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A B S T R A C T

The study presented here evaluates the ability of the 4DEnVar data assimilation technique to estimate the
parameters from synthetically generated observations from a simple carbon model. The method is particularly
attractive in its speed and ease of use, and its avoidance in construction of adjoint or tangent linear model
code. Additionally, the assimilation analysis step can be performed independently of ensemble generation;
there is no need to integrate the 4DEnVar code with that of the underlying model, assuming parameters are
static in time. The 4DEnVar method is capable of closely estimating the model parameters with increased
certainty given that the ensemble produces a sufficient number of trajectories exhibiting behaviour seen in the
observations. We find that the root mean squared error between trajectories and observations is significantly
reduced when compared with the prior — in one case a 96% and 99% reduction in the biomass and soil pools
respectively.
1. Introduction

Climate models provide prognostic information about future Earth
System change and the likelihood of associated impacts on human
life based on modelled trajectories of atmospheric CO2. Land surface
models, such as JULES (the Joint UK Land Environment Simulator)
(Best et al., 2011; Clark et al., 2011) and ORCHIDEE (Organising
Carbon and Hydrology In Dynamic Ecosystems) (Krinner et al., 2005),
are used to provide surface boundary conditions for the atmospheric
transport component of such Earth system models. Land surface models
are designed to simulate a range of processes such as the fluxes of heat,
water, momentum and CO2 from the Earth’s surface into the atmo-
sphere. Some of these processes are governed by physical principles,
in particular energy balance, but for many biological processes, such
as those that govern carbon fluxes, there do not exist fundamental
equations for these processes. Consequently, land surface models often
rely on simplified or empirical representations of phenomena and the
true values of the model parameters are often unknown.

DA and associated model-data fusion techniques seek to identify an
optimal state or parameter set based on two sources of information:
the prior knowledge of the state and/or parameters and a set of
measured observations which, in general, will not belong to the same
mathematical space. Uncertainty information corresponding to both
priors and observations is required along with an observation operator
that maps state/parameters to observation space. Current operational

∗ Corresponding author.
E-mail address: n.douglas@reading.ac.uk (N. Douglas).

DA techniques include variational approaches such as 4DVar (Le Dimet
and Talagrand, 1986; Rawlins et al., 2007) or sequential filtering
procedures such as the Ensemble Kalman Filter Evensen (2003). There
has been notable success in using DA with the earth observation (EO)
datasets that are becoming increasingly available and we are starting
to see hybrid techniques that combine the advantages to each of the
aforementioned DA approaches emerge (Bannister, 2017).

Sujay et al. (2022) summarise progress made, and document ma-
jor gaps that remain, utilising EO measurements in data assimilation
methods in a state estimation context. Here, we highlight some of
the relevant studies that used real data with various data assimila-
tion techniques for the purposes of land surface model calibration.
The pioneering activities in land surface model parameter estimation
involved constraining the Simple Diagnostic Biosphere Model against
in situ CO2 flux measurements: Knorr and Heimann (1995) did this
via simple loss minimisation quantifying the mismatch between the
model and observations while Kaminski et al. (2002) added a term
embodying a mismatch from the prior estimate of the parameters
and including complex tangent and adjoint calculations. Several stud-
ies using similar techniques and observations for different land sur-
face models followed. Rayner et al. (2005) used the Carbon Cycle
Data Assimilation System (CCDAS) to constrain parameters of the
Biosphere Energy Transfer Hydrology model (BETHY) while Kuppel
et al. (2012) calibrated the ORCHIDEE model. Raoult et al. (2016)
https://doi.org/10.1016/j.envsoft.2025.106361
Received 16 August 2024; Received in revised form 22 January 2025; Accepted 1 F
vailable online 10 February 2025 
364-8152/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ebruary 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/envsoft
https://www.elsevier.com/locate/envsoft
https://orcid.org/0000-0002-3404-8761
mailto:n.douglas@reading.ac.uk
https://doi.org/10.1016/j.envsoft.2025.106361
https://doi.org/10.1016/j.envsoft.2025.106361
http://creativecommons.org/licenses/by/4.0/


N. Douglas et al.

c

e
e

a
f
o

p
i
M
c
i
s

p
i
t
d
i

q
u
t
s
v
s
a
t
r
a
o
p
o
e
r
i
i
t
o
m

t
t
w

c
a
o
t
m
r

h

e
u
a
D
a
m
n
t
o
w
t
e
t
f
c
m
r
p
e
p

A
s

(
i
a
s
a
p

d

Environmental Modelling and Software 186 (2025) 106361 
conditioned the parameters of an early version of JULES (version 2.2)
using site measurements of gross primary productivity (GPP) and latent
heat. Williams et al. (2005) avoided the use of a cost function and
alibrated the DALEC model using an embedded ensemble Kalman

filter which required manipulation of model code to apply the DA
algorithm. Multiple other parameter estimation studies using CO2 flux
measurements adopted Markov Chain Monte Carlo approaches (simpli-
fied photosynthesis and evapotranspiration model (SIPNET): Braswell
t al., 2005; Zobitz et al., 2014; community land model (CLM): Post
t al., 2017). These methods, although more computationally demand-

ing, avoid complex adjoint calculations and model code manipulation
nd quantify uncertainty on the estimated parameters in the form of
ull posterior parameter distributions. The emergence of soil moisture
bservation datasets saw a shift in data assimilation activities and

further attempts to avoid the construction of complex adjoint calcu-
lations. Pinnington et al. (2018) were able to improve estimates of
shallow soil moisture modelled by JULES at a regional scale via an
update to the model’s soil parameters using the ESA Climate Change
Initiative’s satellite observations of soil moisture. Raoult et al. (2021)
erformed a similar activity calibrating ORCHIDEE parameters against
n situ surface soil moisture measurements from the International Soil
oisture Network. These studies avoided the use of complex adjoint

onstruction in the minimisation of their cost functions by implement-
ng the Nelder-Simplex algorithm and performing a genetic random
earch respectively.

All of the studies mentioned above, and many other land surface
parameter estimation studies, each have their own inherent difficulties
ertaining to the data assimilation method chosen. All of these issues,
n varying degrees, could be circumvented by the implementation of
he 4DEnVar hybrid data assimilation method which was originally
eveloped to incorporate flow-dependent background error covariances
n numerical weather prediction (Liu et al., 2008; Desroziers et al.,

2014). 4DEnVar combines the comparatively low computational re-
uirements of gradient-descent optimisation of a cost function with the
se of an ensemble to estimate its derivative information thus avoiding
he construction of adjoint model code (which is usually required in
tandard 4DVar and which often needs to be updated with new model
ersions). Other methods that also avoid the construction of an adjoint,
uch as the MCMC method tend to require large computational power
nd can be slow in execution. In the parameter estimation problem,
he DA aspect of 4DEnVar can be applied separately from the model
uns, so there is no need for manipulation of model code to embed
 DA algorithm. The ensemble itself can also be updated following
ptimisation and the updated ensemble can be used to approximate the
osterior error covariance matrix. Recently we have seen applications
f the 4DEnVar data assimilation method in land surface parameter
stimation activities; 4DEnVar was used to calibrate JULES crop pa-
ameters at a single Nebraskan site using observations of GPP, leaf area
ndex, and canopy height (Pinnington et al., 2020 - here the method
s called ‘LAVENDAR’). Subsequently, 4DEnVar was used to calibrate
he pedotransfer functions in JULES to improve soil moisture estimates
ver East Anglia using NASA Soil Moisture Active Passive (SMAP) soil
oisture data (Pinnington et al., 2021).

Two previous intercomparison studies have assessed the ability of
different DA techniques to estimate parameters in simplified land sur-
face carbon models. The OptIC (Optimisation InterComparison) project
described in Trudinger et al. (2007) was a study to compare the ability
of methods to successfully estimate the 4 parameters of the idealised
two-store carbon model as presented by Raupach (2007). Participants
were supplied with noisy synthetic observations generated from model
runs in order to assess their ability in finding those parameters. A
similar intercomparison project — the REFLEX project (Fox et al.,
2009), was conducted where the DALEC model was used requiring
he estimation of more parameters than those of the model used in
he OptIC project. The additional value added by the REFLEX project
as in its inclusion of real data where true parameter values are
2 
unknown, as would be the case when using real data to constrain the
parameters of a complex realistic TBM. However, without known values
for the true parameters, it is only possible to assess the consistency
across participants in terms of the estimated parameter values and their
associated confidence intervals.

The OptIC study had contributions from ten participants that in-
luded results from using the Kalman filter, Markov chain Monte Carlo
nd various variational DA methods. Regardless of their similar levels
f ability to estimate parameters, the methods varied considerably in
he number of model integrations required. Computational require-
ents varied from a few hundred to over a hundred thousand model

uns; the usability or effectiveness of methods requiring a high number
of iterations would be affected in an application to more realistic TBMs
that have more parameters and model complexity and therefore much
igher computational expense.

As new DA methods for tackling the parameter estimation problem
merge, revisiting the OptIC study provides means for assessing their
tility. The purpose of the study presented here is to apply some
spects of the OptIC experiment to test the ability of the 4DEnVar
A technique to effectively estimate parameters with high confidence
nd relatively low computational power. We investigated the 4DEnVar
ethod’s ability to retrieve the parameters used to generate synthetic
oisy truths for parameter sets that exhibit different behaviours in
he model trajectories. These parameter sets are the same as some
f those used in the OptIC experiment and here we only experiment
ith additive Gaussian noise. After some preliminary experiments and

esting, and examining the root mean square error (RMSE) for different
nsemble sizes, we found that the method is capable of estimating
he toy carbon model parameters well and with increased certainty
or some experiments. However, the method only performs well in
ases where parameters do not generate extreme behaviour in the
odel trajectories. We also found that successful parameter estimation

equires careful selection of a prior ensemble and with an effective
arameter ensemble, 4DEnVar – for its ease and lack of computational
xpense – provides an attractive alternative DA method for use in
arameter estimation.

2. Simple carbon model

The simple two-store carbon model that we use here is documented
by Raupach (2007) and describes basic plant and soil carbon dynamics.

ll biomass carbon, including leaf, wood and root carbon, is treated as a
ingle pool and all litter and soil carbon is treated in a second pool. This

is an example of a producer-utiliser system in the sense that the plants
are producers of organic carbon compounds in the form of biomass
when extracting atmospheric CO2 during photosynthesis) and the soil
s a utiliser feeding from plant litter (through heterotrophic organisms)
nd respiring carbon back to the atmosphere. This producer-utiliser
ystem is in processor mode since the soil receives carbon passively
s opposed to actively seeking carbon such as in a harvester type
roducer-utiliser system (e.g. biosphere-human carbon system).

2.1. Model equations

The dynamics between the biomass store 𝑥1 and the soil store 𝑥2 is
efined by the two following idealised equations:
𝑑 𝑥1
𝑑 𝑡 = 𝐹 (𝑡)

(

𝑥1
𝑥1 + 𝑝1

) (
𝑥2

𝑥2 + 𝑝2

)

NPP

− 𝑘1𝑥1
litterfall

+ 𝑠0
seed

(1)

𝑑 𝑥2
𝑑 𝑡 = 𝑘1𝑥1

litterfall

− 𝑘2𝑥2
resp.

(2)

where 𝑝𝑖 is the limitation parameter for production by lack of 𝑥𝑖, 𝑘𝑖 is
the decay rate for store 𝑖, 𝑠0 is a seed production term independent of
𝑥1 and 𝑥2 and 𝐹 (𝑡) is a forcing factor dependent on time. We adopt the
notation used in the OptIC project (Trudinger et al., 2007) as opposed



N. Douglas et al. Environmental Modelling and Software 186 (2025) 106361 
Fig. 1. The top plot shows fluctuation of the biomass pool around the ‘‘active-biosphere’’ steady state against time in days with parameters set to 𝑝1 = 1, 𝑝2 = 1, 𝑘1 = 0.2, and
𝑘2 = 0.1. The bottom plot shows flipping between the ‘‘active-biosphere’’ and ‘‘dormant-biosphere’’ steady states with parameters 𝑝1 = 1, 𝑝2 = 1, 𝑘1 = 0.4, and 𝑘2 = 0.1.
Table 1
Parameters present in the simple two-store carbon model along with their reference values and bounds given in the OptIC
project.
Var./Par. Description Ref. value Lower bound Upper bound

𝑝1 Production limitation for biomass 1 0.5 5
𝑝2 Production limitation for litter/soil 1 0.5 5
𝑘1 Decay rate constant for biomass 0.2 0.03 0.9
𝑘2 Decay rate constant for litter/soil 0.1 0.01 0.12
𝑠0 Constant production term 0.01 – –
to that given in Raupach (2007). The carbon pool fluxes are often
measured in grams per square metre per day and so typical units are
(1) g m−2 day−1 for 𝑑 𝑥1

𝑑 𝑡 , 𝑑 𝑥2
𝑑 𝑡 , 𝐹 (𝑡) and 𝑠0, (2) g m−2 for 𝑥1, 𝑥2, 𝑝1 and

𝑝2 and (3) day−1 for 𝑘1 and 𝑘2. The parameters in this simple carbon
model with their reference values and bounds supplied in the OptIC
project can be seen in Table 1.

The first term in Eq. (1) representing NPP is a product of the
forcing 𝐹 (𝑡) and two Michaelis–Menten form factors. The forcing term
represents light and water availability and the 𝑝1 and 𝑝2 parameters
prevent the Michaelis–Menten factors from taking unit value indicating
a limitation to net primary productivity (NPP) through lack of biomass
investment and nutrient availability respectively. The second term
in Eq. (1) represents the loss of carbon from 𝑥1, proportional to 𝑥1
through the decay constant 𝑘1, which we see entering 𝑥2 in Eq. (2).
A similar term showing loss via heterotrophic respiration can also be
seen in the latter equation. The seed production term in Eq. (1), 𝑠0,
represents a small constant input to the biomass store, independent of
the stores, generated from a long-term store of carbon (for example,
in the form of seed propagules), and prevents extinction of the carbon
stores in this model.

2.2. Equilibria and stability

The steady states that arise in this model in the case of constant
forcing, i.e. the solutions to 𝑑 𝑥1

𝑑 𝑡 = 𝑑 𝑥2
𝑑 𝑡 = 0, and subsequently their

stability properties, are determined by the parameter combinations.
These are investigated and detailed in Raupach (2007). For the pur-
poses of this study, we are interested in the solutions that arise when
(i) random forcing is applied (𝐹 (𝑡) dependent on time) to reflect the
effects of water and light availability from varying weather conditions
and (ii) when 𝑠0 > 0 to avoid depletion of the carbon pools that occurs
when the stable steady state at (𝑥1, 𝑥2) = (0, 0) is reached irrespective
of the forcing applied. We fix 𝑠 = 0.01 throughout and the forcing
0

3 
is determined by 𝐹 (𝑡) = 𝑝0𝑒𝑚(𝑡) where 𝑚(𝑡) is a dimensionless Markov
process with zero mean and standard deviation 𝜎𝑚. In finite difference
form 𝑚𝑖 = 𝑎𝑚𝑖−1+𝑏𝜎𝑚𝑤𝑖 with 𝑎 = 𝑒

−𝛥𝑡
𝑇𝑚 and 𝑏 =

√

1 − 𝑎2 and where 𝑤𝑖 is
a Gaussian random number with zero mean and unit variance. We used
the values 𝑝0 = 1, 𝜎𝑚 = 0.5, 𝑇𝑚 = 10𝛥𝑡 with the step size 𝛥𝑡 = 1. This
ensures that forcing remains positive and resembles the environmental
limitations on NPP. Under these forcing conditions, there are two types
of behaviour exhibited by the system:

1. the carbon pools fluctuate around the only ‘‘active-biosphere’’
steady state

2. the carbon pools flip between two steady states — the ‘‘active-
biosphere’’ point and the (lower but non-zero) ‘‘dormant-
biosphere’’ point. The forcing term induces a flip between the
basins of attraction for each steady state, however, in some
cases, the carbon pools can spend prolonged periods at the near
zero steady state known here as mortality events.

Fig. 1 shows these two types of behaviours — the top plot shows
fluctuation around the ‘‘active-biosphere’’ steady state with parameters
set at the reference values whereas the bottom plot shows flipping
between the ‘‘active-biosphere’’ and ‘‘dormant-biosphere’’ steady states
when 𝑘1 only is changed to 0.4.

3. Data assimilation

The aim of traditional variational data assimilation methods is to
find an optimal initial state vector 𝐱 ∈ R𝑛𝑥 often termed the anal-
ysis (or posterior estimate) that minimises a cost function that sums
the distance to the prior estimate with the distance of the simulated
observations to the actual observations. The errors are assumed to be
normally distributed and the terms in the cost function are weighted
by the inverses of their respective covariance matrices.
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3.1. 4DVar and incremental 4DVar

In 4DVar, the cost function for state estimation, in compact form, is
given by:

𝐽 (𝐱) = 1
2
(

𝐱 − 𝐱b
)𝑇 𝐁−1 (𝐱 − 𝐱b

)

+ 1
2

(

�̂� (𝐱) − �̂�
)𝑇

�̂�−1
(

�̂� (𝐱) − �̂�
)

(3)

where prior errors are normally distributed with mean 𝐱𝑏 ∈ R𝑛𝑥 and
error covariance matrix 𝐁 ∈ R𝑛𝑥 × R𝑛𝑥 . The measured and simulated
observation vectors are

̂ =

⎛

⎜

⎜

⎜

⎜

⎝

𝐲0
𝐲1
⋮
𝐲𝑁

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛𝑜 and �̂� (𝐱) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐡0 (𝐱)
𝐡1

(

𝐦0→1 (𝐱)
)

⋮
𝐡𝑁

(

𝐦0→𝑁 (𝐱)
)

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛𝑜

respectively where 𝐲𝑡 ∈ R𝑛𝑜,𝑡 are the observed observations and 𝐡𝑡 ∈
𝑛𝑜,𝑡 is the observation operator at time 𝑡. The forward model 𝐦𝑡 maps

the state vector at time 𝑡 to time 𝑡 + 1:

𝐱𝑡+1 = 𝐦𝑡→𝑡+1(𝐱𝑡)

and 𝐱𝑡 = 𝐦0→𝑡(𝐱0) maps the state from time 0 to time 𝑡. The observa-
ional error covariance matrix is

�̂� =

⎛

⎜

⎜

⎜

⎜

⎝

𝐑0 𝟎 … 𝟎
𝟎 𝐑1 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐑𝑁

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛𝑜 × R𝑛𝑜

where 𝐑𝑡 ∈ R𝑛𝑜,𝑡 ×R𝑛𝑜,𝑡 corresponds to the observation error covariance
matrix for the observations at time 𝑡. For the case when observations
are uncorrelated, �̂� is a diagonal matrix and its inverse is trivial.

The cost function in Eq. (3) is generally non-quadratic due to
the nonlinearity of the observation operator and the forward model.
Optimising cost functions of this nature often results in locating a local
rather than a global minimum. This problem can be overcome by adopt-
ing an incremental 4DVar (Courtier et al., 1994) approach whereby the
ptimised state is assumed to be of the form 𝐱 = 𝐱𝑏 + 𝛿𝐱, i.e. a small in-
rement to the prior knowledge of the state. Subsequently, via a Taylor
xpansion of the forward model: 𝐦0→𝑡(𝐱𝑏 + 𝛿𝐱) ≈ 𝐦0→𝑡

(

𝐱𝑏
)

+ 𝐌𝑡→0𝛿𝐱,
where the tangent linear model 𝐌𝑡→0 = 𝐌𝑡→𝑡−1𝐌𝑡−1→𝑡−2 ⋯𝐌1→0 ∈
R𝑛𝑥 × R𝑛𝑥 , the cost function in Eq. (3) becomes quadratic:

𝐽 (𝛿𝐱) = 1
2
𝛿𝐱𝑇𝐁−1𝛿𝐱+ 1

2

(

�̂�
(

𝐱𝑏
)

+ �̂�𝛿𝐱 − �̂�
)𝑇

�̂�−1
(

�̂�
(

𝐱𝑏
)

+ �̂�𝛿𝐱 − �̂�
)

(4)

where

�̂� =

⎛

⎜

⎜

⎜

⎜

⎝

𝐇0
𝐇1𝐌1→0
⋮
𝐇𝑁𝐌𝑁→0

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛𝑜 × R𝑛𝑥

and �̂�𝑡 ∈ R𝑛𝑜,𝑡 ×R𝑛𝑥 is the linearised observation operator at time 𝑡. One
hould ensure that 𝐦0→𝑡(𝐱𝑏 + 𝛿𝐱) − 𝐦0→𝑡

(

𝐱𝑏
)

is a good approximation
for the evolution of 𝐌𝑡→0𝛿𝐱 over the time window when implementing
incremental 4DVar. The gradient of the cost function in Eq. (4) is given
by

∇𝐽 (𝛿𝐱) = 𝐁−1𝛿𝐱 + �̂�𝑇 �̂�−1
(

�̂�
(

𝐱𝑏
)

+ �̂�𝛿𝐱 − �̂�
)

(5)

where �̂�𝑇 ∈ R𝑛𝑥 × R𝑛𝑜 is the adjoint of �̂�.
The problem of finding the optimised state such that ∇𝐽 (𝛿𝐱) =

is usually tackled using gradient descent computational methods.
rguably the biggest problem in implementing these methods is de-

termining the adjoint �̂�𝑇 as it requires the calculation of model and
bservation operator derivatives. It is also important to note here that
ven though incremental 4DVar derives a quadratic cost function, it
s possible that the minimisation locates a nonunique minimum. In
ddition to these common pitfalls the definition and conditioning of
he prior error covariance matrix 𝐁 is often an issue in implementing
hese methods.
4 
3.2. 4DEnVar

Some of the drawbacks of 4DVar and incremental 4DVar, such as
the need for the tangent linear or adjoint of the model and the lack
of posterior uncertainty information, can be addressed by making use
of an ensemble. In 4DEnVar, we take an ensemble of 𝑛𝑒 state vectors
{

𝐗𝑏,𝑖
}

𝑖=1,…,𝑛𝑒
drawn from a 

(

𝐱𝑏,𝐁
)

distribution and define the scaled
perturbation matrix:

𝐗′
b =

1
√

𝑛𝑒 − 1
(

𝐗𝑏,1 − 𝐱𝑏,𝐗𝑏,2 − 𝐱𝑏,… ,𝐗𝑏,𝑛𝑒 − 𝐱𝑏
)

∈ R𝑛𝑥 × R𝑛𝑒 (6)

where �̄�𝑏 ∈ R𝑛𝑥 is the mean of the ensemble. This offers a natural choice
for the prior error covariance matrix that is preconditioned:

𝐁 = 𝐗′
𝑏
(

𝐗′
𝑏
)𝑇 . (7)

We adopt the assumptions of incremental 4DVar and make a transfor-
mation of variables from 𝛿𝐱 in Eq. (4) to 𝐰:

𝐱𝑎 = �̄�𝑏 + 𝛿𝐱 = �̄�𝑏 + 𝐗′
𝑏𝐰 (8)

where 𝐰 is normally distributed with zero mean and unit covariance
so that the analysis 𝐱𝑎 is obtained from the mean of the ensemble
pdated via a weighted combination of the ensemble members. The
ost function and gradient are

𝐽 (𝐰) = 1
2
𝐰𝑇𝐰 + 1

2

(

�̂�
(

𝐱b
)

+ 𝐘′
𝑏𝐰 − �̂�

)𝑇
�̂�−1

(

�̂�
(

𝐱b
)

+ 𝐘′
𝑏𝐰 − �̂�

)

(9)

and

∇𝐽 (𝐰) = 𝐰 +
(

𝐘′
𝑏
)𝑇 �̂�−1

(

�̂�
(

𝐱b
)

+ 𝐘′
𝑏𝐰 − �̂�

)

(10)

respectively where

𝐘′
𝑏 =

1
√

𝑛𝑒 − 1
(

�̂�
(

𝐗b,1
)

− �̂�
(

𝐱b
)

,… , �̂�
(

𝐗b,𝑛𝑒

)

− �̂�
(

𝐱b
)

)

∈ R𝑛𝑜 × R𝑛𝑒

(11)

approximates �̂�𝐗′
b and this allows us to avoid the calculation of the

djoint derivatives. This is done by approximating perturbations in
observation space with 𝐘′

𝑏 rather than transporting state space pertur-
bations to observation space with an adjoint. Note that the transpose
of 𝐘′

𝑏 in Eq. (10) is done explicitly since 𝐘′
𝑏 is an explicit matrix. In

addition to avoiding adjoint calculations, with the use of an ensemble
e are able to borrow an EnKF result to update the ensemble and obtain
 estimated posterior error covariance matrix:

𝐗′
𝑎
(

𝐗′
𝑎
)𝑇 = (𝐈 −𝐊�̂�)𝐗′

𝑏
(

𝐗′
𝑏
)𝑇

⟹ 𝐗′
𝑎
(

𝐗′
𝑎
)𝑇 ≈ 𝐗′

𝑏

(

𝐈 +
(

𝐘′
𝑏
)𝑇 𝐑−1𝐘′

𝑏

)−1

×
(

𝐗′
𝑏
)𝑇 (12)

where 𝐊 is the Kalman gain matrix that can be approximated using
𝐗′
𝑏 ≈ 𝐘′

𝑏. This calculation involves the use of the Sherman–Morrison–
Woodberry formula and corrects an error seen in Equation (A16)
n Pinnington et al. (2021). It follows that the updated perturbations

𝐗′
𝑎 ≈ 𝐗′

𝑏

(

𝐈 +
(

𝐘′
𝑏
)𝑇 𝐑−1𝐘′

𝑏

)− 1
2 where we can use a Cholesky decompo-

sition to find a square root matrix which once inverted can be used to
update the ensemble.

The context of all the above is that of data assimilation for state
stimation. The same applies exactly for parameter estimation as is
ecessary for the purposes of this study, except that it should be
oted that there is no model propagation of the parameter vector. The
arameter vector to be optimised in the cost function is assumed fixed,
hat is to say 𝐱𝑡+1 = 𝐱𝑡 where 𝐱 now represents a vector of parameters.
here can be significant simplifications and dimensional reductions in
he context of parameter estimation. In these cases it may be possible
o avoid computational gradient descent methods and make use of an
nalytical solution to ∇𝐽 (𝐰) = 0. It follows from Eq. (10), this analytical
olution is given by:

𝐰 = −
(

𝐈 +
(

𝐘′
𝑏
)𝑇 �̂�−1𝐘′

𝑏

)−1
(

𝐘′
𝑏
)𝑇 �̂�−1

(

�̂�
(

𝐱b
)

− �̂�
)

.

In the results that follow, we used the analytical solution as a check
against the analysis obtained using gradient descent.
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Fig. 2. Results from 4DEnVar for an ensemble size 20 of 𝑝1 parameters. 𝑥1 and 𝑥2 trajectories are in the top and middle plots respectively: ensemble runs (grey), analyses (yellow),
ensemble mean (green) and truth (red) unseen due to low RMSE with analyses. The bottom plot zooms in on the lower part of the 𝑥1 trajectory with forcing shown in blue.
3.3. 4DEnVar tests

There are multiple tests that should be implemented to ensure that
the 4DEnVar method is being applied correctly and any assumptions
that are made are valid:

1. There is a linearity assumption on the derivation of the 4DEn-
Var cost function. It must be checked that the following linear
approximation is a good one for the entire interval of its use:
�̂�(�̄�𝑏 + 𝐗′

𝑏𝐰) ≈ �̂�(�̄�𝑏) + 𝐘′
𝑏𝐰

2. Correct implementation of the cost function and its gradient can
be checked via the expression:

𝛷(𝛼) = 𝐽 (𝐰 + 𝛼 𝛿𝐰) − 𝐽 (𝐰)
𝛼 𝛿𝐰𝑇∇𝐽 (𝐰)

− 1 = 𝑂(𝛼) (13)

where 𝛿𝐰 should be of unit length, e.g. 𝛿𝐰 = ∇𝐽
|∇𝐽 | . Evaluating

the expression for values of 𝛼 closer and closer to zero should
result in the expression tending to zero.

3. If one wishes to update the ensemble (derivation seen in Eq.
(12)), it requires a Cholesky decomposition to find the square
root matrix. By checking that the 𝑛𝑒×𝑛𝑒 matrix 𝐈+ (𝐘′

𝑏)
𝑇𝐑−1𝐘′

𝑏 has
positive eigenvalues, and since it is symmetric by construction,
then this matrix is positive definite and a unique Cholesky
decomposition is ensured. This test should be implemented in
any code used to apply the 4DEnVar method.

Fig. 3 shows the appropriate tests for the 4DEnVar method as outlined
above. Panel (a) shows the expression in Eq. (13) tending to zero
as 𝛼 tends to zero illustrating the correct implementation of the cost
function and its gradient. Panel (b) shows a comparison of 𝐘′

𝑏𝐰 against
𝐡
(

𝐱𝑏 + 𝐗′
𝑏𝐰

)

− �̂�
(

𝐱𝑏
)

for an optimised 𝐰 in the reference case to ensure
that the approximations hold well.

4. Results

As a basic check, the 4DEnVar method was employed in a prelim-
inary study to test the method’s efficacy in estimating the parameters
individually (with all other parameters set to reference values — see
Table 1) and highlighted the need for use of a restricted ensemble; the
method was then applied to the full parameter set using a restricted en-
semble in all experiments. The first assessment of applying 4DEnVar for
5 
all four parameters used unperturbed synthetic observations generated
from the reference case set of parameters and includes an exploration of
(1) the unrestricted and restricted parameter distributions and (2) the
effect of RMSE with increasing ensemble size. The remaining experi-
ments involved noisy synthetic observations using OptIC parameter sets
(see Table 2) and in the first case we performed a principal component
analysis. In all experiments a synthetic truth is obtained from a model
run for different parameter sets for 1200 daily time steps of size 𝛥𝑡 = 1.
The first 200 time steps are discarded to disregard any transient effects
of the initial state values — these are set to 1.0 for synthetic truths.
Outputs of the synthetic model run for the remaining 1000 time steps
are treated as observations. Observation error covariance matrices are
diagonal with variances set arbitrarily at 10% of the corresponding
observation values. The forcing is generated as detailed in Section 2.2
and the same forcing is used throughout. Parameters for each ensemble
member (the ensemble size is 50 as motivated in Section 4.2, notably
Fig. 5, unless otherwise stated) are drawn from a normal distribution
with mean set to the midpoint of the bound interval as detailed in
Table 1 and diagonal covariance matrix with standard deviations set
arbitrarily to 25% of the mean values. Ensemble model runs are com-
pleted for 1000 time steps with initial values set to be equal to the first
observations. All model runs were performed using Runge–Kutta (RK4)
integration (step size 𝛥𝑡 = 1). In the data assimilation step, the L-BFGS
gradient descent method is implemented and python is used to generate
all outputs (see Code Availability section).

4.1. Single parameter estimation

For the preliminary study the synthetic data was obtained from
model runs with parameters set at the reference values. We took an
ensemble of each parameter in turn, while fixing the other parameters
to the reference value, in order to see if the 4DEnVar technique is able
to retrieve each of the parameters individually without adding noise
to the synthetic observations. This preliminary study illuminated the
fact that many of the ensemble members represent mortality events –
prolonged depletion in both carbon pools – in these cases the 4DEnVar
technique fails with the ensemble size kept at 50. The technique is able
to estimate parameters more closely if the ensemble size is increased
(since more ensemble members exhibit the correct behaviour type 1 or
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Fig. 3. Relevant tests for 4DEnVar implementation and assumptions.
Table 2
True and estimated parameter values and RMSEs in 𝑥1 and 𝑥2.

Parameters RMSE in 𝑥1 RMSE in 𝑥2

𝑝1 𝑝2 𝑘1 𝑘2 �̂�(�̄�𝑏) �̂�(𝐱𝑎) �̂�(𝐗𝑎) �̂�(�̄�𝑏) �̂�(𝐱𝑎) �̂�(𝐗𝑎)

True (Exp A.) 1.04 1.35 0.23 0.08 – – – – – –

Estimated 1.089 1.285 0.233 0.079 0.282 0.078 0.141 5.905 0.064 0.276
Est./True 1.047 0.952 1.014 0.986 – – – – – –

True (Exp. B) 2.44 2.45 0.11 0.031 – – – – – –

Estimated 2.371 2.502 0.097 0.032 5.198 1.250 1.221 16.368 0.864 0.439
Est./True 0.972 1.021 0.878 1.022 – – – – – –

True (Exp. C1) 2.44 2.45 0.11 0.011 – – – – – –

Estimated 2.264 3.390 0.129 0.016 6.003 1.472 1.286 57.652 20.864 20.064
Est./True 0.927 1.384 1.173 1.427 – – – – – –

True (Exp. C2) 0.77 2.73 0.033 0.025 – – – – – –

Estimated 1.635 1.432 0.034 0.030 13.720 1.015 1.530 24.016 5.622 6.548
Est./True 2.123 0.524 1.034 1.187 – – – – – –
less time at the low steady state for behaviour type 2 as seen in Fig. 1)
but this will increase the computational requirements of the method.
To keep the ensemble size small we incorporate a criteria on the
parameters — reject ensemble members that result in the undesirable
extinction behaviour of the carbon pools until an ensemble size of 50
is met. Resulting ensembles satisfying this requirement are henceforth
referred to as a ‘restricted ensemble’. For the model used here, this
is possible by examining the steady states, in a non-forced setting,
that exist for the given parameter combinations as detailed in Raupach
(2007). Ensembles that give rise to a non-forced steady state in the
carbon pools below a value of 0.5 can be excluded and sampling
continued until the chosen ensemble size is met. Note that this will not
6 
be possible for all models — the steady states are simple to obtain for
the model used here, but rejection based on persistent mortality of the
observational trajectories could be employed nonetheless. Fig. 2 shows
the results obtained when applying 4DEnVar to estimate the 𝑝1 param-
eter using a restricted ensemble of size 20 (we see the unrestricted
and restricted ensemble of size 50 in the full experiment in the next
section). The technique is capable of estimating individual parameter
values that generate carbon pool trajectories with very low root mean
squared error (RMSE) when compared with the true trajectories. Very
similar plots and results are obtained when repeating the experiment
for the 𝑝2, 𝑘1 and 𝑘2 parameters although some ensemble members only
generated type 1 behaviour. It is worth noting that unrestricted large
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Fig. 4. Distributions and correlation matrices for the unrestricted and restricted ensembles (size 1000).
ensembles performed poorly in comparison to restricted ensembles —
the technique produced analyses with higher RMSEs.

The results of this preliminary study reveal the necessity to examine
the performance of the technique using individual parameters. There
should be a careful examination of the prior ensemble when performing
any ensemble data assimilation technique for parameter estimation if
the user is to have a full understanding of the mechanisms involved.

4.2. Four parameter estimation

Prior to running experiments using parameter sets from the OptIC
experiment, 4DEnVar was tested with the reference parameter set with
non-perturbed observations in order to check its ability to estimate all
4 parameters simultaneously. Similarly to the single parameter tests, it
was found that a significant proportion of the parameter combinations
in the ensembles resulted in either mortality events or Behaviour Type
2 — most of the model trajectories either stayed at zero or flipped
between steady states or even prolonged fluctuation around the low
steady state. Increasing the ensemble size did not work as effectively
as it did for the single parameter experiments and so it was essential to
generate an ensemble with some desirable behaviour in the trajectories.
Ensemble member rejection was employed in the same way as for the
single parameter estimation experiment.

Fig. 4 illustrates the parameter distributions before and after reject-
ing parameter combinations that allow for a second near zero steady
state and the subsequent effect on the prior error covariance matrix
7 
𝐁 = 𝐗′
𝑏
(

𝐗′
𝑏
)𝑇 . For a large ensemble size of 1000 we see that restriction

of the ensemble reduces the mean parameter values and introduces
some left skewing (Fig. 4a) on the parameter distributions (𝑝1, 𝑘1)
which are otherwise symmetric and evidence of bi-modality (𝑝1). From
Fig. 4b (right) we also see some correlations introduced between the
parameters when the restricted ensemble is used, compared to the
unrestricted ensemble.

In practical applications, ensemble sizes will typically be much
smaller than 1000 — the ensemble size is often chosen primarily with
regard to computational constraints. We performed an investigation to
compare analysis RMSE with ensemble size for noisy synthetic observa-
tions obtained from the reference parameter set in order to identify the
ideal ensemble size. The RMSE was obtained for ensemble sizes varying
from 5 to 45 and the experiments were executed 20 times. Fig. 5 shows
the mean RMSE (and 10th/90th percentiles) versus ensemble size. It is
clear that RMSE in 𝑥2 is consistently higher than that in 𝑥1 but neither
RMSE improves using an ensemble size larger than 30. We proceeded
to explore the capabilities of 4DEnVar using the various parameter sets
seen in the OptIC study, using noisy data and an ensemble size of 50
to be sure we had selected a large enough ensemble.

In the first non reference case experiment to estimate all four
parameters simultaneously, a synthetic truth was obtained by running
the model for the first parameter set used in the OptIC experiment
— see Experiment A in Table 2. Noise was added to each of the
observations 𝑦𝑖 in the form 𝑦𝑖+𝜎 𝑧𝑖 where 𝜎 = 0.1 and the 𝑧𝑖 were drawn
from a random Gaussian distribution with zero mean and unit standard
deviation. Fig. 6 shows an example of an ensemble where all ensemble
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Fig. 5. Mean, 10th and 90th percentiles for analysis versus truth RMSE in 𝑥1 and 𝑥2 versus ensemble size for reference case parameters (experiment size 20).
Fig. 6. Results from 4DEnVar for an unrestricted ensemble (size 50) of all parameters. 𝑥1 and 𝑥2 trajectories are in the top and middle plots respectively: ensemble runs (grey),
truth (red), ensemble mean (green). A poor analysis (yellow) is obtained. Bottom panel shows a zoom of the top plot to show most trajectories staying in low steady states.
Corresponding RMSE is shown in legend (NaN for failed DA) and forcing is plotted in blue.
members exhibit mortality behaviour and the data assimilation fails
— the bottom panel shows a close look at the 𝑥1 pool and we see
that all of the unrestricted ensemble members converge to a steady
state below 0.5. Fig. 7 shows the results of a successful application
of 4DEnVar when restricting the ensemble to members that generate
nontrivial behaviour and is capable of mimicking the observations. The
RMSE in 𝑥1 and 𝑥2 is reduced by 96% and 99% respectively since the
prior ensemble mean generates a trajectory with Type 2 behaviour.
Fig. 8 shows the prior and posterior distributions of the parameters
— all parameters move closer to their true values with significant
narrowing of their spread indicating that these new parameter values
are estimated with much higher confidence than their priors.

A principal component analysis of the posterior error covariance
matrix obtained in the first nontrivial experiment reveals eigenvalues
and eigenvectors (matrix columns) as follows:

[1.173𝑒−01, 9.406𝑒−03, 2.043𝑒−04, 4.983𝑒−06], (14)

⎛

⎜

⎜

⎜

⎜

−0.379 0.925 −0.0175 0.006
0.925 0.379 −0.002 0.004
0.005 −0.017 −0.999 0.0215

⎞

⎟

⎟

⎟

⎟

(15)
⎝

−0.002 −0.006 0.022 0.999
⎠

8 
The fourth eigenvector, corresponding to the smallest eigenvalue and
therefore the best resolved direction in the optimisation, is dominated
by the fourth entry corresponding to the parameter 𝑘2. Similarly, the
third eigenvector is dominated by 𝑘1. The larger eigenvalues have
eigenvectors with two significant entries corresponding to 𝑝1 and 𝑝2,
with 𝑝1 being the better resolved parameter. These findings agree
with those of the OptIC experiment in that 𝑘1 and 𝑘2 are more easily
observed and there is some correlation between 𝑝1 and 𝑝2 suggesting
that it is more difficult to separate their effects.

The experiment was repeated for other parameter sets where Gaus-
sian noise was added in the OptIC experiment as seen in Table 2. The
RMSE in the prior (�̂�(�̄�𝑏)) and the analysis (�̂�(𝐱𝑎)) are also included
in this table to see the improvements along with the value of (esti-
mated parameter value)÷(true parameter value) which is 1 when the
parameters are perfectly estimated. A value less than (greater than) 1
indicates an underestimation (overestimation) of the parameter value.
As an alternative to running the model with the updated ensemble
mean, �̂�(𝐱𝑎), it is possible to choose the optimal trajectory as the
one obtained from the mean of the updated ensemble of trajecto-
ries, �̂�(𝐗𝑎). The RMSE for the mean updated ensemble trajectories
is included for comparison. In all of the experiments, the RMSEs
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Fig. 7. Results from 4DEnVar for an restricted ensemble (size 50) of all parameters. 𝑥1 and 𝑥2 trajectories are in the top and middle plots respectively: ensemble runs (grey), truth
(red), ensemble mean (green). A good analysis (yellow) is obtained. Bottom panel shows a zoom of the top plot to show no trajectories staying in low steady states. Corresponding
RMSE is shown in legend and forcing is plotted in blue.
Fig. 8. Prior and posterior parameter distributions from the experiment shown in Fig. 5b using the restricted ensemble.
between the model trajectories obtained from the prior and the es-
timated parameter values are significantly reduced and the 4DEnVar
method with more confidence placed on the observations is able to
obtain parameter estimations with increased certainty, i.e. much more
narrow posterior parameter distributions. For example, in Table 2, for
experiment A, we see that our DA method estimates the parameter set
to be [𝑝1, 𝑝2, 𝑘1, 𝑘2] = [1.089, 1.285, 0.233, 0.079] when the true values
[𝑝1, 𝑝2, 𝑘1, 𝑘2] = [1.04, 1.35, 0.23, 0.08] are used to generate a noisy truth.
This gives values for estimated/truth ratios as [1.047, 0.952, 1.014, 0.986].
Our method estimates 𝑘1 and 𝑘2 particularly well — within 2% of truth;
estimates for 𝑝1 and 𝑝2 are not as accurate as those for 𝑘1 and 𝑘2,
however, estimates still fall within 5% of the true values. In experiment
9 
B, estimates for 𝑝1, 𝑝2 and 𝑘2 are within 3% of the true values but
𝑘2 is relatively poorly estimated (within 13%). We also find that our
method struggles to find close parameter estimates in the C1 and C2
experiments as was the case for the some of the members of the OptIC
study. For the C1 experiment this is due to the ensemble (restricted
or not) being unlikely to sample members that meet the extreme high
model trajectory in the soil pool even for larger ensemble sizes and
hence why the RMSE in the analysis, albeit smaller, remains relatively
large. Similar behaviour of the trajectories is seen in experiment C2 —
the carbon pool trajectory appears to be the upper extreme of what can
be obtained by all parameter combinations and our method struggles
to approximate the parameters well in these cases.
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5. Discussion

Our method is a particularly attractive DA technique to employ
since it does not require tangent linear or adjoint code – which can be
a significant task for complex models and requires updating with each
model release – when minimising the 4DEnVar cost function. Some
computational effort is required to run the model on the parameter en-
semble, particularly for more complex TBMS, but once an ensemble of
model trajectories is obtained, multiple experiments can be performed
offsetting the initial cost of set-up. In contrast, the 4DEnVar analysis
step is computationally cheap thus fast and is executed separately
from any model runs for parameter estimation so there is no need for
adaptation of model code. The combined aforementioned features of
the technique make for a compelling argument to employ 4DEnVar
in parameter estimation studies. Nonetheless, a test to compare the
4DVar and 4DEnVar cost functions should be employed, particularly
for models that are highly nonlinear when this method has potential
to fail. It should be noted that operational land surface models such as
JULES or ORCHIDEE have a lot more than just 4 parameters to optimise
for and a parameter sensitivity analysis to the observations used with
the 4DEnVar method is critical. Nevertheless, it is possible to extend the
parameter set to include additional parameters, such as the seed term,
for example, or even to include the initial state. In this investigation we
chose our initial state to be the first set of available observations as was
applied by some of the participants in the OptIC project but it should
be noted that, for some models, not optimising for the initial state can
have a detrimental impact on the value of the estimated parameters. It
is also possible to optimise for the forcing parameters but there is no
scientific value here since the assumptions made about the form of the
forcing trajectory is not realistic in nature and driving data are typically
assumed exact.

The success of the 4DEnVar method, when paired with the simple
toy carbon model in particular, is hinged on a carefully chosen ensem-
ble — parameter sampling from a normal distribution to choose the
prior ensemble is insufficient to guarantee an effective ensemble has
been selected. Firstly, discarding parameter values that fall outside the
parameter bounds is necessary and this has an effect on the definition
of the ensemble distribution. In the early stages of our experiment
it was evident that even sampling in this way was insufficient for
parameter estimation for this particular model — many of the ensemble
members were generating trajectories that represent mortality of the
carbon pools. It is possible to increase ensemble size in order to capture
more of the variability in the model dynamics in the ensemble but
in the interest of keeping computational requirements low, especially
when applied with models with higher computational requirements,
it may be necessary to restrict the ensemble. It should be noted that
altering the ensemble in this way will have an effect on the prior
parameter distributions and appear to contradict the underlying Gaus-
sian assumptions of the method. Despite this, restricted ensembles with
sufficient spread in the parameter distributions were adequate to ensure
successful application of the 4DEnVar method. In the repeat experiment
to see the effect of ensemble size on the RMSE, it was discovered
that some restricted ensembles were incapable of effective parameter
estimation when they contained insufficient spread in one or more of
the parameters. A parameter sensitivity analysis and twin experiment
to assess the efficacy of an ensemble to estimate parameters from
synthetic data before using real observations is recommended with any
application of 4DEnVar.

6. Conclusion

This study illustrates the success of the 4DEnVar method in its
bility to estimate model parameters with increased certainty relative

to prior parameter information using a relatively small carefully chosen
ensemble of model runs given a set of noisy observations generated

from a truth run in non-extreme cases. The 4DEnVar method is easy

10 
to implement with fast code to perform the DA algorithm that, in our
use case (parameter estimation), is entirely separate from model code
and avoids the requirement to compute an adjoint. Once an effective
nsemble of model trajectories is obtained, it can be used in multiple

experiments without the need for model reruns. For these reasons the
DEnVar method is an attractive technique to implement in parameter
stimation studies. It should be noted that the success of the method
angs on the careful selection of a prior ensemble – there should be
ufficient variability in the trajectories generated from the ensemble
embers for efficient and effective parameter estimation – and the
ethod still may struggle to estimate parameters for extreme cases.
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