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ABSTRACT

Recently, several studies have proposed frameworks for Quantum
Federated Learning (QFL). For instance, the Google TensorFlow
Quantum (TFQ) and TensorFlow Federated (TFF) libraries have
been deployed for realizing QFL. However, developers, in the main,
are not as yet familiar with Quantum Computing (QC) libraries and
frameworks. A Domain-Specific Modeling Language (DSML) that
provides an abstraction layer over the underlying QC and Feder-
ated Learning (FL) libraries would be beneficial. This could enable
practitioners to carry out software development and data science
tasks efficiently while deploying the state of the art in Quantum Ma-
chine Learning (QML). In this position paper, we propose extending
existing domain-specific Model-Driven Engineering (MDE) tools
for Machine Learning (ML) enabled systems, such as MontiAnna,
ML-Quadrat, and GreyCat, to support QFL.

CCS CONCEPTS

- Software and its engineering — Development frameworks and
environments; Domain specific languages; - Computing method-
ologies — Machine learning; - Hardware — Quantum com-
putation.
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1 INTRODUCTION AND RELATED WORK

Federated Learning (FL) enables a scalable, privacy-preserving-by-
design approach to Machine Learning (ML) since raw data are
not exchanged between distributed nodes running the learning
algorithm for training the ML model. Hence, in each round, a server
that stores the current version of the ML model parameters shares
these parameters with the distributed nodes, called clients, that store
the raw data required for ML model training. Each node uses its
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local data to run a learning algorithm, such as Stochastic Gradient
Descent (SGD), and update its local model parameters accordingly.
Further, each client sends its updated ML model parameters to the
server. Finally, the server applies federated averaging [9] to calculate
the new ML model parameters and shares these parameters with
all of the clients [4].

However, privacy preservation is not the only benefit of this
decentralized ML approach. The fact that ML model parameters are
exchanged rather than raw data optimizes the network throughput
and would contribute to energy efficiency gains and, thus, carbon
emissions footprint. This is particularly the case where the data
objects consist of multi-variate structures, such as complex, high-
resolution color image data, the transmission, and processing of
which is typically associated with higher energy cost and carbon
emissions [14]. The capability to deliver decentralized ML becomes
even more crucial when we deal with quantum data with an inher-
ently fragile nature, which makes them difficult to transfer. Note
that some advanced Quantum Computing (QC) technologies, which
are adequate for Quantum Machine Learning (QML), require special
conditions, such as extremely low temperatures and vibration-free
environments, to store qubits and effectively maintain their quan-
tum states [12]. This makes any exchange of quantum data between
the distributed nodes running decentralized ML highly difficult and
inefficient since quantum data decay gradually as they interact
with the environment [4, 12]. The advantage of Quantum Federated
Learning (QFL) is that we can process inherently quantum data on
the distributed, federated nodes training the ML model (i.e., clients)
but use only classical (i.e., non-quantum) data for the ML model
parameters, which will be exchanged.

Recently, Chehimi and Saad [4] proposed a framework for QFL.
They deployed the Google TensorFlow Quantum (TFQ) and Tensor-
Flow Federated (TFF) libraries. Additionally, Yun et al. [15] proposed
SlimQFL to support QFL using Slimmable Neural Networks (SNNs),
thus coping with environmental dynamics, such as time-varying
communication channel conditions and energy limitations. How-
ever, the majority of practitioners in Software Engineering (SE)
and Data Science (DS) are yet to become familiar with the Quan-
tum Programming (QP) paradigm and the technologies mentioned
above. Therefore, as highlighted by prior work in the literature,
for example, Ali and Yue [3], Delgado and Gonzalez [13], Gemein-
hardt et al. [5], and Moin et al. [11], modeling languages and the
Model-Driven Engineering (MDE) paradigm could be a natural fit
and beneficial for QP. However, none of them have pointed out the
need for supporting model-driven QFL.

2 PROPOSED APPROACH

We envision a future in the decade ahead in which hybrid quantum-
classical applications will deploy QFL technologies to address the
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increasingly challenging enablers for Al solutions efficiently. How-
ever, as mentioned above, few practitioners (i.e., developers and
data scientists) are currently familiar with QP, let alone QFL. Hence,
to facilitate the deployment of QFL technologies in ML-enabled
software-intensive systems, we propose extending existing DSMLs
and MDE tools as enabling technologies to support the develop-
ment of such systems. This requires enhancement of state-of-the-art
tools, such as MontiAnna [8], ML-Quadrat [10], and GreyCat [1, 6]
to address QFL.

Realizing the proposed approach will help increase the produc-
tivity of practitioners, shorten the time-to-market for new software-
based products and services, and increase the quality of software
systems. Domain-specific modeling has already been applied to
other domains and has resulted in a productivity leap of 500-1000%
[7]. Moreover, the possibility of achieving full automation for pro-
gram synthesis (i.e., generation of the source code and other ar-
tifacts, such as ML models) makes turnarounds for developing
software-based products and services shorter and increases soft-
ware quality, for example, by reducing the number of software
defects.
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Figure 1: The main pillars of the proposed approach

The DSML and modeling tool for delivering the above enabling
technologies should support the user (i.e., the practitioner) to spec-
ify the number of distributed nodes (i.e., the clients and the server)
participating in FL at the design time. Moreover, for each node,
it should be specified whether this node - on the physical layer
- possesses a quantum processor or a classical one. Further, the
specific quantum hardware technology (e.g., superconducting NISQ
vs. trapped-ions) and model of computation (e.g., quantum circuits
vs. quantum annealing) may be provided. This should help opti-
mize the generated code for the particular quantum and classical
processors on which the QFL application will be deployed.

Additionally, it should be possible to choose the preferred learn-
ing algorithm for each client participating in FL, the desired feder-
ated averaging algorithm (e.g., appropriate aggregation of model
gradients), and the ML model architecture. In each case, the system
should be able to revert to a best-suited default choice to be selected
automatically should the user (i.e., practitioner) not provide the
respective information explicitly. For instance, the default choices
for the learning algorithm, federated averaging algorithm, and ML
model architecture could be SGD, the federated averaging algorithm
of [9], and Quantum Convolutional Neural Networks (QCNN) [4],
respectively.
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In particular, we plan to integrate the open-source TFQ and
TFF libraries based on Cirq [2], thus building on prior work by
Chehimi and Saad [4]. Furthermore, we intend to extend the open-
source ML-Quadrat project [10], built based on the Eclipse Modeling
Framework (EMF) and the Xtext framework. Currently, ML-Quadrat
supports neither QP nor FL. Thus, an approach integrating both
of the requisite capabilities (namely, QP and FL, thus QFL) will be
required. Finally, the DSML and tool can be enhanced with more
sophisticated QFL solutions, such as the SNN-based approach pro-
posed by Yun et al. [15]. The DSML and tool should be modular and
extensible to support the above requirements. Figure 1 illustrates
the main pillars of the proposed approach.

3 CONCLUSION AND FUTURE WORK

In this paper, we have proposed our approach to delivering model-
driven QFL. We have argued that existing DSMLs and modeling
tools should be extended to handle advanced ML needs, specifically
regarding QFL. In the future, we plan to realize the proposed so-
lution and conduct experiments to validate the prototype. To this
aim, we will build on existing QFL and MDE solutions.
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