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Abstract

The first part of my research concentrates on Sequential Monte Carlo (SMC) methods for

phylogenetics. The aim of the research was to deliver methods that can be used in the

inference of the spread of diseases, leveraging a widely used software platform, and enable

researchers to easily access, validate and compare. We show the results obtained from de-

veloping and integrating an adaptive SMC algorithm in Bayesian Evolutionary Analysis by

Sampling Trees version 2 (commonly known as BEAST2), a well-established software plat-

form among researchers. Our adaptive SMC algorithm embedded in BEAST2 has comparable

performances to the native Markov Chain Monte Carlo (MCMC) method, in terms of accu-

racy and efficiency. Our work can be seen as a first step, and future tuning is expected. It is

foreseen that an integration of the adaptive SMC package into BEAST2 will be done by the

owners of the platform, allowing researchers to use SMC instead of MCMC, following testing

and tuning by the platforms developers.

The focus of the second part is Active Subspaces (AS). With AS we try to identify a

smaller subspace informed by the data and to concentrate the algorithmic effort on this more

informative part, primarily to address the curse of dimensionality affecting many Monte Carlo

(MC) methods. Existing AS algorithms were mostly biased and targeting distributions only

close by some measure to the posterior, leaving users to do substantial post-validation. We

built on the foundations of an existing pseudo-marginal-based Active Subspace algorithm and

developed non-biased AS algorithms that in stationarity target the correct posterior, using

the structure provided by AS within a Gibbs-style MCMC, and within Particle Marginal

Metropolis Hastings (PMMH), Metropolis within Particle Gibbs (MwPG), SMC-squared

(SMC2). We have run experiments that show in specific settings to outperform existing

methods and provide explanations on the optimal running conditions for each algorithm.

Our work sheds light on the practical applications of Active Subspaces, expanding the range

of AS methods available to researchers and providing clearer guidance on which approaches

are most effective in specific scenarios.
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the SMC run tries to reconstruct) in Figure 3.7, and also with the tree re-

constructed using MCMC in Figure 3.15: we see that the SMC is able to

reconstruct the generating tree well and with a smaller uncertainty (the 95%

uncertainty ranges in the coalescent times are in general smaller compared to

the MCMC of Figure 3.15). Consensus tree has been generated with TreeAn-

notator and the visualization is with FigTree (both softwasre from BEAST2

package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Example of spectral gap, i.e. a significant difference between two consecutive

eigenvalues arranged in descending order. In the figure the order of the system

is 4, and the spectral gap is found between eigenvalue 2 and 3 since there is a

difference of 5 orders of magnitude between them (note the y-axis is in log-scale). 88

4.2 Spectral gap for the model of (4.26) with ε = 0.01: the eigenvalues difffer by 4

orders of magnitude and the inactive eigenvalue 2 is less than 1 . . . . . . . 103

4.3 Posterior active and inactive marginals versus prior. Active marginal a = BT
a θ

in LHS and inactive marginal i = BT
i θ in RHS (both red-dotted) versus prior

components 1 and 2 (continuous line) of (4.26) with ε = 0.01: we see that

the inactive marginal RHS is almost identical to the prior second component,

indicating that we are in near-perfect Active Subspace and the likelihood is very

little informative on this component. See comparison with LHS chart where the

active marginal is very different from the first component of the prior indicating

that the first component is active and the differences are due to the effect of

the likelihood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Spectral gap for the model of (4.26) with ε = 0.2: the eigenvalues difffer by 2

orders of magnitude and the smallest eigenvalue is around 200. . . . . . . . . 105

4.5 Posterior active and inactive marginals versus prior. Active marginal a = BT
a θ

in LHS and inactive marginal i = BT
i θ in RHS (both red-dotted) versus prior

components 1 and 2 (continuous line) of (4.26) with ε = 0.2: we see that the

inactive marginal RHS is very similar to the prior second component, although,

compared to Figure 4.3 RHS (case ε = 0.01), we can see some differences: in

the current case the fit is not perfect, indicating that the likelihood is, although

slightly, more informative in this case. . . . . . . . . . . . . . . . . . . . . . 106

4.6 Charts representing prior (bottom two charts) and likelihood (upper two) of

the posterior (4.35), with parameter values (4.36). Note: “Dimension 1” in

the chart titles is the first component θ1 and “Dimension 2” is θ2. . . . . . . 109

4.7 Directions of the principal components of the covariance of gradients using

prior samples: we can see that the main direction is horizontal. See difference

with Figure 4.8 where the main direction is vertical . . . . . . . . . . . . . . 110
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4.8 Directions of the principal components of the covariance of gradients using

posterior samples: we can see that the main direction is vertical. See differ-

ence with Figure 4.7 where the main direction is horizontal . . . . . . . . . . 111

5.1 Graphical representation of the model described in 5.3.2: we see a 2D slice

of the Gaussian prior on the horizontal plane θ1 = 0 (black color indicates

low probability zones, whereas progressively warmer color towards the center

indicate zones of higher probability, as indicated by the colorbar) together with

the level surface of the likelihood in the particular case θ1 + θ2 + θ3 = 0 (green

plane), created using python library plotly [Plotly, 2015] . . . . . . . . . . . . 120

5.2 Different viewpoint of Figure 5.1, created using python library plotly [Plotly,

2015] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Eigenvalues of 10D Gaussian model, we see that the estimate AS size is 1,

considering the spectral gap between eigenvalues 1 and 2. The dimension of

the Active Subspaces is na = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Eigenvalues of 25D Gaussian model, we see that the estimate AS size is 1,

considering the spectral gap between eigenvalues 1 and 2. The dimension of

the Active Subspaces is na = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Distribution of RMSE of the differences between the true posterior mean and

the mean estimated by each of the algorithms over 50 runs. We see that the

standard MCMC in both 10D and 25D has a lower error. Second best performer

is AS-MH and third best is AS-PMMH. The algorithms are in order from the

LHS: MCMC, AS-MH and AS-PMMH (10D first then 25D) . . . . . . . . . 126

5.6 Graphical representation of the model described in Section 5.4.2: we see a

2D slice of the Gaussian prior on the plane θ1 = 0 (black color indicates

low probability zones, whereas progressively warmer color towards the center

indicate zones of higher probability, as indicated by the colorbar) together with

the level surface of the likelihood in the particular case θ1+θ2+θ3+b (θ2
2 + θ2

3) =

0 (green plane), with b = 0.001, so that the curvature is mild but still visible.

The curvature can be appreciated by comparing with Figures 5.1 and 5.2, where

the curvature was absent. Created using python library plotly [Plotly, 2015] . 129

5.7 Different viewpoint of Figure 5.6, created using python library plotly [Plotly,

2015] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.8 Eigenvalues of 10D Banana model, we see that the estimate AS size is 4,

considering the spectral gap between eigenvalues 4 and 5. The dimension of

the Active Subspaces is na = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Eigenvalues of 25D Banana model, we see that the estimate AS size is 4,

considering the spectral gap between eigenvalues 4 and 5. The dimension of

the Active Subspaces is na = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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5.10 Distribution of RMSE of the differences between the true posterior mean and

the mean estimated by each of the algorithms over 50 runs. Starting from

LHS: MCMC, AS-MH and AS-PMMH. We can see from the chart that the

distributions for AS-MH and AS-PMMH have lower mean and upper quartile

of MCMC, but longer tails. This may indicate very noisy estimates of the

likelihood in some of the runs of both algorithms which cause the distributions

to have long tails. The MCMC has comparatively smaller tails. . . . . . . . . 134

5.11 Example of ’sticky’ trace-plot in AS-PMMH, taken from one of the runs in Fig-

ure 5.10: a noisy estimate of the likelihood causes the outer MCMC to remain

stuck for a long time, and this causes the very long tails in the distribution of

RMSE seen in Figure 5.10 for the AS-PMMH. . . . . . . . . . . . . . . . . . 135

5.12 Distribution of RMSE of the differences between the true posterior mean and

the mean estimated by each of the algorithms over 50 runs. We see the tails

of the AS-PMMH-i distribution are smaller than the AS-PMMH, probably be-

cause, keeping constant the number of tempering of the SMC sampler between

the two (6), the size of the space the SMC has to act upon is much smaller:

4D in case of AS-PMMH-i vs 21D in the case of AS-PMMH. By contrast,

the MCMC part has to act on a much bigger space: 21D vs 4D, this probably

explains why the AS-PMMH-i has a bigger average error. . . . . . . . . . . . 140

5.13 Distribution of RMSE of the differences between the true posterior mean and

the mean estimated by each of the algorithms over 50 runs. We can see from

the chart that AS-Gibbs has lower mean RMSE. . . . . . . . . . . . . . . . . 143

5.14 Level surface of the system of equation (5.35), the combinations θ1 + θ2 = −5

and θ3 + θ4 = 5 or θ1 + θ2 = 5 and θ3 + θ4 = −5 are the ones that leave the

likelihood (5.25) invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.15 Level surface of the system of equation (5.35): the combination of parameters

θ1 + θ2 = ±5 are the ones that leave the likelihood (5.25) invariant . . . . . . 152

5.16 AS-MwPG-i: reconstruction of the posterior for the system having likelihood

(5.35). We see that AS-MwPG-i correctly reconstructs the bimodal posterior,

both modes (θ1 + θ2 = −5 and θ3 + θ4 = 5) and (θ1 + θ2 = 5 and θ3 + θ4 = −5)

are found (Note: in the figure “Sum components first mean” on the x-axis is

the sum µ1 = θ1 + θ2, whereas “Sum components second mean” on the y-axis

is the sum µ2 = θ3 + θ4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.17 AS-MwPG-i: reconstruction of the posterior for the system having likelihood

(5.35). We see in the figure θ1 (named Component 1 in the figure) vs θ2

(named Component 2): we can appreciate that MwPG correctly reconstructs

the bimodal posterior, in fact both combinations θ1 + θ2 = −5 and θ1 + θ2 = 5

are found (Note: in the figure “Component 1” on the x-axis is θ1, whereas

“Component 2” on the y-axis is θ2). . . . . . . . . . . . . . . . . . . . . . . . 154
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5.18 Standard MCMC: incorrect reconstruction of the posterior for the system

having likelihood (5.35). We see that MCMC incorrectly reconstructs the bi-

modal posterior: only the mode (θ1 + θ2 = −5 and θ3 + θ4 = 5) is found,

whereas the mode (θ1 + θ2 = 5 and θ3 + θ4 = −5) is missing, see comparison

with Figure 5.16. (Note: in the figure “Sum components first mean” on the

x-axis is the sum µ1 = θ1 + θ2, whereas “Sum components second mean” on

the y-axis is the sum µ2 = θ3 + θ4). . . . . . . . . . . . . . . . . . . . . . . . 154

5.19 Standard MCMC: incorrect reconstruction of the posterior for the system

having likelihood (5.35). We see in the figure θ1 (named Component 1 in the

figure) vs θ2 (named Component 2): we can appreciate that MCMC gets stuck

in one mode and only the combination θ1 + θ2 = −5 is found, while the mode

θ1 + θ2 = 5 is missing, see comparison with Figure 5.17 (Note: in the figure

“Component 1” on the x-axis is θ1, whereas “Component 2” on the y-axis is θ2).155

5.20 AS-MH algorithm 8 of Section 4.8.2: incorrect reconstruction of the posterior

for the system having likelihood (5.35). We see that AS-MH algorithm incor-

rectly reconstructs the bimodal posterior: only the mode (θ1 + θ2 = −5 and

θ3 +θ4 = 5) is found, whereas the mode (θ1 +θ2 = 5 and θ3 +θ4 = −5) is miss-

ing, see comparison with Figure 5.16. (Note: in the figure “Sum components

first mean” on the x-axis is the sum µ1 = θ1 + θ2, whereas “Sum components

second mean” on the y-axis is the sum µ2 = θ3 + θ4). . . . . . . . . . . . . . 155

5.21 AS-MH algorithm 8 of Section 4.8.2: incorrect reconstruction of the poste-

rior for the system having likelihood (5.35). We see in the figure θ1 (named

Component 1 in the figure) vs θ2 (named Component 2): we can appreciate

that AS-Gibbs gets stuck in one mode and only the combination θ1 +θ2 = −5 is

found, while the mode θ1 + θ2 = 5 is missing, see comparison with Figure 5.17

(Note: in the figure “Component 1” on the x-axis is θ1, whereas “Component

2” on the y-axis is θ2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.22 AS-Gibbs algorithm 13 of Section 5.6: incorrect reconstruction of the poste-

rior for the system having likelihood (5.35). We see that AS-Gibbs algorithm

incorrectly reconstructs the bimodal posterior: only the mode (θ1+θ2 = −5 and

θ3 +θ4 = 5) is found, whereas the mode (θ1 +θ2 = 5 and θ3 +θ4 = −5) is miss-

ing, see comparison with Figure 5.16. (Note: in the figure “Sum components

first mean” on the x-axis is the sum µ1 = θ1 + θ2, whereas “Sum components

second mean” on the y-axis is the sum µ2 = θ3 + θ4). . . . . . . . . . . . . . 156
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5.23 AS-Gibbs algorithm 13 of Section 5.6: incorrect reconstruction of the poste-

rior for the system having likelihood (5.35). We see in the figure θ1 (named

Component 1 in the figure) vs θ2 (named Component 2): we can appreciate

that AS-Gibbs gets stuck in one mode and only the combination θ1 +θ2 = −5 is

found, while the mode θ1 + θ2 = 5 is missing, see comparison with Figure 5.17

(Note: in the figure “Component 1” on the x-axis is θ1, whereas “Component

2” on the y-axis is θ2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.24 Eigenvalues of 10D Gaussian model, we see that the estimate AS size is 1,

considering the spectral gap between eigenvalues 1 and 2. The dimension of

the Active Subspaces is na = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.25 ESS (%) using the prior as importance proposal for different dimensions of

inactive subspace in the Gaussian 10D model. We see from the figure that the

largest dimension ni of the inactive subspace that brings a high ESS is 9 (the

number of full bars) and we therefore set ni = 9 and the dimension of Active

Subspace is therefore na = 10−ni = 1. See comparison with Figure 5.24 where

with the traditional eigenvalue method the active dimension result is na = 1 as

well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.26 Eigenvalues of 25D Gaussian model, we see that the estimate AS size is 1,

considering the spectral gap between eigenvalues 1 and 2. The dimension of

the Active Subspaces is na = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.27 ESS (%) using the prior as importance proposal for different dimensions of

inactive subspace in the Gaussian 25D model. We see from figure that the

largest dimension ni of the inactive subspace that brings a high ESS is 24 (the

number of full bars) and we therefore set ni = 24 and the dimension of Active

Subspace is therefore na = 25−ni = 1. See comparison with Figure 5.26 where

with the traditional eigenvalue method the active dimension result is identically

na = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.28 Eigenvalues of 10D Banana model, we see that the estimate AS size is 4,

considering the spectral gap between eigenvalues 4 and 5. The dimension of

the Active Subspaces is na = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.29 ESS (%) using the prior as importance proposal for different dimensions of

inactive subspace in the Banana 10D model. We see from figure that the largest

dimension ni of the inactive subspace that brings a high ESS is 6 (the number

of full bars) and we therefore set ni = 6 and the dimension of Active Subspace

is therefore na = 10−ni = 4. See comparison with Figure 5.28 where with the

traditional eigenvalue method the active dimension result is na = 4 as well. . 161

5.30 Eigenvalues of 25D Banana model, we see that the estimate AS size is 4,

considering the spectral gap between eigenvalues 4 and 5. The dimension of

the Active Subspaces is na = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12



5.31 ESS (%) using the prior as importance proposal for different dimensions of

inactive subspace in the Banana 25D model. We see from figure that the largest

dimension ni of the inactive subspace that brings a high ESS is 21 (the number

of full bars) and we therefore set ni = 21 and the dimension of Active Subspace

is therefore na = 25−ni = 4. See comparison with Figure 5.30 where with the

traditional eigenvalue method the active dimension result is na = 4 as well. . 162

6.1 Violin plots with the distribution of RMSE of the differences between the true

posterior mean and the mean estimated by each of the algorithms over 50 runs

in the 25D Gaussian model. We see that the performances of the standard

SMC appears to be worse than the AS-SMC, this is probably due to the fact

that we have a good estimate of the likelihood in the AS-SMC (in the Gaussian

model the Importance Sampler seems to behave well on the inactive subspace

even in high dimensions), coupled with the fact that the in the AS version the

SMC operates on a 1D subspace instead of the full 25D space as the non-AS

SMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2 Violin plots with the distribution of RMSE of the differences between the true

posterior mean and the mean estimated by each of the algorithms over 50 runs

in the 25D Banana model. We see that the performances of the standard SMC

and AS-SMC appear to be approximately equal in terms of mean and upper

and lower quartile, but the AS-SMC is showing some tails which suggest again

that the estimate of the likelihood may be poor in some cases and the algorithm

can get stuck in the tail of the distribution, this is probably due to the fact that

using 10 inactive variables is too little for the exploration of the 21D inactive

subspace of the Banana model, and this causes the noise in the importance

sampler estimate of the likelihood. . . . . . . . . . . . . . . . . . . . . . . . . 170

6.3 Violin plots with the distribution of RMSE of the differences between the true

posterior mean and the mean estimated by each of the algorithms over 50 runs

in the 25D Banana model. The SMC2 has lower mean and upper quartile

than all the algorithms, but it shows longer tails, it is a sign that, although

currently the algorithm is using significantly more likelihood evaluations than

the others, still the algorithm may get stuck in one of tails, probably indicating

that additional tuning of the algorithm is necessary. . . . . . . . . . . . . . . 175

6.4 Estimate of the mean of component θ1 of the model of Section 4.9.1 across 10

runs of AS-SMC-a. The average across runs is 0.0 with a standard deviation

of the measure of 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5 Estimate of the mean of component θ2 of the model of Section 4.9.1 across 10

runs of AS-SMC-a. The average across runs is 0.0 with a standard deviation

of the measure of 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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6.6 Adaptation of the direction of the Active Subspaces in AS-SMC-a algorithm,

measured across 10 different runs: the direction during the adaptation goes

from prior AS of Figure 4.7 at tempering step 0, to posterior AS of Figure 4.8

in the final tempering steps. The same tempering steps have been used across

the 10 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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A.10 Consensus tree for the Annealed Adaptive SMC run with visualization of 95%

range for coalescent times. See comparison with the generating tree (which
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Chapter 1

Introduction

1.1 Motivation

The first part of my research concentrates on Sequential Monte Carlo (SMC) methods for

phylogenetics. The aim of the research was to deliver methods that can be used in the

inference of the spread of diseases, leveraging a widely used software platform, and enable

researchers to easily access, validate and compare. We have tried to solve a common problem

in phylogenetics, the understanding the evolutionary relationships between species starting

from genetic data. Two big challenges presently stand in the way. Firstly, existing algorithms

are often computationally expensive and not adaptable to online inference, it has been shown

for example during the recent COVID outbreak, when there was a clear need for methods that

could adapt to rapid variations of the virus [Wu et al., 2020]. Secondly, when using Bayesian

inference, Monte Carlo traditional methods like Markov Chain Monte Carlo (MCMC) struggle

in high-dimensional spaces. In our research we have tried to address these two topics. We

show the results obtained from developing and integrating an adaptive SMC algorithm in

Bayesian Evolutionary Analysis by Sampling Trees version 2 (commonly known as BEAST2)

[Bouckaert et al., 2019], a well-established software platform among researchers. Our adaptive

SMC algorithm embedded in BEAST2 has comparable performances to the native Markov

Chain Monte Carlo (MCMC) method, in terms of accuracy and efficiency. Our work can

be seen as a first step, and future tuning is expected. Although we have done our work

independently, our implementation can be said to integrate all the various algorithms of

[Wang et al., 2019] in BEAST2. It is foreseen that an integration of the adaptive SMC

package into BEAST2 will be done by the owners of the platform, allowing researchers to

use SMC instead of MCMC, following testing and tuning by the platforms developers.

Following up on the aim to bring simplification in complex systems, the focus of the second

part of the thesis is Active Subspaces (AS) [Constantine, 2015]. With AS we try to identify

a smaller subspace informed by the data and to concentrate the algorithmic effort on this
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more informative part, primarily to address the curse of dimensionality affecting many Monte

Carlo (MC) methods. Existing AS algorithms were mostly biased and targeting distributions

only close by some measure to the posterior, leaving users to do substantial post-validation

[Constantine et al., 2016]. We built on the foundations of an existing pseudo-marginal-based

Active Subspace algorithm [Schuster et al., 2017] and developed non-biased AS algorithms

that in stationarity target the correct posterior, using the structure provided by AS within

a Gibbs-style MCMC [Geman and Geman, 1984], and within Particle Marginal Metropolis

Hastings (PMMH) [Andrieu et al., 2010], Metropolis within Particle Gibbs (MwPG) [An-

drieu et al., 2010], SMC-squared (SMC2) [Chopin et al., 2012]. By embedding AS into the

theoretical framework of Gibbs, PMMH, MwPG, and SMC2, we ensure that the convergence

properties of the original methods are preserved. This means that convergence does not need

to be re-demonstrated, as it is already guaranteed by the original algorithms. We have run

experiments that show in specific settings to outperform existing methods and provide expla-

nations on the optimal running conditions for each algorithm. Our work sheds light on the

practical applications of Active Subspaces, expanding the range of AS methods available to

researchers and providing clearer guidance on which approaches are most effective in specific

scenarios.

1.2 Thesis Organisation

This thesis is structured into six main chapters, with a logical progression from fundamental

theoretical principles to novel algorithmic contributions and their applications:

• Chapter 2: Technical Background This chapter introduces the main technical

concepts used in this research: Bayesian statistics and Monte Carlo methods.

• Chapter 3: Models of Genetic Evolution This chapter explain some history

of genetic evolution frameworks like the Wright-Fisher model [Wright, 1931, Fisher,

1930], coalescent theory [Kingman, 1982], substitution models, for example Jukes Can-

tor [Jukes and Cantor, 1969], and existing software like BEAST2 [Bouckaert et al.,

2019]. We then present our algorithm an application of adaptive SMC to genetic se-

quences and show the results in a scenario with 10 taxa with the comparison with

BEAST2 native MCMC: our adaptive SMC shows results comparable to the native

BEAST2 MCMC, with far fewer samples. The early results are promising, additional

future effort is advisable in the integration of the method within a complex software

platform as BEAST2.

• Chapter 4: Active Subspaces: We provide an introduction of the mathematics

behind Active Subspaces (AS) [Constantine, 2015], and application in Monte Carlo

methods [Constantine et al., 2016, Schuster et al., 2017]. The chapter evaluates existing

AS approaches for MCMC, highlights their limitations, to mention a few: biasedness,

20



non exactness, use of prior for approximations. The chapter sets the ground for the

algorithmic improvements introduced in subsequent chapters.

• Chapter 5: Active Subspaces proposed novel MCMC algorithms: the chap-

ter introduces new MCMC algorithms developed using the structure provided by AS

within a Gibbs-style MCMC [Geman and Geman, 1984], and within Particle Marginal

Metropolis Hastings (PMMH) [Andrieu et al., 2010], Metropolis within Particle Gibbs

(MwPG) [Andrieu et al., 2010], we named the new algorithms AS-Gibbs, AS-PMMH,

and AS-MwPG. By embedding AS into the theoretical framework of Gibbs, PMMH,

MwPG, we ensure that the convergence properties of the original methods are preserved.

The performance of the new algorithms is compared, in efficiency and accuracy, using

two main models that we named Gaussian 5.3.2 and Banana 5.4.2. We show that As-

Gibbs and AS-MwPG-i (a second variant of AS-MwPG), clearly outperform existing

algorithms in specific settings. In addition, we introduced a novel method to deter-

mine the Active Subspace dimension, alternative to the traditional, eigenvalues-based

method. In our tests, the two methods give identical results.

• Chapter 6: Active Subspaces proposed novel SMC algorithms: The chapter

introduces new SMC algorithms based on Active Subspaces: named AS-SMC (AS-

based SMC), AS-SMC2, developed using the structure provided by AS within SMC2

[Chopin et al., 2012], and an adaptive version of AS-SMC, named AS-SMC-a. This

chapter provides theoretical justifications, experimental results, and comparisons with

existing methods. By embedding AS into the theoretical framework of SMC2, we ensure

that the convergence properties of the original method are preserved. We show that

AS-SMC-a, in particular, shows promising results in cases that would have resulted in

poor approximation when using traditional AS methods.

• Chapter 7: Conclusions and Future Work Summarizes the contributions and

findings of the thesis, discusses their broader implications, and proposes directions for

future research.
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Chapter 2

Technical Background

This chapter introduces the technical background for the methods and algorithms presented

in this thesis. It introduces the main concepts and techniques of Bayesian statistics and

Monte Carlo methods that will be used in subsequent chapters.

2.1 Bayesian Statistics

In terms of statistical modelling, the problem we are interested in is defining the distribution

of some parameters of a model that we want to estimate

θ ∈ Θ (2.1)

given a set of observations

y ∈ Y (2.2)

Often in the thesis we will take Θ = Rd and similarly Y = Rm. In this context we express

the Bayes formula as

π(θ|y) =
l(y|θ)p(θ)
p(y)

=
l(y|θ)p(θ)∫
l(y|θ)p(θ)dθ

(2.3)

θ ∈ Θ, y ∈ Y In equation (2.3), we define:

• marginal likelihood the term p(y) in the denominator

• posterior the term π(θ|y) on the left hand side of the equation

• prior the term p(θ)

• likelihood the term l(y|θ)

The prior can be considered as the a-priori information we have on the distribution of the

parameters; the likelihood is the information that allows us to update the model after the

data y that we observe.
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Equation 2.3 is the normalised posterior, we will sometimes refer to the un-normalised

version omitting the marginal likelihood

π̃(θ|y) ∝ l(y|θ)p(θ) (2.4)

We may also refer to the posterior as π(θ) instead of π(θ|y), omitting the conditioning

on the observations y for brevity, similarly for the likelihood l(y|θ) which we may refer to as

l(θ).

2.2 The Monte Carlo method

In Bayesian statistics, we often need to calculate expectations with respect to a distribution

p:

µ = Ep(θ)(f(θ)) =

∫
f(θ)p(θ)dθ (2.5)

However, there are cases where the integral in expectation (2.5) cannot be computed in

closed form. For example, in the case of the posterior π introduced in equation (2.3), either

because the normalisation constant is unknown or the integral itself is intractable. Moreover,

calculation may also be computationally infeasible with traditional numerical integration

methods. As shown in [Caflisch, 1998], the complexity of a reference numerical integration

scheme is O(N−
k
d ), where k is the order of the scheme and d the dimension of the space.

This slow convergence rate in high dimensions explains the term curse of dimensionality,

which refers to the way increasing the dimension of the state space progressively worsens

convergence rates.

We will, in this section, explain the foundations of Monte Carlo methods [Metropolis

and Ulam, 1949] [Robert and Casella, 2004]. If we are able to draw N independent samples

θ1, θ2...θN from p(θ), we can consider the approximation

µ̂ =
1

N

N∑
i=1

f(θi) (2.6)

The quantity µ̂ of (2.6) approximates the expectation

1

N

N∑
i=1

f(θi) ≈
∫
f(θ)p(θ)dθ (2.7)

The left-hand-side sum of equation (2.7) equals the right-hand-side integral almost surely

in the limit N −→ ∞ by the strong law of large numbers, that states that the average

of many independent r.v. with common mean and finite variances tend to stabilize around

their mean (note that in the left-hand-side the p(θ) is implicitly approximated by the random
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measure since we are drawing the i samples from it):

µ̂
a.s.−−−→

N→∞
µ (2.8)

We will explore in the following sections of this chapter how to deal with cases when we are

not able to draw the samples θ1, θ2...θN directly from the distribution p(θ), and we will see

how to write an approximation conceptually similar to equation (2.6). The estimator (2.6)

is unbiased, i.e.

E(µ̂) = µ (2.9)

If we define the Monte Carlo Integration error as

εN =
1

N

N∑
i=1

f(θi)−
∫
f(θ)p(θ)dθ (2.10)

we can study the convergence of the MC method via the the Central Limit Theorem

(CLT) that states that (see for example [Caflisch, 1998]) for N large, since we are considering

samples from a population with mean µ and finite variance

σ2 = E
(
θ2
)

(2.11)

we have that εN converges in distribution to a Normal r.v., in particular

√
NεN

D−−−→
N→∞

N (0, σf ) (2.12)

With σf the standard deviation of f

σ2
f = Ep(θ)(f(θ)2)− µ2 (2.13)

Convergence of Monte Carlo methods

Formula (2.12) indicates that the rate of convergence of the standard Monte Carlo method is

O(N−
1
2 ), with a multiplicative constant equal to σf , independently from the dimension d of

the state space, and gives the reason for using Monte Carlo methods instead of, for example,

numerical integration methods. In fact the theoretical convergence rate of nearly all MC

methods is O(N−
1
2 ), as seen in formula (2.12), it is the constant in front of this rate that can

make a difference among the various MC methods.

2.3 Importance Sampling

Importance sampling (IS) provides a way to estimate integrals by the use of an instrumental

auxiliary distribution, named the proposal distribution. In detail, let’s assume that we
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want to calculate the expectation of a function f according to the density p in a domain

D ⊆ Rd

µ = Ep(f(θ)) =

∫
D

f(θ)p(θ)dθ (2.14)

we may want to approximate the integral via use of the sum as in equation (2.6), but

let’s assume we cannot draw easily samples from the distribution p. We can use a proposal

distribution, g, easier to draw from: it is sufficient that g(θ) > 0 where f(θ)p(θ) 6= 0. The

validity of the process is shown by the equivalences below [Owen, 2013]

Eg

(
f(θ)p(θ)

g(θ)

)
=

∫
f(θ)p(θ)

g(θ)
g(θ)dθ

=

∫
f(θ)p(θ)dθ = Ep(f(θ)) = µ

(2.15)

Therefore the importance sampling estimate becomes

µ̂ =
1

N

N∑
i=1

p(θi)

g(θi)
f(θi) =

1

N

N∑
i=1

w(θi)f(θi), θi ∼ g (2.16)

Where, in equation (2.16), the so-called weights are defined as follows

w(θ) =
p(θ)

g(θ)
(2.17)

The weights w compensate for sampling from the proposal function g, instead of the origi-

nal distribution p. Therefore, we can sample θ1, θ2, ..., θN independently from the proposal

distribution g, and due to the LLN (as in formula (2.6)) we have

µ̂ =
1

N

N∑
i=1

w(θi)f(θi)
a.s.−−−→

N→∞
Ep(f(θ)) (2.18)

Similarly to equation (2.9) (see also [Johansen and Evers, 2007] and [Owen, 2013]), it is easy

to demonstrate that µ̂ of equation (2.16) is an unbiased estimator of the mean, i.e. that

Eg(µ̂) = µ (2.19)

and that [Owen, 2013]

V arg(µ̂) =
σ2

IS
N

(2.20)

where

σ2 =

∫
Q

(f(θ)p(θ))2

g(θ)
dθ − µ2 =

∫
Q

(f(θ)p(θ)− µg(θ))2

g(θ)
dθ (2.21)

The formulae (2.21) give us a way to analyse an optimal proposal g: from the second expres-

sion in (2.21) we see that an optimal proposal will minimise the numerator (f(θ)p(θ)−µg(θ)),
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therefore a function g proportional to fp, and ideally [Owen, 2013]:

gopt =
|f |p

Ep(|f |)
(2.22)

although the gopt of equation (2.22) is not practically feasible because it would mean that we

can sample directly from p (which by assumption is not the case). It is therefore advisable

in a good proposal choice that g is proportional to |f |p (for example it has spikes where |f |p
does) [Owen, 2013]. We can also see from the second expression in (2.21) that small values

of g in the denominator would magnify whatever lack of proportionality in the numerator

between g and |f |p [Owen, 2013], therefore we want a proposal that has heavier tails than p

(or at least as heavy as p) [Johansen and Evers, 2007].

2.3.1 Estimating the normalization constant through IS

In Bayesian analysis we can usually only compute an un-normalised version of p, or g or both.

For example, in the case of p, we may have p = p̂
Z

, where p is the normalised distribution

and Z is the normalising constant. Let’s assume without loss of generality that only p̂ is

un-normalised, we have therefore that ∫
Θ

p̂(θ)dθ = Z (2.23)

We can use IS to estimate the normalising constant by considering that, from equation (2.23),

we have

Eg(w(θ)) =

∫
p̂(θ)

g(θ)
g(θ)dθ =

∫
p̂(θ)dθ = Z (2.24)

Therefore using again formulae of (2.16) and (2.18) applied to equation (2.24), we have that

Ẑ =
1

N

N∑
i=1

wi (2.25)

The Ẑ of equation (2.25) is the estimate of the normalising constant Z up to which we know

the distribution p (a similar procedure can be applied if g is known up to a normalising

constant). Using the result of (2.25), we can write a “self normalised” version of the estimate

of equations (2.16) and (2.18), as follows

µ̂ =

∑N
i=1w(θi)f(θi)∑N

i=1 wi
=

N∑
i=1

Wif(θi) (2.26)

The normalised weights of equation (2.26) are such that

Wi =
wi∑N
j=1wj

(2.27)
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Formula (2.26) is the “self normalised” version of equations (2.16) and (2.18), with the

property that the weights ŵi of equation (2.26) add up to 1 (as seen from (2.24) and (2.25),

this means that we are simulating drawing from normalised distributions). It is not difficult

to show that (see for example [Johansen and Evers, 2007])

Eg(µ̂) = µ+
µVar(w(θ))− Covg(w(θ), w(θ)f(θ))

N
+O(N−2) (2.28)

Where Covg in (2.28) is the covariance

Covg(w(θ), w(θ) · f(θ)) = Eg [(w(θ)− Eg(w(θ))) (w(θ) · f(θ)− Eg(w(θ) · f(θ)))] , (2.29)

And that the variance is

V arg(µ̂) =
Var(w(θ)f(θ))− 2µCovg(w(θ), w(θ)f(θ)) + µV arg(w(θ))

N
+O(N−2) (2.30)

Where

We can therefore see from (2.28) that µ̂ is biased, it has though the advantage that it

can be calculated knowing the density up to a constant, in fact a normalising constant of the

density would cancel out in the calculation of µ̂ (as shown in [Johansen and Evers, 2007]).

It has to be noted that however the bias in (2.28) decreases with increasing N .

2.3.2 Effective Sample Size (ESS)

As we have seen in the previous sections, the Importance Sampling method allows us to

perform calculation of integrals, for example the expectation of a function f w.r.t. a density

p, like in equation (2.14), by using samples drawn from a proposal distribution g, with a

sum like in equation (2.16). An obvious question to ask is how does the IS approximation

compare with the usual Monte Carlo approximation [Kong, 1992] [Kong et al., 1994] of the

integral that we would have by drawing samples from the distribution p, as in (2.6). The

remainder of this section will be dedicated to answering this question, using the logic outlined

in [Elvira et al., 2018]. For ease, we rewrite here some definitions used in the previous sections,

changing slightly the notation (to make it coherent with [Elvira et al., 2018]). We start from

the integral of an expectation

I = Ep(f) =

∫
f(θ)p(θ)dθ (2.31)

Then we call Ī the Monte Carlo approximation of (2.31)

Ī =
1

N

N∑
i=1

f(θ(i)), θ(i) ∼ p (2.32)
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And we call Ĩ the self normalised IS approximation of (2.31) (as in (2.26))

Ĩ =
N∑
i=1

W (θ(i))f(θ(i)), θ ∼ g (2.33)

Where, in equation (2.33), W are the self-normalised weights of equation (2.27). A measure

that has been widely used [Owen, 2013] [Elvira et al., 2018] to compare the performance of

IS estimators, is the so-called Effective Sample Size (ESS), which compares the variances

of the traditional Monte Carlo estimate (2.32) and the IS approximation (2.33)

ESS = N
V ar(Ī)

V ar(Ĩ)
(2.34)

We can notice that the ESS of (2.34) has some drawbacks, for example it depends on the

integrand function f (as clearly seen from (2.31), (2.32) and (2.33)), and therefore an estima-

tor that is good for an integrand function f1 may not in general be good for another function

f2, and also in order to calculate (2.34) we will need to compute integrals that are in general

intractable as the integral (2.31) that we are trying to estimate (see for example [Elvira et al.,

2018] for a detailed expression of such integrals). Therefore some simplifications have been

used [Elvira et al., 2018] [Kong et al., 1994] that reduce significantly the complexity of (2.34),

to:

ESS ≈ N

1 + V arg(W )
(2.35)

We see from equation (2.35) that, in the ideal case where the weights are known exactly (and

therefore with zero associated variance), we have ESS = N , i.e. we are in a situation that

is as good as if we were drawing directly from the target distribution. As we see in [Elvira

et al., 2018] [Kong, 1992] [Kong et al., 1994], further simplification of (2.35) bring to

ESS ≈ NZ2

Eg(W 2)
(2.36)

Where Z is the normalising constant expressed in (2.23). It is to be noted that (2.36) has,

as said, approximations and that these restrict the validity of (2.36) to cases where the

approximations are valid [Kong et al., 1994] [Elvira et al., 2018] (for example since there is

no dependence on the integrand function f , it is assumed that the proposal g is “reasonably”

close to the optimal proposal (2.22)). By using particle approximations for Z from (2.25) and

Eg(W
2) ≈ 1

N

∑N
j=i (w

(j))2 which brings us to the final approximation of ESS in the version

widely used in literature:

ˆESS = N
(
∑N

j=iw
(j))2∑N

j=i(w
(j))2

=
1∑N

j=i(W
(j))2

(2.37)
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Where, in (2.37), in the first equation the w(j) are unnormalised weights of equation (2.17),

whereas in the second equation the W (j) are the self-normalised weights of equation (2.27).

2.4 Markov Chain Monte Carlo (MCMC)

We will introduce in this section Markov Chain Monte Carlo (MCMC). Similarly to Monte

Carlo methods in previous sections, MCMC provides a way to approximate drawing samples

from a distribution that we cannot directly draw from. Unlike the traditional MC and

Importance Sampling, MCMC samples are not independently distributed: as we can see

from equation (2.38) in fact, there is conditional dependence between values. A stochastic

process is defined Markov Chain Monte Carlo if, considering X1, X2, ...XN random variables,

that are the realization of the process, defined on a common probability space (χ,A, P ), the

following so-called Markov property holds:

P (X(t) = x(t)|X(t−1) = x(t−1), ..., X(1) = x(1)) = P (X(t) = x(t)|X(t−1) = x(t−1)) (2.38)

As we can see from (2.38), the value of the chain at a particular time t is only dependent

from the value at time t − 1. In the following parts of this section we will outline the basic

concepts that will help us introduce MCMC [Robert and Casella, 2004].

2.4.1 Markov Kernel

Considering two measurable spaces (X,A), (A,B) a transition kernel is a map [Robert and

Casella, 2004] K : A×B → [0, 1], s.t.

• ∀x ∈ χ, k(x, ·) is a probability measure [Jiao, 2017]

• ∀Bi ∈ B, k(·, Bi) is measurable [Jiao, 2017]

The kernel is a conditional probability density, we will speak more extensively about the

associated probability measure in the next subsections. In the continuous case we have that

P (Xt ∈ Bi|Xt−1 = xt−1) =

∫
Bi

k(xt−1, xt)dxt (2.39)

and in the discrete case equation (2.39) becomes

P (Xt ∈ Bi|Xt−1 = xt−1) =
∑
x′∈Bi

k(xt−1, x
′) (2.40)
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2.4.2 Initial distribution of the chain

The chain Xn is defined for n ∈ N, therefore there is a X0, starting point of the chain. We

define the initial distribution of X0 as µ

P (X0 ∈ A) =

∫
A

µ(x)dx (2.41)

The obvious extension to the discrete case of (2.41) is similar to formula (2.40), we have in

fact

P (X0 ∈ A) =
∑
x0i∈A

µ(x0i) (2.42)

2.4.3 Joint and conditional distributions of the Xi

Continuing what we have said in the previous sections, in particular using the concepts of

kernel k and initial distribution µ introduced in Sections 2.4.1 and 2.4.2 respectively, the

joint distribution of X1, X2 is obtained by µ(x0)k(x0, x1), and therefore [Robert and Casella,

2004]

P (X1 ∈ A,X0 = x0) =

∫
A

µ(x0)k(x0, x1)dx1 (2.43)

and, de-marginalising wrt x0 we obtain the joint distribution

P (X1 ∈ A1, X0 ∈ A0) =

∫
A0

∫
A1

µ(x0)k(x0, x1)dx0dx1 (2.44)

By using the Markovian property (2.38) and the definition of the kernel we have that [Jo-

hansen and Evers, 2007]

P (X0 = x0, ...Xn = xn) = µ(x0)
n∏
j=1

k(xj−1, xj) (2.45)

We also introduce the notation used in literature [Robert and Casella, 2004] [Johansen and

Evers, 2007] k1(x,A) = k(x,A), and

ks(xt, xt+s) =

∫
As−1

t+s∏
j=t+1

k(xj−1, xj)dxt...dxt+s−1 (2.46)

so we can express (2.45) as

P (X0 = x0, ...Xn = xn) = µ(x0)kn(x0, xn) (2.47)
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2.4.4 Stationary property of the MCMC and invariant distribution

We will in this section introduce the concept of stationary/invariant distribution of the

chain, i.e. a distribution π s.t. [Robert and Casella, 2004]:

Xn ∼ π =⇒ Xn+1 ∼ π (2.48)

“A σ-finite measure π is invariant for the kernel k(·, ·) and the chain XN” [Jiao, 2017] if

π(A) =

∫
χ

k(x,A)π(x)dx (2.49)

Equation (2.49) states the condition (2.48) (if the invariant distribution is a probability

measure it is also called stationary due to (2.48)). A theorem states [Robert and Casella, 2004]

that if XN is a recurrent chain then it has an invariant measure [Jiao, 2017] (recurrence is a

property that states that, whatever the initial condition of the chain, we will end up in a set

A having positive measure an infinite number of time as N →∞ [Robert and Casella, 2004]).

The stationary property of the MCMC can also be related to another property, that states

that the direction of time does not matter in the dynamic of the chain, PXn+1(Xn+1|Xn =

x) = PXn(Xn|Xn+1 = x). This property is called reversibility and is stated as follows

[Johansen and Evers, 2007] [Robert and Casella, 2004]:

k(x, y)π(x) = k(y, x)π(y) (2.50)

Equation (2.50) is named detailed balance condition and provides a sufficient condition for π

to be a stationary distribution for the chain. It is easy to prove that [Robert and Casella,

2004] if k and π meet criterion (2.50), then π is the invariant density of the chain [Jiao, 2017].

2.4.5 Convergence of MCMC

We are interested in understanding the conditions of convergence for the chain Xn. We have

seen in Section 2.4.4 the conditions for existence of a stationary distribution for MCMC, in

this section we will define the prerequisites for the MCMC chain to converge to this particular

stationary distribution. We will, in this section, state the two convergence theorems of

the chain to the stationary distribution: the convergence by LLN and, under stronger

conditions, the convergence in total variation norm.

Convergence by LLN

Under the following conditions [Robert and Casella, 2004]: if the chain is Harris-recurrent,

with invariant measure π, then the following convergence theorem can be proved, with any
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integrable function f where we want to estimate the expectation

lim
N→∞

1

N

∑
f(Xi) =

∫
π(x)f(x)dx, ∀X0, a.s. by LLN (2.51)

(Harris-recurrence is a stronger property than that of recurrence mentioned earlier in the

section, the main concept anyway remains that whatever the initial condition of the chain, we

will end up in a set A having positive measure an infinite number of time as N →∞ [Robert

and Casella, 2004]). Formula (2.51) states that, given the conditions stated, no matter the

initial condition X0, the chain will converge by the Law of Large Numbers to the stationary

distribution π, for all π-integrable functions. We can see the similarities in the results of

equation (2.51) with equation (2.5) which was stating LLN in the general Monte Carlo case

of samples that are independent from each other: formula (2.51) states a similar result in the

setting of MCMC where samples have a dependence via the Markov property (2.38).

Ergodicity and convergence in total variation norm

We start by defining an additional property of the chain which will be auxiliary in the

formulation of the convergence. We define a periodic chain Xn which cyclically returns in

the same states: mathematically, Xn is periodic with period d if there are non empty disjoint

sets A0...Ad−1 s.t.

K(x,Aj) = 1, for j = i+ 1(mod d), ∀i s.t. x ∈ Ai (2.52)

If the conditions of (2.52) are not met, then Xn is aperiodic. We can now state the follow-

ing conditions of convergence [Robert and Casella, 2004]: if the chain is Harris-recurrent,

aperiodic with invariant measure π, then there is convergence of the chain to the stationary

distribution π, whatever the initial distribution µ:

lim
n→∞

∣∣∣∣∣∣∣∣ ∫
A

kn(x, ·)µ(x)− π
∣∣∣∣∣∣∣∣
TV

(2.53)

Where kn is the transition kernel applied n times introduced in (2.47), and the total variation

norm is

||µ1(A)− µ2(A)||TV = sup
A
|µ1(A)− µ2(A)| (2.54)

Formula (2.53) states ergodicity. In MCMC, ergodicity ensures that, as the number of

steps n→∞, the distribution of the samples generated by the chain converges to the target

distribution, regardless of the starting point: over time, the chain will explore the entire

space in a way that is in accordance to the target distribution.
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2.4.6 Metropolis-Hastings algorithm

We now need a way to take advantage of the properties of the chain outlined in the previ-

ous sections, and build chains that converge to a stationary distribution of our choice: the

Metropolis-Hastings algorithm (MH) [Metropolis et al., 1953, Hastings, 1970] has been

built with this purpose. Suppose we want to approximate drawing samples from a target

distribution π and we want to do so using MCMC. The MH algorithm allows us to approxi-

mate drawing samples from π using an auxiliary distribution g, named proposal distribution.

We build the transition kernel k in three steps in the following way:

1. draw samples from the proposal g: X∗n ∼ g(·|Xn)

2. calculate the acceptance ratio α(X∗n|Xn) = π(X∗n)g(Xn|X∗n)
π(Xn)g(X∗n|Xn)

3. we draw from the uniform distribution u ∼ Unif[0, 1], if u ≤ α we have Xn+1 = X∗n,

otherwise Xn+1 = Xn

The kernel k built with the three-step procedure outlined above can be synthesised as follows:

k(Xn, Xn+1) = α(X∗n|xn)g(X∗n|xn) + 1{x∗n=xn}

[
1−

∫
α(s|xn)g(s|xn)ds

]
(2.55)

It can be demonstrated [Johansen and Evers, 2007, Robert and Casella, 2004] that the kernel

(2.55) satisfies the reversibility condition (2.50) and therefore, as explained in Section 2.4.4,

π is the invariant distribution of the chain. If the proposal g is chosen so that the whole space

is covered, the chain is also recurrent, and we are therefore in the conditions for convergence

by LLN of equation (2.51).

2.4.7 Gibbs Sampling

Gibbs Sampling [Geman and Geman, 1984] is a Markov Chain Monte Carlo (MCMC) method

which can prove particularly useful in some high-dimensional settings, especially when the

conditional distributions of the posterior are easy to draw from. The method can be mixed

with others that we have already introduced producing hybrid methods. We will here be

giving briefly some technical details of Gibbs sampling.

Gibbs Sampler Algorithm

If we consider a set of parameters in our state space θ = {θ1, θ2, . . . , θn},the Gibbs sampler is

no different from other Monte Carlo methods in that it approximates the sampling from the

posterior distribution p(θ) = p(θ1, θ2, . . . , θn). And like MCMC described in Section 2.4,the

Gibbs method produces samples that are not independent, in fact the algorithm iteratively

samples from a sequence of conditional distributions of the components i of the state space.

The Gibbs Sampling algorithm can be summarized in the following steps:
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1. Initialization: Choose an initial state for the parameters θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
n ).

2. Iterative Sampling: For each iteration t = 1, 2, . . . , T :

(a) Sample θ
(t)
1 from P (θ1|θ(t−1)

2 , . . . , θ
(t−1)
n )

(b) Sample θ
(t)
2 from P (θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
n )

(c) Continue this process for each i with i ≤ n

3. Samples: At the end of each iteration t we will have a new sample θ(t) = (θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
n ).

4. Stop condition: As described for MCMC in 2.4, the stop condition of the algorithm

can be decided after a large enough number of iterations, for example after a predeter-

mined ESS is reached (see Section 2.4.8 for ESS)

Theoretical Foundation

The Gibbs sampler is a special case of Metropolis-Hastings, where the proposal is chosen

to be the full conditional on some subset of variables (keeping the others fixed). Plugging

this into the acceptance probability gives the Gibbs sampler. It is easy to demonstrate, for

example, that under mild conditions on p it is possible to have Harris recurrence on the

Gibbs sampler [Tierney, 1994] and therefore the results on total variation norm convergence

described in Section 2.4.5.

2.4.8 ESS for MCMC

In Section 2.3.2 we have introduced the Effective Sample Size (ESS) in the case of Im-

portance Sampling, as a measure of the approximation resulting from drawing samples from

a proposal distribution. In IS, the ESS gives an approximate information of how many iid

samples from the target a set of points from the proposal is worth.

In MCMC there is a similar approximation (see for example chapter 11 of [Gelman et al.,

2013]):

ESS(X) =
N

1 + 2
∑∞

k=1 ρk(X)
(2.56)

Where N is the number of posterior samples, ρk is the autocorrelation at lag k, and X

is the vector of chain samples. The infinite sum at the denominator is usually given a

truncation based on some criterion, for example at k∗ where ρk∗(X) < 0.05. The ESS of

(2.56) approximately describes how many iid samples from the posterior the chain X is

equivalent. We have introduced a similar measure with the same name with the Importance

Sampling ESS in Section 2.3.2. As in the case of IS, for MCMC as well we have ESS ≤ N .

It will appear obvious that in the MCMC case the ESS is linked to the autocorrelation of the

chain, if we think that in the ideal case independent samples would have no correlation, and

therefore we want to have a measure of “distance” from the ideal case. The ESS is therefore
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a useful, if approximate, measure and can also be used as a stop condition when running

the chain, i.e. for example terminating the MCMC run when a predetermined ESS has been

reached.

2.4.9 MultiESS

In addition to the ESS of Section 2.4.8, we have another measure in MCMC named multiESS

[Vats et al., 2019]. In case of multivariate samples in a chain, multiESS can give an idea of

the overall quality of samples, like the ESS. While the ESS can give a measure of the quality

of samples for a single component, the multiESS takes into consideration the covariance of

the various elements, and therefore gives a measure for the overall multivariate chain. The

multiESS formula is as per below [Vats et al., 2019]

multiESS = N

(
|Λ|
|Σ|

)−d
(2.57)

where

• N is the number of samples in the chain;

• Λ is the variance of the posterior;

• Σ is the variance of the N samples;

• d is the dimension of the state space.

2.5 Annealed Importance Sampling (AIS)

We will, in this section, introduce a Monte Carlo method named Annealed importance

Sampling (AIS). Like the other methods introduced so far, the AIS is used for approxi-

mately drawing from a target distribution, in particular the AIS can be seen as an enhance-

ment [Neal, 1998] to the Importance Sampling and MCMC techniques introduced in Sections

2.3 and 2.4, and we will see later in this section that it combines the two (MCMC and IS).

Annealed Importance Sampling allows us to move from an initial tractable distribution to a

target distribution of interest, which is intractable or difficult to draw from.

2.5.1 Annealed Importance Sampling vs Importance Sampling

We have seen in Section 2.3 that an important measure for IS is the Effective Sample Size

(ESS), a quantity that provides us with a measure of how close the IS process is to an ideal

situation where we can draw directly from the target distribution. In a nice study on the

topic of dimension and computational cost in IS [Agapiou et al., 2017] it is shown that the

ESS is related to the chi square distance of the proposal from the target, named ρ in the
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paper, and although the exact definition of ρ is outside the scope of this chapter (please see

Section 2.2 of [Agapiou et al., 2017] for the full definition), we report one of the formulae

from the paper:

ESS ≈ N

ρ
(2.58)

Equation (2.58) indicates that if the distance ρ of the proposal from the target is increased,

we’ll have to use a larger number of samples N in order to keep the ESS constant. And

comparing (2.58) with (2.35) we understand that the factor driving the variance of the im-

portance weights is the distance between the target and the proposal. Also in [Agapiou

et al., 2017] it has been shown that, in some reference scenarios, the number of importance

samples N has to be increased exponentially as the dimension of the state space increases,

to keep the ESS at a predefined level. Therefore the approximation of the target given by

the IS method in general deteriorates exponentially with the dimension. It has to be noted

that the “curse of dimensionality” for IS, does not always automatically happen, as there

may be cases where the intrinsic dimension of a system is less than the nominal dimension

(one example would be for over-parametrised systems), we discuss quite extensively the topic

in Chapter 4 where we introduce active subspaces [Constantine, 2015], we expect in these

scenarios that the number of particles to keep a predetermined ESS will be given mainly by

the dimensionality of the subspace, which is relatively constant, and will not therefore be

subject to the curse of dimensionality.

Aside from the particular cases, IS is therefore affected negatively (at an exponential

rate) by high dimensions. In contrast, it has been shown that [Beskos et al., 2011] [Beskos

et al., 2014] sequential Monte Carlo methods like AIS and Sequential Monte Carlo (SMC,

introduced later in Section 2.6), scale polynomially as the dimension d of the state space

grows large. In particular it has been shown [Beskos et al., 2011] [Beskos et al., 2014] that it

is possible to find an approximation s.t. the ESS remains at a predetermined level at a cost

O(Nd2), where N is the number of particles and d the dimension of the state space. AIS,

as we will explain later in this section, uses intermediate distributions: to bridge the gap

between proposal and target, it creates proposals that are progressively closer to the target.

The O(Nd2) cost of performing AIS (or SMC) comes from[Beskos et al., 2011, 2014]:

• The number of intermediate distributions between target and proposal is O(d)

• For each intermediate distribution, the cost of a MCMC iteration performed in a state

space of dimension d is O(d) as we explain in Section 4.5

And performing the two operations above for each of the N particles brings the cost of

O(Nd2).

Another reason why AIS will, in general, work better than IS is in those cases where the

target distribution exhibits isolated modes, especially if some important modes are found

only rarely.
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2.5.2 Annealed Importance Sampling vs MCMC

AIS will also in general work better than MCMC in the case of isolated modes, in fact when

MCMC is used in cases of complex multi-modal distributions it will shift very infrequently

among modes, therefore showing high autocorrelation and a tendency to stabilize only after

an extended time duration [Neal, 1998]. The AIS, allowing to gradually approach the desired

distribution of interest by making use of interpolating distributions, is an approach to avoid

this.

2.5.3 The AIS algorithm

We proceed with the description of the algorithm. We state again that the aim of the AIS

algorithm [Neal, 1998] is, as all other Monte Carlo methods, to approximate the drawing of

samples from a target distribution of interest: let’s call this normalised target distribution

πn, and fn the associated un-normalised version (in the rest of the section we will use either

or both π and f with indexes e.g. πj and fj for normalised and un-normalised distributions).

AIS makes use of the methods of IS and MCMC, in fact it will use intermediate proposal

distributions to draw from, and will make use of MCMC to move between the intermediate

steps. The algorithm starts by sampling from an initial proposal distribution that we call f0

(or, as said, π0), often a candidate for this proposal is the prior [Neal, 1998]. As said, the AIS

moves from the initial distribution to the target fn with intermediate target distributions fj

fj(x) = fn(x)β(j)f0(x)1−β(j), j = 1, 2, ..N, 0 ≤ β(j) ≤ 1 (2.59)

We start the algorithm with β(j) = 0 and therefore with f0 and we arrive in the last step

to the target fn with β(j) = 1. In the particular case where we use the prior as a starting

distribution, expressing the posterior fn as prior times likelihood as in the standard Bayesian

set-up (2.3) we have:

fn(x) = f0(x)l(x) (2.60)

where, in (2.60), f0 is the prior, and l is the likelihood. In this case, using equation (2.60) in

(2.59), we have that

fj(x) = f0(x)l(x)β(j), j = 1, 2, ..N, 0 ≤ β(j) ≤ 1 (2.61)
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If we indicate with πi the normalized probability distribution associated with each fi, the

algorithm, as described in Section 2 of [Neal, 1998], is as follows

step 0) x0 ∼ π0

step 1) MCMC step targeting π1, resulting in x1

step 2) MCMC step targeting π2, resulting in x2

...

step n) MCMC step targeting πn, resulting in xn

(2.62)

Where, in (2.62), the MCMC moves of the intermediate steps are performed, as explained

in Section 2.4.1, using Markov kernels ki(xi−1, xi) (for example with Metropolis-Hastings

2.4.6). Explaining the algorithm more in detail:

0. in step 0 we draw x0 from the starting proposal distribution, by assumption easy to

draw from (for example the prior) π0

1. in step 1 we apply a Markov kernel k(x0, x1) with stationary distribution π1 of (2.59),

that allows us to move in the state space and, using the results seen in the MCMC

Section 2.4, this means that we approximate drawing x1 from the distribution π1

2. similarly to what we did in the previous step, we move towards π2 and we draw x2 from

the distribution π2

... ...

n. in the last step we approximate drawing a sample xn from the target density πn

Repeating the procedure, say, N times and taking each time the last sample of the procedure

(the xn), the algorithm (2.62) produces samples x
(i)
n , i = 1, 2, ...N that are drawn from the

target distribution πn, with approximations that we will discuss in the remainder of the

section. Like Importance Sampling, each particle x
(i)
n has a weight that accounts for not

directly drawing from the target πn, we will see that the expression of the weight of each

particle is as follows (please note that the super index i indicating the particle has been

omitted for brevity in the following formula for the fj and, in addition, we are using fj

instead of πj, this is possible because it can be shown [Neal, 1998] that normalising constants

cancel out in ratios):

w(i) =
f1(x0)

f0(x0)

f2(x1)

f1(x1)
...

fn(xn−1)

fn−1(xn−1)
(2.63)

Before explaining how it is obtained mathematically, we can see from its expression that

(2.63) is made up by products of importance weights: each factor
fj+1(xj)

fj(xj)
is, as seen in (2.17),

the ratio of the target over the proposal, in fact each fj, by construction, is the proposal

for the fj+1, and these intermediate steps allow, compared to IS, a smoother transition from
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the proposal to the target, in fact, by tuning β(j) of equation (2.59), it is possible to have

proposals that are closer to the targets, allowing for greater efficiency of the intermediate IS

steps. From formula (2.63) we can also appreciate a major advantage of weighted particle

systems: if we start from w(i) = f1(x0)
f0(x0)

where the target is f1, a simple reweight operation

w(i) f2(x1)
f1(x1)

will shift the target to f2 [Chopin, 2002]. The validity of (2.63) can be shown [Neal,

1998] using the results we have already obtained in Section 2.3 for IS and 2.4 for MCMC. In

fact, if we consider an extended state space (x0, ...xn), with a joint distribution:

f(x0, ...xn) = fn(xn)k̃n−1(xn, xn−1)...k̃0(x1, x0) (2.64)

Where k̃j are backward transition kernels. We have that the marginal for xn of equation

(2.64) is the density we are looking to draw from (the target distribution). The k̃j, as

said, are backward transition kernels associated to the MCMC moves of (2.62), and can be

calculated by using the detailed balance condition of MCMC of (2.50):

k̃j(x, x
′) =

kj(x
′, x)pj(x

′)

pj(x)
(2.65)

By rewriting equation (2.64) as

f(x0, ...xn) = fn(xn)
fn−1(xn)

fn−1(xn)
k̃n−1(xn, xn−1)...

f1(x0)

f1(x0)
k̃0(x1, x0) =

kn−1(xn−1, xn)
fn(xn)

fn−1(xn)
...k0(x0, x1)

f1(x0)

f0(x0)
f1(x1)

(2.66)

If we take a look at the proposal distribution g of the procedure (2.62), starting from the first

step x0 ∼ p0 and considering all the subsequent applications of Markov kernels k(xj, xj+1),

it has the form:

g(x0, ...xn) = f0(x0)k0(x0, x1)...kn−1(xn−1, xn) (2.67)

Therefore, the AIS can be see as a multi-step importance sampler, and the expression of the

weight for the whole importance sampling process, as seen in (2.17), is

w(i) =
f(x0, ...xn)

g(x0, ...xn)
=
f1(x0)

f0(x0)

f2(x1)

f1(x1)
...

fn(xn−1)

fn−1(xn−1)
(2.68)

And (2.68) brings the result (2.63), which proves our case. Since, as we saw in the steps

of (2.62), at each step xj ∼ fj and therefore the function fj becomes the proposal for the

next step fj+1(xj), all the rules that apply to importance sampling choice of proposal hold

(please see Section 2.3). The choice of the proposal, as in importance sampling, is critical for

the success of the algorithm, and we will see in later sections for example in the application

to complex posterior distributions such as for phylogenetic analysis of genetic sequences in

Chapter 3 that in non-trivial cases smooth transitions between functions, i.e. small steps in
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the exponent β of formula (2.59), are needed to have an acceptable ESS.

2.6 Sequential Monte Carlo (SMC)

Sequential Monte Carlo (SMC) methods are a collection of techniques used to approx-

imate a target distribution [Del Moral and Doucet, 2003]. Like the AIS methods described

in Section 2.5, SMC uses IS and a sequence of proposals to approximate intermediate target

functions, with the aim to create a set of particles that approximate a distribution of interest,

in general not easy to draw from.

SMC vs AIS

A difference of SMC wrt AIS lies in that SMC uses a technique called resampling to account

for the fact that with the increase of algorithmic time the importance weights have a tendency

to degenerate (see for example Section 14.3.3 of [Robert and Casella, 2004]), meaning that it

is possible to end up, after a few iterations, with a significant number of particle having small

weight. We’ll explain in next Section 2.6.1 how resampling helps rejuvenating the current

set of particles, although at the trade-off of impoverishing the diversity of the set.

A second difference with AIS, is that we will see in the relevant Section 2.6.2, the SMC

also uses a Markov kernel, like AIS: in SMC the kernel can be a generic Markov kernel,

whereas in AIS, as described in Section 2.5, there is specifically a MCMC kernel.

It can be said that AIS is a subset of SMC, that has no resampling and uses MCMC

kernel.

2.6.1 Resampling

The resampling involves sampling with replacement from the current set of particles according

to their weights. Mathematically, the resampling can be described as follows:

• We have a set of N particles {x(i)}Ni=1 with associated normalized weights {w(i)}Ni=1

• The resampling step will generates a new set of particles {x(i)
r }Ni=1 such that each x

(i)
r

is a copy of x(j) with probability proportional to w(j)

• After resampling we rename {x(i)
r }Ni=1 as {x(i)}Ni=1 (so this become our current set of

particles) and all weights are reset: w(i) = 1
N
, i = 1, 2...N .

Resampling addresses the problem of avoiding degeneracy in the particle population. At the

same time, resampling introduces variance, and a technique usually employed is to resample

only when the ESS drops below a given threshold (for example when the effective sample

size drops below 50% of the number of particles N) [Del Moral and Doucet, 2003].
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2.6.2 The SMC algorithm

As said in the introduction, the Sequential Monte Carlo (SMC) [Del Moral and Doucet,

2003] algorithm will have many commonalities with the AIS seen in Section 2.5. We will,

similarly to Section 2.5, make use of consecutive “neighbouring” distributions, i.e. distribu-

tions that are not too different (we will give more precise definition below) one from another

so that the proposals and the target distributions, at each step, are sufficiently close. The

starting point is, as in the common Monte Carlo methods, that we are willing to draw sam-

ples from a target distribution πn. We proceed through intermediate targets as in equation

(2.59), and at each step the previous target becomes the proposal for the next target. We

proceed in steps, similar to (2.62), we start by drawing from an initial distribution π0 easy

to draw from, it can for example be the prior (in which case the expressions simplify as in

equations (2.60) and (2.61)), and we go on constructing the first steps as done in (2.62). We

repeat here for simplicity equation (2.59), using the same symbolism with fj not-normalised

version of πj

fj(x) = fn(x)β(j)f0(x)1−β(j), j = 1, 2, ..N, 0 ≤ β(j) ≤ 1 (2.69)

As we know, we start the algorithm with β(j) = 0 and therefore with f0 and we arrive in

the last step to the target fn with β(j) = 1. And, in case we use the prior as distribution

f0, we have some significant simplification in the formula which becomes (see also (2.60) and

(2.61))

fj(x) = f0(x)l(x)β(j), j = 1, 2, ..N, 0 ≤ β(j) ≤ 1 (2.70)

We present here the SMC version that makes use of resampling of the particles, we will

explain further in the section what this implies. The steps of the SMC algorithm follow

[Del Moral and Doucet, 2003], we use capital W for normalised weights, and w for the

un-normalised weights:

step 0) x0 ∼ π0

step 1) use kernel to move from π0 to π1, resulting in x1

(2.71)

0. initialise the iteration variable, say n, to n = 0. We draw x0 ∼ π0 from the starting

proposal distribution π0 (for example we could choose the prior), by assumption easy

to draw from, and set the weights initially to 1
N

1. we use the drawn particles as an importance sampler proposal (see Section 2.3) for π1

of equation (2.59), and we have a weight update of w
(i)
0 = 1

N
f1(x0)
f0(x0)

, this update reflects

the weight of particles after the drawing process. We then normalise the weights to

W
(i)
0

2. resampling step (technically resampling does not normally need to happen at every

step, see further Section 2.6.3 for more details) we resample the particles according
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to their normalised weight, so the bigger the normalised weight the more the particle

will have a chance to be chosen in this resampling process: this resampling step allows

us to eliminate particles where the proposal weakly represent the posterior, and will

replicate particles where there is a strong representation of the posterior, all particles

after resampling will again have weights of W
(i)
0 = 1

N

3. Update the iteration variable n = n + 1, so if before we were at stage 0 now we have

n = 1. We wish to use the points of the state space obtained from the previous drawing

done in step 0, for the next step. To do so, we need to move in the state space, so

we apply a Markov kernel k1(x0, x1), that allows us to move from x0 to x1 in the state

space. The distribution of the drawn points after the application of the Markov kernel

is f̃1(x1) =
∫
f0(x0)k1(x0, x1)dx0, we update the weights with w

(i)
1 = W

(i)
0

f1(x1)

f̃1(x1)

we see, from the last step in the above procedure, that the weight update in the last step is

w
(i)
1 = W

(i)
0

f1(x1)

f̃1(x1)
= w

(i)
0

f1(x1)∫
f0(x0)k1(x0, x1)dx0

(2.72)

Since it is not easy, in general, to calculate
∫
f0(x0)k1(x0, x1)dx1, we rewrite the fraction in

the RHS of (2.72) so that it can be expressed in non-integral form; we do so by writing the

numerator f1(x1), for some L(x1, x0)

f1(x1) =

∫
f1(x1)L0(x1, x0)dx0 (2.73)

Where, in (2.73), the L(x1, x0) is a backward kernel, built so that f1(x1) is the x1-marginal

of the joint distribution f1(x1)L(x1, x0). Equation (2.72) now becomes

w
(i)
1 = W

(i)
0

∫
f1(x1)L0(x1, x0)dx0∫
f0(x0)k1(x0, x1)dx0

(2.74)

Instead of marginalising, we write the contribution in the RHS of (2.74) using the joint

distributions

w
(i)
1 = W

(i)
0

f1(x1)L0(x1, x0)

f0(x0)k1(x0, x1)
(2.75)

Since we can choose L0(x1, x0) of (2.75) at will (as long as equation (2.73) holds), we can

choose L s.t.

f1(x1)L0(x1, x0) = f1(x0)k(x0, x1) (2.76)

We can notice that for example the condition in (2.76) is satisfied if k is a MCMC kernel with

invariant distribution π1, since (2.76) would in that case be the expression of the detailed

balance condition of equation (2.50). By substituting (2.76) in equation (2.72) we have

w
(i)
1 = W

(i)
0

f1(x0)

f0(x0)
(2.77)
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We then normalise the weights of (2.77) to W
(i)
1

W
(i)
1 =

w
(i)
1∑
iw

(i)
1

(2.78)

And by repeating the steps 2 and 3 of the algorithm outlined above, we resample, if it is the

case, for example we can perform the conditional resampling step, fixing α indicating the

fraction of particles N to check degeneracy

ESS ≤ α ·N , α ∈ ]0, 1[ (2.79)

If condition (2.79) is true, we perform the resampling as shown in Section 2.6.1, and we end

up with

W
(i)
1 =

1

N
, i = 1, 2...N (2.80)

Therefore, at this point, W
(i)
1 will be either equal to (2.78) if no resample has taken place

(condition (2.79) false) or to equation (2.80) if resample has indeed taken place (condition

(2.79) true)

In the next step we move in the state space from x1 to x2 using a Markov kernel k2(x1, x2)

having f2 of (2.59) as a target, and, with a procedure similar to the one that has brought us

from equation (2.72) to (2.77), we have that

w
(i)
2 = W

(i)
1

f2(x1)

f1(x1)
(2.81)

And, generalising (2.81), the un-normalised weight update component at each generic step j

is

w
(i)
j = W

(i)
j−1

fj(xj−1)

fj−1(xj−1)
(2.82)

Where, in equation (2.82), W
(i)
j−1 will either be equal to 1

N
, if the weight update comes after

a resample, or to the normalised weight of w
(i)
j if there has been no resample (please see

equations (2.77), (2.78), (2.79), (2.80) and (2.81) where the process is described in detail

with indexes j = 1 and j = 2).

It is to be noted that, if no resampling is employed in the SMC algorithm (equivalently

if (2.79) was always false), the full equation of the weight update becomes

w
(i)
j =

fj(xj−1)

fj−1(xj−1)
...
f2(x1)

f1(x1)

f1(x0)

f0(x0)
w

(i)
0 (2.83)

And we see that equation (2.83) is the same of the AIS case of equation (2.68), which confirms

that AIS is a subset of SMC where no resampling is employed.
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2.6.3 Conditional Effective Sample Size (CESS)

We have seen, in Section 2.6, that one of the steps of the SMC algorithm consists in resampling

the particles according to their weight. One naive way to apply the algorithm would be to

perform the resampling at each iteration, but each resampling adds to the variance of weights

[Zhou et al., 2013] and ultimately, remembering that the Effective Sample Size (ESS) we

mentioned in Section 2.3.2 is a measure of performance of the estimator and depends on the

variance of the weights, we understand that an increase in variance of the weights would

bring a worse estimator. A better way to perform the resampling step in SMC is to do so

adaptively, for example only when the ESS falls below a certain threshold, this would reduce

the number of times resampling occurs.

As we have spoken (see for example in the IS Section 2.3), the better the choice of a

proposal for a target distribution, the better the performance of a IS estimator. In SMC

algorithm we are moving from an initial distribution, say the prior, to the posterior, through

a series of intermediate distribution (2.70), where at each step of the tempering process, the

current distribution acts de-facto as a IS proposal for the next, and in [Zhou et al., 2013]

a quantity is shown, named Conditional Effective Sample Size (CESS), that helps

determine in automatic way the next best tempering exponent of (2.70), so that the ESS,

calculated on the new tempering, remains high. We report below the formula of CESS (for

full technical details see for example algorithm 4 in [Zhou et al., 2013])

CESS(Wt−1, wt) =

(
N∑
j=1

W
(j)
t−1w

(j)
t

)2/ N∑
k=1

W
(k)
t−1

(
w

(k)
t

)2

, (2.84)

The correct value of CESS helps ensure that the convergence of the SMC algorithm from

the initial distribution to the posterior happens keeping enough diversity of particles by

controlling the weight update through the annealing exponent. CESS of (2.84) and ESS

become equivalent if resampling is done at every iteration. Otherwise ESS will contain

the information of the discrepancy of the current iteration approximation versus the target,

whereas CESS will contain information on the quality of the current IS step [Amaya et al.,

2022]. It is considered a good choice [Amaya et al., 2021] as a threshold of CESS so that
CESS
N

is close to 1. In practical terms, fixing a predefined CESS value brings to automatic

choices of the next tempering exponent. The “perfect” choice of CESS will anyway depend

on implementation as choosing a high CESS threshold will normally result in more tempering

steps and therefore longer runs of the algorithm, therefore a trade-off will have to be made,

depending on the application [Amaya et al., 2021]. In our algorithms we have chosen CESS
N

=

0.9.
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2.7 Pseudo-marginals in MCMC

We have described in Section 2.4 the MCMC and the Metropolis Hastings (MH) algorithm,

and in particular, we report here again the formulation of the acceptance ratio of MH

α(X∗n|Xn) =
p(X∗n)l(X∗n)g(Xn|X∗n)

p(Xn)l(Xn)g(X∗n|Xn)
(2.85)

With g in (2.85) the proposal distribution, p as usual the prior, and l the likelihood.

There are cases where the likelihood l of (2.85) is non-tractable or not convenient to

calculate, and it could be useful to introduce in the algorithm an estimate of the likelihood.

Assuming that the state space can be partitioned into two sets of variables and expressing

the likelihood as

l = l(a, i) (2.86)

and the prior as

p = pi(i|a)pa(a) (2.87)

we name l̂(a) the estimate of the a marginal, so that (2.85) becomes

α(a∗n|an) =
pa(a

∗
n)l̂(a∗n)ga(an|a∗n)

pa(an)l̂(an)ga(a∗n|an)
(2.88)

Of course, having made a change in the original MCMC, we need a justification, mainly to

understand if and how the change of using (2.88) instead of (2.85) as MH ratio, affects the

convergence of MCMC.

It has been shown in [Beaumont, 2003, Andrieu and Roberts, 2009] that as long as the

estimate l̂ is unbiased, and so E[l̂(a)] = l(a), the conditions of convergence for MCMC covered

in Section 2.4 are still valid. It is to be noted that the variance of l̂ will affect the efficiency

of the MCMC algorithm [Beaumont, 2003, Andrieu and Roberts, 2009]. This will be clear

by looking at equation (2.88), and considering, for example, that a higher variance of l̂(a)

will normally imply a higher variance of the ratio α of (2.88). It is shown that the variance

of the pseudo-marginal is greater or equal of the exact marginal [Andrieu and Vihola, 2015].

2.7.1 GIMH pseudomarginal algorithm

Different algorithms are described in [Beaumont, 2003, Andrieu and Roberts, 2009], we give

here a short description of the one we will use in the sections on Active Subspaces (AS),

i.e. Chapters 4 and subsequent, named GIMH (Grouped Independence Metropolis-Hastings).

Let’s suppose that we have a likelihood dependent on two set of variables a and i as in (2.86),

and that we are interested in an approximation of the likelihood where the i part of (2.86) is

marginalised out, and so we take Ni samples of i from a proposal distribution q and we get,
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via Importance Sampling (see Section 2.3) the estimate

l̂(a) =
1

Ni

Ni∑
n=1

l(a, in)

q(in)
(2.89)

Equation 2.89 approximates, in the Monte Carlo sense, the marginal l(a) =
∫
l(a, i)di and

this is the reason behind the name pseudo-marginal for the estimate of the likelihood. We

know that Importance Sampling produces unbiased estimates (see Section 2.3), and therefore

the estimate of likelihood l̂(a) of (2.89) can be used in equation (2.88), keeping the MCMC

theoretical conditions for convergence intact.

2.8 Particle MCMC

With the same spirit of Section 2.7, where we have introduced an unbiased estimate of the

likelihood via Importance Sampling, to be used in the Metropolis Hastings ratio of MCMC

instead of the original likelihood, with particle MCMC we use an unbiased estimate of

the likelihood generated using SMC. The idea is described in [Andrieu et al., 2010], and

the demonstration uses additional auxiliary variables, and then shows that the pMCMC

algorithm is actually an MCMC on an extended space, and that the intended target is

obtained as a marginal of the extended one. Compared to the pseudo-marginal of Section 2.7

which uses Importance Sampling (IS), we expect particle MCMC to perform better in cases

where SMC performs better than IS: for example in likelihood estimates in high-dimension,

or also in cases of isolated modes: SMC will, in general, deal better than IS in those cases

when there is a “distance” in some sense between the proposal and the posterior.

We will give a short description of the algorithms of [Andrieu et al., 2010] that we have used.

2.8.1 Particle Marginal Metropolis-Hastings (PMMH)

We assume again a partition of the state space like in equations (2.86) and (2.87). The central

idea of the algorithm Particle Marginal Metropolis-Hastings (PMMH) described in

[Andrieu et al., 2010] is to obtain an estimate of the likelihood by running an SMC Sampler

[Del Moral and Doucet, 2003] at every step of an outer MCMC algorithm. We report below

the main steps, as usual l is the likelihood, p is the prior, q is the MCMC proposal:
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Alg. 1 Particle Marginal Metropolis-Hastings (PMMH)[Andrieu et al., 2010]

1: Initialize a(0) and estimate l̂(a(0)) using SMC
2: for k = 1 to K do . start MCMC iteration
3: Propose a∗ from q(a∗|a(k−1))
4: Run SMC with a∗ to estimate l̂(a∗)

5: Calculate acceptance probability α(a(k−1), a∗) = min
(

1, pa(a∗)l̂(a∗)q(a(k−1)|a∗)
pa(a(k−1))l̂(a(k−1))q(a∗|a(k−1))

)
6: With probability α, accept a∗ and set a(k) = a∗

7: Otherwise, retain a(k−1)

8: end for . end MCMC iteration

2.8.2 Metropolis within Particle Gibbs (MwPG)

Metropolis within Particle Gibbs (MwPG) is a version of particle MCMC that com-

bines Gibbs sampling together with an SMC Sampler update. Considering a partition of

the state space like in equations (2.86) and (2.87), unlike PMMH of Section 2.8.1 where an

estimate of the likelihood was calculated with a marginalization through an SMC sampler,

in MwPG we are interested in a conditional update. Gibbs sampling can be particularly

useful, as we have seen in Section 2.4.7, for example when the conditional distribution of the

posterior is easy to draw from. We will be using a variant of MwPG in Active Subspaces

(sections 4 and subsequent).

We will give here a description of the version of PG algorithm similar to the one we have

used in the Active Subspaces.

Survivor particle path in MwPG

The basic idea of PG is to use an outer MCMC performing Gibbs sampling at each iteration

t, by firstly updating the i|a, and then obtaining an update of the survivor path a
(t)
1:T . We’ll

dedicate some attention to the conditioning on the path. That some conditioning appears in

the SMC part of MwPG was to be expected, as the SMC estimate is part of an outer Gibbs

MCMC, and Gibbs uses conditional updates: in the case of MwPG the correct theoretical

framework is ensured by keeping the SMC algorithm conditioned to a particular

path [Andrieu et al., 2010] (in Algorithm 2 it is the path of particle N of the SMC, sampled

on line 16), this special particle path is a guaranteed survivor throughout the SMC

algorithm, in fact the path a
(t−1)
1:T is guaranteed not to be eliminated by resampling until the

end of the execution of the SMC algorithm of time t (from lines 6 to 15 of Algorithm 2): the

new reference path updated at time t, a
(t)
1:T , is only sampled at the end of the SMC algorithm

execution (line 16 of Algorithm 2).
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MwPG algorithm

Alg. 2 Particle Gibbs Sampler

1: Initialize i(0) and a
(0)
1:T (a

(0)
1:T will be path of particle N in the SMC algorithm)

2: for k = 1 to K do . Start MCMC iteration
3: Sample i∗ from q(·|i(k−1), a

(k−1)
1:T )

4: Perform an update of i|a
5: Sample N − 1 points a

(i)
0 and set w

(i)
0 = 1

N
for i = 1, ...N − 1 . SMC init

6: for t = 1 to T do . Start SMC tempering loop
7: for i = 1 to N − 1 do

8: Update weight w
(i)
t = w

(i)
t−1

l1:t(i(k),a
(i)
t−1)

l1:t−1(i(k),a
(i)
t−1)

.

9: end for

10: Normalize weights w
(i)
t obtaining W

(i)
t =

w
(i)
t∑
i w

(i)
t

11: Resample particles with replacement according to weights W
(i)
t if degeneracy occur

12: for i = 1 to N − 1 do
13: Perform MH update on a

(i)
t−1 to obtain a

(i)
t

14: end for
15: end for . End SMC tempering loop
16: Select path of particle N to a

(k)
1:T according to W

(i)
t

17: end for . End MCMC iteration

Some auxiliary notes on Algorithm 2: we see a reference to T , which is the final time-step

of tempering in the SMC algorithm (see Section 2.6), for simplicity we will assume here that

the tempering path is fixed for all the iterations, and assume N fixed as number of particles

in the SMC algorithm. Comments in the algorithm are in italics.

2.9 SMC2

The SMC2 algorithm [Chopin et al., 2012] uses a particle MCMC inside an outer SMC

algorithm. In a way we can see the SMC2 as an advancement of PMMH, where instead of

an outer MCMC we have a SMC. The proofs of convergence of the algorithms can be found

in [Chopin et al., 2012], and use a common technique of augmenting the number of variables

and then showing that the algorithm performs an SMC on the augmented space targeting

a distribution that has the original intended target as marginal. Below a summary of the

algorithm in its basic form
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Alg. 3 SMC2 Algorithm

1: Initialize θm from prior p(θ) for m = 1, . . . , Nθ

2: Set initial weights ωm0 = 1/Nθ for all m
3: Set ESS threshold α
4: Set number of internal SMC particles Nx

5: for t = 1 to T do . Start outer SMC tempering loop
6: for all θm do
7: Run internal SMC Sampler with Nx particles to estimate incremental likelihood
l̂(yt|y1:t−1, θ

m)
8: end for
9: Update weights ωmt = ωmt−1 · l̂(yt|y1:t−1, θ

m)

10: Normalize weights Wm
t =

ωmt∑Nθ
n=1 ω

n
t

11: if ESS < α then . Resampling criterion
12: Resample θm particles based on weights Wm

t

13: Set Wm
t = 1/Nθ

14: end if
15: for all θm do . MCMC rejuvenation step
16: Perform MCMC step on θm to obtain θm∗

17: Set θm = θm∗

18: end for
19: end for . End outer SMC tempering loop

While in general the number of particles Nx of the internal SMC of Algorithm 3 is fixed

throughout all the internal SMC steps, it is discussed in [Chopin et al., 2012] the case for

adaptation of the number of particles Nx within the steps of the algorithm. Such possibility

is interesting both on the methodological side and on the practical side, we will be discussing

such extension of the algorithm more in depth when discussing Active Subspaces, in Chapter

4 and subsequent.
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Chapter 3

Models of genetic evolution

3.1 Introduction

The recent outbreak of COVID-19 [Wu et al., 2020] has underscored the importance of anal-

ysis in understanding the spread and evolution of infectious diseases, in particular through

the study of mutations and relationships among the various strains of viruses spreading

in different time periods and different geographical locations. Phylogenetic analysis, at its

core, involves the study of the evolutionary relationships among biological species, typically

through the analysis of genetic sequences, for example DNA or RNA, which are coded via

sequences of nucleotides. By examining these genetic sequences, scientists can infer the ge-

nealogy and evolutionary history of organisms, and how the different species have diverged

and evolved over time, and these relationships are often expressed via phylogenetic trees. As

an introductory visually appealing example, borrowed from [Hou et al., 2022], we can see

below in Figure 3.1, an instance of a phylogenetic tree:
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Figure 3.1: Visually appealing example of phylogenetic tree, borrowed from [Hou et al.,
2022]. The different species are the plants pictured on the RHS of the figure, the lines that
combine the different species until reaching a common ancestor (core Chiorophyta on the
bottom LHS), represent genetic lineage relationships. The points where the lines combine,
represent the moments in past time when different species started to diverge from the same
lineage.

In Figure 3.1,

• The plants pictured on the RHS of the figure are different species

• The lines on the that combine the different species until reaching a common ancestor

(core Chiorophyta on the bottom LHS), represent genetic lineage relationships

• The points where the lines combine, represent the moments in past time when different

species started to diverge from the same lineage

Commonly, phylogenetic trees like the one pictured in Figure 3.1 are translated into a format

that algorithms can act upon. Several software can be used for the representation, for example

in Figure 3.2 we see the screenshot of a software tool named FigTree [Rambaut, 2023], which
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is used for phylogenetic trees analysis and will be introduced later in the chapter. Although

(possibly) less visually appealing than Figure 3.1, Figure 3.2 shows the reconstruction of a

phylogenetic tree with 7 sequences (the 7 tips of the tree named t0 to t7 which can be found

on the RHS of the picture), the lines representing the lineages (in Figure 3.2 we can see the

estimated times reported on the lineages lines), and the points when two species merge in a

single branch of the tree, these are called coalescence times

Figure 3.2: The Figtree software [Rambaut, 2023], useful to visualize and get statistical
information on phylogenetic trees. We can see the tips on the right hand side numbered t0 to
t7 which represent the genetic sequences that are the starting point of the analysis (the whole
tree is inferred starting from these sequences). The points where two branches merge into one
are called coalescence times.

The task of Bayesian inference in phylogenetics is, at its core, to find the posterior distribu-

tion over genealogies g, given genetic sequences data y. This chapter will give an introduction

of phylogenetics, of the relevant studies on Bayesian statistics applied to phylogenetics and of

some of the most commonly used software tools. A few traditional studies are considered im-

portant in the field. The Wright-Fisher model has been produced in a famous study [Wright,

1931, Fisher, 1930], it provides a basic but functional framework for describing genetic evo-

lution, we describe the model in Section 3.2.3. The coalescent is a prior distribution on trees

[Kingman, 1982] that we will use in the following sections, we describe the coalescent theory

in Section 3.3. The likelihood used in our analysis is the Felsenstein’s likelihood [Felsenstein,

1981], a formula which evaluates trees given the input genetic sequences, we describe the

Felsenstein’s likelihood in Section 3.6.
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Existing Methods and Software

Probably one of the most famous statistical software tool available for Bayesian phylogenetic

analysis is named Bayesian Evolutionary Analysis by Sampling Trees, in short BEAST

[Drummond and Rambaut, 2007, Drummond et al., 2012], and, born successively as a de-

velopment branch, BEAST2 [Bouckaert et al., 2019]. Both software have been developed

by researchers, and offer tools for the solution of many real-world research problems. We

will in Section 3.8 give a bit of introduction to BEAST and BEAST2. For our research we

have used BEAST2 only, and therefore the main focus will be about this platform. BEAST2

uses MCMC as its main MC sampling method [Bouckaert et al., 2019]. We describe in some

detail BEAST2 software environment in Section 3.9.

Contribution: implementation of Annealed Adaptive SMC in BEAST2

MCMC, which is the native Monte Carlo method in BEAST2, is commonly used for the

exploration of the parameter space in phylogenetics [Bouckaert et al., 2019]. We have im-

plemented annealed importance sampling (AIS) and sequential Monte Carlo (SMC) in the

BEAST2 software platform. The implementation in a platform that is widely used for phylo-

genetics allows for a direct comparison of algorithm performance, both from a statistical and

from a computational point of view. Although we have developed our work independently,

our implementation in BEAST2 can be said to integrate all the various algorithms of [Wang

et al., 2019] in BEAST2 environment, in particular the results we report here are for the

most advanced of the algorithm mentioned in [Wang et al., 2019], i.e. the Annealed Adaptive

SMC. The results obtained from our implementation, discussed in detail in Section 3.12,

demonstrate that our Annealed Adaptive SMC algorithm achieves performance comparable

to the native MCMC method of BEAST2 in terms of both statistical accuracy and compu-

tational efficiency. To our knowledge, this is the first implementation in BEAST2 of a SMC

algorithm. One of the advantages of the SMC method is that we have been able to achieve

similar performances to the MCMC by using far fewer output samples, if we pick the 10

taxa example we discuss in Section 3.14, our SMC implementation has used 1000 particles,

resulting in as many output samples, that can be used, for example, to compute expecta-

tions. In the native MCMC of BEAST2, in the set up to achieve similar number of likelihood

evaluations, 350000 iterations have been used, resulting in as many output samples, with sig-

nificant additional computational time if we want to compute expectations, compared to the

SMC case, especially for information-dense objects as trees. We assume that, with growing

number of leaves, the difference will probably be even more remarkable.

It has required a non trivial amount of work to integrate the algorithms in a complex

platform like BEAST2, we see the equivalence in statistical results with the native BEAST2

MCMC as a first step, and future tuning of the algorithm and of the integration within

BEAST2 can improve the results.
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3.2 Modelling genetic evolution

The main goal of population genetics and of phylogenetics (we explain the differences between

the two in Section 3.2.2) “is to infer the past history of populations and describe the evolu-

tionary forces that have shaped their genetic variations” [Tataru et al., 2017]. The current

section will give a short introduction.

3.2.1 DNA

DNA is packaged into chromosomes. Taking as example the human species, there are 46

chromosomes situated in the cells nuclei, 23 pairs, one of each chromosome is inherited by

each parent. Genes are sections of the chromosome situated in so-called loci, each gene is

responsible for a trait, for example hair colour. Different variations of the same gene are

called alleles. The expression of different alleles of the same gene will result in different

characteristics, for example a different colour of hair, say brown or blonde [Alberts et al.,

2002].

3.2.2 Population genetics vs phylogenetics

As introduced at the beginning of Section 3.2, there can be many causes of genetic changes,

just to shortlist some [Tataru et al., 2017]:

• random drift: changes due to chance;

• mutations: errors in the replication of DNA;

• selection: mutations that are more advantageous and become more likely to be passed

to the following generations.

Population genetics has usually the time-scale of a single generation [Tataru et al., 2017],

and the goal is to understand evolution of allele frequencies within the same generation,

which is done for example using the Wright-Fisher model, introduced in Section 3.2.3.

Phylogenetics time-scale is usually longer and cross-generations [Tataru et al., 2017], and

the aim is usually to infer the coalescent times of different species [Tataru et al., 2017]. Such

task is accomplished for example by the coalescent model, introduced in Section 3.3.

Of course the above subdivision between population genetics and phylogenetics is to be taken

as a reference and differences between the two can be blurred [Tataru et al., 2017]. In the rest

of the work we will most of the times, for ease of notation, refer to phylogenetics, meaning

either analysis related to population genetics or phylogenetics, therefore both for single and

multi-generational data or a combination of the two, and the relative time-scale will be clear

from the context.
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3.2.3 The Wright-Fisher model

The Wright-Fisher model [Wright, 1931, Fisher, 1930] describes changes in allele frequencies.

It assumes random sampling (i.e. if we consider two successive generations we can randomly

assign parents from the generation before) and a constant population size [Tataru et al.,

2017]. Assuming population size N (as we said it is a constant of the model), we describe

below a diploid (i.e. with two sets of chromosomes, one coming from each parent) model

of individuals and we see the basic laws behind changes in allele frequencies. Let’s assume

for the example that we have two alleles AA and AB, only subject to random drift (as

said the model is reasonable for short timescales). We provide below two slightly different

derivations of the Wright-Fisher, one with probability given by allele frequency, the other

with probability given by the population size.

Mathematical derivation with probability given by allele frequency

We use the description and the same notation of [Tataru et al., 2017]. We want to express

a time relationship for the frequency of the alleles [Tataru et al., 2017], so let r be the

generation indicator and let z(r) be the number of individuals that have, say, the allele AA

in generation r. The proportion within the population N is therefore

x(r) =
z(r)

N
(3.1)

Keeping the population N constant, we use a binomial for the conditional distribution of z

in the following generation [Tataru et al., 2017]

z(r + 1)|z(r) ∼ Bin(N, x(r)) (3.2)

Expressing the probability we have

P ([z(r + 1)|z(r)] = k) =

(
N

k

)(
z(r)

N

)k(
1− z(r)

N

)N−k
(3.3)

And, plugging (3.1) into (3.2), we have that the mean and variance of the binomial (3.2) are

as follows [Tataru et al., 2017]:

E[x(r + 1)|x(r)] = x(r) (3.4)

V ar[x(r + 1)|x(r)] =
1

N
x(r)(1− x(r)) (3.5)

By iterating the two expressions we have that [Tataru et al., 2017]:

E[x(r + 1)|x(0)] = x(0) (3.6)
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V ar[x(r + 1)|x(0)] = x(0)(1− x(0))

(
1−

(
1− 1

N

)r)
(3.7)

And, for big N we can use the approximation [Tataru et al., 2017]

V ar[x(r + 1)|x(0)] ≈ x(0)(1− x(0))

(
1−

(
1− e−t

))
(3.8)

where t in (3.8) is

t(r,N) =
r

N
(3.9)

We can see from (3.9) that in the Wright-Fisher we can estimate the population size N only

if the generation r is known, otherwise we can only have an estimate of the combined t(r,N)

of (3.9), that we can name generation time [Tataru et al., 2017, Drummond et al., 2002].

From equations (3.4) and (3.5) we can see that there are two equilibria:

1. x(r) = 0, when in a generation we reach zero number of individuals with the specific

allele, this causes the expected value for the following generations to be zero as well,

with zero variance, so the particular allele is extinct;

2. x(r) = N , i.e. all the individuals have the allele, and in the future generations all

individuals will have the allele as well, with zero variance, we have full spread of the

allele.

The above conclusion brings us to say that, under the conditions of the model, if a certain

alelle has small frequency, it is more likely to disappear after a few generations, as it is more

likely to reach the equilibrium x(r + n) = 0 for some n, whereas if it has a frequency close

to 1 (nearly all the population has the allele), it is more likely to reach the equilibrium point

x(r+n) = N for some n, i.e. all the population will end up having the specific allele [Tataru

et al., 2017].

Mathematical derivation with probability given by the population size

We report here also a slightly different mathematical derivation of the Wright-Fisher model

from [Hein et al., 2004], as we will use some of the results in the following sections on

coalescent theory. In the same setting as the previous section, we consider the frequency of

the allele in the generation r + 1 distributed binomially

x(r + 1) ∼ Bin(N, p) (3.10)

In the case of (3.10), differently from equation (3.2), the probability parameter of the binomial

is inversely proportional to the population size

p =
1

N
(3.11)
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Expressing the binomial probability in full we have

P (x(r + 1) = k) =

(
N

k

)(
1

N

)k(
1− 1

N

)N−k
(3.12)

For N large P (x(r + 1) = k) of equation (3.12) becomes Poisson distributed [Hein et al.,

2004]

P (x(r + 1)) ≈ e−1

k!
(3.13)

Using (3.13), we see that the probability that a particular allele has no expression in the next

generation is

P (x(r + 1) = 0) ≈ e−1 ≈ 0.37 (3.14)

And therefore, from the result of (3.14), the probability of at least one expression of the allele

is approximately

P (x(r + 1) 6= 0) ≈ 1− e−1 ≈ 0.63 (3.15)

Extending the result of (3.15) at t generations in the future, considering the independence

of the events, as per hypotheses of the Wright-Fisher model expressed at the beginning of

Section 3.2.3, we see that

P (x(r + t) 6= 0) ≈ (1− e−1)t ≈ (0.63)t (3.16)

And so, under the hypotheses of the model, after a few generations only a few lineages

contribute to the current population [Hein et al., 2004], in fact, taking as an example a

population size of N = 10000, after t = 15 generations, a number of approximately 10

lineages will have contributed to the current allele population

10000(0.63)15 ≈ 10 (3.17)

The remaining 10000 − 10 = 9990 lineages that, in the example given, were present 15

generations ago, will not have survived [Hein et al., 2004].

3.3 Standard coalescent

From the simple version of the Wright-Fisher model described in Section 3.2.3, where we

introduced probabilities concerning different versions of a gene, we move on to the problem

of estimating coalescent times of genetic changes and derive the coalescent model [Kingman,

1982, Drummond et al., 2002]. A very clear explanation of the coalescent is in [Drummond

et al., 2002] and [Drummond and Bouckaert, 2015], from where we took the derivation and

symbols.
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3.3.1 Coalescent of a sample of two different genes

In the same setting of the Wright-Fisher model of Section 3.2.3, i.e. a constant population

size of N , discrete generation and full mixing of individuals, we want to infer the distribution

of the coalescent times of two genes in a population of size N . Assuming that both genes

are sampled at the same time t = 0 we will be going backwards in the estimation of the

time when they had a common ancestor. Therefore, considering discrete generations we

want to calculate the probability that two genes had the Most Recent Common Ancestor

(MRCA) j generations back, we see in Figure 3.3 a graphical representation of a sample case

of population size N = 4 and of a coalescent event happening j generations in the past

Figure 3.3: Example of coalescent event of two genes, named in the figure t1 and t2, out
of a population of N = 4. The coalescent event, as described in the paragraph, happens j
generations in the past. The diagram has been created using the package graphviz.

Therefore we have to express the probability that the two genes don’t have a common

ancestor in the previous j − 1 generations and they do have a common ancestor in the jth

generation: since sampling in different generations is independent of each other, and given

the probability 1
N

that they have a common ancestor in any generation (and therefore 1− 1
N

that they don’t), the time of MRCA is distributed as follows [Hein et al., 2004] :

Pr (TMRCA = j) =
1

N

(
1− 1

N

)j−1

(3.18)

From equation (3.18) we can see that the time to the common ancestor is geometrically

distributed with parameter 1
N

. Equation (3.18) is derived, under the same assumptions of

the Wright-Fisher model, from equation (3.10): the geometric distribution of (3.18) comes

from the binomial (3.10) where we focus on the number of “failures” (i.e. the number of

generations where there is no coalescent event) until the first “success” (the coalescent event

of two samples). Using the properties of the geometric distribution in (3.18), we can calculate
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the expected TMRCA

E (TMRCA) =
1
1
N

= N (3.19)

We see, in equation (3.19), that a bigger population size N means an equally bigger average

time to the common ancestor.

3.3.2 Coalescent of a sample of k different genes

We can further expand the expression for two different genes found in equation (3.18), to the

general case of k different genes in a population of N . Under the same conditions explained

in the Section 3.3.1, if, in starting generation at t = 0, out of a population of N , k ≤ N

individuals have different genes, the probability that in the previous generation they don’t

have a common ancestor is [Drummond and Bouckaert, 2015]:

Pr (TMRCA 6= 1) =

(
N − 1

N

)(
N − 2

N

)
...

(
N − k + 1

N

)
=

1− k (k − 1)

2N
+O

(
1

N2

) (3.20)

Please note in equation (3.20), as explained before, that times, in the coalescent model are

counted backwards, therefore TMRCA = 1 is one generation back. Since we assume that the

population N is significantly larger than k, the term O( 1
N2 ) in (3.20) can be neglected and

therefore the probability of no coalescent events in the previous generation becomes:

Pr (TMRCA 6= 1) ≈ 1− k (k − 1)

2N
(3.21)

And therefore

Pr (TMRCA = 1) = 1− Pr (TMRCA 6= 1) ≈ k (k − 1)

2N
=

(
k

2

)
1

N
(3.22)

And, similar to what we derived in equation (3.18), the probability that two genes out of k

different genes in a population of N have a common ancestor j generations back, is given

by the probability of no common ancestor for j − 1 generations, i.e. equation (3.21) applied

j − 1 times, and then a common ancestor, i.e. equation (3.22), applied once:

Pr (TMRCA = j) =

(
k (k − 1)

2N

)(
1− k (k − 1)

2N

)j−1

(3.23)

3.3.3 The continuous time coalescent

Symbols and derivation have been taken from [Drummond and Bouckaert, 2015]. In the

Wright-Fisher model introduced in one of its simplest versions in Section 3.2.3 and expanded

with equation (3.23), the time is assumed discrete and indicates the number of generations.
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Firstly we can notice that, by scaling the time by a factor of N [Hein et al., 2004] we have

that:

tj =
j

N
(3.24)

Using the time as in (3.24) allows us to express the results independently from the population

size N . It can be shown that [Hein et al., 2004], using the time-scale transformation of

equation (3.24) and the assumption that the population size is much bigger than the number

of samples N � k, the geometric distribution converges to an exponential distribution, and

in fact it is shown in [Kingman, 1982] that as N grows the coalescent process converges to a

continuous-time process [Drummond and Bouckaert, 2015]

Pr (TMRCA = j) =

(
k (k − 1)

2N

)(
1− k (k − 1)

2N

)j−1
N�k−−−→ λ exp−λj (3.25)

with the rate of the exponential distribution given by

λ =
k (k − 1)

2N
(3.26)

Equation (3.25) gives us the distribution of coalescent times in continuous time. Rewriting

(3.25), and using τ to express the time instead of the discrete j, we have that the density

expressing the probability that two lineages out of k coalesce at time τ is given by:

Pr (TMRCA = τ) = exp−
k(k−1)τ

2N = exp−(k2)
τ
N (3.27)

The expected value of (3.27), and therefore the average first coalescent time when we have

k different lineages and a population size of N , using the properties of the exponential

distribution, is 1
λ
, i.e., using equation (3.26).

E (τ |k,N) =
2N

k(k − 1)
(3.28)

So, using equation (3.27), if we want to express the density for all the times so that all the k

different samples arrive to a unique common ancestor, considering that, as per hypotheses,

the generations are not overlapping, there is complete mixing of the population, and that

the population size is constant, due to independence, we multiply the probabilities of the

occurrences [Heled and Drummond, 2008]:

f (τ0,... τk|N) ∝
k−1∏
i=1

1

N
exp−

ki(ki−1)τi
2N (3.29)

where, in equation (3.29), the ki express the number of different samples at each coalescent

event, so for example if we start the analysis with k = 5 samples (lineages), at the first

coalescent event we will have k1 = 5, then, since two of the lineages will have merged, in
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the second coalescent event we have k2 = 5− 2 = 3 lineages, etc, for a number of coalescent

events equal to k − 1 to arrive to the common ancestor of all.

3.4 Substitution model

Substitution models describe genetic variations. The simplest measure of distance between

two sequences with same length l, and which differ in h sites, is the so called Hamming

distance [Drummond and Bouckaert, 2015]:

dH =
h

l
(3.30)

The alphabet of possible nucleotides in a genetic sequence is relatively small with just four

nucleotides {A,G,C, T} (in RNA we have U in place of T ). Bases may undergo multiple

recombinations, therefore the Hamming distance usually underestimates the actual genetic

distance, and more complex mathematical models have been developed to correct the formula.

The Jukes-Cantor model provides the following correction to the Hamming distance

dJC = −3

4
ln

(
1− 4

3
dH

)
(3.31)

where dH is the Hamming distance of (3.30). Equation (3.30) assumes that the nucleotides

have equally likely transitions among them, and that their equilibrium frequencies are all the

same. The transitions among the four nucleotides are described as continuous time Markov

process, using a transition matrix [Drummond and Bouckaert, 2015]

Q =


qAA qAC qAG qAT

qCA qCC qCG qCT

qGA qGC qGG qGT

qTA qTC qTG qTT

 (3.32)

While all the non-diagonal elements are non negative and represent the rates of transition

between two nucleotides, the element in the diagonal are negative and represent the total

flow out of each state towards all other nucleotides. If we use variables i and j to indicate

two generic nucleotides, the diagonal element of (3.32) are

qii = −
∑
j 6=i

qij (3.33)

therefore, the total rate of change per site per unit time is [Drummond and Bouckaert, 2015]

µ = −
∑
i

πiqii (3.34)
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It is possible to give transitional probabilities through the following [Drummond and Bouck-

aert, 2015]

P (t) = exp(Qt) (3.35)

where Q is the matrix (3.32). We will see in Section 3.4.1 the expression of the substitution

formulae for the Jukes Cantor.

3.4.1 Jukes Cantor

In Jukes Cantor [Jukes and Cantor, 1969] all nucleotide transitions have equal probabilities.

The transition matrix (3.32) has the form below of equation (3.36) (it’s a normalised version

where the expected mutation rate µ = −
∑

i πiq̂ii = 1)

Q =


−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1

 (3.36)

By using the Q matrix of (3.36) and the P (t) = exp(Qt) relationship, we end up with the

following transition probability matrix [Drummond and Bouckaert, 2015]:

pii(dJC) =
1

4
+

3

4
exp(−4

3
dJC) (3.37)

pij(dJC) =
1

4
− 1

4
exp(−4

3
dJC) (3.38)

Where dJC is the genetic distance of equation (3.31). All the entries of (3.37) tend to 1
4

as

dJC grows.

3.5 Estimation of parameters in the coalescent

We will in this section derive a probability distribution of coalescent times in a phylogenetic

tree, we take symbols and derivation from [Drummond et al., 2002] and [Drummond and

Bouckaert, 2015]. In a tree with N leaves there will be 2N − 1 coalescent events to arrive

to a common ancestor. Considering formula (3.27) which expressed the probability of one

pair coalescing from k lineages, and taking into account what we already did in equation

(3.29), we can express in the more general case of having coalescent times ti with i ∈ Y ,

the probability distribution of the independent coalescent events, as explained in detail for

example in [Drummond et al., 2002] from which we borrow the notation

f(g|θ) =
∏
i∈Y

1

θ
exp

(
−
(
ki
2

)
θ
ti

)
(3.39)
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where g in (3.39) is the tree and will be defined below in equation (3.41), θ is a quantity

named effective population size, and is related to the population size N via a conversion

factor ρ used for time conversions [Drummond et al., 2002]

θ = Nρ (3.40)

We did a similar operation to (3.40) of multiplying quantities related to population size and

time in equation (3.24), and the concept is similar in (3.40) [Drummond et al., 2002]. To

express what (3.39) means, let’s say we have N leaf nodes (genetic sequences), with fixed

ages ti, each i ∈ I corresponding to an individual leaf. Define tY as the coalescent times, and

let the edge < i, j > with i > j be the lineage involving nodes i and j, then if Eg is the edge

set [Drummond et al., 2002]

g = (Eg, tY ) (3.41)

Equation (3.41) represents a realization of a coalescent process, given the leaf nodes and the

times tI (remember each i ∈ I represents an individual and its associated time). We define

the set of trees as Γ = (Eg, tY ), as explained in [Drummond et al., 2002], the integration of

Γ is wrt dg = dtN+1...dt2N−1, i.e., with the exception of the tI times of the N tree leaves.

The tree g of (3.41) is characterised by the following distribution (recall equation (3.39) and

(3.27)) [Drummond et al., 2002]:

fG(g|θ) =
1

θN−1

2N−1∏
i=2

exp

(
−
(
ki
2

)
θ

(ti − ti− 1)

)
(3.42)

Formula (3.42) becomes the coalescent prior that will be used in the expression of the pos-

terior in Section 3.7, for a detailed derivation of (3.42) please refer to [Drummond et al.,

2002], we give here a brief explanation of some key parts: the product in (3.42) comes from

the independence of events in forming the coalescent events at times ti, ki represents the

branches between ti−1 and ti, and the expression in the exponential comes from combina-

torics considering that the number of possibilities to form a coalescent event from 2 out of

the ki branches is
(
k
2

)
[Drummond et al., 2002].

3.6 Felsenstein’s likelihood

As we know by now, in a Bayesian problem setting formulation, remembering Bayes formula

that we expressed in equation (2.3) at the very beginning of this work, we have that the

posterior distribution π of a set of parameters θ conditional to the a set of observations

y is given by the prior p(θ) multiplied by the likelihood l(y|θ). In the case of phylogenetic

analysis, a traditional choice for the likelihood l is the Felsenstein’s likelihood [Felsenstein,

1981] and represents the probability of having the observed genetic data, conditioned on

the parameters which include the substitution model (discussed in Section 3.4) and the
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phylogenetic tree structure (as seen in Section 3.5). The Felsenstein’s likelihood can be

expressed as [Felsenstein, 1981]:

(3.43)F (D|g,Q, µ) =
∑
DY ∈D

∏
<i,j>∈Eg

L∏
k=1

[
exp (Qµ(ti − tj))

]
si,ksj,k

Where, in (3.43), Eg is the set of edges of the tree, as expressed in (3.41), D is the data

and DY the data relative to internal edges, whereas Q (transition matrix) and µ (mutation

rate) are parameters of the substitution model, as seen in Section 3.4 (in particular equations

(3.32) and (3.34) respectively).

Explanation of the terms in the expression of the Felsenstein’s likelihood

Digging a bit more into the terms of (3.43), the inner exponential term represents the prob-

ability of transitioning from nucleotide si,k at node i to nucleotide sj,k in node j, given the

substitution model expressed by Q and µ, and ti− tj represents the coalescent time between

i and j (therefore the length of the section of the tree between the two nodes i and j), there

is a product in k which is extended over the length L of the genetic sequence, which repre-

sents the product of probabilities of each single site, and this is due to independence, in fact

one of the assumptions of the Felsenstein likelihood is that transitions in each site happen

independently of each other. Then moving out in the formula (3.43) we see a product in

< i, j >∈ Eg, and as explained in the previous sentence, i and j are two nodes connected

by an edge, therefore < i, j > represents an edge in the set Eg (as seen in equation (3.41)),

and therefore the product is over all edges of the tree. Moving finally to the outer summa-

tion over all the possible realizations DY of internal states, given the DNA sequences at the

tips D, that is to be considered like the discrete version of an integral over the state space

of all possible realizations of internal states of the tree DY , which ensures all the possible

combinations are considered.

3.7 Full expression of the posterior

Continuing from the previous sections 3.3, 3.4, 3.5 and 3.6, we can express the full posterior

for our phylogenetic analysis as

Posterior(θ, g,Ω|D) = P (θ)Pc(g|θ)F (D|g,Ω) (3.44)

Where, in equation (3.44), the following are the parameters:

• θ is the effective population size, as seen in equation (3.40) of Section 3.5, and can be

expressed as a product of effective population size and a parameter ρ that represents

the conversion of coalescent times in calendar units, as explained in Section 3.5
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• g = {Eg, t} is the tree, with the set of edges < i, j >∈ R and t the coalescent times

(see equation (3.41))

• Ω = Ω(Q,µ) includes parameters of the substitution model, and the mutation rate,

as seen in equation (3.32) for the expression of Q, and in equation (3.34) for µ

And, in equation (3.44), the following is the explanation of the terms:

• P (θ) is the prior on the population size. For our simulations we have chosen a expo-

nential distribution

• Pc(g|θ) is the coalescent prior, as expressed in equation (3.42)

• F (D|g,Ω) is the Felsenstein’s likelihood of equation (3.43)

Using all the above information together, and in accordance with [Bouckaert and Lockhart,

2015], we can be expressed the posterior (3.44) as

Post(θ, g,Ω|D) ∝ λ exp (−λθ) 1

θN−1

2N−1∏
i=2

exp

(
−
(
ki
2

)
θ

(ti − ti− 1)

)
·

·
∑
DY ∈D

∏
<ii,j>∈Eg

L∏
k=1

[
exp (Qµ(tii − tj))

]
sii,ksj,k

(3.45)

Equations (3.43) (and consequently (3.44) and (3.45)) assumes that the mutation rate µ

be constant across all sites, which is often not the case (see for example [Bouckaert and

Lockhart, 2015]). As explained in [Bouckaert and Lockhart, 2015] and [Yang, 1994], good

results have been obtained by assuming that the mutation rate µ varies across sites according

to a gamma distribution Γ(α, 1
α

), in this case the Felsenstein likelihood of equation (3.43)

can be expressed as

(3.46)F (D|g,Ω, α) =
L∏
k=1

∫ ∞
0

Γ(α,
1

α
)

( ∑
DY ∈D

∏
<i,j>∈Eg

L∏
k=1

[
exp (Qr(ti − tj))

]
si,ksj,k

)
dr

Although it is common to approximate the integral of equation (3.46) with a sum over KΓ

categories, and in such case equation (3.46) becomes

(3.47)F (D|g,Ω, α) =
L∏
k=1

KΓ∑
c=1

( ∑
DY ∈D

∏
<i,j>∈Eg

[
exp (Qrc(α)(ti − tj))

]
si,ksj,k

)
Therefore in this latter case of using a Γ-distributed mutation rate µ, an additional prior is

needed in equation (3.44), to account for the shape α of the Γ(α, 1
α

) distribution, therefore,

ultimately, the full expression of the posterior, formerly in equation (3.44), is updated as

follows

Posterior(θ, g,Ω, α|D) = P (θ)Pα(α)Pc(g|N)F (D|g,Ω, α) (3.48)

Where, in (3.48), Pα(α) represents the prior for the parameter α which determines the shape

of the additional Γ distribution
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3.8 Some history of software for phylogenetics: from

BEAST to BEAST2

A group of researchers in the field of phylogenetics created a software named Bayesian

Evolutionary Analysis Sampling Trees, or with its acronym BEAST, [Drummond and

Rambaut, 2007, Drummond et al., 2012] and a community around it. Mixing knowledge in

software engineering, phylogenetics and statistics, they have been able to create a software

platform to enable researchers to solve real-world phylogenetic problems, for example like

the one in the format of Section 3.7, in a Bayesian framework. As the size of the software

project grew over the years, some in the community felt the need to create a second branch

of work, naming the new software BEAST2 [Bouckaert et al., 2019], to indicate clearly

that it was born from BEAST. One of the main developments that BEAST2 brought was

in terms of application of software engineering principles, bringing more modularity, better

scalability and management of packages and features additions [Bouckaert et al., 2019]. To

our knowledge, both BEAST and BEAST2 continue to exist and are updated independently.

We have developed our work entirely in BEAST2, and will therefore from now on only

concentrate and discuss the BEAST2 platform.

3.9 Introduction to BEAST2 software: BEAUTI and

BEAST2

We will in this section give an overview of BEAST2. For a full description of the software

please refer to [Bouckaert et al., 2019], we will give here only a brief introduction of the

parts useful to our work. Two of the software components that we have used in the BEAST2

package are the software BEAUTI, used to create configuration files, and the main software

BEAST2 which runs a MCMC analysis based on the input configuration files created by

BEAUTI.

3.9.1 BEAUTI: build configuration files

The software BEAUTI takes as input taxa data files, i.e. files that have genetic sequences

of species on which the analysis will be performed, these are to be considered the data of our

Bayesian problem, the leaves of the coalescent tree. The following is an extract of a sample

input file for BEAUTI with sequences from three species (the nucleotides sequences have all

been cut to a length of 20 for easiness of representation): Tarsius syrichta, Lemur catta and

Homo sapiens

#NEXUS

begin data;
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dimensions ntax=3;

format datatype=dna interleave=no gap=-;

matrix

Tarsius_syrichta AAGTTTCATTGGAGCCACCA...

Lemur_catta AAGCTTCATAGGAGCAACC...

Homo_sapiens AAGCTTCACCGGCGCAGTC...

;

end;

The software BEAUTI allows to select the Bayesian model settings such as the priors to

be used, and parameters of the substitution model (see Sections 3.3 and subsequent), and

also auxiliary parameters such as the desired number of MCMC iterations to be used for the

analysis. The output file of BEAUTI is a xml configuration file which will be fed into the

main software component of the package, named BEAST, which is to be used to perform

the actual Bayesian statistical analysis.

3.9.2 BEAST2: Bayesian inference of phylogeny from sequence

data

The software BEAST2 will take as input the xml configuration file generated by the software

BEAUTI as described in the previous Section 3.9.1. The xml file will contain such informa-

tion as the input nucleotide sequences representing the data of our problem. The software

BEAST2 will perform MCMC analysis on the input data, using the settings provided in the

xml file, and will output MCMC samples, which will approximate a sequence of parameters

of the state space of the posterior. In particular, phylogenetic trees will be part of the state

space (see description of the posterior in Section 3.7) and for trees the samples of the chain

will contain all the internal states (coalescent times and internal sequences) that have been

statistically inferred starting from the input leaves represented by the genetic sequences.

Below an extract from an output file from BEAST2, in particular we can appreciate the

internal representation of a coalescent tree of three taxa (internally named t1, t2 and t3), in

the treeSTATE 0 line below we see the internal representation of the starting position of

the MCMC chain for the tree, the representation format is called Newick (see for example

[Yu, 2022]):

Listing 3.1: Coalescent tree with 3 taxa in BEAST2

Begin t r e e s ;

Trans late

1 t1 ,

2 t2 ,

3 t3

;
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t r e e STATE 0 = ( ( 1 : 0 . 5 6 6 5 , 2 : 0 . 5 6 6 5 ) : 0 . 3 9 9 3 , 3 : 0 . 9 6 5 8 ) : 0 . 0 ;

Internal representation of the coalescent tree

We see in Figure 3.4 below a graphical representation of the three in listing 3.1 with internal

BEAST2 representation treeSTATE 0 = ((1 : 0.5665, 2 : 0.5665) : 0.3993, 3 : 0.9658) : 0.0;:

0.5665 is the time in the past of estimated coalescent between t1 and t2, then after an

additional time of 0.3993 there is an additional coalescent event of t3 with the branch formed

by t1 and t2, until the MRCA, i.e. the estimated Most Common Recent Ancestor of all the

sequences.

Figure 3.4: Example of coalescent tree composed by three taxa, named t1, t2 and t3 in
the figure, corresponding to the internal tree state in the software BEAST2 ((1 : 0.5665, 2 :
0.5665) : 0.3993, 3 : 0.9658) : 0.0;: 0.5665), as described in the paragraph. We know that
coalescent times are to be intended in the past (see Section 3.3), therefore the timescale has
to be intended from the bottom (time of samples) to the top (time in the past until when
the three species had converged into a single ancestor, named MRCA, Most Common Recent
Ancestor). The diagram has been created using the package graphviz.

The output of BEAST2 MCMC runs will be a sequence of trees, like the one represented

in Figure 3.4, plus the MCMC chain of the other components of the state space (of which we

talked about when describing the posterior in Section 3.7)
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3.10 MCMC example with the standard coalescent in

BEAST2

We show now an example of analysis performed on a sample set of 7 taxa using BEAST2.

As explained in Section 3.5, for the standard coalescent model with N sequences, we need to

estimate the following parameters:

• Population size;

• Tree;

• Substitution model;

• Possibly other parameters (for example the shape of the Gamma distribution for equa-

tions (3.46) or (3.48));

Through the configuration software BEAUTI, introduced in Section 3.9.1, we set the config-

uration of the model, and in particular choose the priors, and for the parameters above we

have chosen the priors as follows

• Population size: exponential prior with mean 0.33;

• Tree: coalescent prior with constant population size;

• Substitution model: Jukes Cantor 69, introduced in Section 3.4.1, will be used. As a

reminder, the Jukes Cantor assumes all rates equal for the nucleotides (elements of the

transition matrix (3.36)), and as a consequence assumes equal equilibrium frequencies;

• In addition to the parameters of the substitution model expressed in the previous point,

we also want to account for variability of rates across sites; to model rate variability

we will use a gamma site model with 4 categories, i.e. we use 4 groups representing

4 quantiles for the variability of the gamma shape (see for example [Bouckaert and

Lockhart, 2015]): looking at the discretised equation of the full posterior (3.47), this

means using KΓ = 4.

3.10.1 Results

A run of the standard BEAST2 software has been run on the sample set of 7 taxa introduced

in this section. A run with BEAST2 will produce two main outputs:

• A log file containing the samples of the MCMC chain for the parameters of the state

space, except trees, and in addition other elements such as the values of prior, likelihood

and posterior at each point;
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• A trees file, containing the MCMC chain of the coalescent tree at each iteration of the

MCMC. The internal representation of the tree is as described in Section 3.9.2 (in the

listing 3.1), with nested brackets indicating coalescent events, and with the associated

coalescent times.

3.10.2 Visualization of results for all parameters except coalescent

trees

There are some graphical tools provided by the BEAST2 platform to analyse the results, these

perform the standard set of checks for MCMC like histogram plot with the distribution of

the posterior (also likelihood and prior), and with the single distributions for the parameters

of the state space except the trees. One such a tool is the Tracer, which also provides ESS

estimates of the MCMC runs (as a reminder, ESS for MCMC has been introduced in Section

2.4.8). Below a screenshot of the Tracer, with the posterior of the 7-taxa example discussed

in this section

Figure 3.5: The Tracer, a software part of the software package BEAST2. The software is
capable of displaying parameters relative to the MCMC runs, like estimated distributions and
ESS of the chains.
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3.11 Visualization of results for coalescent trees

It is not easy to visualize a complex object like a coalescent tree. And it is also not immediate

to understand how to measure and estimate convergence in a MCMC chain of coalescent trees

which are in the format shown in Section 3.9.2 (in the listing 3.1).

3.11.1 TreeAnnotator

Firstly, there is a BEAST2 software named TreeAnnotator, which performs Consensus

Tree analysis, which gives information on the uncertainty related to the estimated value of

the coalescent tree.

3.11.2 FigTree

The software FigTree is a freely downloadable software [Rambaut, 2023] which can take

as input the trees MCMC chain and perform some visualization of the samples. Below a

screenshot of the interface

Figure 3.6: The Figtree software [Rambaut, 2023], useful to visualize and get information
on the MCMC chain of trees generated by BEAST2.

3.12 Evaluating the SMC Annealed Adaptive phyloge-

netic vs BEAST2 MCMC

We will, starting in this section, display the results of running the Annealed Adaptive SMC

algorithm we integrated in BEAST2, and compare the performances with the native BEAST2
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MCMC. Firstly, we remind the format of the posterior and we rewrite here, for convenience,

some parts of Section 3.7 where the full posterior was explained. The posterior is as follows

Posterior(θ, g,Ω, α|D) = P (θ)Pα(α)Pc(g|N)F (D|g,Ω, α) (3.49)

Where, in (3.49)

• P (θ) is the prior on the effective population size θ, which in our simulations we have

chosen exponential λ exp (−λθ) with λ = 0.33

• Pα(α) is the prior on the α parameter of the shape of the Γ distributed mutation rate,

which we have chosen to be Γ (3, 2)

• Pc(g|N) is the coalescent prior

1
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2

)
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)

• F (D|g,Ω, α) is the Felsenstein’s likelihood

L∏
k=1

∫ ∞
0

Γ(α,
1

α
)

( ∑
DY ∈D

∏
<i,j>∈Eg

L∏
k=1

[
exp (Qr(ti − tj))

]
si,ksj,k

)
dr (3.50)

a number of 4 categories has been used to approximate the integral of (3.50)

We will therefore present the results of the simulations with respect to the ability of the

algorithms to reconstruct correctly the parameters of the state space:

• α parameter for Γ shape

• population size

• coalescent tree

3.13 Generation of Synthetic Data

To assess the performance of our SMC algorithm, we designed some tests using synthetic data,

so that, by knowing the underlying generation parameters, we could assess the performance

of the algorithms in reconstructing the model.

3.13.1 Synthetic Data Configuration

We generated synthetic data with variable number of sequences using a two-step approach:
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1. Tree Generation: We employed the R library ’ape’ to simulate random coalescent

trees with a specified number of leaves, the output of this process was random coalescent

trees having specified number of leaves.

2. Sequence Evolution: We used the ’seq-gen’ software [Rambaut and Grassly, 1997] to

simulate DNA sequences evolving along these generated trees, according to the evolu-

tion model that we have chosen in advance (we worked therefore backwards, i.e. knowing

what priors and models we would use in BEAST2, we generated data accordingly), the

specific parameters used in ’seq-gen’ were as follows:

• Substitution model: GTR (General Time Reversible)

• Nucleotide frequencies: 0.25 for each base

• Substitution rates: Equal for all possible substitutions

• Gamma shape parameter: 1.0 (moderate among-site rate variation)

• Number of gamma categories: 4

• Sequence length: 1000 nucleotides

The GTR model mentioned above [Tavaré, 1986] is a more general substitution model than

the Jukes Cantor we described earlier in Section 3.4.1, but with the settings above (equal mu-

tation rates and equal equilibrium frequencies) the GTR reduces to Jukes Cantor, therefore,

from the setting above, the sequences have been generated according to the Jukes Cantor

substitution model.

BEAST2 XML Configuration

Accordingly to the settings used for the synthetic data, we generated a BEAST2 XML file

with consistent substitution model and priors. In particular, by looking at the posterior

expression that we outlined in equation (3.49) in Section 3.12 we can spot in the code snippet

below from the BEAST2 xml configuration file some of the parameters configurations

<substModel id=\ t e x t c o l o r {black }{ ‘ ‘}JC69 . s :SimTree ” spec=\ t e x t c o l o r {black }{ ‘ ‘} JukesCantor ”>

< f r e q u e n c i e s>0 .25 0 .25 0 .25 0 .25</ f r e q u e n c i e s>

</ substModel>

<s i teMode l id=\ t e x t c o l o r {black }{ ‘ ‘} SiteModel . s :SimTree ” spec=\ t e x t c o l o r {black }{ ‘ ‘} SiteModel ”

gammaCategoryCount=”4”

shape=”@gammaShape . s :SimTree ”>

<substModel>JC69 . s :SimTree</ substModel>

</ s i teMode l>
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3.14 Data with 10 Taxa

Following the procedure outlined in Section 3.13.1, we have generated a synthetic model with

10 taxa. Additional results for 5 and 20 taxa cases are reported in Appendix A.

Generator tree

The first step has been as described in 3.13.1 to generate a coalescent tree with 10 leaves,

and the tree has been randomly generated as below in Figure 3.7

Figure 3.7: Random coalescent tree with 10 leaves generated using the procedure outlined in
the first part of Section 3.13.1. This has been the generating tree for the synthetic data of the
test described in this section. Visualization via FigTree [Rambaut, 2023]

Generation of synthetic sequences

Using the tree generated in the previous step, synthetic sequences have been generated using

’seq-gen’ program, as explained in Section 3.13.1
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3.15 Annealed Adaptive SMC vs MCMC in BEAST2,

problem set up with 10 Taxa

We have run BEAST2 both with the traditional MCMC algorithm and with our Annealed

Adaptive SMC embedded in BEAST2, and we report here the comparison. A fair comparison

in terms of likelihood evaluations has been kept between the two methods. For the comparison

of results we have used a similar set-up and metrics of [Wang et al., 2019], in fact we have

a number of iterations of MCMC which is comparable with the likelihood evaluations of the

SMC algorithm, given by the number of particle times number of intermediate tempering

steps of the annealing procedure, times the number of MCMC moves per annealing step. So,

considering the comparison fair we report below the results for the various parameters of the

state space.

3.15.1 SMC set up

The SMC has been set up with 1000 particles, and 5 MCMC moves per each annealing step.

The number of annealing steps adaptively determined by the CESS (see Section 2.6.3 for

details on CESS) has been 55, as can be seen in Figure 3.8

Figure 3.8: Annealing steps in the SMC run for the 10-taxa example studied in this section.

Therefore the total number of likelihood evaluation for the algorithm has been 1000 ×
55 × 5 = 275000. The adaptive annealing steps have been determined using CESS with a

threshold of 90%, and resampling of particles is done when ESS falls below 50% of particles,

we can see below in Figure 3.9 the ESS chart related to the SMC run
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Figure 3.9: ESS versus annealing SMC step for the 10-taxa example studied in this section.
Resampling is performed whenever the ESS falls below 50% of particles (1000 particles are
used for the simulation).

3.15.2 MCMC set up

Considering that the total number of likelihood evaluations from the Annealed Adaptive

SMC was 275000, we have used a comparison similar to [Wang et al., 2019] and therefore

we have used a number of MCMC iterations roughly 20% greater than the number of SMC

likelihood evaluations, in our MCMC simulation we have used 350000 iterations.

3.16 Annealed Adaptive SMC vs MCMC in BEAST2:

Results with 10 Taxa

We will report in this section the results for the runs of traditional MCMC and Annealed

Adaptive SMC using BEAST2, the parameters analysed are those composing the state space

of our problem (see Sections 3.7 and 3.13.1):

• Gamma shape parameter

• Effective population size

• Coalescent Tree

3.16.1 Gamma shape

The true value of the gamma shape parameter (i.e. the value with which the data has been

generated) is 1. In both the MCMC and the SMC runs the empirical distributions are rather
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scattered as we can appreciate from Figures 3.10 for MCMC and 3.11 for SMC, and this is

due to the fact that the probability of MCMC moves on the gamma shape parameter has

been kept to the default value that the configuration software BEAUTi (see Section 3.9.1)

gives, and MCMC moves are less likely to happen than moves on effective population size

and trees (as an example, an MCMC move on the gamma shape is 30 times less likely than a

move on the Effective Population Size parameter), therefore the low ESS and the scattered

distributions are a result of this. A better tuning of the frequency of moves should improve

the results.

MCMC results for Gamma shape

The mean of the MCMC run is close to the true value of 1, we can see the full statistics in

the following table. The acronym HPD in table 3.16.1 stands for Highest Posterior Density

Interval, which represents the range within which the parameter falls with 95% probability

given the data.

Statistic Value
Mean 1.1159
Standard Deviation 0.1208
Value Range [0.9516, 1.6006]
95% HPD Interval [0.9516, 1.3179]
Effective Sample Size (ESS) 54

Table 3.1: Statistics for the parameter Gamma shape

And the distribution of the Gamma shape values is in Figure 3.10

Figure 3.10: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Gamma shape with 10 taxa. The values inside the 95% HPD interval shown in
blue and those outside the 95% HPD interval highlighted in gold. Visualization with the
software Tracer.
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Ammealed Adaptive SMC results for Gamma shape

We can see in the table below the statistics for the SMC run, and although the mean is very

close to the true value of 1, from Figure 3.11 we see that these results should be taken with

a pinch of salt, since the particle diversity is not good, future tuning of the frequency of the

moves on this parameter should improve the particle diversity

Statistic Value
Mean 0.9871
Standard Deviation 0.066
Value Range [0.8282, 1.3063]
95% HPD Interval [0.9743, 1.2840]

Table 3.2: Statistics for the parameter Gamma shape

And the distribution of the Gamma shape values is in Figure 3.11

Figure 3.11: Frequency distribution for the parameter Gamma shape with 5 taxa, using
Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization with
python matplotlib.

3.16.2 Effective Population Size

Unlike the Gamma shape parameter, seen in Section 3.16.1, where we had at hand the true

value of the parameter, and that was useful in checking how well MCMC and SMC could

retrieve it, for the Effective Population Size, even if we generated synthetic data, it is not

straightforward to have the true value. In fact, as explained in Section 3.5, we are usually

only able to estimate the product of two terms, the coalescent constant and the Effective
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Population Size. Anyway, keeping this constraint in mind, we report the results of the

analysis in this section.

MCMC results for Effective Population Size

The mean of the MCMC run is 1.73, we can see the full statistics in the following table

Statistic Value
Mean 1.73
Standard Deviation 0.74
Value Range [0.488, 8.205]
95% HPD Interval [0.721, 3.078]
Effective Sample Size (ESS) 1027

Table 3.3: Statistics for the Effective Population Size

And the distribution of the Effective Population Size is in Figure 3.12

Figure 3.12: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Effective Population Size with 10 taxa.The values inside the 95% HPD interval
shown in blue and those outside the 95% HPD interval highlighted in gold. Visualization with
the software Tracer.

Ammealed Adaptive SMC results for Effective Population Size

The statistics for the SMC run are in general better than the MCMC run, we can see a

lower variance for example. And we can see from Figure 3.13, that it has the same peak

of the correspective MCMC Figure 3.12, but in the MCMC case the bigger variance and

right-skewness is causing a slightly higher value of the mean:
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Statistic Value
Mean 1.683
Standard Deviation 0.556
Value Range [0.61, 4.29]
95% HPD Interval [0.81, 2.96]

Table 3.4: Statistics for the Effective Population Size

And the distribution of the Effective Population Size is in Figure 3.13

Figure 3.13: Frequency distribution for the parameter Effective Population Size with 10 taxa,
using Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization
with python matplotlib.

We can also appreciate the SMC algorithm at work by looking at Figure 3.14 below,

showing the evolution of the estimated standard deviation of the population size parameter vs

the annealing step for the parameter Effective Population Size, and we see how the standard

deviation drops significantly through the annealing journey
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Figure 3.14: Evolution of the estimated standard deviation of the population size parameter
vs the annealing step for the parameter Effective Population Size in the SMC algorithm: we
see how the standard deviation drops significantly through the annealing journey.

3.16.3 Tree

For the tree analysis we use a methodology similar to [Wang et al., 2019] and we compare

trees using the majority-rule consensus. So we will have a the consensus-tree, which is a

“summary” tree for the MCMC run and one for the SMC run, and we will compare them

to the generating tree shown in Section 3.14 to assess how each of the two algorithms has

performed. In addition to visualizing the “summary” trees for the two runs, we will also give

a basic topological metric of performance, the Robinson-Foulds (RF) “symmetric difference”

metric [Robinson and Foulds, 1981], which will identify possible topology mismatch with the

reference tree. The consensus tree has been generated using TreeAnnotator and then the

visualization using FigTree. For the SMC algorithm, the particles have been resampled in

order to be able to compare SMC tree samples without the need to consider the particle

weights when building the consensus, for ease of calculation.

MCMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view with

the reference tree of Section 3.14, and we can see from the picture below 3.15 the consensus

tree created with visualization of the 95% confidence range in the coalescent times (see the

comparison with the generator tree of Figure 3.7)
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Figure 3.15: Consensus tree for the MCMC run with visualization of 95% range for coalescent
times. See comparison with the generating tree (which the MCMC run tries to reconstruct)
in Figure 3.7. Consensus tree has been generated with TreeAnnotator and the visualization
is with FigTree (both softwasre from BEAST2 package).

Annealed Adaptive SMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view with

the reference tree of Section 3.14, and we can see from the picture below 3.16 the consensus

tree created with visualization of the 95% confidence range in the coalescent times (see the

comparison with the generator tree of Figure 3.7, and with the MCMC-generated consensus

tree of Figure 3.15)
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Figure 3.16: Consensus tree for the Annealed Adaptive SMC run with visualization of 95%
range for coalescent times. See comparison with the generating tree (which the SMC run
tries to reconstruct) in Figure 3.7, and also with the tree reconstructed using MCMC in
Figure 3.15: we see that the SMC is able to reconstruct the generating tree well and with
a smaller uncertainty (the 95% uncertainty ranges in the coalescent times are in general
smaller compared to the MCMC of Figure 3.15). Consensus tree has been generated with
TreeAnnotator and the visualization is with FigTree (both softwasre from BEAST2 package).

By comparing Figure 3.16 with Figure 3.15 we can see that the SMC algorithm has been

able to reconstruct the generating tree with similar performances to the MCMC algorithm.

We may suppose that as the complexity of the posterior increases (the current examples have

been produced synthetically), the Annealed Adaptive SMC will outperform the MCMC for

the reasons outlined in sections 2.5 and 2.6, namely that Annealed SMC navigates better

than MCMC in complex distributions. On the other hand MCMC is often simpler and more

efficient for exploring posteriors that are not highly multimodal or complex.

3.17 Conclusion

In this section we have shown how we successfully integrated a Sequential Monte Carlo

algorithm into the BEAST2 platform. Although we have developed our work independently

from [Wang et al., 2019], our implementation in BEAST2 can be said to implement all the

various algorithms of [Wang et al., 2019] in BEAST2 environment, in particular the results we
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have reported in Section 3.12 are for the most advanced of the algorithm mentioned in [Wang

et al., 2019], i.e. the Annealed Adaptive SMC. Our implementation is integrated within the

BEAST2 platform, complementing the Markov Chain Monte Carlo (MCMC) method used

natively in phylogenetic analyses by BEAST2.

To our knowledge, this is the first implementation in BEAST2 of a SMC algorithm. The

results obtained from our implementation, discussed in detail in Section 3.12, demonstrate

that, for the particular cases analysed, the annealed adaptive SMC algorithm achieves per-

formance comparable to the native MCMC method of BEAST2 in terms of both statistical

accuracy and computational efficiency. One of the advantages of the SMC method is that

we have been able to achieve similar performances to the MCMC by using far fewer output

samples. We may suppose that as the complexity of the posterior increases (the current ex-

amples have been produced synthetically), the Annealed Adaptive SMC will outperform the

MCMC for the reasons outlined in sections 2.5 and 2.6, namely that Annealed SMC navigates

better than MCMC in complex distributions. On the other hand MCMC is often simpler

and more efficient for exploring posteriors that are not highly multimodal or complex.. If we

pick the 10 taxa example we discussed in Section 3.14: as explained in Section 3.15.1, our

SMC implementation has used 1000 particles, resulting in as many output samples, that can

be used, for example, to compute expectations. In the native MCMC of BEAST2, in the set

up to achieve similar number of likelihood evaluations of the SMC, 350000 iterations have

been used, resulting in as many output samples. Even if we were to discard, say, the first

20% as burn-in, in order to calculate an expectation we would still have to use an impressive

280000 MCMC samples versus the 1000 of the SMC, with significant additional computa-

tional time. And in cases of many leaves, things are likely to get worse quickly, especially

for information-dense objects as trees: for example, in the case of 20 taxa of Appendix A.4,

the software TreeAnnotator, described in Section 3.11.1, needs to be run in a low memory

configuration when processing the tree output samples from MCMC (480000 samples as ex-

plained in Appendix A.5.2) in order not to hang up, whereas it runs smoothly on the 1000

SMC samples. We assume that, with growing number of leaves, the difference will probably

be even more remarkable.

It has required a non trivial amount of work to integrate the algorithms in a complex

platform like BEAST2, as we had to dig deep into the software details of the platform.

This involved understanding and modifying core components to ensure compatibility and

efficiency. We see the equivalence in results with the native BEAST2 MCMC as a first step,

and future tuning of the algorithm and of the integration within BEAST2 can improve the

results.

Our analysis has so far been limited to synthetic data. Future research should focus on

more complex scenarios, particularly those involving multimodal distributions. Such distri-

butions are likely to present a more useful test for the Annealed Adaptive SMC algorithm.

We may suppose that in these more complex scenarios, the Annealed Adaptive SMC will out-
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perform the MCMC for the reasons outlined in sections 2.5 and 2.6, namely that Annealed

SMC navigates better than MCMC in complex distributions.

Moreover, we see a significant scope for advancement in refining the tuning of parameters

within the BEAST2 platform to optimize the performance and the integration of the Annealed

Adaptive SMC algorithm.

In summary, we see our work as a step forward in the application of Monte Carlo methods

in phylogenetic analysis. By embedding the Annealed Adaptive SMC algorithm into the

BEAST2 platform, we have opened to the possibility of using additional algorithms in a

widely used statistical software platform.
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Chapter 4

Active Subspaces

4.1 Introduction

As we have explained in previous chapters, Monte Carlo (MC) methods have been widely

used in the exploration of complex and intractable distributions. However, their effectiveness

diminishes in some scenarios, for example in high-dimensional settings with a phenomenon

known as the curse of dimensionality (we have discussed it in Section 2.2). The dimension-

ality problem is particularly visible for MC methods such as Importance Sampling (IS) (see

Section 2.3 and 2.5.1), Markov Chain Monte Carlo (MCMC) (sections 2.4 and 2.5.2) and

Sequential Monte Carlo (SMC) (Section 2.6): all these methods are impacted in general in

a worse-than-linear way [Agapiou et al., 2017, Beskos et al., 2011, 2014]. Active Subspaces

(AS) have been introduced primarily as a method to mitigate the high-dimensional challenges

in generic mathematical systems [Constantine, 2015], with some later applications to Monte

Carlo algorithms (see for example [Constantine et al., 2016, Schuster et al., 2017, Parente,

2020]).

AS represent a smaller dimension of the system that is less than the nominal dimension

of the state space, this intrinsic lower-dimensional subspace is present for example in over-

parametrised systems [Agapiou et al., 2017]. Giving a more precise definition, we call Active

Subspace a subspace informed by the data identified by the directions of biggest change

of the negative log-likelihood; the remaining part of the state space is called inactive, is

orthogonal to the Active Subspace and will in the ideal case only be informed by the prior.

The exploitation of the Active Subspaces can significantly improve the efficiency of MC

algorithms [Constantine et al., 2016]. However there are some challenges that come with the

application of AS and there are limitations in the cases it can be used.

We will in this chapter give a mathematical background of the general theory behind AS

4.2, and then we’ll examine its estimation with Monte Carlo methods in Section 4.3.

In Section 4.4 we will review select literature and give an example on how existing AS

methods have been applied to MCMC with the aim to improve efficiency. The main part

of the chapter is the description and results obtained by using two algorithms. The first
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algorithm is from [Constantine et al., 2016], and is historically the first AS-based MCMC

algorithm. The algorithm approximately integrates out inactive variables, estimating the

marginal likelihood of the active variables. The algorithm is biased and does not target the

intended posterior but rather a distribution close in Hellinger distance, we call this algorithm

AS-MH-Bias.

In Section 4.7 we discuss some unresolved questions that we spotted in current AS, with

a list of open points and some indications on possible mitigations.

In Section 4.8 we discuss one of the open points, i.e. the bias in AS-based MC algorithms,

and we introduce the second AS-based MCMC algorithm [Schuster et al., 2017], that we name

AS-MH. The AS-MH, like AS-MH-Bias produces an estimate of the marginal likelihood where

inactive variables are approximately integrated out. But the AS-MH, unlike AS-MH-Bias, is

unbiased and in stationarity samples from the desired posterior. We will outline some of the

advantages and disadvantages of using either algorithm compared to standard MCMC, and

show some results in a toy example in 4.8.4.

We conclude the chapter with Section 4.9 where we discuss another open point, namely

that in some cases samples from the prior are used in order to build the Active Subspace

structure, rather than posterior points [Constantine et al., 2016]. We discuss the issue in the

section and propose a possible solution.

4.2 Active Subspaces: general Mathematical formula-

tion

4.2.1 Structural matrix

As introduced, AS are a tool for dimension reduction [Constantine, 2015]. They are defined

for scalar-valued, multivariate functions. In particular, given a function

f : Rm → R (4.1)

the active subspace can be found through eigenvalues analysis. Formally, by considering the

following matrix [Constantine, 2015]

C =

∫
∇f(θ)∇f(θ)Tρ(θ)dθ (4.2)

with ρ a probability density function. By construction, the matrix C is symmetric and

positive semi-definite, therefore the eigenvalues of C are guaranteed to be real and non-

negative.
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4.2.2 Estimating the dimension of Active Subspace through the

spectral gap

Assuming the matrix C of (4.2) is m × m, after sorting the eigenvalues λi in decreasing

order, so that λi ≥ λi+1, i = 0, ...m− 1 we look for a spectral gap, i.e. a significant gap in the

difference of two consecutive eigenvalues λi, λi+1, see for example Figure 4.1 which represents

a system with m = 4 and the spectral gap is found between eigenvalue 2 and 3 where there

is a difference of 5 orders of magnitude between them (note the y-axis is in log-scale)

Figure 4.1: Example of spectral gap, i.e. a significant difference between two consecutive
eigenvalues arranged in descending order. In the figure the order of the system is 4, and the
spectral gap is found between eigenvalue 2 and 3 since there is a difference of 5 orders of
magnitude between them (note the y-axis is in log-scale).

Say that the spectral gap is found at n < m (n would be 2 in the example of Figure

4.1), that gives an indication that the dimension of the active subspace is n. Each eigenvalue

of (4.2) is, in fact, “the average squared directional derivative of f along the corresponding

eigenvector” [Constantine et al., 2016], and therefore a null eigenvalue will identify directions

where f does not change.

4.2.3 Approximation of a function with the Active Subspace

Assuming the spectral gap obtained in Section 4.2.2 is at n, we partition the eigenvalues in

two disjoint sets, one with [λ1, ..., λn], and the other with [λn+1, ...λm], we can construct an

orthonormal basis of Rm×m, using the corresponding eigenvalues as columns in the following

matrix W

W =

[
Ba Bi

]
(4.3)
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where W is the orthonormal basis composed of eigenvectors, and Ba and Bi are the active and

inactive matrices respectively, whose columns are composed by the subsets of eigenvectors

corresponding to eigenvalues λi ≤ λn and λi > λn. With (4.3) we identify a partition of the

space, so that

θ = Baa+Bii (4.4)

where a is the active variable, i the inactive variable. The variables a and i are defined once

the matrices Ba and Bi are built with (4.3), since by construction Ba and Bi are orthonormal,

we have that

a = BT
a θ (4.5)

and

i = BT
i θ (4.6)

It can be shown [Constantine, 2015] that the function f of (4.1) can be approximated with its

conditional average given the active variables, we name the approximate conditional average

g

f ≈ g(BT
a θ) (4.7)

Formally, the function g : Rn → R which approximates f is defined by

g(a) =

∫
f(Baa+Bii)ρi(i|a)di (4.8)

with ρi(i|a) the conditional density of i given a. As for the quality of the approximation, we

have that the difference of f(θ) of (4.1) and g(a) of (4.8) is bounded in Hellinger distance by

a quantity that depends on the size of the “inactive” eigenvalues [Constantine et al., 2016],

in the following way√∫
(f(θ)− g(BT

a θ))
2ρ(θ)dθ ≤ C

√
λn+1 + ...+ λm (4.9)

where in (4.9) we have used that since Ba and Bi are orthonormal, it is a = BT
a θ (and

similarly i = BT
i θ). The Hellinger distance is used in (4.9) as it provides an upper bound on

the posterior mean and covariance [Constantine et al., 2016]. It is stated in (4.9) that, via

some constant C, the size of the inactive eigenvalues bounds the Hellinger distance of the

Active Subspace approximation g(a) with the exact function f(θ) It is therefore important

the eigenvalues after the spectral gap are as small as possible: in the ideal case where λj =

0, j > n, g(a) will be an exact approximation of the function f(θ), in the other cases we have

a biased approximation, controlled by the size of the λj = 0, j > n, via (4.9).
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4.2.4 Active Subspaces directions by principal components

Finding an Active Subspace, as we have seen in the previous sections, corresponds to finding

the eigenvalues of the structural matrix of (4.2), this corresponds, as we can appreciate by

simply taking a look at the equation (4.2) itself, to performing the principal components

analysis (PCA) of the uncentered covariance matrix of the gradient of the function (see also

for example [Cui et al., 2019]), for points taken from a distribution ρ. In fact, the formula

for the covariance used in the unscaled PCA for generic matrix data Z is as follows

Σ =

∫
ZZ>ρ(θ)dθ (4.10)

And we can appreciate that equation (4.10) is the same as (4.2) when we substitute the

generic X with the gradient data ∇f(θ). Therefore we will, in the remainder, often make

use of principal components as a tool to find the Active Subspace directions as an alternative

to the traditional eigenvalue method described previously in Sections 4.2 and 4.2.3: the two

methods are equivalent.

4.3 Active Subspaces using Monte Carlo approxima-

tions

Equations in Section 4.2 are given in integral form, we will see in this section how to extend

them when using Monte Carlo approximations of equations, and an explanation of how the

general AS theory extends to MC approximations is given in Section 4.3.4.

4.3.1 Monte Carlo approximation of the conditional expectation

Practical versions of the equation (4.8) will use the Monte Carlo estimate defined by

ĝ(a) =
1

M

M∑
j=1

f(Baa+Biij), ij ∼ ρi(i|a) (4.11)

4.3.2 Monte Carlo approximation of the structural matrix

Likewise, to obtain a Monte Carlo approximation of the matrix C of (4.2), we can draw inde-

pendent samples from the distribution ρ and estimate the quantity in (4.2). The estimated

matrix Ĉ is given by

Ĉ =
1

N

N∑
j=1

∇f(θj)∇f(θj)
T , θj ∼ ρ (4.12)

where θj for j = 1, . . . , N are drawn independently from the the density ρ. Accordingly,

matrix approximations B̂a and B̂i will be created from the eigenvectors of (4.12), similarly
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to what has been shown in Section 4.2.3.

4.3.3 Monte Carlo approximation of the Active Subspace

Putting together the approximations (4.11) and (4.12), we obtain a Monte Carlo approxima-

tion of (4.8) that uses the matrices B̂a and B̂i, we call it gε as per notation in [Constantine

et al., 2016]

gε(a) =
1

M

M∑
j=1

f(B̂aa+ B̂iij), ij ∼ ρi(i|a) (4.13)

4.3.4 Validity of Monte Carlo approximations

It is shown in [Constantine et al., 2016] that similar bounds in Hellinger distance to (4.9)

can be calculated for the approximations ĝ(a) of (4.11) and gε(a) of (4.13), and in general

for all MC approximations of integral quantities. The bounds will be dependent both on the

size of the inactive eigenvalues, similar to the non-MC version (4.9), and from the quality of

the respective Monte Carlo approximations (see for example formulae (2.16) and (2.17) in

[Constantine et al., 2016]).

4.4 Active Subspaces: literary review on existing meth-

ods for MCMC

4.4.1 Introduction

This section has so far provided an introduction to the topic of AS and an explanation of the

mathematics behind. As a summary, we have seen how a generic real-valued function f like

in (4.1), once we have performed the spectral gap analysis explained in Section 4.2.2 can be

approximated by its conditional average g of (4.8) where the inactive part is marginalised out,

and the quality of the approximation is given in Hellinger distance by (4.9). We have seen the

analysis both with the original integral formulae in Section 4.2, and with the practical MC

approximations in Section 4.3. We will see now applications of AS to MCMC, historically

the first MC method to have been considered.

Monte Carlo methods such as MCMC (described in Section 2.4), can enable the explo-

ration of complex and intractable distributions. However, as the dimensionality of the state

space increases, these methods face significant challenges that can affect their performance.

We have mentioned in 4.1 that Active Subspaces (AS) have been introduced primarily as a

method to mitigate the high-dimensional challenges in mathematical systems [Constantine,

2015]. We will in this section explore the application of AS to Monte Carlo methods, specif-

ically to MCMC, in existing literature and compare them through results from application

to a simple but illustrative toy model.
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In Section 4.5, considering that AS was introduced in MCMC setting first [Constantine

et al., 2016] in order to decrease the effect of high-dimensions, we will quantify the problems

of standard MCMC in high dimensions and see that the complexity of the algorithm scales

with d2 with d the dimension of the state space.

In Section 4.6 we introduce historically the first AS algorithm to be used in MCMC

[Constantine et al., 2016]. The algorithm is biased and targets a distribution that is not

the intended posterior, but is only close in Hellinger distance. The closeness to the intended

target distribution depends on the quality of the AS approximation.

In Section 4.8.2 we introduce a second AS-based MCMC algorithm, from [Schuster et al.,

2017], that is unbiased and in addition it targets the intended posterior. It can therefore be

considered a theoretical advancement from the biased algorithm mentioned earlier.

4.5 MCMC problems in high dimensions

Considering that AS was introduced in the MCMC setting [Constantine et al., 2016] pri-

marily in order to decrease the effect of high-dimensions, we examine what is the effect

that increasing dimensionality brings to MCMC. We will mention some studies performed in

reference settings, and we will focus on one of the most used MCMC algorithms, Metropo-

lis Hastings with random Walk (RWMH). In [Gelman et al., 1997, Roberts and Rosenthal,

2001] an analysis is provided of the optimal scaling of the proposal density parameters in the

Metropolis-Hastings RWMH algorithm for achieving optimal performance and the behaviour

when the dimension d of the state space becomes large is examined.

For convenience of the reader we report below in Algorithm 4 a standard generic version

of MCMC MH

Alg. 4 Standard MCMC with Metropolis-Hastings

1: Input: posterior π(θ) ∝ p(θ)l(θ) and proposal q
2: Initialize θ(0)

3: for t = 1 to T do
4: θ∗ ∼ q(θ∗|θ(t−1))

5: Set θ(t) = θ∗ with probability 1 ∧ p(θ∗)·l(θ∗)·q(θ(t−1)|θ∗)
p(θ(t−1))·l(θ(t−1))·q(θ∗|θ(t−1))

6: Else let θ(t) = θ(t−1)

7: end for

For particularization of MH to RWMH with Gaussian proposal (which we have mostly

used in this thesis), substitute the proposal on line 4 of Algorithm 4 with

θ∗ = θ(t−1) + ε, ε ∼ N (0, σ2
q ) (4.14)

It is shown in [Gelman et al., 1997, Roberts and Rosenthal, 2001] firstly that (in reference

settings having d independent components) with an optimal covariance of the proposal that
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is proportional to 1/d it is possible to achieve a constant acceptance rate of 0.234. With this

optimal proposal, as d grows, it requires a number of iterations that is linear in d to keep

constant the mean squared error of an expectation of a function h

MSE = E

( 1

n

n∑
j=1

h(θj)− E(h)

)2
 j = 1, ...n (4.15)

where in equation (4.15) 1
n

∑n
j=1 h(θj) is the approximation of the expectation of h using

MCMC samples θj, whereas E(h) is the true expectation value. In addition the operation of

proposing and evaluating a new point θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
d) (lines 4 and 5 of Algorithm 4) with

RWMH, has a cost of d, given by the d evaluations of the marginals π(θ∗) =
∏

j πi(θ
∗
j ) (with

π the posterior and πi its marginals) due to the independence of the components. Therefore

the complexity of RWMH can be estimated in O(d2), which comes from the O(d) iterations

to keep the error constant, times O(d) operations per iteration to evaluate each new proposed

point.

4.6 Biased Active Subspace MCMC algorithm

The paper titled “Accelerating MCMC with Active Subspaces” [Constantine et al., 2016],

focuses on the application of AS to improve the performance of MCMC, providing a way to

mitigate dimensionality-related problem [Constantine, 2015, Constantine et al., 2016]. We

recap that the central idea behind Active Subspaces is to be able to identify a part of the

space, informed by the data, from its perpendicular subspace, which is, in the ideal case,

not influenced at all by the data and therefore not influenced by the likelihood, and so

this inactive subspace will only be informed by the prior [Constantine et al., 2016]. This

separation will allow the AS-MCMC algorithms to operate on the active variables, i.e. on a

subspace characterised by a reduced dimension, while the inactive variables can be sampled

directly from the prior. When the AS is applied to MCMC, the function of interest to

approximate, named f in equation (4.8) and subsequent, becomes the negative log-likelihood

f = − log(l(θ)) (4.16)

Therefore this section will explain the particularization of AS in MCMC. We have seen how

the use of gradients allows in Active Subspaces to determine the directions of maximum

change of the negative log-likelihood, as we explained in Section 4.2.3, specifically by using

equation (4.2). The integration of (4.2) is performed with respect to a distribution that can

be for example prior or posterior (the use of prior or posterior for integration will be discussed

in Section 4.9). The eigenvectors of equation (4.2) give the directions of the data-informed

subspace, calculated using the gradient of the log-likelihood. We call Active Subspace

the subspace generated by the eigenvectors associated to the biggest eigenvalues, these will
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represent the directions of maximum variations of the likelihood: it makes sense that, in order

to maximise efficiency, we look for an enhancement of the algorithms by concentrating the

AS algorithmic power on the Active Subspace. The subspace of vectors which is orthogonal

to the Active Subspace is informed by the prior mainly, and is called inactive subspace.

We report below the algorithms from [Constantine et al., 2016] which performs the MCMC

on the Active Subspace. There is a main MCMC loop in Algorithm 6 which acts on the

approximate active marginal created from the conditional expectation of equation (4.11): see

row 6 of Algorithm 6 where the MH ratio shows the use of the estimate of the negative log-

likelihood ĝε(a) and so we have exp(−ĝε(a)) that we use in place of the likelihood. Algorithm

5 is the algorithm that calculates the approximate conditional marginal ĝε(a) of (4.11).

Alg. 5 Calculate the marginal ĝε(a) of (4.11)

1: function ComputeMarginal(a,Ni, Ba, Bi, f)
2: {i}Nij=1 ∼ qi(·|a).

3: Compute ĝε(a) = 1
Ni

∑Ni
n=1 f(Baa+Bii

n).
4: return ĝε(a).
5: end function

Alg. 6 AS-MH-Bias
1: Compute the AS and using the procedure outlined in Section 4.2.3 estimate matrices Ba

and Bi.
2: Initialize the algorithm by choosing an initial value a1 and use Algorithm 5 to estimate
ĝε(a

1).
3: for k = 2 to T do
4: a∗ ∼ qa(·|ak−1).
5: Use Algorithm 5 to compute ĝε(a

∗)

6: Set ak = a∗ with probability 1 ∧ p(a∗) exp(−ĝε(a∗))qa(a∗|at−1)
p(ak−1) exp(−ĝε(ak−1))qa(at−1|a∗)

7: Else let ak = ak−1.
8: end for
9: To map back to the original space, for each k = 1, ...T draw {ikj}

Ni
j=1 ∼ qi(·|ak) and

compute θkj = Baa
k +Bii

k
j .

As we mentioned already in the general AS Section 4.2.3 equation (4.9), it is to be noted

that Algorithm 6 does not target the exact posterior, it provides MCMC samples from

a distribution close in Hellinger distance from the intended posterior, and the quality of the

approximation depends on the size of the “inactive” eigenvalues, as per formula (4.9): the

smaller the inactive eigenvalues, the better the approximation. In addition Algorithm 6 is

also biased as we explain in more detail in Section 4.8.3 (see also the note in section 4 of

[Schuster et al., 2017]).
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4.7 Discussion on open points in current AS methods

Now that we have introduced the concept of AS and the first AS-based MCMC algorithm

AS-MH-Bias (algorithm 6), we report here a list of some Open Points (OP), which identify

some unresolved questions in current literature.

OP1: Bias

The AS-MH-Bias algorithm is biased and in stationarity samples from a distribution that

is only close in Hellinger distance to the intended posterior [Constantine et al., 2016]. This

problem is acknowledged in the paper [Constantine et al., 2016] itself when the authors have

to revert to some empirical methods to understand if the samples collected through the

AS-MH-Bias are close enough to the intended posterior.

OP2: Noisiness of likelihood estimate

We have seen that in AS-based algorithms in MCMC we may use estimates of the marginal

likelihood, obtained by approximately marginalising out inactive (or in some cases active)

variables, one such example of approximate marginal likelihood is Algorithm 5. In some cases

the estimates that we obtain may be very noisy, to the point that the benefit of using AS

becomes questionable.

OP3: weaknesses of MCMC

The current AS Monte Carlo applications mainly employ marginalisation of the inactive

variables and perform MCMC on the active part [Constantine et al., 2016, Schuster et al.,

2017]: if the Active Subspace marginal is complex (for instance high-dimensional or multi-

modal), the MCMC may not perform well.

OP4: Prior vs Posterior

Some decisions on the structure of the AS, needs to be done preliminarily by using informa-

tion from the Bayesian prior and the resulting structure is maintained throughout the MC

algorithm, but ideally the structure should be defined on the posterior, and posterior-defined

may be quite different from prior-defined.

OP5: Dimensionality

Although AS aims to decrease the impact of the curse of dimensionality some AS-algorithms

may still suffer from it and overall risk to produce a worse outcome than the non-AS counter-

parts, this happens for example when methods like Importance Sampling are used to create

likelihood marginal estimates.
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OP6: Linearity

Existing literature focuses mainly on partition of the state space in active/inactive through

linearization, but real-world cases are likely to require non-linear transformations.

4.7.1 Open points mitigations

In Section 4.8 we will discuss the bias in AS, which is open point OP1, and we will introduce

the second AS-based MCMC algorithm, which we name AS-MH [Constantine et al., 2016].

We will see that AS-MH uses unbiased marginals and in stationarity targets the intended

posterior. In addition, in Chapters 5 and 6 we’ll introduce additional MC applications to

AS, with algorithms that build on the foundations of AS-MH, and are likewise unbiased

and target the intended posterior. In Chapter 5 we introduce additional applications in AS

to MCMC, with algorithms that are based on Gibbs sampling [Geman and Geman, 1984],

PMMH and MwPG [Andrieu et al., 2010] and aim to address a few of the Open Points, and

we named the algorithms: AS-Gibbs is discussed in Section 5.6, AS-PMMH in Section 5.2,

AS-MwPG in Section 5.7. For AS-PMMH and AS-MwPG we also devised a second version,

named AS-PMMH-i (Section 5.5) and AS-MwPG-i (Section 5.7), where the additional i in

the acronym stands for inverted and means that we switch methods applied to active and

inactive variables.

In Chapter 6 we focus on the use of AS on SMC-based algorithms: so while Chapter 5

presents methods where the structure has an outer MCMC, in Chapter 6 the structure has

an outer SMC sampler. The first algorithm to be presented is a SMC version of the AS-MH,

where the outer MCMC has been replaced by a SMC sampler, we call the new algorithm AS-

SMC. We then introduce AS-SMC2, based on the SMC2 algorithm of [Chopin et al., 2012].

When comparing AS-SMC and AS-SMC2 performances to the standard SMC, we see that

AS-SMC seems to outperform standard SMC in cases of perfect Active Subspaces, whereas

in non-perfect Active Subspaces the case to use either AS-SMC or AS-SMC2 becomes less

clear, as the additional algorithmic complexity brings a trade-off and probably further study

on applications are required. We finally introduce an adaptive version of AS-SMC in Section

6.4, which we name AS-SMC-a, which has the addition of re-calculating the structure of the

AS at each tempering step of the SMC sampler, ensuring a more reliable reproduction of the

directions of the posterior Active Subspaces (in existing literature traditionally algorithms

rely on Active Subspaces directions determined by using the prior [Constantine et al., 2016,

Schuster et al., 2017]).

As we understand from the above description, Chapters 5 and 6, in addition to the bias

in AS, which is OP1, we will also address the case of noisy estimates of the likelihood, which

is OP2, and will in fact see examples of how a noisy marginal estimate can cause problems,

see for example Figures 5.10 and 5.11 in Section 5.4 on the “sticky” behaviour of algorithms

when the marginal estimate is noisy.
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Also open point OP3, on the weaknesses of MCMC, i.e. in cases when the Active Sub-

space is complex to explore and the MCMC may encounter problems in navigating the active

marginal, will be addressed in Chapter 6, in fact we will introduce algorithms where the

“backbone” is given by an SMC sampler, not MCMC.

Additionally, in Sections 5 and 6 we will address OP5, on possible dimensionality prob-

lems faced by some AS algorithms, for example by the AS-MH that, by using Importance

Sampling (IS) on the inactive subspace, may suffer in high dimensions [Agapiou et al., 2017],

in fact we will be introducing algorithms where the marginal estimate is produced not by IS

but, for example, by a SMC sampler.

In Section 4.9 we discuss the OP4 and we present a toy model which highlights the

problems of using prior samples to build the matrices Ba and Bi, instead of the posterior

samples. We then give a possible solution to the issue in Section 6.4, with AS-SMC-a which

does not need prior samples to build the AS structure, but rather adaptively builds the

structure at each step of a SMC algorithm.

We have not analysed OP6 which deals with linearity of the transformation (4.4) in

the present thesis. But considering that real-world scenarios are likely to require greater

complexity of the transformation, future work should be foreseen in that direction.

4.8 Bias in Active Subspaces MCMC

4.8.1 Introduction

The issue OP1 in the open points list in 4.7, is about the biasedness and non exactness of

Algorithm 6. Algorithm 6 is, historically, the first AS-enhanced MCMC algorithm introduced

by [Constantine et al., 2016]. In general, a lot of existing scientific literature and works on

Active Subspaces are based on [Constantine, 2015] and, for Monte Carlo (specifically

MCMC) in [Constantine et al., 2016]. Both papers can be said to be foundational, precisely

because they made the way to a lot of subsequent studies (for example just to mention two

amongst many [Cui et al., 2019] and [Parente, 2020]).

The theoretical distinction between active and inactive subspaces in the original formu-

lation [Constantine, 2015, Constantine et al., 2016] is clear and we have explained in the

previous sections (for example 4.1 and 4.6). However, its practical application can be quite

complicated, and this is mainly due to the Hellinger distance bound between the true and

approximated posteriors (4.9): in many real-world scenarios, the so-called ’inactive’ variables

might have even small influences of the likelihood, and in these cases there is no clear sepa-

ration between active and inactive variables and the bound (4.9) may become too loose, due

to the lack of spectral gap or to the size of inactive eigenvalues being not small.

The paper [Constantine et al., 2016] itself gives a clue of the problems, in fact the two

examples cited in the paper show firstly a toy 2D example (the same that we will discuss
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in an application in Section 4.8.4) and then a more real-world 100D problem. While the

2D example is created ad-hoc with a perfect scenario having the inactive variables that by

construction do not influence the likelihood, allowing for a direct and smooth application

of Active Subspace theory, the 100D example highlights the challenges. The application

of theory becomes less straightforward in this case. Although a spectral gap is found, the

inactive eigenvalues are not small in size, and the authors have to acknowledge this and

have to resort to empirical methods to assess convergence, stressing the need of hands-on

validations because the theoretical part becomes weak [Constantine et al., 2016].

4.8.2 Exact Active Subspace MCMC algorithm: AS-MH

We introduce in this section the second AS-MCMC algorithm in existing literature. The pa-

per “Exact active subspace Metropolis-Hastings, with applications to the Lorenz-96 system”

[Schuster et al., 2017] shows an application of AS to MCMC. In this the aim is similar to what

discussed in Section 4.6. In fact the authors start by discussing [Constantine et al., 2016]

of Section 4.6, and demonstrate that the formulation of the algorithm used in [Constantine

et al., 2016], which as we said targets gε(a) of (4.13), is biased (as we also remarked in Section

4.6), and in addition, and this comes from using the method of Section 4.2.3, it targets a

posterior that is only close by some distance to the intended posterior. In [Schuster et al.,

2017] pseudo-marginals [Beaumont, 2003, Andrieu and Roberts, 2009] are used to create an

unbiased estimate of the likelihood (as we have shown in Section 2.7). We see below the main

idea: starting from the posterior

π(a, i) ∝ p(a, i)l(a, i) (4.17)

we look for the active marginal

la(a) =

∫
p(Baa+Bii)l(Baa+Bii)di =

∫
p(a, i)l(a, i)di (4.18)

then we make use of Bayes’ theorem for the prior

p(a, i) = pi(i|a)pa(a) (4.19)

where in equation (4.19) pa is the marginal prior for active variables, and pi is the conditional

prior of inactive given the active. Substituting equation (4.19) in (4.18)

la(a) = pa(a)

∫
pi(i|a)l(a, i)di (4.20)
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The final step is to approximate (4.20) with the Monte Carlo integration performed with

Importance Sampling via pseudo-marginal [Beaumont, 2003, Andrieu and Roberts, 2009]:

l̂a(a) = pa(a)
1

Ni

Ni∑
n=1

pi(i|a)l(a, i)

qi(i)
(4.21)

where, in (4.21), Ni is the number of samples of inactive variables chosen per each active

variable, and qi is an Importance proposal. Compare the estimate (4.20) with (4.8) of the

non-exact and biased version, and also the Monte Carlo approximations (4.21) with (4.11)

to appreciate the conceptual differences.

By looking at Importance Sampling in (4.21), and remembering from Section 2.3 that the

ideal importance proposal is proportional to the posterior, if the likelihood remains constant

on the inactive subspace (as in the case of perfect Active Subspace), it is clear that an ideal

proposal of the inactive variables is the conditional prior of inactive given the active

qi(i) = pi(i|a) (4.22)

Alg. 7 Calculate the pseudo-marginal l̂a(a) of (4.21)

1: function ComputePseudoMarginal(a,Ni, Ba, Bi)
2: for n = 1 : Ni do
3: in ∼ qi (· | a) ;
4:

w̃n =
pi (i

n | a) l (Baa +Bii
n)

qi (in | a)
;

5: end for
6: u ∼M

((
w1, ..., wNi

))
, where for n = 1 : Ni

wn =
w̃n∑Ni
p=1 w̃

p
;

7: Set l̂a(a) = 1
Ni

∑Ni
n=1 w̃

n

8: return l̂a(a), iu, {i}Nij=1.
9: end function
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Alg. 8 AS-MH
1: Compute the AS and using the procedure outlined in Section 4.2.3 estimate matrices Ba

and Bi.
2: Initialize the algorithm by choosing an initial value a1 and use Algorithm 7 to estimate
l̂a(a

1).
3: for k = 2 to Na do
4: a∗ ∼ qa(·|ak−1).
5: Use Algorithm 7 to get l̂a(a

∗), i∗u and {i∗}Nij=1

6: Set ak = a∗ and θk = a∗ + i∗u with probability 1 ∧ pa(a∗)l̂a(a∗)qa(a∗|at−1)

pa(ak−1)l̂a(ak−1)qa(at−1|a∗)
7: Else let ak = ak−1 and θk = θk−1.
8: end for

We see that Algorithm 8 generates one i point for each a point, the index u which is drawn

on line 6 of the auxiliary pseudo-marginal Algorithm 7 ensures that one inactive particle is

drawn according to the importance weights. There is a way to reuse all the inactive points,

following [Andrieu et al., 2010]. In fact the output from Algorithm 8 may be used to estimate

an integral

Eπ [h (θ)] =

∫
θ

h (θ) π (θ) dθ

with respect to the posterior distribution π, for some function h in two possible ways [Andrieu

et al., 2010].

1. Using one i-point for each a-point (the i-point which is drawn, for each active

particle, using the u index, based on weights on line 6 of the auxiliary pseudo-marginal

Algorithm 7):

Êπ [h (θ)]1 =
1

Na

Na∑
k=0

h
(
Baa

k +Bii
uk,k
)

(4.23)

2. Using all of the accepted i-points for each a-point:

Êπ [h (θ)]2 =
1

Na

Na∑
k=0

Ni∑
n=1

wn,kh
(
Baa

k +Bii
n,k
)
. (4.24)

AS-MH: simplification in cases of perfect Active Subspaces

In case of perfect Active Subspaces the AS-MH Algorithm 8 simplifies. Let’s remember that,

in case of perfect Active Subspaces, the inactive variables do not affect at all the likelihood.

In this case, if we use the prior as a proposal for inactive variables, we see that the estimate

of the likelihood of equation (4.21) can be simplified as

l̂a(a) = pa(a)
1

Ni

Ni∑
n=1

pi(i|a)l(a, i)

qi(i)
= pa(a)l(a)

1

Ni

Ni∑
n=1

pi(i)

pi(i)
= pa(a)l(a) (4.25)
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where, in equation (4.25) we have used that pi(i|a) = pi(i) considering that in case of perfect

Active Subspaces, active and inactive components are independent, and we have also used

that since the likelihood is not affected by the inactive variables, we have that l(a, i) = l(a).

So in case of perfectly inactive variables the integral itself of the active marginal can be

calculated exactly, and in this case Algorithm 8 simplifies in Algorithm 21, reported in

Appendix C, which becomes a MCMC targeting the exact marginal posterior πa = pala.

4.8.3 Biasedness or unbiasedness of AS-MCMC algorithms: Math-

ematics behind

We will explain in this section why AS-MH algorithm 8 is unbiased, whereas AS-MH-Bias

algorithm 6 possesses asymptotic bias.

In Algorithm 8 the values of the pseudo-marginal l̂a(a
∗) from line 5, if accepted on line

6, are stored and reused in the following iteration on the denominator of the MH in line

6: algorithm 8 is part of a class of algorithm named “grouped independence Metropolis

Hastings” (GIMH) in [Beaumont, 2003, Andrieu and Roberts, 2009], in such case it is proven

that if the estimate of the likelihood l̂a(a) coming from Algorithm 7 is unbiased (plus some

additional relatively mild conditions), then Algorithm 8 is unbiased and targets the intended

posterior (so even if instead of the likelihood we are using an estimate with a pseudo-marginal,

the MCMC algorithm is still converging to the correct posterior).

On the other hand, algorithm 6 produces new estimates of the quantity ĝε(a) both for

the new value (numerator) and the old value (denominator) of the MH on line 6 (for further

explanations see sections 3 and 4 of [Schuster et al., 2017]), so Algorithm 6 is part of a

class of algorithms named “Monte Carlo within Metropolis” (MCwM) in [Beaumont, 2003,

Andrieu and Roberts, 2009], and as a result Algorithm 6 is likely to be biased. In addition

to being biased, we have to remember that in the original formulation seen in equation 4.2.3,

equation (4.9), algorithm 6 will also produce MCMC samples from a distribution only close

in Hellinger distance to the intended posterior.

In conclusion, we can see the AS-MH Algorithm 8 from [Schuster et al., 2017] as a theo-

retical advancement to AS-MH-Bias Algorithm 6 from [Constantine et al., 2016], considering

that it provides an unbiased formulation of the AS algorithm, targeting the correct posterior

and therefore giving a possible solution to the issue of biasedness OP1 in the open points

list in 4.7.

4.8.4 Comparison of results: standard MCMC vs biased AS MCMC

vs exact AS MCMC

Introduction

We’ll demonstrate in this section some results on AS MCMC algorithms:
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• The standard MCMC Algorithm 4

• The AS-MH-Bias Algorithm 6 [Constantine et al., 2016]

• The AS-MH Algorithm 8 [Schuster et al., 2017]

We’ll do the comparisons using a simple but illustrative toy example from [Constantine et al.,

2016]. For generality on Bayesian inverse models applied in the case of Active Subspaces,

please refer to Appendix B. We use here a two-parameter quadratic model: θ = [θ1, θ2]T , in

the equation below the negative log-likelihood f of equation (4.16), is

f(θ) =
1

2
θTAθ, A = Q

[
1

ε

]
QT , Q =

1

2

[ √
2
√

2

−
√

2
√

2

]
(4.26)

The noise parameter in the likelihood is σ = .1, and it is assumed a single data point d = .9

[Constantine et al., 2016] (for the meaning of d and σ see equation (B.1) and subsequent).

The parameter ε of (4.26) can be tuned to determine the characteristics of the system: in

[Constantine et al., 2016] the value ε = 0.01 is used. We can see from the pictures below, for

example Figure 4.2 and 4.4, the effect of choosing progressively higher values of ε: in Figure

4.2, with ε = 0.01, we see a spectral gap (differences between the two eigenvalues) of 4 orders

of magnitude, in Figure 4.4, withε = 0.2, we see a spectral gap of 2 orders of magnitude

and we can also notice that the smaller eigenvalue is bigger than 100: it is worth mentioning

again that the upper bound formulae (4.9) and similar, indicate that the spectral gap is an

important parameter, and also the size of inactive eigenvalues is important, in fact the Active

Subspace will be closer to ideal the more the inactive eigenvalues are close to zero, whereas

for relatively big inactive eigenvalues the exsistence of Active Subspaces is more uncertain,

as the upper bound in Hellinger distance becomes too loose. We can notice in fact that in

the case ε = 0.01 where the inactive eigenvalue has order of magnitude roughly 0, the AS

approximation of Figure 4.3 is noticeably better than the case of ε = 0.2, see Figure 4.5,

where the inactive eigenvalue has order of magnitude 2.

case ε = 0.01

The case of model of equation (4.26) when using ε = 0.01 is ideal for Active Subspaces, and

even in the traditional biased and non-exact formulation of [Constantine et al., 2016] will

give near-exact results: in fact, firstly there is a spectral gap of nearly 4 orders of magnitude,

as we see from Figure 4.2, and in addition the Hellinger bound of equation (4.9) is dominated

by a number that is relatively small, close to 0 (the size of the smallest eigenvalue).
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Figure 4.2: Spectral gap for the model of (4.26) with ε = 0.01: the eigenvalues difffer by 4
orders of magnitude and the inactive eigenvalue 2 is less than 1

Std MCMC AS-MH-Bias AS-MH
MSE Mean (θ1) 0.07 0.38 0.09
MSE Mean (θ2) 0.07 0.38 0.09
MSE SD (θ11) 0.01 0.18 0.01
MSE SD (θ22) 0.02 0.18 0.01
MSE SD (θ12) 0.16 0.58 0.17

Table 4.1: Comparison of MSEs for the three MCMC methods discussed in the paragraph,
using ε=0.01

We see in table 4.1 results obtained by averaging 100 runs each of standard MCMC, AS-

MH-Bias and AS-MH on the model (4.26) and calculating the mean squared error (MSE).

We see that MCMC and AS-MH have comparable errors, and AS-MH has the advantage

of performing MCMC on a space having half dimension. We report below charts of the

posterior marginals composed by the active component a = BT
a θ and inactive i = BT

i θ (both

red-dotted) versus the prior components θ1 and θ2 (continuous line in both cases) in chart

4.3
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Figure 4.3: Posterior active and inactive marginals versus prior. Active marginal a = BT
a θ

in LHS and inactive marginal i = BT
i θ in RHS (both red-dotted) versus prior components

1 and 2 (continuous line) of (4.26) with ε = 0.01: we see that the inactive marginal RHS is
almost identical to the prior second component, indicating that we are in near-perfect Active
Subspace and the likelihood is very little informative on this component. See comparison with
LHS chart where the active marginal is very different from the first component of the prior
indicating that the first component is active and the differences are due to the effect of the
likelihood.

case ε = 0.2

The second case of equation (4.26) when using ε = 0.2 is less ideal for the traditional biased

and non-exact algorithm of Active Subspaces than the one discussed in Section 4.8.4: in fact,

firstly there is a spectral gap of nearly 2 orders of magnitude (compared to 4 of Section 4.8.4),

as we see from Figure 4.4, but the real weak point is that the Hellinger bound of equation

(4.9) is too loose, in fact it is dominated by a number that is around 200 (the size of the

smallest eigenvalue). See for example the difference in the chart right hand side of Figures

4.5 (where we can spot differences between the red-dotted projected posterior and the black

solid prior) with the same item in Figure 4.3 (where the dotted-red and black solid shapes

are nearly identical).
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Figure 4.4: Spectral gap for the model of (4.26) with ε = 0.2: the eigenvalues difffer by 2
orders of magnitude and the smallest eigenvalue is around 200.

Std MCMC AS-MH-Bias AS-MH
MSE Mean (θ1) 0.27 0.68 0.36
MSE Mean (θ2) 0.27 0.68 0.35
MSE SD (θ11) 0.06 0.28 0.08
MSE SD (θ22) 0.05 0.29 0.09
MSE SD (θ12) 0.15 0.82 0.27

Table 4.2: Comparison of MSEs for the three MCMC methods discussed in the paragraph,
using ε=0.2

We see in table 4.2 results obtained by averaging 100 runs each of standard MCMC, AS-

MH-Bias and AS-MH on the model (4.26) and calculating the mean squared error (MSE). As

the approximation of the AS becomes worse with ε = 0.2, we see that AS-MH performance

worsen compared to standard MCMC (see table 4.1 for comparison). We report below charts

of the posterior marginals composed by the active component a = BT
a θ and inactive i = BT

i θ

(both red-dotted) versus the prior components θ1 and θ2 (continuous line in both cases) in

chart 4.5: we see that, compared to the case ε = 0.01 of Figure 4.3, the likelihood is slightly

more informative in the RHS part of the graph and there is a worse fit
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Figure 4.5: Posterior active and inactive marginals versus prior. Active marginal a = BT
a θ

in LHS and inactive marginal i = BT
i θ in RHS (both red-dotted) versus prior components

1 and 2 (continuous line) of (4.26) with ε = 0.2: we see that the inactive marginal RHS
is very similar to the prior second component, although, compared to Figure 4.3 RHS (case
ε = 0.01), we can see some differences: in the current case the fit is not perfect, indicating
that the likelihood is, although slightly, more informative in this case.

4.8.5 Conclusion

The toy example shown in Section 4.8.4 is simple but illustrative. We have seen how both

cases of ε = 0.01 and ε = 0.2 are fairly good candidates for using AS, since both have a

significant spectral gap, which is one of the pre-requirements [Constantine, 2015, Constantine

et al., 2016]. But there is a significant problem, among the others, that is clear in the example:

while in the case ε = 0.001 we can see from Figure 4.2 that the inactive eigenvalue is fairly

close to 0 making it a close-to-ideal case, in the second example ε = 0.2 we see from Figure

4.4 that, although there is order of magnitude 2 between the two eigenvalues, which can be

considered fairly good as a spectral gap, the inactive eigenvalue is bigger in size than 100: not

being 0 or even close to 0 forces the users of the biased Algorithm 6 (second column results in

Table 4.2) to have to use additional empirical methods to check the quality of approximation.

This in particular refers to OP1 in the list of Section 4.7.

4.9 Prior AS vs Posterior AS

This section will discuss OP4 of the open points list of section.4.7. We have explained in

Chapter 4 the formulae for the Active Subspaces, and we have seen both the integral formulae

in Section 4.2 and the Monte Carlo approximations in Section 4.3. If, as an example, we take

into consideration equation (4.12) (which is the MC version of (4.2)), it requires samples to be

drawn from a distribution ρ that is supposed to be the posterior. The AS MCMC algorithms

all require that the structural matrices Ba and Bi of equation (4.3) are set before the start

of the algorithm. Therefore the problem is clear: we can only have AS-MCMC samples

that approximate the posterior after having run Algorithm 6 or 8, but before running the

algorithms we need the posterior samples to build the matrices Ba and Bi. The authors of
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[Constantine et al., 2016] come up with a solution: when it is not possible or convenient to

draw from the true posterior π in (4.2) or its MC version (4.12), approximations of matrices

C and Ĉ can be built drawing samples from the prior distribution instead of the full posterior

π. If we use the familiar notation

π(θ) ∝ p(θ)l(θ) (4.27)

where p is the prior and l is the likelihood, we can then build a new variant of equation

(4.12), as follows

Ĉpri =
N∑
i=1

∇f(θi)∇f(θi)
T , θi ∼ p (4.28)

The matrix Ĉpri is built approximating integration against the prior p and not the full pos-

terior π. Drawing from the prior is assumed to be easy and will bring an approximation

which is again bounded in Hellinger distance, and is quantified in [Constantine et al., 2016]

(see equations (3.9) and subsequent in [Constantine et al., 2016]). But there are cases where

the Active Subspace generated by the prior, that we have called prior Active Subspace

may be different from that generated by the posterior, the posterior Active Subspace, in

such cases the approximation obtained using the prior will be poor. We show one example

of significant differences between the prior Active Subspace and the posterior Active

Subspace in the following Section 4.9.1.

4.9.1 Toy example to demonstrate prior vs posterior Active Sub-

space differences

Let’s consider a model with a likelihood of the form, for θ ∈ Rd:

l(θ) ∝
d∏
j=1

exp
(
− θ2

j

σ2
j

)
1 +

(
θj
γj

)2

 . (4.29)
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The gradient of the log-likelihood of equation (4.29) is:

∇ log l(θ) = ∇
d∑
j=1

[
−
θ2
j

σ2
j

− log

(
1 +

(
θj
γj

)2
)]

(4.30)

= ∇ log
d∏
j=1

exp
(
− θ2

j

σ2
j

)
1 +

(
θj
γj

)2

 (4.31)

= ∇
d∑
j=1

[
−
θ2
j

σ2
j

− log

(
1 +

(
θj
γj

)2
)]

(4.32)

=


−2θ1

(
1
σ2

1
+ 1

θ2
1+γ2

1

)
...

−2θd

(
1
σ2
d

+ 1
θ2
d+γ2

d

)
 . (4.33)

We see from the expression of the likelihood in equation (4.29) that it is composed of two

terms: the Gaussian-like term given by the exponential at the numerator, and the Cauchy-

like term given at the denominator.

If we fix the dimension d = 2 so that θ ∈ R2 and we choose a prior p of the form

p(θ) = N

([
0

0

]
,

[
5000 0

0 5000

])
(4.34)

We will therefore have a posterior in 2D

ρ(θ) = p(θ)l(θ) (4.35)

And we then set, as an example, the following values for the parameters in 4.29

σ1 = 10

γ1 = 1012

σ2 = 50

γ2 = 0.1 (4.36)

The behaviour of the likelihood will be different in regions where θ is close to 0, where

the Cauchy term will dominate, whereas far from the origin the Gaussian term will be

predominant.
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Figure 4.6: Charts representing prior (bottom two charts) and likelihood (upper two) of the
posterior (4.35), with parameter values (4.36). Note: “Dimension 1” in the chart titles is
the first component θ1 and “Dimension 2” is θ2.

The prior (4.34), as we can appreciate in Figure 4.6 in the bottom two charts, is very wide

relative to the likelihood, therefore the posterior behaviour of (4.35) will be constrained by

the likelihood, which is more narrowly condensed around 0, as we can appreciate by looking

at Figure 4.6 in the top two charts.

Firstly, we can ask ourselves, by just having a look at the charts in 4.6, which one will be,

if any, the predominant direction in the Active Subspaces. Recalling what we said in Section

4.8.2, that when the variables are inactive the likelihood is little or not informative at all

and the prior is a good Importance Sampling proposal for the Monte Carlo integration of the

LHS of (4.21), we see from Figure 4.6 that clearly the first dimension (top and bottom charts

left hand side) will be inactive, whereas the second dimension (top and bottom charts right

hand side), will be the active variable, as we can appreciate from the very small variance of

the likelihood on the second dimension (top chart right hand side).

To prove even further that θ2 would be the right choice as direction of the Active Subspace,

we can also use the ESS, in fact by drawing 1000 importance points from the prior and

measuring the ESS in each of the two dimensions, we have the following results
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ESS θ1 ESS θ2

140 5

Table 4.3: ESS using prior as importance proposal in the system of Figure 4.6, we see clearly
that the first variable θ1 is inactive since the high ESS shows that it is little informed by the
likelihood, compared to the very low ESS of θ2

We see from Table 4.3 that, as we would expect from the visual inspection of Figure

4.6, the first state space dimension θ1 is little informed by the likelihood, and therefore, by

definition, inactive: this is shown by the relatively high ESS, which shows that the prior is a

good Importance Sampling proposal for the posterior on that dimension. Compare with the

very low level of ESS on θ2, and we can see that on the second dimension the likelihood is

very informative, the direction is therefore, by definition, active.

We can give a graphical representation of the directions of the Active Subspace in Figures

4.7 and 4.8, where we make use of the principal components to determine the Active Subspace

directions, as described in Section 4.2.4. We see in Figure 4.7 the directions of the Active

Subspace generated using the prior (4.34), and we see that the predominant direction of the

gradient will be horizontal and, wrongly, the first dimension θ1 would be chosen as active

variable.

Figure 4.7: Directions of the principal components of the covariance of gradients using
prior samples: we can see that the main direction is horizontal. See difference with Figure
4.8 where the main direction is vertical

If instead we plot the directions of the principal components estimated using the posterior

points (a MCMC run with 100000 iterations has been used to sample the points), we obtain
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Figure 4.8, where the main direction is instead vertical, and in this case, correctly, the second

dimension of the state space θ2 is chosen as active component.

Figure 4.8: Directions of the principal components of the covariance of gradients using
posterior samples: we can see that the main direction is vertical. See difference with Figure
4.7 where the main direction is horizontal

Comparing therefore Figures 4.7 for the prior, and 4.8 for the posterior, we understand

that in this model the estimate of the Active Subspace using a prior AS will pose a chal-

lenge, in fact the true predominant direction of the Active Subspace in the posterior will be

perpendicular to the one which would be wrongly estimated using the prior.

4.10 Conclusion

Active Subspaces are a way to address high-dimensionality challenges of MCMC, by identi-

fying a sub-dimension of the state space which is less than the nominal dimension and by

concentrating the main efforts of the algorithms on this Active Subspace. However there

are some limitations that can show up in real-world situations, one for all is represented

by the Hellinger bound equation (4.9), when the bound is too loose, empirical validations

may become necessary to check the quality of the AS approximation. We have presented

algorithm AS-MH-Bias in Section 4.6, historically the first AS-based algorithm to be applied

to MCMC. Then we have shown in Section 4.8.2, AS-MH, an unbiased version, which uses

pseudo-marginals, and targets the intended posterior, and we have compared the perfor-

mances on a toy model in Section 4.8.4. In addition, we have seen in Section 4.9 that the

prior distribution is used to generate samples for the Monte Carlo integration of (4.2) (or its

approximation (4.12)) [Constantine et al., 2016], but there are cases where the Active Sub-
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space generated by the prior, that we have called prior Active Subspace may be different

from that generated by the posterior, the posterior Active Subspace, in such cases the

approximation obtained using the prior will be poor. We will address this problem in Sec-

tion 6.4 when a method to have progressive approximations of the Active Subspace matrices

will be presented. There are alternative methods, such as using a Laplace approximation,

which could potentially provide an efficient way to approximate the posterior Active Sub-

space instead of drawing from the prior in MCMC settings. Although we do not investigate

these methods in this thesis, they may offer a valid alternative for future work [Tierney and

Kadane, 1986, Rue et al., 2009].
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Chapter 5

Active Subspaces proposed novel

MCMC algorithms

5.1 Introduction

A lot of existing scientific literature on Active Subspaces (AS) start their work based on

the concepts and methods that can be found both in [Constantine, 2015] and, for Monte

Carlo (specifically MCMC) in [Constantine et al., 2016] (we have discussed the first AS

algorithm to be applied to MCMC [Constantine et al., 2016], the AS-MH-Bias algorithm in

Section 4.6). Both papers [Constantine, 2015] and [Constantine et al., 2016] can be said to

be foundational, precisely because they made the way to a lot of subsequent studies (for

example just to mention two among many [Cui et al., 2019] and [Parente, 2020]).

In our work we have chosen a different path, opting instead to build on the foundations laid

by the AS-MH exact algorithm that uses an unbiased estimate of the likelihood in [Schuster

et al., 2017] (we recap the algorithm in 4.8.2). And this decision, as already mentioned in

Section 4.8, starts from the consideration that while both papers provide a full theoretical

support for AS, in real-world cases their practical use seems to be difficult. Some weak points

of the theory are evident in the very same paper [Constantine et al., 2016] which introduced

it, when, after a 2D toy example is discussed and AS is successfully applied, with a more

realistic 100D model the authors have to use empirical methods to assess convergence to the

true posterior.

Fo this reason, from this section forward we will start building upon the AS-MH, trying to

address some of the open points outlined in Section 4.7.

In Section 5.2 we introduce our first proposed novel AS algorithm, named AS-PMMH, that

is based on the AS integration of the particle MCMC [Andrieu et al., 2010]. The AS-PMMH

can be considered an equivalent of AS-MH, where the inactive variables are marginalised out

by using a SMC sampler rather than Importance Sampling (IS). The reason for introducing

AS-PMMH is that, in cases of high dimension of the inactive subspace, we know that the

performances of IS worsen significantly as the number of points required to keep the ESS at
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a predetermined level scales exponentially with the dimension d of the space [Agapiou et al.,

2017], whereas we know that in SMC the cost is polynomial [Beskos et al., 2011, 2014]. We

compare the performances in a Gaussian model in Section 5.3, the comparison with AS-MH

and standard MCMC seem to show worse performances of AS-PMMH compared to the other

methods, in terms of distribution of RMSE between the true posterior mean and the mean

estimated with the method. This is possibly due to the fact that having kept the number

of likelihood evaluations equal between the algorithms, for a fair comparison, and by using

100000 likelihood evaluations while we have as many iterations in standard MCMC, for AS-

PMMH 100000 likelihood evaluation result in a mere 1666 final samples. The small number

of samples highlights one of the challenges of AS-PMMH: the biggest share of computational

effort is spent on the marginalisation of the inactive subspace, i.e. on the part of the space

we are interested the least. We then introduced the more complex Banana model with some

non linearities in Section 5.4, and the behaviour of the AS-PMMH shows long tails in the

distribution of RMSE, indicating that sometimes the algorithm may get stuck in one of the

tails. This is a behaviour that can happen when estimates of the likelihood are used in lieu

of the actual likelihood, due to noise in the estimate [Andrieu and Vihola, 2015].

The consideration that AS-PMMH uses the computationally more intensive SMC sampler

on the part of the state space we are interested the least, the inactive variable i, which may

lead to a sub-optimal estimate of the active part a, brought us to devise an inverted algorithm,

AS-PMMH-i in Section 5.5, where we switch roles and we use the internal SMC sampler on

the active component whereas the outer MCMC is on the inactive part. But comparison

of results with standard MCMC and AS-MH still shows long tails in the Banana model,

indicating that the noise in the estimate of the likelihood still bring out issues of sticky

behaviour, i.e. the algorithm getting stuck in one of the modes.

So we moved to a version that has no estimate of the likelihood. the AS-Gibbs of Section

5.6 integrates Gibbs sampling into AS. We show that, in the case of perfect or near-perfect

Active Subspaces, when active and inactive variables are independent, the AS-Gibbs proves

a winning strategy, outperforming all other algorithms.

Continuing on the strategy employed with AS-Gibbs, we have shown that, in the case

of perfect or near-perfect Active Subspaces, by integrating MwPG [Chopin, 2002] into AS,

we have devised AS-MwPG and AS-MwPG-i where sampling of particles in the inactive or

active case respectively is done via an internal SMC sampler [Chopin, 2002]. We have shown

in Section 5.8 that by using a “challenging” proposal in a bimodal posterior, the AS-MwPG-i

has been the only algorithm capable of reconstructing correctly both modes, while the other

algorithms remained stuck in one of the modes.

We finally introduced, in Section 5.9, a novel, alternative way to the traditional “eigen-

based” method of [Constantine, 2015, Constantine et al., 2016] to determine the size of the

Active Subspace. The new approach determines the dimension of the inactive subspace as

the largest dimension that yields an ESS that does not drop below some threshold, by using
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the prior as importance proposal and, on the models used, brings identical results to the

traditional method.

5.2 Active Subspace particle MCMC algorithm: AS-

PMMH

We have seen how the AS-MH algorithm by [Schuster et al., 2017], introduced in Section 4.8.2,

produces an unbiased estimate of the likelihood where the inactive variables are marginalised

out using an importance sampler.

Building on the pseudo-marginal approach, we now look for an enhancement of the AS-

MH: we propose the use of AS in an algorithm that will sample from the marginal distribution

of the inactive variables using a SMC sampler, instead of using Importance Sampling like for

AS-MH. The proposed new algorithm consists in the application of the PMMH algorithm

[Andrieu et al., 2010] (discussed in Section 2.8) to AS, we call therefore this new algorithm

AS-PMMH. The main difference between AS-MH and AS-PMMH is that in AS-PMMH we

will use an internal SMC to obtain an unbiased estimate of the likelihood where the inactive

variables have been marginalised out, whereas in AS-MH we use a pseudomarginal (based on

Importance Sampling) to get the likelihood estimate. Therefore: in AS-PMMH the internal

SMC acts on the inactive variables, in similar way that in AS-MH the Importance Sampler

was acting on the inactive variables. We expect AS-PMMH to outperform AS-MH in cases

where SMC outperforms IS, so for example when the inactive subspace has high dimensions:

let’s remember that IS as a reference will require an exponential number of samples to keep

the ESS constant as the dimension di of the inactive space grows [Agapiou et al., 2017],

whereas the cost of constructing an SMC sampler that stabilises the variance of the marginal

likelihood estimator grows in O(d2
i ), therefore the introduction of AS-PMMH will also address

Open Point OP5 in the list that we introduced in Section 4.7.

As an expected drawback, the AS-PMMH brings an overhead considering that a SMC

sampler is run on the inactive variables at each outer MCMC iteration. There will therefore

be a trade-off between algorithmic complexity and the need for accuracy.
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Alg. 9 SMC on inactive variables for a given a and t.

1: Simulate Ni points, {in0}
Ni
n=1 ∼ pi (· | a) and set each weight wn0 = 1/Ni;

2: for s = 1 : t do
3: for n = 1 : Ni do . reweight
4: if s = 1 then

w̃ns = wns−1l1:s (Baa+Bii
n) ;

5: else

w̃ns = wns−1

l1:s

(
Baa+Bii

n
s−1

)
l1:s−1

(
Baa+Biins−1

) ;

6: end if
7: end for
8: {wns }

Ni
n=1 ← normalise

(
{w̃ns }

Ni
n=1

)
;

9: If s = t, go to line 32;
10: for n = 1 : Ni do Simulate the index vns−1 ∼ M

((
w1
s , ..., w

Ni
s

))
of the ancestor of

particle n;
11: end for
12: if some degeneracy condition is met then . resample

13: for n = 1 : Ni do Set ins = i
vns−1

s−1 ;
14: end for
15: wns = 1/Ni for n = 1 : Ni;
16: else
17: for n = 1 : Ni do
18: Set ins = ins−1;
19: end for
20: end if
21: for n = 1 : Ni do . move
22: Simulate in∗s ∼ qt,i (· | ins , a);
23: Set ins = in∗s with probability
24:

1 ∧ l1:s (Baa+Bii
n∗
s ) pi (i

n∗
s | a) qt,i (i

n
s | a)

l1:s (Baa+Biins ) pi (ins | a) qt,i (in∗s | a)
,

25: end for
26: end for
27: Estimate lt,a (a) using

lt,a (a) =
t∏

s=1

Ni∑
n=1

w̃ns .
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Alg. 10 Active subspace particle marginal Metropolis-Hastings

1: Initialise a0;
2: Run Algorithm 9 for a = a0 and t = T , obtaining l̄T,a (a0) and weights, denoted(

w1,0
T , ..., wNi,0T

)
;

3: u0 ∼M
((
w1,0
T , ..., wNi,0T

))
;

4: Let l̄0a = l̄T,a (a0);
5: for m = 1 : Na do
6: a∗m ∼ qa (· | am−1);
7: Run Algorithm 9 for a = a∗m and t = T , obtaining l̄T,a (a∗m) and weights, denoted(

w∗1,mT , ..., w∗Ni,mT

)
;

8: u∗m ∼M
((
w∗1,mT , ..., w∗Ni,mT

))
;

9: Set
(
am, {in,m, wn,m}Nin=1 , u

m, l̄ma

)
=
(
a∗m, {i∗n,m, w∗n,m}Nin=1 , u

∗m, l̄T,a (a∗m)
)

with

probability

αma = 1 ∧ pa (a∗m) l̄T,a (a∗m)

pa (am−1) l̄m−1
a

qa (am−1 | a∗m)

qa (a∗m | am−1)
;

10: Else let
(
am, {in,m, wn,m}Nin=1 , u

m, l̄ma

)
=
(
am−1, {in,m−1, wn,m−1}Nin=1 , u

m−1, l̄m−1
a

)
;

11: end for

5.3 Comparison of performances of AS-PMMH with

other algorithms in a Gaussian model

5.3.1 Introduction

We will draw in this section some scenarios to understand better the relative strength and

weaknesses of AS-PMMH Algorithm 10 compared to the others. We start by introducing in

Section 5.3.2 a toy model that we will use for later tests.

5.3.2 Gaussian Model

In this section, we explore some of the features of Active Subspaces by using an ad-hoc

system obtained by overparameterization of a Gaussian model. In particular, we consider a

system that has an underlying Gaussian distribution, and we focus on the inference of the

true mean. This system is intentionally overparameterized, with parts of the system that do

not influence the likelihood.
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Likelihood

In the following, the vector of parameters is referred to as θ = (θ1, θ2, . . . , θn), and the sum of

the parameters represent the estimated mean of the Gaussians that compose the likelihood

µ̂ =
n∑
j=1

θj (5.1)

The likelihood function of our model:

l(y|θ) =
P∏
i=1

N (yi|µ̂, 1) (5.2)

Here, µ̂ is from equation (5.1), P represents the number of independent observations, and

n is the size of the state space. The normal distribution, for each independent observation,

will model the probability of observing the data yi given the array of parameters θ.

Prior

We will use a prior given by a Gaussian centered at 0 and with variance 5000 in all directions:

p(θ) =
n∏
i=1

N (0, σ2) (5.3)

where the variance σ2 = 5000.

Gradient of log-likelihood

With the likelihood of equation (5.2), with the explicitation of the normal terms we have

l(y|θ) =
P∏
i=1

1√
2π
e−

1
2

(yi−
∑n
j=1 θj)

2

(5.4)

The log-likelihood, from (5.4) is

log l(y|θ) =
P∑
i=1

log

(
1√
2π
e−

1
2

(yi−
∑n
j=1 θj)

2

)

=
P∑
i=1

[
−1

2
log(2π)− 1

2
(yi −

n∑
j=1

θj)
2

] (5.5)

Differentiating the negative log likelihood w.r.t. a generic parameter θk, k=1,...n (by
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looking at (5.5), all the ∂θk will have the same expression)

∂

∂θk
(− log l(y|θ)) =

P∑
i=1

(
n∑
j=1

θj − yi), k=1,...n (5.6)

We take a look at level surfaces for this model in Section 5.3.2, Figures 5.1 and 5.2.

Overparametrization

The overparameterization of the system is evident in the fact that we only need one parameter

to infer the mean of a Gaussian of equation (5.2), therefore our model, for n > 1 will include

more parameters than strictly necessary. For instance, in the case where n = 2, the level

surface for the likelihood can be represented as:

θ1 + θ2 = true mean (5.7)

Which means that any value of (θ1, θ2) satisfying (5.7) will leave the likelihood invariant.

Similarly, for n = 3, the level surface is defined by:

θ1 + θ2 + θ3 = true mean (5.8)

The overparameterization can be further extended by adding more components to the system.

This increases the dimensionality of the state space, yet the actual dimension required to

represent the system remains one: by what we said in the previous sections, our expectations

when analysing the system are to find an Active Subspace having dimension 1, and an

Inactive Subspace having dimension n − 1 (increasing the number of parameters will,

therefore, increase the dimension of the Inactive Subspace). We further expect that the

data will show that the direction of the Active Subspace will be perpendicular to, in the

case of n = 2 or n = 3, the line represented by (5.7) or the plane represented by (5.8)

respectively, in fact along the above mentioned lines the likelihood will remain constant.

Visual representation

We can see what the level surface of the likelihood will look like, projected on the same 3D

chart of the prior, for the particular case where θ1 + θ2 + θ3 = 0, we give two snapshots of the

3D graph done using python library plotly [Plotly, 2015]. We can appreciate from Figures

5.1 and 5.2 a cross-section showing the prior and the level surface of the log-likelihood
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Figure 5.1: Graphical representation of the model described in 5.3.2: we see a 2D slice of the
Gaussian prior on the horizontal plane θ1 = 0 (black color indicates low probability zones,
whereas progressively warmer color towards the center indicate zones of higher probability,
as indicated by the colorbar) together with the level surface of the likelihood in the particular
case θ1 + θ2 + θ3 = 0 (green plane), created using python library plotly [Plotly, 2015]
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Figure 5.2: Different viewpoint of Figure 5.1, created using python library plotly [Plotly,
2015]

Active Subspace dimension

By performing the eigenvalue analysis as described in Section 4.2.2, using the gradient of log

likelihood (5.6) we see that for a 10D system we have the eigenvalues in Figure 5.3

Figure 5.3: Eigenvalues of 10D Gaussian model, we see that the estimate AS size is 1, con-
sidering the spectral gap between eigenvalues 1 and 2. The dimension of the Active Subspaces
is na = 1.
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For a 25D system the chart is in Figure 5.4

Figure 5.4: Eigenvalues of 25D Gaussian model, we see that the estimate AS size is 1, con-
sidering the spectral gap between eigenvalues 1 and 2. The dimension of the Active Subspaces
is na = 1.

We see that for both 10D and 25D the size of the Active Subspace is 1, according to the

procedure that we described in Section 4.2.2.

Mean and covariance values used in tests

For the tests, we calculated both the estimated posterior mean µπ and the estimated posterior

covariance Σπ of the 10D and 25D Gaussian model by running a test SMC with N = 50M

particles each, so if we name wj the weights and xj the particles we have

µπ =
N∑
j=1

wjxj (5.9)

Σπ =
n∑
j=1

wj(xj − µπ)(xj − µπ)T (5.10)

We then used both µπ of equation (5.9) and Σπ of equation (5.10) as the “true” posterior

values for reference. We used µπ to calculate the RMSE of the difference between the mean

estimated by each of the algorithm runs and the true mean µπ (see for example Figure 5.5).

We then used Σπ to build both the optimal coviariance of the proposal in standard MCMC

2.382

d
Σπ (5.11)
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with d the dimension of the state space [Roberts and Rosenthal, 2001], and by remembering

that θ = Baa + Bii, following the same concept of optimal scaling [Roberts and Rosenthal,

2001] on the active subspace, we used

2.382

da
BT
a ΣπBa (5.12)

as optimal covariance for proposal of MCMC moves on active marginals, whereas we used

2.382

di
BT
i ΣπBi (5.13)

as optimal covariance for proposal of MCMC moves on inactive marginals. In equations

(5.12) and (5.13), da and di are the dimensions of the active and inactive subspaces respec-

tively.

5.3.3 Comparison of performances in the Gaussian model

We will, in this section, compare the performances of standard MCMC, AS-MH and AS-

PMMH, both for the 10D and 25D Gaussian model. In the case, for example, of the 25D

Gaussian model, we will compare:

• standard MCMC Algorithm 4 performed on the full 25D space;

• AS-MH Algorithm 8;

• AS-PMMH Algorithm 10, which will perform an outer MCMC and several inner SMC

samplers: for each step the algorithm will perform an SMC sampler on the 24D inactive

subspace to obtain an unbiased estimate of the likelihood to be used in the outer active

MCMC as estimate of the marginal likelihood.

Likelihood evaluations

When comparing the performances of the algorithms, we have tried to keep the number of

likelihood evaluations constant in each run, to ensure a fair comparison. Due to the structure

of the algorithms, the same number of likelihood evaluations may result in a different number

of output samples. Taking a reference figure of 100000 likelihood evaluations, it will result

in:

• Standard MCMC: 100000 iterations, and therefore as many samples;

• AS-MH: if we use 10 inactive variables in the pseudo-marginal calculation, we will have

10000 outer MCMC iterations (10000× 10 = 100000);

• AS-PMMH: if we use 10 inner inactive variables and 6 tempering steps of the inner

SMC sampler,then we have 1666 outer MCMC steps and therefore as many output
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samples (1666× 10× 6 = 99960 which is the closest integer to 100000), we summarise

in Table 5.1

Method Nr of output samples
MCMC 100000
AS-MH∗ 10000

AS-PMMH 1666

Table 5.1: Comparison of number of output samples when performing 100000 likelihood
evaluations in different MCMC methods. ∗For AS-MH the figure in the table indicates the
number of samples when one inactive sample is used per active variable, like in formula
(4.23). If instead all inactive particles are used, like in formula (4.24), the relative figure
must be multiplied by the number of inactive variables used, 10 in this case.

In Table 5.1, for AS-MH the figure in the table indicates number of samples when one

inactive sample is used per active variable, like in formula (4.23). If instead all inactive

particles are used, like in formula (4.24), the relative figure must be multiplied by 10 (number

of inactive variables used) to consider all the samples.

From the numbers above, we understand that AS-PMMH carries a problem, since 100000

likelihood evaluations result in a mere 1666 output samples. Structurally, in AS-PMMH, a

lot of computational effort is spent in the calculation of the inactive marginal, therefore it is

inefficient since we spend a lot of computational effort on the part of the space, the inactive,

that we are interested the least.

For ease of reference in the rest of the sections, we also report the table for 200000

likelihood evaluations (it is the above Table 5.1 with numbers ×2 )

Method Nr of output samples
MCMC 200000
AS-MH∗ 20000

AS-PMMH 3332

Table 5.2: Comparison of number of output samples when performing 200000 likelihood
evaluations in different MCMC methods, this is the equivalent of Table 5.1, adapted for
200000. ∗For AS-MH the figure in the table indicates number of samples when one inactive
sample is used per active variable, like in formula (4.23). If instead all inactive particles are
used, like in formula (4.24), the relative figure must be multiplied by the number of inactive
variables used, 10 in this case.

We have reported additional data for other algorithms in Appendix D, tables D.1 and

D.2.

Comparison using MultiESS

The first comparison is using the multiESS [Vats et al., 2019] that we described in Section

2.4.8, we use the R software implementation of it. We have run the algorithms in one test
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run with 200000 likelihood evaluations for each algorithm, using no burn-in (the choice of

not having burn-in, here and in the rest of the experiments, has been made considering that

we start already in the posterior set), and we used optimal covariances as per equations

(5.11) in the MCMC proposal, and (5.12) for AS-MH and AS-PMMH in the active marginal

MCMC proposal. As we explained 200000 likelihood evaluations will give a different number

of output samples in each of the three algorithms, look at Table 5.2 for reference.

The acceptance rate of the MCMC parts has been around 25% for all algorithms. Results

are in Tables 5.3 and 5.4.

Algorithm MultiESS/N MultiESS
MCMC 1.6 3200
AS-MH 22.5 4500

AS-PMMH 20.2 673

Table 5.3: Gaussian 10D multiESS out of 200000 likelihood evaluations (please see Table 5.2
for the number of corresponding output samples N per algorithm).

Algorithm MultiESS/N MultiESS
MCMC 1.3 2600
AS-MH 21.9 4380

AS-PMMH 26.7 890

Table 5.4: Gaussian 25D multiESS out of 200000 likelihood evaluations (please see Table 5.2
for the number of corresponding output samples N per algorithm).

We see in Table 5.3 for 10D and Table 5.4 for the 25D case, that the performance of

AS-MH seem to remain fairly constant, accounting for some random variability, between the

10D and the 25D runs, that is possibly due to the Gaussian system being a near-perfect

Active Subspace, and so the AS-MH pseudo-marginal becomes close to equation (4.25),

and performance may remain constant since the dimension of the Active Subspace remains

constant to 1 from 10D to 25D. We also have to remember that, by construction, AS-MH

and AS-PMMH output samples are more likely to show less correlation than the standard

MCMC, which in turn will cause higher multiESS. The reason of lower correlation is that

even when using small steps in the active marginal MCMC, points in the state space may

contain inactive parts that may be very different. In fact we see significantly higher multiESS

per sample in Tables 5.3 and 5.4.

We also see from Table 5.4 that the overhead of running AS-PMMH with its internal

SMC samplers, seems not to pay off compared to AS-MH in terms of multiESS, this may be

due to the fact that the Gaussian system is fairly simple to explore, and the AS-MH may be,

at least in the dimensions up to 25D explored here, a better choice.
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Comparison of estimate of expectation

To compare the estimates of the mean coming from the three algorithms, we have performed

50 runs of each algorithm, with 100000 likelihood evaluations in each algorithm, on both the

10D and 25D models, and we have measured the Root Mean Squared Error (RMSE) of the

difference of the true mean and the mean estimated by each of the three algorithms. As

“true” mean we used µp as explained in equation (5.9), and we used optimal covariances as

per equations (5.11) in MCMC, and (5.12) for AS-MH and AS-PMMH in the active marginal

MCMC proposal.

We report the chart with the violin plots showing mean and upper and lower quartile of

the distribution of the RMSE.

Figure 5.5: Distribution of RMSE of the differences between the true posterior mean and
the mean estimated by each of the algorithms over 50 runs. We see that the standard MCMC
in both 10D and 25D has a lower error. Second best performer is AS-MH and third best is
AS-PMMH. The algorithms are in order from the LHS: MCMC, AS-MH and AS-PMMH
(10D first then 25D)

5.3.4 Review

In the analysis of performance using the Gaussian model we see that there is a trade-off:

using the AS-MH algorithm instead of the standard MCMC brings the advantage of having

better multiESS, as we see in Tables 5.3 and 5.4, which indicates that the samples have lower

autocorrelation and better mixing, but seems to do so at the cost of accuracy (see Figure

5.5), in fact the RMSE of the expectation is higher than standard MCMC. The AS-MH in

this case seems not to suffer the curse of dimensionality when increasing from 10D to 25D

system, and this is possibly because we are in a near perfect Active Subspace, and in this

case the AS-MH outer MCMC targets a relatively constant space dimension of 1.
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The AS-PMMH algorithm has worse multiESS (see Tables 5.3 and 5.4), and worse RMSE

than AS-MH in Figure 5.5: this is possibly due to the lower number of output samples which

makes the estimate poorer (see Table 5.1 for reference, AS-PMMH has 1666 output samples

per every 100000 likelihood evaluations).

5.4 Comparison of performances of AS-PMMH with

other algorithms in the “Banana” model

5.4.1 Introduction

We now introduce a second toy model, it will be similar to the model previously introduced

in Section 5.3.2, but it adds some non-linearity in the expression of equation (5.1). The aim

of the toy model is to set a more challenging scenario for the algorithms.

5.4.2 Banana model

The model we are going to introduce in this section is similar to the one discussed in Section

5.3.2, it will add a bit of non-linearity and because the non linearity is quadratic and there is

some curvature, we call this model “banana”. The difference with the model of Section 5.3.2

will be in having quadratic terms in the expression of the estimated mean of the likelihood

Gaussians. The Bayesian inverse model

l(θ) =
P∏
i=1

N (yi | µ̂, 1) (5.14)

Where in (5.14), the term µ̂ represents the estimate of the mean of the Gaussians using the

parameters of the state space model θ = (θ1, θ2, . . . , θn)

µ̂ = θ1 + θ2 + . . .+ θn + c+ b
(
θ2
n + θ2

n−1 + . . .+ θ2
n−H+1

)
(5.15)

We see that the case where contemporarily b = 0 and c = 0 in (5.15) brings again the

Gaussian model of Section 5.3.2, and also, for the model to make sense, we need to have
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H ≤ n. The log likelihood of (5.14) is

log l(θ) = log

(
P∏
i=1

N (yi | µ̂, 1)

)

=
P∑
i=1

log (N (yi | µ̂, 1))

=
P∑
i=1

log

(
1√
2π

exp

(
−(yi − µ̂)2

2

))

=
P∑
i=1

(
−1

2
log(2π)− (yi − µ̂)2

2

)
(5.16)

The gradient of the negative log likelihood for j ≤ n−H is:

∂

∂θj
(− log l(θ)) =

P∑
i=1

(µ̂− yi) (5.17)

And for j > n−H:

∂

∂θj
(− log l(θ)) =

P∑
i=1

(µ̂− yi) (1 + 2bθj) (5.18)

The components of the state space that will be affected by the quadratic part will be

(θn−H+1, θn−H+2, ..., θn).

Prior

We will use the same prior of the previous model of Section 5.3.2: a Gaussian centered at 0

and with variance 5000 in all directions:

p(θ) =
n∏
i=1

N (0, σ2) (5.19)

where the variance σ2 = 5000.

Visual representation

We can have an idea of what the level surface of the log-likelihood will look like in the banana

family of models models. For the particular case where the model has θ1+θ2+θ3+b (θ2
2 + θ2

3) =

0, using the value b = 0.001, so that the curvature is mild but still visible, we give a couple

of snapshots of the 3D graph of the level surface projected on the same chart of the prior. We

can appreciate from Figures 5.6 and 5.7 a cross-section showing the prior and the level surface

of the log-likelihood, we can appreciate the curvature of the level surface (green oblique plane)

if compared to Figures 5.1 and 5.2
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Figure 5.6: Graphical representation of the model described in Section 5.4.2: we see a 2D
slice of the Gaussian prior on the plane θ1 = 0 (black color indicates low probability zones,
whereas progressively warmer color towards the center indicate zones of higher probability,
as indicated by the colorbar) together with the level surface of the likelihood in the particular
case θ1 + θ2 + θ3 + b (θ2

2 + θ2
3) = 0 (green plane), with b = 0.001, so that the curvature is

mild but still visible. The curvature can be appreciated by comparing with Figures 5.1 and
5.2, where the curvature was absent. Created using python library plotly [Plotly, 2015]
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Figure 5.7: Different viewpoint of Figure 5.6, created using python library plotly [Plotly,
2015]

Active Subspace dimension

By performing the eigenvalue analysis as described in Section 4.2.2, using the gradient of log

likelihood (5.6) we see that for a 10D system we have the eigenvalues in Figure 5.8
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Figure 5.8: Eigenvalues of 10D Banana model, we see that the estimate AS size is 4, con-
sidering the spectral gap between eigenvalues 4 and 5. The dimension of the Active Subspaces
is na = 4.

For a 25D system the chart is in Figure 5.9

Figure 5.9: Eigenvalues of 25D Banana model, we see that the estimate AS size is 4, con-
sidering the spectral gap between eigenvalues 4 and 5. The dimension of the Active Subspaces
is na = 4.

Mean and covariance values used in tests

For the tests, we calculated both the estimated posterior mean µπ and the estimated posterior

covariance Σπ of the 10D and 25D Banana model by running a test SMC with N = 50M
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particles each, and calculating µπ as in equation 5.9 and Σπ as in equation (5.10). We then

used both µπ and Σπ as the “true” posterior values for reference. We used µπ to calculate

the RMSE of the difference between the mean estimated by each of the algorithm runs and

the true mean µπ (see for example Figure 5.5).

We then used Σπ to build both the optimal covariance of the proposal in standard MCMC

using equation (5.11) and (5.12) as optimal covariance for proposal of MCMC moves on

active marginals, whereas we used (5.13) as optimal covariance for proposal of MCMC

moves on inactive marginals. In equations (5.12) and (5.13), da and di are the dimensions

of the active and inactive subspaces respectively.

5.4.3 Comparison of performances in the Banana model

Introduction

We will, in this section, compare the performances of standard MCMC, AS-MH and AS-

PMMH. For the rest of the chapter we will be using the 25D Banana model. We have

used the following parameters in the model of equation (5.15): b = 0.001 (mild curvature),

c = 0 (absence of the constant term), H = 3 (the last 3 components will be affected by the

quadratic part of (5.15)).

Similarly to what we have done in Section 5.3.3, we will compare:

• standard MCMC Algorithm 4 performed on the full 25D space;

• AS-MH Algorithm 8;

• AS-PMMH Algorithm 10, which will perform an outer MCMC and several inner SMC

samplers: for each step the algorithm will perform an SMC sampler on the 21D inactive

subspace to obtain an unbiased estimate of the likelihood to be used in the outer active

MCMC as an estimate of the marginal likelihood.

Comparison using MultiESS

The first comparison is using the multiESS [Vats et al., 2019] that we described in Section

2.4.8, we use the R software implementation of it. We have run the algorithms in one test

run with 200000 likelihood evaluations for each algorithm, using no burn-in, and we used

optimal covariances as per equations (5.11) in the MCMC proposal, and (5.12) for AS-MH

and AS-PMMH in the active marginal MCMC proposal. As we explained 200000 likelihood

evaluations will give a different number of output samples in each of the three algorithms,

look at Table 5.2 for reference. All algorithms have shown an acceptance rate of around 10%

in their main MCMC. Results are in Table 5.5.
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Algorithm MultiESS/N MultiESS
MCMC 0.1 200
AS-MH 5.7 1140

AS-PMMH 15.5 516

Table 5.5: Banana 25D multiESS out of 200000 likelihood evaluations (please see Table 5.2
for the number of corresponding output samples N per algorithm).

We see in Table 5.5 that as the posterior becomes more complex, the multiESS drops:

look for comparison with Table 5.4 in the simpler posterior of the Gaussian case where all

percentages were higher. We remind that, by construction, AS-MH and AS-PMMH output

samples are more likely to show less correlation than the standard MCMC, which in turn

will cause higher multiESS. The reason of lower correlation is that even when using small

steps in the active marginal MCMC, point in the state space may contain inactive parts

that may be very different. We see, in fact, significantly higher multiESS per sample for

the two methods in Table 5.5, with AS-MH having the highest absolute multiESS. We also

remind that the output samples N produced by the 200000 likelihood evaluations are different

for each algorithm, with numbers reported in Table 5.2: in the AS-PMMH case the higher

relative multiESS compared to AS-MH results in a lower absolute multiESS, due to the low

number of output samples which, for AS-PMMH.

Comparison of estimate of expectation

To compare the estimates of the mean coming from the three algorithms, we have performed

50 runs of each algorithm, with 100000 likelihood evaluations in each algorithm in the 25D

Banana model, and we have measured the Root Mean Squared Error (RMSE) of the difference

of the true mean and the mean estimated by each of the three algorithms. As “true” mean

we used µp as explained in equation (5.9), and we used optimal covariances as per equations

(5.11) in MCMC, and (5.12) for AS-MH and AS-PMMH in the active marginal MCMC

proposal.

We report the chart with the violin plots showing mean and upper and lower quartile of

the distribution of the RMSE.
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Figure 5.10: Distribution of RMSE of the differences between the true posterior mean and the
mean estimated by each of the algorithms over 50 runs. Starting from LHS: MCMC, AS-MH
and AS-PMMH. We can see from the chart that the distributions for AS-MH and AS-PMMH
have lower mean and upper quartile of MCMC, but longer tails. This may indicate very noisy
estimates of the likelihood in some of the runs of both algorithms which cause the distributions
to have long tails. The MCMC has comparatively smaller tails.

We see in Figure 5.10 that although AS-MH and AS-PMMH both have lower mean

and upper quartile of the standard MCMC, their distribution is characterised by long tails,

although fairly thin. It is not uncommon that MCMC algorithms that use estimates of the

likelihood will show sticky behaviour (i.e. the MCMC getting stuck), like the one shown by

AS-MH and AS-PMMH in Figure 5.10. This is due to the chain getting stuck, possibly due

to noisiness of the likelihood estimates that we use in the AS-MH and AS-PMMH, and also

to the very few effective samples of the two algorithms.

An example taken from one of the runs of the AS-PMMH shows the stickiness in action:

Figure 5.11 shows the trace-plot of one of the components during a AS-PMMH run, we

see how a noisy estimate of the likelihood causes the outer MCMC to become stuck. One

potential fix for the observed sticky behavior could be to increase the number of internal

SMC tempering steps or to increase the number of outer MCMC iterations. This approach

may help reduce the noise in likelihood estimates, allowing the MCMC chain to explore the

posterior more effectively. However, this improvement would come at the cost of a significant

increase in the number of likelihood evaluations.
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Figure 5.11: Example of ’sticky’ trace-plot in AS-PMMH, taken from one of the runs in
Figure 5.10: a noisy estimate of the likelihood causes the outer MCMC to remain stuck for
a long time, and this causes the very long tails in the distribution of RMSE seen in Figure
5.10 for the AS-PMMH.

Review

Although on the theoretical level AS-PMMH may be seen as an advancement of the AS-MH

algorithm, there are challenges that the AS-PMMH faces that are common to the AS-MH.

We saw previously in Section 5.3.2 how, in a simpler model, all algorithms were not showing

noisy likelihood behaviours, see for example Figure 5.5 where distributions in the simpler

Gaussian model case show relatively short tails, and compare with Figure 5.10 of the more

complex Banana model. On the positive side, AS-PMMH shows the highest multiESS per

sample, as seen in Table 5.5.

When performing tests on the accuracy of the algorithm, we have run the three algorithms

using 100000 likelihood evaluations for each run, and for the AS-PMMH this has meant to

have 1666 outer MCMC step, 10 inner inactive variables, 6 tempering step of the SMC sampler

(1666×10×6 = 99960 which is the closest integer to 100000). One way to decrease the chance

of having a noisy likelihood estimate coming from the SMC sampler could be for example to

increase the number of tempering steps, which is likely to reduce the variance of the estimate

of the likelihood, but adding tempering steps comes at the cost of increasing the number

of likelihood evaluations: if we keep the 1666 outer MCMC iterations and the 10 inactive

variables, each extra tempering step will add 1666× 10 = 16660 likelihood evaluations.

Another consideration is that we have relatively few MCMC iterations (1666 in this

135



example) to explore the Active Subspace, while reserving the bigger computational effort of

the SMC sampler on the inactive part. We have devised therefore a revised version of the AS-

PMMH algorithm that we have named AS-PMMH-i, which stands for inverted AS-PMMH,

introduced in Section 5.5, it is an algorithm where we will switch roles: it will use the MCMC

for the inactive and the SMC sampler for the active part.

5.5 AS-PMMH-i algorithm: giving more relevance to

the Active component

We have introduce the AS-PMMH algorithm in Section 5.2. We have seen how, if we consider

the state space variable

θ = Baa+Bii (5.20)

in AS-PMMH we get an estimate of the likelihood by marginalising out the inactive variables

i through an SMC sampler, and we use the estimate in an outer MCMC on the active

variable a. One of the problems of this approach is that it uses the computationally more

intensive SMC sampler on the part of the state space we are interested the least, the inactive

variable i. This may lead to a sub-optimal estimate of a. We have therefore devised an

inverted algorithm, we name it AS-PMMH-i, that on the theoretical level has exactly the

same framework of AS-PMMH, the difference is that in AS-PMMH-i we switch roles and

we use the internal SMC sampler on the active component whereas the outer MCMC is on

the inactive part: the aim is clear, and is to use the most computationally intensive part

on the component of the state space we are interested in the most, i.e. the active one. The

algorithms are reported below: 12 is the outer MCMC on the inactive, whereas 11 is the SMC

sampler on the active variables (they are conceptually the same as the algorithms introduced

in Section 5, only the roles are inverted).
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Alg. 11 SMC on active variables for a given i and t.

1: Simulate Na points, {an0}
Na
n=1 ∼ pa (· | i) and set each weight wn0 = 1/Na;

2: for s = 1 : t do
3: for n = 1 : Na do . reweight
4: if s = 1 then
5:

w̃ns = wns−1l1:s (Bii+Baa
n) ;

6: else
7:

w̃ns = wns−1

l1:s

(
Bii+Baa

n
s−1

)
l1:s−1

(
Bii+Baans−1

) ;

8: end if
9: end for
10: {wns }

Na
n=1 ← normalise

(
{w̃ns }

Na
n=1

)
;

11: If s = t, go to line 30;
12: for n = 1 : Na do
13: Simulate the index vns−1 ∼M

((
w1
s , ..., w

Na
s

))
of the ancestor of particle n;

14: end for
15: if some degeneracy condition is met then . resample
16: for n = 1 : Na do

17: Set ans = a
vns−1

s−1 ;
18: end for
19: wns = 1/Na for n = 1 : Na;
20: else
21: for n = 1 : Na do
22: Set ans = ans−1;
23: end for
24: end if
25: for n = 1 : Na do . move
26: Simulate an∗s ∼ qt,a (· | ans , i);
27: Set ans = an∗s with probability

1 ∧ l1:s (Bii+Baa
n∗
s ) pa (an∗s | i) qt,a (ans | i)

l1:s (Bii+Baans ) pa (ans | i) qt,a (an∗s | i)
,

28: end for
29: end for
30: Estimate lt,i (i) using

lt,i (i) =
t∏

s=1

Na∑
n=1

w̃ns .
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Alg. 12 Inactive subspace particle marginal Metropolis-Hastings: AS-PMMH-i

1: Initialise i0;
2: Run Algorithm 11 for i = i0 and t = T , obtaining l̄T,i (i

0) and weights, denoted(
w1,0
T , ..., wNa,0T

)
;

3: u0 ∼M
((
w1,0
T , ..., wNi,0T

))
;

4: Let l̄0i = l̄T,i (i
0);

5: for m = 1 : Ni do
6: i∗m ∼ qi (· | im−1);
7: Run Algorithm 11 for i = i∗m and t = T , obtaining l̄T,i (i

∗m) and weights, denoted(
w∗1,mT , ..., w∗Na,mT

)
;

8: u∗m ∼M
((
w∗1,mT , ..., w∗Na,mT

))
;

9: Set
(
im, {an,m, wn,m}Nan=1 , u

m, l̄mi

)
=

(
i∗m, {a∗n,m, w∗n,m}Nan=1 , u

∗m, l̄T,i (i
∗m)
)

with

probability

αmi = 1 ∧ pi (i
∗m) l̄T,i (i

∗m)

pi (im−1) l̄m−1
i

qi (i
m−1 | i∗m)

qi (i∗m | im−1)
;

10: Else let
(
im, {an,m, wn,m}Nan=1 , u

m, l̄mi

)
=
(
im−1, {an,m−1, wn,m−1}Nan=1 , u

m−1, l̄m−1
i

)
;

11: end for

5.5.1 Comparison of performances with other algorithms

We will, in this section, compare the performances of standard MCMC, AS-MH, AS-PMMH

and the newly introduced AS-PMMH-i, in the 25D Banana model. We have used the following

parameters in the model of equation (5.15): b = 0.001 (mild curvature), c = 0 (absence of

the constant term), H = 3 (the last 3 components will be affected by the quadratic part of

(5.15)).

Similarly to what we have done in Section 5.3.3, we will compare:

• standard MCMC Algorithm 4 performed on the full 25D space;

• AS-MH Algorithm 8;

• AS-PMMH Algorithm 10, which will perform an outer MCMC and several inner SMC

samplers: for each step the algorithm will perform an SMC sampler on the 21D inactive

subspace to obtain an unbiased estimate of the likelihood to be used in the outer active

MCMC as estimate of the marginal likelihood.

• AS-PMMH-i Algorithm 12, which is similar to the AS-PMMH above, only with inverted

roles: for each step the algorithm will perform an SMC sampler on the 4D active

subspace to obtain an unbiased estimate of the likelihood to be used in the outer

inactive MCMC as estimate of the marginal likelihood.
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Comparison using MultiESS

The first comparison is using the multiESS [Vats et al., 2019] that we described in Section

2.4.8, we use the R software implementation of it. We have run the algorithms in one test

run with 200000 likelihood evaluations for each algorithm, using no burn-in, and we used

optimal covariances as per equations (5.11) in the MCMC proposal, (5.12) for AS-MH and

AS-PMMH in the active marginal MCMC proposal, (5.13) for AS-PMMH-i in the inactive

marginal MCMC proposal. As we explained 200000 likelihood evaluations will give a different

number of output samples in each of the algorithms, look at Table D.2 for reference. All

algorithms have shown an acceptance rate of around 10% in their main MCMC, except AS-

PMMH-i which has shown a very high acceptance rate of around 60% in the outer inactive

MCMC. Results are in Table 5.5.

Algorithm MultiESS/N MultiESS
MCMC 0.1 200
AS-MH 5.7 1140

AS-PMMH 15.5 516
AS-PMMH-i 73.6 2452

Table 5.6: Banana 25D multiESS out of 200000 likelihood evaluations (please see Table D.2
for the number of corresponding output samples N per algorithm).

We remind again that, by construction, AS-MH and AS-PMMH output samples are

more likely to show less correlation than the standard MCMC, which in turn will cause

higher multiESS. The reason of lower correlation is that even when using small steps in the

active marginal MCMC, points in the state space may contain inactive parts that may be

very different. The same applies to AS-PMMH-i, only with inverted roles active/inactive.

Therefore the relatively high multiESS figures for AS-PMMH-i in Table 5.6 are likely to be

due to the much higher acceptance rate of around 60% for AS-PMMH-i in the test run,

the more the samples are accepted the higher the multiESS, as the samples will have little

correlation.

Comparison of estimate of expectation

We perform the RMSE test on the 25D Banana model of Section 5.4.2. In this analysis,

we concentrate on the estimates of individual components, as our primary interest lies in

understanding the ’stickiness’ behavior of the algorithms shown by some of the components.

Focusing on component-wise RMSE allows us to better highlight how each algorithm performs

across different parts of the state space. However, future work could incorporate additional

distributional metrics for a more comprehensive analysis. We have run the algorithms with

100000 likelihood evaluations, which means for both AS-PMMH and AS-PMMH-i 1666 outer

MCMC steps, 10 inner particles, 6 tempering step of the SMC sampler (1666×10×6 = 99960

which is the closest integer to 100000), as explained in Table 5.1 (AS-PMMH-i figures are
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the same as AS-PMMH). The results in terms of distribution of the RMSE of the differences

between the true posterior mean and the mean estimated by each of the algorithms over 50

runs can be seen in Figure 5.12

Figure 5.12: Distribution of RMSE of the differences between the true posterior mean and the
mean estimated by each of the algorithms over 50 runs. We see the tails of the AS-PMMH-i
distribution are smaller than the AS-PMMH, probably because, keeping constant the number
of tempering of the SMC sampler between the two (6), the size of the space the SMC has
to act upon is much smaller: 4D in case of AS-PMMH-i vs 21D in the case of AS-PMMH.
By contrast, the MCMC part has to act on a much bigger space: 21D vs 4D, this probably
explains why the AS-PMMH-i has a bigger average error.

5.5.2 Review

We see in Figure 5.12 that by switching roles and concentrating the efforts on the smaller

subspace the tail of the RMSE distribution for AS-PMMH-i become smaller, compared to

the AS-PMMH. One of the possible reasons is that the estimate of the likelihood is probably

less noisy when running on the active 4D space rather than on the inactive 21D space, but

we also see that the average RMSE is higher than the AS-PMMH, one possible reason is that

the outer MCMC runs on a bigger space, 21D in the AS-PMMH-i compared to the 4D in the

case of AS-PMMH.

We believe that using a marginal estimate brings a trade-off, where by increasing the

number of likelihood evaluations the quality of the approximation should generally improve,

but that comes at the cost of increasing, sometimes considerably, the algorithmic cost: as said

in Section 5.4.3, in the example of Section 5.5.1 if we keep the 1666 outer MCMC iterations

and the 10 active variables, each additional tempering step will add 1666 × 10 = 16660

likelihood evaluations.

The noisiness of marginal estimates, especially when we want to keep down the number
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of likelihood evaluations (and therefore the algorithmic complexity) is what triggered our

research into alternative ways to estimate the Active Subspace, for example with AS-Gibbs

in Section 5.6 and AS-MwPG in 5.7.

5.6 Active Subspaces Gibbs algorithm: AS-Gibbs

We will, in this section, introduce a novel approach that uses AS to construct an effective

Metropolis-within-Gibbs sampler. We start by reminding what is the problem we try to

address, we named it OP2 in the list of open points in Section 4.7: we know that estimates of

marginal likelihoods, like the ones used in the AS-MH Algorithm 7 or AS-PMMH Algorithm

10 or AS-PMMH-i Algorithm 12 will have a variance that will be in general greater, and also

have a higher acceptance rate, than that of a marginal algorithm (i.e. where no estimate is

used) [Andrieu and Vihola, 2015]. We have seen this issue in Figure 5.10, for example, where

we can appreciate the long tails of the distributions of the error of algorithms using estimates

of marginals. Therefore it easy to understand that an AS-based MCMC algorithm where an

exact marginal was used instead of an estimated one would be an enhancement of Algorithm

7, exactly because it is likely to show lower variance and higher acceptance rate.

We propose in this section the use of a Gibbs sampler algorithm that we will apply to the

AS setting. By reminding the AS partition of the state space θ = Baa + Bii coming from

(4.4), we will apply a Gibbs algorithm firstly to the inactive variables i, then to the active a.

We report below the full Gibbs AS Algorithm 13

Alg. 13 AS-Gibbs

1: Initialize θ(0) = Baa
(0) +Bii

(0)

2: for t = 1 to T do
3: i∗ ∼ pi(·|a(t−1)) . propose inactive

4: Set i(t) = i∗ with probability 1 ∧ pi(i∗|a(t−1))l(a(t−1),i∗)pi(i|a(t−1))
pi(i|a(t−1))l(a(t−1),i)pi(i∗|a(t−1))

=
l(a(t−1),i∗)
l(a(t−1),i)

5: Else let i(t) = i(t−1)

6: a∗ ∼ qa(·|a(t−1)) . propose active

7: Set a(t) = a∗ with probability 1 ∧ pa(a∗)pi(i(t)|a∗)l(a∗,it)qa(a(t−1)|a∗)
pa(a(t−1))pi(it|a(t−1))l(a(t−1),it)qa(a∗|a(t−1))

8: Else let a(t) = a(t−1)

9: end for

The core idea into using the Gibbs method in AS is that if we have perfectly inactive

variables then we will accept all moves on the inactive variables, in the MH ratio of line 3 in

Algorithm 13. In that case the acceptance probability for the inactive part in the MH ratio

would in fact be:

1 ∧
pi (i

∗) l
(
a(t−1), i∗

)
pi (i)

pi (i) l (a(t−1), i) pi (i∗)
=
l
(
a(t−1), i∗

)
l (a(t−1), i)

= 1 (5.21)
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where the final step in (5.21) follows from the assumption that the likelihood function

l(a(t−1), i) remains invariant with respect to changes in i. Specifically, we assume that

l(a(t−1), i) = l(a(t−1), i∗), which allows us to simplify the expression:

l(a(t−1), i∗)

l(a(t−1), i)
= 1.

This simplification comes from the likelihood remaining constant over the inactive variable

i, enabling the cancellation of terms.

5.6.1 Comparison of performances with other algorithms

We use to compare the performances, the Banana model of Section 5.4.2 in 25D.

Comparison using MultiESS

The first comparison is using the multiESS [Vats et al., 2019] that we described in Section

2.4.8, we use the R software implementation of it. We have run the algorithms in one test

run with 200000 likelihood evaluations for each algorithm, using no burn-in, and we used

optimal covariances as per equations (5.11) in the MCMC proposal, (5.12) for AS-MH, AS-

PMMH and AS-Gibbs in the active marginal MCMC proposal, (5.13) for AS-PMMH-i in

the inactive marginal MCMC proposal. As we explained 200000 likelihood evaluations will

give a different number of output samples in each of the algorithms, look at Table D.2 for

reference. All algorithms have shown an acceptance rate of around 10% in their main MCMC,

except AS-PMMH-i which has shown a very high acceptance rate of around 60% in the outer

inactive MCMC. Results are in Table 5.5.

Algorithm MultiESS/N MultiESS
MCMC 0.1 200
AS-MH 5.7 1140

AS-PMMH 15.5 516
AS-PMMH-i 73.6 2452

AS-Gibbs 63.7 63700

Table 5.7: Banana 25D multiESS out of 200000 likelihood evaluations (please see Table D.2
for the number of corresponding output samples N per algorithm).

We have explained earlier, for example in the multiESS section of 5.5.1, the reason why,

by construction the samples in AS-MH, AS-PMMH and AS-PMMH-i are likely to be less

correlated, and therefore to show higher MultiESS/N , please refer to the section for expla-

nation.

In AS-Gibbs too, by construction, chain samples are likely to show little correlation, and

therefore have high MultiESS/N , as we can appreciate in Table 5.7, especially as we get

near perfect Active Subspaces. One of the reasons is that, by looking at line 4 of AS-Gibbs,
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in case of near perfect Active Subspaces it becomes like in equation (5.21), so it is almost

always accepted, which means that consecutive θ samples of the state space in the chain will

in general have different inactive part, even if small steps are taken in the active MH of line

7, and will therefore tend to have little correlation and show high multiESS.

We can appreciate in Table 5.7 that the AS-Gibbs is a clear winner as it shows a much

bigger multiESS: the AS-Gibbs, in terms of multiESS is a much more efficient algorithm than

the other listed, since with the same number of likelihood evaluations it brings a much higher

effective sample size.

Comparison of estimate of expectation

To compare the estimates of the mean coming from the algorithm, we have performed 50

runs of each algorithm, with 100000 likelihood evaluation in each run, and we have measured

the Root Mean Squared Error (RMSE) of the difference of the true mean and the mean

estimated by each of the algorithms. As a reminder, 100000 likelihood evaluations will result

in different number of output samples per each algorithm, please refer to Table D.1. We

report the chart with the violin plots showing mean and upper and lower quartile of the

distribution of the RMSE.

Figure 5.13: Distribution of RMSE of the differences between the true posterior mean and
the mean estimated by each of the algorithms over 50 runs. We can see from the chart that
AS-Gibbs has lower mean RMSE.

5.6.2 Review

We have introduced a novel way of performing AS-MCMC on Active Subspaces that uses

Gibbs sampling, we named it AS-Gibbs. We have shown on the Banana model that it

performs better than the algorithms discussed in this section: the standard MCMC, the AS-
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MH Algorithm 8, the AS-PMMH Algorithm 10 and the AS-PMMH-i Algorithm 12. It has in

fact a much higher multiESS (see Table 5.7), and the distribution of RMSE of the differences

between the true posterior mean and the mean estimated by each of the algorithms shows

lower mean and lower upper quartile than all the others (see Figure 5.13).

We expect the Gibbs Algorithm 13 to perform better than the standard MCMC Algorithm

4 in case of perfectly Active Subspace (so eigenvalues of equation (4.9) all equal to zero). In

fact, considering that the inactive proposal is always accepted (see equation 5.21), algorithm

13 is de facto an MCMC acting on a marginal of the posterior on a sub-dimension of the

space that is da < d, with da the dimension of the active component and d the dimension of

the full space.

We also expect AS-Gibbs to outperform, in general, algorithms that use an estimate of

the marginal likelihood, like AS-MH, AS-PMMH and AS-PMMH-i, in cases of perfect Active

Subspaces: the reason is that MCMC chains that use estimates of marginal likelihoods (like

AS-MH, AS-PMMH and AS-PMMH-i) will in general be noisier, have higher variance and

lower acceptance rate than those that use exact marginals [Andrieu and Vihola, 2015]: in

summary, we expect Algorithm 13 to perform better because it uses an exact marginal,

whereas Algorithm 8 uses an estimate of the marginal likelihood [Andrieu and Vihola, 2015].

If applied on the earlier examples, such as the Gaussian model discussed in Section 5.3.2,

AS-Gibbs is expected to perform similarly to traditional MCMC. The reason is that, in a

25D Gaussian model, the reduction brought by AS-Gibbs is de facto a MCMC performed

on a 24D space instead of the original 25D space. However, this reduction comes with the

additional computational overhead for the calculation of the Active Subspace and of the

structural matrices, described in section 4.2. The advantage of using AS-Gibbs compared

to, for example, traditional MCMC becomes more apparent as the dimension of the Active

Subspace increases. For instance, in the Banana model analysed in this section (with the

Active Subspace having dimension 4).

5.7 Active Subspace Metropolis within particle Gibbs

algorithms: AS-MwPG and AS-MwPG-i

We have introduced in Section 5.6 with AS-Gibbs a way of bringing improvements to AS-

based MCMC methods in cases where either we are in the presence of perfect active subspaces

and we have independence between active and inactive components. We have seen how the

AS-Gibbs brings improvements compared to the standard MCMC, where the potential curse

of dimensionality problem is reduced by exploiting the separation of active and inactive sub-

spaces in the Gibbs update, and we have seen how AS-Gibbs performs better than algorithms

where an estimate of the marginal likelihood is use [Andrieu and Vihola, 2015].

We now propose an additional algorithm based on the application of the Metropolis within

Particle Gibbs (MwPG) [Andrieu et al., 2010] method to Active Subspaces and we name the
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algorithm AS-MwPG. We explain the rationale behind: in cases where the active and inactive

are independent (and so the right case to use AS-Gibbs), but the inactive subspace is complex

to explore, it could be difficult to find a good proposal for the inactive part in the AS-Gibbs

(line 4 of the AS-Gibbs algorithm): the inactive subspace could be for example multimodal,

in which case using an SMC sampler can perform better since the SMC transitions smoothly

from a starting distribution to the posterior.

With this in mind, we have devised the AS-MwPG. We have discussed the MwPG in

Section 2.8.2. The fundamental idea takes the root from what we have done in the AS-Gibbs,

i.e. exploit the cases where there is independence between active and inactive component: in

addition, the AS-MwPG will ease the problems in cases where the inactive part is challenging

to explore. The AS-MwPG will draw from the inactive part using a inner SMC sampler

embedded in an outer MCMC performed on the active component. The inactive SMC will

be conditioned on a path of the inactives that will “survive” all resampling, as we explained

in 2.8.2, and that is the part that plays the role of the conditioning in this extended Gibbs

algorithm. The AS-MwPG algorithm is performed by using Algorithms 15 (outer active

MCMC) and 14 (inner inactive conditioned SMC). As a note, in the below Algorithms 15

and 14, l(θ) is the likelihood, ls(θ) is as per equation (5.22)

ls(θ) = l(θ)ηt, ηt ∈ [0, 1] (5.22)

where ηt is the tempering exponent (see Section 2.6 for details on the tempering)

l1:t(θ) =
t∏

s=1

ls(θ) = l(θ)ηt (5.23)
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Alg. 14 Conditional SMC on active variables for a given a, i10:T , w̃1
0:T and t.

1: Simulate Ni − 1 points, {in0}
Ni
n=2 ∼ pi (· | a) and set each weight wn0 = 1/Na;

2: for s = 1 : t do
3: for ( don = 2 : Ni) . reweight
4: if s = 1 then

w̃ns = wns−1l1:s (Baa+Bii
n) ;

5: else

w̃ns = wns−1

l1:s

(
Baa+Bii

n
s−1

)
l1:s−1

(
Bai+Biins−1

) ;

6: end if
7: end for
8: {wns }

Ni
n=1 ← normalise

(
{w̃ns }

Ni
n=1

)
;

9: If s = t, terminate the algorithm;
10: for n = 2 : Ni do Simulate the index vns−1 ∼ M

((
w1
s , ..., w

Ni
s

))
of the ancestor of

particle n;
11: end for
12: if ( then some degeneracy condition is met) . resample

13: for n = 2 : Ni do Set ins = i
vns−1

s−1 ;
14: end forwns = 1/Na for n = 1 : Ni;
15: else
16: for n = 2 : Ni do Set ins = ins−1;
17: end for
18: end if
19: for ( don = 2 : Ni) . move
20: Simulate in∗s ∼ qt,i (· | ins , a);
21: Set ins = in∗s with probability
22:

1 ∧ l1:s (Baa+Bii
n∗
s ) pi (i

n∗
s | a) qt,i (i

n
s | a)

l1:s (Baa+Biins ) pi (ins | a) qt,i (in∗s | a)
,

23: end for
24: end for
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Alg. 15 Active Subspace Metropolis within particle Gibbs

1: Initialise a0;
2: Initialise i1,0t for t = 0 : T ;
3: for m = 1 : Ni do
4: a∗m ∼ qa (· | am−1);
5: Set am = a∗m with probability

αma = 1 ∧
pa (a∗m) l1:T

(
Baa

∗m +Bii
m−1,1
T

)
pa (am) l1:T

(
Baam−1 +Bii

m−1,1
T

) ;

6: Else let am = am−1;
7: Run Algorithm 14 for a = am, i10:T = i1,m−1

0:T , w̃1,m−1
0:T and t = T , obtaining

points
(
i1,m0:T , ..., i

Ni,m
0:T

)
and unnormalised and normalised weights

(
w̃1,m
T , ..., w̃Ni,mT

)
and(

w1,m
T , ..., wNi,mT

)
;

8: um ∼M
((
w1,m
T , ..., wNi,mT

))
;

9: Set i1,m0:T = iu
m,m

0:T ;
10: Set w̃1,m

0:T = w̃u
m,m

0:T ;
11: Set w1,m

0:T = wu
m,m

0:T ;
12: end for

5.7.1 Inverted Active Subspace Metropolis within particle Gibbs:

AS-MwPG-i

The inverted version of the AS-MwPG algorithm, which we have named AS-MwPG-i shares

the very same theoretical framework of Algorithms 14 and 15 (which together make up the

AS-MwPG) therefore no further explanation is necessary on the theory. The aim of the

AS-MwPG-i is to use the inner SMC sampler on the Active Subspace, and therefore on the

part of the space we are interested the most, whereas the AS-MwPG was using the SMC on

the inactive part. The AS-MwPG-i algorithms are below
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Alg. 16 Conditional SMC on active variables for a given i, a1
0:T , w̃1

0:T and t.

1: Simulate Na − 1 points, {an0}
Na
n=2 ∼ pa (· | i) and set each weight wn0 = 1/Na;

2: for s = 1 : t do
3: for ( don = 2 : Na) . reweight
4: if s = 1 then

w̃ns = wns−1l1:s (Bii+Baa
n) ;

5: else

w̃ns = wns−1

l1:s

(
Bii+Baa

n
s−1

)
l1:s−1

(
Bii+Baans−1

) ;

6: end if
7: end for
8: {wns }

Na
n=1 ← normalise

(
{w̃ns }

Na
n=1

)
;

9: If s = t, terminate the algorithm;
10: for n = 2 : Na do Simulate the index vns−1 ∼ M

((
w1
s , ..., w

Na
s

))
of the ancestor of

particle n;
11: end for
12: if ( then some degeneracy condition is met) . resample

13: for n = 2 : Na do Set ans = a
vns−1

s−1 ;
14: end forwns = 1/Na for n = 1 : Na;
15: else
16: for n = 2 : Na do Set ans = ans−1;
17: end for
18: end if
19: for ( don = 2 : Na) . move
20: Simulate an∗s ∼ qt,a (· | ans , i);
21: Set ans = an∗s with probability
22:

1 ∧ l1:s (Bii+Baa
n∗
s ) pa (an∗s | i) qt,a (ans | i)

l1:s (Bii+Baans ) pa (ans | i) qt,a (an∗s | i)
,

23: end for
24: end for
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Alg. 17 Inactive subspace Metropolis within particle Gibbs

1: Initialise i0;
2: Initialise a1,0

t for t = 0 : T ;
3: for m = 1 : Ni do
4: i∗m ∼ qi (· | im−1);
5: Set im = i∗m with probability

αmi = 1 ∧
pi (i

∗m) l1:T

(
Bii
∗m +Baa

m−1,1
T

)
pi (im) l1:T

(
Biim−1 +Baa

m−1,1
T

) ;

6: Else let im = im−1;
7: Run Algorithm 16 for i = im, a1

0:T = a1,m−1
0:T , w̃1,m−1

0:T and t = T , obtaining

points
(
a1,m

0:T , ..., a
Na,m
0:T

)
and unnormalised and normalised weights

(
w̃1,m
T , ..., w̃Na,mT

)
and(

w1,m
T , ..., wNa,mT

)
;

8: um ∼M
((
w1,m
T , ..., wNa,mT

))
;

9: Set a1,m
0:T = au

m,m
0:T ;

10: Set w̃1,m
0:T = w̃u

m,m
0:T ;

11: Set w1,m
0:T = wu

m,m
0:T ;

12: end for

5.7.2 Review

We have introduced two versions of a novel method that are based on the application of the

Metropolis within Particle Gibbs (MwPG) [Andrieu et al., 2010] to Active Subspaces and

we named the algorithms AS-MwPG (when the internal SMC sampler is used to sample the

inactive variables) and AS-MwPG-i (when the internal SMC sampler is used to sample the

active variables). Some of the conditions where we expect the novel algorithms to perform at

their best are similar to those of AS-Gibbs introduced in Section 5.6 (i.e. that the conditional

distributions are easy to draw from, or in case for perfect AS).

We expect the use of AS-MwPG-i to be prominent with respect to AS-MwPG, as it ded-

icates most of the computational power to the Active Subspace. We expect the AS-MwPG-i

to perform better than AS-Gibbs in those cases where the Active Subspace is complex to ex-

plore (for example multimodal). We will see the AS-MwPG-i in action on one such example

in Section 5.8.

5.8 Comparison of performances of AS-based MCMC

algorithms in a multi-modal distribution

We show how the AS-MwPG-i will allow us to perform correctly the MC analysis of a

multimodal posterior where other algorithms presented in this chapter so far would fail. We

use the Gaussian mixture model of Section 5.8.1.
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5.8.1 Gaussian mixture model

Gaussian mixture models are a class of multimodal distributions that are often used for

example in approximating complex distributions [Reynolds, 2009]. We use here a mixture of

two Gaussians, in a 4D space. For a single observation y, the likelihood of the model has the

form:

l(θ) =
1

2
N (y|θ1 + θ2, 1) +

1

2
N (y|θ3 + θ4, 1) (5.24)

We see in (5.24) that with the state space parameter θ = (θ1, θ2, θ3, θ4), the sum of the first

two elements θ1 +θ2 is used to estimate the mean of the first Gaussian, and the sum θ3 +θ4 is

used to estimate the mean of the second Gaussian. The system is clearly over-parametrised

since we would actually strictly only need two parameters in the state space, one for the

estimate of the mean of each Gaussian. When we have multiple observations, say P , in

a vector y = (y1, y2, ..., yn), considering independence of observations, the likelihood (5.24)

becomes:

l(θ) =
P∏
i=1

(
1

2
N (yi|θ1 + θ2, 1) +

1

2
N (yi|θ3 + θ4, 1)

)
(5.25)

Prior

We will use a prior given by a Gaussian centered at 0 and with variance 25 in all directions:

p(θ) =
n∏
i=1

N (0, σ2) (5.26)

where the variance σ2 = 25.

Gradient of log-likelihood

The log-likelihood becomes:

log l(θ) =
P∑
i=1

log

(
1

2
N (yi|θ1 + θ2, 1) +

1

2
N (yi|θ3 + θ4, 1)

)
(5.27)

The derivative of the log likelihood with respect to θ1:

δ( log l(θ))

δθ1

=
P∑
i=1

1(
1
2
N (yi|θ1 + θ2, 1) + 1

2
N (yi|θ3 + θ4, 1)

) 1

2

δ

δθ1

N (yi|θ1 + θ2, 1) (5.28)

We have
δ

δθ1

N (yi|θ1 + θ2, 1) =
∂

∂θ1

[
1√
2π

exp

(
−(yi − (θ1 + θ2))2

2

)]
= (yi − (θ1 + θ2))

1√
2π

exp

(
−(yi − (θ1 + θ2))2

2

)
= (yi − (θ1 + θ2))N (yi|θ1 + θ2, 1)

(5.29)

150



Considering that we are interested in the gradient of the negative log-likelihood, combining

(5.28) and (5.29) we have

δ(− log l(θ))

δθ1

=
P∑
i=1

1
2
N (yi|θ1 + θ2, 1)(

1
2
N (yi|θ1 + θ2, 1) + 1

2
N (yi|θ3 + θ4, 1)

)(θ1 + θ2 − yi) (5.30)

To generalise equation (5.30), it easy to check that, with likelihood given in (5.25), for i = 1,2

the components of the gradient of the negative log-likelihood are

δ(− log l(θ))

δθi
=

P∑
i=1

1
2
N (yi|θ1 + θ2, 1)(

1
2
N (yi|θ1 + θ2, 1) + 1

2
N (yi|θ3 + θ4, 1)

)(θ1 + θ2 − yi), i=1,2 (5.31)

Whereas for i = 3,4 the components of the gradient are

δ(− log l(θ))

δθi
=

P∑
i=1

1
2
N (yi|θ3 + θ4, 1)(

1
2
N (yi|θ1 + θ2, 1) + 1

2
N (yi|θ3 + θ4, 1)

)(θ3 + θ4 − yi), i=3,4 (5.32)

Considering that the yi are noisy observations of the mean of either of the two Gaussians,

we understand from equations (5.31) and (5.32) that the surface level of the log likelihood

are those that have either

θ1 + θ2 = µ1 and θ3 + θ4 = µ2 (5.33)

or

θ1 + θ2 = µ2 and θ3 + θ4 = µ1 (5.34)

Where µ1 and µ2 are respectively the means of each of the two Gaussians. We show this

visually in next subsection.

Visual representation

In a realization of the Gaussian mixture model obtained by generating synthetic data from

the underlying model
1

2
N (−5, 1) +

1

2
N (5, 1) (5.35)

We show what we said earlier at the beginning of Section 5.8.1, specifically in equations

(5.33) and (5.34) we expect the following combinations to leave the likelihood invariant:

• θ1 + θ2 = −5 and θ3 + θ4 = 5

• θ1 + θ2 = 5 and θ3 + θ4 = −5

After generating noisy synthetic data from (5.35), in order to visualize the posterior, we have

run a SMC with 1M particles with likelihood of the form of equation (5.25) and Figure 5.14

shows the output combinations that leave the likelihood invariant, which, as expected, are

θ1 + θ2 = −5 and θ3 + θ4 = 5 or vice-versa
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Figure 5.14: Level surface of the system of equation (5.35), the combinations θ1 + θ2 = −5
and θ3 + θ4 = 5 or θ1 + θ2 = 5 and θ3 + θ4 = −5 are the ones that leave the likelihood (5.25)
invariant

In the following scatter-plot, as a confirmation of what we said, we see that for the couple

of parameter θ1 and θ2, the expected combinations are the ones that bring θ1 + θ2 = ±5

(similar results hold for the other couple θ3 and θ4).

Figure 5.15: Level surface of the system of equation (5.35): the combination of parameters
θ1 + θ2 = ±5 are the ones that leave the likelihood (5.25) invariant

5.8.2 Results

We have used for the likelihood a realization of the Gaussian mixture model obtained by gen-

erating synthetic data from the same underlying model of equation (5.35), we know therefore

that the following combinations will leave it invariant (see also Figure 5.14):

• θ1 + θ2 = −5 and θ3 + θ4 = 5
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• θ1 + θ2 = 5 and θ3 + θ4 = −5

To illustrate that the SMC is able to explore both modes of the target without a carefully

chosen proposal, we have used for all algorithms a covariance matrix that is considerably

smaller than the optimal covariance [Roberts and Rosenthal, 2001], for the proposals both

of the standard MCMC and of the MCMC part in AS-Gibbs, AS-MH, AS-MwPG-i. This

setting will allow us to see if any method, even with a covariance of the proposal that is

technically very challenging, is capable of reconstructing the bi-modal posterior correctly

without remaining stuck in one of the modes.

We have run standard MCMC Algorithm 4, AS-MH Algorithm 8, AS-Gibbs Algorithm 13

and AS-MwPG-i Algorithm 15, for each method we have used 440000 likelihood evaluations

to have fair comparisons. Metropolis within Particle Gibbs AS-MwPG-i is the only algorithm

that has been able to correctly reconstruct the posterior, as we can appreciate from Figure

5.16 and 5.17. Which highlights the strengths of the AS-MwPG-i algorithm: even with a

covariance of the proposal that is technically “challenging”, it is the only algorithm that is

capable of reconstructing the bi-modal posterior correctly.

Results AS-MwPG-i

Figure 5.16: AS-MwPG-i: reconstruction of the posterior for the system having likelihood
(5.35). We see that AS-MwPG-i correctly reconstructs the bimodal posterior, both modes
(θ1 + θ2 = −5 and θ3 + θ4 = 5) and (θ1 + θ2 = 5 and θ3 + θ4 = −5) are found (Note: in the
figure “Sum components first mean” on the x-axis is the sum µ1 = θ1 + θ2, whereas “Sum
components second mean” on the y-axis is the sum µ2 = θ3 + θ4).
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Figure 5.17: AS-MwPG-i: reconstruction of the posterior for the system having likelihood
(5.35). We see in the figure θ1 (named Component 1 in the figure) vs θ2 (named Component
2): we can appreciate that MwPG correctly reconstructs the bimodal posterior, in fact both
combinations θ1 + θ2 = −5 and θ1 + θ2 = 5 are found (Note: in the figure “Component 1” on
the x-axis is θ1, whereas “Component 2” on the y-axis is θ2).

Results standard MCMC

Figure 5.18: Standard MCMC: incorrect reconstruction of the posterior for the system
having likelihood (5.35). We see that MCMC incorrectly reconstructs the bimodal posterior:
only the mode (θ1 + θ2 = −5 and θ3 + θ4 = 5) is found, whereas the mode (θ1 + θ2 = 5
and θ3 + θ4 = −5) is missing, see comparison with Figure 5.16. (Note: in the figure “Sum
components first mean” on the x-axis is the sum µ1 = θ1 + θ2, whereas “Sum components
second mean” on the y-axis is the sum µ2 = θ3 + θ4).
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Figure 5.19: Standard MCMC: incorrect reconstruction of the posterior for the system
having likelihood (5.35). We see in the figure θ1 (named Component 1 in the figure) vs θ2

(named Component 2): we can appreciate that MCMC gets stuck in one mode and only the
combination θ1 +θ2 = −5 is found, while the mode θ1 +θ2 = 5 is missing, see comparison with
Figure 5.17 (Note: in the figure “Component 1” on the x-axis is θ1, whereas “Component 2”
on the y-axis is θ2).

Results AS-MH

Figure 5.20: AS-MH algorithm 8 of Section 4.8.2: incorrect reconstruction of the posterior
for the system having likelihood (5.35). We see that AS-MH algorithm incorrectly reconstructs
the bimodal posterior: only the mode (θ1 + θ2 = −5 and θ3 + θ4 = 5) is found, whereas the
mode (θ1 + θ2 = 5 and θ3 + θ4 = −5) is missing, see comparison with Figure 5.16. (Note: in
the figure “Sum components first mean” on the x-axis is the sum µ1 = θ1 + θ2, whereas “Sum
components second mean” on the y-axis is the sum µ2 = θ3 + θ4).
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Figure 5.21: AS-MH algorithm 8 of Section 4.8.2: incorrect reconstruction of the posterior
for the system having likelihood (5.35). We see in the figure θ1 (named Component 1 in the
figure) vs θ2 (named Component 2): we can appreciate that AS-Gibbs gets stuck in one mode
and only the combination θ1 + θ2 = −5 is found, while the mode θ1 + θ2 = 5 is missing, see
comparison with Figure 5.17 (Note: in the figure “Component 1” on the x-axis is θ1, whereas
“Component 2” on the y-axis is θ2).

Results AS-Gibbs

Figure 5.22: AS-Gibbs algorithm 13 of Section 5.6: incorrect reconstruction of the pos-
terior for the system having likelihood (5.35). We see that AS-Gibbs algorithm incorrectly
reconstructs the bimodal posterior: only the mode (θ1 + θ2 = −5 and θ3 + θ4 = 5) is found,
whereas the mode (θ1 +θ2 = 5 and θ3 +θ4 = −5) is missing, see comparison with Figure 5.16.
(Note: in the figure “Sum components first mean” on the x-axis is the sum µ1 = θ1 + θ2,
whereas “Sum components second mean” on the y-axis is the sum µ2 = θ3 + θ4).

156



Figure 5.23: AS-Gibbs algorithm 13 of Section 5.6: incorrect reconstruction of the posterior
for the system having likelihood (5.35). We see in the figure θ1 (named Component 1 in the
figure) vs θ2 (named Component 2): we can appreciate that AS-Gibbs gets stuck in one mode
and only the combination θ1 + θ2 = −5 is found, while the mode θ1 + θ2 = 5 is missing, see
comparison with Figure 5.17 (Note: in the figure “Component 1” on the x-axis is θ1, whereas
“Component 2” on the y-axis is θ2).

5.9 Determining the dimension of Active Subspaces

with ESS

We propose a new, alternative method to determine the size of Active Subspaces that uses the

ESS (we spoke about ESS in Section 2.3.2). The basic idea is that since the inactive subspace

in ideal (or close-to-ideal) cases is not informed (or very little informed) by the likelihood, the

prior will be a good importance proposal for the inactive subspace. Remembering that, in

Section 2.3, we spoke about the optimal proposal for Importance Sampling being proportional

to the posterior we see that, fixing an active variable a1 arbitrarily within the posterior set,

we have that the importance ratio of (5.36) brings a constant

IS =
pa(a

1)pi(i|a1)l(a1, i)

pi(i|a1)
=
pa(a

1)pi(i)l(a
1)

pi(i)
= pa(a

1)l(a1) ∀i ∼ pi(·) (5.36)

the simplifications in equation (5.36) come from the fact that in case of inactive variables

the likelihood does not depend on i l(a, i) = l(a) and active and inactive are independent

pi(i|a) = pi(i).

The novel proposed approach determines the dimension of the inactive subspace as the

largest dimension that yields an ESS that does not drop below some threshold, by using the

prior as importance proposal (consequently the dimension of the Active Subspace is fixed as

the complement to n, where n is the dimension of the full space). We compare in the sections
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below the novel ESS method with the traditional eigenvalues method explained in Section

4.2.2 and we see that they bring the same results, in case of the Gaussian model of Section

5.3.2 and for the Banana model of Section 5.4.2.

Gaussian model

As a recap, we report below in Figure 5.24 a copy of the spectral gap in the Gaussian 10D

model, identified using the traditional method which identifies the size of the Active Subspace

as na = 1

Figure 5.24: Eigenvalues of 10D Gaussian model, we see that the estimate AS size is
1, considering the spectral gap between eigenvalues 1 and 2. The dimension of the Active
Subspaces is na = 1.

We report below in Figure 5.25 a visual representation of the novel ESS method: rec-

ollecting that the method consists in finding the largest dimension that yields an ESS that

does not drop below some threshold, we see in the figure that the dimension of the inactive

subspace in the Gaussian 10D model is ni = 9, in fact ESS is close to 100% until ni = 9

(the number of full bars), and therefore the Active Subspace dimension is na = 10 − 9 = 1,

compare with Figure 5.3 where with the traditional eigenvalue method the active dimension

result is na = 1 as well, so the two methods show identical results.
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Figure 5.25: ESS (%) using the prior as importance proposal for different dimensions of
inactive subspace in the Gaussian 10D model. We see from the figure that the largest dimen-
sion ni of the inactive subspace that brings a high ESS is 9 (the number of full bars) and we
therefore set ni = 9 and the dimension of Active Subspace is therefore na = 10 − ni = 1.
See comparison with Figure 5.24 where with the traditional eigenvalue method the active
dimension result is na = 1 as well.

With similar reasoning, we see that in the 25D Gaussian model both the traditional

spectral gap in Figure 5.26 and the novel ESS method in Figure 5.27 bring identical results

of dimension of the Active Subspace na = 1.

Figure 5.26: Eigenvalues of 25D Gaussian model, we see that the estimate AS size is
1, considering the spectral gap between eigenvalues 1 and 2. The dimension of the Active
Subspaces is na = 1.
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Figure 5.27: ESS (%) using the prior as importance proposal for different dimensions of
inactive subspace in the Gaussian 25D model. We see from figure that the largest dimension
ni of the inactive subspace that brings a high ESS is 24 (the number of full bars) and we
therefore set ni = 24 and the dimension of Active Subspace is therefore na = 25 − ni = 1.
See comparison with Figure 5.26 where with the traditional eigenvalue method the active
dimension result is identically na = 1.

Banana model

Repeating the same exercise of the previous section for the Banana model, we see that

identical results are in the Banana 10D model with dimension of Active Subspace na = 4

identically in both the traditional spectral gap method of Figure 5.28 and in the novel ESS

of Figure 5.29
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Figure 5.28: Eigenvalues of 10D Banana model, we see that the estimate AS size is 4, con-
sidering the spectral gap between eigenvalues 4 and 5. The dimension of the Active Subspaces
is na = 4.

Figure 5.29: ESS (%) using the prior as importance proposal for different dimensions of
inactive subspace in the Banana 10D model. We see from figure that the largest dimension ni
of the inactive subspace that brings a high ESS is 6 (the number of full bars) and we therefore
set ni = 6 and the dimension of Active Subspace is therefore na = 10−ni = 4. See comparison
with Figure 5.28 where with the traditional eigenvalue method the active dimension result is
na = 4 as well.

For a 25D system the charts are in Figure 5.30 and 5.31, both identically indicating a

dimension of the Active Subspace of na = 4.
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Figure 5.30: Eigenvalues of 25D Banana model, we see that the estimate AS size is 4, con-
sidering the spectral gap between eigenvalues 4 and 5. The dimension of the Active Subspaces
is na = 4.

Figure 5.31: ESS (%) using the prior as importance proposal for different dimensions of
inactive subspace in the Banana 25D model. We see from figure that the largest dimension
ni of the inactive subspace that brings a high ESS is 21 (the number of full bars) and we
therefore set ni = 21 and the dimension of Active Subspace is therefore na = 25 − ni = 4.
See comparison with Figure 5.30 where with the traditional eigenvalue method the active
dimension result is na = 4 as well.

5.9.1 Review

We have introduced an alternative method to determine the dimension of the Active Subspace

using the ESS (instead of the traditional spectral gap method explained in Section 4.2.2) by
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finding the largest dimension of the inactive subspace that yields an ESS that does not drop

below some threshold, and we have shown that it the Gaussian model of Section 5.3.2 and for

the Banana model of Section 5.4.2 it brings identical results in determining the dimension of

the Active Subspace. We consider the use of the ESS a relevant method, considering that, by

definition, the inactive subspace should not affect the likelihood, and therefore should only

influence the prior. There is indeed a relationship between the Effective Sample Size (ESS)

method and the eigenvalues method. As Constantine notes in his work [Constantine et al.,

2016], the eigenvalues represent ’the average squared directional derivative of the negative log-

likelihood along the corresponding eigenvector.’ Consequently, a small eigenvalue indicates

minimal variation in that direction, suggesting that the likelihood provides little additional

information along that dimension. Similarly, if the ESS method suggests that the prior

is an effective proposal for the posterior, it implies that the likelihood is not particularly

informative. Together, both a low ESS and small eigenvalues suggest that certain directions

contribute minimally to the posterior, highlighting inactive areas.

5.10 Conclusion

We have explored a few methods in this chapter of Active Subspaces (AS) in MCMC. We

started highlighting the main problem we are trying to solve, which is the curse of dimen-

sionality affecting MCMC, and we have explored a few algorithms that have the aim to

improve the performances. We started by describing a proposed novel Algorithm 10 named

AS-PMMH, after the application of PMMH [Andrieu et al., 2010] to AS, which can be seen

as a possible theoretical advancement compared to AS-MH Algorithm 8 as it uses a SMC

sampler instead of Importance Sampling to obtain an estimate of the likelihood, we expect

therefore the AS-PMMH to perform better in cases where the inactive subspace is complex

to explore. We have seen that AS-PMMH brings an additional computational cost that can

make it not always the best choice, and that it also shares with AS-MH the possibility that

a noisy likelihood estimate may cause “sticky” behaviour (see Section 5.4.3).

We then introduced Algorithm 12, named AS-PMMH-i, where the additional i in the

acronym means inverted, because, compared to AS-PMMH, we switch roles between active

and inactive parts and we apply the outer MCMC to the inactive space and the inner SMC

sampler to the active part, with the aim to spend the biggest computational effort of the SMC

on the part we consider most valuable, the inactive, and we have concluded that, specifically

on the models we used to test the algorithm, using estimate of marginals with SMC brings

a trade-off : there is a bigger computational cost needed to have a more accurate estimate of

the likelihood, which adds to the algorithmic complexity, so the potential advantages come

at the cost of adding algorithmic complexity which can scale considerably depending on the

setting (see for example the conclusions in Section 5.4).

We therefore then devised a proposed novel application of Gibbs sampler [Geman and

163



Geman, 1984] to AS, named AS-Gibbs, which has the advantage of not having marginals

estimate and in cases of near-perfect AS we expect AS-Gibbs to outperform algorithms that

use an estimate of marginal because in AS-Gibbs we would have the exact marginal [Andrieu

and Vihola, 2015]. Also in general in cases of independence of active and inactive parts we

expect AS-Gibbs to outperform standard MCMC as we have explained in Section 5.6.2.

We then proposed a natural extension of AS-Gibbs by introducing AS-MwPG Algorithm

15 and AS-MwPG-i Algorithm 17, from the application to AS of MwPG [Andrieu et al.,

2010]. We consider the algorithms an extension of AS-Gibbs since the conditions where

we expect to use them are similar to As-Gibbs, namely when active and inactive parts are

independent. Both algorithms use an SMC sampler to draw particles either from the inactive

(AS-MwPG) or the active (AS-MwPG-i) subspace and are expected to outperform AS-Gibbs

in cases where the inactive or active subspaces respectively are complex, for example multi-

modal. We have shown in Section 5.8 a toy example of a multi-modal distribution where the

AS-MwPG-i was the only algorithm capable of correctly reconstructing both modes, whereas

the other algorithms were stuck in one of the modes.

We also introduced in Section 5.9 a novel alternative method to determine the dimension

of the Active Subspace that uses the ESS. The idea behind this, is measuring how good the

prior will be as importance proposal for the inactive subspace, and in picking as inactive

dimension the largest dimension of inactive subspace that yields an ESS that does not drop

below some threshold (consequently the dimension of the Active Subspace is fixed as the

complement to n, where n is the dimension of the full space). We have seen that the novel

ESS method brings identical results to the traditional spectral gap of Section 4.2.2 in the

Gaussian model and in the Banana model.

We proceed in the next Chapter 6 with the exploration of AS methods in SMC.
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Chapter 6

Active Subspaces proposed novel

SMC algorithms

6.1 Introduction

We have explored in the two Chapters 4 and 5 AS applications to MCMC in order, mainly,

to decrease the problems caused by the curse of dimensionality. While MCMC remained the

central part, we had additions from other MC methods like Importance Sampling, PMMH,

MwPG and Gibbs sampling. We now shift the focus to algorithms where the core is SMC,

with additional components from other algorithms.

We’ll start the narrative of this chapter with the introduction of AS-SMC, an algorithm

that was born with the intention to create the SMC-variant of the AS-MH Algorithm 8:

while AS-MH uses Importance Sampling to marginalise out the inactive variables and an

outer MCMC to sample from the active subspace, the AS-SMC still uses the IS on the

inactive part, but will have a SMC sampler to generate samples from the active subspace.

AS-SMC addresses the Open Point OP3, we expect AS-SMC to perform better than AS-MH

in cases where the active subspace is complex to explore using MCMC, for example in case of

multimodal distributions, where it is difficult to find a good proposal for the Active Subspace,

and SMC overcomes this limitation by using tempering and intermediate distributions which

ensure that at every step good proposals are available for the successive step.

6.2 AS-SMC

We introduce the AS-SMC Algorithm 18. The AS-SMC can be considered as the SMC

counterpart of the AS-MH Algorithm 8, with the difference that the AS-SMC samples from

the active marginal using SMC, whereas the AS-MH uses MCMC. And we see that actually

an AS-MH move is embedded in the SMC sampler in the rejuvenation step lines 21-32, the

pseudo-marginal in particular is calculated in lines 24-27.

We show the algorithm below, and give formal justification in Section 6.2.1.
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Alg. 18 AS-SMC
1: Simulate Na points,

{
θm0
}Na
m=1

∼ p and set each weight ωm0 = 1/Na; . Draw from prior Na particles

2: for m = 1 : Na do . For each active particle, draw Ni inactive particles
3: Set am0 = BTa

(
θm0
)
, i1,m0 = BTi

(
θm0
)

and um0 = 1;

4: for n = 2 : Ni do i
n,m
0 ∼ q0,i

(
· | am0

)
:= pi

(
· | am0

)
;

5: end for
6: Set wn,m0 = 1/Ni for n = 1 : Ni;
7: end for
8: for t = 1 : T do
9: for m = 1 : Na do . reweight
10: for n = 1 : Ni do

11: w̃n,mt

(
amt−1, i

n,m
t−1

)
=

pi

(
i
n,m
t−1 |a

m
t−1

)
l1:t

(
Baa

m
t−1+Bii

n,m
t−1

)
qt,i

(
i
n,m
t−1 |a

m
t−1

) ;

12: end for
13:

ω̃mt = ωmt−1

∏Ni
j=1 qt,i

(
in,mt−1 | amt−1

)∑Ni
n=1 w̃

n,m
t

(
amt−1, i

n,m
t−1

)
∏Ni
j=1 qt−1,i

(
in,mt−1 | amt−1

)∑Ni
n=1 w̃

n,m
t−1

(
amt−1, i

n,m
t−1

) ;

14: end for
15: {ωmt }

Na
m=1 ← normalise

(
{ω̃mt }

Na
m=1

)
; . Normalise outer weights

16: for m = 1 : Na do
{
wn,mt

}Ni
n=1
← normalise

({
w̃n,mt

}Ni
n=1

)
;

17: end for . Normalise inner weights
18: for m = 1 : Na do

19: umt ∼M
((
w1,m
t , ..., w

Ni,m
t

))
;

20: end for
21: if some degeneracy condition is met then resample and move
22: for m = 1 : Na do

23: Simulate
(
amt , i

1:Ni,m
t

)
from the mixture distribution

Na∑
j=1

ωjtKt,a
{
· |
(
ajt−1, i

1:Ni,j
t−1

)}
,

where Kt,a is an AS-MH move, i.e.: j∗ ∼M
({

ωjt

}Na
j=1

)
; a∗mt ∼ qa

(
· | aj

∗

t

)
;

24: for n = 1 : Ni do . Calculate pseudo-marginal
25: i∗n,mt ∼ qt,i (· | a∗mt ) ;
26:

w̃n,mt

(
a∗mt , i∗n,mt,i

)
=
pi
(
i∗n,mt | a∗mt

)
l1:t

(
Baa∗mt +Bii

∗n,m
t

)
qt,i

(
i∗n,mt | a∗mt

) ;

27: end for
28: u∗mt ∼M

((
w∗1,mt , ..., w

∗Ni,m
t

))
, where for n = 1 : Ni

w∗n,mt =
w̃n,mt

(
a∗mt , i∗n,mt

)∑Ni
p=1 w̃

p,m
t

(
a∗mt , i∗p,mt

) ;

29: Set
(
amt ,

{
in,mt , w̃n,mt

}Ni
n=1

, umt

)
=
(
a∗mt ,

{
i∗n,mt , w̃∗n,mt

}Ni
n=1

, u∗mt

)
with probability

αmt,a = 1 ∧
pa (a∗ma )

∑Ni
n=1 w̃

n,m
t

(
a∗mt , i∗n,mt

)
pa
(
aj

∗
t

)∑Ni
n=1 w̃

n,j∗
t

(
aj

∗
t−1, i

n,j∗
t−1

) qt,a
(
aj

∗

t | a∗mt
)

qt,a
(
a∗mt | aj

∗
t

) ;

30: Else let
(
amt ,

{
in,mt , w̃n,mt

}Ni
n=1

, umt

)
=

(
aj

∗

t ,
{
in,j

∗

t , w̃n,j
∗

t

}Ni
n=1

, uj
∗

t

)
;

31: end for
ωmt = 1/Na for m = 1 : Na;

32: end if
33: end for
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6.2.1 Formal justification

Our aim is to use an SMC sampler to simulate from the target distribution π(a, i) of equation

(4.17). We borrow the idea from [Chopin et al., 2012] and we follow the same derivation.

The target distribution πt used at the tth iteration is chosen to be

πt

(
a, {in}Nin=1

)
=

1

Zt
pa (a)

Ni∏
j=1

qt,i
(
ij | a

)( 1

Ni

Ni∑
n=1

pi (i
n | a) l1:t (Baa+Bii

n)

qt,i (in | a)

)
(6.1)

where Zt is a normalising constant. Following the derivation in [Chopin et al., 2012], we may

rearrange this target as follows:

πt

(
a, {in}Nin=1

)
=

1

Zt
pa (a)

Ni∏
j=1

qt,i
(
ij | a

)( 1

Ni

Ni∑
n=1

pi (i
n | a) l1:t (Baa+Bii

n)

qt,i (in | a)

)

=
1

Ni

Ni∑
n=1

pa (a) pi (i
n | a) l1:t

(
Baa+Bii

n
j

)
Zt

 Ni∏
j=1
j 6=n

qt,i
(
ij | a

)

=
πt,a (a)

Ni

Ni∑
n=1

πt,i (i
n | a)

 Ni∏
j=1
j 6=n

qt,i
(
ij | a

) (6.2)

where we used the result

pa (a) pi (i | a) l1:t (Baa+Bii
n) = Ztπt,a (a) πt,i (i | a) .

Equation (6.2) includes in its marginals the target at iteration t of πt (a, i) = πt,a (a) πt,i (i | a).

The weight update of the SMC sampler, on line 11 of the algorithm, is obtained from

equation (6.1) and by considering that

ω̃mt = ωmt−1

πt

(
amt−1,

{
in,mt−1

}Ni
n=1

)
πt−1

(
amt−1,

{
in,mt−1

}Ni
n=1

) (6.3)

= ωmt−1

pa
(
amt−1

)∏Ni
j=1 qt,i

(
in,mt−1 | amt−1

)
1
Ni

∑Ni
n=1 w̃

n,m
t

(
amt−1, i

n,m
t−1

)
pa
(
amt−1

)∏Ni
j=1 qt−1,i

(
in,mt−1 | amt−1

)
1
Ni

∑Ni
n=1 w̃

n,m
t−1

(
amt−1, i

n,m
t−1

) (6.4)

= ωmt−1

∏Ni
j=1 qt,i

(
in,mt−1 | amt−1

)∑Ni
n=1 w̃

n,m
t

(
amt−1, i

n,m
t−1

)∏Ni
j=1 qt−1,i

(
in,mt−1 | amt−1

)∑Ni
n=1 w̃

n,m
t−1

(
amt−1, i

n,m
t−1

) , (6.5)

Where, in (6.3), ωm represents the outer weight of particle m, whereas wn,m is the inner

weight of inactive particle n belonging to particle m. The upper ˜is for un-normalised quan-

tities.
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Following also [Chopin et al., 2012], in similar fashion to what was done in equations

(4.23) and (4.23) for AS-MH, for estimating the expectation of a function h with respect to

πt, we may use

1. Using one i-point for each a-point:

Na∑
m=1

ωmt h
(
Baa

m
t +Bii

umt ,m
t

)
. (6.6)

2. Using all of the accepted i-points for each a-point:

Na∑
m=1

ωmt

Ni∑
n=1

wn,mt h (Baa
m
t +Bii

n,m
t ) . (6.7)

6.2.2 Comparison of performances with other algorithms

We see how the AS-SMC compares to standard SMC, both in the Gaussian model introduced

in Section 5.3.2, and in the Banana model of Section 5.4.2. The two models will allow us to

evaluate the algorithms in different conditions: we have seen in the previous chapter that the

Gaussian model seems to be a posterior that is easier to explore for the As-related algorithms,

whereas the exploration of the Banana model presents some challenges.

Comparison in the Gaussian model

We start with comparisons with the 25D Gaussian model introduced in Section 5.3.2, which,

as a reminder, has dimension of the Active Subspace of 1. We have performed 50 runs each

of the standard SMC algorithm and of the AS-SMC Algorithm 18, in order to have the same

number of likelihood evaluations for a fair comparison, we have used 10000 particles for the

standard SMC and Na = 1000 particles in the AS-SMC with number of inactive variables

Ni = 10, so that Na ×Ni = 10000, and we have also used the same tempering path for both

algorithms. Figure 6.1 shows the distribution of the RMSE of the difference between the true

mean and the mean estimated by each of the algorithms across the runs:
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Figure 6.1: Violin plots with the distribution of RMSE of the differences between the true
posterior mean and the mean estimated by each of the algorithms over 50 runs in the 25D
Gaussian model. We see that the performances of the standard SMC appears to be worse than
the AS-SMC, this is probably due to the fact that we have a good estimate of the likelihood
in the AS-SMC (in the Gaussian model the Importance Sampler seems to behave well on the
inactive subspace even in high dimensions), coupled with the fact that the in the AS version
the SMC operates on a 1D subspace instead of the full 25D space as the non-AS SMC.

We see in Figure 6.1 that the performances of the standard SMC appear to be worse than

the AS-SMC, which may be expected if we remember that in the Gaussian model the estimate

of the likelihood via pseudo-marginal seems to behave well even in fairly high dimensions of

the inactive subspace (we see small tails in the distribution of the AS-SMC in Figure 6.1),

coupled with the fact that the SMC sampler in AS-SMC acts on a 1D space, whereas the

SMC sampler in the standard SMC algorithm acts on the full 25D space.

Comparison in the Banana model

We proceed with comparisons using the 25D Banana model introduced in Section 5.4.2, which,

as a reminder, has dimension of the Active Subspace of 4, and we have also seen in Chapter

5 that the Banana model poses some challenges to the algorithms (we had some cases of long

tails in the distributions of the RMSE, for example Figure 5.13, indicating poor estimate

of the likelihood). We have performed 50 runs each of the standard SMC algorithm and of

the AS-SMC Algorithm 18, with the same conditions of the previous paragraph. Figure 6.2

shows the distribution of the RMSE of the difference between the true mean and the mean

estimated by each of the algorithms across the runs:
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Figure 6.2: Violin plots with the distribution of RMSE of the differences between the true
posterior mean and the mean estimated by each of the algorithms over 50 runs in the 25D
Banana model. We see that the performances of the standard SMC and AS-SMC appear to
be approximately equal in terms of mean and upper and lower quartile, but the AS-SMC is
showing some tails which suggest again that the estimate of the likelihood may be poor in
some cases and the algorithm can get stuck in the tail of the distribution, this is probably due
to the fact that using 10 inactive variables is too little for the exploration of the 21D inactive
subspace of the Banana model, and this causes the noise in the importance sampler estimate
of the likelihood.

We see in Figure 6.2 that the performances of the standard SMC and AS-SMC appear to

be approximately equal in terms of mean and upper and lower quartile, but the AS-SMC is

showing some tails which suggest again that the estimate of the likelihood may be poor in

some cases and the algorithm can get stuck in the tail of the distribution, this is probably

due to the fact that using 10 inactive variables is too little for the exploration of the 21D

inactive subspace of the Banana model, and this causes the noise in the importance sampler

estimate of the likelihood.

6.2.3 Review

We have introduced the AS-SMC algorithm, which is the SMC equivalent of the AS-MH. We

have seen that it outperforms the standard SMC in cases where the Importance Sampling is

a good tool for the exploration of the inactive subspace, see for example Figure 6.1; but in

cases of more complex inactive subspace the AS-SMC can give problems particularly if the

estimate of the likelihood is noisy, see for example Figure 6.2 where the use of 10 particles

to explore the inactive subspace is probably creating long tails in the RMSE distribution

due to the noisy likelihood estimate. This potentially indicates the need for a tool that is

more refined than Importance Sampling in cases where the inactive subspace is challenging
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to explore, with this aim in mind, we have introduced the AS-SMC2 algorithm in Section

6.3.

6.3 AS-SMC2

We have introduced the SMC2 [Chopin et al., 2012] in Section 2.9, as a recap of the algorithm:

at each step of the tempering of an outer SMC, a particle MCMC is run to obtain an estimate

of the likelihood (so the name SMC2), in our case the outer SMC will be on the Active

Subspace, and the inner on the inactive one: it can be though of as the SMC version of the

AS-PMMH introduced in Section 5.2. The purpose of introducing the SMC2 is that we aim to

have an algorithm that can deal more effectively than the AS-SMC with a complex inactive

subspace: we have seen in Section 6.2 that the performances of the internal Importance

Sampler degrade as we go from a relatively simple inactive subspace like the Gaussian model,

see Figure 6.1, to the more complex Banana model, see results in Figure 6.2. We present the

Algorithm 19 below and give the formal justification in Section 6.3.1. We then show some

results in Section 6.3.2.
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Alg. 19 AS-SMC2

1: Simulate Na points,
{
θm0
}Na
m=1

∼ p and set each weight ωm0 = 1/Na;

2: for m = 1 : Na do
3: Set am0 = BTa

(
θm0
)
, i1,m0 = BTi

(
θm0
)

and um0 = 1;
4: for n = 2 : Ni do
5: in,m0 ∼ q0,i

(
· | am0

)
:= pi

(
· | am0

)
;

6: end for
7: Set wn,m0 = 1/Ni for n = 1 : Ni;
8: end for
9: for t = 1 : T do
10: for m = 1 : Na do . reweight
11: if t = 1 then
12: Simulate

(
i
1:Ni,m
t , v

1:Ni,m
t−1

)
using lines 3-30 (ignoring line 11) of Algorithm 9 taking s in these lines equal to t,

then compute

̂
lt,a

(
amt−1

)
=

Ni∑
n=1

w̃n,mt ;

ω̃mt = ωmt−1
̂

lt,a
(
amt−1

)
;

13: else
14: Simulate

(
i
1:Ni,m
t , v

1:Ni,m
t−1

)
using lines 3-30 (ignoring line 11) of Algorithm 9 taking s in these lines equal to t,

then compute:
̂

lt,a
(
amt−1

)
lt−1,a

(
amt−1

) =

Ni∑
n=1

w̃n,mt ;

ω̃mt = ωmt−1

̂
lt,a

(
amt−1

)
lt−1,a

(
amt−1

) ;

15: end if
16: end for
17: {ωmt }

Na
m=1 ← normalise

(
{ω̃mt }

Na
m=1

)
;

18: if some degeneracy condition is met thenresample and move
19: for m = 1 : Na do

20: Simulate
(
amt , i

1:Ni,m
1:t , v

1:Ni,m
1:t−1

)
from the mixture distribution

Na∑
j=1

ωjtKt,a
{
· |
(
ajt−1, i

1:Nu,j
t , v

1:Ni,j
t−1

)}
,

where Kt,a is an AS-PMMH move, i.e.:

j∗ ∼M
({

ωjt

}Nθ
j=1

)
, then a∗ ∼ qt,a

(
· | aj

∗

t−1

)
, then run Algorithm 9 up to target t conditional on a∗.

21: Set amt = a∗ and in,m1:t , vn,m1:t−1 and w̃n,m1:t to be the variables and unnormalised weights generated when running
Algorithm 9 with probability

1 ∧
pa (a∗)

pa
(
aj

∗
t−1

) qt,a
(
aj

∗

t−1 | a∗
)

qt,a
(
a∗ | aj

∗
t−1

) lt,a (a∗)∏T
t=1

∑Ni
n=1 w̃

n,j∗
t

,

where lt,a (a∗) given by Algorithm 9 run conditional on θ∗a;

22: Else set amt = aj
∗

t−1, w̃n,m1:t = w̃n,j
∗

1:t , in,m1:t = in,j
∗

1:t and vn,m1:t−1 = vn,j
∗

1:t−1.

23: end for
24: ωmt = 1/Na for m = 1 : Na;
25: end if
26: end for

6.3.1 Formal justification

We borrowed the idea from [Chopin et al., 2012], here we present the main ideas, with the

full argument being found in the paper.

At iteration t we require our algorithm to have as one of its marginals the target distri-
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bution

πt (a, i) =
pa (a) pi (i | a) l1:t (Baa+Bii)

Zt
,

with marginal distribution

πt,a (a) =
p (a) lt,a (a)

Zt
,

where

lt,a (a) =

∫
i

pi (i | a) l1:t (Baa+Bii) di.

At t = 0, {am0 }
Na
m=1 ∼ pa and {in,m0 }

Ni
n=1 ∼ pi (· | am0 ) for m = 1 : Nu. The target at

iteration 0 is

p (a)

Ni∏
n=1

pi (i
n
0 | a) ,

from which we simulate Na a-points and Ni i-points for every a. At t = 1 each particle is

assigned the weight

l̂1,a (a) =
1

Ni

Ni∑
n=1

l1 (Baa+Bii
n
0 ) . (6.8)

We introduce notation for the distribution of the i-variables generated at iteration 0 used to

estimate l1,a: ψ0

(
{in0}

Ni
n=1 | a

)
=
∏Ni

n=1 pi (i
n
0 | a). The target distribution at t = 1 being

π1

(
a, {in0}

Ni
n=1

)
= pa (a)ψ0

(
{in0}

Ni
n=1 | a

) l̂1,a (a)

Z1

. (6.9)

This results in the weight update in equation (6.8). We can rewrite the target as

π1

(
a, {in0}

Ni
n=1

)
=

pa (a)

Z1

Ni∏
n=1

pi (i
n
0 | a)

(
1

Ni

Ni∑
n=1

l1 (Baa+Bii
n
0 )

)

=
1

Ni

Ni∑
n=1

pa (a)

Z1

pi (i
n
0 | a) l1 (Baa+Bii

n
0 )

 Ni∏
j=1
j 6=n

pi
(
ij0 | a

)

=
π1,a (a)

Ni

Ni∑
n=1

πt,i (i
n
0 | a)

 Ni∏
j=1
j 6=n

pi
(
ij0 | a

) (6.10)

where we used the result

pa (a) pi (i
n
0 | a) l1 (Baa+Bii

n
0 ) = Z1π1,a (a) πt,i (i

n
0 | a) .

In the marginals of equation (6.10) we have the target at iteration 1 of π1 (a, i | y) =
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π1,a (a) π1,i (i
n
0 | a).

For t ≥ 2, similarly to equation 6.9, we again have that our target distribution is defined

to be the prior, multiplied by the likelihood estimate, multipled by the distribution of the

variables used in the likelihood estimator, multiplied by the normalising constant (which

again follows from the unbiasedness of the likelihood estimator).

Let ψt−1 be the distribution of all of the random variables generated by the internal SMC

up to time t.

πt

(
a,
{
in0:t−1, v

n
0:t−1

}Ni
n=1

)
= pa (a)ψt−1

({
in0:t−1, v

n
0:t−1

}Ni
n=1
| a
) l̂t,a (a)

Zt
, (6.11)

Similarly to the t = 1 case, we may rearrange equation (6.11) to see that πt (a, i) is included

in its marginals:

πt

(
a,
{
in0:t−1, v

n
0:t−1

}Ni
n=1

)
=
πt,a (a)

Ni

×
Ni∑
n=1

πt,i
(
in1:t−1 | a

)
N t−1
u Ni∏

j=1
j 6=hnt (0)

pi
(
ij0 | a

)
 t∏
s=2

Ni∏
j=1

j 6=hnt (s−1)

w
vjs−1

s−1 Ks−1,i

(
ijs−1 | i

vjs−2

s−2 , a

)
where in1:t−1 and hnt are deterministic functions of

{
in0:t−1

}Ni
n=1

and

{
vn0:t−1

}Ni
n=1

: hnt = (hnt (0) , . . . ,hnt (t− 1))

denotes the index history of vnt−1, i.e. hnt (t− 1) = n and hnt (s) = vh
n
t (s+1), recursively for

s = t− 2, ..., 0, and in1:t−1 =
(
in1:t−1(0), ..., in1:t−1(t− 1)

)
denotes the state trajectory of particle

int−1, i.e. in1:t−1(s) = i
hnt (s)
s , for s = 0, ..., t− 1.

For the remainder of the proof we follow [Chopin et al., 2012], with the one difference in

the notation from that paper that here the index of the i variable is one fewer: i.e. equation

(6.11) uses ψt−1

({
in0:t−1, v

n
0:t−1

}Ni
n=1
| a
)

, whereas the equivalent in [Chopin et al., 2012] would

be ψt

({
in1:t, v

n
1:t−1

}Ni
n=1
| a
)

. The reason is that here the weight update in the internal SMC

only involves the values of the particles from the previous iteration.

6.3.2 Comparison of performances with other algorithms

We compare the performances of the SMC2 using the 25D Banana model introduced in

Section 5.4.2, characterised by a dimension of the Active Subspace of 4. We have performed

50 runs each of the standard SMC algorithm, the AS-SMC Algorithm 18 and the SMC2.

For SMC and AS-SMC we have used the same run conditions of the previous paragraph:

the standard SMC has been run with 10000 particles, the AS-SMC with 1000 particles and
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10 inactive variables, so that it has the same number of likelihood evaluations (the same

tempering sequence has been used). For the SMC2, we have used a significantly higher

number of likelihood evaluations of approximately 300000, the move has been necessary for

the structure of the algorithm with the 2 SMC parts: the SMC2 will require future tuning to

reduce the significant additional operational complexity, without compromising the positive

parts. Figure 6.3 shows the distribution of the RMSE of the difference between the true

mean and the mean estimated by each of the algorithms across the runs:

Figure 6.3: Violin plots with the distribution of RMSE of the differences between the true
posterior mean and the mean estimated by each of the algorithms over 50 runs in the 25D
Banana model. The SMC2 has lower mean and upper quartile than all the algorithms, but
it shows longer tails, it is a sign that, although currently the algorithm is using significantly
more likelihood evaluations than the others, still the algorithm may get stuck in one of tails,
probably indicating that additional tuning of the algorithm is necessary.

We see in Figure 6.3 the SMC2 has lower mean and upper quartile than all the algo-

rithms, but it shows longer tails, it is a sign that, although currently the algorithm is using

significantly more likelihood evaluations than the others, and still suffers from the problem

of the AS-PMMH, i.e. we are spending a considerable amount of computational effort on the

inactive part, which is the least interesting to us. Still the algorithm may get stuck in one of

tails, future tuning of the algorithm is necessary.

6.3.3 Review

We have compared the performances of the SMC2 to standard SMC and AS-SMC algorithms.

While for SMC and AS-SMC the same number of likelihood evaluation was used, each of

the SMC2 runs has a significant addition of approximately 300000 likelihood evaluations,

future tuning of the algorithm is expected to bring the additional complexity down, while
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still keeping the benefits. We have seen that there is a trade-off in the current setting, where

the additional complexity allows for better mean and upper quartile in the estimate of the

expectation (figure 6.3), but showing significantly longer tails of the RMSE distribution than

the other two methods, probably indicating that the additional algorithmic complexity is

still not enough and that future tuning is needed. Anyway, with the models explored so

far, the use of SMC2 would not seem justified as the additional overhead is significant and

does not seem to bring comparable benefits, and we are still spending, like in AS-PMMH

case, a considerable amount of computational effort on the inactive part, which is the least

interesting to us.

6.4 Adaptive Active Subspaces SMC: AS-SMC-a

6.4.1 Introduction

We mentioned in Section 4.9 (and we reported in the list of open points as OP4) that one

of the problems in current Active Subspace formulation is that, before running the MC

algorithms we need to have a priori information on the structure of the Active Subspaces,

through the matrices Ba and Bi which from equation (4.2) are generated using the posterior.

So we have a potential deadlock because we would need posterior information beforehand but

we can only have samples that approximate the posterior after having run the MC algorithms.

The authors of [Constantine et al., 2016] came up with a solution that is now commonly used

in AS: when it is not possible or convenient to draw from the posterior in the generating

equation (4.2), approximations of matrices Ba and Bi can be built drawing samples from

the prior instead of the full posterior. But there are cases where the prior AS can be very

different from the posterior AS, and we have shown an example of this in Section 4.9 where

the prior AS is orthogonal to the posterior AS, in such cases the prior AS approximation

would be very poor (see also [Parente, 2020]). So we have devised a method that allows us

to leverage the condition that, by using tempering and SMC in our algorithms, we de facto

have progressive approximations of the posterior: the tempering usually starts from the prior

and goes up to the posterior, and the SMC algorithm generates a smooth transition where

at each step an intermediate distribution becomes the Importance proposal for the next step

(we have explained the full process in Sections 2.5 and 2.6). The fundamental idea is to

build a variant of the AS-SMC Algorithm 18 that at each step of the tempering will generate

new matrices Ba and Bi which will therefore at each step be closer to the actual posterior

directions. The advantages are clear: instead of approximating the directions using prior

samples and keep them throughout the whole algorithm, with the novel method at each step

we have an updated version of the matrices that are relevant for the current approximation

of the posterior.

One main obstacle that we faced when thinking about such adaptive Active Subspaces
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SMC algorithm, is that, in general, the dimension of the Active Subspace may change at every

tempering step, and so we had to figure a way that could ensure theoretical consistency of

the algorithm (mainly that the algorithm was still approximating the intended posterior).

We found a solution in [Chopin et al., 2012], and we borrowed an idea that is used in the

paper for automatic calibration of the number of particles in the particle filter, where they

use a move of drawing from the current posterior approximation one particle and then using

it to generate conditioned samples in the following approximation step. We will explain

mathematically this move and how we have used it, in the next section.

6.4.2 Theoretical justification

We will be using a slightly different notation than in the previous chapters, as this will help

us with indexes. We will be indicating with θa the active variable (previously a) and θi the

inactive variable (previously i), with the following templates of equation (6.12) for the active

variables

θmt,at−1
(6.12)

The meaning of symbols in (6.12) is for θa active particle m, at iteration t, for the active

subspace determined by Bat−1 . For the inactive variables we use the template (6.13)

θm,nt,it−1
(6.13)

The meaning of symbols in (6.13) is for θi, the inactive sub-particle number n for the active

particle m, at iteration t, for the active subspace determined by Bit−1 .

For ease of reference, we rewrite Algorithm 18 using the notation of 6.12 and 6.13, the

new notation is below in Algorithm 20.
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Alg. 20 AS-SMC (same Algorithm as 18, with different notation)

1: Simulate Na points,
{
θm0
}Na
m=1

∼ p and set each weight ωm0 = 1/Na;

2: for m = 1 : Na do
3: Set θm0,a = BTa

(
θm0
)
, θ1,m

0,i = BTi
(
θm0
)

and um0 = 1;

4: for n = 2 : Ni do

5: θn,m0,i ∼ q0,i
(
· | θm0,a

)
= pi

(
· | θm0,a

)
;

6: end for
7: Set wn,m0 = 1/Ni for n = 1 : Ni;
8: end for
9: for t = 1 : T do
10: for m = 1 : Nθ do . reweight
11: for n = 1 : Ni do

12: w̃n,mt

(
θmt−1,a, θ

n,m
t−1,i

)
=

pi

(
θ
n,m
t−1,i|θ

m
t−1,a

)
l1:t

(
Baθ

m
t−1,a+Biθ

n
t−1.i

)
qt,i

(
θ
n,m
t−1,i|θ

m
t−1,a

) ;

13: end for
14:

ω̃mt = ωmt−1

∏Ni
j=1 qt,i

(
θn,mt−1,i | θ

m
t−1,a

)∑Ni
n=1 w̃

n,m
t

(
θmt−1,a, θ

n,m
t−1,i

)
∏Ni
j=1 qt−1,i

(
θn,mt−1,i | θmt−1,a

)∑Ni
n=1 w̃

n,m
t−1

(
θmt−1,a, θ

n,m
t−1,i

) ;

15: end for
16: {ωmt }

Na
m=1 ← normalise

(
{ω̃mt }

Na
m=1

)
;

17: for m = 1 : Na do

18:
{
wn,mt

}Ni
n=1
← normalise

({
w̃n,mt

}Ni
m=1

)
;

19: end for
20: if some degeneracy condition is met then resample and move
21: for m = 1 : Nθ do

22: Simulate
(
θmt,a, θ

1:Ni,m
t,i

)
from the mixture distribution

Na∑
j=1

ωjtKt,θ

{
· |
(
θjt−1,a, θ

1:Ni,j
t−1,i

)}
,

where Kt,θ is an ASMH move, i.e.:

j∗ ∼M
({

ωjt

}Na
j=1

)
;

23: θ∗mt,a ∼ qa
(
· | θj

∗

t,a

)
;

24: for n = 1 : Ni do

25: θ∗n,mt,i ∼ qt,i
(
· | θ∗mt,a

)
;

26:

w̃∗n,mt =
pi

(
θ∗n,mt,i | θ∗mt,a

)
l1:t

(
Baθ∗mt,a +Biθ

∗n,m
t,i

)
qt,i

(
θ∗n,mt,i | θ∗mt,a

) ;

27: end for
28: u∗mt ∼M

((
w∗1,mt , ..., w

∗Ni,m
t

))
, where for n = 1 : Ni

w∗n,mt =
w̃∗n,mt∑Ni
p=1 w̃

∗p,m
t

;

29: Set

(
θmt,a,

{
θn,mt,i , w̃n,mt

}Ni
n=1

, umt

)
=

(
θ∗mt,a ,

{
θ∗n,mt,i , w̃∗n,mt

}Ni
n=1

, u∗mt

)
with probability

αmt,a = 1 ∧
pa
(
θ∗mt,a

)∑Ni
n=1 w̃

∗n,m
t

(
θmt−1,a, θ

n,m
t−1,i

)
pa
(
θj

∗
t,a

)∑Ni
n=1 w̃

n,j∗
t

(
θj

∗
t−1,a, θ

n,j∗
t−1,i

) qt,a
(
θj

∗

t,a | θ∗mt,a
)

qt,a
(
θ∗mt,a | θ

j∗
t,a

) ;

30: Else let

(
θmt,a,

{
θn,mt,i , w̃n,mt

}Ni
n=1

, umt

)
=

(
θj

∗

t,a,
{
θn,j

∗

t,i , w̃n,j
∗

t

}Ni
n=1

, uj
∗

t

)
;

31: end for
32: ωmt = 1/Na for m = 1 : Na;
33: end if
34: end for

As said, we borrowed the idea from [Chopin et al., 2012]. At each iteration (we use t
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as iteration variable) we start by having the adaptive version of equation (4.12), which is

equation (6.14) where we can see the tempered likelihood log l1:t featuring

Ĉt =
Na∑
m=1

ωmt−1

Ni∑
n=1

wn,mt−1∇ log l1:t

(
Bat−1θ

m
t−1,at−1

+Biθ
n,m
t−1,it−1

)
∇ log l1:t

(
Bat−1θ

m
t−1,at−1

+Bit−1θ
n,m
t−1,it−1

)T
(6.14)

Where we have used formula (6.7) to calculate the expectation. By using the approximation

Ĉt, instead of Ĉ of (4.12), following the procedure described in Sections 4.2 and 4.3, we

find the matrices current to iteration t, Bat and Bit , which will also give a dimension of the

current active and inactive subspace, dt,a and dt,i, so that dt,a +dt,i = d with d the dimension

of the state space.

The target at time t is in equation (6.15) [Chopin et al., 2012], we can spot the terms of

the pseudo-marginal part, and the proposal of the inactive variables

πt,at,it

(
θat ,

{
θnit
}Ni
n=1

)
=

1

Zt
pat (θat)

Ni∏
j=1

qt,it
(
θjit | θat

) 1

Ni

Ni∑
n=1

pit
(
θnit | θat

)
l1:t

(
Batθat +Bitθ

n
it

)
qt,it

(
θnit | θat

)
=

πt,at (θat)

Ni

Ni∑
n=1

πt,it
(
θnit | θat

) Ni∏
j=1
j 6=n

qt,it
(
θjit | θat

) (6.15)

at iteration t, where the first subscript in πt,at,it denotes that this is the target for iteration

t, and the second and third denote that the spaces of active and inactive variables are those

determined by the adaptive procedure to be used at iteration t. Since the active subspace

has changed between iterations, we additionally need to define the target from the previous

iteration for the current active subspace. This is given by

πt−1,at,it

(
θat ,

{
θnit
}Ni
n=1

)
=

1

Zt
pat (θat)

Ni∏
j=1

qt−1,it

(
θjit | θat

) 1

Ni

Ni∑
n=1

pit
(
θnit | θat

)
l1:t−1

(
Batθat +Bitθ

n
it

)
qt−1,it

(
θnit | θat

)
=

πt−1,at (θat)

Ni

Ni∑
n=1

πt−1,it

(
θnit | θat

) Ni∏
j=1
j 6=n

qt−1,it

(
θjit | θat

) . (6.16)

This target is not the same as πt−1,at−1,it−1 : in particular qt−1,it and qt−1,it−1 can be chosen

independently of each other. This additional change in target between iterations t− 1 and t

requires an additional IS step, which is detailed at the end of this section.
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The weight update at iteration t is then similar to that in section 6.2

ω̃mt =
πt,at,it

(
θmt−1,at ,

{
θn,mt−1,it

}Ni
n=1

)
πt−1,at,it

(
θmt−1,at ,

{
θn,mt−1,it

}Ni
n=1

)
= ωmt−1

∏Ni
j=1 qt,it

(
θjit | θat

)∑Ni
n=1 w̃

n,m
t

(
θmt−1,at , θ

n,m
t−1,it

)∏Ni
j=1 qt−1,it

(
θjit | θat

)∑Ni
n=1 w̃

n,m
t−1

(
θmt−1,at , θ

n,m
t−1,it

) ,
where

w̃n,mt
(
θmt−1,at , θ

n,m
t−1,it

)
=
pit
(
θn,mt−1,it

| θmt−1,at

)
l1:t

(
Batθ

m
t−1,at +Bitθ

n
t−1.it

)
qt,it

(
θn,mt−1,it

| θmt−1,at

) ,

and similarly to Section 6.2 and, for clarity,

w̃n,mt−1

(
θmt−1,at , θ

n,m
t−1,it

)
=
pit
(
θn,mt−1,it

| θmt−1,at

)
l1:t−1

(
Batθ

m
t−1,at +Bitθ

n
t−1.it

)
qt−1,it

(
θn,mt−1,it

| θmt−1,at

) .

At iteration t, for each particle we use an MCMC move with invariant distribution

πt,at,it

(
θat ,

{
θnit
}Ni
n=1

)
(6.17)

running AS-MH Algorithm 8 with likelihood l1:t in place of l.

At the beginning of each iteration, an eigendecomposition of equation (6.14) is used

to determine Bat and Bit . We then perform the following conditional SMC step on each

particle to obtain a particle in the new active and inactive subspaces, moving particle(
θmat−1

,
{
θn,mit−1

}Ni
n=1

)
to
(
θmat ,

{
θn,mit

}Ni
n=1

)
. We use the observation [Chopin et al., 2012] that

the target in equation (6.15) can be seen as a marginalisation of an extended distribution

π∗t,at,it over a uniformly distributed particle index variable ut

π∗t,at,it

(
ut, θat ,

{
θnit
}Ni
n=1

)
=
πt,at (θat)

Ni

πt,it
(
θutit | θat

) Ni∏
j=1
j 6=ut

qt,it
(
θjit | θat

) . (6.18)

[Chopin et al., 2012] notes that it is simple to extend a set of weighted particles from πt,at,it

so that they are from π∗t,at,it : for each particle we simulate from the conditional distribution

of ut, which is given by ut | θt,at ,
{
θnt,it
}Ni
n=1
∼ M

((
w1,m
t , ..., wNi,mt

))
, where wn,mt is the

normalised version of w̃n,mt
(
θmt,at , θ

n,m
t,it

)
. At the beginning of iteration t, our method performs

this simulation of ut−1 for each particle, then makes use of the following transformation of

the extended state

θt−1,at = Gt−1→t,a

(
ut−1, θt−1,at−1 ,

{
θnt−1,it−1

}Ni
n=1

)
= BT

at

(
Bt−1,at−1θt−1,at−1 +Bt−1,it−1θ

ut−1

t−1,it−1

)
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θ
ut−1

t−1,it
= Gt−1→t,i

(
ut−1, θt−1,at−1 ,

{
θnt−1,it−1

}Ni
n=1

)
= BT

it

(
Bt−1,at−1θt−1,at−1 +Bt−1,it−1θ

ut−1

t−1,it−1

)
ut−1 = ut−1

The conditional IS move makes use of this transformation, along with a proposal from [Chopin

et al., 2012]. Our desired target distribution for the new point is π∗t−1,at,it

(
ut−1, θat ,

{
θnit
}Ni
n=1

)
,

the extension of the target in equation (6.16), just as equation (6.18) is an extension of

(6.15). Our proposal uses the current particle with values
(
ut−1, θt−1,at−1,

{
θnt−1,it−1

}Ni
n=1

)
passed through the transformation above to give the point

(
ut−1, θt−1,at , θ

ut−1

t−1,it

)
. We addi-

tionally require the variables
{
θnt−1,it

}Ni
n=1,n6=ut−1

and will propose them from the conditional

distribution
{
θnt−1,it

}Ni
n=1,n6=ut−1

| ut−1, θt−1,at , θ
ut−1

t−1,it
. Using equation (6.18), this conditional

distribution is given by

π∗t−1,at,it

(
u, θat ,

{
θnit
}Ni
n=1

)
πt−1,at(θat)

Ni
πt−1,it

(
θuit | θat

) =

Ni∏
j=1
j 6=u

qt−1,it

(
θjit | θat

)
,

For the IS to be valid, we need to artificially extend the target distribution using a backwards

kernel L (as in [Del Moral and Doucet, 2003]) to form a joint distribution over all of the vari-

ables involved in the proposal, such that the desired target π∗t,at,it is a marginal distribution.

The IS target is then

π∗t−1,at,it

(
u, θat ,

{
θnit
}Ni
n=1

)
L
({
θnit−1

}Ni
n=1,n6=u | u, θat ,

{
θnit
}Ni
n=1

)
and the proposal is

π∗t−1,at−1,it−1

(
u, θat−1 ,

{
θnit−1

}Ni
n=1

) Ni∏
j=1
j 6=u

qt−1,it

(
θjit | θat

)
.

We choose the backwards kernel to be

L
({
θnit−1

}Ni
n=1,n6=u | u, θat ,

{
θnit
}Ni
n=1

)
=
Niπ

∗
t−1,at−1,it−1

(
u, θat−1 ,

{
θnit−1

}Ni
n=1

)
πt−1,at (θat) πt−1,it

(
θuit | θat

) ,

which gives an importance weight of 1 (as in [Chopin et al., 2012]). To proceed with the

next iteration of the SMC, we then discard the value ut−1, so that our particle is from the

marginal distribution πt,at,it , rather than the extended target π∗t,at,it .

In summary:

• this additional step is run after determining the active subspace for the next iteration,

for each of the Na particles;

• we sample one of the inactive particles, using the weights of the particles in the inactive
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space;

• we project the active variable and sampled inactive variable into the new active and

inactive subspaces;

• we sample Ni − 1 additional inactive variables from the proposal qt−1,it .

6.4.3 Early results for AS-SMC-a

We report below some results from early experiments that we have done by running the AS-

SMC-a on the 2D model of Section 4.9.1. As a reminder, the model of Section 4.9.1 is quite

interesting because the prior Active Subspace is different (orthogonal) from the posterior

Active Subspace, see Figures 4.7 and 4.8.

Firstly we show the estimated mean across 10 runs of the model: both components have

true mean of 0 and we see that the algorithm, at least across the few runs done, seems to

correctly do the estimation of the two components in Figures 6.4 and 6.5 (the true mean of

the model had been previously estimated with a system similar to what described for 5.9)

Figure 6.4: Estimate of the mean of component θ1 of the model of Section 4.9.1 across 10
runs of AS-SMC-a. The average across runs is 0.0 with a standard deviation of the measure
of 0.2.
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Figure 6.5: Estimate of the mean of component θ2 of the model of Section 4.9.1 across 10
runs of AS-SMC-a. The average across runs is 0.0 with a standard deviation of the measure
of 0.1.

We then visualize in Figure 6.6 below, how, during the adaptation in the tempering steps

of the AS-SMC-a algorithm, the direction of the Active Subspace changes from the prior AS

direction seen in Figure 4.7 to being 100% aligned along the posterior AS direction of Figure

4.8 in the final tempering steps. The same tempering steps have been used across the 10

runs.

183



Figure 6.6: Adaptation of the direction of the Active Subspaces in AS-SMC-a algorithm,
measured across 10 different runs: the direction during the adaptation goes from prior AS of
Figure 4.7 at tempering step 0, to posterior AS of Figure 4.8 in the final tempering steps.
The same tempering steps have been used across the 10 runs.

6.4.4 Review

We have introduced AS-SMC-a which brings adaptation of the Active Subspaces structure

to the AS-SMC algorithm that we introduced in Section 6.2. We have seen that while in

traditional AS methods the direction of the Active Subspace for the model of Section 4.9.1

would remain wrongly fixed along the direction of the prior AS of Figure 4.7 for the whole du-

ration, the AS-SMC-a allows for the direction to adapt in the tempering steps, until it aligns

correctly with the posterior AS of Figure 4.8. We expect the AS-SMC-a to possibly bring

improvements into cases where the prior Active Subspaces directions are very different from

the posterior Active Subspaces. It is to be noted that, as is the case for other algorithms,

there is a trade-off, since the adaptation will bring additional computations, for example

the calculation of the structure of the AS at each tempering step. Future experiments are

needed to better understand the performances of the algorithm and how it stands compared

to traditional methods and other AS-based algorithms that we have introduced throughout.

One final note to underline the difference between our method and Spike-and-Slab [Mitchell
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and Beauchamp, 1988, George and McCulloch, 1997, Ishwaran and Rao, 2005] and to explain

why we did not use such a method in Active Subspaces. Spike-and-Slab is designed primarily

for selecting individual variables by assigning them either a probability of exclusion (spike)

or of inclusion (slab) [Mitchell and Beauchamp, 1988, George and McCulloch, 1997, Ishwaran

and Rao, 2005] which could potentially be very useful in active-inactive setting, considering

that we may want to eliminate inactive variables. However, applying spike-and-slab directly

to the models we have used for our AS-SMC-a method may not always be feasible. For

instance, both in the Gaussian model of section 5.3.2 and in the Banana model of section

5.4.2, AS-SMC-a will operate on linear combinations of variables rather than on each vari-

able independently, see for example equations (5.1) and (5.15). Spike-and-slab, in contrast,

operates separately for each variable from the other. This difference makes Spike-and-slab

not suitable in general to be applied to the models we have considered.

6.5 Conclusion

We have started the chapter with the exploration of the AS-SMC algorithm in Section 6.2

which can be considered as the SMC counterpart of AS-MH of Section 4.8.2, we have seen

that it performs better than standard SMC in cases where the Importance Sampler behaves

well even in high dimension of the inactive space, for example the Gaussian model (see

Figure 6.1), whereas when the inactive subspace becomes more challenging, for example in

the Banana model, the advantage becomes less clear and long tails in the distribution of

the RMSE appear (see Figure 6.2). We then introduced AS-SMC2 in Section 6.3, which can

be seen as the SMC counterpart of AS-PMMH of Section 5.2. We have seen that in the

AS-SMC2 as well, when applied to the Banana model, the extra computation cost does not

seem to bring additional benefits and that more tuning of the algorithm may be needed to

understand better the conditions of optimal performance of the algorithm. The AS-SMC2 has

a similar drawback to AS-PMMH, on spending a considerable amount of computational effort

on the inactive part, which is the least interesting to us. Overall, while the performances on

the Gaussian model are encouraging in saying that in case of perfect Active Subspaces the

AS-SMC seems a clear winner, the results on the Banana model seem to show that in more

complex scenarios when we diverge from cases of perfect Active Subspaces, the case for using

either AS-SMC or AS-SMC2 may be less clear, as the additional complexity brings some

advantages in results but also disadvantages for examples longer tails in the distribution of

the RMSE. We finally introduced in Section 6.4 a version of the AS-SMC that performs an

adaptation of the structure of the AS at each tempering step, and we named the algorithm

AS-SMC-a. We have shown how the adaptation has allowed the Active Subspace direction

of the model of Section 4.9.1 to be correctly identified, while traditional AS methods would

have kept the wrong AS direction throughout the algorithm. The adaptation may produce

benefits in cases where prior and posterior AS are significantly different, however the extra
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computations carry a trade-off, and the case of using the AS-SMC-a will have to be explored

further.
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Chapter 7

Conclusions and Future Work

This thesis contains two major threads: the integration of a Sequential Monte Carlo (SMC)

algorithm into the BEAST2 platform for phylogenetic analysis and the development of novel

Active Subspace (AS) methods for Monte Carlo methods. Both threads are linked in the

aim to improve accuracy and efficiency of existing algorithms in the fields, and to reduce

complexity.

7.1 Phylogenetics and SMC Integration

We have successfully integrated an Annealed Adaptive SMC algorithm into the BEAST2

platform, in this way we have complemented the native BEAST2 MCMC method. To our

knowledge, this is the first integration of SMC within BEAST2. Our results show that, for

the synthetic cases analyzed, the Annealed Adaptive SMC achieves performance comparable

to BEAST2’s native MCMC in terms of accuracy and efficiency. We have to note that the

SMC method requires far fewer output samples to achieve the same aim of the MCMC: in

a 10-taxa example shown, SMC required 1000 particles, compared to the 350, 000 iterations

required by MCMC to achieve comparable likelihood evaluations. Future work is required

to test the performance of SMC in more challenging scenarios, for example in multimodal

distributions, where SMC is likely to outperform MCMC. Additionally, some fine-tuning

of parameters within the BEAST2 platform could further optimize the SMC algorithm’s

performance. Our work represents a first step in making SMC methods more accessible for

phylogenetic analysis, by the mean of the platform BEAST2, and future tuning is expected.

7.2 Active Subspaces for MCMC-based methods

We had the initial aim to address the curse of dimensionality in Monte Carlo methods, and

so we explored Active Subspaces [Constantine, 2015, Constantine et al., 2016], a promising

field in mathematics for the reduction of complexity in systems, by identifying an active and

inactive subsystem. The first algorithm developed was AS-PMMH, which combines AS with
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Particle Marginal Metropolis Hastings (PMMH) Andrieu et al. [2010]. Our AS-PMMH algo-

rithm showed significant trade-offs between accuracy and computational costs, and sensitivity

to noisy likelihood estimates. Also a second version of the algorithm, AS-PMMH-i, obtained

by swapping the roles of active and inactive subspaces, still demonstrated trade-offs in com-

putational complexity. We introduced AS-Gibbs, which embeds Gibbs sampling [Geman

and Geman, 1984] into AS, avoiding marginal likelihood estimation. We have seen that AS-

Gibbs proves particularly effective in cases of near-perfect Active Subspaces or independence

between active and inactive parts. Extending this idea, we embedded Metropolis Within Par-

ticle Gibbs MwPG algorithms [Andrieu et al., 2010] in AS and AS-MwPG and AS-MwPG-i

were proposed, using SMC samplers for either the inactive or active subspace. AS-MwPG-i

in particular, showed superior performance in multimodal distributions, as demonstrated by

a toy example where AS-MwPG-i was the only method capable of correctly reconstructing

both modes. In determining the dimension of the Active Subspace, we proposed a novel

ESS-based method. This method can be seen as an alternative to the spectral gap method,

traditionally used in AS, and has shown to give identical results in the examples where we

have tested it.

7.3 Active Subspaces for SMC-based methods

We have developed SMC based AS algorithms, named AS-SMC (AS-based SMC), AS-SMC2,

developed using the structure provided by AS within SMC2 [Chopin et al., 2012], and an

adaptive version of AS-SMC, named AS-SMC-a. AS-SMC, showed improved performance

compared to traditional SMC in scenarios where Importance Sampling behaves well, even in

high dimensions, such as in the Gaussian model of section 5.3.2. However, when applied to

more complex cases, such as the Banana model of 5.4.2, performances declined. The metric

used, RMSE of estimate of the mean, showed longer tails, and question the applicability of

the method in practical application. We then introduced AS-SMC2 which has two nested

SMC within the AS framework, borrowing from the SMC2 algorithm of [Chopin et al., 2012].

Experiments have shown that the additional computational costs often outweighed the ben-

efits in practical scenarios. To address some of the limitations of traditional, fixed Active

Subspace directions, namely that some pre-analysis needs to be done using prior samples and

Active Subspace directions may be set wrongly, we proposed AS-SMC-a, an adaptive version

of AS-SMC that updates the AS structure at each tempering step. In our tests, AS-SMC-a

successfully adapted the direction of the Active Space in a case where the prior and posterior

Active Subspace directions differed significantly. In a case where traditional AS algorithms

would fail, AS-SMC-a successfully identified the correct AS direction dynamically. However,

the adaptation brings additional trade-offs, since Active Subspace calculations need to be

done at each tempering step for their practical implementation.
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7.4 Potential future research directions

While the two research threads of phylogenetics and Active Subspaces address different chal-

lenges, they share a unique underlying theme: enhancing the computational efficiency and

reducing complexity of Bayesian methods. Both approaches take on high-dimensional state

spaces and aim to address the curse of dimensionality. A potential thread of future research

lies in combining these threads. Incorporating Active Subspaces into phylogenetic analysis

could bring more improvements in the efficiency of SMC methods in this field. By identifying

Active Subspaces in high-dimensional phylogenetics models, AS could focus computational

efforts on the most informative parts, potentially enabling SMC to handle even larger and

more complex datasets.
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Appendix A

SMC Annealed Adaptive phylogenetic

algorithm: additional results with 5

and 20 taxa

Following the procedure and the structure of Section 3.14 where we presented the results

for 10 taxa, we report in this section the results of comparison of the Annealed Adaptive

SMC vs BEAST2 MCMC for 5 and 20 taxa. Please refer to Section 3.12 for full details of

implementation.

A.1 Data with 5 Taxa

Following the procedure outlined in Section 3.13, we have generated a synthetic model with

5 taxa.

Generator tree

The first step has been as described in 3.13.1 to generate a coalescent tree with 5 leaves, and

the tree has been randomly generated as below in Figure A.1
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Figure A.1: Random coalescent tree with 5 leaves generated using the procedure outlined in
the first part of Section 3.13.1. This has been the generating tree for the synthetic data of the
test described in this section. Visualization via FigTree [Rambaut, 2023]

Generation of synthetic sequences

Using the tree generated in the previous step, synthetic sequences have been generated using

’seq-gen’ program, as explained in Section 3.13.1

A.2 Annealed Adaptive SMC vs MCMC in BEAST2,

problem set up with 5 Taxa

We have run BEAST2 both with the traditional MCMC algorithm and with our Annealed

Adaptive SMC embedded in BEAST2, and we report here the comparison. A fair comparison

in terms of likelihood evaluations has been kept between the two methods. For the comparison

of results we have used a similar set-up and metrics of [Wang et al., 2019], in fact we have

a number of iterations of MCMC which is comparable with the likelihood evaluations of the

SMC algorithm, given by the number of particle times number of intermediate tempering

steps of the annealing procedure, times the number of MCMC moves per annealing step. So,

considering the comparison fair we report below the results for the various parameters of the

state space.
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A.2.1 SMC set up

The SMC has been set up with 1000 particles, and 5 MCMC moves per each annealing step.

The number of annealing steps adaptively determined by the CESS (see Section 2.6.3 for

details on CESS) has been 33, as can be seen in Figure A.2

Figure A.2: Annealing steps in the SMC run for the 5-taxa example studied in this section.

Therefore the total number of likelihood evaluation for the algorithm has been 1000 ×
33 × 5 = 165000. The adaptive annealing steps have been determined using CESS with a

threshold of 90%, and resampling of particles is done when ESS falls below 50% of particles,

we can see below in Figure A.3 the ESS chart related to the SMC run
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Figure A.3: ESS versus annealing SMC step for the 5-taxa example studied in this section.
Resampling is performed whenever the ESS falls below 50% of particles (1000 particles are
used for the simulation).

A.2.2 MCMC set up

Considering that the total number of likelihood evaluations from the Annealed Adaptive

SMC was 165000, we have used a comparison similar to [Wang et al., 2019] and therefore we

have used a number of MCMC iterations greater than +20% compared to the SMC run, in

our MCMC simulation we have used 210000 iterations.

A.3 Annealed Adaptive SMC vs MCMC in BEAST2:

Results with 5 Taxa

We will report in this section the results for the runs of traditional MCMC and Annealed

Adaptive SMC using BEAST2, the parameters analysed are those composing the state space

of our problem (see Sections 3.7 and 3.13.1):

• Gamma shape

• Effective population size

• Coalescent Tree

A.3.1 Gamma shape

The true value of the gamma shape parameter (i.e. the value with which the data has been

generated) is 1. In both the MCMC and the SMC runs the empirical distributions are rather
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scattered as we can appreciate from Figures A.4 for MCMC and A.5 for SMC, and this is

due to the fact that the probability of MCMC moves on the gamma shape parameter has

been kept to the default value that the configuration software BEAUTi (see Section 3.9.1)

gives, and MCMC moves are less likely to happen than moves on effective population size

and trees (as an example, an MCMC move on the gamma shape is 30 times less likely than a

move on the Effective Population Size parameter), therefore the low ESS and the scattered

distributions are a result of this.

MCMC results for Gamma shape

The mean of the MCMC run is close to the true value of 1, we can see the full statistics in the

following table. Like in the 10 taxa case for gamma shape (see the MCMC part of Section

3.16.1), the ESS is very low and the distribution, as we can appreciate in the following Figure

A.4, is rather scattered:

Statistic Value

Mean 0.9

Standard Deviation 0.0656

Value Range [0.7356, 1.0667]

95% HPD Interval [0.7729, 1.0024]

Effective Sample Size (ESS) 99

And the distribution of the Gamma shape values is in Figure A.4

Figure A.4: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Gamma shape with 5 taxa. Visualization with the software Tracer.
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Ammealed Adaptive SMC results for Gamma shape

The Statistics for the SMC run are similar to the MCMC run:

Statistic Value

Mean 1.17

Standard Deviation 0.132

Value Range [0.697, 1.256]

95% HPD Interval [0.798, 1.25]

And the distribution of the Gamma shape values is in Figure A.5

Figure A.5: Frequency distribution for the parameter Gamma shape with 10 taxa, using
Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization with
python matplotlib.

A.3.2 Effective Population Size

Unlike the Gamma shape parameter, seen in Section A.3.1, where we had at hand the true

value of the parameter, and that was useful in checking how well MCMC and SMC could

retrieve it, for the Effective Population Size, even if we generated synthetic data, it is not

straightforward to have the true value. In fact, as explained in Section 3.5, we are usually

only able to estimate the product of two terms, the coalescent constant and the Effective

Population Size. Anyway, keeping this constraint in mind, we report the results of the

analysis in this section.
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MCMC results for Effective Population Size

The MCMC run has given a mean value of 2.7633

Statistic Value

Mean 2.7633

Standard Deviation 1.4387

Value Range [0.4307, 13.3307]

95% HPD Interval [0.6802, 5.4841]

Effective Sample Size (ESS) 519

And the distribution of the Effective Population Size is in Figure A.6

Figure A.6: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Effective Population Size with 5 taxa. Visualization with the software Tracer.

Ammealed Adaptive SMC results for Effective Population Size

The Statistics for the SMC run are in general better than the MCMC run, we can see a lower

variance for example. And we can see from Figure A.7, that it has the same peak of the cor-

respective MCMC Figure A.6, but in the MCMC case the bigger variance and right-skewness

is causing a slightly higher value of the mean:

Statistic Value

Mean 2.223

Standard Deviation 0.759

Value Range [0.602, 6.272]

95% HPD Interval [1.063, 3.903]
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And the distribution of the Effective Population Size is in Figure A.7

Figure A.7: Frequency distribution for the parameter Effective Population Size with 5 taxa,
using Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization
with python matplotlib.

We can also appreciate the SMC algorithm at work by looking at Figure A.8 below,

showing the evolution of the estimated standard deviation of particles vs the annealing step

for the parameter Effective Population Size, and we see how the standard deviation drops

significantly through the annealing journey
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Figure A.8: Evolution of the estimated standard deviation of particles vs the annealing step
for the parameter Effective Population Size in the SMC algorithm: we see how the standard
deviation drops significantly through the annealing journey.

A.3.3 Tree

For the tree analysis we use a methodology similar to [Wang et al., 2019] and we compare

trees using the majority-rule consensus. So we will have a the consensus-tree, which is a

“summary” tree for the MCMC run and one for the SMC run, and we will compare them

to the generating tree shown in Section A.1 to assess how each of the two algorithms has

performed. In addition to visualizing the “summary” trees for the two runs, we will also give

a basic topological metric of performance, the Robinson-Foulds (RF) “symmetric difference”

metric [Robinson and Foulds, 1981], which will identify possible topology mismatch with the

reference tree. The consensus tree has been generated using TreeAnnotator and then the

visualization using FigTree. For the SMC algorithm, the particles have been resampled in

order to be able to compare SMC tree samples without the need to consider the particle

weights when building the consensus, for ease of calculation.

MCMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view with

the reference tree of Section A.1, and we can see from the picture below A.9 the consensus

tree created with visualization of the 95% confidence range in the coalescent times (see the

comparison with the generator tree of Figure A.1)
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Figure A.9: Consensus tree for the MCMC run with visualization of 95% range for coalescent
times. See comparison with the generating tree (which the MCMC run tries to reconstruct)
in Figure A.1. Consensus tree has been generated with TreeAnnotator and the visualization
is with FigTree (both softwasre from BEAST2 package).

Ammealed Adaptive SMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view with

the reference tree of Section A.1, and we can see from the picture below A.10 the consensus

tree created with visualization of the 95% confidence range in the coalescent times (see the

comparison with the generator tree of Figure A.1, and with the MCMC-generated consensus

tree of Figure A.9)
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Figure A.10: Consensus tree for the Annealed Adaptive SMC run with visualization of 95%
range for coalescent times. See comparison with the generating tree (which the SMC run
tries to reconstruct) in Figure A.1, and also with the tree reconstructed using MCMC in
Figure A.9: we see that the SMC is able to reconstruct the generating tree well and with
a smaller uncertainty (the 95% uncertainty ranges in the coalescent times are in general
smaller compared to the MCMC of Figure A.9). Consensus tree has been generated with
TreeAnnotator and the visualization is with FigTree (both softwasre from BEAST2 package).

By comparing Figure A.10 with Figure A.9 we can see that the SMC algorithm has been

able to reconstruct the generating tree with smaller uncertainty than the MCMC algorithm,

in fact the 95% uncertainty ranges in the coalescent times are in general smaller in SMC

compared to MCMC.

A.4 Data with 20 Taxa

Following the procedure outlined in Section 3.13, we have generated a synthetic model with

20 taxa.

Generator tree

The first step has been as described in 3.13.1 to generate a coalescent tree with 20 leaves,

and the tree has been randomly generated as below in Figure A.11
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Figure A.11: Random coalescent tree with 20 leaves generated using the procedure outlined
in the first part of Section 3.13.1. This has been the generating tree for the synthetic data of
the test described in this section. Visualization via FigTree [Rambaut, 2023]

Generation of synthetic sequences

Using the tree generated in the previous step, synthetic sequences have been generated using

’seq-gen’ program, as explained in Section 3.13.1

A.5 Annealed Adaptive SMC vs MCMC in BEAST2,

problem set up with 20 Taxa

The set up is similar to what done in Section A.2 for 5 taxa, where it is fully explained,

therefore please refer to that section for the details.

A.5.1 SMC set up

The SMC has been set up with 1000 particles, and 5 MCMC moves per each annealing step.

The number of annealing steps adaptively determined by the CESS (see Section 2.6.3 for

details on CESS) has been 96, as can be seen in Figure A.12
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Figure A.12: Annealing steps in the SMC run for the 20-taxa example studied in this section.

Therefore the total number of likelihood evaluation for the algorithm has been 1000 ×
96 × 5 = 480000. The adaptive annealing steps have been determined using CESS with a

threshold of 90%, and resampling of particles is done when ESS falls below 50% of particles,

we can see below in Figure A.13 the ESS chart related to the SMC run

Figure A.13: ESS versus annealing SMC step for the 20-taxa example studied in this section.
Resampling is performed whenever the ESS falls below 50% of particles (1000 particles are
used for the simulation).
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A.5.2 MCMC set up

Considering that the total number of likelihood evaluations from the Annealed Adaptive

SMC was 480000, we have used a comparison similar to [Wang et al., 2019] and therefore we

have used a number of MCMC iterations greater than +20% compared to the SMC run, in

our MCMC simulation we have used 600000 iterations.

A.6 Annealed Adaptive SMC vs MCMC in BEAST2:

Results with 20 Taxa

As we have done previously for 5 and 10 taxa in Sections A.3 and 3.16 respectively, we’ll

report here the results for 20 taxa in the analysis of the following components of the state

space:

• Gamma shape

• Effective population size

• Coalescent Tree

A.6.1 Gamma shape

The true value of the gamma shape parameter (i.e. the value with which the data has been

generated) is 1. As explained already already in Sections A.3.1 and 3.16.1, due to the fact

that the probability of MCMC moves on the gamma shape parameter has been kept to the

default value that the configuration software BEAUTi (see cection 3.9.1) uses, and MCMC

moves are less likely to happen than moves on effective population size and trees, we see a

a low ESS in the MCMC run, and also the empirical distributions are rather scattered (see

following Figures A.14 and A.15).

MCMC results for Gamma shape

The mean of the MCMC run is close to the true value of 1, we can see the full statistics in

the following table. Like in the 5 and 10 taxa cases for gamma shape (see the MCMC part

of Section A.3.1 and 3.16.1), the ESS is very low and the distribution, as we can appreciate

in the following Figure A.14, is rather scattered:
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Statistic Value

Mean 0.92

Standard Deviation 0.066

Value Range [0.776, 1.107]

95% HPD Interval [0.7829, 1.0403]

Effective Sample Size (ESS) 142

And the distribution of the Gamma shape values is in Figure A.14

Figure A.14: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Gamma shape with 20 taxa. Visualization with the software Tracer.

Ammealed Adaptive SMC results for Gamma shape

The Statistics for the SMC run are similar to the MCMC:

Statistic Value

Mean 1.04

Standard Deviation 0.038

Value Range [0.709, 1.096]

95% HPD Interval [0.95, 1.08]

And the distribution of the Gamma shape values is in Figure A.15
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Figure A.15: Frequency distribution for the parameter Gamma shape with 20 taxa, using
Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization with
python matplotlib.

A.6.2 Effective Population Size

See Section A.3.2 for the technical details on the parameter, below we can see the statistics

and the visualization of the distributions in MCMC and SMC.

MCMC results for Effective Population Size

The mean of the MCMC run is 1.73, we can see the full statistics in the following table

Statistic Value

Mean 0.93

Standard Deviation 0.244

Value Range [0.344, 2.383]

95% HPD Interval [0.52, 1.395]

Effective Sample Size (ESS) 2109

And the distribution of the Effective Population Size is in Figure A.16
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Figure A.16: Frequency distribution using the native MCMC run with BEAST2 for the
parameter Effective Population Size with 20 taxa. Visualization with the software Tracer.

Ammealed Adaptive SMC results for Effective Population Size

The Statistics for the SMC run are comparable to the MCMC run, we can notice a peak in

the distribution of figure , it may be due to a mixture of not enough MCMC moves on the

parameter and some degree of degeneracy of particles:

Statistic Value

Mean 1.075

Standard Deviation 0.21

Value Range [0.44, 1.91]

95% HPD Interval [0.62, 1.52]

And the distribution of the Effective Population Size is in Figure A.17

206



Figure A.17: Frequency distribution for the parameter Effective Population Size with 20 taxa,
using Annealed Adaptive SMC algorithm that we have embedded into BEAST2. Visualization
with python matplotlib.

We can also appreciate the SMC algorithm at work by looking at Figure A.18 below,

showing the evolution of the estimated standard deviation of particles vs the annealing step

for the parameter Effective Population Size, and we see how the standard deviation drops

significantly through the annealing journey

Figure A.18: Evolution of the estimated standard deviation of particles vs the annealing step
for the parameter Effective Population Size in the SMC algorithm: we see how the standard
deviation drops significantly through the annealing journey.
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A.6.3 Tree

For tree analysis please refer to the 5-taxa Section A.3.3 where full technical details are given.

For the SMC algorithm, the particles have been resampled in order to be able to compare SMC

tree samples without the need to consider the particle weights when building the consensus,

for ease of calculation (unlike what has been done in gamma shape and Effective Population

Size where particles have been weighted to calculate the Statistics). In addition, differently

from the 5 and 10 taxa cases of Sections A.3.3 and 3.16.3 respectively, we have omitted the

95% ranges in Figures A.19 for MCMC and A.20 for SMC for ease of visualization as it would

have been difficult to visualize with many nodes and branches, anyway similar conclusions

to the 5 and 10 taxa cases can be drawn for the 20 taxa case as well.

MCMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view with

the reference tree of Section A.4, and we can see from the picture below A.19 the consensus

tree (see the comparison with the generator tree of Figure A.11)

Figure A.19: Consensus tree for the MCMC run. See comparison with the generating tree
(which the MCMC run tries to reconstruct) in Figure A.11. Consensus tree has been gener-
ated with TreeAnnotator and the visualization is with FigTree (both softwasre from BEAST2
package).
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Ammealed Adaptive SMC results for Tree

The RF metric result for the run is 0, meaning a match from a topological point of view

with the reference tree of Section A.4, and we can see from the picture below A.20 the

consensus tree (see the comparison with the generator tree of Figure A.11, and with the

MCMC-generated consensus tree of Figure A.19)

Figure A.20: Consensus tree for the Annealed Adaptive SMC run. See comparison with
the generating tree (which the SMC run tries to reconstruct) in Figure A.11, and also with
the tree reconstructed using MCMC in Figure A.19: we see that the SMC is able to recon-
struct the generating tree with similar level of accuracy as the MCMC. Consensus tree has
been generated with TreeAnnotator and the visualization is with FigTree (both softwasre from
BEAST2 package).

By comparing Figure A.20 with Figure A.19 we can see that the SMC algorithm has

been able to reconstruct the generating tree with similar level of accuracy as the MCMC

algorithm.
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Appendix B

Bayesian inverse problem in Active

Subspace

We use quite a few examples of Bayesian inverse problems in the Active Subspace Chapters

4 and subsequent, we give here the basic concepts. We consider a classical Bayesian inverse

problem reported in [Constantine et al., 2016], and we follow the same notation of the paper:

we have a model with additive noise, as follows

d = m(x) + e, e ∼ N (0, σ2I) (B.1)

It is assumed for simplicity that the Gaussian noise e has uncorrelated components and

therefore diagonal covariance matrix.

Given N independent measurements of (B.1)

di = m(x) + ei (B.2)

The likelihood of the system is (see for example [Najm, 2018] for a nice and clear derivation)

ρlik(d, x) =
N∏
i=1

p(di|x) (B.3)

We show the one-dimensional case below of the the density p(di|x), where we recognize the

familiar Gaussian form

p(di|x) =
1√
2πσ

exp

(
− (di −m(x))2

2σ2

)
(B.4)

The product (B.3) is a result of the independence of the measurements, and that it results

in a product of Gaussians with members as in (B.4) is a consequence of the Gaussian noise

assumption and of the components of noise being uncorrelated.

In similar fashion and for a more general multi-dimensional parameter space, the likelihood
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can be expressed in the compact form (neglecting for brevity the multiplying constants)

ρlik(d, x) ∝ exp

(
− ||d−m(x)||2

2σ2

)
(B.5)

Calculation of likelihood-informed Active Subspace in the Bayesian inverse prob-

lem with additive noise

We choose as function f of (4.8) the negative log-likelihood as seen in equation (4.16), which

will be, as it is clear from its formulation in equation (B.6), a measure of the data misfit. By

applying the negative-log to (B.5), we have

f(x) =
||d−m(x)||2

2σ2
(B.6)

We know that the first necessary pre-processing step is to use the gradient of f to find the

directions along which f varies the most (see equation (4.2) and subsequent). The gradient

of f in (B.6) can be easily calculated

∇f(x) =
1

σ2
∇m(x)T (d−m(x)) (B.7)

Now that we have the gradient from equation (B.7), in order to build the matrix C of

(4.2) we have to perform an integration of ∇f(x)∇f(x)T against the posterior density of

our problem. Since we have to assume that integrating on the posterior, and even drawing

directly iid samples from the posterior and use Ĉ of (4.12), is not convenient or tractable

(otherwise we would not use the MCMC to approximate it, in the first place), we choose the

approximation that we called Ĉpri in (4.28), obtained by (4.12) when we sample from the

prior distribution.
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Appendix C

AS-MH algorithm in cases of perfect

Active Subspaces

This section relates to the simplified version of Algorithm 8 of Section 4.8.2. In case of per-

fectly inactive variables, equation (4.25) becomes an exact marginal, not a pseudo-marginal,

and in this case Algorithm 8 simplifies in Algorithm 21 which becomes a MCMC on the

targeting the marginal posterior πa = pala

Alg. 21 Exact Active Subspaces Based MCMC

1: Compute the AS and using the procedure outlined in Section 4.2.3 estimate matrices Ba

and Bi.
2: Initialize the algorithm by choosing an initial value a1 and calculate la(a

1).
3: for k = 2 to T do
4: a∗ ∼ qa(·|ak−1).
5: Calculate la(a

∗)

6: Set ak = a∗ with probability 1 ∧ pa(a∗)la(a∗)qa(a∗|at−1)
pa(ak−1)la(ak−1)qa(at−1|a∗)

7: Else let ak = ak−1.
8: end for

see the differences between line 5 of Algorithm 21 where an exact marginal is used and line

5 of Algorithm 8 where an estimate was used through the calculation of a pseudo-marginal.
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Appendix D

AS-MCMC algorithms: number of

output samples per likelihood

evaluation

When comparing the performances of the Active Subspaces algorithms presented in Chapter

5, we have tried to keep the number of likelihood evaluations constant in each run, to ensure

a fair comparison. Due to the structure of the algorithms, the same number of likelihood

evaluations may result in a different number of output samples. Taking a reference figure of

100000 likelihood evaluations, it will result in:

• Standard MCMC: 100000 iterations, and therefore as many samples;

• AS-MH: if we use 10 inactive variables in the pseudo-marginal calculation, we will have

10000 outer MCMC iterations (10000× 10 = 100000);

• AS-PMMH: if we use 10 inner inactive variables and 6 tempering steps of the inner

SMC sampler,then we have 1666 outer MCMC steps and therefore as many output

samples (1666× 10× 6 = 99960 which is the closest integer to 100000);

• AS-PMMH-i: same of AS-PMMH, only roles of active and inactive are inverted;

• AS-Gibbs: considering that we first operate on the inactive and then active, 100000

likelihood evaluations are done in 50000 iterations and therefore produce 50000 output

samples.

We summarise in Table D.1
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Method Nr of output samples
MCMC 100000
AS-MH∗ 10000

AS-PMMH 1666
AS-PMMH-i 1666

AS-Gibbs 50000

Table D.1: Comparison of number of output samples when performing 100000 likelihood
evaluations in different MCMC methods. ∗For AS-MH the figure in the table indicates number
of samples when one inactive sample is used per active variable, like in formula (4.23). If
instead all inactive particles are used, like in formula (4.24), the relative figure must be
multiplied by the number of inactive variables used, 10 in this case.

In Table 5.1, for AS-MH the figure in the table indicates number of samples when one

inactive sample is used per active variable, like in formula (4.23). If instead all inactive

particles are used, like in formula (4.24), the relative figure must be multiplied by 10 (number

of inactive variables used) to consider all the samples.

For ease of reference in some of the sections, we also report the table for 200000 likelihood

evaluations (it is the above Table D.1 with numbers ×2 )

Method Nr of output samples
MCMC 200000
AS-MH∗ 20000

AS-PMMH 3332
AS-PMMH-i 3332

AS-Gibbs 100000

Table D.2: Comparison of number of output samples when performing 200000 likelihood
evaluations in different MCMC methods, this is the equivalent of Table 5.1, adapted for
200000. ∗For AS-MH the figure in the table indicates number of samples when one inactive
sample is used per active variable, like in formula (4.23). If instead all inactive particles are
used, like in formula (4.24), the relative figure must be multiplied by the number of inactive
variables used, 10 in this case.
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