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A B S T R A C T

Precise risk stratification of rheumatic musculoskeletal diseases (RMDs) is crucial for ensuring patients get right 
referrals and treatments quickly. However, it is challenging due to the non-specific symptoms and the lack of the 
diagnostically definitive single biomarker. The real-world referral data present several challenges such as the free 
format texts and incomplete data challenges, which introduces further modeling complexity, and makes un
certainty quantification crucial for ensuring reliable predictions and outcomes. To solve these challenges, we 
developed a multi-stage multimodal fusion network with conformal prediction method that can accurately risk 
stratify RMDs at the point of referrals, quantify the uncertainty and flag unreliable predictions for physician’s 
interventions. The proposed models were trained and evaluated using referral data from 128 General Practices 
(GPs) in the UK, which include patients who visited and were referred by GPs with suspected inflammatory 
conditions in RMDs between February 2018 and January 2024. Our model achieved 0.73 accuracy, 0.79 AUC, 
and 0.75 G-Mean to differentiate inflammatory conditions (IC) and non-inflammatory conditions (NIC) using 
patients’ presenting condition description (PCD) and medical history (MH) data, and 0.90 accuracy, 0.92 AUC, 
and 0.89 G-Mean using patients’ PCD, MH and additional blood test data (BTD). Furthermore, conformal 
prediction-based method has been developed to evaluate prediction uncertainty and can further identify 75.71 % 
unreliable predictions for patients with PCD and MH data, and 66.67 % unreliable predictions for patients with 
additional BTD data, which could be given a second-round examination by GP/secondary care clinicians for 
patient safety. The findings of this study suggest that language models with multi-stage multimodal fusion and 
uncertainty evaluation can risk stratify RMDs accurately using data available at the point of referral in the real 
world. Therefore, it is possible to be used by GPs and clinicians to help patients get the right treatment faster, 
demonstrating practical potential to improve RMDs referrals in the real world.

1. Introduction

Rheumatic and musculoskeletal diseases (RMDs) constitute a major 
health problem in the general adult population due to their high prev
alence and their association with significant disability, days lost at work 
and mortality. RMDs are a common cause of long-term disability and 
over 20 million people in the UK (around a third of the population) [1,2] 
live with RMDs [3]. Approximately 1.71 billion people have RMD con
ditions worldwide [4]. RMD conditions are the leading contributor to 

disability and unemployment worldwide [5] and are the most common 
medical causes of long-term absence from work, accounting for more 
than half of all sickness [6–10].

Inflammatory conditions (IC, mainly but not exclusively inflamma
tory arthritis) and non-inflammatory conditions (NIC) are the two major 
subdivisions of RMDs, each with very different treatment and manage
ment pathways (e.g., disease-modifying drugs for inflammatory condi
tions e.g., rheumatoid arthritis; surgeries such as joint replacements for 
non-inflammatory conditions e.g., osteoarthritis). Accurate early 
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detection and differentiation of IC and NIC are critical for patients to be 
referred to the right specialists and receive the right treatment rapidly. 
However, early detection is challenging because IC and NIC often pre
sent with non-specific symptoms and there is currently no diagnostically 
definitive single biomarker to detect inflammatory arthritis [11].

Machine learning (ML) based risk stratification has already shown 
superior performance to support disease diagnosis without significant 
labor cost and enhanced accuracy [12,13], but evidence confirms there 
are significant gaps in the field for ML-based early detection [14]. 
Current ML research in RMD focuses on deep learning-based imaging 
analysis to support diagnosis of osteoarthritis and rheumatoid arthritis 
using CT, MRI, X ray and ultrasound data [15–19], while other studies to 
predict RMDs like rheumatoid arthritis using different clinical data [20], 
such as blood test results [21,22], and genetic data [23,24]. However, 
imaging examinations and specialized blood testing are usually con
ducted after referral to secondary care. These tests are not conducted 
frequently on the patient’s first visit to the primary care practitioner. 
Therefore, existing ML studies still rely on the data obtained through 
advanced testing and imaging and thus do not fit for early detection in 
practice when the symptoms first appear, and our study is the first of this 
kind to use multimodal data from the primary care practitioner to 
differentiate the early IC and NIC. Furthermore, real-world early 
symptom data for early detection is always unstructured text and in 
heterogeneous formats, such as the unstructured presenting conditions 
description in GP referral letters and semi-structured medical history in 
clinical information summary [25].

Although recent studies about large language models have shown 
promising performance in disease diagnosis by mimicking common 
clinical reasoning processes of physicians, they were only applicable 
with predesigned and structured symptom checkers [26] and 
question-and-answer datasets rather than real-world clinical data in 
heterogenous formats [27,28]. In addition, multi-modal data fusion, 
such as the attention-based feature fusion network, has proven to be an 
effective method in medical data analysis in terms of its promising 
capability to extract complementary information among various data 
modalities [29,30]. Attention-based fusion strategies demonstrate 
effectiveness primarily on complete datasets. Some multimodal machine 
learning models have been developed to detect some early RMDs. For 
example, a joint multi-modal learning method has been developed for 
the classification of the grade of early-stage knee osteoarthritis disease 
[31], an explainable multimodal learning framework has been proposed 
to enhance osteoporosis detection [32], and a rheumatoid arthritis 
knowledge guided system has been developed to score the RA activity 
from multimodal ultrasound images [33]. However, these studies are 
not suited for our research due to several limitations: (1) These research 
focus on the diagnosis at the secondary care hospitals instead of the 
primary care practitioners; (2) These studies require complete datasets 
for modeling, such as the comprehensive clinical and imaging data 
which are not available at the referral stage and (3) These studies do not 
quantify the uncertainty of the model predictions, and the contribution 
of various data modalities. Furthermore, in real-world applications, the 
incomplete data challenges significantly hinder the implementation of 
these methods. This limitation is particularly evident in the early diag
nosis of certain diseases like RMDs in our study, where a substantial 
proportion of patients present with incomplete data types such as blood 
test results meaning they do not have blood test results available during 
referrals.

In addition, for GPs and clinicians to use and trust the ML-based risk 
stratifications for RMD in real-world clinical practice, it is critical [34] to 
evaluate prediction uncertainty and detect unreliable predictions [35]. 
Real-world applications will inevitably expose the ML model to clinical 
data beyond the data upon which they were trained, either because it is 
unusual (e.g., a rare RMD case previously unseen for the model) or 
because it originates from an evolving patient population. The ability to 
evaluate uncertainty and detect unreliable predictions is key in ensuring 
patient safety of the ML model in real-world RMD referrals. However, 

there is limited research evaluating prediction uncertainty from un
structured data with different modalities, and evaluating the prediction 
uncertainty in these methods is challenging due to the complexity and 
heterogeneity of the data sources, as well as the interactions between 
modalities that can introduce additional uncertainty.

To address these challenges, we aimed to develop a language model 
and multimodal fusion-based method to differentiate IC and NIC pa
tients early using heterogenous referral data from primary care general 
practitioners. We further developed the conformal predictors to detect 
unreliable predictions by analyzing the uncertainty of the model’s pre
dictions. Our methodology will be used as a decision support system to 
show the likelihood of each patient having IC or NIC, with prediction 
reliability assessment to ensure patient safety and clinical utility [36]. If 
the system is successfully adopted in the real world, the ability to detect 
and differentiate IC and NIC early will enable more accurate referrals 
and patients can be correctly treated more quickly.

Our main contributions can be summarized as follows: 

• Language modelling for unstructured data in different modalities. 
Our research fills the gap of limited study in the early risk stratifi
cation of RMDs in primary care, and we propose a disease early 
detection model that encodes different textual modalities in primary 
care based on language models.

• Multimodal and multistage fusion to address data challenges in pri
mary care. We employ the attention based fusion method to enhance 
the latent representation of the multimodal textual data embedding 
by integrating existing language models. The attention-based 
methods can dynamically extract complementary information be
tween different feature representations, enabling the model to focus 
on the most relevant aspects of each modality. Furthermore, multi
stage fusion methods are used to incorporate incomplete data type in 
the multimodal fusion in real-world healthcare.

• Uncertainty evaluation of predictions from unstructured and multi
modal data. We employ the conformal prediction together with the 
proposed models to evaluate the prediction uncertainty and guar
antee the error rate is bounded by a pre-specified level. Our method 
will identify unreliable predictions that may pose risks or lead to 
incorrect clinical decisions, allowing clinicians to take corrective 
measures or flag them for further review. Our methods ensure pa
tient safety in implementing multimodal methods in the real world 
[35].

• Explaining predictions from multimodal data. We apply the SHapley 
Additive exPlanations (SHAP) [37] based explanations to quantify 
and explain contributions to predictions from multimodal data. This 
will enhance the transparency and interpretability of multimodal 
machine learning models. Specifically, our approach can identify 
critical words and key indicators in unstructured, semi-structured 
and structured referral data that contribute most to model’s 
predictions.

• To the best of our knowledge, our model is the first to detect RMD 
disease early using real-world referral data. Our method has been 
evaluated on a retrospective dataset that has been collected from 128 
GPs in the UK.

2. Literature review

2.1. Referral of rheumatic musculoskeletal diseases in National Health 
Service

There were an estimated 329 million appointments in primary care 
in 2022 in the UK [38] and RMDs accounts for more than 20 % of GP 
consultations [39], which means there are an estimated 65.8 million 
RMD-related GP appointments a year. Due to non-specific symptoms and 
a lack of biomarkers for detecting and differentiating IC and NIC in RMD 
[11], only 40 % of suspected early IC patients referred by GPs in 
2019/2020 are proved to be accurate [40]. Inaccurate referrals can lead 
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to longer times for patients to gain access to the right clinics, which often 
results in a loss of the window of opportunity for effective treatment. 
Patients often consult GP multiple times while awaiting their specialist 
review and treatment. It is estimated that one in three GP appointments 
are for patients waiting for hospital services [41]. This has increased GP 
workload significantly, e.g. there could be around 21.9 million RMD 
appointments that are unnecessary. It also affects recruitment and 
retention within the GP profession [42]. The risk stratification tool that 
detects and differentiates IC and NIC at the point of referrals will support 
GPs to refer patients accurately, reduce delays to treatment and reduce 
unnecessary repeating consultations.

2.2. Multimodal fusion machine learning in healthcare

Multimodal fusion is increasingly becoming a common technique in 
multimodal representation learning in healthcare [43], where data from 
various modalities are fused to enhance prediction performance [44]. 
The fusion process can happen at different stages of the modeling pro
cess, such as the early fusion, intermediate fusion, and late fusion [45]. 
Early fusion is easy to implement, and involves concatenating input 
modalities or features before any processing. Although this kind of 
methods are straightforward, these approaches may not be suitable for 
complex data modalities [43]. A more advanced technique, known as 
intermediate fusion (or joint fusion), can capture joint feature in
teractions like supplementary and complementary information from 
intermediate layers of networks between different data modalities [46]. 
However, these strategies require complete data from each modality 
which are often impossible in the real-world healthcare. Another alter
native is late fusion, where separate models are trained for each mo
dality, and the output probabilities are combined instead of combining 
the original data (early fusion) or learned feature representation (joint 
fusion). This method is simple and robust only when good marginal 
models could be learned from the specific modalities, but it suffers from 
learning the multimodal effects on data or feature level [47]. Our pro
posed multistage multimodal fusion methods can enhance adaptability 
and practical usability in real-world applications by modeling the 
complementary relations between different complete and incomplete 
data modalities.

2.3. Quantification of predictive uncertainty in healthcare

Machine learning has shown excellent performance in healthcare, 
leading to more accurate disease diagnoses [48]. However, the "black 
box" nature of most AI systems raises concerns particularly in fields like 
healthcare and medicine [49]. To mitigate these issues, explainable AI 
(XAI) has been introduced to enhance the transparency of machine 
learning models [49], for example, XAI has been used to enhance the 
transparency and interpretability in AI-driven lung disease diagnosis, 
which can bridge the gap between complex AI models and clinical set
tings [50]. Despite this, XAI falls short in providing a practical evalua
tion of the reliability of the models’ predictions [51,52]. Consequently, 
uncertainty quantification has been proposed to assess the confidence in 
predictions made by machine learning systems, ensuring their safety and 
reliability in real-world healthcare applications [53].

Predictive uncertainty is a commonly utilized technique while 
making predictions or estimates using a model [48], and can quantify 
the level of confidence or reliability in the model’s predictions for new 
or unseen data [48]. To quantify the prediction uncertainty of machine 
learning models, various methods have been proposed, such as Monte 
Carlo simulation and Bayesian inference [54,55]. However, these 
methods suffer from computational costs and complex modeling pro
cess. In this study, Conformal Predictions (CP) is chosen due to several 
advantages [35]: (1) Unlike Bayesian inference and Monte Carlo 
Dropout, which rely on specific model assumptions (e.g., prior distri
butions, model architecture) or training modifications, conformal pre
diction methods are assumption-free and can be applied post-hoc to any 

model, which enhances their versatility and ease of integration into 
existing workflows [56]; (2) Conformal predictions can provide valid 
uncertainty estimates with formal guarantees on prediction interval 
coverage, regardless of the underlying model, and adjustable confidence 
levels to reflect the clinical cost of erroneous predictions; (3) Conformal 
predictions are computationally efficient and lightweight, especially 
when applied to pre-trained models, compared with the computation
ally intensive and complex modeling features of the Bayesian inference 
and Monte Carlo Dropout; (4) The prediction intervals generated by 
conformal methods are straightforward to interpret, making them 
particularly valuable for real-world applications where decision-makers 
may not have expertise in probabilistic modeling, for example, 
conformal prediction is used for the image segmentation with predictive 
uncertainty borders [57]. To the best of our knowledge, no existing 
research has applied CP to language models and multimodal models. 
Thus, we are the first to incorporate CP into multi-stage multimodal 
machine learning models to evaluate predictive uncertainty based on 
unstructured text data, advancing the application of conformal predic
tion in healthcare research.

3. Methodology

3.1. Dataset preparation

The clinical referral data were retrospectively collected from 128 
GPs in the UK from February 2018 to January 2024. Patient’s referral 
data include presenting condition description (PCD), medical history 
(MH), and available blood test data (BTD). Specifically, the PCD in
cludes the patients’ symptoms, location, duration, intensity, and 
accompanying symptoms when they visit the general practitioners. MH 
is about patients’ previous clinical history, including medication, 
problems, allergies, consultation, and social contexts. Some patients 
who had blood tests completed may also have BTD data ready during 
referrals. A detailed description of the clinical referral data can be found 
in the Section S1 in Supplementary Material.

Our study population included 5007 patients (mean [SD] age, 62.1 
[17.6]), of which 1893 patients having non-inflammatory conditions 
(NIC) (mean [SD] age, 59.2 [17.4] years) and 3114 patients having in
flammatory conditions (IC) (mean [SD] age, 63.8 [17.5] years) 
(Table 1). Specifically, men and women represented 1642 (32.8 %) and 

Table 1 
Statistical characteristics of the datasets.

Subgroups IC (n, %) NIC (n, %) Total (n, %)

Age, mean (SD) 63.8 (17.5) 59.2 (17.4) 62.1 (17.6)
Gender
​ Male 1135 (36.4) 507 (26.8) 1642 (32.8)
​ Female 1940 (62.3) 1356 (71.6) 3296 (65.8)
​ Unknown 39 (1.3) 30 (1.6) 69 (1.4)
Race
​ Asian 134 (4.3) 73 (3.9) 207 (4.1)
​ Black 26 (0.8) 20 (1.1) 46 (0.9)
​ Mixed 7 (0.2) 3 (0.2) 10 (0.2)
​ White 2427 (77.9) 1441 (76.1) 3868 (77.3)
​ Other Ethnicity 52 (1.7) 50 (2.6) 102 (2.0)
​ Not Stated 359 (11.5) 205 (10.8) 564 (11.3)
​ Unknown 109 (3.5) 101 (5.3) 210 (4.2)
Index of Multiple Deprivation (IMD)
​ 1 53 (1.7) 24 (1.3) 77 (1.5)
​ 2 67 (2.2) 31 (1.6) 98 (2.0)
​ 3 178 (5.7) 120 (6.3) 298 (6.0)
​ 4 206 (6.6) 113 (6.0) 319 (6.4)
​ 5 173 (5.6) 99 (5.2) 272 (5.4)
​ 6 181 (5.8) 117 (6.2) 298 (6.0)
​ 7 344 (11.0) 174 (9.2) 518 (10.3)
​ 8 238 (7.6) 170 (9.0) 408 (8.1)
​ 9 491 (15.8) 313 (16.5) 804 (16.1)
​ 10 984 (31.6) 569 (30.1) 1553 (31.0)
​ Unknown 199 (6.4) 163 (8.6) 362 (7.2)
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3296 (65.8 %) of the patients, and 69 (1.4%) patients’ gender infor
mation were missing. The research population included 207 Asian pa
tients (4.1 %), 46 Black patients (0.9 %), 10 patients (0.2 %) with mixed 
ethnical backgrounds, 3868 White patients (77.3 %), 102 Other 
Ethnicity participants (2.0 %), 564 patients (11.3 %) that the ethnical 
background not stated, and 210 patients (4.2 %) with ethnicity infor
mation missing. Furthermore, the patients were from areas with indices 
of multiple deprivation (IMD) [58] including 77 (1.5 %), 98 (2.0 %), 298 
(6.0 %), 319 (6.4 %), 272 (5.4 %), 298 (6.0 %), 518 (10.3 %), 408 (8.1 
%), 804 (16.1 %), and 1553 participants (31.0 %) with IMD levels from 1 
to 10, and 362 participants (7.2 %) missing IMD information.

3.2. Model establishment

In the context of GP assessing and referring patients with RMD, pa
tients’ Presenting Condition Description (PCD) is normally generated 
during consultation with GP, Medical History (MH) is available from 
EPR, while Blood Test Data (BTD) will be ordered if necessary and is less 
frequently available during patients’ first visit to GP for RMD problems. 
BTD usually becomes available after patients visit their GP or are 
referred to a specialist. As shown in Fig. 1, the proposed machine 
learning framework consists of an attention-based multimodal feature 
representation fusion network, a BTD-based classification module, and a 
late fusion module to fuse predictions from preceding submodules. To 
enhance the adaptability of the proposed models to patients with diverse 

data modalities, a hierarchical fusion process is implemented and 
further detailed in Fig. S2 of Supplementary Material. This method 
can ensure robust and flexible predictions tailored to the availability of 
input data. In practice, for patients with only PCD and MH data, the 
attention-based fusion model directly provides risk stratification pre
dictions. However, for patients with additional BTD data, the GBM- 
based model is utilized, and its predictions are then fused with those 
of the attention-based model using a Bayesian approach.

The attention-based feature fusion network has been proposed as the 
multimodal fusion method to model the underlying relationships be
tween unstructured presenting condition description data and semi- 
structured medical history data. Specifically, the multimodal fusion 
network consists of two transformers-based language model encoder 
networks that serve as the feature extractors to extract feature repre
sentations from presenting condition description data and medical his
tory data, and an attention-based feature fusion network that effectively 
integrates feature information and their underlying relationships 
extracted from the two data types. A detailed description of the 
attention-based multimodal fusion is included in Section 3.2.2.

The BTD data based classification module is proposed to differentiate 
IC and NIC using patient’s blood test results data. In this study, the 
gradient boosting machine (GBM) model is utilized due to its capability 
in handling data with missing values, and thus no further data imputa
tion steps would be required. The LightGBM is chosen to implement this 
method because it provides a leaf-wise algorithm that can reduce loss 

Fig. 1. Framework of the proposed methods: (a) Overall architecture of the system; (b) Transformers-based multi-layers fusion network is the fundamental structure 
of the Presenting Condition Encoder and Medical History Encoder in (a); (c) Attention-based feature fusion network is the initial network structure of the cross 
attention-based feature fusion network in (a).
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and improve accuracy and support faster training speed as well as higher 
efficiency.

Most patients have PCD and MH data simultaneously during re
ferrals. Only a small portion of patients have BTD, PCD and MH all 
simultaneously. There is insufficient blood test data to train the 
attention-based fusion network with the corresponding presenting 
condition descriptions and medical history data simultaneously. 
Therefore, the ensemble learning-based late fusion module is proposed 
to fuse predictions from the attention-based fusion network submodule 
and the BTD data based classification submodule. Ensemble learning is a 
commonly used method to fuse predictions to improve the model’s ac
curacy and boost the generalizability of the model. In this study, a Naïve 
Bayes model was utilized to ensemble the predictions from the attention- 
based feature fusion network (based on language models using pre
senting conditions and medical history) and the GBM-based classifica
tion method (based on blood results). A comprehensive elaboration on 
the ensemble learning based fusion module can be found in the Section 
3.2.3.

3.2.1. Transformer-based language model networks
The transformer-based language model networks consist of two sub 

encoder networks, including a PCD encoder to extract feature repre
sentation for patients having PCD data from GP referral letters and a 
medical history encoder for patients having clinical information sum
mary (Fig. 1 (b)). These two encoder networks have the same 
transformer-based structures that are based on Bidirectional Encoder 
Representations from Transformers (BERT) [59]. It has been proven that 
different layers of the BERT model can extract features of the inputs from 
various levels [60]. Therefore, we dynamically fused outputs of multiple 
intermediate layers of BERT with learnable weights. Specifically, after 
the transformation, the dense tensor representations HPCD and HMH 
would be extracted by PCD encoder and MH encoder, which will be fed 
into the attention-based fusion network to further extract the multi
modal features between different data modalities.

3.2.2. Attention-based feature representation fusion network
The proposed Attention-Based Feature Representation Fusion 

Network (AFRFN) integrates diverse data modalities, such as PCD and 
MH modalities, into a unified representation to enhance predictive 
performance. By leveraging an attention mechanism, the network 
dynamically extracts features from different modalities, ensuring that 
the most informative features could be captured, such as complementary 
and supplementary features across various modalities. Specifically, 
through independently encoding separate modality using language 
model-based encoders, the textual input data is transformed into high- 
dimensional feature vectors. These feature vectors are then fed into 
the subsequent attention-based fusion layers, which produce the final 
representation vector by fusing features extracted from the different 
language model encoders.

As shown in Fig. 1, the attention layers calculate the attention values 
of the PCD representation HPCD over the MH representation HMH, based 
on the Eqs. (1) and (2). After the attention transformation, we will get 
the attention tensors AttnPCD, MH based on PCD and MH representation 
outputted from the PCD encoder and MH encoder as described in the 
above section. Notably, a multi-heads attention mechanism will be 
applied into the attention calculation. 

HeadM(Q,K,V) = Concat(a1, a2,…, ah)WO

ai = Attention
(
QWQ

i ,KWK
i ,VWV

i
) (1) 

where HeadM(Q,K,V) is the multi-heads attention tensor, ai is the 
attention tensor of i-th head, which is calculated by Eq. (2).

The attention mechanism is detailed in study [61], and the compu
tation process is described in Eq. (2), which calculates the weighted 
summation of values V on the basis of similarity between keys K and 
queries Q. Distinctively, in the process, HMH is employed as the query, 

and HPCD as the key and value to model the triplet (HMH, HPCD, HPCD), 
while in self-attention, the same tensor is employed as the query, key, 
and value, to model the tensor triplet. 

Attention(Q,K,V) = Softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (2) 

where Q, K, and V are query tensor, key tensor, and value tensor, 
respectively, and dk = dmodel/h, where h is the heads of the attention 
layers.

Following the multi-modal attention feature fusion network, a mul
tiple layer feed forward network is applied to the outputs of the attention 
layers AttnPCD, MH to further extract features. 

HFusion = MFF
(
AttnPCD, MH

)
(3) 

where AttnPCD, MH is attention tensor of the final hidden layer of 
attention-based feature fusion network, MFF( ∗ ) represents the multi
layer feed-forward network and HFusion is the final output of the network. 
It is worth noting that different layers have been introduced into the 
network, including Norm Layer, Residual Connection, Max and Mean 
Pooling Layers.

At the end of the multimodal attention-based model, a linear layer is 
applied to get the final classification. The calculation process is 
described in Eq. (4). 

output = Linear(HFusion) (4) 

where HFusion is the output tensor of multimodal fusion network, and 
Linear( ∗ ) represents the final linear classification layer.

3.2.3. Ensemble learning method
Ensemble learning is the commonly used methods to improve the 

model’s accuracy and robustness, and shows great potential in boosting 
the generalization capabilities of the model. Traditional ensemble 
learning methods, such as bagging, boosting, and stacking [62,63], aim 
at combining the predictions of different single classifiers to get a better 
performance compared with the single classifiers. In our study, a Naïve 
Bayes-based ensemble learning method has been developed to fuse 
probabilistic predictions of preceding models for patients who have 
PCD, MH, and BTD simultaneously, as shown in Fig. 1.

3.3. Detecting unreliable RMD risk stratifications using conformal 
prediction

To ensure the predictions are robust and GPs or clinicians can un
derstand the uncertainty associated with the point prediction of RMD 
risk stratification, especially if any individual patient attributes are out 
of training dataset distribution. We used a conformal prediction [64] 
based method to generate a prediction set of RMD risk stratification (e.g. 
either IC or NIC) with a predefined confidence level [35]. If the pre
diction does not reach the predefined confidence level, an empty pre
diction can be made, or, if the prediction set associated with an RMD risk 
point prediction (e.g., IC or NIC) is too large for the prediction to be 
informative, a multiple prediction can be made. The RMD risk point 
prediction with corresponding multiple or empty conformal prediction 
sets can be flagged for human intervention. The conformal predictor is 
used with the RMD risk stratification model to detect unreliable RMD 
risk predictions and guarantee the error rate is bounded by a 
pre-specified level [65]. A detailed description of the conformal 
prediction-based method to detect unreliable RMD risk prediction is 
described below.

For any given confidence level, conformal predictor can adjust any 
classifier’s point predictions to predictive sets. The computing process of 
the conformal predictor includes a calibration step (Algorithm 1) and an 
inference step (Algorithm 2). The first step is to calculate the q̂ value as 
described in Algorithm 1 using the calibration set, and the second step is 
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to infer the prediction set for each instance in the test set as shown in 
Algorithm 2.

Conformal prediction is a mathematical framework that can be used 
together with any machine learning system or prediction model to 
guarantee the error rate is bounded by a pre-specified level [65], and the 
conformal coverage could be guaranteed by Theorem 1.

Theorem 1. Let 
(
XC,YC) and 

(
XT,YT) be independent and identically 

distributed (i.i.d.), and define q̂ as in step 3 of Algorithm 1 and 
(
XT,YT)

as in Algorithm 2. Then, the following formula holds: 

P
(
YT ∈ C

(
XT)) ≥ 1 − α 

Where α is the pre-specified error rate, C(X) is an uncertainty set 
function, which maps a feature vector X ∈ Rd to a subset of {1,2,…,K}, K 
is the total number of labels, and a detailed statement of this theorem 
could be found in [56].

Unlike the single predictive results (point prediction, e.g., IC or NIC) 
made by the machine learning model, conformal predictor will output a 
prediction set with a pre-defined confidence level rather than a single 
prediction point by the model, which can be used to measure the un
certainty of the model’s prediction. For classification problems, this 
prediction region corresponds to a set of labels, a multilabel prediction. 
Based on [35], four kinds of prediction sets are defined in this study, 
including multiple, single, error and empty predictions, which are 
defined in Table S1 in Supplementary Material. To explain the defi
nitions of various prediction sets, we clarify these concepts based on a 
real label of IC, which makes the definitions clearer. If the prediction 
does not reach this confidence level, an empty prediction can be made. If 
the prediction region associated with a point prediction is too large for 
the prediction to be informative, a multiple prediction can be made. The 
corresponding empty and multiple prediction can be flagged for human 
intervention. The conformal predictor can thus function as a quality 
control system for ensuring that only reliable predictions are made.

3.4. Quantifying multimodal contributions

Due to the inherent black-box nature of most deep learning-based 
models, its lack of transparency and interpretability poses challenges 
in providing clear explanations to physicians, impeding the practical 
integration of these models in real-world clinical decision support sys
tems [66]. To address these concerns, eXplainable AI has been exten
sively explored within the context of unimodal machine learning 

methods. However, multimodal eXplainable AI (MXAI) remains rela
tively underexplored due to several challenges [67]: (1) quantifying the 
contributions of individual modalities to identify the most significant 
modality on the model’s overall predictions; (2) identifying the most 
salient features within each modality from the multimodal level to un
cover the potential complementary or supplementary relationships 
among various modalities; (3) detecting causal relationships in the 
model’s input-output data to facilitate the generation of explanations 
that are more intuitive and comprehensible for human users.

Apparently, a key advantage of MXAI, compare with unimodal XAI, 
is to support explanations using multiple modalities that are comple
mentary and cover more aspects of explainability [67]. Furthermore, 
XMAI can help clinicians trace back disease predictions. This traceability 
not only builds trust but also supports transparent early detection rec
ommendations [68]. Enhancing the interpretability of these models is 
particularly important in high-stakes applications like healthcare. 
Therefore, MXAI stands out as a challenging yet promising research area 
that attracted researchers’ extensive attention.

To address above challenges, this study employs multimodal Shapley 
values (MM-SHAP) [69] to explain the predictions made by the pro
posed multi-stage multimodal fusion network. MM-SHAP, formally 
defined in Eq. (5), provides a systematic approach to quantify the 
contribution of each data modality to the model’s final predictions, 
which are critical for improving transparency of black-box models, 
particularly in high-stakes applications where understanding the 
decision-making process is essential for real-world deployment. 

MM − SHAPi =

∑ni
j=1

⃒
⃒
⃒Φj

i

⃒
⃒
⃒

∑I
i=1

∑ni
j=1

⃒
⃒
⃒Φj

i

⃒
⃒
⃒

(5) 

Here, Φj
i represents the Shapley value associated with the input entry j 

within the given input modality i, which follows formula Eq. (6), and ni 
is the input length of modality i. 

Φj
i =

∑

S⊆M\{Mj
i}

val
(

S ∪
{

Mj
i

})
− val(S)

γ
(6) 

Where, γ =
|M|!

|S|!(|M|− |S|− 1)! is the normalizing factor that accounts for all 
possible combinations of choosing subset S. The model’s input sequence, 
denoted as M =

{
MJ

I
}
, consists of |M| =

∑I
i=1ni input entries, where i 

and j index the input modality, and input entry corresponding to the 
specific data modality.

In this study, we used MM-SHAP to interpret model’s predictions 
made by the proposed multi-stage multimodal fusion network. This 
approach provides insights into the model’s decision-making process, 
and presents clinicians with interpretable prediction results by high
lighting key words and variables. Furthermore, this method can identify 
primary data modalities that contribute most to the predictions.

3.5. Model training and performance evaluation

A comprehensive description about how to train the proposed 
models is elaborated in Section S3 of the Supplementary Material. 
Specifically, the attention-based multimodal feature representation 
fusion network designed for patients with PCD and MH data is trained 
following the tactics in the Section S3.1, and the GBM-based classifier 
proposed for patients with only BTD is trained as described in Section 
S3.2. The Bayesian model, developed for patients with complete data, is 
trained using the strategies detailed in Section S3.3. Moreover, the 
training procedures for the proposed conformal predictors are elabo
rated in Section S3.4.

Additionally, the performance of the proposed models was evaluated 
by various evaluation measures, including the sensitivity, specificity, 
accuracy, AUC, ROC curve, and G-Mean. Furthermore, two metrics were 

Algorithm 1 
Conformal prediction calibration step.

Inputs: Pre-defined error rate α, and calibration set 
(
XC ,YC)

1: procedure Conformal Calibration
(
α,XC ,YC)

2: S =
{

si = 1 − f̂
(
XC

i
)

YC
i
, i ∈ {1,…, n}

}
§ f̂ is any classifier

3: q̂←Q(S, q), q←
⌈(n + 1) ∗ (1 − α)⌉

n 
§ The quantile function Q

4: return q̂
Outputs: q̂

Algorithm 2 
Conformal prediction inference step.

Inputs: q̂ calculated from calibration step, and test set 
(
XT,YT)

1: procedure Conformal Predictor
(
q̂,XT,YT)

2: ​ C←{ }

3: ​ for i ∈ {1,…,m} do
4: ​ C

(
XT

i
)
=

{
y : f̂

(
XT

i
)

y ≥ 1 − q̂, y ∈ {1,…,K}
}
§ classifier f̂

5: ​ C←C
(
XT

i
)

6: ​ return C
Outputs: The prediction set C with 1 − α coverage
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proposed to measure the performance of the conformal predictor, 
including the empirical coverage and error flag rate, which are formu
lated as Eq. (7). Simply, CEmpirical represents the percentage of single and 
multiple predictions generated by conformal predictor over whole 
testing set given a pre-defined confidence level (or error rate); RFlag 

denotes the proportion of multiple and empty prediction sets flagged by 
the conformal predictor over model’s incorrect point predictions. 
Generally, an optimal conformal predictor features higher empirical 
coverage, and can be used to identify unreliable predictions where 
machine learning model made wrong predictions. However, the multi
ple predictions would increase given a higher confidence level, subse
quently leading to an increase in uncertain predictions. Therefore, in 
practical applications, confidence level should be optimized to balance 
the error flag rate and empirical coverage, and then clinician’s inter
vention could be introduced to prioritize the review of these patients. 

CEmpirical =
Npcp={Single}∪{Multiple}

N

RFlag =
Npcp={Multiple}∪{Empty}

lReal∕=pModel

NlReal∕=pModel

(7) 

where N is the size of test set, lReal, pModel, and pcp are patient’s real 
diagnosis, machine learning model’s predictions, and the prediction sets 
of the conformal predictor, Npcp={Single}∪{Multiple} is the total patients that 
the conformal predictor assigns single and multiple prediction set, 
Npcp={Multiple}∪{Empty}

lReal∕=pModel 
is the total patients that machine learning model 

makes wrong prediction but the conformal predictor flags as multiple 
prediction set, and NlReal∕=pModel is the total patients where machine 
learning model makes wrong predictions.

4. Experimental results

4.1. Data preprocessing

The inputs of the proposed model (Fig. 1) involve three data mo
dalities, including the unstructured PCD input, semi-structured MH 
input, and structured BTD input. Specifically, the inputs of the 
transformer-based language model networks are unstructured PCD and 
semi-structured MH data. For the unstructured PCD data, the pre
processed texts were truncated (longer than 512 tokens) or padded 
(shorter than 512 tokens) to a fixed length of 512 tokens before feeding 
to the language models because the majority of data’s token lengths are 
below this threshold, which can ensure that critical clinical information 
is preserved for most patients. Slightly different from the PCD data, the 
MH data involves two steps before feeding to the language models. The 
first step is to rank different records by using timestamps, and then 
concatenate main contents in different sections into one text (e.g., drug 
in Medication History; problem in Problems History; description in Al
lergies History and Social Context History), and the second step is the 
same as the PCD data as described precedingly. For the BTD input, the 
preprocessed data was directly fed to the GBM model with 29 features. 
The detailed data preprocessing methods are provided in Section S2 of 
Supplementary Material.

4.2. Comparison of different baseline models

The performance of the proposed Attention-based Feature Repre
sentation Fusion Network based on various pre-trained BERT language 
models has been compared against a range of baseline models, such as 
RoBERTa, Llama 3.1–8B, Llama 3.1–70B, Qwen 2.5–7B, Qwen 2.5–72B. 
As shown in Table 2, although the baseline large language models 
(Llama-3.1–8B, Llama-3.1–70B, Qwen2.5–72B) achieved the sensitivity 
of 0.97, they consistently demonstrate very low specificity and low G- 
Mean values meaning not acceptable in practice. Notably, our method 
based on the Bio-ClinicalBERT model achieved the best G-Mean of 0.75 

compared with other language models. This suggests that using Bio- 
ClinicalBERT and Attention-based Feature Representation Fusion 
Network can achieve better performance, and our method is more 
suitable for practical clinical applications.

Additionally, Table 3 demonstrates a detailed comparison of 
different machine learning models for patients with BTD data. In the 
model training process, missing values were imputed using mean values, 
and all features were normalized using a standard scaler. Among the 
evaluated models, the gradient boosting machine exhibited superior 
overall performance, achieving the highest metrics across most evalua
tion categories. Notably, the GBM without data imputation and scaling 
achieved a slightly better G-Mean compared to GBM with data impu
tation and scaling, which suggests the robustness of GBM models 
compared to other machine learning approaches.

Furthermore, Table 4 provides a comprehensive comparison of 
various fusion methods for patients with complete PCD, MH, and BTD 
data. Notably, the Support Vector Machine model achieves the highest 
AUC of 0.92 and specificity of 0.98 in identifying NIC patients, its 
sensitivity remains comparatively low for detecting IC patients. The 
Gaussian Naïve Bayesian model demonstrates the best overall perfor
mance with the highest G-Mean 0.89, AUC 0.92, accuracy 0.90, speci
ficity 0.91, and sensitivity 0.88, making it the most balanced method in 
terms of differentiating NIC and IC patients.

4.3. Comparison based on data availability during referrals

Furthermore, we compared the overall performance between lan
guage model and attention-based fusion network modeling on patients 

Table 2 
Comparison of the proposed attention-based fusion model with various baseline 
language models for patients having PCD and MH data.

Models Specificity Sensitivity Accuracy AUC G- 
Mean

RoBERTa 0.78 0.56 0.71 0.76 0.66
Llama-3.1–8B 0.22 0.97 0.46 - 0.47
Llama-3.1–70B 0.16 0.97 0.42 - 0.39
Qwen2.5–7B 0.24 0.94 0.47 - 0.48
Qwen2.5–72B 0.24 0.97 0.47 - 0.48
AFRFN-BERT-Base 0.79 0.61 0.73 0.74 0.69
AFRFN-BioBERT 0.73 0.66 0.70 0.77 0.69
AFRFN-ClinicalBERT 0.64 0.50 0.60 0.61 0.57
AFRFN-Bio- 

ClinicalBERT
0.68 0.83 0.73 0.79 0.75

Note: AFRFN (Attention-based Feature Representation Fusion Network) is 
trained using different pre-trained language models, including BERT-Base 
(AFRFN-BERT-Base), BioBERT (AFRFN-BioBERT), ClinicalBERT (AFRFN-Clin
icalBERT), Bio-ClinicalBERT (AFRFN-Bio-ClinicalBERT).

Table 3 
Comparison of different machine learning methods for patients with BTD data.

Models Specificity Sensitivity Accuracy AUC G- 
Mean

Logistic Regression 0.70 0.53 0.66 0.63 0.61
Support Vector Machine 0.60 0.65 0.61 0.62 0.62
Random Forest 0.71 0.55 0.67 0.73 0.62
Gaussian Naïve 

Bayesian
0.69 0.56 0.66 0.67 0.62

Decision Tree 0.66 0.58 0.64 0.71 0.62
Linear Discriminant 

Analysis
0.72 0.45 0.65 0.62 0.57

Quadratic Discriminant 
Analysis

0.62 0.58 0.61 0.63 0.60

Gradient Booting 
Machine (with data 
imputation)

0.75 0.69 0.71 0.78 0.72

Gradient Booting 
Machine (without 
data imputation)

0.69 0.76 0.71 0.78 0.73
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having both PCD and MH data, and Naïve Bayes-based ensemble 
modeling on patients having PCD, MH, and BTD data simultaneously 
(ROC in Fig. 2). As shown in Table 5, the proposed attention-based 
fusion network for patients having PCD and MH data can achieve the 
specificity, sensitivity, accuracy, AUC, and G-Mean values of 0.68, 0.83, 
0.73, 0.79, and 0.75, in identifying NIC and IC patients. Furthermore, 
our experimental results indicate improved performance by further 
including the BTD data in modeling an ensemble method, achieving the 
specificity, sensitivity, accuracy, AUC, and G-Mean values of 0.91, 0.88, 
0.90, 0.92, and 0.89.

4.4. Reducing RMD risk stratification errors by detecting unreliable 
predictions

The conformal predictor has been used to identify uncertain pre
dictions of the proposed model. Table 6 (Table S4 in Supplementary 
Material) showed the comparison results between prediction sets of the 
conformal predictor with 95 % confidence and point predictions of the 
machine learning based RMD risk stratification model. The conformal 
predictor has made 23.38 % predictions as single predictions (IC or NIC) 
correctly, 7.36 % predictions as error single predictions, and 69.26 % 
predictions as multiple predictions, indicating that the predictions are 
uncertain, and the model cannot distinguish between several possible 
class labels at the pre-defined confidence. Out of the 70 false predictions 
(30.3 % of all predictions) made by the standalone machine learning risk 
stratification model, 53 of them (75.71 %) (Table S5 in Supplemental 
Material) have been flagged by the conformal predictor as multiple 

predictions, meaning those predictions are of high uncertainty and 
needs clinicians to have a second review.

4.5. Enhancing model interpretability by quantifying multimodal 
contributions

Fig. 3 illustrates the SHAP explanations made by the proposed 
multistage multimodal machine learning model for a real patient with 
the inflammatory condition. The model accurately predicts the patient’s 
early inflammatory condition, and MM-SHAP analysis reveals that PCD, 
MH, and BTD inputs separately contribute 25.7 %, 51 %, and 23.3 % to 
the patient-level prediction. This indicates that MH data plays a key role 
in influencing the model’s prediction compared to the PCD and BTD 
modalities for this patient.

Additionally, the SHAP analysis identifies key contributing features 
across each data modality. In the PCD data, terms such as painful swollen 
foot left, colchicine, and a trial of prednisolone are highlighted as positive 
contributors. Similarly, in the MH data, keywords including Co-codamol, 
Flucloxacillin, Prednisolone, Colchicine, Omeprazole, and Simvastatin are 
identified as positive contributors, whereas Ex-smoker is highlighted as a 
negative contributor. For the BTD data, blood indicators such as Eosin
ophil count, Haemoglobin, and Platelet count are identified as positive 
contributors, while rheumatoid factor is noted as a negative contributor. 

Table 4 
Comparison of different fusion methods for patients with complete data.

Models Specificity Sensitivity Accuracy AUC G- 
Mean

Decision Tree 0.81 0.53 0.74 0.67 0.66
Gradient Booting 

Machine
0.83 0.53 0.76 0.85 0.66

Support Vector 
Machine

0.98 0.47 0.86 0.92 0.68

Random Forest 0.94 0.41 0.81 0.85 0.62
Linear Discriminant 

Analysis
0.91 0.65 0.84 0.92 0.77

Gaussian Naïve 
Bayesian

0.91 0.88 0.90 0.92 0.89

Fig. 2. ROC curve of the proposed models, which visualize the ROC curves of the proposed models using different data types, including patients separately having 
PCD and MH data (language model and attention-based fusion model), BTD data (GBM model), as well as PCD, MH, and BTD data (ensemble model).

Table 5 
Performance of RMD risk stratification model with different types of data.

Models Data 
types

Specificity Sensitivity Accuracy AUC G- 
Mean

AFRFN 
Model

PCD, 
MH

0.68 0.83 0.73 0.79 0.75

GBM- 
based 
Model

BTD 0.69 0.76 0.71 0.78 0.73

Ensemble 
Model

PCD, 
MH, 
BTD

0.91 0.88 0.90 0.92 0.89

Note: This table reports the performance of the proposed models using different 
data types during referral. Abbreviations are: Presenting Condition Description 
(PCD), Medical History (MH), Blood Test Data (BTD). Attention-based Feature 
Representation Fusion Network (AFRFN) is developed for patients with PCD and 
MH data, GBM-based model is developed for patients with BTD data, and the 
ensemble model is for patients with PCD, MH, and BTD data.
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These findings provide potentially valuable insights into the model’s 
underlying decision-making processes. By uncovering how the diverse 
data sources contribute to its predictions, the analysis can help improve 
the model’s interpretability and guide clinicians toward more informed 
and accurate diagnoses. This also sheds light on the further improve
ment of explainability methods to ensure its predictions align more 
closely with clinical expertise and reasoning.

5. Risk stratification decision support in real-world RMD 
referral workflow

Fig. 4 illustrates how our model supports RMD referral processes in 
the real-world through risk stratification decision support. When a pa
tient sees and consults a GP, the GP will type the presenting condition of 
the patient for the current visit into the system. The decision support 
system will automatically process the presenting condition, retrieve 
medical history and available blood test results data from Electronic 
Patient Record. These data are subsequently fed into the proposed 
models to generate three key decision support information: 1) RMD risk 
stratification: risk of having IC and NIC; 2) key risk factors contributed to 
the RMD risk prediction; 3) level of uncertainty of the predicted RMD 
risk. Those information will be presented in a way that end users such as 
GPs and secondary care clinicians can understand easily. Take the pa
tient mentioned in Section 4.5 as an example, based on this patient’s 
PCD, MH and BTD data, our model predicts the patient with a 51 % 
probability of having IC and have analyzed the key contributing factors 
and uncertain level. As shown in Fig. 4, the decision support will also 
provide a breakdown of contributions of different data modalities to the 
prediction, attributing 25.7 %, 51 %, and 23.3 % of PCD, MH, and BTD 
modalities respectively in this example. Furthermore, the decision sup
port will highlight key words in the PCD and MH data that significantly 
contribute to the risk prediction, such as the painful swollen foot left, 
colchicine, and a trial of prednisolone from PCD data, and Co-codamol, 
Flucloxacillin, Prednisolone, Colchicine, Omeprazole, and Simvastatin from 

MH data. Simultaneously, it ranks blood test results from high to low by 
their relative importance to the predicted risk, such as the Eosinophil 
count, Haemoglobin, and Platelet count. Additionally, the decision support 
will output the level of uncertainty of the prediction given the confi
dence level. In this example, the uncertainty of patient of having IC is 
low.

Based on all the decision support information of RMD risk stratifi
cation, multimodal explanations, and uncertainty analysis, GP will make 
the decision to refer the patient. If the patient is likely to have IC based 
on all the information and the decision support, then the GP will refer 
the patient to rheumatology specialists at the secondary hospital. If the 
patient is likely to have NIC based on all the information, then the GP 
will refer the patient to physiotherapy or orthopaedics specialists.

If the uncertainty level is high for the RMD risk stratification, the 
patient will be flagged for GP for a second review or suggest seeking 
Advice and Guidance [36] from the specialist. This can further enhance 
the safety of the decision support by mitigating false predictions by the 
model. For example, if the machine learning model incorrectly suggests 
a patient with non-inflammatory condition. However, conformal pre
diction identifies the patient belonging to both non-inflammatory and 
inflammatory condition categories, which means the RMD risk stratifi
cation prediction is uncertain and unreliable and thus needs a second 
review with more cautious assessment.

6. Conclusion and discussion

6.1. Strength

In this study, we developed machine learning models to risk stratify 
RMD diseases by identifying and differentiating inflammatory condi
tions and non-inflammatory conditions using data available during re
ferrals. Our method can accommodate patients with different data types 
during referrals including unstructured presenting condition descrip
tion, semi-structured medical history, and structured blood test results. 
With the presenting conditions and medical history information which 
are normally available when a patient visits a GP, the model alone can 
identify and differentiate IC and NIC with 0.68 specificity, 0.83 sensi
tivity, and 0.73 accuracy, which is significantly higher than GP [70]. If 
the patients have blood test results available together with PCD and MH, 
our model can achieve 0.91 specificity, 0.88 sensitivity, and 0.90 ac
curacy. Our models are developed and validated using data from 128 GP 
practices. We also experimented using different existing pre-trained 
language models as feature extractors in developing the risk stratifica
tion model. Experimental results illustrated that the proposed 
attention-based feature fusion model achieved better performance when 
using Bio-ClinicalBERT base model, as shown in Table 2.

Unreliable predictions can occur when a machine learning model is 
presented with data it has not been exposed to during training. We 
demonstrate the use of conformal prediction to detect unreliable pre
dictions to ensure robust prediction and patient safety when imple
menting the machine learning model in real-world referrals. For 
machine learning predictions with patients’ presenting conditions and 
medical history, 75.71 % of false predictions can be flagged by the 
conformal predictor as unreliable predictions, which can potentially 
further reduce the total false prediction rate to 7.36 % (Table S5 in 
Supplementary Material). For machine learning predictions with pa
tients’ presenting conditions, medical history, and blood test results, 
66.67 % false predictions have been flagged, potentially reducing the 
total false prediction rate to 5.71 % (Table 7 and Table S7 in Supple
mentary Material). The predictions being flagged as unreliable ones 
can be further assessed by human clinicians. This means combining the 
point prediction from the machine learning risk stratification model, 
with conformal prediction sets, and human assessment of unreliable 
cases can improve the accuracy of identifying IC and NIC of RMD pa
tients. For example, assuming unreliable predictions being flagged can 
be corrected by humans, a combination of our models (machine learning 

Table 6 
Result of prediction regions of the conformal predictor and point predictions of 
the machine learning risk stratification model for patients having PCD and MH 
data.

Subgroups NIC IC All

Conformal prediction regions (Confidence 95 %)
Error, n (%) 15 (8.62 %) 2 (3.51 %) 17 (7.36 %)
Empty, n (%) 0 (0) 0 (0) 0 (0)
Single predictions, n (%) 30 (17.24 

%)
24 (42.11 
%)

54 (23.38 
%)

Multiple predictions, n (%) 129 (74.14 
%)

31 (54.39 
%)

160 (69.26 
%)

Machine learning point predictions
False predictions, n (%) 62 (35.63 

%)
8 (14.04 
%)

70 (30.3 %)

True predictions, n (%) 112 (64.37 
%)

49 (85.96 
%)

161 (69.7 
%)

Machine learning point prediction þ conformal prediction regions
False predictions flagged by multiple 

predictions, n ( %)
47 (75.81 
%)

6 (75 %) 53 (75.71 
%)

Note: The early risk stratification performance of the RMDs is presented in both 
prediction regions by conformal predictor and point predictions by machine 
learning model. The results are reported at a confidence level of 95 %. Labels 
(NIC and IC) are included in the prediction region if their confidence is higher 
than a pre-defined confidence (95 %). The error prediction represents the 
portion of true labels not included in the prediction region. A multiple prediction 
indicates that the prediction is uncertain, and the model cannot distinguish 
between several possible class labels at the pre-defined confidence. An empty 
prediction is where the model could not assign any label, typically meaning that 
the example is very different from the data the model was trained on. False 
predictions flagged by multiple predictions are the percentage of false pre
dictions made by the machine learning model and simultaneously with multiple 
prediction regions made by the conformal predictor.
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and conformal predictor) and human assessment can achieve 0.91 
specificity and sensitivity 0.96 using only presenting condition 
description and medical history.

Our models can be deployed in the hospital and used as decision 
support systems for doctors (clinicians and GP) to detect and differen
tiate patients with IC or NIC so that patients can receive the right 
treatment faster. With the capability to analyze symptoms and medical 
history in free text, our model can also be used by patients directly 
describing the conditions themselves so that they can be advised to visit 
the right specialist well in advance to receive the right treatment.

6.2. Limitations

Our existing method involves manually processing raw referral data 
from PDF/Word by extracting presenting condition and medical history 
information from raw referral letters into a machine-readable format so 
that the relevant information can be fed into our model for training and 
testing. However, in the real-world application, real-time decision sup
port enabled by our model is needed for GPs and clinicians during 

referrals. This means an automatic data preprocessing method to extract 
relevant presenting condition and medical history information from 
free-form referral letters to model inputs accurately is needed, which 
will be developed in our future work for real-world implementation.

Although referral data from 128 GP practices were used in model 
development and validation providing unique external validation op
portunities, there are still limitations to model generalizability associ
ated with inherent bias in the healthcare system. The data is collected 
from patients who visited GPs and we may miss data for patients who 
have similar problems but do not have access to GPs. In the future, more 
data from more patients and wider regions will be collected to further 
improve the generalizability of the model. To this end, we will be 
collaborating with more GPs from various regions in the UK so that our 
method can be further optimized and validated with large scale datasets 
from broader populations. Furthermore, we will also conduct prospec
tive trials to evaluate the effectiveness and safety of our method in the 
real world.

Additionally, further work will assess the fairness of our model 
among patient subgroups and compare potential selection bias between 

Fig. 3. Measurement of multimodal contributions by using MM-SHAP. (a) SHAP explanation of PCD input; (b) SHAP explanation of MH input; (c) SHAP explanation 
of BTD input.

B. Wang et al.                                                                                                                                                                                                                                   Information Fusion 120 (2025) 103068 

10 



human and our model. Bias correction methods will be developed in 
future work to mitigate any potential bias of the model for real-world 
application [71,72].

6.3. Conclusions

To our knowledge, there are no risk stratification methods to 
improve referrals for rheumatic and musculoskeletal diseases. In this 
retrospective study, a language model and conformal prediction-based 
method have been developed to detect and differentiate inflammatory 
conditions and non-inflammatory conditions using data routinely 
available during referrals in primary care. The models were based on 
routinely available referral data, making them ready for wider valida
tion and amendable to detect other diseases during referrals. We will 
implement our model in the electronic health record system and referral 
system to inform about individual diseases and aid referral triage deci
sion-making.
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