ireland to comply with the Water Framework Directive (European Communities Environmental 

Objectives (Surface Waters) Regulations, 2009). The comparison was done by censoring the 

concentrations for the instrument’s limit of detection (0.01 – 5.00 mg l-1). Overall, both models show a 

repartition good/bad threshold close to 40/60 % (data not shown), however, that is lower than the 

monthly EQS in the distribution fitted to the observations. The fitted observations agree with Mellander 

et al., (2022), who also showed that the probability of exceeding the EQS in this catchment was 93.7% 

of the time (data from 2010 to 2020). This discrepancy may be explained by the model’s predicted TRP 

concentration distribution’s inherent shape, which was left-skewed in comparison to the observed data, 

and by the censoring process, which might have caused a shift of the distribution towards 0.01 mg l-1.  

3.3.3 Model strengths and limitations 

We designed a BBN to describe and calculate TRP losses at the catchment outlet in a grassland-

dominated Irish agricultural catchment. As compared to the steady-state probabilistic conceptual 

catchment model of P pollution risk by Glendell et al., (2022), the present model was parameterized 

using high-resolution datasets, including seven years of daily turbidity (NTU) and discharge (m3) data 

at the catchment outlet, average soil Morgan P at field scale, and average measured farmyard size 

(instead of using a proxy of size). Using high-resolution turbidity data to calculate sediment losses at 

catchment outlet simplified the representation of erosion processes, thus avoiding assumptions 

regarding erosion rates, delivery, and the contribution of agricultural drains. Furthermore, the model 

was calibrated using seven years of daily observed TRP concentrations.  

Model performance in terms of percentage bias (76-85% depending on which model version) was close 

to the 50% acceptable range recommended by Glendell et al., (2022), and appears small, given the small 
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concentration values being simulated. Additionally, in terms of inter-quantile ranges, this BBN’s 

performance approximates that of Glendell et al., (2022) BBN in the best performing catchments 

(Linkwood, Rough, and Lunan catchments) but is better constrained than the previous study’s model in 

worse-performing catchments.  

We offer an overview of the model assumption and subsequent potential limitations that we deem 

relevant in Table 3.5, highlighting several research gaps around P modelling in agricultural catchments. 

Specifically, there is still uncertainty around point sources, where weak priors from the literature were 

introduced due to a lack of monitoring data, as well as a simplification of soil P sources (Morgan P), 

which, albeit measured at high spatial resolution, were represented at discrete levels (indexes) used for 

monitoring, which may lead to loss of information. Table 3.5 also introduces the lack of in-stream 

biological P uptake, a process that could be significant in spring and summer, and could improve the 

model’s representation of reality (Jackson-Blake et al., 2015). Lastly, a future enhancement to this study 

would be the use of a sensitivity analysis, which would improve understanding of which variables 

contribute the most to P losses at the catchment outlet. We note that the current method to implement a 

sensitivity analysis in GeNIe is only available for discrete BBNs. Discretization leads to a loss of 

information (Landuyt et al., 2013) and makes the sensitivity analysis dependent on the discretization 

method. In our case, a discretized network would not allow the calculation of quantiles from the model 

predictions for comparison with those from the observations, countering the utility of the high-

frequency dataset used here. Thus, further work is required to implement a suitable sensitivity analysis 

methodology. 
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Table 3.5 Model assumptions, limitations, and strengths. 

Model assumptions Consequences 

Due to a lack of data, in-stream P removal by biota or 

sediment absorption is not represented. 

In-stream P concentrations may be overestimated. However, 

these processes are secondary, especially considering the 

extreme flashiness of this catchment. 

The main soil P source is spatially available at field 

resolution; however, the “Morgan P” node was implemented 

using the categorical classification used in field monitoring. 

The categorical variable “Morgan P” can be used for testing 

management scenarios, however, discretization can lead to 

loss of information and impact decision making (Landuyt et 

al., 2013; Nojavan et al., 2017). 

Amount of WEP transported to stream “Predicted Dissolved 

P Concentration” based on the equation for the closed period 

only, from the 15th of October to the 12th of January, when 

farmers are forbidden from spreading fertilizer on land in 

Ireland (Thomas et al., 2016b). The equation is applied to all 

months, and negative values are substituted with zeroes (see 

Table 3.1). 

25% of the simulated values of this variable were zeroes, 

which probably skewed the in-stream concentration posterior 

distribution as discussed in section 3.2.1. This could be a 

contributing factor in the masking of seasonality in the 

model. 

Experts noted that the septic tanks were modelled as a 

surface process, although soil risk classes have been included 

(Glendell et al., 2021), see variable “Soil risk factor” in 

section 3.2.4. 

Might be underestimating P losses from STs. 

P concentrations in septic tanks after primary or secondary 

treatment are based on (optimistic) Scottish EPA guidelines 

of Total P concentration reduction (Brownlie et al., 2014) 

even though the objective of the modelling was TRP. 

There is uncertainty surrounding the actual TP/ TRP 

concentration in a septic tank after primary or secondary 

treatment, and therefore more data is needed for this model 

compartment, as well as sensitivity testing. 

Septic tanks were assumed to be working, no hypothesis was 

made regarding failure. 
Might be underestimating P losses from STs. 

There is no measured data for septic tank P concentration or 

loads, thus each month the load from septic tanks “Realised 

total load” is the same, as it is not dependent on discharge 

(Q). 

Septic tank loads are not expected to vary seasonally; 

therefore, the model could be representing the domestic 

wastewater systems well, however, this could be one of the 

factors masking any seasonality in the model. However, 

septic tank loads have temporal patterns too, and are 

considered to be an important source of nutrients during 

spring and summer (Withers et al., 2014). 

P concentrations from farmyards are modelled according to 

literature, however Moloney et al., (2020) found higher 

concentrations of TP in farmyard drains than that found by 

Harrison et al., (2019) (about 37 times). 

Farmyard losses in the catchment cannot be estimated, and 

the uncertainty around these losses in the literature is very 

high, thus the model may be under or overestimating these 

losses. Further data collection is needed to test these 

assumptions. 

The hydrology compartment, and consequently the rest of the 

model, was set up at a monthly time step. 

This allows the integration of both sparse and high-resolution 

datasets, as well as the chance for future evaluation of 

management actions and mitigation measures. This also 

means that the model does not represent events and hot 

moments, which usually represent the larger contribution of 

P losses in a catchment, with climate change expected to 

increase their contribution (Ockenden et al., 2016). 

Both models are calibrated and validated against daily 

averages of TRP concentration. The daily resolution data 

may not represent the full variability of the in-stream 

concentrations (statistics on the two datasets are shown in 

Table 3.3). 

The model appears to simulate higher TRP concentrations in 

the upper quartiles than the observations (Table 2), but these 

may be realistic if compared against the sub-hourly dataset. 

 

3.4 Conclusions 

In this study, we combined different methodologies for using high-frequency water quality datasets to 

inform the priors of a BBN aimed at modelling P losses in Irish agricultural catchments. Different 

sources of P were introduced in the modelling exercise in a step-wise fashion, thus improving the model 

predictive ability and testing the model structural uncertainty. The two developed BBNs were able to 
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predict the mean and median P concentrations in the stream well overall, with some limitations apparent 

in performance at the monthly time-step. However, the models’ predictions presented wider 

distributions than the observations, which was noted in a similar work, and remains a property of this 

stochastic modelling approach. The BBN modelling approach allowed the inclusion of all the known P 

sources in the agricultural catchment, including farmyards, which is rare in P modelling, and septic 

tanks, which are often overlooked as P sources. In addition, this study directly reported on experts’ role 

and selection as an effort to increase transparency. The probabilistic modelling highlighted the need for 

further targeted data collection to fill important knowledge gaps, even in a catchment with state-of-the-

art high-resolution and long-term monitoring, such as the one used in this study. Furthermore, the work 

informed future research steps, which will include testing of model transferability, the influence of in-

stream P cycling (i.e., estimation of removal by biota, and/or sediment uptake) on model performance, 

and understanding of P losses under future climate change scenarios
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4. Transferability of a Bayesian Belief Network across diverse 

agricultural catchments using high-frequency 

hydrochemistry and land management data 

To avoid repetitions, this Chapter has been redrafted from Negri, C., Schurch, N., Wade, A.J., 

Mellander, P.-E., Stutter, M., Bowes, M.J., Mzyece, C.C., Glendell, M., 2024. Transferability of a 

Bayesian Belief Network across diverse agricultural catchments using high-frequency hydrochemistry 

and land management data. Science of The Total Environment 949, 174926. 

https://doi.org/10.1016/j.scitotenv.2024.174926, published under a Creative Commons License 

(https://creativecommons.org/licenses/by/4.0/), and the Supplementary Materials can be found in 

Chapter 9. 

 

 

 

 

Figure 4.1 Graphical abstract summarizing the findings in Chapter 4, as submitted to the journal.  

  

https://doi.org/10.1016/j.scitotenv.2024.174926
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Abstract 

Biogeochemical catchment models are often developed for a single catchment and, as a result, often 

generalize poorly beyond this. Evaluating their transferability is an important step in improving their 

predictive power and application range. We assess the transferability of a recently developed Bayesian 

Belief Network (BBN) that simulated monthly stream phosphorus (P) concentrations in a poorly-

drained grassland catchment through application to three further catchments with different hydrological 

regimes and agricultural land uses. In all catchments, flow and turbidity were measured sub-hourly from 

2009 to 2016 and supplemented with 400 – 500 soil P test measurements. In addition to a previously 

parameterized BBN, five further model structures were implemented to incorporate in a stepwise way: 

in-stream P removal using expert elicitation, additional groundwater P stores and delivery, and the 

presence or absence of septic tank treatment, and, in one case, Sewage Treatment Works. Model 

performance was tested through comparison of predicted and observed total reactive P (TRP) 

concentrations and percentage bias (PBIAS). The original BBN accurately simulated the absolute 

values of observed flow and TRP concentrations in the poorly and moderately drained catchments 

(albeit with poor apparent percentage bias scores; 76%≤PBIAS≤94%) irrespective of the dominant land 

use but performed less well in the groundwater-dominated catchments. However, including 

groundwater total dissolved P (TDP) and Sewage Treatment Works (STWs) inputs, and in-stream P 

uptake improved model performance (-5%≤PBIAS≤18%). A sensitivity analysis identified redundant 

variables further helping to streamline the model applications. An enhanced BBN model capable for 

wider application and generalisation resulted.  

4.1 Introduction 

Generalised scientific theories are the most powerful and ideally, water quality models should be 

applicable to all catchments. A transferable model will likely have greater predictive power and utility, 

greater confidence that the model performs well for the right reasons, and an ability to help inform data 

collection for the model’s application (Hatum et al., 2022; Mieleitner and Reichert, 2006; Schuwirth et 

al., 2019).  
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Testing model transferability is therefore important. Hatum et al., (2022) demonstrated that transferring 

a model across different seagrass ecosystems, using expert elicitation to support model formulation, 

enabled forecasting and decision-making. To date, only one Bayesian Belief Network (BBN) aimed at 

modelling water quality has been tested across multiple catchments. Glendell et al., (2022), tested a 

hybrid BBN (including both discrete and continuous variables) to predict stream P concentrations and 

applied the model to seven Scottish catchments. The outcomes demonstrated wider ranges in the BBN 

predictions than in the observations and, given that inadequate water quality data constrains the 

calibration and validation of P models (Drohan et al., 2019), the use of high-frequency data was 

suggested as a means to reduce model predictive uncertainty (Glendell et al. 2022).  

Phosphorus retention in river catchments results from a combination of biological, physical, and 

chemical processes (Withers and Jarvie, 2008) and there is uncertainty around the retention rate in 

different catchments due to variations in P uptake and release by plants, adsorption to and desorption 

from sediment, co-precipitation, dissolution, and advection. Both biotic and abiotic in-stream P uptake 

can be significant, especially during low-flows and effluent exposure (Stutter et al., 2010). Its inclusion 

could improve process representation, and therefore transferability, in process-based semi-distributed 

P models (Jackson-Blake et al., 2015) and stochastic P models (Negri et al., 2024a). 

Mechanistic P models typically include processes such as calcite-P co-precipitation, sorption and 

desorption to and from suspended sediments, P exchange between the pore water and the water column, 

P entering the reach from upstream or Sewage Treatment Works (STWs), and epiphyte uptake (for 

example, the INCA-P model, (Jackson-Blake et al., 2016; Wade et al., 2002)). Similarly, stochastic P 

models include estimating numerous P sources, their transport through the land-water continuum, and 

delivery to surface waters (for example, Glendell et al., 2022; Igras and Creed, 2020; Neumann et al., 

2023). However, some BBNs modelling P concentrations in the stream lack representation of processes 

such as stream P retention, as well as groundwater P stores (Glendell et al. 2022, Negri et al., 2024a).  

The observational evidence to quantify in-stream retention processes is difficult to find in a single 

catchment, stream, or study area, therefore gathering data and comparing across diverse catchments 
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with different P pressures strengthens findings. Expert elicitation (acquiring experts’ opinions using 

formal protocols, e.g., Krueger et al., (2012) is a route to help model parameterization without having 

to set up costly site-specific experiments and is often used to inform on model parameter uncertainty 

(O’Hagan, 2019). 

The overall study aim was to test the transferability of a recently developed BBN (Negri et al., 2024a) 

in a grassland catchment in Ireland, and make enhancements as necessary. The aim was addressed 

through three research objectives: application of the BBN to three additional catchments in Ireland with 

performance assessment using daily total reactive P (TRP) observations; addition of in-stream P 

removal processes using expert elicitation; and the assessment of whether step-wise addition of in-

stream P uptake, groundwater dissolved P concentration, and the presence or absence of septic tank 

treatment or Sewage Treatment Works improved model performance and transferability (in terms of 

reduced percentage bias across all four catchments). 

4.2 Study Areas 

This study focuses on four (< 1200 ha) agricultural catchments in the east and south of Ireland: 

Timoleague, Ballycanew, Castledockrell, and Dunleer, that are monitored by the Agricultural 

catchments Programme (ACP) from Teagasc; a programme created to monitor the effectiveness of 

Ireland’s National Action Programme under the European Union Nitrates Directive (Wall et al., 2011). 

These catchments have different agricultural land uses and contrasting hydrology. The catchments were 

chosen because agriculture is the only significant anthropogenic pressure (housing density is low and 

domestic waste is treated with septic tanks) (Jordan et al., 2012). The location of the four catchments is 

shown in Chapter 2 (Figure 2.2) and further information about the catchments is given in Negri and 

Mellander, (2024) and Chapter 2.  
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4.3 Methods 

4.3.1 BBN parameterization 

We developed a catchment-specific Bayesian Belief Network that simulates flow-weighted P 

concentrations and parameterized the model using high-frequency data from the Ballycanew catchment 

(Negri et al., 2024a). The BBN was parameterized with high-frequency discharge and turbidity data 

(collected every 10 minutes and summarized at daily time-step), as well as 515 (Timoleague), 406 

(Ballycanew), 408 (Castledockrell), and 392 (Dunleer) samples of soil Morgan P (McDonald et al., 

2019; Thomas et al., 2016b), and calibrated against high- frequency TRP concentrations (Mellander et 

al., 2012). In this study, we test the BBN transferability by parametrizing the model for the first time 

for three further (8-12 km2) Irish ACP catchments. The initial BBN parametrization for each catchment 

was identical to that presented in Negri et al., (2024a) and referred to here as “Structure 1”. Structures 

are the graphical definitions of BBNs, also referred to as Directed Acyclic Graphs (DAGs) (Henderson 

and Pollino, 2010) encoding the causal (in)dependencies between variables (Aguilera et al., 2011). In 

this case, the structure represents the BBN’s P inputs, processes, pathways, and outputs, describing their 

relationships. When discussing uncertainty in environmental models, the word structure indicates the 

conceptual model (Refsgaard et al., 2006). Where the information was available the BBN variables 

were parameterized with catchment-specific datasets (these are specified in the Supplementary 

Information). However, catchment-specific parametrization was not possible for the following nodes 

(i.e., BBN variables): “Direct Discharge”, “Septic Tank Treatment”, “Sediment Water Soluble P”, 

“Predicted Dissolved P concentration” (i.e., P that is dissolved from the soil matrix into the stream), 

and the total number of septic tanks in the catchment needed to calculate the total septic tank load. A 

detailed description of these nodes is given in Table 4.1. Additionally, data was not available for the 

“Septic Tank Treatment” node for Timoleague and Dunleer, and therefore an additional BBN structure 

was tested where the treatment was not implemented, and the distribution of P concentration across the 

catchment’s septic tanks was set up as equal to the “Unknown treatment” option (Structure 3). For the 

Timoleague and Castledockrell catchments, further model structure implementations (Structure 4, 5, 6) 
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saw the addition of the node “Groundwater Dissolved P Concentration mg l-1” to describe the 

groundwater total dissolved phosphorus (TDP) concentration contributing to the total in-stream TRP 

concentration at catchment outlet (the details of Structure 2 will be introduced later on in this section). 

This was done with the same bootstrapping methodology that was applied to observed in-stream TRP 

concentrations in Negri et al., (2024a), here applied to monthly samples of groundwater total dissolved 

P (TDP, 2009-2016) monitored in multi-level wells described in Mellander et al., (2016). An 

assumption was made that the wells near the stream (less than 40 m from the stream) contribute the 

most to stream TRP (Mellander et al., 2016), hence we only used data from these wells for the 

parameterization. For all catchments, a model structure including the in-stream P uptake derived in the 

expert elicitation workshop was parameterized, and labelled Structure 2 for the Ballycanew and Dunleer 

catchments, Structure 5 for the Timoleague catchment, and Structure 5 and 6 for the Castledockrell 

catchment. For the Castledockrell catchment the Sewage Treatment Works loads were included in the 

finalized BBN labelled Structure 6. This was done by incorporating the P concentration (mg l-1) after 

tertiary treatment (Truncated Normal (µ= 1.44; ơ= 1.61, (Glendell et al., 2022), in this case truncated 

at 0), and the design size (130 people) found through the Irish Environmental Protection Agency (EPA) 

data. This is consistent with the fact that  STWs with tertiary treatment are required to keep the 

orthophosphate concentration below 2 mg l-1 for their effluent discharge (Fitzsimons et al., 2016). The 

model structure and the datasets used for the finalized parametrization are specified for each catchment 

in the Supplementary Information, and a summary of each Structure’s specifications is given in Table 

4.3.
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Table 4.1 Variables for which catchment-specific data was unavailable in the Timoleague, Castledockrell, and Dunleer catchments. These nodes were chosen for a preliminary sensitivity analysis to understand 

their effects on the targeted P concentration and inform model transferability. 

Node Septic Tank Treatment Direct Discharge Number of Septic Tanks 
Sediment Water Soluble P (WSP) 

[mg kg-1] 

Predicted Dissolved P Concentration  

[mg l-1] 

Description 

Probability of having “unknown”, 

“primary” or “secondary” treatment of 

the effluent in a septic tank. 

Probability of ST discharging 

directly into the stream. 

Septic tanks within catchment 

boundary. 

Describes the phosphorus released 

from the sediments into the stream. 

Defined as the best fitting 

distribution, fitted with the SHELF 

R package version 1.8.0 (Oakley, 

2020) to observed Water 

Extractable P in the catchment 

sediments (Shore et al., 2016) when 

data was available. 

Describes the Water Extractable 

Phosphorus (WEP) dissolved from the soil 

matrix into the stream. Defined with the 

linear model: Predicted Dissolved P = 

β(WEP)-α, where β =0.08, α =0.158, 

derived from (Thomas et al., 2016b), 

whereby WEP stands for Water 

Extractable P. An assumption is made that 

when the linear model yields a negative 

value, that is resampled as a zero. This 

equation is not catchment specific. 

Timoleague Unavailable. As Ballycanew. As Ballycanew. As Ballycanew. Same everywhere. 

Ballycanew 

Probabilities based on a survey 

conducted within WaterProtect, a 

research project supported by the 

European Union research and 

innovation funding programme 

Horizon 2020 [grant no. 727450]. 

Probabilities are reported in Negri et 

al., (2024a) 

Assumed. Available from data (88 tanks). 

Defined as a Lognormal (base e) 

distribution (µ=-0.9, ơ=1), fitted 

with the SHELF R package (version 

1.8.0, Oakley, 2020) to observed 

Water Extractable P in the 

catchment sediments (Shore et al., 

2016). 

Same everywhere. 

Castledockrell 

Probabilities based on a survey 

conducted within WaterProtect, a 

research project supported by the 

European Union research and 

innovation funding programme 

Horizon 2020 [grant no. 727450].  

As Ballycanew. As Ballycanew. 

Defined as a Gamma distribution 

(k=1.03, ꝋ=0.44).fitted with the 

SHELF R package (version 1.8.0, 

Oakley, 2020) to observed Water 

Extractable P in the catchment 

sediments (Shore et al., 2016).  

Same everywhere. 

Dunleer Unavailable. As Ballycanew. As Ballycanew. As Ballycanew. Same everywhere. 
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4.3.2 In-stream P uptake 

P uptake is complex with multiple components based on physical, chemical, and biological processes 

(Withers and Jarvie, 2008). Whilst uptake rates might be available for specific components (e.g., algal 

uptake, large plant uptake, sediment uptake), this study focusses on providing an overall effect from the 

combined processes in each catchment for each season via expert elicitation because the necessary data 

to quantify uptake rates was not available for the catchments. Here P uptake was framed as the 

percentage (%) of in-stream P that is removed by both biotic and abiotic uptake. A simplified version 

of the methodology presented in Mzyece et al., (2024) for expert elicitation was used to determine P 

uptake for the four catchments for four seasons. We selected 6 key papers describing UK-led 

experiments on this topic (Bowes et al., 2016; Jarvie et al., 2002; Stutter et al., 2021b, 2010; Wade et 

al., 2001; Withers and Jarvie, 2008), and invited four authors of these papers to contribute to our 

elicitation exercise as experts who have published on the topic of P uptake in rivers. Three accepted, 

one declined. The elicitation process then comprised of three steps: 1) The Sheffield Elicitation 

Framework (SHELF) e-learning course for experts (Gosling, 2018), which the experts took on their 

own, 2) a preliminary exercise where the experts were asked to complete an elicitation table per 

catchment, providing their personal judgement on the two tertiles, T1 and T2, (33th and 66th quantiles) 

and the median M (50th quantile) percentage in-stream P uptake for each season. Initially, the upper 

limit of the distribution was fixed at 100% removal and the lower limit at 0% removal. To aid the experts 

with their judgements, supporting documentation containing both a summary of the literature on in-

stream P removal and information on the four catchments, was provided to the experts ahead of time 

(published in an evidence dossier in Negri and Mellander, 2024). For the scope of this elicitation, we 

aimed to quantify global uptake (see, for example, the quantities in bold under the column ‘P retained’ 

in Table 1 Negri and Mellander, (2024)) and asked the experts to provide judgement on what was the 

likely P uptake based on their experience of other river systems. 3) Preliminary prior Normal 

distributions were fitted with the SHELF R package version 1.8.0 (Oakley, 2020) to the elicited 

distributions at Step 2 and presented to the experts during the workshop. In the workshop, the experts 

were asked to discuss the preliminary distributions and to agree on a single consensus distribution per 
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season per catchment. Based on what emerged during the discussion, and to facilitate consensus, 

distributions were re-fitted and plotted in real time for the experts to examine. The final consensus 

distributions were then used to parameterize the “In-stream P uptake” node in the BBNs, and the 

updated BBN was subsequently tested against in-stream TRP observations.  

4.3.3 Sensitivity Analysis 

Sensitivity analysis was done to understand the effect of using non-catchment specific data on model 

transferability for the variables listed in Table 4.1. For direct discharge presence (0-100%) or absence 

(0-100%), the relative fraction of direct discharge presence/absence was varied in 5% steps, with the 

probabilities for the two categories summing to 100%. To assess the impact of number of septic tanks 

within each catchment boundary on in-stream P concentration, increases of two septic tanks per step 

were applied, ranging from 30 to 150 septic tanks. This range assumed 2.4 people per household (and 

therefore per tank) for these scarcely populated catchments. To understand the effects of varying the 

Water Soluble P (WSP, described in Table 4.1) we applied a stepwise variation (0.1 increments) on the 

parameters of the Lognormal distribution used in the Ballycanew catchment: the mean (-2≤µ≤ 2) and, 

separately, the same variation on the standard deviation (0.1≤ơ≤ 2). The Gamma distribution has two 

parameters (shape, k, and scale, ꝋ) that together control the shape of the distribution. These parameters 

do not correspond directly to physical values (unlike, for example, the mean value of a Normal or 

Poisson distribution) and are always >0. Here we stepped through these parameters in increments of 0.1 

over the range 0.1≤k≤ 2 and 0.005 increments over the range 0.05≤ꝋ≤1 for the WSP node parameterized 

for Castledockrell. For the “Predicted Dissolved P Concentration, 0.02 stepwise increases were applied 

to the β parameter (-1≤β≤1), and 0.005 stepwise increases were applied to the α (0≤α≤0.2). The 

sensitivity analysis was conducted independently for each parameter in each catchment, (no nodes were 

varied simultaneously) and carried out only for the finalized and best performing model structure in 

each catchment (specifically, Structure 5 for Timoleague, Structure 6 for Castledockrell, and Structure 

2 for Dunleer). The analysis was performed using rSMILE version 2.0.10 (BayesFusion, 2019a), an API 

engine available in R which can perform the same Bayesian inference operations performed by GeNIe 

Modeler (BayesFusion, 2019b), the software used to design the BBNs. In each catchment, the parameter 
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variations were applied to predict the TRP concentration (in the model, the target node is called “In-

stream P concentration [mg l-1]” and it describes the variable of interest). The effects of changing the 

input parameters on the full distributions was assessed visually by comparison against the distribution 

from “simulation 0” (the initial BBN parameterization). The effects of the presence of the nodes “Septic 

Tank Treatment”, “Groundwater Dissolved P Concentration mg l-1”, the nodes relative to in-stream P 

uptake, and those pertaining to the STWs in Castledockrell were tested by comparing distributions 

derived from different model structures to those obtained from the original BBN. 

4.3.4 Model evaluation 

The model structures were evaluated by comparing the predicted TRP concentrations with the available 

observed TRP concentrations (available as daily mean, mg l-1) (2009-10-01 to 2016-12-31) by: 

calculating percentage bias (PBIAS) in the R package hydroGOF version 0.4-0 (Zambrano-Bigiarini, 

2020), plotting and visually comparing the full posterior distributions, and comparing median 

concentrations. PBIAS calculation and visual assessment are recommended when modelling P in 

catchments with a prevalence of diffuse sources, as in these instances models struggle to produce good 

Nash-Sutcliffe statistics (Jackson-Blake et al., 2015). In addition, for the model version containing the 

“In-stream P removal”, the Normal distribution allows for negative concentrations due to the potential 

for release of in-stream P (considered to be plausible by the expert elicitation). For the purposes of 

model evaluation these were resampled into zeros prior to analysis.  

4.4 Results and Discussion 

4.4.1 BBN Parameterization 

The results of the preliminary BBN parametrization are shown in Figure 4.3, where the density plots 

from all model structures are shown against the distribution fitted to the observations. When comparing 

the TRP distributions and boxplots of Structure 1 (in green) against the observed (light brown), the 

figure shows that the model performs well for Ballycanew and Dunleer, and less well for the 

Timoleague and Castledockrell catchments. For Timoleague and Castledockrell, the initial 
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parameterization (Structure 1) overpredicts the stream P concentration by 65-82% (data not shown), 

which is a consequence of the parameterization being tailored for a surface-driven catchment instead of 

a groundwater-driven one. Specific details of the each of the models’ performances are discussed in 

section 4.4.4. The state-of-the-art high-resolution and long-term monitoring data available in these 

catchments could also facilitate other model structures besides the ones considered in this study. For 

example, soil chemistry data could be leveraged to improve process representation for the groundwater-

driven catchments, because the presence of aluminium-rich or iron-rich soils is known to impact P 

solubilization and transfer to the groundwater table (Mellander et al., 2016). 

4.4.2 In-stream P uptake 

During elicitation, consensus was reached by initially focusing on the first catchment (Timoleague), 

first comparing summer and winter, then spring and autumn. Consensus about the other three 

catchments was then reached by comparison with the first. For wintertime, the experts agreed to use -

100% as the lower limit which represents complete sediment P release into the water column and biotic 

uptake close to zero. For wintertime in Timoleague, averaged values (tertiles and median) and fitted a 

Normal distribution were used (Figure 4.2). For summertime in Timoleague, expert consensus had the 

probability density centred on a 43% removal rate, and this was the same for autumn and spring. For 

Ballycanew, the experts decided to reduce P removal by 30%, due to the high flashiness of the 

catchment. The experts considered the catchment P saturation and loading to be the most influential 

factors in determining in-stream uptake, catchment flashiness was considered less important. As a 

result, the mean P uptake was similar across catchments (Table 4.2). The consensus also reflected that, 

even though Castledockrell is less flashy than Ballycanew, the two catchments have similar P uptake 

because high loading in Castledockrell due to a Sewage Treatment Works and septic tanks. An 

exception is made for Castledockrell in the wintertime, with tertiles and median values similar to 

Timoleague, and therefore the same parameterization (Table 4.2). For Dunleer, the wintertime uptake 

was considered very low, then the rest of the seasons were considered comparable to Timoleague. 

Overall, the experts had greater confidence estimating P removal in the colder seasons (winter and 

autumn), than in the warmer ones, where the distributions are wider and more uncertain (Figure 4.2). 
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Furthermore, the experts suggested that visual aids such as photos of the river corridor could assist in 

estimating uptake, allowing the approximate width and depth of ditches and rivers to be estimated, as 

well as the presence of submerged and emergent vegetation and algae to be assessed. This is especially 

important because increased riparian vegetation and algae can lead to decreased dissolved P 

concentrations (Bowes et al., 2016; Chase et al., 2016). The distributions obtained were used in each 

catchment model to calculate the in-stream P load reduction (Equation 4.1): 

Equation 4.1 

𝑟 = (1 − 𝑁𝑜𝑟𝑚𝑎𝑙 (µ𝑠; ơs)) ∗ 𝐿  

where 𝑟 is the in-stream reduced load, 𝐿 the total catchment load, and N (µ𝑠; ơs) is a Normal distribution 

with a seasonal dependent mean and standard deviation (specified in Table 4.2), and the loads are 

expressed in T month-1. In the BBN, the seasonal monthly distributions are child nodes of a deterministic 

node termed “Season”, which indicates the meteorological seasons.  
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Figure 4.2 Consensus Normal distributions grouped by season. The y axis shows the probability density function, the x axis 

is the agreed upon plausible range for in-stream P uptake (%). Different colours show the distributions for each catchment. 

For the winter season, Castledockrell and Timoleague are overlapping; for spring and summer, Timoleague and Dunleer 

are overlapping; and for the autumn, Timoleague, Castledockrell, and Dunleer are overlapping. 
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Table 4.2 Characteristics of seasonal P uptake as discussed by the experts during the workshop, including re-defined lower 

and upper limits of uptake, and the elicited parameters for the Normal distributions. A mean (µ) of 0.10 corresponds to 10% 

mean uptake. 

 

% P uptake 

justification 

Normal distributions parameters fitted from consensus 

Timoleague Ballycanew Castledockrell Dunleer 

lower 

limit 

consensus 

upper  

limit 

consensus 

µ ơ µ ơ µ ơ µ ơ 

Winter -100 +100 

To describe the fact that there 

can be release of P (-100%) 

rather than uptake (+100%) 

0.12 0.10 0.08 0.06 0.12 0.10 0.10 0.05 

Spring 0 80 

Uptake can never be 100%, 

but the experts agree on 

absent or negligible P release 

0.35 0.21 0.24 0.15 0.08 0.06 0.35 0.21 

Summer 10 80 

Biological uptake always 

present, so lower limit cannot 

be 0% 

0.43 0.12 0.30 0.05 0.35 0.21 0.43 0.12 

Autumn 0 65 

Uptake can never be 100% 

and is lower than in spring, 

but the experts agree on 

absent or negligible P release 

0.25 0.07 0.18 0.04 0.25 0.07 0.25 0.07 

4.4.3 Sensitivity Analysis 

The sensitivity analysis showed that the three tested BBNs are not sensitive to changes in the variables 

representing septic tank “Direct Discharge” (% of tanks that discharge the effluent directly into the 

stream), and “Sediment Water Soluble P” (that is, P released into the stream by sediments). One BBN 

showed sensitivity to changes in the β parameter used for the node “Predicted Dissolved P 

concentration”. Details of the sensitivity to the Predicted Dissolved P concentration” node are shown 

for one catchment (Dunleer) in Figure 9.2. This shows the log10(TRP) concentration boxplot for each 

parameter value against the “simulation 0” (in light green) overlayed with a sample of the full 

distribution plotted as dots. The equation in the node “Predicted Dissolved P concentration” was derived 

from Thomas et al., (2016b), and is an aggregated result of catchment-specific regression models, which 

were not available at the time of model parametrization. It would be instructive to reparametrize the 

BBN if/when these individual models become available, and to compare the results of a corresponding 

sensitivity analysis on this new model structure with these results.  

Sensitivity analysis is a pivotal component of model calibration and design, however, methodologies 

for conducting it for hybrid BBNs aren’t readily accessible in the software used for BBN 

parameterization or in R packages, and therefore require bespoke coding for implementation. For 

example, Glendell et al., (2022), conducted a sensitivity analysis on a discretized version of their hybrid 
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network, which causes loss of information (Uusitalo, 2007), and makes the BBN sensitive to the chosen 

discretization. Similarly, Piffady et al., (2021) tested the sensitivity of a discretized BBN by varying 

nodes deemed important across a reasonable range. Here we provided a preliminary approach to the 

sensitivity analysis of a hybrid BBN without triggering discretization.  

 

4.4.4 Model evaluation 

Results of the model evaluation are shown in Figure 4.3, which shows boxplots with the median, 

interquartile range with the whiskers extending to the highest and lowest datapoints, and a 

representative selection of datapoints, from ten-thousand simulated realizations of each BBN structure 

tested. These are summarized in Table 4.3, where predicted log10 TRP concentrations are compared to 

the observations (daily time-step, data from 2009 to 2016). In the surface-drained catchments (Figure 

4.3, Ballycanew and Dunleer, right-hand side), the distribution of log10(TRP) concentrations predicted 

by the BBN models is not sensitive to the structure of the BBN. The BBN parameterized in Negri et al., 

(2024a) (Structure 1) can reproduce the mean and median observed P concentrations in the Ballycanew 

and Dunleer catchments. For Ballycanew, the percentage bias is within acceptable ranges (close to the 

50% departure from observations or less, shown in Table 4.3). For Dunleer, a bias of 94% is still 

considered acceptable because the mean predicted concentration was 0.11, whilst the observed was 0.10 

mg l-1. The addition of an in-stream P removal node improved the ability of the model to replicate the 

mean and median in-stream P concentration in these two catchments (Table 4.3, comparing Structure 1 

and 2), by introducing a linear scaling factor. Further, the percentage bias in Dunleer went from 94% to 

45% with the addition of removal, however, because the concentrations being predicted are small, small 

changes in their absolute values represent large changes in bias, therefore bias values should be looked 

at critically in context with mean TRP concentrations, as shown in Table 4.3. For the two groundwater-

dominated catchments (Timoleague and Castledockrell), the introduction of groundwater TDP 

concentration (Structures 4, 5, and 6) improved the simulated TRP concentrations: in the final structure, 

the predicted median was the same as the observed, 0.05 (Timoleague) and 0.02 mg l-1 (Castledockrell). 

This could not be achieved in the Castledockrell catchment with a process-based model such as SimplyP 
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(Hawtree et al., 2023), even though the BBN and SimplyP deploy similar strategies to represent below-

ground processes. An improvement in percentage bias (from 40% to -5%) is provided by the addition 

of in-stream P removal in the Timoleague catchment (also in Table 4.3, comparing Structure 4 and 5), 

however, the bias was already within the 50% departure from observations, which indicates that this 

remains a secondary process, at least if compared to correctly representing groundwater concentrations 

(Structure 4).  

Knowledge of the type of septic tank treatment adopted (i.e., comparing Structure 1 to Structure 3), 

provides little to no advantage (concentrations remain unvaried), except for better representing the 

available datasets. Increasing the structural complexity of the BBN had the most impact in the 

Castledockrell catchment, where the percentage bias of posterior simulations has decreased more than 

twenty-fold (Table 4.3, comparing Structure 1 with Structure 6). To further demonstrate this, monthly 

predicted log10(TRP) concentrations (yellow bars) are plotted as histograms against daily observed 

log10(TRP) concentrations (blue bars, grouped by month) across all model structures developed for the 

Castledockrell catchment in Figure 4.4. This shows the progress made in adapting Structure 1 in this 

catchment (top histograms), where yellow and blue are not overlapping, up to the last model structure 

(Structure 6, bottom panel), which shows good correspondence between predicted and observed TRP 

concentrations. The addition of P removal had the added benefit of improving seasonality in the BBN 

predictions, which was not a behaviour that emerged in the first parameterization; however, the 

observations still show stronger seasonality patterns than the simulations. A summary table of these 

results is reported in the Supplementary Information, where, for each catchment, monthly predictions 

from the first versus the final model version are compared against the observations. Percentage bias 

shows that the final and best performing model in each catchment performs best in dry conditions 

(summer months). However, in Dunleer and Ballycanew, the model predicts the mean concentration 

better in winter than in summer. This is notable, as predicting P concentrations correctly in summer 

may be more relevant from the point of view of assessing ecological impacts in running waters than 

predicting them during the ecologically less active winter period. In the groundwater-dominated 

catchments, the final model is better constrained than in the runoff-dominated catchments (Ballycanew 
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and Dunleer), as evident when comparing the predicted upper (µ+ơ) concentrations versus the observed 

in Table 8.5 of Supplementary Information. Table 4.5 shows both the observed and the marginal 

probabilities of Environmental Quality Standard of 0.035 mg l-1 (EQS) exceedance in each catchment 

and across two model structures. The Table shows that even though the models can work for two 

catchments and is improved by the inclusion of P removal, the model predicts a lower probability of 

exceeding the EQS than the observational data in the two P risky catchments (Ballycanew and Dunleer). 

Meanwhile, the prediction of EQS exceedance for the Timoleague catchment is either under- or over- 

predicting by 8%, depending on BBN model structure, while at Castledockrell, the prediction of 

exceedance for the final model is 10% lower than the observed. These findings suggest that the BBN 

may be best used as Decision Support Tool by calculating the quantiles of monthly predicted 

concentrations as seen in Negri et al., (2024a) or the monthly mean and upper and lower limits (µ±ơ, as 

shown in the Supplementary) rather than as a discrete probability of EQS exceedance, due to the 

predicted distributions being wider and more skewed than the observations, also seen in Negri et al., 

(2024a).
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Table 4.3 Overall results of the different BBN versions for the four catchments, concentrations (mg l-1) outside the instrument limit of detection (0.01-5.00 mg l-1) have been excluded from the analysis. Both 

observed and predicted TRP concentrations were log-transformed before calculating the statistics, and then converted back to normal values. A positive bias indicates overestimation. Abbreviations: ST septic 

tanks; GW TDP groundwater total dissolved phosphorus; STWs sewage treatment works; p.e. people equivalent. 
   

Structure 

1 

Structure 

2 

Structure 

3 

Structure 

4 

Structure 

5 

Structure 

6 

observations 

   Negri et al., (2024a) 

Negri et al., (2024a)+ 

in- stream removal (no 

ST treatment in 

Dunleer) 

Negri et al., (2024a), 

no ST 

treatment 

no ST treatment + 

GW TDP 

no ST treatment +  

GW TDP + 

in-stream P removal 

no ST treatment +  

GW TDP + 

in-stream P removal + 

STWs 130 p.e. 

T
im

o
le

a
g

u
e 

mean 

mg l-1 

0.14 - 0.14 0.08 0.05 - 0.05 

lower limit (µ-1ơ) 0.05 - 0.05 0.05 0.03 - 0.03 

upper limit (µ+1ơ) 0.40 - 0.41 0.11 0.08 - 0.09 

median 0.14 - 0.15 0.07 0.05 - 0.05 

5th quantile 0.02 - 0.02 0.05 0.03 - 0.02 

25th quantile 0.08 - 0.07 0.06 0.04 - 0.04 

75th quantile 0.21 - 0.21 0.09 0.08 - 0.08 

PBIAS % 285 - 291 40 -5 - - 

B
a

ll
y

ca
n

ew
 

mean 

mg l-1 

0.08 0.07 - - - - 0.06 

lower limit (µ-1ơ) 0.03 0.03 - - - - 0.03 

upper limit (µ+1ơ) 0.21 0.17 - - - - 0.11 

median 0.10 0.08 - - - - 0.06 

5th quantile 0.02 0.02 - - - - 0.01 

25th quantile 0.05 0.04 - - - - 0.04 

75th quantile 0.14 0.12 - - - - 0.14 

PBIAS % 80 49 - - - - - 

C
a

st
le

d
o

ck
re

ll
 

mean 

mg l-1 

0.11 - 0.10 0.03 0.02 0.02 0.02 

lower limit (µ-1ơ) 0.04 - 0.04 0.01 0.01 0.01 0.01 

upper limit (µ+1ơ) 0.29 - 0.29 0.05 0.04 0.05 0.04 

median 0.13 - 0.13 0.02 0.02 0.02 0.02 

5th quantile 0.02 - 0.02 0.01 0.01 0.01 0.01 

25th quantile 0.07 - 0.06 0.02 0.01 0.02 0.02 

75th quantile 0.18 - 0.19 0.04 0.03 0.03 0.04 

PBIAS % 445 - 453 34 12 18 - 

D
u

n
le

er
 

mean 

mg l-1 

0.11 0.09 0.11 - - - 0.10 

lower limit (µ-1ơ) 0.03 0.03 0.03 - - - 0.06 

upper limit (µ+1ơ) 0.38 0.28 0.39 - - - 0.16 

median 0.12 0.09 0.12 - - - 0.09 

5th quantile 0.01 0.01 0.01 - - - 0.05 

25th quantile 0.05 0.04 0.05 - - - 0.06 

75th quantile 0.27 0.20 0.28 - - - 0.14 

PBIAS % 94 45 97 - - - - 
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Figure 4.3 Predicted and observed log10(TRP) concentrations for each of the four catchments. The grey density shows the 

distribution obtained by simulated realizations from the BBN (all plots except the rightmost of each panel), filled points the 

scatter of the realizations (100 samples per catchment), coloured boxplots show the median (central line), interquartile 

range (box) and highest and lowest datapoints (shown by the whiskers). Observations are shown in the rightmost plot in 

each panel, where the grey density shows the distribution fitted to the full suite of observations, filled points the scatter of the 

realizations, the light brown boxplots show the median (central line), interquartile range (box) and the 95% quantile range 

for the distribution. Data outside the instrument’s limit of detection (0.01-5.00 mg l-1) were excluded from the plot, and the 

text shows the number of valid samples for each model (with 10000 being the maximum number of available samples 

generated by the model). This plot was produced with the ggdist R package version 3.3.0 (Kay, 2023). A complete 

description of the finalized model structures is given in the Supplementary Information for the Timoleague, Dunleer, and 

Castledockrell catchments, a description of Structure 1 is given in Negri et al., (2024a).
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Figure 4.4 Histograms of monthly log10(TRP) concentrations (mg l-1). Observations are shown in blue, predictions obtained from each model 

structure adapted for the Castledockrell catchment are shown in yellow. The dark grey box indicates concentration values below the limit of 

detection (0.01 mg l-1).
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Table 4.4 Marginal probability of exceeding EQS limits in the four catchments. 

 Probability to exceed EQS limits 

 

2010-2020 data 

(Mellander et al., 

2022) 

2009-2016 data 
 model in Negri et 

al., (2024a) 

model with in-

stream P removal  

 
Hourly mean 

concentration 

Daily mean 

concentration 
Structure 1 

Final structure (a 

different one for 

each catchment) 

TIMOLEAGUE 81% 80% 72% 88% 

BALLYCANEW 94% 88% 65% 61% 

CASTLEDOCKRELL 29% 28% 46% 18% 

DUNLEER 99% 99% 58% 55% 

 

4.5 Conclusions 

This study is the first application of a BBN aimed at predicting stream P concentrations in four Irish 

agricultural catchments. We set out to test the transferability of a hybrid BBN targeting P pollution 

across agricultural catchments with diverse dominant hydrological processes. The initial BBN proved 

to be transferrable between catchments dominated by surface or mixed hydrological pathways, 

irrespective of land use, but less so between catchments dominated by sub-surface delivery. Inclusion 

of groundwater total dissolved P (TDP), Sewage Treatment Works (STWs) inputs, and in-stream P 

uptake improved model performance in all four catchments and made the BBN more transferable, 

though at the cost of increased complexity and data requirements. 

In this work, we explored two strategies to improve model structure: bootstrapping to estimate the 

groundwater TDP concentration, and expert elicitation to assess in-stream P removal. The addition of 

groundwater TDP loads improved the predictions in sub-surface-driven catchments. Expert elicitation 

aided the P uptake parameterization, which lacked generalizable data, highlighting a research gap. 

However, we found that in-stream P uptake remained a secondary process compared to the 

representation of P transfers via both surface and subsurface pathways when simulating daily P 

concentrations. 

To avoid discretizing the continuous distributions that form critical components of the BBN nodes prior 

to sensitivity analysis, we implemented a method to evaluate the effects of parameter variation on the 

full posterior distribution of the target node, by varying the parameters of interest while holding the 
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others fixed. This demonstrated the transferability of non-catchment specific data to further catchments 

and found redundant parameters in the sediments and septic tanks components of the model.  

Testing BBN applicability also revealed constraints in this study related to the limited presence of BBN 

studies conducted in catchments comparable to those examined in this research, and the fact that few 

modelling studies have been performed in our study catchments. Therefore, future work should involve 

the use of other modelling approaches in these catchments, allowing the intercomparison of models 

parameterized with high-frequency datasets. Given the scope of the Agricultural Catchments 

Programme, in the future, the BBNs developed here present an effective tool for modelling of 

catchment-scale effects of water quality mitigation measures.  
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5. Climate change impacts on phosphorus concentrations in 

four Irish catchments: a Bayesian Belief Network approach 

 

 

 

 

 

 

 

 

 

Figure 5.1 Schematic representation of the combined information required to create the seventy-two scenarios (per 

catchment) used to drive the BBN’s TRP predictions in this chapter. 

 

  



108 
 
 

Abstract 

Climate-induced changes in precipitation and river flows are expected to cause changes in river 

phosphorus loadings. The uncertainty associated with climate-induced changes to water quality is rarely 

represented in models. Bayesian Belief Networks (BBNs) are probabilistic graphical models 

incorporating uncertainty in their model parameters, making them ideal frameworks for communicating 

climate risk. This study presents a BBN to simulate total reactive phosphorus (P) concentrations in four 

agricultural catchments under projected climate change. Six climate models (five models plus the 

ensemble mean), two objective functions (NSE vs log NSE), two Representative Concentration 

Pathways (RCP 4.5 and 8.5), and three time periods (the 2020s, the 2040s, and the 2080s) were used to 

create scenarios as model inputs. The simulated monthly mean P concentrations show no obvious trends 

over time or differences between the two RCP scenarios, with the model ensemble essentially 

replicating the results obtained for the baseline period. However, the P concentration distributions 

simulated using the outputs from the HadGem-2 model rather than the ensemble, showed significant 

differences from the baseline in the drier months. A sensitivity analysis demonstrated that this 

difference occurred because the catchment-specific BBNs were sensitive to changes in the mean total 

monthly discharge which were captured in the HadGem-2 projections but not by the ensemble mean. 

BBNs in the surface-dominated study catchments showed sensitivity to changes in agricultural land use 

type.  

5.1 Introduction 

Intensive farming in Ireland has caused freshwater eutrophication through phosphorus (P) over-

enrichment (Ulén et al., 2007). P losses in rural catchments are complex, being determined by multiple 

sources, including legacy P, manure and mineral fertiliser applications and effluent discharges, and 

multiple pathways such as overland flow, farm drains and groundwater flow; all of which vary with 

location (Bowes et al., 2015; Mellander et al., 2016; Thomas et al., 2016b). Phosphorus bound to soil 

and stream sediment can also be later released further confounding P reduction efforts. For these 
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reasons, whilst reducing P losses from land to water is expected to reduce freshwater eutrophication 

overall, determining the focus and priorities for effective policy and catchment management to achieve 

such reductions is difficult.  

Climate change further complicates the management challenge (Bol et al., 2018). Projections for Ireland 

suggest increased winter precipitation and reduced summer precipitation (Murphy et al., 2023). Against 

this backdrop, P models have been applied to quantify P sources, transport and the in-stream 

concentrations and loads to identify appropriate management strategies to continue recent progress in 

the reduction of stream water P concentrations and loads (Charlton et al., 2018; Ockenden et al., 2017; 

Wade et al., 2022). Modelled outcomes in small UK river catchments suggest increased and more 

intense winter storms which will result in greater mobilisation and delivery of P loads to surface waters 

(Ockenden et al., 2017), whilst summer reductions in precipitation will reduce the dilution of point 

source and groundwater inputs. Studies have shown increased P loads from agricultural diffuse source 

under climate change (e.g., (Jennings et al., 2009; Ockenden et al., 2016, 2017)), despite the fact that 

concentrations are the relevant water quality standard in running waters (Stamm et al., 2014) and 

estimating the effects of climate on P concentrations remains crucial to understand future eutrophication 

risk and to design mitigation measures (Charlton et al., 2018), also in light of the European Union Water 

Framework Directive (WFD). Catchment area, the relative inputs from diffuse and point sources, and 

land use are also important factors that determine how stream water P concentrations will respond to 

future land cover and climate change, and must accounted for (Wade et al., 2022). Furthermore, the 

commensurate changes in chlorophyll-a concentrations, which are a measure of algal production, in 

response to stream water phosphate alterations are also complicated with growing evidence that stream 

water residence-time and the prevailing light conditions are equally, if not more important than P (and 

nitrogen in headwater catchments), as controls on algal bloom initiation and development (Bowes et 

al., 2012; Neal et al., 2006; Smith et al., 2017). Inadequate data resolution to describe the flow and 

phosphorus dynamics, particularly under extreme high and low flow conditions, and the lack of 

uncertainty analysis in model applications have been cited as current limitations when simulating future 

changes in phosphorus (Ockenden et al., 2017). The lack of suitable data means that the testing of the 
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assumptions to construct P models is limited. Incorporating uncertainty is critical to help decision-

makers to assess models and to make informed decisions about water quality management (Kotamäki 

et al., 2024). Bayesian Belief Networks (BBNs) are probabilistic graphical models that due to their 

stochastic nature can help bridge uncertainty knowledge gaps as they provide robust quantitative 

uncertainty estimates, including epistemic and aleatoric uncertainty (Glendell et al., 2022; Sahlin et al., 

2021) and can facilitate the identification of uncertainty sources within the model (Sperotto et al., 2017). 

Given this, BBNs are an alternative to the widely-used process-informed catchment P models such as 

HYPE, SWAT, and INCA-P (Negri et al., 2024a), and are advantageous because they incorporate P 

sources, processes and delivery pathways in a way that is interpretable and accessible to wider 

audiences. Incorporating uncertainty is also inherent in BBNs through the specification, by 

measurements or expert elicitation, of the conditional probability tables (CPTs), distributions, and 

equations describing P processes and transport pathways.  

A new hybrid BBN has been developed and applied to four catchments in Ireland, representative of 

contrasting land cover and hydrological regimes, with good performance when simulating total reactive 

P concentrations (TRP) (Negri et al., 2024b). Here, we take the science further and present the 

application of the BBN to simulate future phosphorus losses in the same four catchments under 

scenarios of climate change. All four catchments have extensive datasets of in-stream TRP, discharge 

(Q), and turbidity measured sub-hourly since 2009, supplemented by field-scale data from over 400-

500 soil P tests. These have been used previously to construct and test the catchment-specific BBNs, 

which have been further enhanced to include septic tank inputs, in-stream P processes, and groundwater 

pathways. The aim of this study is to quantify stream TRP concentrations under future projections of 

climate change and to achieve this overall aim there are three research objectives: 

1. To use projected future flows as input to the BBN model to determine TRP concentrations 

based on outputs from five climate models and the ensemble mean, considering two RCPs (4.5 

and 8.5) and present day (2020s), near (2040s) and far future (2080s) time periods. 

2. To evaluate the sensitivity of the BBN outputs to changes in flow inputs and land use. 
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3. To use the sensitivity analysis results to understand the response of the BBN to altered flow 

and land use, and thereby better understand the relative importance of flow and land cover as 

drivers of change. 

5.2 Study Areas  

This study focusses on four agricultural catchments located in the Republic of Ireland. These have 

contrasting land uses (grassland or arable dominated) and hydrology (from poorly to moderately to well 

drained) and have been described in more detail elsewhere (Jordan et al., 2012), including Chapter 2 of 

this thesis. The catchments included are Ballycanew and Castledockrell in County Wexford, 

Timoleague in County Cork, and Dunleer in County Louth. The catchments have been monitored since 

2009 to oversee the environmental and economic effectiveness of the Programme of Measures and 

derogation under the Nitrates Direction National Action Programmes (NAPs) of the European Union 

(Fealy et al., 2010). Specifically, the monitoring included high-frequency (sub-hourly) measurements 

of hydro-chemo-metrics at the catchment outlet such as discharge (Q, m3), turbidity (NTU), and total 

reactive P (TRP, mg l-1) concentrations aggregated at the daily time step (Negri et al., 2024a) and field-

scale soil sampling including agronomic soil P (Wall et al., 2013).  

Murphy et al., (2023) have simulated future flows under climate change scenarios in twenty-six Irish 

catchments, including those in this study by using the Irish Centre for High-End Computing (ICHEC) 

ensemble (Nolan and Flanagan, 2020) to drive the Soil Moisture Accounting and Routing for Transport 

(SMART) hydrological model (Hallouin et al., 2020; Mockler et al., 2016b). Annual mean flows were 

projected to increase across Irish catchments under RCP 8.5 (a fossil fuel-intensive emissions pathway), 

and the largest increase was expected in Castledockrell by the 2080s (23.8%) (Murphy et al., 2023). 

Under RCP 8.5 in the 2080s, Timoleague, Ballycanew, and Castledockrell showed increased winter 

mean flow (>30%). Large summer flow decreases were predicted for Ballycanew and Dunleer (up to -

50%). The Castledockrell catchment was also expected to experience up to 114% increase in autumn 

mean flow under RCP 8.5 (Murphy et al., 2023). Changes to the mean seasonal and annual flows are 
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also expected under RCP 4.5 (an intermediate pathway with emissions peaking around the year 2040), 

albeit less marked.  

5.3 Methods 

5.3.1 Bayesian Belief Network development  

The BBNs used in this study were developed in the software GeNIe, version 2.4 (BayesFusion, 2019) 

by Negri et al., (2024b) for the four catchments. The final best-fitting catchment-tailored BBNs were 

used in the present study. The four BBN structures are all aimed at quantifying monthly in-stream P 

concentration at the catchment outlet by integrating the TRP loads from different compartments (soils, 

sediments, septic tanks, farmyards, groundwater, and a wastewater treatment plant) and then converting 

the loads into concentrations by dividing by the monthly discharge. Catchment-specific datasets were 

used wherever possible, including the quantification of the different discharge (Q) components, namely 

quick-flow, interflow, and baseflow (Mellander et al., 2012) (specified as mean total monthly surface 

flow [m3], mean total monthly sub-surface stormflow [m3], and mean total monthly baseflow [m3] in 

Tables 3.1, 9.2, 9.3, and 9.4). The finalized BBNs achieved good performance in all four catchments in 

terms of percentage bias (-5%≤PBIAS≤49%) when compared to the observed TRP concentrations 

(2009-2016) (Negri et al., 2024b). The BBNs reproduced the mean monthly TRP concentration 

relatively well in Castledockrell and Timoleague, less accurately in Ballycanew and Dunleer, where the 

model predicted the mean concentration better in winter than in summer. A summary of the BBNs’ 

performance is given in Table 5.1, whilst further detail, including the monthly performance, is reported 

in the previous Chapter. 
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Table 5.1 Summary performance of the BBNs developed in Negri et al., 2024b, including mean marginal TRP, the lower 

limit of the distribution (µ-1ơ, superscript), the upper limit (µ+1ơ, subscript), and percentage bias (PBIAS). Both observed 

and predicted TRP concentrations were log-transformed before calculating the statistics and then converted back to normal 

values. The marginal distribution mean can reproduce the observed mean TRP concentration in the reference period (2009-

2016). 

 PBIAS mean predicted mean observed 

 % TRP mg l-1 

TIMOLEAGUE -5 0.050.08
0.03 0.050.09

0.03 

BALLYCANEW 49 0.070.17
0.03 0.060.11

0.03 

CASTLEDOCKRELL 18 0.020.05
0.01 0.020.04

0.01 

DUNLEER 45 0.090.28
0.03 0.100.16

0.06 

 

5.3.2 Climate Scenarios and their implementation in the BBN 

Nolan and Flanagan, (2020) developed high-resolution climate scenarios for Ireland by downscaling 

the outputs of five Global Climate Models, namely, CNRM-CM5 (Voldoire et al., 2013), EC-Earth 

(Hazeleger et al., 2012), HadGEM2-ES (Collins et al., 2011), MIROC5 (Watanabe et al., 2010), and 

MPI-ES-LR (Giorgetta et al., 2013). Future climate was simulated under Representative Concentration 

Pathway 2.6, 4.5, 6.0, and 8.5, of which RCP 4.5 and 8.5 are included in this study to represent an 

intermediate (4.5) and an extreme scenario (8.5). Murphy et al., (2023) used these climate scenarios to 

drive the SMART hydrological model, calibrated independently with both the Nash-Sutcliffe Efficiency 

(NSE) and the log Nash-Sutcliffe Efficiency (log NSE) as objective functions. Through the SMART 

model, Murphy et al., (2023) obtained the simulated river flows (discharge, Q) up to 2100, used in the 

present study. The available daily discharge (Q, mm) timeseries were summed into total monthly Q 

(m3) for each model and reference period. This was used to implement a bootstrapping procedure that 

fits a Lognormal distribution to the data distributions from each month using fitdistrplus (Delignette-

Muller et al., 2020). These monthly lognormal parameters (mean, µ, standard deviation, ơ) per each 

scenario were then used to specify the distributions for the BBN node “Mean total monthly Q 

(discharge) [m3]” using the same procedure used to parametrize the BBN baseline in Negri et al., 

(2024a). A scenario for the ensemble mean was also included, whereby monthly discharge was averaged 

between the five climate models prior to distribution fitting. This was done in view of the 

recommendation to use a multi-model ensemble approach to address model formulation and climate 

variability-related uncertainties as explained in Nolan and Flanagan, (2020). The combination of two 
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emission pathways, three reference periods, the 2020s (2010-2039), the 2050s (2040-2069), and the 

2080s (2070-2099), six model options (five models plus the mean of the ensemble), and two calibration 

functions gave seventy-two scenarios of monthly discharge per catchment. These were used to simulate 

monthly TRP concentrations at the catchment outlet. The posterior probability for the target node “In-

stream P concentration [mg l-1]” was simulated using rSMILE version 2.2.1 (BayesFusion, 2019c), an 

API engine available in R which can perform the same operations as GeNIe Modeler (BayesFusion, 

2019), the software used to develop the BBN model structure in each catchment. Mean monthly 

posterior TRP concentrations (µ±ơ, mg l-1) for each scenario were plotted alongside mean total 

precipitation (µ±ơ, mm), observed TRP (µ±ơ, mg l-1) as well as the TRP (µ±ơ, mg l-1) predicted by the 

BBN in baseline period (2009-2016) (Negri et al., 2024b). 

5.3.3 Sensitivity Analysis  

To help us interpret the results, we conducted a sensitivity analysis on the model parameters for 

discharge (Q) and land use variables by adapting the methodology developed in rSMILE 2.0.1 in Negri 

et al., (2024b), but using rSMILE version 2.2.1. The “Mean total monthly Q (discharge) [m3]” was 

defined as a series of monthly Lognormal (µ, ơ) distributions. For each catchment, we tested varying 

the mean (9≤µ≤17) and standard deviation (0.1≤ơ≤1) of the Lognormal discharge (Q) on the median 

log10(TRP) concentration (mg l-1). Additionally, we tested the effects of land use changes by varying 

the proportions of the three potential land uses (arable, grassland, and seminatural), with the proportions 

for the three categories summing to 1.  

5.4 Results and Discussion 

5.4.1 Phosphorus concentrations under future climate  

Marginal mean TRP concentrations are predicted by each catchment’s BBNs using the model ensemble 

across the three reference periods: the 2020s (2010-2039), the 2050s (2040-2069), and the 2080s (2070-

2099). These show no differences against the observed reference period (2009-2016) nor obvious trend 
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over time, nor differences when using the two different SMART model calibrations (log NSE vs NSE) 

(shown Table 10.1 of Supplementary Information as log10(TRP)). However, here we applied a model 

ensemble consisting of the mean discharge simulated by five climate models which progresses previous 

work using a single climate scenario in a BBN (Mentzel et al., 2022). 

The marginal TRP results driven by the ensemble could mask seasonal variation, therefore, monthly 

mean TRP (µ±ơ, mg l-1) predictions in the Ballycanew (top plots) and Castledockrell (bottom plots) 

catchments are shown in Figure 5.2, while Figure 5.3 shows the same for Timoleague (top plots) and 

Dunleer (bottom plots). Simulated future TRP concentrations are plotted against the precipitation (mm) 

predicted by the different models (on the left-hand side) and against the observed and predicted TRP 

for the baseline period (2009-2016), as well as BBN predictions when using the model ensemble mean 

and the BBN baseline. In Ballycanew and Castledockrell, the HadGEM2-ES model predicts higher TRP 

concentrations under future scenarios, likely due to lower predicted precipitation and therefore 

discharge, and a subsequent dilution reduction. This concurs with Wade et al., (2022), whereby the 

change in future SRP concentrations depended on the choice of climate model. However, the 

HadGEM2-ES model also shows higher uncertainty, made evident by the wider upper (µ+ơ) and lower 

limit (µ-ơ) in Figure 5.2 and 5.3 (see Table 10.2 and Figure 10.1 in the Supplementary Materials which 

show the mean (µ) TRP concentrations under the different scenarios). In all catchments, the predicted 

TRP concentration remained at levels similar to those simulated during the baseline period. Differences 

in climate-driven mean concentrations were negligible, especially when accounting for uncertainty by 

considering the upper and lower simulated concentrations (see for example, the differences between 

figures 5.2 and 5.3 and Figure 10.1). An exception was found in Castledockrell, with a higher mean 

TRP in August, September, and October for HadGEM2-ES RCP 8.5, irrespective of time period (Table 

10.2 and Figure 10.1). Further, it should be noted that the uncertainty in the Ballycanew catchment is 

larger, due to a worse fit of the BBN to the data from the reference period than in the other catchments 

(Negri et al., 2024b). Similarly, the uncertainty in the Timoleague and Dunleer catchments shows a 

large spread in predicted stream TRP concentrations. The precipitation plots show differences and 

therefore large uncertainty between climate models, which could probably explain the uncertainty in 
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TRP predictions. In Castledockrell, the least P-vulnerable catchment, the uncertainty in the observed 

and baseline TRP concentrations is smaller than the range of TRP concentrations predicted under the 

climate change scenarios. This is because the climate model ensemble performance during calibration 

and validation was best (NSEcal was 0.87, NSEval was 0.83) in Castledockrell (Murphy et al., 2023). 

Further, the BBN specified for the Castledockrell catchment perfectly represented the mean TRP 

concentration at the catchment outlet (Table 5.1). While all the BBNs achieved good performance in 

predicting the marginal mean concentrations across the four catchments (Table 5.1), the BBNs did not 

represent seasonality well in the Ballycanew and Dunleer (Negri et al., 2024b). However, the ability to 

reproduce seasonal variation in discharge, and therefore dilution, correctly during ecological sensitive 

periods is important, for example, to determine algal bloom development and persistence.



117 
 
 

 
Figure 5.2 Mean monthly predicted precipitation (left-hand side) in Ballycanew (top left) and Castledockrell (bottom left) driven by five climate models and the ensemble mean. The predicted and observed means 

(mg l-1) ± standard deviation are shown to demonstrate the full range of uncertainty in the predictions and observations. Predicted TRP concentrations were log-transformed before calculating the statistics, and 

then converted back to normal values. Results are shown for the NSE calibration of the SMART model only. 



118 
 
 

 

Figure 5.3 Mean monthly predicted precipitation (left-hand side) in Timoleague (top left) and Dunleer (bottom left) driven by five climate models and the ensemble mean. The predicted and observed means (mg l-1) 

± standard deviation are shown to demonstrate the full range of uncertainty in the predictions and observations. Predicted TRP concentrations were log-transformed before calculating the statistics, and then 

converted back to normal values. Results are shown for the NSE calibration of the SMART model only. 
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5.4.2 Sensitivity to discharge   

The sensitivity analysis showed that the BBNs developed for the four catchments are somewhat 

sensitive to a variation in the monthly mean discharge, but not to variations in the standard deviation 

(Figure 10.2 in Supplementary Information). Specifically, the model was sensitive to variations mean 

(µ) of the Lognormal discharge in the range 9≤µ≤12 (these are specified in the loge scale in the BBN), 

which is equivalent to a variation between 8000 and 1.6*105 m3. Variations outside this range 

(Lognormal µ≥12) were shown not to have an impact on the median log10(TRP) concentration (mg l-1). 

The sensitivity analysis explains why the BBNs under climate change show TRP concentrations similar 

to those shown in the baseline when using the model ensemble.  

Table 5.2 Mean (µ), lower (µ-ơ), and upper limit (µ+ơ) of discharge (total monthly Q, m3) in the month of January for the 

model ensemble across the two climate scenarios (RCP 4.5 and RCP 8.5) against the same for the BBN baseline (Negri et 

al., 2024b) for each of the four catchments. Here, only results derived from the NSE calibration driving the SMART model 

are shown. Mean monthly discharge is represented in the model with a Lognormal(µ, ơ) distribution (base e). In this table, 

all Lognormal distributions have a mean of 13.36≤µ≤13.92, and a standard deviation of 0.04≤ơ≤0.17 which is a range the 

model is not sensitive to (shown in Supplementary Information). 

Timoleague 

 RCP 4.5 RCP 8.5 BBN baseline (Negri et al., 2024b) 

 µ-ơ µ µ+ơ µ-ơ µ µ+ơ µ-ơ µ µ+ơ 

 m3*106month-1 

2009-2016 - - - - - - 0.89 0.98 1.09 

2010-2039 0.81 0.84 0.88 0.75 0.78 0.81 - - - 

2040-2069 0.85 0.89 0.93 0.85 0.88 0.92 - - - 

2070-2099 0.89 0.92 0.96 0.98 1.02 1.07 - - - 

Ballycanew 

 RCP 4.5 RCP 8.5 BBN baseline (Negri et al., 2024b) 

 µ-ơ µ µ+ơ µ-ơ µ µ+ơ µ-ơ µ µ+ơ 

 m3*106month-1 

2009-2016 - - - - - - 0.83 0.98 1.17 

2010-2039 0.84 0.89 0.96 0.85 0.91 1.88 - - - 

2040-2069 0.88 0.94 1.01 0.87 0.93 1.00 - - - 

2070-2099 0.91 0.97 1.04 1.03 1.11 1.20 - - - 

Castledockrell 

 RCP 4.5 RCP 8.5 BBN baseline (Negri et al., 2024b) 

 µ-ơ µ µ+ơ µ-ơ µ µ+ơ µ-ơ µ µ+ơ 

 m3*106month-1 

2009-2016 - - - - - - 0.97 1.09 1.21 

2010-2039 0.61 0.63 0.66 0.60 0.63 0.65 - - - 

2040-2069 0.63 0.66 0.69 0.66 0.69 1.02 - - - 

2070-2099 0.67 0.70 0.73 0.76 0.79 0.82 - - - 

Dunleer 

 RCP 4.5 RCP 8.5 BBN baseline (Negri et al., 2024b) 

 µ-ơ µ µ+ơ µ-ơ µ µ+ơ µ-ơ µ µ+ơ 

 m3*106month-1 

2009-2016 - - - - - - 0.60 0.66 0.73 

2010-2039 0.71 0.75 0.79 0.71 0.74 0.78 - - - 

2040-2069 0.73 0.77 0.81 0.76 0.81 0.85 - - - 

2070-2099 0.78 0.83 0.88 0.84 0.89 0.95 - - - 
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A comparison of the discharge (Q) for the month of January is shown in Table 5.2 across the model 

ensemble scenarios (NSE calibration only) and the BBN baseline parameterized in Negri et al., (2024b). 

The same results were obtained when testing the model sensitivity in a drier month (August, data not 

shown). The ensemble-driven discharge in the scenarios was comparable to that in the BBN baseline 

(Table 5.2). Meanwhile, the climate models (rather than the ensemble) predict total monthly Q in ranges 

that the BBN is sensitive to (Lognormal µ≤9). The analysis suggests that the sensitivity of the target 

node (TRP concentrations at the catchment outlet) to parents (discharge, Q) that are far away from the 

target node itself is low. In these BBNs, discharge is used to calculate both the concentrations at the 

catchment outlet and the loads from the different model compartments, therefore it’s considered to be 

distant from the target node because there is an increased number of variables between input (parent 

nodes) and output (target child node). This confirms the finding that an increased number of variables 

between input (parent nodes) and output (target nodes) weakens the relationship between input and 

output (Marcot et al., 2006). However, due to time constraints, the sensitivity to nodes closer to the 

target was not tested here, albeit a previous analysis showed that the BBNs are sensitive to the P 

dissolved from the soil matrix into the stream (Negri et al., 2024b).  

5.4.3 Sensitivity to land use 

When testing land use change scenarios, only two of the BBNs showed sensitivity to changes in land 

use proportions in the land use node, as shown in Figure 5.4 for the two surface-driven catchments, 

Ballycanew (top right) and Dunleer (bottom right). The models for the other two catchments (which 

include groundwater inputs), did not show a sensitivity to changes in land use proportions (Figure 5.4, 

Timoleague and the top left and Castledockrell at the bottom left). The BBNs for the groundwater-

driven catchments parameterized in Negri et al., (2024b), Chapter 4, represent more P processes than 

the models in the other two surface-driven catchments, which could have contributed to a smaller spread 

of predicted posterior log10(TRP) concentrations (mg l-1), shown in Chapter 4, Figure 4.3 and 4.4 and 

Figures 5.2 and 5.3 in this chapter. The two models in groundwater-driven catchment support a 

simplified representation of the causal relationship between land use and groundwater P concentrations 
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(the full structures are shown in Negri et al., (2024b)), which explains the low sensitivity of in-stream 

TRP concentrations to changes in land use in these two study catchments. In addition, BBNs are limited 

in their ability to represent temporal dynamics (Moe et al., 2021), which represents an issue for climate 

applications (Sperotto et al., 2017). Specifically, in this study, in the groundwater-dominated 

catchments Castledockrell and Timoleague, P transit time from land use to groundwater far exceeds the 

BBN monthly timestep, and therefore a Dynamic Bayesian Network (DBN) might be better suited to 

represent these catchments both under the current conditions and future climate scenarios.  
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Figure 5.4 BBN sensitivity to changes in land use shown in the four catchments as Kernel Density Estimates of the 

probability density (y-axis) of log10(TRP) concentrations (mg l-1) on the x-axis corresponding to different land use scenarios. 

Current catchment land use is represented by the yellow density, 100% seminatural land use is represented in purple, 100% 

arable in red, and 100% grassland in blue. 57 different combinations of proportions of the three land uses are shown in 

green under “multiple combinations”. Kernel Density Estimate peak densities can exceed 1 but are constrained to integrate 

to 1. The surface water-dominated catchments (right hand-side, top and bottom) on the right show sensitivity to land use 

change, whilst the groundwater-dominated catchments (left-hand-side, top and bottom) do not. 
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5.5 Conclusions and further research 

Downscaled climate-driven discharge (Q) time series up to the year 2099 were used as input to the 

catchment-specific Bayesian Belief Networks, to quantify future TRP concentrations in the four study 

catchments for the first time. The results driven by an ensemble of five climate models showed no 

evident trends in stream TRP concentration in either catchment, regardless of concentration pathway 

(RCP 4.5 vs RCP 8.5) and future time periods. This outcome is consistent with similar research 

conducted using process-based models. This suggests that the impacts of climate change alone might 

not be significant when evaluating TRP concentrations in rivers and streams; however, effects may 

become apparent elsewhere, for example in terms of total loads entering standing waters, or at different 

time steps. The sensitivity analysis suggested that simulated changes in monthly Q driven by an 

ensemble of climate models are insufficient to drive stream TRP concentration changes in the studied 

catchments. The sensitivity analysis also demonstrated that in-depth knowledge of the BBN model 

response is necessary to interpret the results of future scenario simulations. Designing scenarios where 

the discharge was driven by the individual climate models rather than the ensemble proved to be an 

effective tool into understanding the drivers of the ensemble and helped results interpretation. This also 

suggested that future research should focus on testing different ensemble sets, or ensembles made of a 

larger number of climate models, as suggested by Moe et al., (2022), and on developing new strategies 

to implement climate information in these BBNs. Further investigation of the combined effects of 

climate and land use changes in the ACP catchments is needed to fully understand what controls TRP 

concentrations in these catchments.  
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6. Discussion 

The uniqueness and richness of the Agricultural Catchments Programme dataset prompted 

advancements in BBN and water quality research that would not have been possible otherwise, as 

discussed in sections 6.1 and 6.2. Using a Bayesian Belief Network to model P losses in the ACP 

catchments allowed the representation of all P sources: measured ones such as soil P and stream 

sediments, and unmeasured ones (farmyard, septic tanks, and sewage treatment works); as well as 

measured drivers (discharge, land use, agronomic management) and unknown ones such as those related 

to point sources. This approach enabled the systematic mapping and detailing of all data available 

(Tables 2.2, 3.1, 4.1, 9.1, 9.2, 9.3, 9.4), and the combination of datasets with disparate spatial and 

temporal resolutions in a single model, pinpointing research gaps present even in highly monitored 

catchments. Implications for management and suggestions for further model development for 

stakeholder use are laid out in section 6.3. Finally, the limitations of the BBN approach are discussed 

in section 6.4. 

6.1 Addressing Bayesian Networks and process-based models’ knowledge gaps 

Whilst developing the catchments-specific BBNs (chapters 3 and 4), the step-wise inclusion and 

parameterization of point sources P inputs, in-stream P processes, and groundwater pathways improved 

model performance and P processes and loss pathway representation. Specifically, the inclusion of 

groundwater pathways provided the greatest improvement. This addresses the general omission of in-

stream P processing from catchment P models raised by Jackson-Blake et al., (2015), and the lack of 

groundwater processes in BBNs developed in Negri et al.,(2024a) (Chapter 3) and Glendell et al., 

(2022). Other issues related to P modelling with process-based models addressed in this thesis are 

discussed in the introduction of Negri et al., (2024a) (Chapter 3), and in Chapter 4. These encompass 

the inclusion of point P sources in the model and the addition of uncertainty estimation embedded in 

the BBN modelling framework, which is relevant to modelling future water quality (Ockenden et al., 

2017; Sperotto et al., 2019a). Such improvements were enabled by the Bayesian framework and by 
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addressing four knowledge gaps regarding BBN application for Environmental Risk Assessment 

(described in section 1.4): 1) BBN validation with monitoring data (Table 1.1), 2) the use of high-

frequency data to develop hybrid BBNs, 3) transferability testing, and 4) transparency of expert 

elicitation. A brief description of how these were addressed is given below.  

(1) and (2): Given the state-of-the-art high-frequency monitoring in operation at the Agricultural 

Catchments Programme, the issue of BBN validation (Death et al., 2015; Moe et al., 2021) was 

addressed in Chapter 3 and 4, where simulated TRP concentrations were compared against daily TRP 

observations, both quantitatively (using percentage bias) and qualitatively (visual assessment) in four 

ACP catchments, showing that the BBNs developed in this study performed better than those built using 

low-frequency regulatory datasets (e.g., Glendell et al., 2022). The development of hybrid BBNs 

through the use of high-frequency and resolution ACP data further addresses the issue of scarcity of 

BBNs in Environmental Risk Assessment (Kaikkonen et al., 2021). 

(3) Testing the BBN transferability (Negri et al., 2024b, Chapter 4) showed that for the BBN to be more 

widely applicable, additional key processes needed to be represented (e.g., groundwater P inputs, in-

stream P removal processes, and sewage treatment works inputs). Therefore, these sources need to be 

monitored for more accurate and reliable P assessment and scenario modelling.  

(4) In Negri et al., (2024a), Chapter 3, I address the issue raised by Kaikkonen et al., (2021) around the 

role of experts in BBN modelling by providing information on the experts’ background and credentials; 

noting which variables (nodes) were constrained using expert judgment, publishing the full model 

structure both in an Open Access journal and in an open GitHub repository, and providing 

supplementary information regarding the background information received by the experts prior to the 

interviews and workshops. Similarly, in Chapter 4, the reasoning behind the selected experts was made 

clear. Building upon recent research (Mzyece et al., 2024), to further address transparency concerns as 

well as to clarify the background information received by the experts, the methodology and supporting 

information regarding the elicitation workshop were published in an evidence dossier (Negri and 

Mellander, 2024).  
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6.2 Advancing Sensitivity Analysis in BBNs 

In chapters 4 and 5 I describe the extensive sensitivity analysis carried out for the hybrid BBNs, which 

revealed redundant parameters. The strategy deployed to conduct such analysis is an extension of 

previous approaches, shown by Piffady et al., (2021). However, in the code published alongside Chapter 

4, we showed how the same procedure could be applied in a hybrid network without triggering 

discretization. The redundant parameters pertained to the release of P from sediments into the stream 

(“Soil erosion and soil P” sub-model) and the septic tanks components (“Septic Tanks (ST)” sub-model) 

of the BBNs. This is consistent with the finding that in some of the ACP catchments soil erosion losses 

are lower comparatively to other catchments in Europe (Sherriff et al., 2019). However, removing the 

nodes relative to erosion might not always be the best choice as these could be needed if the BBNs are 

applied to other catchments where these processes are more dominant. Keeping the less important 

components (nodes) at zero results in computational issues in my experience, therefore, it’s best to 

parameterize them to local conditions so that the causal relationships remain discernible in the graph.  

Furthermore, the sensitivity analysis in Chapter 5 aided with understanding the results of the climate 

scenarios analyses. The sensitivity analyses conducted in chapters 4 and 5 are an advancement in this 

area of research and could be further enhanced by developing methods to conduct a global sensitivity 

analysis or to explore the effects of varying multiple nodes simultaneously on the full posterior 

distribution of the target node, which requires more computing power. Even though we carried out a 

sensitivity analysis on the hybrid BBN, the parameter space was explored based on the literature and 

the modellers’ experience, therefore other methods could be developed to further extend this area of 

research. Lastly, the sensitivity analyses carried out here are still contingent on the proprietary software 

GeNIe and its API engine rSMILE (BayesFusion, 2019a, 2019c). This is a design choice dictated by the 

ease of use of the software which allowed the rapid design of multiple BBNs (Chapter 4) and analysis 

of numerous climate scenarios (Chapter 5).  

Another strategy to evaluate the BBN’s sensitivity to certain nodes (variables) was addressed using the 

progressive addition of nodes to the original model structure, which enabled a preliminary assessment 
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of the model’s structural uncertainty. In Chapter 3, the step-wise addition of septic tank nodes has shown 

that the BBN has low sensitivity to these inputs. These nodes were kept in the model as they describe 

our current understanding of P transport from septic tanks to surface waters. These nodes present broad 

priors informed by the literature as opposed to the other variables informed by measured data. Due to 

time constraints, they have been parameterized subjectively, that is, they have been informed by the 

modeller(s). These steps have been described in chapters 3 and 4 and the CPTs of these nodes 

(“Leachfield removal”, “Leachfield connectedness”, “Septic Tank connectedness”) have been 

described as “logical”. Chapters 3 and 4 have demonstrated that these variables have a small influence 

on the posterior TRP distribution. A possible reason for observing low sensitivity to a particular node 

or parameter could be that the variability of other, less well-known parameters tends to dominate the 

output TRP distribution, regardless of the specific value of the parameter in question. For example, we 

might have observed low sensitivity to discharge (Q), even though it’s a data-driven node in which we 

have reasonable confidence, because there are so many other nodes that are not as well characterized, 

either because logically derived, or because informed by few literature-derived data points (e.g., P 

concentrations in soils, septic tanks, and farmyards, see also Table 3.5).  

Regardless, in Chapter 4 we demonstrated an improved approach whereby the nodes of interest were 

parameterized through expert elicitation. Alternatively, CPTs can be validated by experts, as was done 

for some of the CPTs in Chapter 3 (e.g., Table 3.1), and as shown by McDowell et al., (2009).  

6.3 Implications for management 

This research highlighted avenues for further data collection even in highly monitored catchments such 

as those in the ACP, and I have summarized them in Table 6.1. However, considering that some of these 

relate to point sources that are not very influential on the total P losses at the catchment outlet in these 

BBN models, improved data collection and management interventions should still prioritise targeting 

diffuse P sources such as soil, legacy, and groundwater P.  
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Presently, these BBN models can be used to test a limited range of management interventions, including 

changes in soil Morgan P levels. As BBNs are well suited to include disparate sources of information, 

including information about mitigation measures, as done in Igras and Creed, (2020), the models 

developed in this study should be expanded to include further measures and their effectiveness (besides 

the already included buffer strips). This would fully exploit the BBNs’ potential as DSTs, given that 

understanding the full potential of mitigation at catchment scale and under future conditions rather than 

at the plot scale is a knowledge gap farmers and land managers are interested in (Adams et al., 2022). 

For example, the database in Stutter et al., (2021) could be leveraged to evaluate the effectiveness of 

measures at the catchment scale, rather than at the local scale, to aid managers with decision-making. 

Further, given that BBNs can model socio-economic aspects (Penk et al., 2022), these could be used to 

leverage already existing Teagasc research (e.g., regarding farmer’s attitude toward mitigation, (Osawe 

and Curtis, 2024)) and potential policy options (e.g., Stewart et al., 2021).  

Table 6.1 Model assumptions regarding P sources in the ACP catchments. 

P source Model assumptions Consequences 

Septic Tanks (STs) 

• assumed concentrations and 

loads 

• assumed pathways 

• assumed age and working 

conditions. 

Over/underestimation of STs loads. 

Farmyards (FYs) Assumed initial concentrations. Over/underestimation of FYs loads. 

Soils 

• soil P to in-stream P relationship 

is assumed constant in time  

• soil P to in-stream P relationship 

unspecific to catchment 

• agronomic soil P available as 

categorical. 

• Masking seasonality 

• Over/underestimation of diffuse 

loads 

• Loss of information. 

A further implication for catchment managers is that the developed BBNs are best utilized as Decision 

Support Tools by calculating quantiles of the posterior TRP distributions (chapters 3 and 4) rather than 

calculating the probability of discrete EQS exceedance, due to the predicted distributions being 

inherently wider than the observations. However, point values do not make full use of the BBN’s 

capability of predicting probability distributions which are useful when quantifying risk. Rather than a 

shortcoming of Bayesian Belief Networks as modelling tools, this issue reflects a broader limitation in 

regulatory practices, where single-point standards are still favoured over probabilistic approaches (Moe 
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et al., 2022). In my view, this highlights the need for regulators to evolve beyond point values to fully 

leverage probabilistic methods that can better inform risk under uncertain conditions.  

6.4 Limitations of the BBN approach 

Whilst the BBNs developed in this thesis can predict the marginal median and mean TRP concentration 

during the reference period (2009-2016) well (chapters 3 and 4), the monthly TRP concentrations at the 

catchment outlet are not as well represented, and the simulations look relatively constant throughout 

the year. This contrasts with the observed TRP concentrations that show a seasonal pattern (e.g. in 

Figure 3.5 A and Table 9.5) and is especially evident in the surface-runoff driven catchments (Dunleer 

and Ballycanew), albeit there is a small improvement in the representation of seasonality when the in-

stream P removal process is added (Chapter 4). This lack of seasonality is likely due to two main factors 

regarding the P sources and how they are represented. Firstly, the equation predicting P release from 

the soil to the stream developed by Thomas et al., (2016b) is not catchment-specific and is applied 

equally every month (section 3.3.2.1, and Table 6.1, this section). This is important, as it is a variable 

the BBNs are sensitive to (section 4.4.3 and Figure 9.2). Secondly, the BBNs for Ballycanew and 

Dunleer do not represent temporal changes in P sources. Conversely, in the Castledockrell and 

Timoleague catchments (the groundwater-driven ones), the sources have a monthly signal in 

groundwater TDP concentration used to derive the groundwater load (discussed in Chapter 4). The 

groundwater-driven catchments and the surface-driven catchments owe different proportions of stream 

TRP load to the groundwater component. This proportion is low in Ballycanew and Dunleer, with 45-

88% of P transported via quick-flow instead (Mellander et al., 2012), therefore a simpler model structure 

was adopted in these two catchments. These considerations give the posterior TRP concentrations in 

Ballycanew and Dunleer a flatter and wider distribution than in the groundwater-pathway-dominated 

catchments (shown in Chapter 4, Figure 4.3). Nevertheless, the seasonal differences in the observations 

are mostly evident when comparing summer and winter, at least in the Ballycanew catchment (Chapter 

3, Table 3.4). In Chapter 3 we hypothesized that the lack of seasonality shown in the first model iteration 

could also be due to the model’s worse performance in predicting total monthly discharge, especially 
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evident in June, July, and August. However, in Chapter 5, we demonstrated that the developed BBNs 

have low sensitivity to the total monthly discharge node used to calculate the target flow-weighted TRP 

concentration. The lack of seasonality is not important when modelling the status quo with the marginal 

concentrations (models performed well in the reference period 2009-2016, Chapter 4) for regulatory 

purposes. However, it remains a hindrance if the objective is to model future seasonal TRP 

concentrations under climate and land use change scenarios. In the case of Timoleague and 

Castledockrell, the stream TRP is heavily influenced by the groundwater store: about 60% of stream 

TRP comes from the baseflow (Mellander et al., 2016), but Chapter 5 highlighted how the two 

groundwater-driven catchment BBNs do not represent the causal relationship between land use and 

groundwater P concentrations. As the results of BBN simulations do not depend on what happened in 

the previous time step, in the BBN the groundwater mixes with the stream water instantaneously and 

therefore there is no interaction between different stores. This is not because a causal relationship does 

not exist but rather this reflects our current (in)ability to represent it in the BBN. P transit time from 

land use to groundwater far exceeds these BBNs’ timesteps, and generally BBNs (with the exception 

Hidden Markov Models) have limited ability to represent temporal dynamics (Moe et al., 2021). 

Therefore, other research avenues, such as Dynamic Bayesian Networks (DBNs) should be explored, 

as they might be better suited to represent the groundwater-driven catchments in the present and under 

future climate scenarios.  

Lastly, there are some limitations when using a hybrid BBN compared to a fully continuous or discrete 

one. Because nodes are represented by probabilities, each model realization propagates uncertainty 

through the network, thus impacting the shape of the target node. This means that the target node might 

have the same summary statistics for two different catchments while also showing different distribution 

shapes, potentially making the BBNs more accurate, but less transferable. Additionally, even when 

model simulations are “stable”, the stochastic nature of the approach makes it so that each posterior 

distribution drawn will differ slightly from the previous, thus impacting goodness of fit metrics, albeit 

in the case of the catchment BBNs these were negligible (1% PBIAS variation with each draw).   
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7. Conclusions and directions for future research 

This thesis explored the application of Bayesian Belief Networks to predict phosphorus losses in four 

Irish agricultural catchments with contrasting agricultural land uses and dominant hydrology. Briefly, 

catchment-specific BBNs were parameterized with high-frequency (sub-daily) discharge and turbidity 

measurements (summarized at the daily time step) and high-resolution (field scale) soil data and 

management information. These were supplemented with data from the literature and EPA reports, 

expert elicitation, and data at a lower temporal resolution (i.e., piezometer grab data at the monthly 

scale) when high-resolution and frequency datasets were not available. Sub-hourly stream TRP 

concentrations summarized at the daily time step were then used to validate the BBNs. The validated 

BBNs were used to carry out a sensitivity analysis and to integrate multiple climate models to predict 

future P concentrations. The three research questions (section 1.5) are reported below with a summary 

of the results obtained. Finally, suggestions for future research are explored in section 7.4. 

7.1 Can high-frequency and high-resolution data, coupled with detailed understanding 

of catchment processes based on long-term monitoring, reduce a BBN’s predictive 

uncertainty? 

High-frequency water quality data and high-resolution field-scale management and soil data were used 

for BBN parameterization and validation. High-frequency data enabled a good performance against a 

similarly developed BBN evaluated against low-resolution data (Glendell et al., 2022), with the BBNs 

tested in chapters 3 and 4 being better constrained, especially when considering the last model iterations 

parameterized for Timoleague and Castledockrell. The data-rich monitoring programme enabled the 

parameterization of further stores (groundwater P, Chapter 4) and processes (in-stream P uptake, 

Chapter 4), while simplifying the erosion sub-model and farmyards runoff losses (Chapter 3). However, 

the BBNs developed here have not been tested and evaluated using low-resolution datasets. Therefore, 

further research could focus on testing the same BBNs without high-frequency data or with depleted 

datasets. Specific to the BBNs developed in the ACP, these could be evaluated against the next 
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monitoring period. Further high-frequency data collection could help to inform priors for the parameters 

that were developed in this study using weak priors (the septic tanks components) or with non-

catchment specific datasets. In the future, high-frequency monitoring can support the validation of 

already developed BBNs, by either validating already existing priors, or setting up new priors entirely. 

7.2 Are Bayesian Belief Networks transferable across agricultural catchments with 

diverse land uses and hydrology?  

We tested the transferability of a BBN developed for a surface-driven grassland catchment and 

simulating phosphorus concentrations to three Irish agricultural catchments. Without modifications, the 

model performance was poor in the new catchments, but enhancing the BBN structure to better 

represent the catchment dynamics improved the performance. BBN enhancements were done by step-

wise addition of inputs (sewage treatment works), processes (in-stream P uptake), and groundwater 

phosphorus pathways. These enhancements are recommended for future applications of the model and 

demonstrated that the BBN structure developed in Chapter 3, is not transferrable and needs to be further 

modified besides the parameterization to local conditions. A sensitivity analysis demonstrated 

parameter redundancy for stream sediments P content, type of effluent treatment in the septic tank (i.e., 

unknown, primary, or secondary), presence or absence of septic tanks discharging directly into the 

stream, and number of septic tanks within the catchment. However, further model testing is required to 

confirm the general redundancy of these parameters or whether this was specific to the catchments 

considered here. 

7.3 What are the projections of climate-induced changes in P concentrations for 

different hydrological regimes and land uses using a Bayesian Network approach? 

The application of climate-driven discharge ensembles with a Bayesian Network framework to predict 

future P showed no evident trends in stream TRP concentrations regardless of catchment, period, or 

RCP analysed, with the BBNs essentially replicating the trends shown in the baseline period in Chapter 

4. However, the test showed that the model ensemble masked the effects of climate on future TRP 
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concentrations, as opposed to using single climate models. The sensitivity analysis carried out in 

Chapter 5 supported the understanding of the modelling framework and aided results interpretation. The 

ensemble used to drive the SMART hydrological model (Hallouin et al., 2020; Mockler et al., 2016b) 

obtained different results in terms of NSE and log NSE during both calibration and validation across 

the four ACP catchments, with only one catchment (Castledockrell) having an acceptable performance 

in both calibration and validation across the two objective functions (Murphy et al., 2023). At present, 

it is not possible to disentangle this uncertainty from that associated with the developed BBN model 

structure, therefore, future research should test the effects of climate-induced changes in these BBN 

models using a different climate models suite. Ideally, downscaled climate projections from a larger 

number of models will be tested, with Moe et al., (2022), suggesting ensembles should have at least 30 

- 100 climate models. Alternatively, water quality process-based models under climate scenarios can 

be linked with BBNs to predict the probability of exceeding good ecological status thresholds, as done 

in Couture et al., (2018). 

Finally, future research in modelling climate change in the ACP catchments should focus on developing 

catchment-specific future land use scenarios and studying the combined effects of both land use and 

climate change on stream P concentrations.   

7.4 Future research 

• BBN upscaling. This thesis represents the first study to test BBN transferability targeting P 

losses across catchment types (diverse hydrology and agricultural land uses) using high 

temporal and spatial resolution data. The major implication for research is that it constitutes a 

blueprint for the development of an upscaled BBN (i.e., national, or regional scale), to address 

future water quality requirements from European Union legislation. This upscaling could be 

based on catchment types (i.e. surface-driven vs groundwater-driven, different land uses, soil 

types, and management intensities) and be further enhanced with catchment typologies not 

represented in this study, such as karst catchments (e.g., Mellander et al., 2013).  
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• Model intercomparison. The models developed in chapter 3 and 4 represent the first P model 

application developed and tested in four ACP catchments. Therefore, with the exception of the 

ongoing work regarding the parameterization of SimplyP (Hawtree et al., 2023), there was a 

lack of models to compare this work to. The ACP has been created specifically to monitor 

measures implemented under the EU Nitrates Directive in terms of monitoring water quality, 

therefore, modelling was not a priority in the first three phases of the programme. However, the 

research in this thesis is grounded in the fourth phase of the ACP (2020-2023). The objectives 

of this phase relevant to this thesis include 1) the catchments intercomparison through the use 

of models and 2) the analysis of the National Action Programme (NAP) measures (Teagasc - 

Agriculture and Food Development Authority, 2020). To deliver on these objectives, it was 

necessary to set up and run the models and the analyses (including the ones conducted here) 

first, therefore these are becoming available at the end of this PhD project. Phan et al., (2016), 

highlighted a lack of studies comparing BBN performance with other models. Future work 

should involve further modelling approaches including statistical and process-based ones in the 

ACP catchments, allowing the intercomparison of the developed BBNs with models 

parameterized with high-frequency datasets. 

• BBN intercomparison. The literature review conducted in Chapter 1.4 (Table 1.1) showed that 

BBN studies have been carried out in catchments and basins that are not comparable to the ACP 

in terms of size and climate e.g., China and Italy (Jin et al., 2020; Sperotto et al., 2019a, 2019b). 

Although in chapters 3 and 4 a comparison was made with results presented in Glendell et al., 

(2022), it was not possible to verify whether the catchments in the two studies have comparable 

hydrological processes. Similarly, Lucci et al., (2014), used data from other sites for 

comparison of their modelling results. BBN intercomparison is not always possible as different 

criteria are used to evaluate the goodness of fit of models (Chapter 1.4) and when models 

included P pollution, the final target node (or the node of interest) was not always stream P 

concentration (de Vries et al., 2021; Jin et al., 2020; Penk et al., 2022). 
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• Spatial BBN applications. In the first phases of BBN development, a preliminary spatial 

application of the model was tested using the R package bnspatial (Masante, 2019). This 

package allows the modeler to run any discrete BBN spatially, using any resolution of spatial 

unit. During the research, it became evident that discretizing the BBN developed using high-

frequency data would be a labour-intensive task whose results would be unpredictable, with the 

results of the spatial application entirely dependent on the discretization methodology. It would 

also defeat the purpose of using the high-frequency dataset. Further, Glendell et al., (2022) have 

shown that two model conceptualizations (and possibly two parameterizations) are necessary 

when running both a hybrid and a spatially applied discrete BBN. If bnspatial is used to map 

the expected value (or most likely state) of the target node, this is akin to considering significant 

quantiles of the target distribution (as was done in chapters 3 and 4) at the desired spatial scale 

(i.e. field scale or raster cell). Given that there is stream data available at the sub-catchment 

scale for the ACP, using bnspatial isn’t advantageous, because the BBN could simply be run 

for the sub-catchments, making the BBN semi-distributed. Meanwhile, a spatial application 

where interactions among spatial units would be an interesting avenue of research (such as the 

platform developed by Stritih et al., 2020), but is not possible using bnspatial as the package 

hasn’t been further developed or maintained (CRAN, 2023), therefore future research should 

focus on expanding the available spatial tools.  

• Bayesian updating. As discussed in Chapter 4, the predicted TRP distributions are wider and 

more skewed than the observations, therefore the current BBNs could be improved upon by 

making the posterior distributions more representative of the observations, perhaps by using 

Bayesian updating, i.e. iteratively incorporating new data to calculate the posterior, with the 

new posterior serving as the prior for the next update cycle. Bayesian updating could also be 

used to improve the current BBNs’ TRP predictions under climate change, because it allows 

for continuous refinement of impact estimates as new climate data emerges, which leads to 

more accurate predictions than traditional frequentist methods (Mann et al., 2017). 
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8. Supplementary Materials to Chapter 3 

A tool to reduce phosphorus pollution in the Agricultural Catchment Programme 

catchments: model screening 

 

8.1 Aim 

To develop a Bayesian Belief Network (BBN) to use as Decision Support Tool (DST) for stakeholders, 

decision, and policy makers to help predict phosphorus (P) losses in Irish agricultural catchments.  

8.2 Background 

Bayesian Networks or Bayesian Belief Networks (BBNs) are probabilistic graphical models that allow 

the integration of quantitative and qualitative information from different sources (e.g., experimental 

data, other model outputs and expert opinion) in one model (Barton et al., 2012; Kragt, 2009). The 

graphs in the BBN provide a transparent and interpretable representation of the causal relationships 

between the response variable, i.e., in this study, phosphorus concentrations in the stream, and the 

explanatory variables, meaning causes of phosphorus loss to waters. These relationships can be built 

with the participation of experts and stakeholders.  

The causal relationships are represented using probability distributions for variables that explicitly 

capture assumptions about how the explanatory variables relate to phosphorus losses and the associated 

uncertainly. This results in transparent and explicit model of phosphorus loss to the stream, with an 

improved understanding and representation of risk and variability in the model outcome enabling 

interpretation and transparency in the approach and assumptions made. The relationships between 

variables (nodes) in a BBN are described with conditional probability distributions rather than through 

deterministic relationships (Borsuk et al., 2004). Relationships between discrete variables may be 

represented and quantified with conditional probability tables (CPTs). The probability distribution of 

a node is calculated from the probability of the causes combined according to Bayes’ rule, which 

describes the probability of an event happening given a prior knowledge around the event (Moe et al., 

2021). In CPTs, the probability of an event occurring is expressed on a scale from 0 to 1, where 0 

represents impossible events and 1 represents certain events. Examples of CPTs are given in Figure 8.1 

and 8.2.  

 

Figure 8.1 Example of CPT. According to the Breast Cancer Surveillance Consortium, 4 in 3000 women in their forties have 

cancer, which translates in a 0.001 probability to have it (yes), and a 0.99 probability not to have it (no). 

 

Figure 8.2 Another example of CPT. What is the probability of having a positive test? If a woman in her forties has breast 

cancer (yes column), the probability of a positive test is 0.75, while the probability of having a negative test (false negative) 

is 0.75. When there is no cancer (no column), the probability of having a positive test (false positive) is 0.12, and the 

probability of a negative test is 0.88. 
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8.3 Topic 

The proposed model is a module of the tool being developed, and it is focussed on phosphorus pollution 

within the Ballycanew agricultural catchment. Figure 8.3 provides an overview of the main sub-models 

(parts of the model thematically grouped together), and during the workshop the participants will have 

the chance to explore all the variables in detail. 

 

Figure 8.3 Variables determining phosphorus concentrations in the stream were group together in three main sub-models: 

hydrology, Soils, and Management. The Catchment Impact sub-model describes phosphorus loads at catchment scale, as 

well as phosphorus concentrations in the stream. 

8.4 Workshop Objectives  

We would like you to screen the proposed model and consider the causal relationships between 

variables. 

After the workshops 

We would like you to take part in an anonymous survey and provide feedback on the session. We would 

also like to hear if you have any additional comments that you might have not had at the time of the 

workshop.  
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8.5 Participants’ role 

We would like you to provide feedback on: 

• the conceptual model structure, ensuring that the causal dependencies between variables make 

sense and none are missing 

• characterizing the causal relationships 

• the appropriate datasets in support of model variables and recommendations for further 

information sources (e.g. reports, publications, datasets etc) 

 

8.6 Personal data 

This research is being conducted as part of Camilla Negri’s PhD research at the University of Reading 

and is funded by the Teagasc Walsh Fellowship Ref. No 2019021, in partnership with the James Hutton 

Institute (JHI) and the University of Reading (UoR). The supervisory Team includes Dr Miriam 

Glendell (JHI), Dr Per-Erik Mellander (Agricultural Catchments Programme, Teagasc), Dr Nicholas J. 

Schurch (JHI/ Biomathemathics and Statistics Scotland), and Prof. Andrew J. Wade (UoR).  

The experts’ (you) personal data will be stored in a pseudonymized form on Hutton servers, and notes 

from the workshop will be shared exclusively with the supervisory team. In addition, the data gathered 

in this research will be published in the PhD thesis (all UoR thesis can be downloaded from an online 

repository (http://centaur.reading.ac.uk/), as well as in (Open Access) scientific journals. Any summary 

workshop content, that will made available through the PhD thesis or other academic outlets will be 

anonymized prior to publication, so that you cannot be identified, and care will be taken to ensure that 

other information in the interview that could identify yourself is not revealed. 

This research has been approved by the Research Ethics Committee at the James Hutton Institute. 

 

http://centaur.reading.ac.uk/
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Figure 8.1 Illustration of the BBN developed in Chapter 3 for the Ballycanew catchment, this time showing histograms and bar charts of the full distributions.  
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9. Supplementary Materials to Chapter 4 

Table 9.1 Data availability for the BBN nodes. Variables pertaining to the calculated loads and those nodes parametrized as logical Conditional Probability Tables are not reported here but specified for each 

catchment.  

Node or variable name Data availability Model structure implementing the variable 

Mean total monthly Q (discharge) [m3] Catchment specific All model structures 

Mean total monthly Surface Flow (surface runoff) [m3] Catchment specific All model structures 

Mean total monthly Sub-surface Stormflow (subsurface runoff) [m3] Catchment specific All model structures 

Mean total monthly Baseflow [m3] Catchment specific All model structures 

Land use Catchment specific All model structures 

Buffers Not catchment specific All model structures 

Buffer effectiveness for Particulate P (PP) and suspended sediments (SS) Not catchment specific All model structures 

Buffer effectiveness for Total Dissolved P (TDP) Not catchment specific All model structures 

Morgan P Catchment specific All model structures 

Monthly Turbidity [NTU month-1] Catchment specific All model structures 

Monthly Suspended Sediment concentration [mg l-1 month-1] Catchment specific All model structures 

Water Extractable P (WEP) [mg l-1] Catchment specific All model structures 

Sediment Water Soluble P [mg kg-1] Only available for Ballycanew and Castledockrell All model structures 

Predicted Dissolved P Concentration [mg l-1] Not catchment specific All model structures 

P concentration per tank [mg l-1] Not catchment specific All model structures 

Direct discharge Not catchment specific All model structures 

Degree of Phosphorus Saturation (DPS) [%]  Catchment specific All model structures 

Soil risk factor  Catchment specific All model structures 

Connectivity rescaled (Hydrologically Sensitive Areas, HSA)  Catchment specific All model structures 

Farmyard size area [m2] Catchment specific All model structures 

Farmyard P concentration [mg l-1] Catchment specific All model structures 

Number of Septic Tanks Only available for Ballycanew All model structures 

Septic Tank Treatment Only available for Ballycanew and Castledockrell Structure 1 only 

Groundwater Dissolved P Concentration [mg l-1] Implemented for Timoleague and Castledockrell Structure 4 and 5 (Timoleague and Castledockrell), Structure 6 (Castledockrell) 

In-stream winter P removal From expert elicitation, catchment specific 

Structure 2 (Ballycanew and Dunleer), Structure 5 (Timoleague and Castledockrell), 

Structure 6 (Castledockrell) 

In-stream spring P removal From expert elicitation, catchment specific 

In-stream summer P removal From expert elicitation, catchment specific 

In-stream autumn P removal From expert elicitation, catchment specific 

Sewage Treatment Works (STWs) P concentration [mg l-1] Castledockrell only Structure 6 (Castledockrell) 
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9.1 Timoleague model specifications 
Table 9.2 Timoleague model structure (filename Ptool_pointanddiffuse_v7_Timoleague.xdsl) 

Variable (symbol) [unit] Conditional Probability Table or states and discretisation boundaries for continuous nodes Description 

Hydrology sub-model (Drivers) 

Month Each month  Calculated as No. days in the month/ 365 

Mean total monthly Q (discharge) 

[m3] 

Very Low 0-202577 Bootstrapped from daily total discharge observations (2009-2016) to 

obtain a Lognormal (µ; ơ) discharge distribution with base e for each 

month. Each month’s parameters are shown in the table. Discretization 

of states is based on percentiles calculated from the average monthly 

observations (very low<= 5th percentile, low= 5th-25th percentile, 

medium= 25th-50th percentile, high= 50th-75th percentile, very high= 

75th-100th percentile). 

 µ ơ 

January 13.8 0.1 

February 13.8 0.1 

March 12.8 0.1 

April 12.6 0.1 

May 12.2 0.1 

June 12.2 0.2 

July 12.2 0.3 

August 12.1 0.4 

September 12.1 0.4 

October 12.4 0.2 

November 13.4 0.1 

December 13.6 0.2 

 

Low 202577-277340 

Medium 277340-603944 

High  603944-934347 

Very High 934347-990000 

Mean total monthly Surface Flow 

(surface runoff) [m3] 

Very Low 0-16207 

Calculated as a portion of mean monthly runoff (8%), via hydrograph 

separation method described in Mellander et al., (2012). Discretization 

of states is based on percentiles calculated from observations. 

Low 16207-22188 

Medium 22188-48316 

High  48316-74748 

Very High 74748-79070 

Mean total monthly Sub-surface 

Stormflow (subsurface runoff) [m3] 

Very Low 0-8104 

Calculated as a portion of mean monthly runoff (4%), via hydrograph 

separation method described in Mellander et al., (2012). Discretization 

of states is based on percentiles calculated from observations. 

Low 8104-11094 

Medium 11094-24158 

High  24158-37374 

Very High 37374-39540 

Mean total monthly Baseflow [m3] 

Very Low 0-178268 

Calculated as a portion of mean monthly runoff (56%), via hydrograph 

separation method described in Mellander et al., (2012). Discretization 

of states is based on percentiles calculated from observations .  

Low 178268-244060 

Medium 244060-531471 

High  531471-822225 

Very High 822225-869748 
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Management (Drivers) 

Land use 

Arable 0.04 
As reported by Teagasc - Agriculture and Food Development 

Authority, (2018). 
Grassland 0.89 

Seminatural 0.07 

Buffers 

Land use Arable Grassland Seminatural 

2 m 0.98 0.01 1.01*10-6 

>2 m 0.019 0.01 1.01*10-6 

none 0.001 0.08 0.999 
 

Buffer strips are defined as being 2 m in width, more than 2 m in 

width, or absent. Probabilities of having either type of buffer 

according to land use were agreed upon with one of the ACP 

advisors (expert) during consultation.  

Buffer effectiveness for Particulate P 

(PP) and suspended sediments (SS) 

Very Low 0-0.2 Dependent on the variable Buffers. For 2 m buffers, effectiveness is 

defined as Beta (α=2.9; β=4.5); for >2 m buffers it is defined as Beta 

(α=1.44; β=0.789); for no buffers, effectiveness is equal to 0. The 

distributions were fitted to the dataset published in Stutter et al., 

(2021), where negative retention data was deleted from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1 

Buffer effectiveness for Total 

Dissolved P (TDP) 

Very Low 0-0.2 Dependent on the variable Buffers. For Buffers 0-2 m, Buffer 

effectiveness is defined as Beta (α=1.8; β=2.7), for >2 m buffers it is 

defined as Beta (α=1; β=0.8); for no buffers, effectiveness is equal 

to 0. The distributions were fitted to the dataset published in Stutter 

et al., (2021), where negative retention data was deleted from the 

analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1.0 

Soil erosion and soil P sub-model  

Morgan P 

 Arable Grassland Seminatural 

Morgan1 0.163 0.163 0 

Morgan2 0.442 0.225 0.6 

Morgan3 0.289 0.42 0.3 

Morgan4 0.106 0.192 0.1 
 

Based on land use, proportions of land for each level and in each 

land use category were calculated based on the soil survey carried 

out in 2013 in the catchment. Where the Morgan P index was 

unknown, that proportion of land was assigned to the dominant 

index category. For the interpretation of the Soil Morgan P Index, 

the reader is referred to Regan et al., (2012). 

Monthly Turbidity [NTU month-1] 

Very Very Low 0-500 

Bootstrapped from daily average turbidity observations (2009-2016) 

to obtain a Lognormal (µ; ơ) turbidity distribution with base e for 

each month. Each month’s parameters are shown in the table. 

Discretization of states is based on percentiles calculated from the 

average monthly observations. 

 

Very Low 500-664 

Low 664-946 

Medium 946-1115 

High  1115-2060 

Very High 2060-2680 
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 µ ơ 

January 5.42 0.17 

February 5.23 0.14 

March 5.07 0.15 

April 4.92 0.13 

May 4.75 0.17 

June 4.58 0.14 

July 4.32 0.14 

August 4.29 0.18 

September 3.80 0.16 

October 4.31 0.22 

November 4.71 0.20 

December 5.48 0.30 

 

Monthly Suspended Sediment 

concentration [mg l-1 month-1] 

Very Very Low 0-52 

Calculated as: a * Monthly Turbidity [NTU month-1] b, where a= 

0.6636, and b= 1.1045, as described in Sherriff et al., (2015). 

Discretization of states is based on percentiles calculated from the 

average monthly calculated observations. 

Very Low 52-73 

Low 73-104 

Medium 104-124 

High  124-268 

Very High 268-380 

Water Extractable P (WEP) [mg l-1] 

Low 0-3 Based on variable “Morgan P levels” and “land use” (data from 

2013) it is calculated with the equations available in (Thomas et al., 

2016b): for Grassland, WEP=0.57 * Morgan P + 0.29, for Arable: 

WEP= 0.36 * Morgan P + 0.89, where Morgan P is defined as a 

Uniform distribution with the following parameters: 

Morgan P 

Index 

Grassland Arable 

Index 1 a=0; b=3 a=0; b=3 

Index 2 a=3.1; b=5 a=3.1; b=6 

Index 3 a=5.1; b=8 a=6.1; b=10 

Index 4 a=8.1; b=30 a=10.1; 

b=30 

 

For the Seminatural Land use, WEP was assumed constant to 0.001. 

Discretization is based on Morgan P discrete levels. 

Medium 3-5 

High  5-8 

Very High 8-15 

Sediment Water Soluble P [mg kg-1] 

Very Low 0-0.0995 
Defined as a Lognormal distribution (µ=-0.9, ơ=1), fitted with the 

SHELF R package (version 1.8.0, Oakley, 2020) to observed Water 

Extractable P in the catchment sediments (Shore et al., 2016). 

Discretization of states is based on percentiles calculated from the 

observations. Based on Ballycanew data. 

Low 0.0995-0.2100 

Medium 0.2100-0.3550 

High  0.3550-0.9100 

Very High 0.9100-8 
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Predicted Dissolved P Concentration 

[mg l-1] 

Very Very Low 0-0.1 Dependant on Water Extractable P, it is defined with the linear 

model: Predicted Dissolved P = β(WEP)+α, where β =0.08, α 

=0.158, derived from (Thomas et al., 2016b). This equation is 

derived from data gathered during the closed period only, that is, 

when farmers are forbidden from spreading fertilizer. An 

assumption is made that when the linear model yields a negative 

value, that is resampled as a zero. Water Extractable P is considered 

a good in-stream TRP/ TDP predictor in the ACP catchments by the 

experts, however careful consideration is needed when choosing a 

soil P test in a different setting.  

Very Low 0.1-0.5 

Low 0.5-1.5 

Medium 1.5-5 

High  5-8 

Very High 8-15 

Groundwater Dissolved P 

Concentration [mg l-1] 

Very Very Low 0-0.1 Derived from monthly piezometer data of TDP concentrations 

(2009-2016) monitored in multi-level wells described in Mellander 

et al., (2016).  

 µ ơ 

January -3.00 0.16 

February -2.70 0.12 

March -2.60 0.12 

April -2.90 0.10 

May -2.45 0.10 

June -2.67 0.06 

July -2.69 0.06 

August -2.22 0.21 

September -2.62 0.07 

October -2.74 0.17 

November -2.70 0.20 

December -3.00 0.20 

 

Very Low 0.1-0.5 

Low 0.5-1.5 

Medium 1.5-5 

High  5-8 

Very High 8-15 

Sub-surface Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Subsurface Storm-flow. High 3-200 

Baseflow Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Baseflow. High 3-200 

Modified Dissolved P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Total Dissolved P”, for effective 

buffers, modified Dissolved P load= Sub-surface Dissolved P load 

*(1-Buffer effectiveness for TDP). Based on expert 

recommendation. 
High 3-200 

Monthly Sediment P load  

[kg month-1] 

Low 0-3 Calculated as the product of Sediment Water Soluble P [mg kg-1], 

Monthly Suspended Sediment concentration [mg l-1 month-1] , and 

Mean total monthly surface flow [m3] . High 3-200 

Modified Sediment P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Suspended Sediments and 

Particulate P”, for effective buffers, Modified Sediment P load= High 3-200 
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Monthly Sediment P load [kg month-1]*(1-Buffer effectiveness for 

SS and PP). Based on expert recommendation. 

Septic Tanks (ST) sub-model (Point P sources) 

P concentration per tank 

[mg l-1] 

  

Absent (to represent 0 STs)  
0-1*10-8 

 

P concentration is dependent on the treatment type. If the treatment 

is unknown, the concentration is defined as a Lognormal distribution 

(µ=2.9, ơ =1.25), based on a literature review of data available for 

Ireland (Environmental Protection Agency Ireland (EPA), 2003, 

2000; Gill et al., 2005, 2007) (n=8). Fitting was done with R 

package fitdistrplus (version 1.1-8, Delignette-Muller et al., 2020). 

Otherwise, for primary and secondary treatment concentration is 

defined as Truncated Normal distribution (µ=10; ơ=1), and (µ=5; 

ơ=0.5) respectively, as described in Glendell et al., (2021) and 

derived from SEPA guidelines (Brownlie et al., 2014). All tanks are 

assumed to be maintained. Discretization was also based on the 

literature review. 

Low 1*10-8-1 

Medium 1-18 

High 18-35 

Very High 35-100 

Direct discharge 
Present  0.16 Probabilities are derived from the report by the Environmental 

Protection Agency Ireland (EPA, 2015). Absent  0.84 

Degree of Phosphorus Saturation 

(DPS) [%] 

Very Low_0-20 0.674 Discretization is equal to the 20th, 40th, 60th, and 80th quantiles, 

however 0< DPS <60 in this catchment. Probabilities were 

calculated from available spatial data (Wall et al., 2012). 

Medium_20-40 0.324 

High_40-60 0.002 

Soil risk factor [adimensional] 

Low 0.766 An indicator to describe the combined risk of effluent leaching to 

the groundwater table with the risk of the effluent being transported 

with surface runoff. This approach is a simplification of the one 

adopted in Glendell et al., (2021). The risk factor was obtained by 

overlaying the soil series (Thomas et al., 2016b) with information on 

the position of the groundwater table (0- 2 m below ground or more 

than 2 m below ground). Because little is known regarding the septic 

tanks in the catchment (i.e. age, type of treatment, maintenance), and 

the groundwater table position (few datapoints within the 

catchment) experts recommended a precautionary principle. This 

meant that the class at most risk of effluent transfer was applied 

when data was unavailable. The table to the left represents a 

synthesis of the classification approach. Probabilities are based on 

land cover proportion.  

Medium 0.118 

High 0 

Very High 0.116 

 Groundwater Table Position 

Soil Series 0-2 m below 

surface 

>2 m below 

surface 

Brown earths High Risk Moderate Risk 

Gleys  Very High Risk Very High Risk 
 

Leachfield removal 

Soil risk 

factor 
DPS Low Medium High 

Low 

Very Low 0 0.3 0.7 

Medium 0 0.7 0.3 

High 0.3 0.7 0 

Medium 

Very Low 0 0.5 0.5 

Medium 0 1 0 

High 0.5 0.5 0 

The node refers to P removal from septic drains. Conditional on P 

leaching risk from Degree of Phosphorus Saturation (DPS). The 

conditional probability table is a logical one.  
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High 

Very Low 0 0.7 0.3 

Medium 0.3 0.7 0 

High 0.7 0.3 0 

Very High 

Very Low 0 0.5 0.5 

Medium 0.5 0.5 0 

High 1 0 0 
 

Leachfield connectedness 

HSA 

rescaled 
None Low Medium High 

Direct 

discharge 
pres abs pres abs pres abs pres abs 

low 0 1 0 1 0 0 0 0 

medium 0 0 0 0 0 1 0 0 

high 1 0 1 0 1 0 1 1 
 

Probabilities are conditional on the presence/absence of Direct ST 

discharge, and HSA (node: Connectivity rescaled HSA). Where 

Direct discharge is present, connectedness is assumed as ‘high’. 

Where Direct discharge is absent, the risk class of the HSA is 

assigned. 

Septic Tank connectedness 

Leachfield 

removal 
Low Medium High 

Leachfield 

connectedness 
Low Medium High Low Medium High Low Medium High 

Low 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.5 0.0 

Medium 0.0 1.0 0.0 0.0 1.0 0.5 0.0 0.5 1.0 

High 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 
 

Probabilities are conditional on Leachfield removal and Leachfield 

connectedness. Where Leachfield removal is ‘low’ or ‘High’, 

Leachfield connectedness remains unaltered.  

Connectivity rescaled HSA 

[adimensional] 

None_0 0.09 Data extracted from spatial layers of Hydrologically Sensitive Areas 

(HSAs) rescaled between 0 and 10 was provided by the Agricultural 

Catchments Programme (Thomas et al., 2016a). Discretization is 

also based on the spatial layers.  

Low_1-3 0.78 

Medium_4-7 0.12 

High_8-10 0.01 

Load per tank [kg month-1]  

Absent 0-1*10-6 

Specified as the product of ST density [No ha-1] * ST concentration 

[mg l-1] * 120 [L] average daily water consumption per person * 

365/12 days in a month* average No of persons per household 

2.7/1*106. Discretisation is based on interpolation to represent 

plausible probabilities for combination of extreme risk classes (e.g. 

High+high=high, low+low=low). 

Very Low 1*10-6-0.1 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-30 

Total Realized load [T month-1] 

Very Low 0.0-0.1 Calculated as the product of septic tank load and delivery factors (D) 

related to the connectedness of a septic tank, based on the median 

estimated fraction to be delivered in Table 13 of the report by 

Glendell et al., (2021) and the number of septic tanks present within 

catchment boundary (N): Realised load per tank [kg month-1] * N * 

D / 1000. In this case, N= 88. Discretisation based on interpolation 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-12 
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Septic tank 

connectedness 

Delivery 

factor (D) 
Reference 

Low 0.05 
“very low” category in Appendix A3, 

Glendell et al., (2021) 

Medium 0.30 
“medium” category in Appendix A3, 

Glendell et al., (2021) 

High 0.80 
“very high” category in Appendix A3, 

Glendell et al., (2021) 
 

to represent plausible probabilities for combination of extreme risk 

classes. 

 

 

Farmyards sub-model (Point P sources) 

Farmyard size area [m2] 

Very Low 0-38 

Based on available farmyard survey, a distribution was fitted to 

farmyard area data: Lognormal (µ=-5.13; ơ=1.01). Discretization of 

states is based on percentiles calculated from the observations. 

Low 38-98 

Medium 98-160 

High  160-317 

Very High 317-3100 

Farmyard P concentration [mg l-1] 

Very Low 0-0.01 Using the SHELF R package (version 1.8.0, Oakley, 2020), a 

distribution was fitted to the data in Table 2 in Harrison et al., 

(2019): Lognormal (µ=-1.8; ơ=1.6 ). The best fit would have been 

the LogT distribution, however, that is not available for Genie, so 

we opted for Lognormal. Discretization is also based on the 

literature. For simplicity, here we have used SRP to mean TRP.  

Low 0.01-0.50 

Medium 0.50-1.00 

High  1.00-2.50 

Very High 2.50-60 

Incidental losses per average yard  

[kg month-1] 

Very Low 0-1*10-9 
Based on average farmyard size, losses are calculated as Surface 

runoff [m3] / catchment area [m2]* Farmyard size area [m2]* 

Farmyard P concentration [mg l-1]/ 103. Catchment area is set at 758 

ha.  

Low 1*10-9-0.001 

Medium 0.001-0.01 

High  0.01-0.10 

Very High 0.10-60 

Total incidental losses [T month-1] 

Very Low 0-1*10-5 

Incidental losses per average yard [kg month-1] * N, where N is the 

total number of yards present within the catchment boundary. In this 

case, N =97. 

Low 1e-05-0.007 

Medium 0.007-0.070 

High  0.07-0.700 

Very High 0.700-10 

Catchment outlet integration sub-model 

Total catchment in-stream P load  

[T month-1] 

Low 0-0.02 Equal to the sum of Baseflow Dissolved P load [kg month-1], 

Modified Dissolved P load [kg month-1],  

Modified Sediment P load [kg month-1], Total incidental losses [T 

month-1], and Total Realized load [T month-1], all converted to 

appropriate units.  

Medium 0.002-1 

High 1-10 

(meteorological) Season   Based on the node “Month”.  

In-stream winter P removal 

Very Low -1 to -0.5 
Defined as a  Normal distribution (µ=0.12; ơ=0.1) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 2020). 
Low -0.5-0 

Medium 0-0.5 
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High  0.5-1 

In-stream spring P removal 

Very Low 0-0.2 

Defined as a  Normal distribution (µ=0.35; ơ=0.21) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 2020). 

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

In-stream summer P removal 

Very Low 0.1-0.3 

Defined as a  Normal distribution (µ=0.43; ơ=012)  derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 2020). 

Low 0.3-0.45 

Medium 0.45-0.6 

High  0.6-0.8 

In-stream autumn P removal 

Very Low 0-0.2 

Defined as a  Normal distribution (µ=0.25; ơ=0.07) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 2020).  

Low 0.2-0.4 

Medium 0.4-0.5 

High  0.5-0.65 

In-stream reduced P load [T month-1] 
Moderate 0-1 Calculated as the product of Total catchment in-stream P load  and 

the seasonal removal. Bad 1-10 

In-stream P concentration [mg l-1] 
Good 0-0.035 Defined as the in-stream reduced P load [T] * 109 / Mean total 

monthly Q (discharge) [m3] * 1000, where mean monthly discharge 

is equal to the total catchment discharge measured at the outlet. Bad 0.035-5 

Environmental Quality Standard 

[TRP concentration mg l-1] 

TRP 

concentration 
Good Bad 

Good 1 0 

Bad 0 1 
 

Discretization of the variable “In-stream TRP concentration [mg l-

1]”. For simplicity, in-stream TRP is here considered equal to in-

stream Dissolved Reactive Phosphorus, as in previous studies the 

mean DRP accounted for 98–99% of the flow-weighted mean TRP  

(Shore et al., 2014). 
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9.2 Castledockrell model specifications 
Table 9.3 Castledockrell model structure (filename Ptool_pointanddiffuse_v8_Castledockrell) 

Variable (symbol) [unit] Conditional Probability Table or states and discretisation boundaries for continuous nodes Description 

Hydrology sub-model (Drivers) 

Month Each month  Calculated as No. days in the month/ 365 

Mean total monthly Q (discharge) 

[m3] 

Very Low 0-193630 Bootstrapped from daily total discharge observations (2009-

2016) to obtain a Lognormal (µ; ơ) discharge distribution with 

base e for each month. Each month’s parameters are shown in the 

table. Discretization of states is based on percentiles calculated 

from the average monthly observations (very low<= 5th 

percentile, low= 5th-25th percentile, medium= 25th-50th percentile, 

high= 50th-75th percentile, very high= 75th-100th percentile).  

 µ ơ 

January 13.9 0.11 

February 13.7 0.13 

March 12.9 0.11 

April 12.7 0.13 

May 12.2 0.09 

June 12.0 0.18 

July 11.7 0.21 

August 11.7 0.21 

September 11.7 0.22 

October 12.5 0.19 

November 13.8 0.19 

December 13.7 0.15 

 

Low 193630-310530 

Medium 310530-871120 

High  871120-1080000 

Very High 1080000-1200000 

Mean total monthly Surface Flow 

(surface runoff) [m3] 

Very Low 0-3873 
Calculated as a portion of mean monthly runoff (2%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations. 

Low 3873-6211 

Medium 6211-17425 

High  17425-21556 

Very High 21556-24000 

Mean total monthly Sub-surface 

Stormflow (subsurface runoff) [m3] 

Very Low 0-3873 
Calculated as a portion of mean monthly runoff (2%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations. 

Low 3873-6211 

Medium 6211-17425 

High  17425-21556 

Very High 21556-24000 

Mean total monthly Baseflow [m3] 

Very Low 0-186000 
Calculated as a portion of mean monthly runoff (96%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations.  

Low 186000-230000 

Medium 230000-837000 

High  837000-1035000 

Very High 1035000-1107000 
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Management (Drivers) 

Land use 

Arable 0.2 
As reported by Teagasc - Agriculture and Food Development 

Authority, (2018). 
Grassland 0.78 

Seminatural 0.02 

Buffers 

Land use Arable Grassland Seminatural 

2 m 0.98 0.01 1.01*10-6 

>2 m 0.019 0.01 1.01*10-6 

none 0.001 0.08 0.999 
 

Buffer strips are defined as being 2 m in width, more than 2 m in 

width, or absent. Probabilities of having either type of buffer 

according to land use were agreed upon with one of the ACP 

advisors (expert) during consultation.  

Buffer effectiveness for Particulate 

P (PP) and suspended sediments 

(SS) 

Very Low 0-0.2 Dependent on the variable Buffers. For 2 m buffers, effectiveness 

is defined as Beta (α=2.9; β=4.5); for >2 m buffers it is defined 

as Beta (α=1.44; β=0.789); for no buffers, effectiveness is equal 

to 0. The distributions were fitted to the dataset published in 

Stutter et al., (2021), where negative retention data was deleted 

from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1 

Buffer effectiveness for Total 

Dissolved P (TDP) 

Very Low 0-0.2 Dependent on the variable Buffers. For Buffers 0-2 m, Buffer 

effectiveness is defined as Beta (α=1.8; β=2.7), for >2 m buffers 

it is defined as Beta (α=1; β=0.8); for no buffers, effectiveness is 

equal to 0. The distributions were fitted to the dataset published 

in Stutter et al., (2021), where negative retention data was deleted 

from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1.0 

Soil erosion and soil P sub-model  

Morgan P 

 Arable Grassland Seminatural 

Morgan1 0.29 0.29 0 

Morgan2 0.41 0.34 0.6 

Morgan3 0.2 0.19 0.3 

Morgan4 0.09 0.18 0.1 
 

Based on land use, proportions of land for each level and in each 

land use category were calculated based on the soil survey 

carried out in 2013 in the catchment. Where the Morgan P index 

was unknown, that proportion of land was assigned to the 

dominant index category. For the interpretation of the Soil 

Morgan P Index, the reader is referred to Regan et al., (2012). 

Calculated variables 

Monthly Turbidity [NTU month-1] 

Very Very Low 0-707 
Bootstrapped from daily average turbidity observations (2009-

2016) to obtain a Lognormal (µ; ơ) turbidity distribution with 

base e for each month. Each month’s parameters are shown in the 

table. Discretization of states is based on percentiles calculated 

from the average monthly observations. 

Very Low 707-780 

Low 780-1510 

Medium 1510-2770 

High  2770-5590 
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Very High 5590-8661 

 µ ơ 

January 5.7 0.19 

February 5.5 0.20 

March 4.9 0.15 

April 4.6 0.13 

May 4.4 0.13 

June 4.6 0.15 

July 4.5 0.13 

August 5.8 0.44 

September 4.5 0.13 

October 5.1 0.25 

November 5.7 0.33 

December 5.6 0.24 

 

Monthly Suspended Sediment 

concentration [mg l-1 month-1] 

Very Very Low 0-50 

Calculated as: a * Monthly Turbidity [NTU month-1] b, where a= 

0.4119, and b= 1.1456, as described in Sherriff et al., (2015). 

Discretization of states is based on percentiles calculated from 

the average monthly calculated observations. 

Very Low 50-60 

Low 60-130 

Medium 130-262 

High  262-640 

Very High 640-1050 

Water Extractable P (WEP) [mg l-

1] 

Low 0-3 Based on variable “Morgan P levels” and “land use” (data from 

2013) it is calculated with the equations available in (Thomas et 

al., 2016b): for Grassland, WEP=0.26 * Morgan P + 2.74, for 

Arable: WEP= 0.11 * Morgan P + 1.12, where Morgan P is 

defined as a Uniform distribution with the following parameters: 

Morgan P 

Index 

Grassland Arable 

Index 1 a=0; b=3 a=0; b=3 

Index 2 a=3.1; b=5 a=3.1; b=6 

Index 3 a=5.1; b=8 a=6.1; b=10 

Index 4 a=8.1; b=30 a=10.1; 

b=30 

 

For the Seminatural Land use, WEP was assumed constant to 

0.001. Discretization is based on Morgan P discrete levels. 

Medium 3-5 

High  5-8 

Very High 8-15 

Sediment Water Soluble P [mg kg-

1] 

Very Low 0-0.042 
Defined as a Gamma distribution ( k=1.03, ꝋ=0.44), fitted with 

the SHELF R package (version 1.8.0, Oakley, 2020) to observed 

Water Extractable P in the catchment sediments (Shore et al., 

2016). Discretization of states is based on percentiles calculated 

from the observations (very low<= 5th percentile, low= 5th-25th 

Low 0.042-0.720 

Medium 0.720-1.570 

High  1.570-3.350 

Very High 3.350-7.000 
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percentile, medium= 25th-50th percentile, high= 50th-75th 

percentile, very high= 75th-100th percentile).  

Predicted Dissolved P 

Concentration [mg l-1] 

Very Very Low 0-0.1 Dependant on Water Extractable P, it is defined with the linear 

model: Predicted Dissolved P = β(WEP)+α, where β =0.08, α 

=0.158, derived from (Thomas et al., 2016b). This equation is 

derived from data gathered during the closed period only, that is, 

when farmers are forbidden from spreading fertilizer. An 

assumption is made that when the linear model yields a negative 

value, that is resampled as a zero. Water Extractable P is 

considered a good in-stream TRP/ TDP predictor in the ACP 

catchments by the experts, however careful consideration is 

needed when choosing a soil P test in a different setting.  

Very Low 0.1-0.5 

Low 0.5-1.5 

Medium 1.5-5 

High  5-8 

Very High 8-15 

Groundwater Dissolved P 

Concentration [mg l-1] 

Very Very Low 0-0.1 Derived from monthly piezometer data of TDP concentrations 

(2009-2016) monitored in multi-level wells described in 

Mellander et al., (2016).  

 µ ơ 

January -4.3 0.09 

February -4.4 0.07 

March -5.0 0.06 

April -5.6 0.05 

May -4.8 0.12 

June -4.1 0.08 

July -4.4 0.03 

August -4.2 0.04 

September -4.4 0.00 

October -3.4 0.06 

November -3.9 0.17 

December -3.6 0.21 

 

Very Low 0.1-0.5 

Low 0.5-1.5 

Medium 1.5-5 

High  5-8 

Very High 8-15 

Sub-surface Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Subsurface Storm-flow. High 3-200 

Baseflow Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Baseflow. High 3-200 

Modified Dissolved P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Total Dissolved P”, for 

effective buffers, modified Dissolved P load= Sub-surface 

Dissolved P load *(1-Buffer effectiveness for TDP). Based on 

expert recommendation. 
High 3-200 

Monthly Sediment P load  

[kg month-1] 

Low 0-3 Calculated as the product of Sediment Water Soluble P [mg kg-1], 

Monthly Suspended Sediment concentration [mg l-1 month-1] , 

and Mean total monthly surface flow [m3] . High 3-200 

Modified Sediment P load  Low 0-3 
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[kg month-1] 

High 3-200 

Based on “Buffer effectiveness for Suspended Sediments and 

Particulate P”, for effective buffers, Modified Sediment P load= 

Monthly Sediment P load [kg month-1]*(1-Buffer effectiveness 

for SS and PP). Based on expert recommendation. 

Septic Tanks (ST) sub-model (Point P sources) 

P concentration per tank 

[mg l-1] 

  

Absent (to represent 0 STs)  
0-1*10-8 

 

P concentration is dependent on the treatment type. If the 

treatment is unknown, the concentration is defined as a 

Lognormal distribution (µ=2.9, ơ =1.25), based on a literature 

review of data available for Ireland (Environmental Protection 

Agency Ireland (EPA), 2003, 2000; Gill et al., 2005, 2007) (n=8). 

Fitting was done with R package fitdistrplus (version 1.1-8, 

Delignette-Muller et al., 2020). Otherwise, for primary and 

secondary treatment concentration is defined as Truncated 

Normal distribution (µ=10; ơ=1), and (µ=5; ơ=0.5) respectively, 

as described in Glendell et al., (2021) and derived from SEPA 

guidelines (Brownlie et al., 2014). All tanks are assumed to be 

maintained. Discretization was also based on the literature 

review. 

Low 1*10-8-1 

Medium 1-18 

High 18-35 

Very High 35-100 

Direct discharge 
Present  0.16 Probabilities are derived from the report by the Environmental 

Protection Agency Ireland (EPA, 2015). Absent  0.84 

Degree of Phosphorus Saturation 

(DPS) [%] 

Very Low_0-20 0.88 Discretization is equal to the 20th, 40th, 60th, and 80th quantiles, 

however 0< DPS <40 in this catchment. Probabilities were 

calculated from available spatial data (Wall et al., 2012). Low 20-40 0.12 

Soil risk factor [adimensional] 

Low 0 An indicator to describe the combined risk of effluent leaching to 

the groundwater table with the risk of the effluent being 

transported with surface runoff. This approach is a simplification 

of the one adopted in Glendell et al., (2021). The risk factor was 

obtained by overlaying the soil series (Thomas et al., 2016b) with 

information on the position of the groundwater table (0- 2 m 

below ground or more than 2 m below ground). Because little is 

known regarding the septic tanks in the catchment (i.e. age, type 

of treatment, maintenance), and the groundwater table position 

(few datapoints within the catchment) experts recommended a 

precautionary principle. This meant that the class at most risk of 

effluent transfer was applied when data was unavailable. The 

table to the left represents a synthesis of the classification 

approach. Probabilities are based on land cover proportion.  

Medium 0.02 

High 0.98 

Very High 0 

 Groundwater Table Position 

Soil Series 
0-2 m below 

surface 

>2 m below 

surface 

Brown earths High Risk Moderate Risk 

Gleys Very High Risk Very High Risk 
 

Leachfield removal 

Soil risk 

factor 
DPS Low Medium High 

Low 
Very Low 0 0.3 0.7 

Low 0 0.7 0.3 

Medium 
Very Low 0 0.5 0.5 

Low 0 1 0 

The node refers to P removal from septic drains. Conditional on 

P leaching risk from Degree of Phosphorus Saturation (DPS). 

The conditional probability table is a logical one.  
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High 
Very Low 0 0.7 0.3 

Low 0.3 0.7 0 

Very High 
Very Low 0 0.5 0.5 

Low 0.5 0.5 0 
 

Leachfield connectedness 

HSA 

rescaled 
None Low Medium High 

Direct 

discharge 
pres abs pres abs pres abs pres abs 

low 0 1 0 1 0 0 0 0 

medium 0 0 0 0 0 1 0 0 

high 1 0 1 0 1 0 1 1 
 

Probabilities are conditional on the presence/absence of Direct 

ST discharge, and HSA (node: Connectivity rescaled HSA). 

Where Direct discharge is present, connectedness is assumed as 

‘high’. Where Direct discharge is absent, the risk class of the 

HSA is assigned. 

Septic Tank connectedness 

Leachfield 

removal 
Low Medium High 

Leachfield 

connectedness 
Low Medium High Low Medium High Low Medium High 

Low 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.5 0.0 

Medium 0.0 1.0 0.0 0.0 1.0 0.5 0.0 0.5 1.0 

High 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 
 

Probabilities are conditional on Leachfield removal and 

Leachfield connectedness. Where Leachfield removal is ‘low’ or 

‘High’, Leachfield connectedness remains unaltered.  

Connectivity rescaled HSA 

[adimensional] 

None_0 0.03 Data extracted from spatial layers of Hydrologically Sensitive 

Areas (HSAs) rescaled between 0 and 10 was provided by the 

Agricultural Catchments Programme (Thomas et al., 2016a). 

Discretization is also based on the spatial layers.  

Low_1-3 0.8 

Medium_4-7 0.16 

High_8-10 0.01 

Load per tank [kg month-1]  

Absent 0-1*10-6 

Specified as the product of ST density [No ha-1] * ST 

concentration [mg l-1] * 120 [L] average daily water consumption 

per person * 365/12 days in a month* average No of persons per 

household 2.7/1*106. Discretisation is based on interpolation to 

represent plausible probabilities for combination of extreme risk 

classes (e.g. High+high=high, low+low=low). 

Very Low 1*10-6-0.1 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-30 

Total Realized load [T month-1] 

Very Low 0.0-0.1 

Calculated as the product of septic tank load and delivery factors 

(D) related to the connectedness of a septic tank, based on the 

median estimated fraction to be delivered in Table 13 of the 

report by Glendell et al., (2021) and the number of septic tanks 

present within catchment boundary (N): Realised load per tank 

[kg month-1] * N * D / 1000. In this case, N= 88. Discretisation 

based on interpolation to represent plausible probabilities for 

combination of extreme risk classes. 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-12 

Septic tank 

connectedness 

Delivery 

factor (D) 
Reference 

Low 0.05 
“very low” category in Appendix A3, 

Glendell et al., (2021) 
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Medium 0.30 
“medium” category in Appendix A3, 

Glendell et al., (2021) 

High 0.80 
“very high” category in Appendix A3, 

Glendell et al., (2021) 
 

Sewage Treatment Works (STWs) sub-model (Point P sources) 

STWs P concentration [mg l-1] 

Absent 0-1*10-8 

Based on Total P concentrations after tertiary treatment and 

specified as a Truncated Normal distribution (µ=1.44, ơ=1 .61, 

truncated at 0), as described in Glendell et al., (2022). 

Low 1*10-8-1 

Medium 1-18 

High 18-35 

Very High 35-100 

STWs Load [kg month-1] 

Absent 0-1*10-6 

Specified as the product of  STWs P concentration  [mg l-1] * 120 

[L] average daily water consumption per person * 365/12 days in 

a month* 130 people equivalent /1*106. 

Very Low 1*10-6-0.1 

Low 0.1-0.5 

Medium 0.5-1 

High 1-2 

Very High 2-30 

Farmyards sub-model (Point P sources) 

Farmyard size area [m2] 

Very Low 0-35 Based on available farmyard survey, a distribution was fitted to 

farmyard area data: Lognormal (µ=4.9; ơ=0.9). Discretization of 

states is based on percentiles calculated from the observations 

(very low<= 5th percentile, low= 5th-25th percentile, medium= 

25th-50th percentile, high= 50th-75th percentile, very high= 75th-

100th percentile). 

Low 35-75 

Medium 75-146 

High  146-270 

Very High 270-1315 

Farmyard P concentration [mg l-1] 

Very Low 0-0.01 Using the SHELF R package (version 1.8.0, Oakley, 2020), a 

distribution was fitted to the data in Table 2 in Harrison et al., 

(2019): Lognormal (µ=-1.8; ơ=1.6 ). The best fit would have 

been the LogT distribution, however, that is not available for 

Genie, so we opted for Lognormal. Discretization is also based 

on the literature. For simplicity, here we have used SRP to mean 

TRP.  

Low 0.01-0.50 

Medium 0.50-1.00 

High  1.00-2.50 

Very High 2.50-60 

Incidental losses per average yard  

[kg month-1] 

Very Low 0-1*10-9 
Based on average farmyard size, losses are calculated as Surface 

runoff [m3] / catchment area [m2]* Farmyard size area [m2]* 

Farmyard P concentration [mg l-1]/ 103. Catchment area is set at 

758 ha.  

Low 1*10-9-0.001 

Medium 0.001-0.01 

High  0.01-0.10 

Very High 0.10-60 

Total incidental losses [T month-1] 

Very Low 0-1*10-5 

Incidental losses per average yard [kg month-1] * N, where N is 

the total number of yards present within the catchment boundary. 

In this case, N =86. 

Low 1e-05-0.007 

Medium 0.007-0.070 

High  0.07-0.700 

Very High 0.700-10 
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Catchment outlet integration sub-model 

Total catchment in-stream P load  

[T month-1] 

Low 0-0.02 Equal to the sum of Baseflow Dissolved P load [kg month-1], 

Modified Dissolved P load [kg month-1],  

Modified Sediment P load [kg month-1], Total incidental losses 

[T month-1], and Total Realized load [T month-1], all converted to 

appropriate units.  

Medium 0.002-1 

High 1-10 

(meteorological) Season    Based on the node “Month”.  

In-stream winter P removal 

Very Low -1, -05 
Defined as a  Normal distribution (µ=0.12; ơ=0.1) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low -0.5-0 

Medium 0-0.5 

High  0.5-1 

In-stream spring P removal 

Very Low 0-0.2 
Defined as a  Normal distribution (µ=0.08; ơ=0.06) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

In-stream summer P removal 

Very Low 0.1-0.3 
Defined as a  Normal distribution (µ=0.; 35=0.21)  derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low 0.3-0.45 

Medium 0.45-0.6 

High  0.6-0.8 

In-stream autumn P removal 

Very Low 0-0.2 
Defined as a  Normal distribution (µ=0.25; ơ=0.07) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020).  

Low 0.2-0.4 

Medium 0.4-0.5 

High  0.5-0.65 

In-stream reduced P load [T month-

1] 

Moderate 0-0.5 Calculated as the product of Total catchment in-stream P load  

and the seasonal removal. Bad 0.5-10 

In-stream P concentration [mg l-1] 

Good 0-0.035 Defined as the in-stream reduced P load [T] * 109 / Mean total 

monthly Q (discharge) [m3] * 1000, where mean monthly 

discharge is equal to the total catchment discharge measured at 

the outlet. 
Bad 0.035-5 

Environmental Quality Standard 

[TRP concentration mg l-1] 

TRP 

concentration 
Good Bad 

Good 1 0 

Bad 0 1 
 

Discretization of the variable “In-stream TRP concentration [mg 

l-1]”. For simplicity, in-stream TRP is here considered equal to 

in-stream Dissolved Reactive Phosphorus, as in previous studies 

the mean DRP accounted for 98–99% of the flow-weighted mean 

TRP  (Shore et al., 2014). 
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9.3 Dunleer model specifications 
Table 9.4 Dunleer model structure (filename Ptool_pointanddiffuse_v7_Dunleer) 

 

Variable (symbol) [unit] Conditional Probability Table or states and discretisation boundaries for continuous nodes Description 

Hydrology sub-model (Drivers) 

Month Each month  Calculated as No. days in the month/ 365 

Mean total monthly Q (discharge) 

[m3] 

Very Low 0-139000 Bootstrapped from daily total discharge observations (2009-

2016) to obtain a Lognormal (µ; ơ) discharge distribution with 

base e for each month. Each month’s parameters are shown in 

the table. Discretization of states is based on percentiles 

calculated from the average monthly observations (very low<= 

5th percentile, low= 5th-25th percentile, medium= 25th-50th 

percentile, high= 50th-75th percentile, very high= 75th-100th 

percentile). 

 µ ơ 

January 13.4 0.1 

February 13.3 0.1 

March 12.6 0.1 

April 12.5 0.2 

May 11.9 0.2 

June 11.5 0.3 

July 11.3 0.3 

August 11.3 0.4 

September 11.7 0.4 

October 12.3 0.3 

November 13.3 0.2 

December 13.2 0.2 

 

Low 139000-274000 

Medium 274000-596800 

High  596800-697000 

Very High 697000-720000 

Mean total monthly Surface Flow 

(surface runoff) [m3] 

Very Low 0-23100 
Calculated as a portion of mean monthly runoff (21%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations . 

Low 23100-57400 

Medium 57400-125400 

High  125400-147000 

Very High 147000-150900 

Mean total monthly Sub-surface 

Stormflow (subsurface runoff) 

[m3] 

Very Low 0-5541 
Calculated as a portion of mean monthly runoff (4%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations . 

Low 5541-10934 

Medium 10934-23870 

High  23870-27860 

Very High 27860-28800 



158 
 
 

Mean total monthly Baseflow [m3] 

Very Low 0-103887 
Calculated as a portion of mean monthly runoff (75%), via 

hydrograph separation method described in Mellander et al., 

(2012). Discretization of states is based on percentiles calculated 

from observations. 

Low 103887-205000 

Medium 205000-447565 

High  447565-522370 

Very High 522370-538900 

Management (Drivers) 

Land use 

Arable 0.33 
As reported by Teagasc - Agriculture and Food Development 

Authority, (2018). 
Grassland 0.49 

Seminatural 0.18 

Buffers 

Land use Arable Grassland Seminatural 

2 m 0.98 0.01 1.01*10-6 

>2 m 0.019 0.01 1.01*10-6 

none 0.001 0.08 0.999 
 

Buffer strips are defined as being 2 m in width, more than 2 m in 

width, or absent. Probabilities of having either type of buffer 

according to land use were agreed upon with one of the ACP 

advisors (expert) during consultation.  

Buffer effectiveness for Particulate 

P (PP) and suspended sediments 

(SS) 

Very Low 0-0.2 Dependent on the variable Buffers. For 2 m buffers, 

effectiveness is defined as Beta (α=2.9; β=4.5); for >2 m buffers 

it is defined as Beta (α=1.44; β=0.789); for no buffers, 

effectiveness is equal to 0. The distributions were fitted to the 

dataset published in Stutter et al., (2021), where negative 

retention data was deleted from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1 

Buffer effectiveness for Total 

Dissolved P (TDP) 

Very Low 0-0.2 Dependent on the variable Buffers. For Buffers 0-2 m, Buffer 

effectiveness is defined as Beta (α=1.8; β=2.7), for >2 m buffers 

it is defined as Beta (α=1; β=0.8); for no buffers, effectiveness is 

equal to 0. The distributions were fitted to the dataset published 

in Stutter et al., (2021), where negative retention data was 

deleted from the analysis.  

Low 0.2-0.4 

Medium 0.4-0.6 

High  0.6-0.8 

Very High 0.8-1.0 

Soil erosion and soil P sub-model  

Morgan P 

 Arable Grassland Seminatural 

Morgan1 0.224 0.224 0 

Morgan2 0.426 0.249 0.6 

Morgan3 0.142 0.154 0.3 

Morgan4 0.208 0.373 0.1 
 

Based on land use, proportions of land for each level and in each 

land use category were calculated based on the soil survey 

carried out in 2013 in the catchment. Where the Morgan P index 

was unknown, that proportion of land was assigned to the 

dominant index category. For the interpretation of the Soil 

Morgan P Index, the reader is referred to Regan et al., (2012). 

Monthly Turbidity [NTU month-1] 

Very Very Low 0-1312 Bootstrapped from daily average turbidity observations (2009-

2016) to obtain a Lognormal (µ; ơ) turbidity distribution with 

base e for each month. Each month’s parameters are shown in 

the table. Discretization of states is based on percentiles 

calculated from the average monthly observations. 

 

Very Low 1312-1417 

Low 1417-1792 

Medium 1792-3004 

High  3004-3775 
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Very High 3775-3810 

 µ ơ 

January 5.9 0.23 

February 5.9 0.26 

March 5.3 0.19 

April 5.4 0.16 

May 5.1 0.14 

June 5.2 0.14 

July 5.1 0.13 

August 5.3 0.15 

September 5.1 0.14 

October 5.4 0.23 

November 6.1 0.30 

December 6.0 0.28 

 

Monthly Suspended Sediment 

concentration [mg l-1 month-1] 

Very Very Low 0-186 Calculated as: a * Monthly Turbidity [NTU month-1], where a= 

1.132 when the monthly turbidity is <= 432.2 NTU,  a * 

Monthly Turbidity [NTU month-1]+b, where a= 0.6032 and b= 

228.547 when the monthly turbidity is >= 432.2 NTU, as 

described in Sherriff et al., (2015). Discretization of states is 

based on percentiles calculated from the average monthly 

calculated observations. 

Very Low 186-201 

Low 201-249 

Medium 249-421 

High  421-527 

Very High 527-531 

Water Extractable P (WEP) [mg l-

1] 

Low 0-3 Based on variable “Morgan P levels” and “land use” (data from 

2013) it is calculated with the equations available in (Thomas et 

al., 2016b): for Grassland, WEP=0.57 * Morgan P + 0.29, for 

Arable: WEP= 0.36 * Morgan P + 0.89, where Morgan P is 

defined as a Uniform distribution with the following parameters: 

Morgan P 

Index 

Grassland Arable 

Index 1 a=0; b=3 a=0; b=3 

Index 2 a=3.1; b=5 a=3.1; b=6 

Index 3 a=5.1; b=8 a=6.1; b=10 

Index 4 a=8.1; b=30 a=10.1; 

b=30 

 

For the Seminatural Land use, WEP was assumed constant to 

0.001. Discretization is based on Morgan P discrete levels. 

Medium 3-5 

High  5-8 

Very High 8-15 

Sediment Water Soluble P [mg kg-

1] 

Very Low 0-0.0995 Defined as a Lognormal distribution (µ=-0.9, ơ=1), fitted with 

the SHELF R package (version 1.8.0, Oakley, 2020) to observed 

Water Extractable P in the catchment sediments (Shore et al., 

2016). Discretization of states is based on percentiles calculated 

from the observations (very low<= 5th percentile, low= 5th-25th 

percentile, medium= 25th-50th percentile, high= 50th-75th 

Low 0.0995-0.2100 

Medium 0.2100-0.3550 

High  0.3550-0.9100 

Very High 0.9100-8 
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percentile, very high= 75th-100th percentile). Based on 

Ballycanew data. 

Predicted Dissolved P 

Concentration [mg l-1] 

Very Very Low 0-0.1 Dependant on Water Extractable P, it is defined with the linear 

model: Predicted Dissolved P = β(WEP)+α, where β =0.08, α 

=0.158, derived from (Thomas et al., 2016b). This equation is 

derived from data gathered during the closed period only, that is, 

when farmers are forbidden from spreading fertilizer. An 

assumption is made that when the linear model yields a negative 

value, that is resampled as a zero. Water Extractable P is 

considered a good in-stream TRP/ TDP predictor in the ACP 

catchments by the experts, however careful consideration is 

needed when choosing a soil P test in a different setting.  

Very Low 0.1-0.5 

Low 0.5-1.5 

Medium 1.5-5 

High  5-8 

Very High 8-15 

Sub-surface Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Subsurface Storm-flow. High 3-200 

Baseflow Dissolved P load  

[kg month-1] 

Low 0-3 Calculated as the product of Predicted Dissolved P concentration 

and Baseflow. High 3-200 

Modified Dissolved P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Total Dissolved P”, for 

effective buffers, modified Dissolved P load= Sub-surface 

Dissolved P load *(1-Buffer effectiveness for TDP). Based on 

expert recommendation. 
High 3-200 

Monthly Sediment P load  

[kg month-1] 

Low 0-3 Calculated as the product of Sediment Water Soluble P [mg kg-

1], Monthly Suspended Sediment concentration [mg l-1 month-1] , 

and Mean total monthly surface flow [m3] . High 3-200 

Modified Sediment P load  

[kg month-1] 

Low 0-3 Based on “Buffer effectiveness for Suspended Sediments and 

Particulate P”, for effective buffers, Modified Sediment P load= 

Monthly Sediment P load [kg month-1]*(1-Buffer effectiveness 

for SS and PP). Based on expert recommendation. 
High 3-200 

Septic Tanks (ST) sub-model (Point P sources) 

P concentration per tank 

[mg l-1] 

  

Absent (to represent 0 STs)  
0-1*10-8 

 

P concentration is dependent on the treatment type. If the 

treatment is unknown, the concentration is defined as a 

Lognormal distribution (µ=2.9, ơ =1.25), based on a literature 

review of data available for Ireland (Environmental Protection 

Agency Ireland (EPA), 2003, 2000; Gill et al., 2005, 2007) 

(n=8). Fitting was done with R package fitdistrplus (version 1.1-

8, Delignette-Muller et al., 2020). Otherwise, for primary and 

secondary treatment concentration is defined as Truncated 

Normal distribution (µ=10; ơ=1), and (µ=5; ơ=0.5) respectively, 

as described in Glendell et al., (2021) and derived from SEPA 

guidelines (Brownlie et al., 2014). All tanks are assumed to be 

maintained.  

Discretization was also based on the literature review. 

Low 1*10-8-1 

Medium 1-18 

High 18-35 

Very High 35-100 

Direct discharge 
Present  0.16 Probabilities are derived from the report by the Environmental 

Protection Agency Ireland (EPA, 2015). Absent  0.84 
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Degree of Phosphorus Saturation 

(DPS) [%] 

Very_Low_0-20 0.85 

Discretization is equal to the 20th, 40th, 60th, and 80th quantiles. 

Probabilities were calculated from available spatial data (Wall et 

al., 2012). 

Low_20-40 0.117 

Medium_40-60 0.0145 

High_60-80 0.01 

Very_High_80-100 0.0085 

Soil risk factor [adimensional] 

Low 0.639 An indicator to describe the combined risk of effluent leaching 

to the groundwater table with the risk of the effluent being 

transported with surface runoff. This approach is a simplification 

of the one adopted in Glendell et al., (2021). The risk factor was 

obtained by overlaying the soil series (Thomas et al., 2016b) 

with information on the position of the groundwater table (0- 2 

m below ground or more than 2 m below ground). Because little 

is known regarding the septic tanks in the catchment (i.e. age, 

type of treatment, maintenance), and the groundwater table 

position (few datapoints within the catchment) experts 

recommended a precautionary principle. This meant that the 

class at most risk of effluent transfer was applied when data was 

unavailable. The table to the left represents a synthesis of the 

classification approach. Probabilities are based on land cover 

proportion.  

Medium 0.236 

High 0 

Very High 0.125 

 Groundwater Table Position 

Soil Series 
0-2 m below 

surface 

>2 m below 

surface 

Brown earths High Risk Moderate Risk 

Gleys Very High Risk Very High Risk 
 

Leachfield removal 

Soil risk 

factor 
DPS Low Medium High 

Low 

Very Low 0 0 1 

Low 0 0.1 0.9 

Medium 0 0.5 0.5 

High 0.1 0.4 0.5 

Very High 0.1 0.6 0.3 

Medium 

Very Low 0 0.4 0.6 

Low 0.1 0.3 0.6 

Medium 0.1 0.8 0.1 

High 0.5 0.5 0 

Very High 0.6 0.4 0 

High 

Very Low 0.3 0.7 0 

Low 0.4 0.6 0 

Medium 0.6 0.5 0 

High 0.7 0.3 0 

Very High 0.9 0.1 0 

Very High 
Very Low 0.4 0.6 0 

Low 0.5 0.5 0 

The node refers to P removal from septic drains. Conditional on 

P leaching risk from Degree of Phosphorus Saturation (DPS). 

The conditional probability table is a logical one.  
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Medium 0.6 0.4 0 

High 0.9 0.1 0 

Very High 1 0 0 
 

Leachfield connectedness 

HSA 

rescaled 
None Low Medium High 

Direct 

discharge 
pres abs pres abs pres abs pres abs 

low 0 1 0 1 0 0 0 0 

medium 0 0 0 0 0 1 0 0 

high 1 0 1 0 1 0 1 1 
 

Probabilities are conditional on the presence/absence of Direct 

ST discharge, and HSA (node: Connectivity rescaled HSA). 

Where Direct discharge is present, connectedness is assumed as 

‘high’. Where Direct discharge is absent, the risk class of the 

HSA is assigned. 

Septic Tank connectedness 

Leachfield 

removal 
Low Medium High 

Leachfield 

connectedness 
Low Medium High Low Medium High Low Medium High 

Low 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.5 0.0 

Medium 0.0 1.0 0.0 0.0 1.0 0.5 0.0 0.5 1.0 

High 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 
 

Probabilities are conditional on Leachfield removal and 

Leachfield connectedness. Where Leachfield removal is ‘low’ or 

‘High’, Leachfield connectedness remains unaltered.  

Connectivity rescaled HSA 

[adimensional] 

None_0 0.06 Data extracted from spatial layers of Hydrologically Sensitive 

Areas (HSAs) rescaled between 0 and 10 was provided by the 

Agricultural Catchments Programme (Thomas et al., 2016a). 

Discretization is also based on the spatial layers.  

Low_1-3 0.73 

Medium_4-7 0.2 

High_8-10 0.01 

Load per tank [kg month-1]  

Absent 0-1*10-6 

Specified as the product of ST density [No ha-1] * ST 

concentration [mg l-1] * 120 [L] average daily water 

consumption per person * 365/12 days in a month* average No 

of persons per household 2.7/1*106. Discretisation is based on 

interpolation to represent plausible probabilities for combination 

of extreme risk classes (e.g. High+high=high, low+low=low). 

Very Low 1*10-6-0.1 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-30 

Total Realized load [T month-1] 

Very Low 0.0-0.1 

Calculated as the product of septic tank load and delivery factors 

(D) related to the connectedness of a septic tank, based on the 

median estimated fraction to be delivered in Table 13 of the 

report by Glendell et al., (2021) and the number of septic tanks 

present within catchment boundary (N): Realised load per tank 

[kg month-1] * N * D / 1000. In this case, N= 88. Discretisation 

based on interpolation to represent plausible probabilities for 

combination of extreme risk classes. 

 

 

Low 0.1-0.5 

Medium 0.5-1.0 

High 1.0-2.0 

Very High 2.0-12 

Septic tank 

connectedness 

Delivery 

factor (D) 
Reference 

Low 0.05 
“very low” category in Appendix A3, 

Glendell et al., (2021) 

Medium 0.30 
“medium” category in Appendix A3, 

Glendell et al., (2021) 
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High 0.80 
“very high” category in Appendix A3, 

Glendell et al., (2021) 
 

Farmyards sub-model (Point P sources) 

Farmyard size area [m2] 

Very Low 0-99 Based on available farmyard survey, a distribution was fitted to 

farmyard area data: Lognormal (µ=-5.9; ơ=0.83). Discretization 

of states is based on percentiles calculated from the observations 

(very low<= 5th percentile, low= 5th-25th percentile, medium= 

25th-50th percentile, high= 50th-75th percentile, very high= 75th-

100th percentile). 

Low 99-204 

Medium 204-378 

High  378-665 

Very High 665-5500 

Farmyard P concentration [mg l-1] 

Very Low 0-0.01 Using the SHELF R package (version 1.8.0, Oakley, 2020), a 

distribution was fitted to the data in Table 2 in Harrison et al., 

(2019): Lognormal (µ=-1.8; ơ=1.6 ). The best fit would have 

been the LogT distribution, however, that is not available for 

Genie, so we opted for Lognormal. Discretization is also based 

on the literature. For simplicity, here we have used SRP to mean 

TRP.  

Low 0.01-0.50 

Medium 0.50-1.00 

High  1.00-2.50 

Very High 2.50-60 

Incidental losses per average yard  

[kg month-1] 

Very Low 0-1*10-9 
Based on average farmyard size, losses are calculated as Surface 

runoff [m3] / catchment area [m2]* Farmyard size area [m2]* 

Farmyard P concentration [mg l-1]/ 103. Catchment area is set at 

758 ha.  

Low 1*10-9-0.001 

Medium 0.001-0.01 

High  0.01-0.10 

Very High 0.10-60 

Total incidental losses [T month-1] 

Very Low 0-1*10-5 

Incidental losses per average yard [kg month-1] * N, where N is 

the total number of yards present within the catchment boundary. 

In this case, N =70. 

Low 1e-05-0.007 

Medium 0.007-0.070 

High  0.07-0.700 

Very High 0.700-10 

Catchment outlet integration sub-model 

Total catchment in-stream P load  

[T month-1] 

Low 0-0.02 Equal to the sum of Baseflow Dissolved P load [kg month-1], 

Modified Dissolved P load [kg month-1],  

Modified Sediment P load [kg month-1], Total incidental losses 

[T month-1], and Total Realized load [T month-1], all converted 

to appropriate units.  

Medium 0.002-1 

High 1-10 

(meteorological) Season   Based on the node “Month”.  

In-stream winter P removal 

Very Low -1, -0.5 
Defined as a  Normal distribution (µ=0.1; ơ=0.05) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low -0.5-0 

Medium 0-0.5 

High  0.5-1 

In-stream spring P removal 

Very Low 0-0.2 Defined as a  Normal distribution (µ=0.35; ơ=0.21) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low 0.2-0.4 

Medium 0.4-0.6 
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High  0.6-0.8 

In-stream summer P removal 

Very Low 0.1-0.3 
Defined as a  Normal distribution (µ=0.43; ơ=012)  derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020). 

Low 0.3-0.45 

Medium 0.45-0.6 

High  0.6-0.8 

In-stream autumn P removal 

Very Low 0-0.2 
Defined as a  Normal distribution (µ=0.25; ơ=0.07) derived from 

expert elicitation with the  R package (version 1.8.0, Oakley, 

2020).  

Low 0.2-0.4 

Medium 0.4-0.5 

High  0.5-0.65 

In-stream reduced P load [T 

month-1] 

Moderate 0-0.5 Calculated as the product of Total catchment in-stream P load  

and the seasonal removal. Bad 0.5-10 

In-stream P concentration [mg l-1] 

Good 0-0.035 Defined as the in-stream reduced P load [T] * 109 / Mean total 

monthly Q (discharge) [m3] * 1000, where mean monthly 

discharge is equal to the total catchment discharge measured at 

the outlet. 
Bad 0.035-5 

Environmental Quality Standard 

[TRP concentration mg l-1] 

TRP 

concentration 
Good Bad 

Good 1 0 

Bad 0 1 
 

Discretization of the variable “In-stream TRP concentration [mg 

l-1]”. For simplicity, in-stream TRP is here considered equal to 

in-stream Dissolved Reactive Phosphorus, as in previous studies 

the mean DRP accounted for 98–99% of the flow-weighted 

mean TRP  (Shore et al., 2014). 
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9.4 Supplementary Results 
Table 9.5 Summary of months’ results, including Percentage Bias and P concentrations, which have been calculated excluding data outside the instrument’s limit of detection (0.01-5.00 mg l-1). Both observed and 

predicted TRP concentrations were log-transformed before calculating the statistics, and then converted back to normal values. For each catchment, results are reported only for Structure 1 (“Str 1”) and the best 

performing model structure which includes in-stream P removal. Therefore, the column “final” describes Structure 5 for Timoleague, Structure 2 for Ballycanew and Dunleer, and Structure 6 for Castledockrell. A 

positive bias indicates overestimation. Observations are shaded in grey to improve readability of text.  

 

 

Percentage bias of 

simulations against 

distribution fitted to 

observed 

mean (µ) 

concentrations 

lower limit concentrations 

(µ-1ơ) 

upper limit concentrations 

(µ+1ơ) 

(mg l-1) (mg l-1) (mg l-1) 

Str 1 final Str 1 final observations Str 1 final observations Str 1 final observations 

T
im

o
le

a
g

u
e 

Jan 28 -20 0.14 0.05 0.05 0.05 0.04 0.04 0.40 0.06 0.08 

Feb 289 5 0.14 0.06 0.05 0.05 0.05 0.04 0.41 0.08 0.08 

Mar 281 -10 0.14 0.05 0.04 0.05 0.03 0.03 0.40 0.08 0.07 

Apr 281 -26 0.14 0.04 0.04 0.05 0.03 0.02 0.40 0.07 0.07 

May 286 11 0.14 0.06 0.04 0.05 0.03 0.02 0.41 0.10 0.06 

Jun 283 -12 0.14 0.05 0.06 0.05 0.03 0.03 0.41 0.07 0.10 

Jul 280 -18 0.14 0.05 0.06 0.05 0.03 0.04 0.40 0.07 0.12 

Aug 290 20 0.14 0.07 0.06 0.05 0.04 0.03 0.41 0.10 0.13 

Sept 277 17 0.13 0.07 0.05 0.05 0.04 0.03 0.40 0.10 0.08 

Oct 286 -1 0.14 0.06 0.06 0.05 0.04 0.04 0.41 0.08 0.11 

Nov 285 -10 0.14 0.05 0.06 0.05 0.04 0.04 0.40 0.07 0.10 

Dec 286 -19 0.14 0.05 0.06 0.05 0.04 0.04 0.40 0.07 0.09 

B
a

ll
y

ca
n

ew
 

Jan 70 57 0.08 0.08 0.05 0.03 0.03 0.03 0.20 0.19 0.07 

Feb 72 63 0.08 0.08 0.04 0.03 0.03 0.03 0.21 0.19 0.07 

Mar 75 40 0.08 0.07 0.04 0.03 0.03 0.03 0.21 0.16 0.07 

Apr 78 39 0.08 0.07 0.05 0.03 0.03 0.03 0.21 0.16 0.09 

May 78 40 0.08 0.07 0.05 0.03 0.03 0.02 0.22 0.17 0.07 

Jun 91 39 0.09 0.07 0.07 0.03 0.03 0.03 0.23 0.16 0.13 

Jul 107 47 0.09 0.07 0.09 0.04 0.03 0.05 0.25 0.17 0.14 

Aug 88 39 0.09 0.07 0.09 0.03 0.03 0.05 0.23 0.16 0.16 

Sept 99 64 0.09 0.08 0.07 0.04 0.03 0.04 0.294 0.19 0.12 

Oct 77 48 0.08 0.07 0.07 0.03 0.03 0.04 0.21 0.18 0.13 

Nov 74 47 0.08 0.07 0.07 0.03 0.03 0.04 0.21 0.17 0.12 

Dec 73 58 0.08 0.08 0.06 0.03 0.03 0.04 0.21 0.19 0.09 
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C
a

st
le

d
o

ck
re

ll
 

Jan 485 -38 0.12 0.02 0.02 0.05 0.01 0.01 0.29 0.02 0.02 

Feb 485 -36 0.12 0.02 0.02 0.05 0.01 0.01 0.29 0.02 0.02 

Mar 461 -14 0.11 0.02 0.02 0.04 0.01 0.02 0.29 0.03 0.03 

Apr 471 10 0.11 0.02 0.02 0.04 0.01 0.01 0.29 0.04 0.03 

May 413 31 0.09 0.02 0.02 0.03 0.01 0.01 0.27 0.05 0.03 

Jun 424 27 0.09 0.03 0.03 0.03 0.01 0.02 0.27 0.05 0.05 

Jul 437 57 0.09 0.03 0.04 0.03 0.01 0.03 0.27 0.06 0.07 

Aug 420 62 0.09 0.03 0.04 0.03 0.01 0.03 0.26 0.06 0.07 

Sept 430 61 0.09 0.03 0.03 0.03 0.01 0.02 0.27 0.06 0.06 

Oct 428 51 0.09 0.03 0.03 0.03 0.02 0.02 0.28 0.06 0.05 

Nov 499 -27 0.13 0.02 0.02 0.05 0.01 0.01 0.30 0.03 0.03 

Dec 491 6 0.12 0.03 0.02 0.05 0.02 0.01 0.29 0.04 0.03 

D
u

n
le

er
 

Jan 98.3 75.4 0.12 0.11 0.07 0.04 0.03 0.05 0.40 0.35 0.09 

Feb 95.6 74.1 0.12 0.11 0.06 0.04 0.03 0.04 0.39 0.34 0.09 

Mar 96.9 33.8 0.11 0.08 0.07 0.03 0.03 0.04 0.39 0.25 0.11 

Apr 87.5 31.8 0.11 0.08 0.08 0.03 0.03 0.04 0.37 0.25 0.13 

May 83.6 34.4 0.11 0.08 0.08 0.03 0.03 0.06 0.36 0.25 0.12 

Jun 94.3 23.9 0.11 0.08 0.13 0.03 0.03 0.09 0.38 0.23 0.18 

Jul 94.9 31.7 0.11 0.08 0.15 0.03 0.03 0.11 0.38 0.25 0.20 

Aug 97.9 28.3 0.11 0.08 0.17 0.03 0.03 0.12 0.38 0.24 0.23 

Sept 90.3 54.5 0.11 0.09 0.15 0.03 0.03 0.10 0.37 0.30 0.23 

Oct 91.5 49.6 0.11 0.09 0.11 0.03 0.03 0.08 0.38 0.29 0.17 

Nov 99.7 50.5 0.12 0.09 0.09 0.04 0.03 0.06 0.40 0.29 0.12 

Dec 92.4 75.4 0.12 0.11 0.08 0.04 0.03 0.05 0.38 0.34 0.12 
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Figure 9.1 A representation of the impact of varying both α and β parameters of Predicted Dissolved P Concentration [mg l-1] on the median log10(TRP) concentration. In order to combine the effect of both 

parameters, a limited number of values were tested for both α and β. The figure shows the target TRP concentration is more sensitive to the β parameter than the α. 
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Figure 9.2 Results of the sensitivity analysis on the two parameters for the “Predicted Dissolved P concentration” node, β (slope, top plot) and α 

(intercept, bottom plot) displayed as boxplots showing the median (central line), interquartile range (box) for the log10(TRP) concentration (mg l-1) 

distribution of each simulation, filled black points show the scatter of the realizations. Values assumed for each parameter in each simulation are 

shown on the x axis, the boxplots of the “simulation 0” are shown in light green. Results are shown for the model Structure 2 for the Dunleer 

catchment. 
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10. Supplementary Materials to Chapter 5 

Table 10.1 Mean log10(TRP) (mg l-1) predicted with model ensemble against the mean observed TRP at the catchment outlet. All concentrations have 

been filtered by the instrument’s detection limit (0.01-5.00 mg l-1). 

Timoleague 

 
RCP 4.5 

(NSE) 

RCP 4.5 

(logNSE) 

RCP 8.5 

(NSE) 

RCP 8.5 

(log NSE) 
obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - - - - -1.27±0.24 1.28±0.18 

2010-2039 1.29±0.17 1.29±0.17 1.29±0.17 1.29±0.17 - - 

2040-2069 1.29±0.17 1.28±0.18 1.29±0.17 1.28±0.18 - - 

2070-2099 1.29±0.17 1.28±0.18 1.29±0.17 1.28±0.18 - - 

Ballycanew 

 
RCP 4.5 

(NSE) 

RCP 4.5 

(log NSE) 

RCP 8.5 

(NSE) 

RCP 8.5 

(log NSE) 
obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - - - - -1.20±0.24 1.15±0.38 

2010-2039 1.15±0.38 1.15±0.38 1.15±0.38 1.15±0.38 - - 

2040-2069 1.15±0.38 1.15±0.38 1.15±0.38 1.15±0.38 - - 

2070-2099 1.15±0.38 1.15±0.38 1.15±0.38 1.15±0.38 - - 

Castledockerell 

 
RCP 4.5 

(NSE) 

RCP 4.5 

(log NSE) 

RCP 8.5 

(NSE) 

RCP 8.5 

(log NSE) 
obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - - - - 1.62±0.28 -1.61±0.29 

2010-2039 1.60±0.28 1.60±0.28 1.60±0.29 1.60±0.29 - - 

2040-2069 1.60±0.29 1.60±0.29 1.60±0.28 1.60±0.28 - - 

2070-2099 1.60±0.29 1.60±0.29 1.61±0.29 1.61±0.29 - - 

Dunleer 

 
RCP 4.5 

(NSE) 

RCP 4.5 

(log NSE) 

RCP 8.5 

(NSE) 

RCP 8.5 

(log NSE) 
obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - - - - -1.02±0.22 1.05±0.49 

2010-2039 1.04±0.49 1.05±0.49 1.05±0.48 1.05±0.49 - - 

2040-2069 1.04±0.49 1.05±0.49 1.05±0.49 1.05±0.49 - - 

2070-2099 1.04±0.49 1.05±0.48 1.04±0.49 1.04±0.49 - - 
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Table 10.2 Mean monthly TRP concentration (mg l-1) in the four catchments as predicted by each model in September using the RCP 8.5 scenarios. 

Predicted TRP concentrations were log-transformed before calculating the statistics, and then converted back to normal values. Results are shown 

for the NSE calibration of the SMART model only. Concentrations are shown for the observations (obs) and the BBN (BBN baseline) in the reference 

period (2009-2016). 

Timoleague 

 
CNRM-CM5 

 

EC-EARTH 

 

HadGEM2 

 

MIROC5 

 

MPI-ESM-

LR 

 

model 

ensemble 

 

obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - -  -  - 0.05 0.07 

2010-2039 0.06 0.06 0.07 0.06 0.06 0.06 - - 

2040-2069 0.06 0.07 0.08 0.06 0.06 0.06 - - 

2070-2099 0.06 0.07 0.08 0.06 0.06 0.06 - - 

Ballycanew 

 
CNRM-CM5 

 

EC-EARTH 

 

HadGEM2 

 

MIROC5 

 

MPI-ESM-

LR 

 

model 

ensemble 

 

obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - -  -  - 0.07 0.08 

2010-2039 0.07 0.07 0.08 0.07 0.07 0.07 - - 

2040-2069 0.07 0.07 0.09 0.07 0.07 0.07 - - 

2070-2099 0.07 0.07 0.09 0.07 0.07 0.07 - - 

Castledockerell 

 
CNRM-CM5 

 

EC-EARTH 

 

HadGEM2 

 

MIROC5 

 

MPI-ESM-

LR 

 

model 

ensemble 

 

obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - -  -  - 0.03 0.03 

2010-2039 0.03 0.04 0.08 0.02 0.02 0.03 - - 

2040-2069 0.03 0.03 0.07 0.02 0.02 0.02 - - 

2070-2099 0.03 0.04 0.07 0.02 0.02 0.02 - - 

Dunleer 

 
CNRM-CM5 

 

EC-EARTH 

 

HadGEM2 

 

MIROC5 

 

MPI-ESM-

LR 

 

model 

ensemble 

 

obs 

BBN 

baseline 

(Chapter 4) 

2009-2016 - -  -  - 0.15 0.09 

2010-2039 0.09 0.09 0.11 0.09 0.09 0.09 - - 

2040-2069 0.09 0.09 0.11 0.09 0.09 0.09 - - 

2070-2099 0.09 0.09 0.11 0.09 0.09 0.09 - - 
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Figure 10.1 Mean monthly TRP concentration (mg l-1) in the four catchments driven by five climate models, the mean of the ensemble and the BBN 

in the reference period are plotted with the mean observations. The predictions for the BBN baseline are shown in black and they remain the same 

for each catchment in each plot, the same was done for the observations (2009-2016) which are shown by the blue crosses. Predicted TRP 

concentrations were log-transformed before calculating the statistics, and then converted back to normal values. Results are shown for the NSE 

calibration of the SMART model only. 
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Figure 10.2 BBN Sensitivity to changes in mean and standard deviation in the discharge (Q) node across the four catchments, from top left to bottom 

rights: Timoleague, Ballycanew, Castledockrell, and Dunleer. The effect is shown on the median log10(TRP) concentration (mg l-1). For all 

catchments, sensitivity is visible along changes in the January mean Q (along the x axis), but not for changes in the January standard deviation of Q 

(along the y axis). 
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