
AMOC variability in climate models and its
dependence on the mean state 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Ferster, B. S. ORCID: https://orcid.org/0000-0001-9241-518X, 
Fedorov, A. V. ORCID: https://orcid.org/0000-0001-5428-1117,
Mignot, J. ORCID: https://orcid.org/0000-0002-4894-898X and 
Guilyardi, E. ORCID: https://orcid.org/0000-0002-2255-8625 
(2025) AMOC variability in climate models and its dependence
on the mean state. Geophysical Research Letters, 52 (3). 
e2024GL110356. ISSN 1944-8007 doi: 
https://doi.org/10.1029/2024gl110356 Available at 
https://centaur.reading.ac.uk/121218/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1029/2024gl110356 

Publisher: American Geophysical Union (AGU) 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



AMOC Variability in Climate Models and Its Dependence on
the Mean State
Brady S. Ferster1,2 , Alexey V. Fedorov1,2 , Juliette Mignot1 , and Eric Guilyardi1,3

1LOCEAN‐IPSL, Sorbonne Université, CNRS, IRD, MNHN, Paris, France, 2Department of Earth and Planetary Sciences,
Yale University, New Haven, CT, USA, 3NCAS‐Climate, University of Reading, Reading, UK

Abstract Understanding internal variability of the climate system is critical when isolating internal and
anthropogenically forced signals. Here, we investigate the modes of Atlantic Meridional Overturning
Circulation (AMOC) variability using perturbation experiments with the Institut Pierre‐Simon Laplace's (IPSL)
coupled model and compare them to Coupled Model Intercomparison Project Phase 6 (CMIP6) pre‐industrial
control simulations. We identify two characteristic modes of variability—decadal‐to‐multidecadal (DMDvar)
and centennial (CENvar). The former is driven largely by temperature anomalies in the subpolar North Atlantic,
while the latter is driven by salinity in the western subpolar North Atlantic. The amplitude of each mode scales
linearly with the mean AMOC strength in the IPSL experiments. TheDMDvar amplitude correlates well with the
AMOC mean strength across CMIP6 models, while the CENvar mode does not. These findings suggest that the
strength of DMDvar depends robustly on the North Atlantic mean state, while the CENvar mode may be model‐
dependent.

Plain Language Summary Understanding climate natural variability is crucial for distinguishing
between changes caused by human activity and climate fluctuations that occur on their own. In this study, we
investigate different timescales and patterns of variation in the Atlantic Ocean's circulation system, called the
Atlantic meridional overturning circulation (AMOC). Using coupled model simulations, we study how the
AMOC behaves under various conditions. We find two main types of AMOC variations: one that occurs over
decades to multiple decades, and another that happens over centuries. The shorter‐term variation was mainly
influenced by changes in temperature and salinity in the western subpolar North Atlantic Ocean, while the
longer‐term variation is more affected by salinity in the same region. When comparing to other coupled models
from the Coupled Model Intercomparison Project Phase 6, the strength of the shorter‐term variation is related
directly to the overall strength of the overturning circulation, while the longer‐term variation does not exhibit the
same relationship. This suggests that the shorter‐term variation is more consistently tied to the conditions of the
North Atlantic Ocean, while the longer‐term one might vary depending on the specific coupled climate models.

1. Introduction
The Atlantic Meridional Overturning Circulation (AMOC) is a vital component of the Earth's climate system that
plays a crucial role in transporting heat, freshwater, and carbon across the Atlantic basin. This large‐scale ocean
overturning system transports warm surface water from the tropics toward the subpolar North Atlantic, where it
exchanges heat with the atmosphere and allows the formation of deep, dense waters that feed a return flow toward
the tropics. As a result, the AMOC plays a critical role in regulating climate by redistributing heat and freshwater,
and influencing the carbon cycle, while variations in its strength and structure can have significant impacts on
large‐scale climate patterns. Reviews of the AMOC dynamics and related large‐scale climate impacts can be
found in (Buckley & Marshall, 2016 or Weijer et al., 2019).

At decadal and longer timescales, variations in surface buoyancy fluxes play an important role in driving the
variability of the AMOC by generating density anomalies in the upper ocean in climate models (Kostov
et al., 2019; Li et al., 2021; Liu et al., 2019; Polo et al., 2014; Sévellec et al., 2017). These buoyancy fluxes impact
the AMOC by modifying the density of the upper ocean in the high‐latitude North Atlantic region through
changes in temperature and salinity. Changes in wind stress can also contribute to the overall variability of the
AMOC in the subpolar North Atlantic (Kostov et al., 2019; Yeager & Robson, 2017) and subtropical
North Atlantic (Zhao & Johns, 2014). Within the subpolar North Atlantic, approximately poleward of ∼45°N,
variability is largely driven through both buoyancy (i.e., surface fluxes) and mechanical (i.e., wind) forcings
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(Larson et al., 2020; Yeager & Danabasoglu, 2014). The buoyancy forcing drives meridionally coherent decadal
variability, and the mechanical forcing introduces an asymmetric pattern of variability across the North Atlantic
basin (Yeager & Danabasoglu, 2014).

Modeling studies (e.g., Ferster et al., 2022; Menary et al., 2020b; Ortega et al., 2017) have demonstrated that
internal buoyancy driven variability originating in the western subpolar North Atlantic may drive AMOC vari-
ability on decadal timescales and is a major contribution to the decadal and lower‐frequencies AMOC variability
(Muir & Fedorov, 2015, 2017; Oldenburg et al., 2021; Sévellec & Fedorov, 2013, 2015). Moreover, the south-
ward propagation of the buoyancy‐driven AMOC variability from the subpolar North Atlantic can be damped in
the subtropical Atlantic due to mechanical forcing of wind‐driven mixing and transports (Baehr et al., 2008;
Larson et al., 2020; Rühs et al., 2015; Sévellec et al., 2017).

Sea surface temperature (SST ) and salinity (SSS) variations in the North Atlantic are related to AMOC through
changes in the buoyancy of the upper ocean in the high‐latitude North Atlantic region (Chiang et al., 2021). Low‐
frequency variations in AMOC, signals of decadal‐to‐multidecadal variability, have been shown to be linked to
changes in North Atlantic SST in models (Bjerknes, 1964; Deser et al., 2010; Kushnir, 1994). Large‐scale patterns
of atmospheric variability, such as the North Atlantic Oscillation (NAO), can drive AMOC and SST variability
through buoyancy fluxes and wind stress forcings (Delworth et al., 2016; Delworth & Zeng, 2016; Mecking
et al., 2015). Additionally, variability of the Arctic sea ice (Ferster et al., 2022; Liu et al., 2019; Lobelle
et al., 2020; Sévellec et al., 2017) and atmospheric patterns resulting from the tropics (Ferster et al., 2021, 2023a;
Hu & Fedorov, 2020; Orihuela‐Pinto et al., 2023), and at even lower frequencies, surface freshwater fluxes and
salinity have been shown as mechanisms driving AMOC decadal to centennial variability (Menary et al., 2012) in
models.

As described above, studies have thus shown that the AMOC exhibits natural variability on a range of timescales,
from years to centuries, and that it can be influenced by both internal and external factors, including changes in
ocean and atmospheric circulation patterns, freshwater input, and greenhouse gas concentrations. In the modeling
study of Mecking et al. (2015), AMOC variability can be separated into three distinct timescales: interannual,
multidecadal, and centennial. The role of mechanical forcing proved dominant in interannual variability, the
multidecadal variability is driven through density (buoyancy) anomalies in the subpolar North Atlantic, while the
centennial mode is attributed to series of quasi‐equilibrium states. Although less understood or explored in recent
literature, the (multi‐) centennial mode of AMOC variability is thought to derive from buoyancy anomalies in the
subpolar North Atlantic that may originate from the Arctic (Jiang et al., 2021; Waldman et al., 2021) or even from
the Southern Ocean (Delworth & Zeng, 2012).

Due to the limited length of AMOC observations, much of the scientific literature separating internally driven and
externally forced experiments is based on coupled climate models. There have been a number of recent studies
focusing on how to separate the forced and internal signals in the Atlantic multidecadal variability (Michel
et al., 2022; Qin et al., 2020; Robson et al., 2023) and the AMOC (Menary, Robson, et al., 2020; Robson
et al., 2022). However, little work has been done exploring the magnitude of variability and its dependence on the
mean state within a single model framework. In part, this is due to the challenge of creating experiments with a
given model using the same external forcings (i.e., constant or transient) but having different mean AMOC
strengths, outside the realm of freshwater hosing experiments (i.e., imposing surface freshwater fluxes in the
North Atlantic). Therefore, here we investigate a potential dependence of AMOC variability on the AMOC mean
state.

Our approach to analyze internal AMOC variability includes two steps. First, we use the tropical Indian Ocean to
remotely drive changes in the mean state AMOC through a combination of atmospheric teleconnections and
oceanic pathways, while using the same model and atmospheric forcings (following the approach of Ferster
et al., 2021; Hu & Fedorov, 2019). Second, we compare our results to the pre‐industrial control simulations of
CMIP6 and further explore the dependence of AMOC variability on AMOC strength.

2. Methods
2.1. IPSL‐CM6A‐LR and the Sensitivity Experiments

The experiments utilize the coupled model IPSL‐CM6‐LR (Boucher et al., 2020; Mignot et al., 2021) from the
Institut Pierre‐Simon Laplace. This model has an atmospheric grid resolution of 144 × 142 points with 79 layers,
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and an ocean configuration on a quasi‐isotropic global tripolar grid with 1° nominal resolution, increasing to 1/3°
near the equator, and 75 vertical levels varying in thickness from 1 m at the surface to 200 m at depth.

The experimental methods follow Ferster et al. (2021, 2023b), using SST nudging to alter the tropical Indian
Ocean temperature (TIO) and achieve different AMOC mean states. Four experiments applied temperature
anomalies of − 2°C, − 1°C, +1°C, and +2°C (TIO”x”C). The TIO + 1C and TIO + 2C experiments ran for
950 years, TIO − 2C for 500 years due to AMOC collapse, and TIO − 1C for 700 years. The IPSL control
simulation spans 1,100 years (r1i2p1f1). Ferster et al. (2021) found the IPSL‐CM6A‐LR model's sensitivity to be
approximately 9.4 Sv per 1°C TIOwarming. This method differs from hosing experiments by using SST gradients
to drive AMOC changes via tropical teleconnections, maintaining physical consistency of air‐sea fluxes in the
North Atlantic (Ferster et al., 2023a; Hu & Fedorov, 2019). Consequently, TIO‐warming (‐cooling) experiments
result in a warmer, saltier (colder, fresher) North Atlantic mean state and a stronger (weaker) AMOC compared to
the control.

2.2. Coupled Model Intercomparison Project Phase 6

To further explore mechanisms and robustness across coupled climate models, we include the pre‐industrial
control simulations of CMIP6 (Eyring et al., 2016) in our study, focusing on simulations with at least
300 years of data. Since most CMIP6 control simulations do not extend to the 1000s of years required to robustly
explore centennial variability, we concentrate on multi‐decadal analysis to support our sensitivity experiments. In
total, 37 different coupled models are used in this study. To ensure robust comparisons, we first analyze all models
with at least 300 years of data and then compare a subset of models with at least 900 years of simulation. This
approach, balancing more members with shorter timescales against fewer members with longer timescales, has
been explored in tropical dynamics (e.g., Lee et al., 2021). This is important to note as CMIP6 models have shown
intermittent multi‐decadal North Atlantic mechanisms (Bellucci et al., 2022) and the IPSL‐CM6A‐LR model
exhibits time‐varying frequency and amplitudes in the (multi‐) centennial mode (Povea‐Pérez et al., 2024).
Therefore, the length of the analyzed data or the background mean state could play a significant role in the
analysis. Compared to other CMIP6 models, the IPSL‐CM6A‐LR is relatively cold and fresh in the subpolar
North Atlantic and would result in weaker (multi‐) decadal AMOC variability (Reintges et al., 2024). A list of the
models, the length of simulated years analyzed, and references are provided in Table S1 in Supporting
Information S1.

2.3. Defining the Amplitudes of Variability

To begin the analysis of variability, we first define the decadal to multi‐decadal (DMDvar) and centennial
(CENvar) timescales within the IPSL control simulation. Figure 1a shows the low frequency timeseries of the
experiments through a 21‐year moving mean. Similar to (Ferster et al., 2023b), we will define the quasi‐
equilibrium in the experiments as starting from the year 200. This is indeed approximately when all experi-
ments reach a new state (shown as dashed vs. solid lines in Figure 1a). The initial 200 years of simulation are thus
not considered for the following analyses and only simulated years after 200 are considered to quantify the AMOC
variability in the new quasi‐equilibrium mean state.

To identify the temporal ranges for DMDvar and CENvar we use a power spectrum analysis with a variance
preserving approach: the power spectral density is multiplied by the frequency and the frequency is shown as
logarithmic. Additionally, the analysis applies a multi‐taper method (Park et al., 1987; Thomson, 1982; Yu &
Fedorov, 2022). The power spectrum analysis (Figure 1b) demonstrates two major bands of AMOC variability
separated by an interval with low spectral density around 65 years. Accordingly, we define the spectral range of
variability for DMDvar as 15–65 years and CENvar as 65 years and longer. The definition of these timescales is
based on the control simulations and agree with a previous study of Mecking et al. (2015). The two modes of
variability are then isolated through a 15–65 years Butterworth band‐pass filter and 65 years Butterworth low‐
pass filter, respectively. The DMDvar and CENvar amplitudes are then defined as the respective standard devi-
ation of the filtered timeseries. For both the IPSL and CMIP6 simulations, AMOC is defined as the maximum
overturning between 40° and 45°N at depths greater than 500 m, representing the subpolar cell of AMOC.

In comparing density, components are broken into a temperature (thermal) and salinity (haline) ‐driven
component. In estimating the contribution to density with this approach, the thermal component is estimated by
using the time mean salinity with the time‐varying temperature, and the haline component using the time mean
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temperature and time‐varying salinity. This method is similar to Swingedouw et al. (2013). To define signifi-
cance, we use an alpha of 0.01 to robustly compare to the 99% confidence interval in both parametric and non‐
parametric significance tests.

3. Results
3.1. AMOC Mean State and Amplitudes of Variability

In the IPSL control simulation, the mean AMOC is approximately 12.4 ± 1.3 Sv (Figure 1a; mean ± standard
deviation), while in the TIO + 2C (TIO − 2C) experiment, AMOC increases (decreases) to approximately
16.0 ± 1.6 Sv (3.6 ± 0.8 Sv). The TIO experiments therefore represent four additional AMOC mean states
compared to the IPSL control, two with decreased and two with increased mean AMOC strength. The advantage
of this protocol lies in the fact that as opposed to freshwater hosing setups, where buoyancy fluxes in the North
Atlantic are directly perturbed, AMOC intensity is here modulated from remote perturbation and physical tele-
connections. Compared to the control, the experiments with increased mean AMOC strength also exhibit larger
peaks in the frequencies of DMDvar and CENvar, while decreasing amplitude of the signal in a weaker AMOC
mean strength climate (Figure 1b).

In the control, the amplitudes ofDMDvar and CENvar are 0.5 and 1.0 Sv, respectively (Figure 2a). In the TIO+ 2C
experiment, their amplitudes increase to 0.6 and 1.2 Sv, respectively, while in the TIO − 2C experiment they
decrease to 0.3 and 0.5 Sv.

The experiments display a significant relationship between both modes of variability and the mean state AMOC.
Under a linear assumption, the DMDvar thus increases by about 0.022 and CENvar increases by 0.064 Sv per 1 Sv

Figure 1. (a) Timeseries of the Atlantic meridional overturning circulation (AMOC; Sv) for the IPSL‐CM6A‐LR perturbation experiments. The AMOC strength is
defined as the maximum overturning transport between 40° and 45°N at depths greater than 500 m and is plotted with a 21‐year moving mean to show the low frequency
variability. The initial 200 years are dashed to mark the transient response in the experiments before an approximate quasi‐equilibrium is reached. (b) Power spectra of
these timeseries for the time interval after year 200. A variance preserving approach is used in which the power spectral density is multiplied by the frequency and the
frequency is shown as logarithmic. Note the two broad‐maxima in the spectra corresponding to DMDvar and CENvar. Shading represents the 99% confidence interval.
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of AMOCmean. Both regressions are significant at the 99% confidence level, demonstrating the robustness of the
linear assumption. When compared to one another, the amplitudes of the two modes scale linearly at roughly
2.8 Sv SvCEN per SvDMD (p‐value < 0.01; Figure 2b).

3.2. Mechanisms Driving Multi‐Decadal and Centennial Variability in the Pre‐Industrial Control

The results in Section 3.1 demonstrate that the amplitude of variability in the two lower‐frequency modes scale
linearly with the mean state AMOC strength within the IPSL model. A lag‐lead spatial correlation analysis shows
a significant positive anomalous winter (JFM; 99% confidence level) ocean mixed layer depth (MLDoce) in the
western subpolar and Nordics seas along the coast of Greenland leading theDMDvar AMOC timeseries by 5 years
(Figures 3a and 3b). The annual mean winter MLDoce is contoured on Figure 3a, demonstrating that the positive
correlations represent a deepening of theMLDoce over the mean deep convective regions of the IPSLmodel, in the
approximate Labrador and Irminger seas of the western subpolar region of the North Atlantic. On the other hand
(Figures 3c and 3d), the low‐frequency pattern CENvar is significantly positively correlated with MLDoce

throughout the subpolar North Atlantic and Nordic seas, demonstrating a general large spatial‐scale deepening
MLDoce with the CENvar mode.

There is also an agreement in the patterns of regressing the filtered‐AMOC on to the winterMLDoce as there are in
regressing the filtered‐AMOC onto density, the temperature and salinity contribution to density (denoted as
thermal and haline) at 200 m depth (Figure S1 in Supporting Information S1). These plots demonstrate the strong
spatial similarities between density and thermal contributions to AMOC variability on decadal‐to‐multi‐decadal
timescales throughout the western subpolar region. On centennial timescales, spatial similarities are rather be-
tween density and the haline component. This suggests different regional and density‐driven mechanisms driving
the two modes of AMOC variability.

To further explore the mechanism and timing for the deepening mixed‐layer, lag‐lead correlation (Figures 3e–3j)
and regression (Figure S2 in Supporting Information S1) analyses are computed using the 200 m depth ocean
temperature and salinity and the sea ice area of the defined subpolar North Atlantic and Nordic seas regions using
the 1,100 years of the control simulation. Statistics of the correlations and regressions for each basin are further
described in Table S2 in Supporting Information S1. The subpolar North Atlantic region is separated by the
Reykjanes Ridge and broken into the western subpolar region (Labrador and Irminger seas) and the eastern
subpolar (Iceland basin). This separation is motivated by the DMDvar demonstrating large regions of positive
correlations in the western subpolar (MLDoce deepening) compared with the eastern subpolar in Figure 3a.

The correlation of western subpolar density onto DMD signal of AMOC peaks at density leading AMOC by
3 years (r = 0.76, p < 0.001; Figure 3e). The thermal component in the western subpolar region exhibits a

Figure 2. (a) The amplitude of the AMOC decadal‐to‐multidecadal (DMDvar) and centennial (CENvar) variability versus the AMOC mean strength in the perturbation
experiments. DMDvar is estimated through a 15–65 years bandpass filter and CENvar through a 65‐year lowpass filter applied to the AMOC timeseries. (b) Comparing
DMDvar and CENvar amplitudes: the colored dots indicate different perturbation experiments as shown in Figure 1a. Error bars in panels (a) and (b) represent the 95%
confidence interval and the solid lines represents linear regressions, significant at the 95% confidence level. The slope of the regression lines, variance explained (r2),
and p‐values are provided in each panel.
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significant correlation of 0.62 (p < 0.001), while the haline component is negatively correlated with the density
signal (not significant). The density signal leads that of the subpolar sea ice area, which western subpolar sea ice
extent is in phase with the AMOC (lag‐lead = 0 years). DMD AMOC variations are thus driven by thermal
anomalies in the western subpolar region. In the eastern subpolar, the peak density correlation withDMD signal of
AMOC is at 7 years (r= 0.47, p < 0.001; Figure 3f). The correlations of the thermal and haline components of the
density signal with DMD AMOC are significant but again with opposing signs. Thus, salinity and temperature
signals are partly compensating each other, with the temperature effect dominating density variations (see Figure
S2b in Supporting Information S1). Although the eastern subpolar North Atlantic density signal leads the DMD
signal before the western subpolar, the density regression in this region is approximately half the amplitude and
thus explains a lower portion of variance (correlation squared, see Table S2 in Supporting Information S1).
Within the Nordic Seas (Figure 3g), correlations of density onto the DMD signal of AMOC peaks after 12 years

Figure 3. Lag‐lead correlations (r) between ocean mixed layer depth and the (a–b) DMDvar and (c–d) CENvar filtered AMOC timeseries for the IPSL‐CM6A‐LR pre‐
industrial control. Hatching represents correlations that are not significant at the 99% confidence level. In panels (a, c) contours represent the time‐mean winter (JFM)
0.15 concentration Arctic sea ice area (SIA) extent (gold) and mean mixed layer depth at 200 m intervals (black). In panel (b) thick black contours mark the western and
eastern subpolar North Atlantic regions and the Nordic seas region. (e–g) Lag‐lead correlations of density (Rho; black) at 200 m depth onto the DMDvar timeseries for
each region and the contributions from temperature (Thermal; orange line) and salinity (Haline; blue line) and the basin‐averaged SIA (red line). Black dots indicate
values not significant at the 99% confidence level for Rho and shading represents the uncertainty, both accounting for the sample size and autocorrelation. (h–j) Similar
regressions but onto the CENvar timeseries. These plots, together with regressions in Figure S2 in Supporting Information S1 demonstrate that density variations in the
western subpolar North Atlantic drive DMDvar via temperature variations and CENvar via salinity variations. Density variations in the eastern subpolar North Atlantic
also contributes to AMOC variability, with a large degree of compensation between temperature and salinity in this region. Regressions corresponding to these
correlation coefficients are found in Figures S1 and S2 in Supporting Information S1; also see Table S2 in Supporting Information S1.
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(r = 0.33, p < 0.001), while the sea ice area leads by 3 years, indicating that the density anomalies in this region
are rather driven by the DMDvar of the AMOC.

In Figure S3 in Supporting Information S1, the Arctic winter sea ice area is correlated with DMDvar at several
lags, but the lag‐0 spatial correlations are largely confined to the Irminger and Nordic Seas regions. These results
demonstrate that the DMDvar signal in the subpolar region for the IPSL model is largely driven through tem-
perature anomalies in the western subpolar region and potentially independent of sea ice extent. The lag‐lead
correlations of basin‐averaged timeseries agree with the spatial patterns of AMOC regressed onto density in
Figure S1 in Supporting Information S1 and demonstrate the importance of the western subpolar temperature
contributions in driving DMDvar signal of AMOC.

The 200 m density signal in the western subpolar region significantly leads the AMOC CENvar by 7 years
(r = 0.97; Figure 3h). The haline component correlation similarly peaks near that of density with a peak cor-
relation of 0.93 (Figure S2d in Supporting Information S1), while the thermal component is out of phase with the
density signal. The density signal of the eastern subpolar North Atlantic leads the CENvar of AMOC by
approximately 21 years (r = 0.40, Figure 3i), however, the thermal and haline components are compensating in
this region. In the eastern subpolar, the peak thermal and haline signals occur in response to the CENvar, with the
AMOC leading these two components by 4 years (Figure 2e). The Nordic Seas density signal again lags the
CENvar signal of AMOC by 4 years (r= 0.86; Figure 3j) and both the thermal and haline components are in phase
with the density signal and compensating effects (Figure S2f in Supporting Information S1).

In all three basins, temperature is negatively correlated with the CENvar signal and thus opposes the contributions
driven through salinity and density. The strong regression and correlation of salinity in the western subpolar
region demonstrate that the centennial signal is likely to be primarily driven through salinity anomalies in this
region. Figure S1 in Supporting Information S1 demonstrates spatially the strong density and salinity regressions
with CENvar throughout the subpolar North Atlantic, while the temperature contribution exhibits comparatively
weaker, negative regressions. Moreover, the sea ice area leads the CENvar signal in all subpolar basins by a decade
(Figure S3 in Supporting Information S1), where the Arctic winter sea ice extent is negatively correlated with the
CENvar signal and results in reduced sea ice concentrations across the subpolar deep convection regions. Thus, the
spatial regressions and correlations support the results that the CENvar signal is driven by salinity and can be
related to the Arctic sea ice in the IPSL model (Jiang et al., 2021).

The correlation coefficients and peak lags of DMDvar and CENvar are similar across TIO − 1C and TIO + 1C
experiments (Figure S4 in Supporting Information S1), the western subpolar region exhibits opposing temper-
ature and salinity signals with the DMDvar and CENvar in a cooling climate (see Figures S4a and S4d in Sup-
porting Information S1). These experiments confirm that the DMDvar is largely driven through temperature
anomalies in the subpolar region and CENvar is salinity driven in the western part of the subpolar North Atlantic,
namely the Labrador and Irminger seas, for the IPSL‐CM6A‐LR model. The robustness across the TIO exper-
iments gives credit to the robustness of the mechanisms throughout the IPSL model and varying mean AMOC
strength and North Atlantic climates. Similar to Reintges et al. (2024), these experiments demonstrate that
warmer‐saltier mean states with reduced subpolar sea ice results in enhanced variability (TIO‐warming experi-
ments), albeit here shown in decadal‐to‐multidecadal and centennial variability. It should also be noted that the
correlations and regressions are larger in CENvar than DMDvar, which in part is related to bandpass filtering, but
has also been shown with atmosphere‐ocean Bjerknes compensation for both CENvar and DMDvar (Povea‐Pérez
et al., 2024).

3.3. Variability Across the CMIP6 Pre‐Industrial Control Simulations

The logical next question when comparing the modes of variability from IPSL, is whether or not the amplitude of
DMDvar andCENvarmodes of variability are dependent on the AMOCmean strength. We investigate this question
across CMIP6 models to identify if the same pattern exists across a multi‐model analysis. Analyzing 37 pre‐
industrial control simulations, we demonstrate that there is a significant relationship of AMOC strength with
the amplitude of DMDvar across the CMIP6 ensemble (Figure 4a). In the CMIP6 ensemble, the DMDvar

significantly increases by about 0.040 Sv per 1 Sv of the AMOC mean state (p‐value <0.01). This slope, with its
associated uncertainty at the 99% confidence interval, is larger in CMIP6 than in the IPSL model slope ofDMDvar

to AMOC strength (Figure 2a). This could indicate a model dependence of DMDvar sensitivity to AMOC strength
or reflect uncertainty within the model climate state. Furthermore, a non‐parametric permutation test
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(Good, 2000) with 1,000 repetitions results in a p‐value of less than 0.001, demonstrating the robustness of these
results.

In the CENvar of CMIP6 models (Figure 4b), there is no significant trend within the 37‐member ensemble.
Additionally, a 1000‐repetition permutation test further yields a p‐value of 0.972, supporting through a non‐
parametric approach that the slope is not robust and the CENvar is not dependent on AMOC mean strength.
This result is not surprising, as low frequency centennial signals of AMOC are not seen in all models. Strikingly,
the coupled models with a relatively large CENvar are those that use the low‐resolution ocean model component of
NEMO v3.4, like IPSL‐CM6A‐MR and IPSL‐CM6A‐LR, CNRM‐ESM2 and CNRM‐CM6‐1 (Waldman
et al., 2021), EC‐Earth3‐AerChem and EC‐Earth3 (Meccia et al., 2023; Mehling et al., 2023), and CMCC‐CM2‐
SR5 and CMCC‐ESM2. This mode has been described in previous NEMO‐based modeling studies, such as Jiang
et al. (2021), Waldman et al. (2021), Meccia et al. (2023), and Mehling et al. (2023), that discuss linking the
CENvar to a salinity signal originating from the Arctic and propagating into the western subpolar Atlantic. Yet, the
exact understanding of the mechanism at play in these models is still an open question in the literature. For
example, the GFDL‐CM4 and GFDL‐ESM4models do exhibit a centennial mode with its amplitude larger than in
other CMIP6 models (see Figures S5–S7 in Supporting Information S1), however it is relatively low when
weighted to the mean AMOC strength and thought to originate in the Southern Ocean rather than the Arctic
(Dunne et al., 2020).

Nevertheless, the focus of this article is not on determining whether the centennial mode is a robust feature or
understanding its origins. Instead, we demonstrate that a centennial low‐frequency mode does not consistently
scale linearly with mean AMOC strength across all CMIP6 models or within a subset of models with control
simulations longer than 900 years, using a predefined threshold of alpha = 0.01 (Figure 4 and Figure S7 in
Supporting Information S1). However, when comparing models grouped by their weighted amplitudes (CENvar)
relative to mean AMOC strength (Figure S7 in Supporting Information S1), the CENvar indicates linearity with the
AMOC mean strength in both groups, with low‐ and high‐weighted CENvar at the 95% confidence interval. This
suggests that further investigation is needed to explore the possibility that CENvar could scale linearly with mean
strength after outliers are removed. What remains robust across the CMIP6 models is the linearity between
DMDvar and mean AMOC strength.

Figure 4. Similar to Figure 2a, but for 37 CMIP6 pre‐industrial control simulations. (a) Amplitudes ofDMDvar and (b) CENvar plotted against the mean AMOC strength.
At the 99% confidence level, there is a significant relationship between DMDvar and the mean AMOC with CMIP6 models. Only models with at least 300 years of
available data are considered and the timeseries are detrended before the analysis. A similar plot but for models with at least 900 years‐long simulations is displayed in
Figure S7 in Supporting Information S1. Significance is shown both using a traditional linear regression and a 1,000 resample permutation test.
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4. Conclusions
In summary, using IPSL‐CM6 perturbation experiments we have demonstrated that (a) the decadal to multi-
decadal mode of AMOC variability (DMDvar, 15–65 years) is driven by temperature anomalies in the subpolar
North Atlantic. In contrast, the centennial mode (CENvar, 65 + yrs) is largely driven by salinity anomalies in the
western subpolar (i.e., Labrador and Irminger seas) (b) The intensity of both low frequency modes of variability
(15–65 years band and 65 years and longer) scales linearly with the North Atlantic climatology and mean AMOC
strength within a single model framework of IPSL‐CM6A‐LR (c) DMDvar amplitude also scales linearly with the
mean AMOC strength across the CMIP6 pre‐industrial control simulations.

The fact that mechanism and timescales of decadal to multi‐decadal variability in the IPSL‐CM6A‐LR are largely
controlled through the western subpolar North Atlantic is in agreement with the dense water formation rates
(Figure S8 in Supporting Information S1) from Ferster et al. (2021), demonstrating the role of surface heat fluxes
in forming increased waters between 27.8 and 28.0 kg m− ³. This mechanism could result from the IPSL‐CM6A‐
LR cold‐fresh bias, but the impact of the western subpolar density signal on these timescales agrees with previous
literature (Muir & Fedorov, 2015, 2017; Sévellec & Fedorov, 2013, 2015; Yeager & Danabasoglu, 2014), even
though there can be large differences in the amplitudes and timescales across CMIPmodels (Menary et al., 2020b;
Ortega et al., 2017).

The IPSL‐CM6A‐LR mechanism of AMOC centennial variability driven by salinity anomalies from the western
subpolar is supported through the anomalous dense water formations rates in densities larger than 28.1 kg m− 3

through the surface freshwater flux contribution (Figure S9 in Supporting Information S1) and shown in the
results of Jiang et al. (2021) using the same model and Mehling et al. (2023) in models with the NEMO‐ocean
component. Our results offer new insight into the mechanisms of low frequency AMOC variability and depen-
dence on the mean state within coupled climate models. Understanding the details of the connection between the
mean state and variability of AMOC across CMIP6 models is essential, particularly when trying to quantify the
role of AMOC on the transient response to anthropogenic forcings in CMIP6 simulations. Further work is required
to explore the North Atlantic mean state and origin of the buoyancy forcing across CMIP6 models, specifically
whether it is generated through atmospheric teleconnections, air‐sea ice interactions within the Arctic, or oceanic
transports.

In Kim et al. (2023), differences in sea ice extent within the subpolar North Atlantic in CMIP6models were shown
to result in differences of surface buoyancy fluxes, resulting in different AMOC mean states and low‐frequency
variability. Within the IPSL experiments of Ferster et al. (2021), the TIO warming (cooling) simulations resulted
in decreased (increased) subpolar North Atlantic sea ice and increased (decreased) dense water formation rates
through buoyancy driven surface fluxes, also demonstrating the importance of North Atlantic and Arctic sea ice
on the AMOC mean state and variability in a single model. Additionally, the results of Yeager et al. (2021), who
highlighted the importance of the Labrador Sea region in modeled AMOC variability, suggest that much longer
direct AMOC observations are needed before concluding the role of the Labrador Sea in multidecadal AMOC
variability in nature versus climate models.

We have demonstrated that decadal‐to‐multidecadal variability scales linearly with the AMOC mean strength in
single model experiments and across the CMIP6 pre‐industrial control ensemble. Hourdin et al. (2023) showed
that different configurations of the IPSL‐CM6A‐LR model can achieve similar mean states while exhibiting
different internal modes. This partially explains the r‐squared value of 0.4 (and higher in Figure S7 in Supporting
Information S1) across CMIP6 DMDvar. There is also inherent uncertainty related to the models' mean state bias
and mechanisms driving ocean overturning (i.e., Bellucci et al., 2022; Bellomo & Mehling, 2024; Reintges
et al., 2024; Zhao et al., 2024), demonstrated through these perturbation experiments. Future studies should
further analyze the thermal and haline components driving variability on multidecadal‐to‐centennial scales for
CMIP6. While the centennial mode's amplitude scales linearly with AMOC strength in our experiments, it does
not consistently do so across CMIP6 pre‐industrial experiments. This implies the need for longer control sim-
ulations to better understand internal variability in CMIP models (i.e., Povea‐Pérez et al., 2024). We hypothesize
that this is because different mechanisms can drive the (multi‐) centennial mode in different models and not fully
in the present models.
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Data Availability Statement
The data sets generated during the experiment are located on the TGCC machine Irene. Several data sets to
reproduce the results of the manuscript are published as Ferster, Mignot, et al., 2023c, 2023d (cooling experi-
ments and warming experiments respectively) and details to access the public threads of all the model output for
each of the experiments on the TGCC machine are found with the corresponding published data sets. The IPSL
and all of the CMIP6 pre‐industrial control data sets are publicly available and archived on the CMIP6 ESGF
servers (i.e., IPSL: https://esgf‐node.ipsl.upmc.fr/search/cmip6‐ipsl/). Additional CMIP6 output was obtained
through the Earth System Grid Federation (ESGF, 2024) team's python PyClient tool.
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