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Abstract

Data assimilation is a mathematical technique that uses observations to

improve model predictions through consideration of their respective uncer-

tainties. Observation error due to unresolved scales occurs when there is a dif-

ference in scales observed and modeled. To obtain an optimal estimate

through data assimilation, the error due to unresolved scales must be

accounted for in the algorithm. In this work, we derive a novel ensemble trans-

form formulation of the Schmidt–Kalman filter (ETSKF) to compensate for

observation uncertainty due to unresolved scales in nonlinear dynamical sys-

tems. The ETSKF represents the small-scale variability through an ensemble

sampled from the representation error covariance. This small-scale ensemble

is added to the large-scale forecast ensemble to obtain an ensemble representa-

tive of all scales resolved by the observations. We illustrate our new method

using a simple nonlinear system of ordinary differential equations with two

timescales known as the swinging spring (or elastic pendulum). In this simple

system, our novel method performs similarly to another method of compensat-

ing for uncertainty due to unresolved scales. Indeed, the use of small-scale

ensemble statistics has potential as a new approach to compensate for uncer-

tainty due to unresolved scales in nonlinear dynamical systems but will need

further testing using more complicated systems.

KEYWORD S

data assimilation, ensemble transform Kalman filter, error due to unresolved scales,
observation uncertainty, representation uncertainty, Schmidt–Kalman filter

1 | INTRODUCTION

In ensemble data assimilation (DA), the state of a dynam-
ical system is estimated using observational data and an
ensemble of forecasts obtained from numerical models
(e.g., Houtekamer & Zhang, 2016; Vetra-Carvalho

et al., 2018), taking into account their uncertainties. We
focus on accounting for uncertainty due to unresolved
scales that are caused by a mismatch in scales observed
and modeled. Uncertainty due to unresolved scales has
been shown to be state-dependent and correlated in ide-
alized systems (Janji�c & Cohn, 2006), numerical weather
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prediction (NWP) modeling studies (Waller et al., 2014;
Waller et al., 2021), and observational studies (Bell
et al., 2022; Waller et al., 2016; Waller et al., 2019).

Methods to account for uncertainty due to unresolved
scales will depend on the size of the observation footprint
relative to the model grid (Janji�c et al., 2018). When the
observation footprint is larger than the model grid length,
the scale mismatch may be compensated for by averaging
the model state over the observed area. When the reverse
is true (e.g., using high-resolution observations in
convection-permitting NWP, Dance et al., 2019;
Gustafsson et al., 2018; Hu et al., 2023), the scale-
mismatch uncertainty must be accounted for in the DA
algorithm (Bell et al., 2020; Simonin et al., 2019; Stewart
et al., 2013). The standard approach is to include the rep-
resentation uncertainty in the observation error covari-
ance (e.g., Hodyss & Satterfield, 2016). Representation
uncertainty may be estimated through DA diagnostic
methods (e.g., Waller et al., 2016; Waller et al., 2019) or
by using high-resolution model data (e.g., Daley, 1993;
Liu & Rabier, 2002; Schutgens et al., 2016; Waller
et al., 2021). The error due to unresolved scales may
instead be treated as a model error and compensated for
with inflation techniques (e.g., Carrassi &
Vannitsem, 2011). However, none of these approaches
are fully utilized in operational systems due to a lack of
feasible computational methods (Hu & Dance, 2021;
Janji�c et al., 2018).

Multiscale approaches have been shown to be suc-
cessful for both variational (e.g., Bannister, 2007;
Buehner & Shlyaeva, 2015) and ensemble (e.g., Wang
et al., 2021) assimilation. Typically, these approaches
treat both small and large resolved scales through scale
decomposition of the error covariance matrices. The
Multiscale Local Gain Form Ensemble Transform Kal-
man Filter, for instance, performs explicit scale decom-
position of the resolved scales in the background
ensemble perturbations to improve the assimilation of
multiscale processes (Wang et al., 2021). There is limited
literature that explicitly treats unresolved scales
(e.g., Grooms et al., 2014). We consider an approach
based on the Schmidt–Kalman filter (SKF)
(Schmidt, 1966), where the large-scale state resolved by
a model is estimated and the statistics of the unresolved
small-scale processes are considered; this has been
shown to be effective in linear systems (Bell et al., 2020;
Janji�c & Cohn, 2006).

To use the SKF for atmospheric DA, it must be
adapted to be compatible with nonlinear models. While a
stochastic ensemble formulation of the SKF has been
derived (Lou et al., 2018), observation perturbations are
required to obtain the desired analysis error statistics.
Deterministic filters, such as the ensemble transform

Kalman filter (ETKF), have a smaller computational cost
of implementation (Vetra-Carvalho et al., 2018) and
eliminate the sampling error associated with observation
perturbations. Our aim is to develop a novel ensemble
transform formulation of the SKF and provide proof of
concept in a simple model.

2 | THEORETICAL FRAMEWORK

Filtering in data assimilation involves using recent obser-
vations to forecast the atmospheric state forward in time.
The forecast state is an estimate of the true atmospheric
state conditioned on previous observations. We first
define the model used for forecasting in Section 2.1 and
then the observations of this state in Section 2.2. Filtering
with the Schmidt–Kalman filter is introduced in
Section 3.

2.1 | Model configuration

We follow the framework given in Bell et al. (2020). We
first introduce the perfect and forecast models. The large-
scale dynamics are assumed to reside in a subspace of the
phase space for the full system. The phase space for
the small-scale dynamics will be the complement of the
large-scale subspace. We therefore express the true state
xt �ℝNt in the partitioned form

xt ¼ xl,t

xs,t

 !
, ð2:1Þ

where xl,t �ℝNl is the true large-scale state, xs,t �ℝNs is
the true small-scale state, and Nt ¼NlþNs. Throughout
this paper, any component with a t-superscript indicates
it is a true variable. The l- and s-superscripts correspond
to the large- and small-scale processes within the com-
plete system dynamics. We note that it is our intent that
xl is the actual large-scale model state and not the state
obtained from an additional spectral decomposition of
model variables. We also note that, while xs,t is meaning-
ful in its own right, its significance stems from its interac-
tion with the large-scale state.

Throughout this section, the subscripts on brackets
denote the time of the arguments inside the bracket. For
nonlinear dynamical systems, the perfect model evolving
the true state is given by the coupled system,

xl,t

xs,t

 !
k

¼ ℳl,t xl,t,xs,t
� �

ℳs,t xl,t,xs,t
� �

 !
k�1

, ð2:2Þ
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where ℳl,t :ℝNl �ℝNs !ℝNl and ℳs,t :ℝNl �ℝNs !ℝNs

are the true nonlinear models that map the true large-
and small-scale states forward in time, respectively.

In NWP, subgrid-scale parameterizations are often
used to represent small-scale processes (Janji�c
et al., 2018; Janji�c & Cohn, 2006). We therefore assume
the imperfect forecast model has the partitioned form:

xl,t

xs,t

 !
k

¼ ℳl xl,t
� �
xs,t

 !
k�1

� ηl

ηs

 !
k

, ð2:3Þ

where ℳl :ℝNl !ℝNl is the imperfect nonlinear forecast
model that maps the large-scale state forward in time and
ηl �ℝNl and ηs �ℝNs are the large- and small-scale model
errors assumed to have zero-mean and static covariance:

Qll Qls

Qsl Qss

 !
: ð2:4Þ

Here, Qll � ηl ηl
� �TD E

�ℝNl�Nl and Qss � ηs ηsð ÞT
D E

�
ℝNs�Ns are the model error covariances for the large- and
small-scale processes, and Qls � ηl ηsð ÞT

D E
�ℝNl�Ns (with

Qsl ¼ Qls
� �T

) is the cross-covariance between the large-
and small-scale model errors. The assumption of a persis-
tence small-scale forecast model is related to the imple-
mentation of our novel filter which we discuss in
Section 3.3.

Analogously, the complete forecast state
xl,f
� �T

xs,f
� �T� �T

�ℝNt satisfies

xl,f

xs,f

 !
k

¼ ℳl xl,f
� �
xs,f

 !
k�1

, ð2:5Þ

where the f -superscript indicates the forecast. We note
that ℳl is meant to be representative of the models used
in operational weather prediction systems. We also note
that the small-scale forecast xs,f is usually omitted in
practice as it is unknown. Similarly to the model error
covariance, the forecast state error covariance at time tk
will be in the partitioned form:

Pll,f Pls,f

Psl,f Pss,f

 !
k

≈
Ml 0Nl�Ns

0Ns�Nl INs�Ns

 !
Pll,f Pls,f

Psl,f Pss,f

 !
k�1

�
Ml 0Nl�Ns

0Ns�Nl INs�Ns

 !T

þ
Qll Qls

Qsl Qss

 !
,

ð2:6Þ

where each block of the forecast error covariance has the
same dimensions as the corresponding model error block

and Ml is the tangent linear approximation to ℳl. We
note that (2.6) corresponds to the error covariance at the
previous analysis at k¼ 0 (see Section 3). Even if the ini-
tial large- and small-scale forecast errors are uncorrelated
(i.e., Pls,f

0 ¼ 0Nl�Ns and Psl,f
0 ¼ 0Ns�Nl), the cross-

covariances Pls,f and Psl,f can still evolve into a non-zero
matrix due to model error. Using this formulation of the
complete system dynamics, we apply filters that analyse
the large-scale state only but account for the small-scale
processes in different ways.

2.2 | Observation configuration

In this section, we assume each component is valid at
time k, allowing us to drop the time subscript. The obser-
vations, y �ℝp, are assumed to be the sum of the true
large- and small-scale states mapped into observation
space, expressed as

y¼hl xl,t
� �þhs xs,tð Þþϵ, ð2:7Þ

where hl :ℝNl !ℝp is the known imperfect large-scale
observation operator, hs :ℝNs !ℝp is the possibly
unknown imperfect small-scale observation operator,
and ϵ�ℝp is the random and unbiased instrument error.
The observation error is given by

eo ¼ y�hl xl,t
� �¼hs xs,tð Þþϵ ð2:8Þ

where hs xs,tð Þ is the error due to unresolved scales, and
we have assumed no observation operator error. There-
fore, the instrument uncertainty is given by RI � < ϵϵT >
and the representation uncertainty is given by

~R
H � hs xs,tð Þ�hs xs,tð Þ

� �
hs xs,tð Þ�hs xs,tð Þ
� �T� �

, ð2:9Þ

where the angular brackets denote the mathematical
expectation over the corresponding error distribution.
Here, we have used a tilde �ð Þ to indicate the true repre-
sentation uncertainty. In later sections, approximations
to the representation uncertainty will not have a tilde.

3 | THE DETERMINISTIC
ENSEMBLE SCHMIDT–KALMAN
FILTER

Throughout this section, all components are assumed to
be valid at the same time, so we omit the time subscripts.
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3.1 | The Schmidt–Kalman filter

The SKF is a linear filter that analyzes the large-scale
state only through consideration of the large-scale uncer-
tainty and the variability of the small-scale processes
(Bell et al., 2020; Janji�c & Cohn, 2006). The analysis state
update for the SKF is given by

xl,a¼ xl,f þKl y�Hlxl,f
� �

, ð3:1Þ

where the large-scale gain matrix Kl is given by

Here, the forecast error covariance blocks Pll,f , Pls,f ,
and Psl,f are defined in Equation (2.6), Cs �ℝNs�Ns is a
climatological approximation to the true small-scale vari-
ability, given by the covariance of the true small-scale

state xs,t�xs,t
� �

xs,t�xs,t
� �TD E

, and the observation oper-

ator is in partitioned form where Hl �ℝp�Nl is the large-
scale observation operator and Hs �ℝp�Ns the small-scale
observation operator.

From Equation (2.9), an approximation of the repre-
sentation error covariance is given by

RH ¼HsCs Hsð ÞT ð3:3Þ

(Hodyss & Satterfield, 2016). The large-scale forecast
error covariance Pll,f and forecast cross-covariance Pls,f

are analysed by

Pll,a ¼ INl �KlHl
� �

Pll,f �KlHsPsl,f ð3:4Þ

and

Pls,a ¼ I�KlHl
� �

Pls,f �KlHsCs: ð3:5Þ

In the forecast step, the SKF evolves the large-scale
analysis state xl,a, the large-scale analysis error covari-
ance Pll,a, and the analysis cross-covariance Pls,a

(Equations (3.15)–(3.18), Bell et al. (2020)). In practice,
subgrid-scale parameterizations are used to approximate
contributions from the small-scale processes. For exam-
ple, Clark et al. (2021) developed a stochastic boundary
layer perturbation scheme to approximate the effects of

unresolved processes, enhancing the representation
of boundary layer variability. Hence, only knowledge of
the large-scale model is required to evolve xl,a and Pll,a.
To evolve the cross-covariance Pls,a, additional assump-
tions would be required such as assuming the small-scale
state is modelled by persistence (as is done in (Equation 2.3)
with addition of model error). For a detailed description of
the SKF equations, we refer the reader to Bell et al. (2020).

The SKF accounts for the small-scale variability in
state space, which allows for consideration of flow-
dependent cross-covariances between the large-scale

uncertainty and the small-scale variability. As a result,
the observation error covariance for the SKF will consist
of instrument uncertainty only. In contrast, the standard
Kalman filter may account for the small-scale variability
in observation space (i.e., R¼RI þRH) or completely dis-
regard it altogether (i.e., R¼RI) such that only the large-
scale filter and model components are needed for its imple-
mentation. We note that in the limit of zero cross-
covariances, the SKF and standard Kalman Filter are equiv-
alent in their compensation of representation uncertainty
(Hodyss & Nichols, 2015). The disadvantage of using the
SKF over the standard Kalman filter is a higher computa-
tional cost associated with the augmentation of the state
error covariances (Equation (3.2)). The computational cost
of the standard Kalman filter can be reduced by adopting an
ensemble formulation such as the ensemble transform Kal-
man filter, ETKF (Vetra-Carvalho et al., 2018, described in
the Supplementary Material). The computational cost of our
new ensemble transform SKF is discussed in Section 3.4.

3.2 | The ensemble transform Schmidt–
Kalman filter (ETSKF)

In the novel ensemble transform SKF (ETSKF), the
small-scale covariance Cs must be approximated through
ensemble statistics in the analysis step. The uncertainty
associated with the large-scale forecast ensemble mean
xl,f �ℝNl is given by

Pll,f ¼Xl,f Xl,f
� �T

, ð3:6Þ

Kl ¼ Pll,f Pls,f
� � Hl

� �T
Hsð ÞT

0
@

1
A Hl Hs

� � Pll,f Pls,f

Psl,f Cs

 !
Hl
� �T
Hsð ÞT

0
@

1
AþRI

1
A

�1

:

0
@ ð3:2Þ
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where Xl,f �ℝNl�m is the large-scale forecast perturbation
matrix given by

Xl,f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
m�1

p xl,f , 1ð Þ �xl,f … xl,f , mð Þ �xl,f
� �

: ð3:7Þ

Here, m is the ensemble size and xl,f , ið Þ is the i-th
ensemble member. As xs,t is not estimated in the SKF
equations, the small-scale perturbation matrix,
Xs �ℝNs�m, may be obtained by sampling an ensemble of
size Ns�m from the climatological approximation of the
small-scale variability, Cs, and dividing by

ffiffiffiffiffiffiffiffiffiffiffiffi
m�1

p
.

Hence, the forecast cross-covariance is given by

Pls,f ¼Xl,f Xsð ÞT : ð3:8Þ

Further discussion regarding the construction of Xs is
given in Section 3.3.

We next describe the ETSKF analysis update equa-
tions. Expressing the error covariances in Equation (3.2)
in terms of perturbation matrices, the gain matrix for the
ensemble formulation of the Schmidt–Kalman filter is
given by

Kl ¼ Xl,f Yl,f
� �T þXl,f Ysð ÞT

� �
D�1, ð3:9Þ

where Yl,f ¼HlXl,f , Ys ¼HsXs and D is the innovation
covariance given by

D¼ Yl,f þYs
� �

Yl,f þYs
� �T þRI : ð3:10Þ

For the same reasons as discussed in Section 3.1,
the observation error covariance assumed by the
ETSKF will not contain a component corresponding to
the uncertainty due to unresolved scales. The ETSKF
mean analysis state update is obtained by replacing the
large-scale state variable in Equation (3.1) with the
ensemble mean.

To derive the analysis perturbation matrix, we start
by writing the SKF large-scale analysis error covariance
update (Equation 3.4) in terms of perturbation matrices
to obtain

Xl,a Xl,a
� �T ¼ INl � Xl,f Yl,f

� �T þXl,f Ysð ÞT
� �

D�1Hl
� �

Xl,f Xl,f
� �T

� Xl,f Yl,f
� �T þXl,f Ysð ÞT

� �
D�1HsXs Xl,f

� �T
¼Xl,f Im� Yl,f þYs

	 
T
D�1 Yl,f þYs

	 
� �
Xl,f
� �T

:

ð3:11Þ

We now define T�ℝm�m such that

TTT ¼ Im� Yl,f þYs
	 
T

D�1 Yl,f þYs
	 


: ð3:12Þ

We next apply the Sherman–Morrison–Woodbury
identity on D�1 and then use the singular value decom-
position on Yl,f þYs

	 
T
RI
� ��1=2

to obtain

T¼U ImþΣΣT
� ��1=2

UT , ð3:13Þ

where U�ℝm�m is an orthogonal matrix containing the
left singular vectors of Yl,f þYs

� �T
RI
� ��1=2

and Σ�ℝm�p

is a rectangular diagonal matrix containing the corre-
sponding non-zero singular values. Finally, the analysis
perturbation can be implemented in the filter using

Xl,a ¼Xl,fT: ð3:14Þ

The ETSKF forecast step is identical to the ETKF fore-
cast step given in the Supplementary Material. An algo-
rithm block for the ETSKF is given in Section 3.3.

3.3 | Discussion of the small-scale
perturbation matrix

The ETSKF compensates for uncertainty due to unre-
solved scales through the use of the small-scale perturba-
tion matrix Xs. Since the small-scale perturbation matrix
is mapped into observation space, we may construct the
small-scale ensemble by sampling an ensemble of size
p�m from an approximation of the uncertainty due to
unresolved scales given by Equation (3.3). Sampling in
observation space circumvents the need for a small-scale
observation operator Hs. An approximation to the clima-
tological uncertainty due to unresolved scales may be
obtained in several ways (Daley, 1993; Liu &
Rabier, 2002; Schutgens et al., 2016; Waller et al., 2021).

To determine a strategy to sample the small-scale
ensemble, we examine how the cross-covariance between
the large-scale uncertainty and the small-scale variability,
Pls, is treated by the SKF. While the small-scale covari-
ance, Cs, is taken to be time-independent by the SKF, Pls

is explicitly evolved. The cross-covariance is analysed by

Pls,a ¼Xl,fTTT Xsð ÞT , ð3:15Þ

which is obtained by expressing Pls,f and Cs in
Equation (3.5) in terms of perturbation matrices. To
account for the evolution of cross-covariances, the parti-

tioned perturbation matrix Yl,a
� �T

Ysð ÞT
� �T

is sampled

from N 0,Ψð Þ where

BELL ET AL. 5 of 15
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Ψ ¼
Yl,fTTT Yl,f

� �T
Yl,fTTT Ysð ÞT

YsTTT Yl,f
� �T

RH

0
@

1
A

¼
HlPll,a Hl

� �T
HlPls,a Hsð ÞT

HsPsl,a Hl
� �T

HsCs Hsð ÞT

0
@

1
A:

ð3:16Þ

Here, the second equality is obtained using Equa-
tions (3.3), (3.11), and (3.15). We note that since Cs is a
climatological approximation to the small-scale variabil-
ity, we treat it constant in time so that the cross-
covariances are correctly forecast by the ETSKF. We also
note that Ys is sampled after Xl,a is calculated and is used
in the analysis step at the next observation time. The
entire ETSKF implementation is given in Algorithm 1.

3.4 | Discussion of the computational
expense

We compare the computational expense of the ETSKF
with the ETKF. In principle, to provide a fair comparison,
we should consider an ETKF implemented with a fully
correlated observation error covariance matrix, RI þRH .
However, common implementations of the ETKF typi-
cally assume that the observation error covariance matrix
is diagonal, and in this case the general leading order of
operation count for the ETKF is O Nlm2þpm2þm3ð Þ
(Vetra-Carvalho et al., 2018).

In the forecast step, the ETSKF evolves the large-scale
state only, which is identical to the ETKF forecast step
(see Supplementary Material).

Algorithm 1 Ensemble Transform Schmidt–Kalman Filter (ETSKF) algorithm

1: At time k¼ 1, initialize ensemble xl,f , ið Þk for i¼ 1…m, observation operator Hl, small-scale ensemble Ys
0, instru-

ment error covariance RI , and representation error covariance RH

2: for k¼ 1 to tend do
3: // Calculate forecast statistics

4: xl,fk ¼ 1
m

Pm
i¼1x

l,f , ið Þ
k

5: Xl,f
k ¼ 1ffiffiffiffiffiffiffiffi

m�1
p xl,f , 1ð Þ

k �xl,fk … xl,f , mð Þ
k �xl,fk

� �
6: Yl,f

k ¼HlXl,f
k

7: // Compute transform matrix

8: Σk ¼ Yl,f
k þYs

k

� �T
RI
� ��1=2

9: T¼Uk ImþΣkΣT
k

� ��1=2
UT

k

10: // Sample Ys
k

11: Sample Yl,a
k

� �T
Ys
k

� �T� �T
from Ψ k ¼

Yl,f
k TkTT

k Yl,f
k

� �T
Yl,f
k TkTT

k Ys
k�1

� �T
Ys
k�1TkTT

k Yl,f
k

� �T
RH

0
B@

1
CA

12: // Update analysis ensemble
13: Dk ¼ Yl,f

k þYs
k

� �
Yl,f
k þYs

k

� �T
þRI

14: Kl
k ¼ Xl,f

k Yl,f
k

� �T
þXl,f

k Ys
k

� �T� �
D�1

k

15: xl,ak ¼ xl,fk þKl
k yk�Hlxl,fk
� �

16: Xl,a
k ¼Xl,f

k Tk

17: for i¼ 1 to m do
18: xl,a, ið Þk ¼ xl,ak þXl,a

k i, :½ �
19: end for
20: // Forecast analysis ensemble to time kþ1
21: for i¼ 1 to m do
22: xl,f , ið Þkþ1 ¼ℳl xl,a, ið Þk

� �
�ηl, ið Þkþ1

23: end for
24: end for
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In the analysis step, the ETSKF equations are
obtained by replacing Yl,f with Yl,f þYs and R with RI in
the ETKF equations. Hence, the two main differences
in computational expense between the two methods are
(1) the ETKF requires inversion of a fully correlated
matrix R compared with inversion of the usually diago-
nal RI in the ETSKF and (2) the ETSKF samples the
small-scale ensemble Ys and adds it to Yl,f each analysis
step. Regarding (1), the use of fully correlated observation
error covariance matrices may be feasible for some obser-
vation types (Simonin et al., 2019). However, for large
datasets with long correlation lengths this is not currently
possible within the constraints of operational schedules
(Hu & Dance, 2021). Regarding (2), sampling from the
representation error covariance has computational com-
plexity O mλ2

� �
, where m is the number of samples

drawn and λ is the number of rows in the covariance
matrix (Gentle, 2010, p. 315–316). Hence, the general
leading order of operation count for the ETSKF
is O Nlm2þpm2þm3þ4mp2ð Þ.

4 | ILLUSTRATIVE NUMERICAL
EXAMPLE

4.1 | The swinging spring model

We use the swinging spring (elastic pendulum)
model (Lynch, 2002) shown in Figure 1 to illustrate the
behaviour of the ETSKF. This has been studied in atmo-
spheric science as a simple model with two scales
(Vanneste, 2013).

A mass, m, is suspended from a fixed point by a
spring with unstretched length ℓ0 and elasticity k in
a uniform gravitational field g. The spring is unable to
bend and can stretch lengthways. Using polar coordi-
nates, the nonlinear system of differential equations
describing the motion of the swinging spring is given by

_θ¼ pθ
mr2

, ð4:1Þ

_pθ ¼�mgr sinθ, ð4:2Þ

_r¼ pr
m
, ð4:3Þ

_pr ¼
p2θ
mr3

�k r�ℓ0ð Þþmgcosθ, ð4:4Þ

where θ is the angle measured from the downward verti-
cal with momentum pθ and r is the length of the spring

measured from the point of suspension with momen-
tum pr .

The model has two equilibrium points: a stable equi-
librium with the spring stretched vertically below the
point of suspension and an unstable equilibrium where
the spring is compressed vertically above the point of sus-
pension. We consider only the stable equilibrium. The
equilibrium length of the spring is given by

ℓ¼ℓ0þmg
k
: ð4:5Þ

We may linearize the swinging spring system for
small amplitude motions, obtaining two independent
oscillations in θ and r (Lynch, 2002). The frequency of
the rotational motions is

ωθ ¼
ffiffiffi
g
ℓ

r
, ð4:6Þ

and the frequency of the elastic motions is

ωr ¼
ffiffiffiffi
k
m

r
: ð4:7Þ

FIGURE 1 Schematic of the swinging spring. The angle θ is

measured from the downward vertical and the length of the spring

r is measured from the point of suspension to the mass.

BELL ET AL. 7 of 15
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In the fully nonlinear system, (Equations 4.1–4.4), the
rotational and elastic motions are coupled. Nevertheless,
provided ωθ=ωr <1, the rotational motions will corre-
spond to the large-scale processes and the elastic motions
will correspond to the small-scale processes. For our illus-
tration, we set ℓ¼ 1 m, m¼ 1 kg, g¼ π2 m/s2, and
k¼ 3π2 N/m, so that there is a separation in scales and
substantial small-scale variability.

To obtain the true partitioned model in Equation (2.2),
we define r¼ℓþρ, where ρ is the displacement of the
spring from the stable equilibrium with momentum pρ.
Since ℓ is fixed, the variability of r is completely associ-
ated with ρ. With this transformation, the swinging
spring system is given by

_θ¼ pθ
m ℓþρð Þ2 , ð4:8Þ

_pθ ¼�mg ℓþρð Þsinθ, ð4:9Þ

_ℓ¼ 0, ð4:10Þ

_ρ¼ pρ
m
, ð4:11Þ

_pρ ¼
p2θ

m ℓþρð Þ3�k ℓþρ� l0ð Þþmgcosθ: ð4:12Þ

Using this form of the equations, the complete state is
θ pθ ℓ ρ pρ
� �T

which consists of the large-scale state
θ pθ ℓð ÞT and the small-scale state ρ pρ

� �T
. Typical

behaviour of the state variables is shown in Figure 2. The
frequency of θ and pθ is lower than the frequency of ρ
and pρ and ℓ is constant. Hence, θ, pθ, and ℓ may be cor-
rectly represented with a coarser temporal resolution
than ρ and pρ. Additionally, the large- and small-scale
states are weakly correlated.

To obtain the large-scale forecast model
(Equation 2.3), we neglect ρ from Equations (4.8)–(4.10)
such that the large- and small-scale processes are
uncoupled:

_θ¼ pθ
mℓ2 , ð4:13Þ

_pθ ¼�mgℓsinθ, ð4:14Þ

_ℓ¼ 0: ð4:15Þ

We note that the forecast model for θ and pθ will have
model error due to unresolved scales. Typical behaviour
of the forecast model is shown in Figure 3.

To integrate the true system in Equations (4.8)–(4.12)
and the forecast model in Equations (4.13)–(4.15), we use
the Octave (version 9.2.0) ode45 solver with a relative
error tolerance of 10�3 and an absolute error tolerance of
10�6. The value of the system is recorded every 0:01
model seconds.

4.2 | Observations and their uncertainty

For our illustration, we consider observations of θt and
rt ¼ℓtþρt. Expressing the observations y �ℝ2 in the
form of Equation (2.7), we have

y¼ 1 0 0

0 0 1

� � θt

ptθ
ℓt

0
B@

1
CAþ 0 0

1 0

� �
ρt

ptρ

 !
þϵ, ð4:16Þ

where the first matrix–vector product corresponds to
Hlxl,t, the second corresponds to the error due to unre-
solved scales Hsxs,t, and ε�ℝ2 is the instrument error.

To generate observations, we take the values of θt and
rt at specified time-steps and add instrument error ϵ: The
instrument error has distribution ϵ�N 0, 0:12Ið Þ such
that the uncertainty due to unresolved motion is substan-
tially greater than the instrument uncertainty. Following
Bell et al. (2020), we expect the ETSKF to provide the
most benefit in this regime.

We consider filters that analyse the large-scale state
only. Hence, the observations of rt are treated as observa-
tions of ℓt with error due to unresolved scales ρt. There is
a bias due to unresolved scales as the time average of ρt

is non-zero (see Section 4.3).

4.3 | Twin experiment

We use three filters: the ETKF that disregards uncer-
tainty due to unresolved scales (i.e., R¼RI), denoted by
ETKF-LS, the ETKF that compensates for uncertainty
due to unresolved scales (i.e., R¼RI þRH), denoted by
ETKF-RH, and the ETSKF. Each filter uses the same
large-scale forecast model, given by Equations (4.13)–
(4.15). We note that the ETSKF and ETKF-RH are equiv-
alent in the limit that the cross-covariance terms
are zero.

To evaluate the performance of each filter, we per-
form cycled assimilation experiments and evaluate the
forecasts against the corresponding truth. Each experi-
ment consists of the following initialization steps:
1. Using the true model in Equations (4.8)–(4.12),

evolve the state θ pθ ℓ ρ pρ
� �T ¼ 1 0 1 0 0ð ÞT

for 100 seconds. Using the Octave (version 9.2.0)

8 of 15 BELL ET AL.
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function randi to determine the starting point tstart,
a random 10-second segment of this 100-s run is
used as the truth for the assimilation.

2. Create observations following Equation (4.16) from the
truth trajectory every 0:9 s and remove the bias due to
unresolved scales. This observation frequency is chosen
such that each filter produced good approximations of
ℓt, but allowed difference in performance between the
various filters. The observation bias is calculated as
rth i�ℓt, where the angular brackets denote the tempo-
ral average of the 100-second run of rt produced in step
1 and ℓt ¼ 1. This is removed from the observations
before their assimilation so that we may focus our
results on uncertainty due to unresolved scales. We

note that in operational practice, the bias can be
removed prior to assimilation (e.g., surface observa-
tions) or estimated online through bias correction
schemes. We also note that there is no bias in θ.

3. Using the large-scale forecast model in Equa-
tions (4.13)–(4.15), evolve the state 1 0 1þ ζð ÞT ,
where ζ�N 0, 0:22ð Þ, to time tstart to obtain the mean
forecast state at the beginning of the assimilation
window.

4. Generate an initial forecast ensemble of m¼ 50 mem-

bers by adding random noise el,f0 �N 0, Pll,f
0

� �
to the

mean forecast state at time tstart obtained in 3. The ini-
tial forecast error covariance is set to

FIGURE 2 Typical behaviour of the swinging spring governed by Equations (4.8)–(4.12) where m¼ 1, ℓ¼ 1, g¼ π2, and k¼ 3π2. For the

experiments described in Section 4.3, an assimilation interval of 0.9 s is used.
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Pll,f
0 ¼

0:2 0 0

0 0:6 0

0 0 0:2

0
B@

1
CA

2

, ð4:17Þ

such that the standard deviation of the forecast error
is approximately 20% the amplitude of θt and ptθ and
size of ℓt.

This experiment is repeated 200 times and we calcu-
late statistics from the results of each experiment. For the
ETSKF, the cross-covariances Pls,f and Psl,f are initially
assumed to be zero matrices, which are evolved through-
out the assimilation as described in Section 3.3. We
remind the reader that the cross-covariances appear in
both terms of the ETSKF gain in Equation (3.9).

The ETKF-RH and ETSKF use a climatological
approximation of the representation uncertainty,
obtained by taking the covariance of a single 100 model
second truth run of ρt ptρ

� �T
obtained in step 1 of the

initialization procedure and mapping to observation
space with Hs. The climatological approximation of the
representation uncertainty is given by

RH
clim ¼ 0 0

0 0:282

� �
: ð4:18Þ

There are two sources of large-scale model error in
our experiments: sampling error due to ensemble size
and structural error caused by the imperfect forecast
model for θ and pθ (compare Equations 4.8–4.9 with
Equations 4.13 and 4.14). Additionally, the model for
ℓf has no growing modes (it is modelled by persis-
tence, see Equation 4.15). Thus, practical

computations with moderate ensemble size need addi-
tive inflation to avoid ensemble collapse. However,
further experiments (not shown) indicate that ℓf does
not need model error when the ensemble size is suffi-
ciently large. Model noise is added to each ensemble
member every 0:01 model seconds. The large-scale
model-noise covariance Qll is chosen such that rank his-
tograms (Hamill, 2001) produced from the ETSKF fore-
cast ensembles are uniform (see figures 8.3 and 8.4 of
Bell (2021)). Consequently, the Qll that is used by each
filter in our experiments is given by

Qll ¼
0:05 0 0

0 0:1 0

0 0 0:001

0
B@

1
CA

2

: ð4:19Þ

4.4 | Performance metrics

To assess the performance of the ETSKF, we use two
metrics.
1. The root-mean-square error (RMSE) for a single com-

ponent of the state vector. For a vector of length Nk,
the number of time-steps, the RMSE is given by

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNk
k¼1 xl,fk � xl,tk

� �2
Nk

vuut
: ð4:20Þ

2. The continuous rank probability score (CRPS) which
quantifies the deviation between the true distribution
function and the filter's probabilistic forecast for a sin-
gle component of the state vector. Calculated at time

FIGURE 3 Typical behaviour of the large-scale forecast model governed by Equations (4.13)–(4.15) where m¼ 1, ℓ¼ 1, g¼ π2, and

k¼ 3π2. In this figure, θ is a blue solid line, pθ is an orange dot-dash line, and ℓ is a dashed purple line. For the experiments described in

Section 4.3, an assimilation interval of 0:9 s is used.
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k, the extra ensemble members xl,f , 0ð Þ ¼�∞ and
xl,f , mþ1ð Þ ¼∞ are defined and ensemble members are
sorted in ascending order (Hersbach, 2000). Assuming
equal probability for each member, the CRPS is com-
puted as

CRPS¼
Xm
j¼0

αj
j
m

� �2

þβj 1� j
m

� �2
" #

, ð4:21Þ

with αj and βj given in Table 1. The best possible
CRPS value is 0 which corresponds to a perfect deter-
ministic forecast.

To provide a comparison between filters, the RMSE
and mean CRPS are expressed in relative percent-
age form,

A�B
A

�100% ð4:22Þ

where A corresponds to the value for the ETKF-LS and B
corresponds to another filter. Here, a negative value indi-
cates worse performance than the ETKF-LS, zero repre-
sents the same performance, and a positive value
indicates better performance. Further, the quantity
A�Bð Þ=A�100% is bounded between �∞ and 100, as A

and B can each be only positive or zero for RMSE
and CRPS.

4.5 | Numerical illustration

We illustrate the performance of the three filters in a
regime of high representation uncertainty and low instru-
ment uncertainty. The results for our illustration are
shown in Table 2. We evaluate the filters using both fore-
cast and analysis metrics. For the forecast evaluation, we
generate forecast ensembles from each analysis. The fore-
cast RMSE and mean CRPS are computed by comparing
these predictions against the true state at each time-step
between and t = 5 s and t = 10 s. For the analysis evalua-
tion, we compare the analysis against the truth at the
6 observation times between t = 5 s and t = 10 s.
The metrics calculated are then averaged over
200 experiments.

To determine the statistical significance of the results,
we use the t-test. The difference in RMSE and mean
CRPS for θa, paθ , θ

f and pfθ between the ETKF-LS and
each of the ETKF-RH and ETSKF were not found to be
statistically significant. However, the differences in
RMSE and mean CRPS for ℓa and ℓf between the ETKF-
LS and each other filter are statistically significant. From
Table 2, we see that the ETKF-RH and ETSKF have a
large, positive percentage improvement in RMSE and
mean CPRS for ℓa and ℓf compared to the ETKF-LS.
Hence, the ETKF-RH and ETSKF on average produce a
more accurate probabilistic forecast with a smaller aver-
age forecast-mean error than the ETKF-LS. Additionally,
the difference in RMSE and mean CRPS between the
ETKF-RH and ETSKF is not statistically significant.
Therefore, the ETSKF performs similarly to the ETKF-
RH in a high representation uncertainty and low instru-
ment uncertainty regime. This can be attributed to the
correlations between the large-scale forecast ensembles

TABLE 2 Summary of the results for the RMSE and mean CRPS obtained for each filter averaged across 200 experiments.

RI State

ETKF-LS ETKF-RH ETSKF

RMSE Mean CRPS RMSE (%) Mean CRPS (%) RMSE (%) Mean CRPS (%)

0.12I θa 0.098 0.002 0.20 �2.84 0.21 6.76

θf 0.050 0.006 1.95 2.47 �1.66 0.17

paθ 1.570 0.023 1.67 3.01 1.74 10.71

pfθ 0.184 0.017 �0.17 4.20 �1.41 7.05

ℓa 0.121 0.016 16.92 87.45 17.04 81.26

ℓf 0.127 0.017 17.23 87.29 15.87 81.85

Note: The same model error covariance was used for each filter (see Section 4.3). The results are given in relative percentage form (see Equation (4.22)) for the

ETKF-RH and ETSKF. Relative percentages in bold indicate when the improvement of the ETKF-RH or ETSKF over the ETKF-LS is statistically significant.

TABLE 1 Values for αj and βj in Equation (4.21).

0< j<m αj βj

xl,t > xl,f , jð Þ xl,f , jþ1ð Þ �xl,f , jð Þ 0

xl,f , jþ1ð Þ > xl,t > xl,f , jð Þ xl,t �xl,f , jð Þ xl,f , jþ1ð Þ � xl,t

xl,f , jð Þ > xl,t 0 xl,f , jþ1ð Þ � xl,f , jð Þ

Note: The subscript j indicates the ensemble member in the ensemble
arranged into ascending order (i.e., xl,f , jð Þ < xl,f , jþ1ð Þ).
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for the directly observed states, θf and ℓf , and the sam-
pled small-scale variability, ρ, as shown in Figure 4. Since
the correlations are weak, the cross-covariances have lit-
tle effect on the ETSKF gain matrix. Additional experi-
ments with increased instrument uncertainty and
analysis of the cross-covariance terms in the ETSKF can
be found in Bell (2021).

5 | CONCLUSION

We introduced a novel ensemble transform formulation
of the Schmidt–Kalman filter (ETSKF) to compensate for
the error due to unresolved scales when observations
contain information on scales smaller than those repre-
sented by the numerical model. In the ETSKF, the small-

FIGURE 4 The correlation

coefficients at each observation

assimilation time over the

200 experiments. The lower and upper

edges of the blue boxes represent the

25th percentile Q1ð Þ and 75th percentile

Q3ð Þ, respectively; the orange line
indicates the median, and the whiskers

extend from Q1�1:5� Q3�Q1ð Þ to
Q3þ1:5� Q3�Q1ð Þ. Circles represent
outliers outside the whisker range. The

majority of the correlation coefficients

are weak at each observation

assimilation time, indicating they have

little effect on the ETSKF performance.
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scale variability is represented through an ensemble sam-
pled from the representation error covariance.

We carried out “proof-of-concept” numerical experi-
ments using an idealized two-scale model and three fil-
ters: an ensemble transform Kalman filter that disregards
the uncertainty due to unresolved scales (ETKF-LS), an
ETKF that accounts for the uncertainty due to unresolved
scales by incorporating it in the observation error covari-
ance matrix (ETKF-RH), and the ETSKF. The three filters
were implemented without localization as the swinging
spring system is low dimensional, and we used reason-
able 50-member ensemble sizes with additive inflation
(see Equation (4.19)) to prevent ensemble collapse.

We examined the improvement of the ETKF-RH and
ETSKF relative to the ETKF-LS in a regime of high repre-
sentation uncertainty and low instrument uncertainty.
The ETKF-RH and ETSKF showed statistically significant
improvements over the ETKF-LS for one of the three
large-scale variables. We also found that the performance
of the ETSKF was as good as the ETKF-RH. The ETSKF
will be most appropriate when the large- and small-scale
processes are strongly correlated. Further research is
needed to determine the potential benefits of the ETSKF
over the ETKF-RH in such cases.

The ETSKF has been shown to be capable of compen-
sating for uncertainty due to unresolved scales in non-
linear systems. However, further experiments are
required to understand its robustness. Specifically, the
limitations highlighted by this study include the consid-
eration of only a single observation uncertainty regime,
the focus on scenarios with a larger number of ensemble
members compared to state variables, and the consider-
ation of a single observing system. Addressing these limi-
tations will be critical to evaluating the importance of
cross-covariances and determining the suitability of the
ETSKF for operational DA.
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