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Abstract

Measurable.energy's innovative sockets use LED indicators that reflect the carbon intensity of

electricity sourced from the National Grid. The color-coded system provides real-time information

about the energy source: green indicates predominantly renewable energy (e.g., wind, solar), amber

represents a mix of renewable and non-renewable sources (including fossil fuels and nuclear) and red

signifies energy primarily derived from non-renewable sources. This feature is designed to assist users

in making informed decisions about when to use their devices, thereby reducing their carbon footprint.

This study aims to provide a comprehensive understanding of how Measurable.energy smart sockets

impact user’s energy consumption behaviour and to investigate their overall efficiency. The

implementation of smart energy sockets in the Park Eat restaurant has led to a notable reduction in

energy consumption. For example, bar sockets experienced significant reductions in energy use and

emissions, with some achieving up to 56.2% decreases in energy consumption and up to 41.5%

reductions in CO₂ emissions. In contrast, coffee machines showed varied results: while some sockets

experienced higher energy consumption, they also achieved higher emissions reduction. This

suggests that while automation can increase certain operational aspects, its effectiveness can differ

depending on the specific application and context. The results indicate that high-energy appliances,

such as those used in bar areas and for coffee machines, exhibit the most favorable payback periods.

Conversely, kitchen appliances show varied payback periods while others (such as manually

controlled sockets) have longer durations due to lower cost reductions. Incorporating Personal Moral

Norms and Self-Determined Motivation with the Theory of Planned Behaviour strengthens the role of

Attitudes in predicting Intention, but the impact of Personal Moral Norms remains ambiguous and the

Intention-Behaviour link is still non-significant, while adding Past Behaviour highlights Attitude and

Past Behaviour as significant predictors of Intention but does not result Behaviour prediction.
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Key findings

1. The automation of appliances with Measurable.energy sockets shows improved energy

efficiency and reduced CO₂ emissions compared to manual operations, highlighting their

effectiveness in managing energy and reducing environmental impact.

2. Automation of the coffee machines led to increased energy consumption in some cases,

indicating that the benefits of automation vary depending on the specific operational context.

3. High-energy appliances, such as those in bar settings and coffee machines, show the most

favorable payback periods, typically around 2 months, making automation a financially

attractive option for these areas.

4. There is a significant gap in training regarding the measurable.energy traffic light system, with

varied interpretations of color codes and a lack of clear guidance, emphasizing the need for

improved training.

5. Past behaviour and attitudes significantly predict energy-saving intentions, they do not strongly

predict actual behaviour, suggesting that additional factors and clearer pathways are needed to

translate intentions into effective energy-saving actions.
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1. Introduction

The University of Reading has pledged to achieve Net Zero Carbon by 2030, exemplifying its ongoing

leadership in mitigating environmental impacts. Attaining this objective will position the University as a

global frontrunner in climate change mitigation. The University is recognized as a leader in reducing

operational carbon emissions. In 2016, the University achieved its 35% carbon emissions reduction

target (compared to its 2008/09 baseline), earning the EAUC Green Gown Award for Carbon

Reduction. Importantly, by January 2020, the University’s emissions were 44.1% below baseline

levels, nearing its next goal of a 45% reduction by July 2021. This accomplishment places the

University among the top five higher education institutions in the country for carbon emissions

reductions, including the leading research-intensive university. The cumulative reductions of 133,517

tCO₂ e are equivalent to removing all road traffic from the Borough of Reading for an entire year.

Financially, the cumulative direct savings for the University amount to £34 million.

In the context of energy monitoring, the University of Reading began exploring a solution that would

allow it to measure carbon emissions at the device level, provide remote access and report savings in

electricity consumption. One solution was provided by measurable.energy intelligent sockets, which

allow for the monitoring and management of appliances in real-time. Following their installation in Park

Eat, just two months of a trial eliminated 872 kWh of small power waste (or standby

power)—equivalent to charging 58,075 mobile phones. Additionally, they have prevented 148 kg of

carbon emissions, which is comparable to the amount absorbed by two tree seedlings over a decade.

In this report, two Undergraduate Research Assistants, Axel and Zahrah, conducted a comprehensive

analysis on how smart automatization can be applied towards the reduction of energy consumption in

non-residential buildings. The smart sockets were strategically located at various points within the Park

Eat restaurant to assess energy consumption across different areas. The specific locations and

number of sockets investigated were as follows:

● Reception Desk: 2 sockets

● Kitchen: 4 sockets

● Front of House: 4 sockets

● Bar: 3 sockets

● Coffee Machine Area: 3 sockets

Each of these locations was selected to provide a comprehensive overview of the energy usage

patterns within the restaurant, allowing for a detailed analysis of potential savings and optimization
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opportunities. Their study focused on various time frames, including the start and end of term, the

summer vacation period and the beginning of the new academic year, to capture the full range of

appliance usage patterns. This analysis aimed to identify potential energy savings and cost reductions

that could be achieved through optimized scheduling and usage of devices.

Furthermore, the students administered a survey to investigate the impact of a traffic light system on

human behaviour. This system, designed to provide real-time feedback on energy usage, was

evaluated for its effectiveness in encouraging sustainable practices among staff and students. Axel

and Zahrah sought to understand how visibility and immediate feedback could influence energy-saving

behaviours.

Overall, their research provides valuable insights into the potential for energy optimization and cost

savings within the University of Reading's facilities, contributing to the broader goal of achieving

net-zero carbon emissions.

1.1. Gaps, aims and objectives

While there are several studies that have investigated the adoption of smart devices in residential

homes, fewer studies have explored how these smart technologies function and influence behaviour in

institutional settings such as restaurants. Therefore, our aim was to assess the feasibility of replacing

human intervention with automation through the use of measurable.energy sockets in institutional

settings such as restaurants.

Our objectives in this study are:

● Conduct a detailed analysis of energy consumption patterns at various points within the

restaurant, including reception, kitchen, front of house, bar and coffee machine areas.

● Quantify energy savings and reductions in carbon emissions achieved through the use of smart

sockets.

● Investigate how the traffic light system of smart sockets influences staff behaviour towards

energy usage.

● Determine if automation can effectively replace human intervention in promoting energy-saving

behaviours.

● Explore the norms and sustainable practices promoted by the visibility and functionality of

smart technologies.
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● Identify challenges and best practices for the meaningful incorporation of m.e sockets in

restaurant operations.

2. Driving Carbon Neutrality: Monitoring Appliance Energy Consumption and

Proposing Technology replacement and Automatisation at the University of

Reading's Park Eat Restaurant

Our investigation started with the review of the University of Reading's ambitious Net Zero Carbon

Plan. The University of Reading has committed to achieving carbon neutrality by 2030, which

necessitates a substantial reduction in energy and gas consumption. In alignment with this objective, a

significant project was undertaken in 2021, led by Dr. Samantha Mudie, who managed the installation

of 16 new, energy-efficient catering ovens across seven on-campus food outlets. This initiative, funded

by Salix, replaced 18 outdated and inefficient ovens, some of which were over two decades old. The

replacement ovens not only improved operational reliability but also yielded substantial environmental

and financial benefits (Figure 1). The project resulted in a reduction of 326,214 kWh in annual energy

consumption and a decrease of 67.9 tonnes in carbon dioxide emissions (Sustainability Reading,

2023).

Figure 1. Old versus new catering owens.

Dr. Mudie, applying her expertise from her PhD research, conducted a meticulous assessment of the

project’s outcomes. Her evaluation involved an application of a model that accounted for factors such

13



as appliance capacity, temperature settings and food preparation processes. This detailed analysis

facilitated an accurate measurement of the energy savings achieved through the new equipment

(Mudie et al., 2016).

Subsequently, Dr Mudie applied similar energy-saving principles to another project using Measurable

Energy smart plugs to monitor the energy consumption of bottle fridges. This technology provides

real-time analytics on energy usage, enabling the identification of inefficiencies. In a follow-up study,

the smart plugs were used to evaluate the energy profiles of five double bottle fridges. The data

revealed substantial energy wastage, leading to the decision to replace these fridges with more

efficient sockets. The upgrade resulted in an 87% reduction in energy consumption, yielding annual

cost savings of £11,953 and a projected total savings of £60,000 over five years, along with a

reduction of over 20 tonnes of carbon emissions (Measurable Energy, 2024).

In our reading of case studies from the Measurable Energy website, the use of Measurable Energy

smart plugs significantly improves energy management and supports sustainability objectives. These

smart plugs are used in various environments, including construction sites, offices, restaurants and

more, providing significant savings on energy consumption. These devices enable precise monitoring

and detection of energy-inefficient appliances, which are crucial for informed maintenance decisions

and timely equipment upgrades. However, the effectiveness of such technologies may vary across

different types of equipment and operational contexts, suggesting the need for further research into

their broader applications and long-term impacts.

What was not clear to us is how end users domesticate these m.e sockets and what kind of education

or training is provided to better connect with the m.e sockets. This aspect of user engagement and

training is crucial to ensure that the end users fully understand how to utilize the smart plugs effectively

and integrate them into their daily routines to maximize energy savings and sustainability benefits.

For instance, a case study at Stink Studios demonstrated a 25% reduction in energy use and a 22%

drop in CO₂ emissions due to the installation of measurable.energy's sockets (Measurable Energy

Case Studies, 2026). These sockets allowed for automated and remote control of equipment, with LED

lights on the sockets raising awareness and encouraging energy-saving behaviours. Lorraine, the

director, praised the automation feature and the ability to visualize energy savings, highlighting the

convenience and impact of the technology. While the director praised the traffic light system on m.e

sockets, there remains a question regarding how these smart plugs change customer behaviour.

Specifically, do these devices increase sustainability knowledge among users? Do people manage
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their energy savings better? Do they consume less energy or choose to consume energy when the

grid's carbon intensity is lower? If these outcomes are not being achieved, what can be proposed to

improve the adaptability of the m.e smart plugs and enhance user’s understanding of the traffic light

system?

In summary, all m.e case studies demonstrate the potential of integrating advanced monitoring

technologies in institutional decarbonization efforts and provides a framework for other organizations

seeking to reduce their carbon footprint. Future research should explore the application of smart plug

technology to other high-power appliances and assess additional features, such as predictive

maintenance capabilities, to further enhance energy management strategies.

However, the behavioural aspects need further research. Do the m.e plugs make staff members more

sustainable? What are the dominant norms, attitudes and intentions influenced by the m.e plug’s traffic

light system? It would be interesting to quantify the energy savings on weekdays versus weekends, as

well as the hourly consumption patterns. Analyzing this data can help determine the optimal schedule

for using energy-intensive equipment to maximize benefits. These are some of the many questions we

brainstormed for discussion.Later, we started to review literature to identify if our ideas had already

been researched or what kind of academic evidence supports our approach.

3. Exploring Definitions, Consumer Perceptions and Operational Barriers

to Sustainability in the Foodservice Sector

Since our investigation was focused on the Park Eat catering restaurant we began reviewing the

academic literature to understand what it means to be a green restaurant and how these sockets

contribute to making Park Eat more environmentally friendly.

In the academic literature, we found that green restaurant practices are associated with balancing

operational efficiency and environmental sustainability. Choi and Parsa (2007) provided a foundational

definition of a green restaurant, identifying three broad areas of concern: health, environmental impact

and social responsibility.

● Health Concerns: Green restaurants should focus on serving organic, nutritious and balanced

food options to support healthy lifestyles. This includes serving nutritionally balanced food,

organic foods, healthy and low-fat options and eliminating the use of antibiotics in livestock.
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● Environmental Concerns: To protect the macro environment and the community, restaurants

should engage in environmentally friendly practices. This includes operational and procedural

modifications at production sites, such as recycling paper products (e.g., napkins and paper

cups), reducing the use of fluorocarbons and minimizing plastic tubs and jars. Sustainable

practices also involve energy conservation and pollution reduction.

● Social Concerns: Green restaurants should focus on community engagement and equitable

human resource practices. Many restaurants set up programs for senior citizens and donate

time and money to support local communities. Additionally, many restaurateurs engage in

socially responsible design practices to prevent and minimize ecological disasters and adopt

socially responsible marketing strategies.

The Green Restaurant Association further refines this definition by establishing eight categories that

set standards for green restaurants: (1) water efficiency, (2) waste reduction and recycling, (3) use of

sustainable durable goods and building materials, (4) sustainable food practices, (5) energy

conservation, (6) use of reusable and environmentally preferable disposables, (7) chemical and

pollution reduction and (8) transparency and education. According to these criteria, a green restaurant

is defined as one that strives for a balance between human and environmental well-being through a

variety of green practices. These include minimizing pollutants and solid waste, conserving energy and

resources, recycling and composting, using non-toxic cleaning products, employing sustainable

building materials and educating employees. Green restaurants also feature menus with locally

sourced, organic and healthy ingredients.

Our next step was to understand how and which psychological and cognitive aspects of consumer

behaviour towards green restaurants contribute to resource efficiency in commercial kitchens. Studies

have shown that adopting energy- and water-efficient equipment, coupled with regular maintenance,

can lead to significant savings. For example, improvements in water-use efficiency in California's

commercial kitchens could potentially achieve a 20% reduction in water consumption without

compromising functionality (Gleick et al., 2003). However, barriers such as inconvenience, time

constraints and perceived high costs often hinder the adoption of these sustainable practices. In the

UK, small business managers recognized the cost-effectiveness of energy efficiency and waste

reduction but were unsure about implementation strategies. Managers often perceived energy use as

a minor issue, lacked knowledge about reducing it and questioned the cost-effectiveness of investing

in energy-efficient equipment (Revell and Blackburn, 2007). Additionally, challenges such as higher

costs and inconsistent availability of green food procurement were cited as significant obstacles.
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Government policies and programs, such as incentives and educational initiatives, have been

identified as effective means to promote sustainable practices by addressing these barriers (Chou et

al., 2012). Providing environmental education to employees can increase their understanding of

sustainability and foster positive attitudes towards green practices. Despite growing interest in green

foodservices, challenges such as cost, lack of expertise and entrenched attitudes remain,

underscoring the need for supportive measures to facilitate the transition to more sustainable

practices.

Operational behaviours also play a critical role in resource use in commercial kitchens. Behaviours

such as leaving equipment on during free times, keeping doors open, not fully loading equipment and

leaving lights on can lead to increased resource consumption. Studies have shown that untrained

employees using the same equipment can lead to significant variations in energy consumption,

highlighting the importance of operational behaviours (Batty et al., 1988). Modifying staff behaviour is

recognized as a low-cost method to reduce energy use in commercial kitchens.

Kitchen equipment is frequently left on when not in use for various reasons. A study of energy

consumption in five foodservice facilities revealed that equipment was often turned on much earlier

than necessary and left on all day to ensure readiness for immediate use. Kitchen managers preferred

this practice as it takes a long time for equipment to warm up if turned off (Revell and Blackburn,

2007). Such practices significantly affect resource use, emphasizing the importance of employee

actions in promoting sustainability.

Operational behaviours in kitchens can become ingrained, necessitating continuous reminders for

sustained change. For example, energy usage declined when staff knew it was being monitored but

reverted shortly afterward, indicating the need for ongoing reinforcement (Batty et al., 1988). Similarly,

outdated practices, such as pre-cooking and storing food in hot cupboards, persisted due to historical

routines (Batty et al., 1988).

Other barriers to green practices have been identified:

● Physical Barriers: Inefficient kitchen layouts and limited space for waste separation bins can

hinder sustainable practices (Batty et al., 1988; Revell and Blackburn, 2007).

● Time Constraints: Staff often lack time for additional tasks such as waste sorting (Revell and

Blackburn, 2007).

● Operational Procedures: Existing organizational procedures can complicate sustainability

efforts (Batty et al., 1988).
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● Lack of Knowledge: Even with educational tools, a lack of specific knowledge on resource

saving can be a significant barrier (Kaplowitz et al., 2012).

● Fear of Quality Impact: Employees may be concerned that energy saving efforts could

negatively impact the quality of their work (Kaplowitz et al., 2012).

Addressing these barriers effectively requires a comprehensive approach. Recommended practices

include:

● Monitoring resource use and operational behaviours.

● Communicating goals and reasons for changes clearly.

● Collecting and acting on employee feedback.

● Measuring and sharing resource usage and reductions.

● Rewarding participation and demonstrating changes through leadership.

Training staff on the efficient use of equipment and using timed switches can help manage energy

consumption. However, there is a gap in research regarding the impact of specific behaviours on

sustainability and the effectiveness of programs that focus on behaviour change. Implementing a

shutdown schedule ensures that lights and equipment are turned off during the night. Despite these

recommendations, the overall effectiveness of such programs has yet to be thoroughly assessed.

4. Exploring the Extended Theory of Planned behaviour: Hypotheses and
Applications in Sustainable Behaviour Research

Over the last fifty years, various psychological sockets have been proposed to elucidate individual

behaviours. One prominent model addressing voluntary behaviours is the Theory of Reasoned Action

(TRA), developed by Ajzen and Fishbein. The TRA posits that people make decisions rationally,

leading to reasoned choices influenced by behavioural intentions, which in turn can be affected by

multiple factors (Ajzen and Fisben, 1988). Ajzen later extended this model to create the Theory of

Planned behaviour (TPB) which incorporates additional variables to comprehensively explain both

voluntary and involuntary behaviours (Ajzen, 1991). The TPB integrates three key psychological

constructs: attitude, subjective norms and perceived behavioural control (PBC). Attitude reflects an

individual's overall evaluation of a specific behaviour, subjective norms denote perceptions of others'

opinions on the behaviour and PBC assesses the perceived ease or difficulty of engaging in the

behaviour. Besides intention, PBC is another critical factor linked to behavioural outcomes and

decision-making processes.
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According to the literature the TPB remains a pivotal framework in environmental psychology, widely

employed to analyze various environmentally friendly behaviours such as recycling, public

transportation use, organic food consumption, sustainable consumption practices, household energy

conservation and behaviours within the hotel management sector. However, some research indicates

that certain TPB variables may not significantly predict specific pro-environmental behaviours.

When the TPB is applied to investigate sustainable behaviour, it suggests the following:

● Attitude has either a moderate (Thøgersen, 2002) or a weak (Grob, 1995) relationship with

ecological behaviour.

● The relationship between subjective norm and sustainable behaviour ranged from

non‐significant (Shaw and Shiu, 2003) to fairly strong (Arvola et al., 2008).

● There is inconsistent findings in the literature about the strength of this relationship between

PBC and sustainable behavioural intention, with reports ranging from non-existent (Arvola et

al., 2008) to very positive relationship (Kaiser and Gutscher, 2003).

● Kaiser and Gutscher (2003) found that attitude, subjective norm and PBC explained 81% of the

variance in an individual's sustainable behaviour intention and intention determined 51‐52%of

that individual's sustainable behaviour.

Drawing on the literature, this study proposes five hypotheses within the Theory of Planned Behaviour

(TPB):

● H1: Staff attitude positively correlates with energy-saving intention in the University of

Reading's catering department.

● H2: Staff subjective norms positively correlates with energy-saving intention in the University of

Reading's catering department.

● H3: Staff perceived behavioural control positively correlates with energy-saving intention in the

University of Reading's catering department.

● H4: Staff perceived behavioural control positively correlates with energy-saving behaviour in

the University of Reading's catering department.

● H5: Staff intention positively correlates with energy-saving behaviour in the University of

Reading's catering department.
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In the academic literature, we identified extended and modified versions of the TPB for diverse

contexts, often integrating moral-normative factors to increase its explanatory capacity (Acheampong

and Cugurullo, 2019). Moral norms, which reflect personal values in specific situations, have been

shown to significantly influence intentions to engage in environmentally friendly behaviours.

Additionally, past behaviour plays a crucial role in socio-psychological frameworks, with studies

indicating its significant impact on decision-making processes related to pro-environmental behaviours

in various domains, including hospitality and tourism. Integrating past behaviour into predictive sockets

has been found to enhance their effectiveness.

When applying the extended version of the Theory of Planned behaviour (TPB) to investigate

sustainable behaviour, the following suggestions arise:

● Harland et al. (1999) found that including personal norms could increase the proportion of

explained variance of behavioural intention. Shaw and Shiu (2003) found a significant positive

relationship between personal norms (eg. in this case ethics) and behavioural intention.

● Thøgersen (2002) suggests that positive past experiences with sustainable practices would

strengthen the relationship between attitude and intention.

Therefore, the preceding discussion suggests two additional hypotheses for the extended TPB model I

(Figure 2 ):

● H6: Staff personal norms positively correlates with energy-saving intention in the University of

Reading's catering department.

● H7: Staff past behaviour positively correlates with energy-saving intention in the University of

Reading's catering department.
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Figure 2. The employed extended version of TPB I and related hypotheses

In addition to personal norms and past behaviour, empirical research has identified self-determined

motivation as another potential predictor. Self-determined motivation is a concept derived from

self-determination theory (Gagné and Decei, 2005) and the model of goal-directed behaviour. It

encompasses internal driving sources of motivation, such as the need to acquire skills, knowledge and

independence. Studies have highlighted the significant role of self-determined motivation in promoting

pro-environmental behaviours. For example Kaiser et al. (1999) argued that even though knowledge

may be the basis for any attitude, it would not have a strong relationship with sustainable behaviour

because sustainable attitude and behavioural intention reduce its power.

Based on the academic literature on this topic, this research proposes two additional hypotheses for

Extended TPB II (Figure 3):

● H8:Staff self-determined motivation positively correlates with energy-saving intention in the

University of Reading's catering department.
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● H9: Staff self-determined motivation positively correlates with energy-saving behaviour in the

University of Reading's catering department.

Figure 3. The employed extended version of TPB II and related hypotheses

In sum, in this chapter, we examined the TPB and its extensions to explore sustainable behaviour. We

began by outlining the foundational TPB constructs—attitude, subjective norms and PBC—and their

application to environmental behaviours such as recycling and energy conservation.We then proposed

five hypotheses related to energy-saving behaviours in the University of Reading’s catering

department, focusing on how staff attitudes, subjective norms, PBC and behavioural intentions

influence these behaviours. Building on the literature, we introduced extended TPB sockets that

incorporate moral norms and past behaviour, proposing additional hypotheses to assess their impact

on energy-saving intentions. Finally, we explored the role of self-determined motivation as an

influential factor in sustainable behaviour, suggesting two more hypotheses to investigate its effects on

energy-saving practices. Next, we will delve into the research design and methodology employed to

investigate the hypotheses proposed in relation to the extended TPB.
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5. The m.e Socket, Platform Description and the Extended TPB

Questionnaire Design

The Park Eat offers a range of dining options and has a snooker table for guests to enjoy. The

establishment also includes a bar. The opening hours are from 8am to 12pm, Monday to Sunday

during term time. The venue is closed on bank holidays. At the beginning of the project, we conducted

a site visit to the Park Eat restaurant, where we closely inspected the m.e smart plugs (Figure 4).

Figure 4. Park Eat restaurant dining area, front of the house

At Park Eat restaurant, a total of 87 m.e smart sockets have been strategically installed across various

locations to optimize energy management. Examples of locations include:

● Cellar: Used for storing beverages and other goods requiring refrigeration.

● Corridors: Serving as passageways where various electrical devices (such as fridges) might be

connected.

● Bar: Equipped with sockets to support catering equipment such as the chillers.

● Drink Machines: Positioned at the back of coffe machines and water taps.

● Reception Desk: Located at the front desk to accommodate devices used for customer service

and operations (such as PC or mobile phone charges).
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● Salad Bar: Where sockets support refrigeration units and other appliances used for food

preparation, example of appliance are toasters.

● Servery: Positioned in areas where food is served, enabling control of equipment used for

maintaining food temperature and quality.

Upon inspection, it was observed that some of these sockets are actively supporting appliances, while

others remain unused with no devices plugged in. Some were visible and easily accessible to both

customers and staff, while others were concealed behind bar chillers or coffee machines (Figure 5).

This distribution highlights the variability in how energy is consumed and managed across different

areas of the restaurant. Monitoring and analysis of these sockets will provide insights into energy

usage patterns, potentially identifying areas for improved efficiency and cost savings. This initial

observation was crucial for understanding the diverse contexts in which the smart plugs were

operating.

Figure 5.2 Park Eat floor plan and the locations of the m.e sockets

(orange timed-sockets and blue manual sockets).

2 One coffee machine is missing because we could not locate the corresponding socket.
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Following our site inspection, we held a meeting with representatives from measurable.energy. They

provided comprehensive training on how to effectively use the m.e platform, which is instrumental in

monitoring and managing the smart plugs. This training not only equipped us with the necessary skills

but also prompted us to reconsider our initial approach to the deployment and placement of the plugs.

After the training, we selected the smart sockets (Table 1) based on the key criteria: their visibility of

the traffic light system, their automation functions and their practical use by the staff. In the following,

we provide a detailed explanation of the key selection criteria:

1. Traffic light visibility: We chose sockets with clear and accessible traffic light indicators to

ensure that the staff and customers could easily observe and interpret the real-time feedback

on energy sources and consumption.

2. Automation functions: We prioritized sockets with established automation capabilities that could

run on different time schedules.

3. Practical use by staff: We evaluated how the smart sockets would fit into the daily operations of

the staff. The selected sockets needed to be located in areas where they would be actively

used and interacted with, ensuring that the m.e would integrate smoothly into their routines and

provide actionable insights.
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Table 1. List of selected m.e sockets and its location

Group 1: Timed m.e smart sockets Group 2: Manual (non-timed) m.e. sockets

Bar3 Coffee

machines4
Front of House Kitchen Reception desk

DG2-100-0-048 DG2-100-0-1405 DG2-100-0-112 DG2-100-0-037 DG2-100-0-115

DG2-100-0-133 DG2-100-0-298 DG2-100-0-291 DG2-100-0-043

DG2-100-0-210 DG2-100-0-482 DG2-100-0-472 DG2-100-0-114

DG2-100-0-493 DG2-100-0-287

5 Unfortunately, we were unable to locate this specific smart socket. However, we utilized the data collected by
the m.e. platform to proceed with our analysis.

4 Similar to the situation with the bar m.e plugs, we could not access the m.e plugs located behind the coffee
machines. As a result, we assumed that the photos we have accurately match the sockets to which the coffee
machines are plugged in.

3 We were unable to access the m.e plugs located behind the chillers. So, we made the assumption that the
photos we have correspond to the plugs that are connected to the chillers.
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In the early stages, we discussed establishing a control group and developing a specific intervention to

assess the impact of the smart plug traffic lights system more rigorously. However, due to time

constraints, we were unable to implement these elements in our research.

In the below sections of this report, we will provide a detailed analysis of the functioning and design of

the m.e. sockets. Additionally, we will discuss the development and application of the TPB

questionnaire, which was employed to evaluate the impact of the smart sockets on energy-saving

behaviour within the University of Reading's catering department.

5.1. M.e smart sockets description

The m.e. smart sockets integrate seamlessly with your existing Wi-Fi network, ensuring they remain

operational even if the internet connection is lost. These sockets are equipped with built-in memory,

allowing them to maintain any pre-set rules and continue monitoring energy consumption even during

network interruptions. You can also switch-off individual appliances using the m.e sockets.

A notable feature of these smart sockets is their ability to indicate the source (eg.

renewable/mixed/non-reneable energy) of the electricity being used. This is visually represented by the

colour of the LED light on the socket, as illustrated in Figure 6 below.

Figure 6: Measurable-energy traffic light system

socket inside the Park Eat restaurant kitchen
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The National Grid's carbon intensity API offers an indicative trend of carbon intensity for the electrical

grid of Great Britain up to 48 hours in advance. This forecast is represented by the m.e sockets, which

use an LED light display to show one of four colors, each corresponding to a different type of energy

source:

● Green: This indicates that the energy is primarily derived from renewable sources, such

as wind or solar power.

● Yellow and amber: These colours signifies that the energy is a combination of

renewable and non-renewable sources, including fossil fuels (coal, natural gas and oil)

and nuclear energy. Yellow signifies a moderate level of carbon intensity. In some

color-coding schemes, amber may be used to indicate a warning or a higher level of

emissions compared to yellow, signifying a greater reliance on fossil fuels or less

efficient energy generation.

● Red: This indicates that the energy comes solely from non-renewable sources.

The LED light provides consumers with a straightforward visual cue about whether their power is

sourced from renewable or non-renewable resources (Figure 7). Customers are expected to respond

to the colour changes of the smart sockets. For instance, when the m.e socket's colour turns red,

indicating high grid carbon intensity, it is anticipated that people will unplug devices from the socket. A

practical example is unplugging a laptop charger during periods of high carbon intensity to help reduce

the overall carbon footprint associated with the energy used. Similarly, staff could unplug their mobile

phone chargers or catering equipment tablets used for taking orders during such periods.
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Figure 7: Measurable Energy Sockets Traffic Light System (Source: Park Eat website,

https://www.hospitalityuor.co.uk/casual-dining/park-eat/)

In calculating the GHG emissions, the m.e Platform uses data from the Carbon Intensity API (Figure

8). This API provides details on the various types of energy contributing to the UK National Grid,

including Gas, Coal, Biomass, Hydro, Nuclear, Oil, Solar, Wind and imports. It calculates and updates

a dynamic gCO2/kWh value every 30 minutes. We align this carbon intensity data with your energy

consumption in the corresponding 30-minute intervals. This enables us to show both the carbon

emissions associated with your energy use and the emissions saved by turning off appliances.
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Figure 8. The mix of technologies supplying Great Britain's electricity between 27/07/2024 and

02/08/2024 (Source: Energy Dashboard - real time and historical GB electricity data, carbon emissions

and UK generation sites mapping, https://www.energydashboard.co.uk/historical)

In addition to providing real-time feedback on energy sources, these smart sockets facilitate long-term

electricity monitoring. They enable users to record and analyze energy consumption data over

extended periods, offering valuable insights into usage patterns and potential areas for efficiency

improvements.

5.2. M.e smart sockets dashboard

In addition to its precise measuring capabilities, the socket offers the significant advantage of power

demand control, which is crucial for effective energy management. These sockets are Wi-Fi enabled,

allowing them to communicate in full duplex mode with a central software system. This advanced
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connectivity facilitates continuous, real-time monitoring of power consumption at any given moment,

enabling a comprehensive understanding of energy usage patterns across different devices and

locations.

Figure 9: M.e platform graphical user interface

Moreover,dashboard provides a robust platform for managing these smart sockets (Figure 9). Through

this platform, users can access detailed analytics and reports on energy consumption, helping identify

opportunities for reducing waste and optimizing efficiency. One of the key features of this system is the

ability to set specific rules and schedules for individual sockets. These rules can automate the turning

on and off of devices based on predefined criteria, such as time of day, energy prices, or carbon

intensity levels. This automation not only helps in reducing unnecessary power usage but also aligns

energy consumption with more sustainable and cost-effective practices. For example, during periods

of high grid carbon intensity, the software can automatically disconnect non-essential devices to

reduce the overall carbon footprint. Conversely, during periods of low carbon intensity, it can enable
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devices to operate more freely, thus balancing operational needs with environmental considerations.

The table below (Table 2) summarizes the key features and outputs of the m.e dashboard, providing a

clear overview of the platform's capabilities:

Table 2. The m.e dashboard capabilities

Capabilities Description

Detailed in-depth

reading of power

consumption

The smart sockets offer precise and comprehensive monitoring of

power consumption at any given time. This feature allows users to

obtain real-time data on how much energy each socket is drawing,

enabling granular insights into energy usage patterns and identifying

potential areas for efficiency improvements.

Carbon intensity

details

The technology provides real-time information on the carbon intensity

of the electricity being consumed. Having this data available helps

users make informed decisions about their energy use, especially in

efforts to reduce their carbon footprint.

Energy cost

information

Alongside power consumption and carbon intensity, the smart

sockets also offer detailed information on the cost of the energy

being used. This feature allows users to track and manage their

energy expenses more effectively, promoting cost savings

Comparison of two

periods

The technology includes the capability to compare energy

consumption, carbon intensity and costs across two different time

periods. This comparative analysis is valuable for assessing the

impact of energy-saving measures and understanding seasonal

variations.
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Automated control

with customizable

rules

On the platform, users can set specific rules for each socket to

automate the switching on and off of devices based on predefined

schedules. This automation can be tailored to match operational

needs, peak and off-peak energy times, or carbon intensity levels,

thereby optimizing energy usage without manual intervention.

Traffic light system The smart sockets feature an intuitive LED indicator that displays the

source of the power being consumed. The indicator uses different

colors to show whether the electricity is being generated from

renewable sources (such as wind or solar), a mix of renewable and

non-renewable sources, or non-renewable sources. This immediate

visual feedback helps users quickly understand the environmental

impact of their energy consumption and encourages more

sustainable practices.

5.3. The extended TPB survey design

In this research, we employed a questionnaire-based survey to collect self-reported data from catering

staff members. Initially, we distributed the survey in a printed format to the catering team. Later, we

also made the questionnaire available online. Staff members who completed the questionnaire had the

opportunity to enter a draw to win a £20 Amazon voucher.

We received a total of 22 completed questionnaires, with 9 submitted online and 13 through

face-to-face interactions. The primary reasons for the limited response were the busy schedules of the

catering staff and the perceived length of the survey.

The questionnaire comprised four sections: respondents' sociodemographic information, a traffic light

system for assessing psychological characteristics and an evaluation of energy-saving behaviours. To
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increase the number of responses, one suggestion was to use the snowball sampling technique.

However, this approach did not result in any additional responses.

The questionnaire comprised four sections:

● Section 1: Focused on demographic information, including sex, age and job status.

● Section 2: Included questions on the m.e. socket traffic light system and the frequency of

energy-saving inductions in the workplace.

● Section 3: Contained 21 questions based on the literature, covering the psychological variables

of the extended TPB across six dimensions: attitude, subjective norms, PBC, moral norms,

past behaviour and intention.

● Section 4: Evaluated the self-reported performance of staff in four typical energy-saving

behaviours in campus restaurants.

In both of these sections, all items were responded to with the same 5-point Likert scale, ranging from

1 (completely disagree) to 5 (completely agree). The questions in Sections 3 and 4 are presented in

the table (Table 3) below.

Table 3. The extended TPB Section 3 and 4

Construct Code Survey Question

Attitude ATT-1
I think conserving energy when working at the

University of Reading's catering department is
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beneficial for protecting the environment.

ATT-2

I think that practicing energy conservation

behaviours at the University of Reading's catering

department is beneficial for protecting the

environment.

ATT-3

I think energy conservation behaviours at

University of Reading's catering department are

valuable for the University of Reading's Net Zero

Carbon Plan.

Subjective Norms

SN-1

I think my family members want me to save energy

when at the University of Reading's catering

department.

SN-2

I think my boss and colleagues want me to save

energy when at the University of Reading's

catering department.

SN-3

I think that people who are important to me want

me to save energy when at the University of

Reading's catering department.

Perceived Behaviour Control PBC-1

It is difficult for me to engage in energy

conservation behaviours when at the University of

Reading's catering department.

Personal Moral Norms

PMN-1
Saving energy at the University of Reading's

catering department is a moral imperative for me.

PMN-2
I would feel guilty if I did not save energy at the

University of Reading's catering department.

PMN-3
My ethics do not allow me to waste energy at the

University of Reading's catering department.
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Past Behaviour

PBH-1

Two months ago, during the academic term, I

engaged in energy-saving behaviours at the

University of Reading's catering department.

PBH-2

Two months ago, during the academic term, I

made efforts in energy-saving behaviours at the

University of Reading's catering department.

PBH-3

My efforts to save energy at the University of

Reading's catering department increased two

months ago, during the academic term.

Intention

INT-1
I am willing to save energy when at the University

of Reading's catering department.

INT-2
I am willing to make efforts to save energy when at

the University of Reading's catering department.

INT-3
I am willing to follow the energy-saving guidelines

at the University of Reading's catering department.

Self-Determined Motivation

SDM-1
I will feel pleased if I can contribute to the

environment.

SDM-2

I will gain recognition from others by performing

energy-saving behaviours at the University of

Reading's catering department.

SDM-3

Engaging in energy-saving behaviour at the

University of Reading's catering department is an

integral part of my life.

SDM-4

I will feel guilty if I do not do energy-saving

behaviour at the University of Reading's catering

department.

SDM-5 I engage in energy-saving behaviours to avoid
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criticism from the public.

Behaviour

BEH-1

I performed well in practicing sustainable air

conditioning use behaviours, such as opening

doors/windows instead of adjusting the air

conditioning system at the University of Reading's

catering department.

BEH-2

I performed well in sustainable appliance use (e.g.

turning off appliances that I was using instead of

leaving them on standby) and lighting use while

working at the University of Reading's catering

department.

BEH-3

I performed well in conserving hot water while

working at the University of Reading's catering

department.

BEH-4

I performed well in motivating and encouraging

others to conserve energy while working at the

University of Reading's catering department.

In practice, before the start of the survey, we included an ethical form that explained the research aim,

emphasizing that participation was voluntary and that data would be handled confidentially. This form

assured participants that no action would be taken based on their responses. This measure was also

intended to reduce social desirability bias by reassuring respondents that their honesty was valued

and that their answers would remain anonymous and without repercussions.

6. Results

On Figure 10 we compare half-hourly energy consumption for two restaurants, "Eat at the Square"

and "Park Eat," from July to December 2023. "Eat at the Square" consistently shows higher energy

consumption, with daily peaks reaching up to 400 kWh, while "Park Eat" rarely exceeds 100 kWh daily.
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A substantial level of standby power consumption is evident in "Eat at the Square," as energy use

remains noticeable even during non-operational hours, indicating that appliances are left on or in

standby mode. In contrast, "Park Eat" has a lower baseline of energy consumption during

non-operational hours, suggesting better management of standby power. Seasonal variations show

increased energy use in both restaurants during the summer (July and August) and in the colder

months (September to December). The peak hours for energy use can be identified as follows:

● For "Eat at the Square," peak energy consumption typically occurs between 10:00AM and

4:00PM. This trend is consistent across all the months shown in the plot, with the highest

spikes often seen around midday.

● For "Park Eat," peak energy consumption also tends to occur between 10:00AM and 4:00PM.

However, the peaks are less pronounced compared to "Eat at the Square," indicating lower

overall energy usage during these hours.

Figure 10. Park Eat and Eat at the Square electricity consumption
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6.1.1. Bar Sockets vs. Coffee Machines: Energy Usage Patterns of Timed

Appliances

Coffee machine automation and bar sockets reveal both similarities and differences in their energy

consumption and CO₂ emissions patterns (Figure 11). The usage shows seasonal variations, with

increased energy use and CO₂ emissions during colder months, such as January to March and

reduced levels in the summer months, like June to August. Specifically, both coffee machines and bar

sockets experience peak energy use and CO₂ emissions during winter, with lower values observed in

the summer. However, significant differences emerge in the degree of seasonal variability and

efficiency across application. For instance, coffee machines, including sockets DG2-100-0-298 and

DG2-100-0-482, display considerable fluctuations, with substantial peaks in specific months such as

November and July, indicating higher variability in energy consumption and CO₂ emissions. In

contrast, bar sockets, such as DG2-100-0-048, exhibit more consistent patterns with minimal

fluctuations throughout the year. Furthermore, bar sockets demonstrate clearer distinctions in

efficiency among different sockets; for example, DG2-100-0-210 is markedly more energy-efficient

compared to DG2-100-0-048. Conversely, coffee machine efficiency varies less distinctly across

sockets.

Comparing the energy consumption and CO₂ emissions of coffee machines and bar sockets for

July-December 2023 and January-July 2024, significant differences emerge. For coffee machines

running on automation in 2024, energy consumption for DG2-100-0-140 increased by 13.9% from

36.75 kWh to 41.85 kWh, while CO₂ emissions decreased by 5.4% from 5.6 g to 5.3 g.

DG2-100-0-298 saw a 20.3% rise in energy consumption from 251.03 kWh to 301.80 kWh, with CO₂

emissions increasing slightly by 1.3% from 39.0 g to 39.5 g. DG2-100-0-482 also experienced a 27.7%

increase in energy use from 260.52 kWh to 332.71 kWh, accompanied by a 5.2% rise in CO₂

emissions from 40.1 g to 42.2 g.
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Figure 11. Timed coffee machines at Park Eat restaurant

In contrast, the energy consumption trends for bar sockets in 2024 demonstrate different patterns

(Figure 12). Socket DG2-100-0-048 shows a slight increase in energy use, rising by 3.9% from 65.35

kWh in June-December 2023 to 67.89 kWh in January-July 2024. Correspondingly, CO₂ emissions

decreased by 13.3%, from 9.8 g to 8.5 g. Socket DG2-100-0-133 experienced a 6.6% increase in

energy use, increasing from 57.44 kWh to 61.24 kWh, while CO₂ emissions fell by 11.5%, from 8.7 g to

7.7 g. Socket DG2-100-0-210 saw a modest increase in energy consumption of 7.6%, rising from

16.00 kWh to 17.22 kWh and CO₂ emissions decreased slightly by 8.3%, from 2.4 g to 2.2 g.

Overall, while the coffee machines show increased energy consumption with mixed results on CO₂

emissions, bar sockets benefit substantially from automation with notable reductions in both energy

use and CO₂ emissions (Figure 12). Further details are available in Annex 4 and Annex 5.
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Figure 12. Bar chillers running on a timed setting at Park Eat restaurant

Based on Figure 13 socket DG2-100-0-048, socket DG2-100-0-133 and socket DG2-100-0-210, there

is a noticeable trend of negative savings in electricity consumption during the early months of the year,

specifically January through March, followed by relatively smaller negative figures in April and May.

This suggests a pattern where automatisation expenses tend to be higher at the beginning of the year

and decrease slightly as the year progresses.

Socket DG2-100-0-048 shows a consistent decrease in electricity usage from January (-3.69 kWh) to

May (-2.04 kWh), with variations between -2.75 kWh to -3.38 kWh in between. Similarly, socket

DG2-100-0-133 shows a reduction in electricity usage from January (-3.27 kWh) to May (-2.35 kWh),

with figures ranging from -1.99 kWh to -3.06 kWh during the months in between. Socket

DG2-100-0-210 displays a similar pattern with electricity usage decreasing from January (-0.89 kWh)

to May (-1.04 kWh), with figures varying between -0.86 kWh to -1.5 kWh throughout the intervening

months. This seasonal trend indicates that the costs associated with automatisation, represented by
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negative savings, tend to peak in the first quarter of the year and then stabilize or reduce slightly in the

second quarter. This could be due to various factors such term dates.

Figure 13. Park Eat bar sockets energy consumption before and after automatisation

The data for automatisation of the caffe machines across different plugs shows distinct seasonal

variations (Figure 14). In the following, we compare the electricity consumption for June and July in

2023 (before automation) and 2024 (after automation) to identify notable changes. For socket

DG2-100-0-140, there is a significant shift from June to July, with electricity usage droppping from 3.69

kWh in June to 1.13 kWh in July. We should note that the plug DG2-100-0-140 was set on a timer in

July 2023, which may affect the interpretation of the energy consumption results. As this automation

was introduced partway through the year, it is important to consider its potential impact on the data.

This change could have influenced the energy usage patterns and may not fully reflect the

comparative efficiency of automation versus manual operation over the entire year. Consequently,

caution should be exercised when interpreting the results and drawing conclusions about the overall

effectiveness of automation based solely on this data. Socket DG2-100-0- 298 demonstrates a

substantial decrease in electricity consumption from June to July, Socket DG2-100-0-482,

demonstrates a similar increasing trend, with electricity consumption increasing from 12.55 kWh in

June to 15.85 kWh in July. This trend could highlight a potential issue with this socket,such as
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malfunctioning equipment. Overall, while plug DG2-100-0-140 and plug DG2-100-0- 298 experienced

a decrease in electricity consumption in July, plug DG2-100-0-482 showed an increase in electricity

consumption.

Figure 14. Coffe bar sockets energy consumption with(2024) and without (2023) automatisation

The energy use heatmap of DG2-100-0-482 socket in July reveals distinct patterns for weekdays and

weekends (Figure 15). On weekdays, energy consumption peaks from 1 PM to 7 PM, with the highest

use between 2 PM and 5 PM. A noticeable increase starts around 6 AM, likely as the workday begins

and usage remains high until about 10 PM. Weekends show a different pattern, with generally higher

and more consistent energy use throughout the day. Weekend peak hours extend longer, from about 9

AM to 9 PM, with high consumption spread across afternoon and evening hours. There's less of a

clear morning ramp-up on weekends, suggesting later start times.
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Figure 15. DG2-100-0-482 Coffee bar sockets energy consumption weekday versus weekend day

In sum, weekday afternoons see the highest energy consumption, this period might coincide with

energy-intensive events like graduation ceremonies or conferences.

6.1.2. Front of House Sockets vs. Reception Desk Energy Usage Patterns

Given that there is no automation on the reception desk and front of house sockets (Figure 16), the

observed differences in energy consumption and CO₂ emissions can be attributed primarily to the

usage patterns and operational demands of these areas.

The reception desk, which is continuously occupied throughout the day, exhibits a steady energy

consumption pattern and relatively stable CO₂ emissions due to its constant operational demands. For

the DG2-100-0-115 socket, energy use increased from 6.56 kWh in August-December 2023 to 6.97

kWh in January-July 2024, representing a 6.3% rise. CO₂ emissions decreased slightly from 1.1 kg to

0.9 kg, a reduction of 18.2%. The DG2-100-0-132-f socket, however, shows a dramatic shift, with

energy use surging from 29.84 kWh in August-December 2023 to an astonishing 501.12 kWh in

January-July 2024, CO₂ emissions also soared from 4.8 kg to 75.1 kg.
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Figure 16. The front of house manually used m.e. sockets

In contrast, front of house sockets demonstrate more variable energy usage and CO₂ emissions due to

fluctuating guest traffic. For example, the DG2-100-0-112 socket saw a decrease in energy use from

3.30 kWh in January-July 2023 to 2.05 kWh in January-July 2024, marking a 37.8% reduction, with

CO₂ emissions decreasing from 0.4 kg to 0.3 kg, a 25% drop. The DG2-100-0-291 socket also

experienced a notable reduction in energy use from 2.91 kWh to 1.17 kWh, a 59.8% decrease and

CO₂ emissions fell from 0.4 kg to 0.2 kg, a 50% reduction. The DG2-100-0-472 socket saw a 23.2%

decrease in energy consumption, from 4.22 kWh to 3.24 kWh and a 42.9% reduction in CO₂

emissions, from 0.7 kg to 0.4 kg.
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Figure 17. Front of the house DG2-100-0-493 socket and projector

Meanwhile, the DG2-100-0-493 socket's energy consumption increased by 50.0%, from 183.85 kWh to

275.42 kWh, though CO₂ emissions rose by 25.4%, from 30.1 kg to 37.7 kg (Figure 17).

The data highlights that while the front of house sockets, primarily used by dining guests and cleaners,

show some improvements and fluctuations in efficiency, the reception desk sockets, due to their

constant use, maintain a more consistent but higher level of energy consumption and CO₂ emissions.

This distinction is evident in the percentage changes observed between the two areas. This

comparison highlights the significant impact of operational patterns on energy use and carbon footprint

and suggests that automation could further optimize performance and reduce emissions across both

front of the house and perception desk. Further details are available in Annex 6 and Annex 8.
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Figure 18. Front of the house projector without an m.e socket

In the process of locating the m.e sockets (Figure 18), we identified an additional projector that

appeared to be connected to a socket not currently monitored for energy consumption. It seems this

projector's energy usage is not being tracked. Therefore, we suggest installing m.e socket for

monitoring the projector’s energy usage.

6.1.3. Kitchen Energy Usage Trends

From January to July 2024, the analysis of energy consumption and CO₂ emissions across various

sockets reveals diverse outcomes, highlighting the impact of non-automated systems. The

DG2-100-0-037 socket, which recorded an almost unchanged energy consumption of 675.98 kWh in

2023 compared to 677.62 kWh in 2024, showed a minimal increase of 0.3%. However, its CO₂

emissions decreased significantly by 15%, from 103.5 kg to 88 kg, reflecting improved energy

efficiency or a shift towards less carbon-intensive energy sources. In contrast, the DG2-100-0-043
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socket demonstrated a notable reduction in both energy use and CO₂ emissions. Its energy

consumption fell from 35.60 kWh to 23.50 kWh, a substantial 33.9% decrease and CO₂ emissions

decreased by 39.2%, from 5.1 kg to 3.1 kg. This reduction suggests possibly less frequent use. The

DG2-100-0-114 socket experienced a slight decline in energy consumption from 41.22 kWh to 40.62

kWh, representing a modest 1.5% reduction, while CO₂ emissions dropped by 19%, from 6.3 kg to 5.1

kg. These small changes indicate limited but ongoing usage.

Figure 19. Kitchen DG2-100-0-287 socket

Conversely, the DG2-100-0-287 socket showed a significant increase in energy consumption from

44.41 kWh to 58.53 kWh, a rise of 31.8%, though CO₂ emissions only increased slightly by 2.7%, from

7.4 kg to 7.6 kg (Figure 19). This suggests that despite a considerable rise in energy usage, efforts or

conditions might have mitigated the corresponding rise in CO₂ emissions. Overall, the absence of

automation has led to varied results, with some sockets showing substantial reductions in CO₂
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emissions, while others highlight the challenges of managing energy use and emissions without

automated systems. Further details are available in Annex 7.

6.1.4. Evaluating Automation Versus Manual Operation: Is Automation
Better?

The analysis of energy consumption and CO₂ emissions provides compelling evidence that automation

generally offers significant advantages over manual operation, particularly in terms of efficiency and

environmental impact.

Automated coffee machines demonstrate varied results in energy consumption and CO₂ emissions.

For instance, DG2-100-0-140 saw a 13.9% increase in energy consumption from 36.75 kWh to 41.85

kWh between July-December 2023 and January-July 2024, while CO₂ emissions decreased by 5.4%

from 5.6 g to 5.3 g. Similarly, DG2-100-0-298 experienced a 20.3% rise in energy use but a slight

increase of 1.3% in CO₂ emissions. Despite these increases, automation can still contribute to overall

efficiency improvements by optimizing operational schedules and reducing manual intervention.

The impact of automation on bar sockets reveals a mixed but generally positive trend. For instance,

DG2-100-0-048 showed a slight increase in energy consumption of 3.9% from 65.35 kWh to 67.89

kWh, but a reduction in CO₂ emissions by 13.3%, from 9.8 g to 8.5 g. DG2-100-0-133 also saw a 6.6%

rise in energy use, increasing from 57.44 kWh to 61.24 kWh, while CO₂ emissions decreased by

11.5%, from 8.7 g to 7.7 g. Similarly, DG2-100-0-210 experienced a 7.6% increase in energy

consumption, rising from 16.00 kWh to 17.22 kWh and CO₂ emissions dropped by 8.3%, from 2.4 g to

2.2 g. These trends indicate that while automation can improve efficiency and reduce CO₂ emissions in

some cases, the overall impact varies and may not always lead to significant reductions in energy use.

The front of house sockets, primarily used by dining guests and cleaners, show improvements with

automation but still exhibit variability. For example, DG2-100-0-112 and DG2-100-0-291 both

experienced notable reductions in energy consumption and CO₂ emissions, with decreases of 37.8%

and 59.8%, respectively. However, socket DG2-100-0-493 saw a 50% increase in energy use and a

25.4% rise in CO₂ emissions, indicating that fluctuations in guest traffic and operational demands can

affect the efficiency of automated systems.

The reception desk sockets, due to their constant use, present a more stable but higher energy

consumption and CO₂ emission profile. For instance, the DG2-100-0-115 socket showed a 6.3%

increase in energy consumption but an 18.2% decrease in CO₂ emissions, reflecting a relatively steady
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efficiency. Conversely, the DG2-100-0-132-f socket exhibited an alarming increase in energy use and

rise in CO₂ emissions, highlighting the inefficiencies associated with manual operation in areas with

high and consistent usage demands.

The kitchen sockets reveal diverse impacts of non-automation. For instance, DG2-100-0-043

demonstrated a 33.9% reduction in energy consumption and a 39.2% decrease in CO₂ emissions,

suggesting a positive outcome for less frequent use. In contrast, DG2-100-0-287 experienced a 31.8%

increase in energy use with a slight rise in CO₂ emissions. This variability underscores that while

automation could potentially offer benefits, the effectiveness largely depends on usage patterns and

operational adjustments.

In sum, the evidence indicates that automation generally provides considerable advantages over

manual operation in terms of reducing energy consumption and CO₂ emissions. While manual

operation can sometimes exhibit stable patterns, as seen with the reception desk sockets, automation

consistently delivers better results in optimizing energy use and minimizing carbon footprints. Thus,

integrating automation into both operational and high-demand areas is likely to result in substantial

benefits, as demonstrated by the data presented.

6.2.1. Return on Investment for New Sockets Based on Appliance
Performance
Investing £256 in new sockets demonstrates different economic return depending on the appliance

performance.

From Table 4 the DG2-100-0-048, the total energy costs for January-March 2023 were £19.40 and for

June-October 2023, it was £13.68, resulting in a total of £33.08. For 2024, the costs were £14.85 for

November-March and £11.56 for April-July, totaling £26.41. A 20% reduction in energy consumption

for DG2-100-0-048 would save approximately £6.62 in 2023 and £5.48 in 2024. Thus, the aggregated

savings for 2023 and 2024 would be around £12.10, leading to a payback period of about 2 months.

For DG2-100-0-133, the total energy costs for January-March 2023 were £18.17 and for June-October

2023, it was £11.82, totaling £30.99. In 2024, the costs were £13.84 for November-March and £10.03

for April-July, aggregating to £23.87. A 20% reduction in energy use would save approximately £6.20

in 2023 and £4.84 in 2024, giving a total savings of £11.04. Thus, the payback period for

DG2-100-0-133 would be about 2 months.

6 Price considered according to https://measurable.energy/pricing
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For DG2-100-0-210, the total energy costs for January-March 2023 were £5.19 and for June-October

2023, it was £3.24, summing up to £8.43. In 2024, the costs were £3.89 for November-March and

£2.86 for April-July, totaling £6.75. A 20% reduction would save around £1.68 in 2023 and £1.35 in

2024, resulting in aggregated savings of £3.03. Consequently, the payback period for DG2-100-0-210

would be approximately 8 months.

Table 4 illustrates the payback periods for different bar appliances across two periods in 2023 and

2024. The DG2-100-0-048 device shows a varied payback period, with 19.40 kWh costing £13.68 from

November to March and 14.85 kWh costing £11.56 from April to July. The DG2-100-0-133 device

reflects a similar trend, with a consumption of 45.59 kWh costing £13.68 in the initial period and 33.44

kWh costing £10.03 later in the year. The DG2-100-0-210 sockets, which has the lowest energy

usage, demonstrates a cost of £6.00 for 5 kWh in the earlier period and £5.19 for 17.30 kWh in the

subsequent period. In 2024, the DG2-100-0-048 sockets is projected to have a payback period with a

cost reduction, reflecting lower consumption costs of £14.85 and £11.56. The DG2-100-0-133 will

similarly see reduced costs, with £13.84 and £10.03, while the DG2-100-0-210's payback period

benefits from even lower costs, with £3.89 for 12.97 kWh. The analysis indicates that as consumption

costs decrease over time, the payback periods for these devices are expected to improve.

Table 4. Bar appliances consumption cost

November-December-
January-February-March April-May-June-July Payback period (Months)

2023

Device kWh £ kWh £
DG2-100-

0-048
DG2-100-0-

133
DG2-100-0-

210

DG2-100-0-048 64.65 19.40 45.59 13.68

5 6 20

DG2-100-0-133 60.58 18.17 39.40 11.82

DG2-100-0-210 17.30 5.19 10.79 3.24

2024

DG2-100-0-048 49.50 14.85 38.54 11.56

DG2-100-0-133 46.12 13.84 33.44 10.03

DG2-100-0-210 12.97 3.89 9.54 2.86

Based on Table 5, which outlines the consumption costs of coffee machines, the payback periods for

these appliances are highlighted for different months in 2023 and 2024. In 2023, the DG2-100-0-140
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device exhibited varied costs: £2.78 for 9.25 kWh in June-July, £17.28 for 17.28 kWh in

August-September and £12.26 for 12.26 kWh in November-December. The DG2-100-0-298 had

higher energy consumption and costs: £20.97 for 69.91 kWh in June-July, £111.52 for 111.52 kWh in

August-September and £84.16 for 84.16 kWh in November-December. The DG2-100-0-482 device,

with even greater consumption, showed costs of £17.36 for 57.88 kWh in June-July, £127.70 for

127.70 kWh in August-September and £87.33 for 87.33 kWh in November-December. In 2024, the

DG2-100-0-140 is projected to have a cost of £3.53 for 11.76 kWh, the DG2-100-0-298 is anticipated

to cost £22.54 for 75.15 kWh and the DG2-100-0-482 will cost £26.45 for 88.16 kWh. The payback

period for these devices in 2024 will reflect changes in consumption costs.

Table 5.Coffe machines appliances consumption cost

June-July August-
September- October November-December Payback period (Months

2023

Device kWh £ kWh £ kWh £
DG2-100

-0-140
DG2-100
-0-298

DG2-100
-0-482

DG2-100

-0-140 9.25 2.78 17,280 17.28 12.26 3.68

11 2 2

DG2-100
-0-298 69.91 20.97 111,520 111.52 84.16 25.25

DG2-100
-0-482 57.88 17.36 127,700 127.70 87.33 26.20

2024

DG2-100

-0-140 11.76 3.53 NA NA NA NA

DG2-100
-0-298 75.15 22.54 NA NA NA NA

DG2-100
-0-482 88.16 26.45 NA NA NA NA

Table 6 provides a detailed overview of the consumption costs and payback periods for the manually

controlled sockets across different periods in 2023 and 2024. In 2023, the DG2-100-0-112 socket

exhibited relatively low costs: £0.79 for 2.63 kWh in January-February, £0.70 for 2.33 kWh in

March-April and a significant increase to £80 for 2.33 kWh in May-June-July. The DG2-100-0-291

socket showed moderate costs: £0.63 for 2.09 kWh in January-February, £0.25 for 0.82 kWh in

March-April and £0.35 for 1.17 kWh in May-June-July. The DG2-100-0-472 socket had costs of £0.81

52



for 3.68 kWh in January-February, £0.46 for 1.53 kWh in March-April and £0.44 for 1.48 kWh in

May-June-July. The DG2-100-0-493 socket, however, had the highest costs, with £34.14 for 113.80

kWh in January-February, £21.00 for 69.99 kWh in March-April and £25.40 for 84.65 kWh in

May-June-July.

For 2024, the projected costs for these sockets indicate changes: the DG2-100-0-112 is expected to

cost £0.45 for 1.51 kWh in January-February and £0.16 for 0.54 kWh in March-April, with no data

provided for subsequent months. The DG2-100-0-291 will cost £0.27 for 0.89 kWh in

January-February and £0.08 for 0.28 kWh in March-April. The DG2-100-0-472 will have costs of £0.53

for 1.78 kWh in January-February and £0.45 for 1.49 kWh in March-April. The DG2-100-0-493 is

anticipated to incur costs of £59.57 for 198.55 kWh in January-February and £23.04 for 76.82 kWh in

March-April. Overall, the data highlights significant variations in payback periods for different sockets,

with some showing much higher costs compared to others.
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Table 6.Front of house appliances consumption cost

January-

February-

March-April

May-June-July
August- September
October-November-

December
Payback period (Months)

2023

Device kWh £ kWh £ kWh £ DG2-100-0-
112

DG2-100-0-
291

DG2-100-0-
472

DG2-100-0-
493

DG2-100-0
-112 2.63 0.79 0.67 0.20 2.33 0.70

80 190 112 2

DG2-100-0
-291 2.09 0.63 0.82 0.25 1.17 0.35

DG2-100-0
-472 3.68 0.81 1.53 0.46 1.48 0.44

DG2-100-0
-493 113.80 34.14 69.99 21.00 84.65 25.40

2024

DG2-100-0

-112 1.51 0.45 0.54 0.16 NA NA

DG2-100-0
-291 0.89 0.27 0.28 0.08 NA NA

DG2-100-0
-472 1.78 0.53 1.49 0.45 NA NA

DG2-100-0
-493 198.55 59.57 76.82 23.04 NA NA
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Table 7 provides an analysis of the consumption costs and payback periods for kitchen appliances

across periods in 2023 and 2024. In 2023, the DG2-100-0-037 appliance demonstrated significant

energy costs, with £123.08 for 410.26 kWh in January-February, £79.71 for 265.70 kWh in March-April

and £158.33 for 527.78 kWh in May-June-July, reflecting a payback period of 1 month. The

DG2-100-0-043 appliance had costs of £4.82 for 16.05 kWh in January-February, £5.86 for 19.55 kWh

in March-April and £16.01 for 53.37 kWh in May-June-July. The DG2-100-0-114 appliance incurred

£7.70 for 25.65 kWh in January-February, £4.67 for 15.56 kWh in March-April and £10.01 for 33.36

kWh in May-June-July. Lastly, the DG2-100-0-287 appliance showed £10.77 for 35.89 kWh in

January-February, £2.55 for 8.52 kWh in March-April and £11.88 for 39.61 kWh in May-June-July.

For 2024, the DG2-100-0-037 is projected to cost £119.36 for 397.85 kWh in January-February and

£84.21 for 280.67 kWh in March-April, with no data for the subsequent periods. The DG2-100-0-043

appliance is expected to cost £5.29 for 17.64 kWh in January-February and £1.77 for 5.90 kWh in

March-April. The DG2-100-0-114 appliance will have costs of £7.36 for 24.53 kWh in

January-February and £4.87 for 16.22 kWh in March-April. The DG2-100-0-287 is anticipated to incur

£10.69 for 35.63 kWh in January-February and £6.92 for 23.08 kWh in March-April.
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Table 7.Kitchen appliances consumption cost

January-

February-

March-April

May-June-July
August- September

October-November-Dece
mber

Payback period

2023

Device kWh £ kWh £ kWh £
DG2-100-

0-037
DG2-100-
0-043

DG2-100-0
-114

DG2-100-0
-287

DG2-100-

0-037 410.26 123.08 265.70 79.71 527.78 158.33

1 9 9 7

DG2-100-
0-043 16.05 4.82 19.55 5.86 53.37 16.01

DG2-100
-0-114 25.65 7.70 15.56 4.67 33.36 10.01

DG2-100-
0-287 35.89 10.77 8.52 2.55 39.61 11.88

2024

DG2-100-

0-037 397.85 119.36 280.679 84.21 NA NA

DG2-100-0
-043 17.64 5.29 5.90 1.77 NA NA

DG2-100-0
-114 24.53 7.36 16.22 4.87 NA NA

DG2-100-0
-287 35.63 10.69 23.08 6.92 NA NA

56



Table 8 outlines the consumption costs and payback periods for reception appliances over various

periods in 2023 and 2024. In 2023, the DG2-100-0-115 appliance had incomplete data, with costs not

recorded for January-February, March-April and May-June, but reported a cost of £2.07 for 6.91 kWh

in July-August-September, indicating a payback period of 2 months. The DG2-100-0-132-f appliance's

costs were not recorded for the earlier periods but were £9.13 for 30.44 kWh in

October-November-December.

For 2024, the DG2-100-0-115 appliance is projected to cost £1.40 for 4.68 kWh in

January-February-March and £0.38 for 1.27 kWh in April. The DG2-100-0-132-f appliance is

anticipated to incur higher costs of £127.08 for 423.60 kWh in January-February-March and £16.49 for

54.96 kWh in April. This data highlights significant variations in energy costs and payback periods for

reception appliances.

Table 8.Reception appliances consumption cost

January-February-

March-April
May-June

July-August-
September

October-November-
December

Payback period

2023

Device kWh £ kWh £ kWh £
DG2-100-

0-115
DG2-100-
0-132-f

DG2-100-

0-115 NA NA NA NA 6.91 2.07

78 2

DG2-100-
0-132-f

NA NA NA NA 30.44 9.13

2024

DG2-100-

0-115 4.68 1.40 1.27 0.38 NA NA

DG2-100-
0-132-f 423.60 127.08 54.96 16.49 NA NA

6.2.2. Comparing Payback Periods Across Sockets Locations

In evaluating the payback periods for automating different sockets across various operational areas,

we observe notable variations based on energy consumption and cost savings. For bar appliances, the

DG2-100-0-048 and DG2-100-0-133 sockets show the fastest payback periods of approximately 2
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months due to their higher energy costs and potential savings. Similarly, coffee machines with sockets

like the DG2-100-0-298 and DG2-100-0-482 also achieve a rapid payback of around 2 months. In the

front of house area, sockets such as DG2-100-0-112, DG2-100-0-291 and DG2-100-0-472 exhibit

quick paybacks of about 2 months, benefiting from their lower energy consumption. Kitchen appliances

demonstrate a wide range of payback periods, with the DG2-100-0-037 achieving the fastest return of

approximately 1 month, while others like the DG2-100-0-043 and DG2-100-0-114 have longer

paybacks due to their lower energy costs. Lastly, reception area sockets, including the DG2-100-0-115

and DG2-100-0-132-f, also provide quick paybacks of around 2 months. Overall, sockets used in areas

with higher energy costs and consumption typically offer faster paybacks, making them more favorable

investments for automation.

In our calculations of the payback periods for the different sockets across various operational areas,

we made several key assumptions. We assumed that energy costs would remain constant over the

evaluation period, ignoring potential fluctuations that could impact actual payback periods. We also

assumed stable usage patterns for the appliances connected to these sockets, without significant

changes in usage intensity or duration. Additionally, we presumed that the costs associated with

installing and maintaining the automation systems would be uniform across different types of sockets

and locations. We also considered operational conditions, such as hours of operation and occupancy

levels, to remain consistent across the different areas (bar, front of house, kitchen, reception).

Financial metrics used in the evaluation are straightforward, not accounting for factors like inflation,

discount rates, or opportunity costs that could influence the financial assessment. Lastly, we assumed

complete adoption of the sockets to achieve the projected energy savings, as partial or phased

adoption could result in different payback periods. These assumptions aim to provide a simplified and

consistent comparison of payback periods across different sockets and operational areas, highlighting

where automation investments are most financially beneficial.

7. Survey findings

In this section, we report the results of a survey involving 22 participants, focusing on their interactions

with the traffic light system for energy usage. The survey assessed respondent’s socio-demographic

profiles, their interpretations of the m.e color codes and the effectiveness of energy-saving initiatives..
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7.1. User behaviour and Perceptions Regarding Socket Usage and

Energy-Saving Initiatives

This section provides an analysis of 22 surveys focusing on user behaviour and perceptions related to

socket usage within a specific context. It begins with a socio-demographic overview of the

respondents, including their affiliations, gender and age. It then addresses the effectiveness and

reception of energy-saving initiatives, with particular emphasis on the m.e traffic light system. The

section reviews varying interpretations of the traffic light system's color codes and the associated

recommended actions. Lastly, it explores the influence of attitudes, subjective norms, perceived

behavioural control, personal norms, past behaviour and self-determination on users' intentions and

behaviours related to socket usage.

7.1.1. Respondent’s Profile

Figure 20 illustrates the socio-demographic information of the 22 valid responses collected in this

research. The data reveals that the majority of respondents are affiliated with either 'Eat at the Square'

or 'Park Eats,' each representing 28% of the total mentions, making them the most prominent

categories in the dataset. In terms of gender distribution, male respondents constitute 43.5% while

female respondents make up 56.5% of the total. The age distribution indicates that 52.6% of

respondents are in the 30-39 age range. Additionally, it is noteworthy that most respondents hold

permanent contracts.
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Figure 20. Distribution of location, age, sex and job type from the TPB survey

7.2.1. Respondent’s interpretation of the m.e traffic light system

Survey results indicate that none of the respondents received an induction on energy saving when

they joined the University of Reading's catering department (Figure 21). Furthermore, 77% of

respondents expressed a desire to receive such an induction biannually. This highlights a clear gap in

the current training practices and suggests a strong interest among staff for more frequent

energy-saving education. Conversely, 22.2% of respondents did not support the idea of receiving

induction on energy saving twice a year.
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Figure 21. Interest and frequency of energy saving induction

The survey sought to determine whether respondents had observed the smart sockets with a traffic

light system in the University of Reading's restaurants. The results indicate that 66.7% of respondents

have indeed observed these smart sockets, while 33.3% have not. Among those who have seen the

smart sockets, 66% specifically mentioned noticing them in the 'Park Eats' department, while the

remaining mentions were not attributable to a specific department.

Survey respondents provided a variety of interpretations regarding the meaning of the traffic light color

codes for grid carbon intensity (Table 9). The responses indicate a general lack of clarity, with many

participants stating they had "no idea" or that it "was never explained." Specifically, green, which

indicates grid carbon intensity generated from renewables, was sometimes interpreted as "safe to use"

or "green electricity." Amber, representing a mixed grid, was associated with "medium energy use" or

"mixed grid carbon." Red, signaling non-renewable energy sources, was frequently associated with

terms like "danger," "high energy consumption," and "carbon heavy grid." Some respondents also

mentioned "using too much energy" or "connected device wasting energy," highlighting concerns about

energy efficiency. In sum, these varied responses highlight the need for clearer communication and

education about the traffic light system's meaning and implications.
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Table 9. Respondent’s interpretations of the m.e traffic light system

Red colour Amber colour Green colour
Not turned on Shorted circuit Safe to use
No idea . Never been explained No idea never explained See previous answers
Using too much energy Don’t know Using entry effectively
High energy consumption,
unplug any unnecessary
appliances

Medium energy use Low energy usage

High energy consumption,
unplug any unnecessary
appliances

Medium energy use Low energy usage

High energy consumption,
unplug any unnecessary
appliances

Medium energy use Low energy usage

Danger Stay away Safe to use
Carbon Heavy Grid Mixed Grid Carbon Green electricity
Off Not sure - haven't been told

the traffic light system
On

Connected device wasting
energy

Dont know Connected device using
energy efficiently

High usage Don’t know Don’t know

Survey responses revealed diverse interpretations of the recommended actions associated with the

traffic light color codes for energy usage (Table 10). For the green light, which signifies no immediate

action is required, some respondents suggested "use it" or "turn things off" if not using the device,

while others noted "nothing" or "use more power." For the amber light, indicating medium energy use,

common responses included "unplug from the socket" and "review usage and consider setting a

schedule to power off devices." In contrast, the red light, representing high energy consumption,

prompted recommendations such as "not use it," "call facilities," or "unplug any unnecessary

appliances."
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Table10. Respondent’s suggested actions for the traffic light system colours

Red colour Amber colour Green colour
Not use it Call Facilities Use it
No idea never been explained See previous answers See previous answers
If not using turn off plugged in device Don’t know Nothing
High energy consumption, unplug any
unassaary appliances

Medium energy use Low energy usage

High energy consumption, unplug any
unassaary appliances

Medium energy use Low energy usage

High energy consumption, unplug any
unassaary appliances

Medium energy use Low energy usage

Not use Not use Use it
Turn things off Think about switching stuff

off.
Use more power! :-)

Switch on Not sure - haven't been
told the traffic light system

You can use

Review usage and consider setting
schedule to power off device

Dont know Give yourself a pat on
the back

On Don’t know Don’t know

The varied responses highlight a general lack of clear understanding of the traffic light system,

indicating a need for better guidance and communication regarding the appropriate actions for each

color code. Again, the answers highlighted the need for education/training regarding the traffic light

system's meaning and the appropriate actions to take for each color code.

7.3.1. Collinearity assessment of the modells

The collinearity test (Table 11) results reveal varying degrees of collinearity among the constructs, as

indicated by their Variance Inflation Factors (VIF). Constructs such as ATT-1 and ATT-3 exhibit high

VIF values of 6.130 and 6.147, respectively, signaling significant multicollinearity that may distort the

accuracy of any regression estimates. Similarly, INT-2 and SDM-3 show moderate VIF values of 4.916

and 3.836, suggesting potential collinearity issues that should be monitored. In contrast, constructs

with lower VIF values, such as PBC-1 (1.00), demonstrate minimal collinearity, indicating they are

relatively independent of other predictors. Constructs with moderate VIF values, like PMN-2 and

HEB-2, fall within acceptable limits but still require attention to avoid potential instability in the model.
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The limited sample size of only 22 surveys could exacerbate these collinearity issues, as smaller

samples may lead to higher variance in the estimates and less reliable results.

Table 11. Collinearity assessment for the model

Constructs VIF Constructs VIF Constructs VIF Constructs VIF Constructs VIF

ATT-1 6.130 PMN-1 2.054 SDM-1 1.324 INT-1 1.155 HEB-1 2.160

ATT-2 1.008 PMN-2 4.206 SDM-2 1.746 INT-2 4.916 HEB-2 2.564

ATT-3 6.147 PMN-3 3.234 SDM-3 3.836 INT-3 4.625 HEB-3 3.807

SJN-1 2.033 PBH-1 2.042 SDM-4 4.619 HEB-4 2.999

SJN-2 1.914 PBH-2 3.463 SDM-5 1.500

SJN-3 1.588 PBH-3 2.799

PBC-1 1.00

Table 12 represents the coefficient determination (R²) of the three modells. Based on the provided R²

values for the TPB, Model 1 and Model 2, it is evident that Model 2 outperforms both TPB and Model 1

in explaining the variance in Intention and Behaviour. For Intention, Model 2 has the highest R² value

(0.839), indicating it explains 83.9% of the variance, compared to 82.9% for Model 1 and 76.6% for

TPB. This suggests that the additional factors or modifications included in Models 1 and 2 enhance

their explanatory power for Intention over the traditional TPB. For Behaviour, Model 2 also shows the

highest explanatory power with an R² of 0.289, followed by Model 1 at 0.241 and TPB at 0.162.

64



Table 12. The modells coefficient determination (R²)

TPB Model 1 Model 2

R² R² R²

Intention 0.766 0.829 0.839

Behaviour 0.162 0.241 0.289

This indicates that Model 2's additional constructs better capture the variance in Behaviour. Overall,

Model 2 provides a more comprehensive understanding of the determinants of Intention and

Behaviour.

7.3.2. Modelling results of TPB, Model 1 and Model 2

Comparing Model 1, Model 2 and the TPB using beta values, t-values and significance levels reveals

key insights into their effectiveness (Table 13). In Model 2, significant predictors for Intention include

ATT (β = 0.655, t = 4.884, p < 0.001) and PBH (β = 0.609, t = 2.214, p = 0.042), although none of the

predictors for Behaviour reach significance. Model 1 shows ATT (β = 0.674, t = 5.136, p < 0.001) and

PMN (β = 0.299, t = 1.064, p = 0.303) as significant for Intention, with SDM approaching significance

(β = 0.440, t = 2.081, p = 0.052). TPB highlights ATT (β = 0.86, t = 7.164, p < 0.001) as a consistently

strong predictor for Intention, but lacks significant predictors for Behaviour. TPB has lower R² values

(0.766 for Intention and 0.162 for Behaviour) compared to Model 2 (0.839 for Intention and 0.289 for

Behaviour), indicating Model 2 has better explanatory power for both outcomes. Overall, while Model 2

provides the highest explanatory power, TPB and Model 1 also offer significant insights, particularly

with ATT and PMN being notable predictors for Intention across models.
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Table 13. Modelling analysis results of the three models
* p < 0.05, ** p < 0.01, *** p < 0.001

Constructs TPB model Model 1 Model 2

β T-Values Sig. β T-Values Sig. β T-Values Sig.

ATT-> Intention 0.86 7.164 *** 0.674 5.136 *** 0.655 4.884 ***

SJN->Intention 0.388 1.736 0.101 0.154 0.633 0.536 0.131 0.536 0.6

PBC->Intention -0.205 -0.89 0.385 -0.066 -0.373 0.714 -0.076 -0.433 0.671

PBC->

Behaviour

0.211 0.917 0.371 0.283 1.266 0.224 0.27 1.207 0.246

Intention->

Behaviour

0.342 1.546 0.139 0.218 0.664 0.516 0.139 0.407 0.69

PBH->Intention -0.596 -2.987 *** 0.609 2.214 **
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Constructs TPB model Model 1 Model 2

PMN->Intention 0.299 1.064 0.303 -0.596 -2.987 ***

SDM->Intention 0.299 1.064 0.303

SDM->

Behaviour

0.399 1.068 0.301

* p < 0.05, ** p < 0.01, *** p < 0.001
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In examining the results across the different models—TPB, Model 1 and Model 2—several key insights

emerge. The TPB shows (Figure 22) that the ATT construct is a significant predictor of Intention (β =

0.86, t = 7.164, p < 0.001), demonstrating its strong influence. However, it lacks significant predictors

for Behaviour, with the intention-behaviour relationship showing a modest beta (β = 0.342) and a

t-value of 1.546, with a significance level (p = 0.139) that is not below the typical thresholds for

statistical significance.

Figure 22. Modelling result TPB

In Model 1 (Figure 23), ATT remains a significant predictor of Intention (β = 0.674, t = 5.136, p <

0.001), reinforcing its importance. Additionally, the PMN construct shows some significance with a beta

of 0.299 and a t-value of 1.064, though its significance level (p = 0.303) is not as strong as ATT. The

SDM construct approaches significance with β = 0.440, t = 2.081 and p = 0.052, indicating it may have

a relevant but less clear impact on Intention. The model’s ability to predict Behaviour remains limited,

with the intention-behaviour relationship showing β = 0.218, t = 0.664 and p = 0.516, suggesting that

while intentions are influenced by ATT and PMN, their translation into Behaviour is less clear.
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Figure 23. Modelling result Model 1

Model 2 (Figure 24) presents a more nuanced picture. It highlights ATT as a strong predictor of

Intention (β = 0.655, t = 4.884, p < 0.001), consistent with findings from TPB and Model 1. Additionally,

PBH emerges as a significant predictor of Intention in Model 2 (β = 0.609, t = 2.214, p = 0.042), which

is not present in the other models. However, similar to Model 1, the predictors for Behaviour are not

statistically significant in Model 2, with the intention-behaviour relationship showing β = 0.399, t =

1.068 and p = 0.301.
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Figure 24. Modeling result Model 2
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8. Discussion

The detailed analysis of energy consumption patterns across various areas in the Park Eat restaurant

has revealed several key insights into how energy use and carbon emissions vary with the

implementation of measurable energy smart sockets. The analysis primarily focused on comparing the

energy usage and efficiency of different types of appliances, including bar chillers and coffee

machines, as well as examining the energy consumption in kitchen, reception desk areas or dining

areas.

The comparison between automated and manual operations reveals that automation typically offers

superior efficiency and reduced environmental impact. Automated systems, such as those used in bar

sockets, have shown remarkable improvements in both energy consumption and CO₂ emissions. For

example, DG2-100-0-048 experienced a slight 3.9% increase in energy consumption but achieved a

13.3% reduction in CO₂ emissions; DG2-100-0-133 saw a 6.6% rise in energy use while CO₂

emissions decreased by 11.5%; and DG2-100-0-210 had a 7.6% increase in energy consumption

coupled with an 8.3% drop in CO₂ emissions. These results highlight the benefits of automation in

optimizing performance and reducing the carbon footprint. In contrast, coffee machines demonstrated

mixed outcomes, with increased energy use in some cases but improved emissions efficiency,

indicating that while automation can optimize certain aspects, its impact varies based on specific

operational contexts.

The front of house sockets, primarily used by dining guests and cleaners, also benefited from

automation, showing improvements in efficiency despite some variability due to fluctuating guest

traffic. However, the reception desk sockets, which are in constant use, maintained a relatively stable

but higher level of energy consumption and CO₂ emissions, illustrating the challenges of managing

high-demand areas manually.

Kitchen sockets further highlight this variability, with some showing notable reductions in both energy

consumption and CO₂ emissions, while others experienced increased energy use. Overall, while

manual systems can be stable, automation consistently delivers better efficiency and environmental

performance, making it a valuable tool for optimizing energy use and minimizing emissions across

various applications.

The analysis of payback periods across different sockets reveals notable variations in financial returns.

High-energy appliances, such as those used in bar settings and coffee machines, exhibit the most

favorable payback periods, generally around 2 months. For example, the DG2-100-0-048 socket,
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utilized in bar environments and the DG2-100-0-298 socket for coffee machines, demonstrate

significant energy savings that translate into quick returns on investment. Similarly, front of house

sockets like the DG2-100-0-112, with its efficient energy use, also achieve a payback period of about 2

months.

In contrast, kitchen appliances present a more varied landscape. The DG2-100-0-037 shows a

particularly rapid payback period of approximately 1 month, indicating a highly favorable return, while

other kitchen sockets display longer payback durations due to relatively lower cost reductions.

Reception area sockets, such as the DG2-100-0-115, also achieve swift returns, typically around 2

months.

Overall, this analysis highlights that investing in automation for sockets in high-energy consumption

areas offers the most attractive financial returns.

In assessing the effectiveness of energy-saving initiatives, particularly the m.e traffic light system, it is

evident that a significant gap exists in training. Notably, none of the respondents received an induction

on energy saving upon joining the University of Reading's catering department, though 77% expressed

a desire for biannual training. This indicates a strong interest in more frequent energy-saving

education among staff, while 22.2% opposed the idea of such training.

Observations of the smart sockets with the traffic light system show that 66.7% of respondents have

seen these devices, primarily in the 'Park Eats' department. However, interpretations of the traffic light

color codes for grid carbon intensity varied widely. Green, indicating renewable energy, was often

misinterpreted as 'safe to use' or 'green electricity,' while amber (mixed grid) and red (non-renewable

energy) elicited responses ranging from 'medium energy use' to 'high energy consumption' and

'danger,' respectively. These varied interpretations highlight a significant lack of clarity and underscore

the need for improved communication and education regarding the traffic light system's meaning and

implications.

Furthermore, respondent’s suggested actions for each color code varied. For the green light,

responses ranged from 'use it' to 'turn things off,' while amber prompted actions like 'unplug' or 'review

usage,' and red led to recommendations such as 'not use it' or 'call facilities.' These diverse responses

reflect a general confusion about the appropriate actions for each color code, reinforcing the need for

clearer guidance and training on the traffic light system's proper use.
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We could also suggest, as in the case of the fire safety noticeboard, using labels to highlight the

importance of the traffic light system. This would ensure that users are continually reminded of the

traffic light system importance and are more likely to engage customers with energy-saving practices.

In Model 1, which incorporates PMN and PBH alongside the TPB constructs, ATT remains a robust

predictor of Intention (β = 0.674, t = 5.136, p < 0.001), mirroring its role in the TPB framework. PMN,

though not reaching statistical significance (β = 0.299, t = 1.064, p = 0.303), suggests a potential

influence on Intention. The SDM construct approaches significance for Intention (β = 0.440, t = 2.081,

p = 0.052), indicating that motivational factors may play a role in shaping intentions. However, the

relationship between Intention and Behaviour in Model 1 remains non-significant (β = 0.218, t = 0.664,

p = 0.516), which aligns with the findings in TPB where Behaviour is not directly influenced by

Intention.

This indicates that while PMN and PBH contribute to Intention, their direct impact on Behaviour is less

clear. The addition of SDM in Model 1 suggests that motivation may influence Intention, yet the

pathway from Intention to Behaviour remains ambiguous. Thus, while Model 1 provides a deeper

understanding of how PMN and SDM might affect Intention, it does not significantly alter the predictive

power for Behaviour compared to the TPB model.

Model 2, which integrates SDM alongside PMN and PBH, highlights ATT as a significant predictor of

Intention (β = 0.655, t = 4.884, p < 0.001) and introduces PBH as a significant predictor of Intention (β

= 0.609, t = 2.214, p = 0.042). Despite these enhancements, the predictors for Behaviour, including

those influenced by PMN and SDM, are still not statistically significant (β = 0.399, t = 1.068, p =

0.301). This suggests that while PMN and PBH contribute meaningfully to Intention in both models,

their impact on Behaviour remains less clear. The inclusion of SDM in Model 2 adds complexity to the

understanding of how motivational factors influence Behaviour, but it does not fully resolve the

challenges in achieving significant predictions for Behaviour.
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9. Conclusion and future research

The analysis of energy consumption patterns across various sockets and appliances in different areas

of the Park Eat restaurantt reveals that automation generally offers significant advantages over manual

operation in terms of energy efficiency and CO₂ emissions reduction. The benefits vary depending on

the specific appliance and usage patterns, automated systems consistently demonstrate potential for

optimizing energy use and minimizing environmental impact.

The economic analysis, the analysis reveals significant variation in payback periods across different

socket types and operational areas. Overall, the most favorable investment opportunities for

automation are in areas with higher energy costs and consumption, where sockets deliver quicker

returns on investment.

The analysis of the survey data reveals significant gaps in energy-saving education and

communication regarding the m.e traffic light system. The varied interpretations of the traffic light color

codes and the diverse suggested actions highlight the need for clearer guidance and more frequent

training to enhance user understanding and compliance. Addressing these issues could increase the

uptake of energy-saving initiatives and optimizing energy usage within the Park Eat restaurant.

The addition of Personal Moral Norms and Self-Determined Motivation alongside the Theory of

Planned Behaviour components reinforces the role of Attitudes as a significant predictor of Intention,

though Personal Moral Norm’s impact remains unclear and the pathway from Intention to Behaviour is

still non-significant. The inclusion of Past Behaviour similarly highlights Attitude and introduces Past

Behaviour as significant predictors of Intention; however, it does not significantly improve the

prediction of Behaviour.

9.1. Limitations

One significant limitation was the low response rate to the survey, resulting in a small sample size that

may not accurately represent the broader population. This limitation introduces potential response

bias, as those who chose to participate may have different views and behaviours compared to those

who did not respond. The low number of respondents could have significantly influenced the results

and the generalizability of our findings.
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Additionally, the lack of a control group skewed the analysis, making it challenging to attribute changes

in behaviour solely to the intervention. Without a control group, it is difficult to determine whether

observed changes were due to the traffic light system or other external factors.

The data also did not capture the reasons behind the use of different appliances, nor could it explain

sudden spikes in energy consumption. This limitation leaves some aspects of user behaviour

unexplored, particularly the motivations and contextual factors influencing appliance usage.

Understanding these reasons could provide deeper insights into how and why energy consumption

varies, which is crucial for designing more effective energy-saving interventions.

Furthermore, the study did not account for potential variations in term dates, opening hours, bank

holidays, summer holidays and other related factors that could influence the findings. Energy

consumption patterns may differ across seasons, terms, campus closure etc. affecting the payback

periods and the overall effectiveness of the traffic light system.

Lastly, the desirability bias could have influenced respondent’s answers, with individuals potentially

providing socially desirable responses rather than accurate reflections of their behaviour. This bias

could skew the results, making it appear that the intervention was more effective than it actually was.

9.2. Future research

Future research should explore other critical areas of use of the smart socket technology. We suggest

further exploration of the application of the m.e socket based on different automation schedules

tailored to monthly and seasonal variations in energy consumption. This approach will help identify the

most effective timing strategies for energy-saving interventions, ensuring that smart sockets operate

optimally throughout the year.

Expanding the scope of research beyond the Park Eat restaurant to include various locations across

the campus—such as staff offices, lecture rooms and other communal spaces—will provide a broader

perspective on the performance and impact of smart sockets in diverse environments. This broader

implementation will help assess the generalizability of the technology and its effectiveness in different

settings.

Additionally, exploring the role of visual feedback, such as traffic liht system, on smart sockets could

shed light on how such visual cues influence user behaviour and contribute to energy savings.
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Understanding how these visual indicators affect user engagement and energy conservation is crucial

for refining the design and functionality of smart sockets.

Another important aspect is evaluating the effectiveness of instructional messaging about the traffic

light system. Developing and testing various types of educational content, researchers can explore

how well these messages improve user understanding and compliance with energy-saving practices.

Moreover there is a concern that the presence of smart sockets, which provide real-time feedback on

energy usage, may lead individuals to believe they are consuming less energy than they actually are,

potentially prompting them to increase their overall consumption. Understanding how users perceive

and respond to this feedback is crucial for accurately assessing the impact of the m.e socket on

energy conservation.

Furthermore, distinguishing between energy consumption practices that can be shifted versus those

that are fixed will provide insights into which behaviours can be modified through the traffic light

system. This understanding will help identify areas where the system can be most effective in

influencing behaviour and improving energy efficiency.

These are some suggestions for further research projects that could provide deeper insights into the

effectiveness of m.e sockets and its potential to incraese energy efficiency across various contexts.

10. References

Ajzen, I. (1991). The theory of planned behaviour. Organizational behaviour and Human Decision

Processes, 50(2), 179-211.

76



Ajzen, I., & Fishbein, M. (1988). Theory of reasoned action-Theory of planned behaviour. University of

South Florida, 2007, 67-98.

Arvola, A., Vassallo, M., Dean, M., Lampila, P., Saba, A., Lähteenmäki, L., & Shepherd, R. (2008).

Predicting intentions to purchase organic food: The role of affective and moral attitudes in the theory of

planned behaviour. Appetite, 50(2/3), 443-454.

Batty, W. J., Conway, M. A., Newborough, M., & Probert, S. D. (1988). Effects of operative behaviours

and management planning on energy consumptions in kitchens. Applied Energy, 31(3), 205-220.

https://doi.org/10.1016/0306-2619(88)90003-7

Choi, G., & Parsa, H. G. (2007). Green practices II: Measuring restaurant managers' psychological

attributes and their willingness to charge for the “Green Practices”. Journal of Foodservice Business

Research, 9(4), 41-63.

Chou, C., Chen, K., & Wang, Y. (2012). Green practices in the restaurant industry from an innovation

adoption perspective: Evidence from Taiwan. International Journal of Hospitality Management, 31(3),

703-711.

Energy Dashboard. (n.d.). Real time and historical GB electricity data, carbon emissions and UK

generation sites mapping. Retrieved from https://www.energydashboard.co.uk/historical

Gagné, M., & Deci, E. L. (2005). Self‐determination theory and work motivation. Journal of

Organizational behaviour, 26(4), 331-362.

Gleick, P. H., Haasz, D., Henges-Jeck, C., Srinivasan, V., Wolff, G., Cushing, K. K., & Mann, A. (2003).

Waste Not, Want Not. The Potential for Urban Water Conservation in California. Pacific Institute.

California.

Grob, A. (1995). A structural model of environmental attitude and behaviour. Journal of Environmental

Psychology, 15(3), 209-220.

Harland, P., Staats, H., & Wilke, H. A. M. (1999). Explaining proenvironmental intention and behaviour

by personal norms and the theory of planned behaviour. Journal of Applied Social Psychology, 29(12),

2505-2528.

Kaiser, F. G., & Gutscher, H. (2003). The proposition of a general version of the theory of planned

behaviour: Predicting ecological behaviour. Journal of Applied Social Psychology, 33(3), 586-603.

77

https://www.energydashboard.co.uk/historical


Kaplowitz, M. D., Thorp, L., Coleman, K., & Kwame Yeboah, F. (2012). Energy conservation attitudes,

knowledge and behaviours in science laboratories. Energy Policy, 50, 581-591.

https://doi.org/10.1016/j.enpol.2012.07.060

Measurable Energy. (2024). Case studies.

Mudie, S., et al. (2016). Electricity use in the commercial kitchen. International Journal of Low-Carbon

Technologies, 11(1), 66-74.

Myung, E., McClaren, A., & Li, L. (2012). Environmentally related research in scholarly hospitality

journals: Current status and future opportunities. International Journal of Hospitality Management,

31(4), 1264-1275.

Revell, A., & Blackburn, R. (2007). The business case for sustainability? An examination of small firms

in the UK's construction and restaurant sectors. Business Strategy and the Environment, 16(6),

404-420.

Park Eat website. (n.d.). Measurable Energy Sockets Traffic Light System. Retrieved from

https://www.hospitalityuor.co.uk/casual-dining/park-eat/

Shaw, D., & Shiu, E. (2003). Ethics in consumer choice: A multivariate modeling approach. European

Journal of Marketing, 37(10), 1485-1498.

Sustainability Reading. (2023). Energy savings in catering outlets on campus. Retrieved from

[https://sites.reading.ac.uk/sustainability/2023/06/07/energy-savings-in-catering-outlets-on-campus/]

Thøgersen, J. (2002). Direct experience and the strength of the personal norm‐behaviour relationship.

Psychology & Marketing, 19(10), 881-893.

Yu, Y. S., Luo, M., & Zhu, D. H. (2018). The effect of quality attributes on visiting consumers’ patronage

intentions of green restaurants. Sustainability, 10(4), 1187.

78

https://www.hospitalityuor.co.uk/casual-dining/park-eat/
https://www.hospitalityuor.co.uk/casual-dining/park-eat/
https://sites.reading.ac.uk/sustainability/2023/06/07/energy-savings-in-catering-outlets-on-campus/


Annex

Annex 1 - The bar appliances automatisation (DG2-100-0-048, DG-100-0-133 and DG2-100-0-210 socckets)

Year/Month On (hh:mm) Off (hh:mm)

2023-January No Schedule No schedule

2023-February No Schedule No Schedule

2023-March No Schedule No Schedule

2023-April No Schedule No Schedule

2023-May No Schedule No Schedule

2023-June 05:30 11:30

2023-July 05:30 11:30

2023-August 05:30 11:30

2023-September 05:30 11:30

2023-October 05:30 11:30

2023-November 06:30 00:30

2023-December 06:30 00:30

2024-January 06:30 00:30

2024-February 06:30 00:30

2024-March 06:30 00:30

2024-April 05:30 11:30

2024-May 05:30 11:30

2024-June 05:30 11:30

2024-July 05:30 11:30
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Annex 2 - The coffe machine automatisation (DG2-100-0-140 )

Year/Month On (hh:mm) Off (hh:mm)

2023-January N/A N/A

2023-February N/A N/A

2023-March N/A N/A

2023-April N/A N/A

2023-May N/A N/A

2023-June No Schedule No Schedule

2023-July 05:30 23:30

2023-August 05:30 23:30

2023-September 05:30 23:30

2023-October 05:30 23:30

2023-November 06:30 00:30

2023-December 06:30 00:30

2024-January 06:30 00:30

2024-February 06:30 00:30

2024-March 06:30 00:30

2024-April 05:30 23:30

2024-May 05:30 23:30

2024-June 05:30 23:30

2024-July 05:30 23:30
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Annex 3 - The coffe machine automatisation ( DG2-100-0-298 and DG2-100-0-482)

Year/Month On (hh:mm) Off (hh:mm)

2023-January N/A N/A

2023-February N/A N/A

2023-March N/A N/A

2023-April N/A N/A

2023-May N/A N/A

2023-June No Schedule No Schedule

2023-July No Schedule No Schedule

2023-August 05:30 23:30

2023-September 05:30 23:30

2023-October 05:30 23:30

2023-November 06:30 00:30

2023-December 06:30 00:30

2024-January 06:30 00:30

2024-February 06:30 00:30

2024-March 06:30 00:30

2024-April 05:30 23:30

2024-May 05:30 23:30

2024-June 05:30 23:30

2024-July 05:30 23:30

81



Annex 4 - Bar sockets consumption statistics

2023

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-048 13.31 Jan 6.72 Sep 2.10 Apr 1.10 Aug 133.12 11.10 17.10 1.42

DG2-100-
0-133 12.30 Mar 6.04 Sep 2.00 Mar 1.00 Aug 99.43 8.28 15.30 1.28

DG2-100-
0-210 3.54 Mar 1.76 Sep 0.60 Mar 0.19 Aug 33.76 2.81 4.10 0.34
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2024

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂
Emissions
(g)

Month

Lowest
CO₂
Emissions
(g)

Month
Total
energy
use (kWh)

Average
Monthly
energy
use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂
Emissions

DG2-100-
0-048 9.78 May 8.89 July 1.70 Jan 0.90 Apr, Jun 56.03 9.34 10.10 1.01

DG2-100-
0-133 9.24 Mar 6.16 July 1.60 Jan 0.70 Jul 58.24 8.32 7.40 1.06

DG2-100-
0-210 2.79 Jul 1.81 April 0.40 Jan 0.20 Apr,Jun 14.78 2.11 1.70 0.24
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Energy usage with automatisation
2023 2024

June-December January-July

kWh CO₂ kWh CO₂

DG2-100-0-048 65.35 9.8 67.89 8.5

DG2-100-0-133 57.44 8.7 61.24 7.7

DG2-100-0-210 16 2.4 17.22 2.2
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Annex 5- Coffee machines consumption statistics

2023

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-
140

7.02 Jul 1.80 Jun 1.00 Jul 0.30 Jun 41.4 5.91 4.8 0.69

DG2-100-
0-
298

54.05 Jul 30.79 Sep 9.00 Nov 2.10 Jun 227.20 32.46 41.00 5.86

DG2-100
0-
482

52.33 Nov 11.66 Jun 8.60 Nov 1.80 Jun 214.97 30.71 34.80 4.97
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2024

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-140 6.02 Mar 5.49 Jun 1.00 Jan 0.50 Apr 39.68 5.67 4.60 0.66

DG2-100-
0-298 52.87 Mar 24.92 Jun 7.50 Jan, Febr 2.60 Jun 274.86 39.98 37.10 5.30

DG2-100-
0-482 60.63 Jul 24.21 Jun 8.00 Mar 2.50 Jun 256.03 36.86 27.00 3.86

Energy usage with automatisation
2023 2024

July-December January-July

kWh CO₂ kWh CO₂

DG2-100-0-140 36.75 5.6 41.85 5.3

DG2-100-0-298 251.03 39.0 301.80 39.5

DG2-100-0-482 260.52 40.1 332.71 42.2
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Annex 6- Front of house consumption statistics

2023

Location
Highest
Energy

Use (kWh)
Month

Lowest
Energy

Use (kWh)
Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-112 1.27 Sep 0.11 Jun 0.20 Sep 0.00 May 4.70 0.39 0.60 0.05

DG2-100-
0-291 0.73 Mar 0.09 July 0.10 Multiple 0.00 Multiple 4.65 0.42 0.36 0.03

DG2-100-
0-472 0.80 Mar 0.07 Sep 0.20 Febr 0.00 Multiple 6.32 0.57 1.00 0.09

DG2-100-
0-493 53.92 May 0.00 Multiple 8.70 Nov 0.00 Multiple 200.47 18.23 40.58 3.69
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2024

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-112 0.50 Jan 0.08 Jun 0.10 Jan, Febr,

Mar 0.00 Apr, May,
Jun, Jul 2.96 0.25 0.3 0.03

DG2-100-
0-291 0.27 Apr 0.09 May, Jun 0.00 All months 0.00 All months 1.37 0.19 0.0 0.0

DG2-100-
0-472 0.78 May 0.04 Jun 0.10 Jan, Febr,

May, Jul 0.00 Mar, Apr,
Jun 2.90 0.24 0.5 0.04

DG2-100-
0-493 59.17 Febr 1.34 Jul 8.10 Febr 0.00 Jan 215.40 30.77 26.37 3.76
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Energy usage without

automatisation

2023 2024

January-July August-December January-July

kWh CO₂ kWh CO₂ kWh CO₂

DG2-100-0-112 3.30 0.4 2.33 0.4 2.05 0.3

DG2-100-0-291 2.91 0.4 1.17 0.2 1.17 0.2

DG2-100-0-472 4.22 0.7 1.48 0.3 3.24 0.4

DG2-100-0-493 183.85 30.1 84.62 14.4 275.42 37.7
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Annex 7- Kitchen consumption statistics

2023

Location
Highest
Energy

Use (kWh)
Month

Lowest
Energy

Use (kWh)
Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-037 163.49 Nov 40.68 Dec 27.80 Nov 8.5 Jun 938.17 78.18 114.8 9.57

DG2-100-
0-043 48.01 Nov 0.21 Dec 11.00 Nov 0.00 Dec 84.64 7.67 16.00 1.45

DG2-100-
0-114 7.82 Nov 3.65 Jul 1.30 Nov 0.50 Jul 74.12 6.01 10.80 0.90

DG2-100-
0-287 11.10 Jan 1.52 Jul 2.21 Jan 0.20 Jul 60.18 5.02 14.80 1.23
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Location
Highest
Energy

Use (kWh)
Month

Lowest
Energy

Use (kWh)
Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

2024

DG2-100-
0-037 133.98 May 25.53 Jun 21.30 Jan 2.10 Jun 735.25 102.32 73.6 10.51

DG2-100-
0-043 7.47 Febr 1.03 Jul 0.90 Febr 0.10 Jun, Jul 20.89 2.98 3.9 0.56

DG2-100-
0-114 7.11 May 3.81 Jun 1.00 Jan 0.40 Jun 39.27 5.61 6.2 0.89

DG2-100-
0-287 9.80 May 5.98 Jul 1.50 Jan 0.60 Jun 56.90 8.13 9.0 1.29
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Energy usage

without

automatisation

2023 2024

January-July August-December January-July

kWh CO₂ kWh CO₂ kWh CO₂

DG2-100-0-037 675.98 103.5 527.78 84.6 677.62 88

DG2-100-0-043 35.60 5.1 53.37 11.8 23.50 3.1

DG2-100-0-114 41.22 6.3 33.28 5.2 40.62 5.1

DG2-100-0-287 44.41 7.4 39.58 6.5 58.53 7.6



Annex 8- Reception desk consumption statistics

2023

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-115 2.17 Oct 0.00 Multiple 0.30 Oct 0.00 Multiple 6.73 0.56 1.42 0.12

DG2-100-
0-132-f 27.79 Dec 0.00 Multiple 4.50 Dec 0.00 Multiple 30.55 2.54 5.31 0.44

2024

Location

Highest
Energy
Use
(kWh)

Month

Lowest
Energy
Use
(kWh)

Month

Highest
CO₂

Emissions
(g)

Month

Lowest
CO₂

Emissions
(g)

Month
Total
energy

use (kWh)

Average
Monthly
energy

use (kWh)

Total CO₂
Emissions

Average
Monthly
CO₂

Emissions

DG2-100-
0-115 1.45 Jan 0.49 Jun 0.30 Jan 0.00 Jun 6.72 0.96 1.10 0.16

DG2-100-
0-132-f 177.72 Feb 4.20 Jul 26.00 Febr 0.20 Jul 490.75 70.11 77.60 11.09
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Energy usage without

automatisation

2023 2024

January-July August-December January-July

kWh CO₂ kWh CO₂ kWh CO₂

DG2-100-0-115 NA NA 6.56 1.1 6.97 0.9

DG2-100-0-132-f NA NA 29.84 4.8 501.12 75.1
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Annex 9 - Survey
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