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Abstract

The appropriate definition, role and use of exogeneity in economic analysis has been an
area of considerable contention. The empirical resolution of these disputes has proven to be
challenging due to the incongruity between the econometric tools, which rely on statistical
considerations, and the theoretical perspectives that emphasize causal relationships. The
findings of the thesis aim to reconcile these two perspectives by investigating whether

causal features manifest in model coefficients.

Drawing on the properties of the graphical representation of the latent causal structure,
the first chapter introduces a causal definition of exogeneity. Exploiting state-of-the-art
tools in the field of cointegration analysis, we investigate the interplay between causal
exogeneity and the restrictions it imposes on models, without requiring that all relevant
variables are observed. The duality between causal exogeneity and the restrictions on
model parameters lays the foundation for the development of testing procedures tailored

to facilitate causal logic.

The second chapter identifies an additional duality between model restrictions and causal

properties and leverages it to propose an alternative testing technique. The chapter also



evaluates the performance of the two tests using simulated data and demonstrates their

practical utility through an empirical illustration on monetary variables.

The third chapter examines the causal interpretation of weak exogeneity and cautions
against associating it with causality. The chapter’s findings are particularly pertinent in
the context of cointegrated systems, where weak exogeneity is associated with constraints
on the adjustment matrix. This coupling has led to misinterpretations, since variables
unaffected by steady-state violations are associated with non-causality, and the absence
of weak exogeneity is incorrectly perceived as a characteristic of causally affected vari-
ables. We aim to demonstrate that this duality is not automatic and clarify under what

circumstances weak exogeneity can or cannot serve as a proxy for causal inference.
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Preface

In this preface, I present a summary of personal reflections and ideas developed during my
research journey. These thoughts, shaped by personal impressions rather than rigorous
academic scrutiny, represent a flow of thoughts that, at times, may not be well-structured.
This overview is intended to offer insight into the underlying thought processes that have
guided my work, acknowledging that these reflections may lack the formal structure and

depth typical of academic discourse.

Before starting my research career, I envisioned a single, definitive “truth” and saw the
role of the researcher as uncovering it. I viewed econometrics as the means to reveal the
economic “truths” suggested by the data. However, to my disappointment, I found that
the general econometric approach departs from this ideal, at least in certain subtle ways.
Although these differences may seem minor at first glance, they profoundly alter both the

scientific role and the social mission of econometricians.

I observe a pervasiveness of a practical approach and a preference for efficiency over un-
derstanding. The focus is predominantly on modeling—specifically, an approach based

on the search for a relatively manageable function that best describes what is observed.

24



PREFACE

This method has little to do with the idea of “truth”. It does not seek to understand the
meaning of what happens but merely aims to “dress” what is observed, with the ultimate
goal of creating a “map” to navigate smoothly through the intricate “alleys” of economic
processes. However, while a map is undeniably effective for finding points of interest, it

remains essentially silent regarding the history and significance of those places.

This approach views the econometrician as a passive agent, whose skill lies in reproducing
what is seen. It is not far removed from a painter trying to reproduce the landscape in
front of them as faithfully as possible, perhaps emphasizing certain key aspects such as
colours, lines, or perceptions. Yet, this is merely a process of description that has little to

do with he research of the “truth”.

By this, I certainly don’t mean to imply that a passive approach is wrong or secondary.
There is no doubt that it is more effective. The quantitative description of what we
observe allows us to make efficient predictions and to describe what happens in a simpli-
fied and comprehensible manner. Yet, despite its greater effectiveness, understanding a

phenomenon should transcend mere description and focus on its deeper meaning.

A key point lies in understanding how “truth” is articulated. It is indeed true that even
a purely model-based description or a rule derived from a mathematical function can be
a form of truth. For instance, if the model Investments = Bx Interest Rate is accurate,
this representation corresponds to a “true” description. However, the human mind does
not find meaningful a set of measured rules. Our eyes perceives the “truth” only when

those rules take on meaning.
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PREFACE

I find nothing other than causality as the concept that gives meaning to rules. I strongly
believe that an analysis aimed at discovering the “truth” must be based on a causal
structure. Causality is, in fact, a mental framework that gives shape to a sequence of
events that would otherwise be just a simple flow of images. Indeed, observation without
causal interpretation would be pointless and meaningless. Observing a sunny day followed
by a good harvest is entirely useless until one understands that sunlight causes the plants
to grow and develop. Only once a causal interpretation is established does reality make
sense, and human action becomes fruitful. In fact, it is only by understanding that sunlight
causes plant growth that humans can adjust their agricultural techniques to improve the

harvest.

To be honest, it is difficult for me to imagine how sentient beings could observe without
attempting to place their perceptions within a causal framework. Almost immediately,
as we observe and seek to understand what we see, our brains begin to identify causal
connections, allowing our minds to transform mere perception into reality and, ultimately,

into “truth”

Causality is foundational to human thought, and the concept of cause appears to be a
primitive notion—one that is challenging to define without invoking the idea of cause

bR

itself, or related terms such as “generation,” “creation,” or “production.” This suggests
that causal reasoning is innate, embedded within the cognitive structure of our minds. It

seems less a learned process and more an inherent component of our mental architecture,

part of the general settings of our innate cognition.
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PREFACE

One indication that suggests the concept of cause is primordial, rather than a notion
defined ad hoc following specific guidelines, is the ease with which this term is used despite
its extraordinary semantic complexity. This complexity can be observed by noticing that
when we say “A causes B,” this is often just a simple approximation of the true cause.
This can be illustrated by the child’s game of “Why?”, in which a child repeatedly asks
“Why?” in response to any answer given, and the person questioned must continually
provide new reasons. The game usually ends either when the child loses interest or when
the adult runs out of explanations. Inevitably, one either accepts their own ignorance or

resorts to invoking a superhuman entity, namely the will of God.

It should be noted that no matter how much knowledge is refined, there will always remain
an unresolved “why.” For instance, if one begins with the question “Why does touching
fire cause pain?”, even if one ends up with a detailed explanation of how thermoreceptors
in nociceptors react to heat due to the depolarization of the cell membrane triggered by
the opening of ion channels, one might still ask why these ion channels open. At that
point, one might have no choice but to attribute it to the will of God, who decreed that

ion channels should open in response to thermal stimulation.

Causality is like a chain to which links can always be added by tracing backward. Moreover,
as if it is a fractal, each connection contains within it infinite sub-connections. Causality,
therefore, has infinite potential, but our minds have finite capacities. As a result, the
structure upon which our reasoning is built becomes too complex for our brains to fully

comprehend. This complexity necessitates halting the chain at some point, and the only
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PREFACE

solution is to invoke the will of some entity, which by definition, would have a divine

nature.

Although I believe that causal reasoning is the foundational structure of our minds, I am
uncertain whether causality exists independently of human perception—as a mechanism
by which nature operates. If this were the case, our way of thinking would align with the
workings of nature. Could it be that this very aspect of our thought process is what makes
us in the image and likeness of God? I obviously have no suggestions on this matters, and

the only recourse is to hope, with faith, that it is so.

However, one thing I am certain of is that any model aiming to capture truth as perceived
by humans cannot disregard a causal framework. This applies to economic models as
well and aligns with the approach of the founding fathers of structural models. Indeed,
non-causal interpretations have been offered retrospectively by more recent authors. Yet,
I would challenge anyone to understand how an interpretation of these models based on
conditional probabilities could possibly explain the functioning of the economic system

without introducing causal intuitions.

The problem with classical structural methods is that the “true model” must be pre-
specified. It can then be tested using the rules of statistical inference. However, it is
highly unlikely that we can successfully design the true model, and it is very plausible
that any specification we can imagine is incorrect. The difficulty in identifying the true
model arises from several factors, such as assumptions of linearity, the choice of specific

time lags, the measurability of economic variables, and the ability to account for the
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PREFACE

multitude of factors influencing the economic system.

I fully agree with those who view with skepticism the possibility of representing the “true”
model, and I believe this issue undermines the effectiveness of the classical approach.
Consequently, I am not satisfied with the standard strategies, and this is why I believe that
econometric techniques should approach the problem with an awareness of this limitation:
instead of constructing the model first and then gathering evidence to contradict it, I
believe we should focus on determining which “true” model could have generated the
characteristics observed in the evidence we have—evidence that is likely to be limited.
This approach is somewhat related to the methodologies used in graphical causal inference,
where statistical patterns are observed first, and then the “true” causal structure that may

have generated them is understood.

This thesis proposes techniques that leverage this perspective. Rather than specifying a
model and then testing to determine if it is the true one, it introduces hypothesis tests

that, based on their results, correspond to properties of the “true” model.

Naturally, the approach proposed here does not address all the challenges that can arise
in formulating the true model. It focuses instead on overcoming what I consider to be
the greatest limitation: the need to include all relevant variables in the model (e.g., those
with common causes). In a complex system like the economy, this step is particularly
challenging, and the idea of being able to account for all these variables seems to me a

hopeless task.

In conclusion, I have written this preface to convey that this thesis is not merely the
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result of statistical refinements for economic analysis, but that the techniques proposed
here stem from questions I have asked myself about the essence of econometric inquiries.
Every mathematical argument is the outcome of a personal reflection on the ultimate
purpose of an econometric model. That said, I still do not fully grasp what a “true
model” is, nor can I yet provide an effective definition of causality. Furthermore, I am
uncertain whether it will ever be possible to perfectly refine an econometric technique
which follows the aforementioned approach. Despite this, I currently believe that this idea
is the right one to pursue, and my future research will be guided by this thought, even

though I am aware that this may be nothing more than a tilt at windmills.
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An examination of economic and macroeconomic ideas reveals how economic reasoning
significantly relies on causal language. Both normative and positive analyses necessitate
a meticulous identification of causative factors and their corresponding effects to extrapo-
late information about the functioning of economic systems. This critical aspect becomes
apparent when considering the fundamental inquiries posed by economists, such as: what
are the determinants of economic fluctuations? What is the optimal policy-making strat-
egy to maintain inflation rates below specified thresholds? How should policy instruments
be selected to stimulate GDP growth? Implicitly or explicitly, these inquiries demand an
in-depth comprehension of stable directional relationships between economic magnitudes,

denoted as causes and effects.

For instance, understanding the determinants of economic fluctuations involves identifying
variables that cause changes in economic activity and assessing their impact. Similarly,
determining the optimal policy strategy for controlling inflation requires understanding the
causal mechanisms through which policy actions influence inflationary pressures. Selecting

appropriate policy instruments for GDP growth stimulation entails recognizing the causal
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pathways through which these instruments affect economic output.

It is not surprising that philosophers such as Maki (2001) recognize causality as a central
tenet in economic ontology. This acknowledgment underscores the essential duality be-
tween causal language and the discipline of economics. It must be emphasised that this
interconnection is not confined to philosophical considerations but extends to practitioners
and it is probably not a mere coincidence that prominent philosophers of causality also

contributed to the economic discipline (Hoover (2006)).

The historical interplay between philosophical thought on causality and economic the-
ory traces back even to ancient Greece. In his renowned treatise “Physics,” Aristotle
expounded upon his reflections concerning material, formal, final, and efficient causes.
Simultaneously, Aristotle’s contributions to economics were predominantly articulated in
works such as the “Topics”, the “Politics”, and the “Nicomachean Ethics”. However, the
preeminent example of an intellectual who unequivocally shaped both the philosophy of
causality and economic thought was David Hume. In Hume (2003), the author made
seminal contributions to the philosophical understanding of causality, while his insights
into economic principles were elaborated in essays such as “On Money,” “On Interest,”

and “Of the Balance of Trade” (see Hume (1907)).

The prominence of the term “cause” in the titles of seminal economic works further under-
scores the enduring association between causality and economics. Notably, Adam Smith’s
foundational work, “An Inquiry into the Nature and Causes of the Wealth of Nations,”

epitomizes this connection (Smith (1776)). This emphasis on causality in economic inquiry

32



INTRODUCTION

is not merely terminological but reflects a fundamental concern with understanding the

determinants of economic phenomena.

The divergence of opinions regarding the causal order of macroeconomic variables has
significantly shaped the discourse among various economic theories, becoming a primary
source of economic debates. An illustrative case is the longstanding and still relevant con-
troversy surrounding the relationship between supply and demand. Say’s law, a renowned
proposition articulated by Jean-Baptiste Say, posits that there is no inherent tendency to-
ward economic depression, contending that an increase in supply prompts a corresponding
increase in demand (Say (1803)). This conceptualization can be represented by the fol-
lowing graphical sketch: Y — AD, where Y signifies output and AD represents aggregate
demand. The implied causal trajectory in this theory is clear, commencing with supply

and concluding with demand.

The conceptual underpinning of Say’s law found support and prominence through the ad-
vocacy of Ricardo (1817), while encountering strong opposition in the ideology of Malthus
(1836). Malthus proposed an alternative perspective, asserting the principle of effective
demand, wherein demand influences the quantity of goods supplied. His alternative con-
ceptualization implies a causal structure diametrically opposed to that posited by Say, as

exemplified by the following sketch: Y < AD.!

'During the relevant period, the prevailing economic orthodoxy regarded Ricardo’s and Say’s law
as triumphant in the ensuing debate. Keynes, employing hyperbolic language, asserted that “Ricardo
conquered England as the Holy Inquisition conquered Spain. His theory was accepted by the city, by the
statesmen and by academic world. But controversy ceased; The other point of view disappeared, it ceased
to be discussed. The great puzzle of Effective Demand with which Malthus had wrestled vanished from
the economic literature” Keynes (1936). However, Malthus’ ideas came back to life during the great crisis
of ’29 when they were taken up by Keynes, becoming in those years the orthodoxy. (see for detail Gordon
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Divergent perspectives on causal directionality are evident across various key macroeco-
nomic variables. For instance, the Mercantilist school proposed that an abundance of
precious metals leads to national prosperity, as exemplified in works such as Malynes
(1601). In stark contrast, Hume asserted the opposite viewpoint, by supporting the idea
that national prosperity will eventually lead to an abundance of gold and other valuable

alloys.

In the 19th century, the English Bullionists and the Currency school advocated a trans-
mission mechanism wherein money influences prices, while the Banking school defended a
perspective grounded in the opposite causal structure (Price — Money). This debate on
the causal relationship between Price and Money persisted through subsequent economic
thinkers. For instance Keynes, after initially defending the quantity view (Y - Money —
Prices) (Keynes (1930)), he refuted it in subsequent works, shifting focus to the impact of
interest rates and output on money demand (Keynes (1936)).> The discourse resurfaced
with the influential positions of Friedman (1956), who revitalized the quantity theory of

money.

Even within the same theoretical frameworks, economists diverged on the causal pathways.
For instance, within the proponents of the quantity theory of money, some argued that an
increase in money supply leads to higher prices, thereby stimulating business activity and

subsequently boosting output (Money — Prices — Y). Conversely, others emphasized a

(1965)), and later found new popularity after the great financial crisis of 2007.

2The revised perspectives of Keynes garnered substantial endorsement from economists associated with
the Stockholm School, including prominent figures such as Bertil Ohlin and Gunnar Myrdal. These schol-
ars played a pivotal role in elucidating the causal reasoning underpinning Keynes’ ideas. A comprehensive
exploration of this emphasis on causal understanding can be found in works such as Myrdal (1957).
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pathway where an increase in money first affects output, which in turn influences prices,
positing that higher money supply increases demand and output, gradually leading to

inflation (Money — Y — Prices) (see Blanchard (2000)).

Unfortunately, many economists have shown a reluctance to explicitly employ causal lan-
guage and reasoning. This aversion is particularly evident in the works of Friedman (see
Hammond (1996)). Friedman argues that no single cause can be isolated as complete, and
each direct cause is itself influenced by other direct causes. Despite his aversion, he often
finds it challenging to avoid using synonyms with substantial causal implications. For
instance, in Friedman and Schwartz (1963a) and Friedman and Schwartz (1963b), he fre-

YV ANAS

quently employs terms like “affect,” “influence,” “response,” and “prime mover,” among
others. As argued in Hoover (2004), Friedman’s avoidance of explicit causal language

seems more like a personal quirk rather than a genuine methodological commitment.

A possible contributing factor to the scarcity of explicit causal language in economic
discourse originates from the prevailing orthodox thought of the 19th century. This ideo-
logical framework not only shaped the economic dynamics of 20th-century works but also
influenced contemporaneous economic theories. This orthodoxy, influenced by proponents
of general equilibrium theory such as Walras (2013) and Marshall (2009), emphasizes the
presence of re-balancing forces where fluctuations in variables are generated by devia-
tions from steady states. This perspective minimized the perceived utility of explicitly
delineating clear causal directions, making causal reasoning appear unnecessary at first

glance.
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However, the presence of simultaneous causality does not negate the possibility of causal
interpretations; instead, it signifies a causal structure characterized by cyclical relation-
ships. Furthermore, as extensively elaborated in this thesis, the process of equilibrium ad-
justment does not imply a mandated bidirectionality of causal path. There are instances
where market forces impact only one variable, prompting it to respond and restore equi-
librium while allowing the other variable to fluctuate freely. This dynamic exemplifies a
non-symmetrical framework that can be effectively conceptualized using the asymmetrical
notion of causality. Therefore, the existence of rebalancing forces and dynamics result-
ing from violations of steady states does not preclude the application of causal reasoning;
rather, it necessitates a distinct formulation of the concept of causality. This aspect will be
better explained at the end of this introduction and will be largely elucidated throughout

this thesis.

We have demonstrated examples from macroeconomic literature to underscore the impor-
tance of using causal language and highlighted how disagreement on the causal structure
generates the economic debates. When competing economic theories lack logical inconsis-
tencies, empirical evidence becomes the primary means to distinguish the validity of one
theory over another. Unfortunately, numerous challenges arise in the pursuit of measur-
ing and inferring causal connections. Indeed, far from granted is the task of reconciling
the inherent causal dynamics of macroeconomics with the associational methodologies of

statistics. The well-known adage “correlation is not causation” succinctly captures the
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pervasive awareness of the considerable gap between statistical tools and the nuanced

concept of causality.

As emphasized by various authors, an econometric model must be equipped to model
and infer causal relationships. The fundamental difference between statistics applied to
economic data and econometrics lies precisely in their treatment of causality. Statistical
methods primarily identify and measure associations, whereas econometrics has developed

methodologies designed specifically for identifying and measuring causal relationships.
The Nobel laureate James Heckman stated:

The major contributions of twentieth-century econometrics to knowledge were:
the definition of causal parameters . . . the analysis of what is required to
recover causal parameters from data . . . and clarification of the role of causal

parameters in policy evaluation (Heckman (2000) p.45).3

However, the relationship between econometrics and causality has frequently been con-
tentious. The prospect of identifying and quantifying causal relationships through em-
pirical observations has encountered skepticism among economists and, more broadly,
philosophers of science. This skepticism echoes the concerns articulated by Hume, who
harbored general doubts about our ability to comprehend the essential nature of causation

in objects (see for instance Hume (2018) and Hume (2003)).

John Stuart Mill, another economist and philosopher renowned for his contributions to

the study of causality, adopted a somewhat less extreme position. He formulated several

3Extract taken from the abstract of the paper with emphasis added by Hoover (2004)
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principles for inferring causation (Mill (1843)), while admitting his wariness about their
application in economics (Mill (1848)). Mill attributed this caution to the imprecise and
distinct nature of economics as a discipline, where fundamental principles are largely
understood a priori (Hausman (1992)). In fact, in economic inquiry, controlled experiments
are often impractical or ethically unsound, making it impossible to maintain the ceteris
paribus condition. Mill’s skepticism (Mill (1967)) influenced subsequent researchers such
as Ludwig Von Mises, who even categorically rejected the notion of economics as an

empirical science (von Mises (1966)).

A pivotal moment initiating the reconciliation between economic and statistical languages
is attributed to Haavelmo (1944). Often regarded as the inception of modern econometrics,
Haavelmo’s work introduced the idea of deconstructing an economic process into deter-
ministic and stochastic components. According to Haavelmo, if the researcher successfully
identifies the causal structure of the deterministic component, the stochastic element will
conform to the law of probabilities. Haavelmo’s framework provided a roadmap for in-
tegrating the causal discourse of economics with the statistical associations, offering a
concept that appears straightforward yet robust that has shaped and continues to under-

pin the foundation of the econometric model developed since.

The ideas and methodologies pioneered by Haavelmo garnered significant support and
elaboration within the community of economists associated with the Cowles Commission
tradition. Building upon Haavelmo’s foundational concepts, these economists conceptual-

ized the economic system as a system of equations, known as Structural Equation Models
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(SEM).* In SEMs, each equation incorporates the influenced variable on the left-hand
side, and the variables that exert causal influence on it along with a stochastic error term
on the right-hand side. This framework enables a detailed description and quantification
of causal relationships among exogenous and endogenous variables, as well as among en-
dogenous variables themselves (Simon (1953)). The equality sign in the equations should
be read as “is caused by”, devoid of the symmetry inherent in its mathematical coun-
terpart. Each equation embodies a counterfactual logic, shedding light on hypothetical
outcomes in presence or absence of specific actions (such as policy interventions). The
strength of the model is that, given a correct identification of the causal order, the causal
parameters can be estimated using standard techniques like Ordinary Least Squares or
Maximum Likelihood. The SEM founders explicitly articulate a causal reading. For ex-
ample Haavelmo (1943) links each structural equation to a statement about a hypothetical
controlled experiment®, while scholars like Marschak (1950), Koopmans (1949), and Simon
(1953) emphasized that SEM serves the purpose of addressing the hypothetical changes

that can be induced by policy interventions.

4The initial application of a system of equations to delineate and infer the extent of causal connections
occurred beyond the realm of economics; it was in fact pioneered by the geneticist Wright (1921).

5See Pearl (2015) for a discussion on the explicit causal meaning implied by Haavelmo’s works.

5The robust emphasis on causal reasoning by the founders of SEM has been shrunk over time. Numer-
ous scholars have underscored the necessity of self-contained causal interpretation for a structural equation
(see, for example, James et al. (1982) Bollen (1989)). In their seminal textbook on SEM, Schumacker and
Lomax (2016) explicitly stated, “We often see the terms cause, effect, and causal modeling used in the
research literature. We do not endorse this practice and therefore do not use these terms here”. Leamer
(1985) made the observation, “It is my surprising conclusion that economists know very well what they
mean when they use the words “exogenous”, “structural”’, and “causal”’, yet no textbook author has
written adequate definitions”. LeRoy (1995) goes as far as denying any causal interpretation for most
of the structural parameters that economists and social scientists strive to estimate. The original causal
connotation of the parameters in SEM has gradually been supplanted by an algebraic interpretation.
However, this does not negate the causal logic behind SEM; instead, it underscores additional challenges
in attaining a causal understanding.
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The economists affiliated with the Cowles Commission emphasized the crucial task of ac-
curately delineating causal structures to construct meaningful models (e.g., Koopmans
(1949), Koopmans et al. (1953)). In tackling this challenge, practitioners relied on their
theoretical convictions and core economic principles. As a result, the identifying restric-
tions varied depending on the researcher’s theoretical stance, often imposing preconceived
notions onto the data rather than allowing the data to speak independently. This method-
ological approach introduces arbitrary elements into the model, potentially yielding diver-
gent conclusions among researchers even when analyzing the same dataset. This concern
was articulated by Sims (1980), who criticized the multitude of assumptions required
for econometric identification, suggesting that these could lead to the generation of “in-
credible” restrictions. In addressing this issue, Sims advocated treating every variable as
endogenous, thereby avoiding interference from prior knowledge. This idea prompted the
construction of Vector AutoRegressive model (VAR), emerging as one of the most widely

used tools in macroeconometric literature.

The VAR model belongs to the econometric tradition pioneered by Wold (e.g., Wold
(1960)) and focused on the process properties, where causality is defined in the sense of
Granger (hereafter Granger-causality). Granger (1969) defined causality in terms of in-
cremental predictability and later in terms of conditional probability in Granger (1980)
and Granger and Newbold (2014). This conceptual framework does not accommodate a
counterfactual interpretation of causality. For example, if a researcher determines that

changes in the money supply do not Granger-cause changes in the price level, it does
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not necessarily imply that an expansionary monetary policy will not lead to inflation.”
Granger himself in Granger (1995) underscored the differences between these methodolo-
gies, emphasizing that Granger-causality lacks the counterfactual implications found in
the structural approach.® Granger-causality, upon which VAR models are based, primar-
ily assesses the predictive power of variables, making it especially valuable for forecasting
purposes. In contrast, structural causality aligns more closely with the demands of policy

analysis.

The limitations of the VAR model in terms of conducting counterfactual analyses prompted
Sims et al. (1982) to propose a structural variant known as the structural VAR (S-VAR)
(see also Sims et al. (1986)). This model redirects focus from the parameters to the co-
variance matrix of the system. The premise is that unobservable exogenous forces, not
directly observed by the econometrician, cause oscillations in the economic system. As
these shocks are deemed primitive (lacking common causes), treating them as approxi-
mately uncorrelated becomes a natural choice (Bernanke (1986)). In practical terms, this
involves orthogonalizing the covariance matrix, with its decomposition contingent upon the
causal structure of contemporaneous observations. The necessity to define contemporane-
ous causal structures has compelled practitioners to rely once again on their theoretical
convictions, reintroducing the problems related to the arbitrary settings of identifying

restrictions akin to those encountered in SEM methodologies.

"For detailed discussions on scenarios where structural and Granger causality converge, refer to White
and Lu (2010) and White and Pettenuzzo (2014)

8This limitation has led to significant errors in economic literature, as discussed by Hendry and Mizon
(1999)
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A widely adopted method for imposing identifying restrictions is to employ a hierarchical
causal ordering. This approach is favored for its practicality, both from an economic and
mathematical standpoint Enders (2008).% In this hierarchical framework, one variable ex-
erts contemporaneous influence on others while remaining unaffected by them. Specifically,
the ¥ variable contemporaneously affects all k' variables where k& > 4, and it is in turn
contemporaneously influenced solely by the j** variables, where j < i. This hierarchical
arrangement results in a parameterization of contemporaneous relationships structured as
a lower triangular matrix. A common technique to achieve this parameterization involves

decomposing the covariance matrix using the Cholesky decomposition.

Given a Cholesky decomposition, the alteration of the sequence of variables in S-VAR
results in a corresponding adjustment to the estimated structural parameters. In a con-
ference centered on a paper addressing the identification of S-VAR (Hoover et al. (2009)),
Hoover illustrated the potential for divergent outcomes based on different choices of vari-
able orders. Such variations can lead to significant errors in the counterfactual interpreta-
tion.'® Thus, the careful selection of the contemporaneous causal structure is of paramount
importance. Practitioners are used to address this challenge relying on economic theory,

perpetuating the issue associated with the arbitrary selection of identifying restrictions.

9The hierarchical structure is preferred as it minimizes the number of required identifying restrictions.
However, alternative methodologies have been proposed, such as Bernanke (1986) who used an explicitly
structural model to orthogonalize the VAR residuals, or Blanchard (1989) who used Keynesian theory to
set identifying restrictions

0Hoover illustrated this matter by presenting a scenario in which the impulse response function, derived
from a specific variable order, anticipates an increase in Y in response to an increase in X. Subsequently,
he demonstrated that by altering the variable order, the prediction could shift to a decrease in Y following
an increase in X.
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In parallel, beyond the realm of economics, researchers at UCLA (e.g. the contributions of
Pearl (2009) and Verma and Pearl (1992)), and Carnegie Mellon University (CMU) (e.g.
the contributions of Spirtes and Meek (1995), Spirtes et al. (2000), and Kwon and Bessler
(2011)), were engaged in the development of algorithms designed for the inference of causal
structures within non-temporal and non-experimental datasets. Their works are centered
on the idea that it is possible to translate conditional and unconditional dependence and
independence patterns into a directed acyclic graph (DAG), commonly referred to as a

Bayesian graph (Pearl (1985)).

The primary aim of these methodologies is to uncover relationships among variables by
identifying parents, ancestors, children, and descendants based on measures of conditional
and unconditional association. The theoretical foundation lies on the idea that, despite
the well-established principle that correlation does not imply causation, an associative
measure necessarily conceals an underlying causal rationale (Reichenbach (1971)). The
process of inferring causality hinges on the premise that, when conditioning the association
measure with additional variables, its value experiences alterations contingent upon the

direction of causality.

To illustrate how conditional and unconditional association measures can be used to infer
causal graphs, consider three variables X, Y, and Z and the three fundamental causal

structures: the chain, the fork, and the collider (depicted in Figure I.1).

A causal chain is a primitive graph where the variables are arranged in a sequential order,

namely every variable influences the subsequent one. Conversely, a causal fork contains
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Figure [.1: Fundamental Causal Graphs with Three Variables: a) Causal Chain, b) Causal
Fork, ¢) Collider

a single variable serving as the cause of multiple effects. In both scenarios, every pair
of variables exhibits an unconditional association. However, in a causal chain, the asso-
ciation between two variables that are not directly linked disappears when the measure
of association is conditioned on a variable mediating their causal path. Conversely, in a
causal fork, no association between two child variables is discernible when conditioning on

their parent.

The third primitive causal graph is the collider, which is the converse of a fork. In a
collider, there is a single child variable influenced by multiple parent variables. In this
scenario, only pairs including the child and some parents are unconditionally associated.
However, the parents themselves become associated when conditioned on the child. This
phenomenon, known as Berkson’s paradox (Berkson (1946)), may appear counter-intuitive
but can be clarified through a straightforward example. Consider a light bulb that illu-
minates only if both of two switches are turned on. These switches are operated by two
individuals who have no means of coordination. Therefore, the state of one switch is en-
tirely independent of the state of the other. However, if we examine only instances when
the light bulb is illuminated (i.e., conditioning on a third variable), there will naturally be

perfect correlation between the two switches.
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These concepts have been integrated into various inferential algorithms, with the PC al-
gorithm emerging as the most prominent (see Spirtes and Glymour (1991)). The PC
algorithm operates through three sequential steps: identifying the skeleton, orienting the
colliders, and directing the remaining edges. The algorithm initiates with a fully intercon-
nected undirected graph, where each node is linked to every other node. Subsequently,
edges corresponding to variables that are unconditionally or conditionally uncorrelated are
removed. The algorithm then evaluates whether a variable can unblock the paths among
unconditionally uncorrelated variables. If so, a collider is identified, initiating the process
of assigning directionality to the relevant edges. The final phase of the algorithm involves
assigning directions to the remaining edges based on logical criteria. This process adheres
to the principle that causal relationships cannot form cycles, and any remaining undirected
connections cannot lead to colliders. This systematic approach ensures the determination

of the directionality of the residual edges.

Despite the PC algorithm has been initially developed for non-time series data, econome-
tricians have adapted these techniques to suit their specific needs. In fact, graphical causal
inference methods enable the identification of contemporaneous causal structures, and the
resultant estimations are useful in establishing the identifying restrictions of an S-VAR
model. The integration of the S-VAR model and the PC algorithm was first explored by
Swanson and Granger (1997), who introduced a simplified version of the algorithm tailored
for the hierarchical causal order required by the Cholesky decomposition. Demiralp and

Hoover (2003) generalized the approach to a larger class of models and provided Monte
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Carlo evidence to prove the effectiveness of the method. In a follow-up study, Demiralp
et al. (2008) developed a bootstrap method that allows one to assess the reliability of a

data-based identification scheme.

The macro-econometric literature provides several empirical applications of the S-VAR
model integrated with the PC algorithm. For instance, Perez and Siegler (2006) applied
the PC algorithm to investigate causal relationships among agriculture, money, interest
rates, prices, and real GDP. The graphical method for causal inference has also found
applications in applied microeconomics (e.g. Bessler and Akleman (1998)) and in the

financial domain (e.g. Bessler and Yang (2003)).

The integration of the S-VAR model with the PC algorithm marks a significant advance-
ment for counterfactual analysis in economics. This approach enables the estimation of a
structural model without the subjective imposition of identifying restrictions. Naturally,
certain implicit assumptions persist in this methodology. For instance, the requirement
that the underlying structure be a Directed Acyclic Graph (DAG) indirectly imposes
identifying restrictions. Additionally, the efficacy of the PC-algorithm depends on causal
sufficiency and the assumption that the Data Generating Process (DGP) adheres to sta-

' Causal sufficiency entails that the graph correctly incorporates all

bility conditions.
common causes among each pair of variables, while stability condition is met when all

probabilistic relationships, both conditional and unconditional, remain unchanged under

variations in their numerical values (Pearl and Verma (1995)). In order to maintain the

HReferred to as the faithful condition by Spirtes et al. (2000) and DAG-isomorphism by Pearl (1988).

46



INTRODUCTION

integrity of the causal inference process, it is also assumed that the variables follow spe-
cific distributions, such as normal (Pearl (1988)) or binomial (Meek (1995)). Furthermore,
instances exist where (un)conditional patterns of (in)dependence generated by a specific
causal graph are equivalent to those in another DGP linked to a different causal structure

(Verma and Pearl (1991)).

To address these challenges, researchers have developed more versatile algorithms, such as
the Cyclic Causal Discovery (CCD) algorithm by Richardson and Spirtes (1996), aimed at
relaxing acyclicity constraints. Another notable advancement is the Fast Causal Inference
(FCI) algorithm introduced by Spirtes et al. (2000), which relaxes the Markov condition. A
thorough examination and comparison of various algorithms for causal structure discovery

can be found in the comprehensive review by Sangiiesa and Cortés (1997).

In the meantime, econometrics underwent a significant evolution marked by the discovery
of the importance of non-stationarity and the emergence of cointegration theory. The term
“cointegration” was introduced by Granger (1981), who initially hypothesized the exis-
tence of an error correction mechanism where a linear combination of I(d) variables is I(b)
with d > b (see Granger and Weiss (1983)). This innovative idea enabled the refinement
of models that describe the variables’ dynamic based on adjustments of long-term com-
ponents, integrating cointegration in the error correction mechanism introduced by earlier
works such as Sargan (1964), Phillips (1957), and notably by Davidson et al. (1978). The

error correction mechanism inherently suggests that deviations from equilibrium in one
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period are partially corrected in subsequent periods. This behaviour is typically estimated
by regressing the changes in a series on the lagged values of a linear combination of two

or more non-stationary series.

The foundational concepts laid out by Granger were subsequently expanded upon by
Johansen (1988a) and Yoo (1986), leading up to the seminal contribution of Engle and
Granger (1987), which introduced the Engle-Granger test, one of the most widely used

tools in the econometric literature.

Johansen (1988b) integrated the concept of cointegration into the framework of Vector
Autoregressive (VAR) models, creating the Cointegrated VAR (C-VAR). This advance-
ment rendered the traditional VAR model obsolete, as it can now be seen as a special
case of the C-VAR.'2 Further refinements of the model were presented in Johansen’s sub-
sequent works, such as Johansen (1991) and Johansen (1992b), and its application to
various macroeconomic scenarios is evident in works such as Johansen and Juselius (1990)

and Johansen and Juselius (1994).

The C-VAR model is situated within the process tradition and does not find direct appli-
cation in structural analysis. Additionally, it incorporates two different unidentified causal
structures: the short-term and the long-term. The former mirrors the approach taken in
the Structural VAR (S-VAR), and can be estimated by employing the techniques previ-
ously discussed. In contrast, the long-term structure introduces additional complexities

and nuances that are central to this thesis. This dual framework amplifies the complex-

12The classical equation of a C-VAR is AX; = IIX, 1 + Zle AX;_; +&¢. By constraining IT to be 0,
we derive the representation of a VAR(k) model.
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ity of the identification problem, necessitating specialized methodologies for disentangling

causal relationships in both temporal dimensions.

Only in recent years researchers initiated inquiries into the potential expansion of concepts
derived from graphical causal inference to address the long-run identification problem. For
instance, Malinsky and Spirtes (2019) proposed a methodology based on the Bayesian In-
formation Criterion (BIC) value, while Hoover (2020) investigated the possibility of map-
ping cointegration and weak exogeneity patterns onto a Directed Acyclic Graph (DAG),

proposing foundational rules for a long-run causal discovery algorithm.

Studying long-term causality holds significant importance in economic analysis. In fact,
the disparity between long-term and short-term causality transcends mere temporal con-
siderations. The demarcation lies in the stability of the relationship among variables. The
former is predicated on an equilibrium concept, whereas the latter denotes the average
influence that variations in one variable exert on others. Consequently, given that the
vast majority of economic theories associate variables fluctuations to dynamic generated
by equilibrium violation, long-term causality appears to be more coherent in describing

economic mechanisms.

Long-term causality will be rigorously defined and explained throughout the thesis. Here,
we provide a preliminary definition to initially elucidate the behaviour of the variables
under study. We say that a variable y is caused in the long-term by a set of variables X if

there exists an equilibrium relationship between y and X and violations of this equilibrium
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trigger a reaction with either positive or negative adjustments of y leading to changes that
tend to restore the equilibrium state over time. The impact on y is contingent upon
the condition that all other factors remain constant and the comprehensive observation
of all variables affecting the system. This last aspect will be particularly evident in the
subsequent chapters of the thesis, where the concept of partially observed systems will be

thoroughly addressed.

To illustrate the conceptual divergence between long and short term causality, consider

two integrated variables X and Y governed by the subsequent data-generating process:

A}/t = 05AXt + &¢

AXt = Wt

where e ~ WN (0,02 > 0) and w ~ WN(0,02 > 0) and W N stands for white noise.

It is evident that the values of AY (and consequently Y') are influenced by interventions on
X (namely on AX) while the converse is not true. This asymmetry is visually represented

by the directed graph X — Y.

In the given system of equations, there is no explicit equilibrium relationship specified
between X and Y. Therefore, there does not exist any stable relationship to which the
system tends; rather, it is just known that, on average, when X increases or decreases
by a unit, Y correspondingly increases or decreases by 0.5. To illustrate this concept,
we reported simulations of X and Y, where the observations are generated according to

the aforementioned system of equations. The resulting series along with their ratio are
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displayed in Figure [.2 and Figure 1.3.
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Figure 1.2: Plot of Y (Red) and X (Blue) Generated According to 1. o2 = 02 = 1.

Number of Obs.=2000. Initial Values: X, = 50, Yy = 100.
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The variability observed in the ratio between the two variables suggests a lack of persistent

equilibrium relationship between X and Y despite the impact of fluctuations in X on those

in Y. This form of causal interaction is referred to as short-term causality.

Consider now the scenario where it exists an equilibrium relationship between X and Y.

In this context, the presence of equilibrium implies that any deviation from this steady
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state prompts a response from at least one of the variables to restore the equilibrium
condition.’® Let us assume that equilibrium is maintained when Y is half of the value of
X (i.e., when Y = 0.5X). If this equality is disrupted, ¥ adjusts to return to this initial
equilibrium. Specifically, when Y — 0.5X is negative, Y should increase (AY > 0), while
if Y — 0.5X is positive, Y should decrease (AY < 0). This dynamic can be expressed by
the equation

AY} = O./(Y;g_l - 0.5Xt_1>

where « indicates the speed of adjustment. For instance, if « = —1, AY reacts by adjusting

the entire amount of the previous period’s disequilibrium.

Now, suppose the speed is -0.6, and that X does not react to the disequilibrium. This

situation is characterized by the following system of equations:

AY} = —06(}/;5,1 — 0.5Xt,1) + &

AXt = Wt

where e ~ WN (0,02 > 0) and w ~ WN (0,02 > 0).

Here, the disequilibrium status does not affect X but triggers a response in Y. This asym-
metric relationship can be graphically summarised by the structure X — Y, signifying

that X causes Y. To clarify the divergence between these causality concepts, a simulation

I3A steady state is an economic configuration in which all short-run variations have stabilized, and
quantities are either constant or growing at a constant (exponential) rate Hoover (2001). Steady states
represent the scenario implied by the equilibrium status

14Tn case a = —1 the adjustment process lasts only one period. This actually imply short-term causality.
Nevertheless, since it arises from the error correction mechanism we will treat this case as a particular
instance of long-term causality.
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of X and Y was performed using the data-generating process described in Equation 2.

The resulting series and their ratio are depicted in Figure [.4 and Figure 1.5.
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Figure 1.4: Plot of Y (Blue) and X (Red) Generated According to 2. ¢ = o2 = 1.
Number of Obs.=2000
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Figure [.5: Graph of the Ratio }/—( for the Series Plotted in Figure 2.4

Notably, the relationship between the two variables remains stable over time. For this

reason, we refer to this type of causality as long-run causality.
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Long and Short term causality can also coexist. Consider the following system of equations:

AXt = O.G(Xt,1 — 05}/;,1) + Et, &€~ WN(O, 0'52)

AY; = O5AXt + We, W ~ WN<Oa O—f;)

This system exhibits both long-run and short-run causal structures. The former is char-
acterized by the graphical representation ¥ — X, indicating that Y influences X in the
long-run. Conversely, the short-run causal structure is represented as X — Y signifying

that X influences Y in the short term.

Up to this point, our examination has focused on simplified cases involving only two
variables. Natural extensions of these systems of equations can be expressed in vector
auto-regressive forms. For short-run causality, either the simple VAR or the structural
VAR models can be employed. Conversely, to capture long-run causality, it is necessary
to use the Cointegrated VAR (C-VAR) in its Vector Error Correction Model (VECM)
representation. When both short and long-term causality are present, the multivariate
extension is represented by the C-VAR(k) model with £ > 1, indicating a VECM with

dynamics spanning both short and long term behaviour.

To clarify, consider a causal structure delineated by the graph in Figure 1.6. We begin by
considering causal relationships of a short-term nature, such that the DGP is represented
by a simple VAR model. For the sake of simplicity, assume that the influences after inter-
ventions manifest with a time distance of one period. This temporal separation enables the

representation of the DGP using a simple VAR(1) model of the form AX, = PAX; | +¢;.
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A

Figure 1.6: Causal Graph Representing the Long-Term Causal Structure

Incorporating the causal graph depicted in Figure 1.6 into a VAR model is straightforward.

It just requires assigning a non-zero value to the coefficients linking the caused and causal

variables, while setting to null those coefficients linking variables not directly connected

in the graph. Therefore, the graph in figure 1.6 is easily translated into a VAR as follows:

-A- -0 000O0O0O0OQO0
B 000O0O0O
C x « 00 00
D * + 00 0 O
A —
E 00 = x 0O
F 000 =« 00
G 0 00 0 % =%
H t 0000 *= O

where ¢ is an 8-dimensional white noise and * € (—o0,0) U (0, 00).

0

S Q W =

T Q=

15

5 Note that * represents a generic nonzero number, and the *’s values in the matrix need not correspond
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The natural multivariate extension of Equation 2 is the VECM(0), represented by the
following equation:

AX; =af' X, 1+ &

Here, X; is a p X 1 vector, « is a p X r matrix containing the speeds of equilibrium adjust-
ment, 5’ X, 1 is an r X 1 matrix representing the deviations to the long-run relationship,

and r is the cointegration rank.

Incorporating the causal structure in Figure 1.6 is slightly more involved. The initial step
involves analyzing the equilibrium relationships to determine the entries of the coefficient

matrix (3.

The first equilibrium relationship of the graph in figure 1.6, namely the one between C, A,
and B, is described by the equation C' = 1 A+ 3> B. As for linear regression, the equal sign
is not a symmetrical relation of identity. Rather, it is closer to the assignment concept.
The equal sign should be read as “is caused by” or “is driven by”, and the equality can be
viewed as an experiment. For this reason, the coefficient that multiplies C' should be set
to unity.'® It follows that the first row of the 5’ matrix will have two non-zero coefficients
in the columns corresponding to A and B, and a unit entry in the column corresponding
to C'. The same logic applies to the second equilibrium relationship, i.e., the one between

D, A, and B. Every successive equilibrium relationship is incorporated similarly.

to the same numerical values: each one can be a distinct nonzero number.
16This is what we implicitly do in linear regression. When we identify the dependent variable, we
restrict its coefficient to be equal to 1.
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The resulting ' matrix takes the following form:

and the matrix ' X; containing the dis-equilibria at time ¢ is

A+ xB+C
*sA+*«B+ D
«C+«xD+ F
BX =
*D+ F

*FE4+xF+ G

«F 4+ H

Next, it is derived the o matrix containing the speeds to which the variables adjust to
achieve the equilibrium. According to the definition of long-run causality, variables that
are not directly caused do not adjust when a disequilibrium occurs. Hence, variables A and

B remain unaffected by any disequilibrium, resulting in zero vectors for their respective
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rows in a'”. On the other hand, C' adjusts when C' # %A + *B, thus the row of «
corresponding to C' will have a non-zero element in the column corresponding to the first
long-run relationship. This principle extends similarly to the adjustment of D and the

other directly caused variables.

Thus, the resulting adjustment matrix is structured as follows:

00000 =

1"This condition matches weak exogenous. It is said that A and B are weakly exogenous with respect
to the cointegration matrix in the C-VAR modeling Y = {A,B,C,D,E,F,G, H}
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The complete VECM is then given by:

A 00 0O0O0O A
B 000 O0O0OT@ O]« =1 0000 0| |B
C *+ 000 O0O0||*x =« 01000 0f)|C
D 0O« 00O0O0[[0OO0 =« 100 O0f|D
A - +€t
E 00« 0O0O0[|]0O0O0O0S=1S0O0|]|FE
F 000 « 0O0[]00O0O0=x x10|]|F
G 0000 =« 0[]0O0O0O0O0S«0O01||CG
H 000 0 0 = H
L Jd¢ L - L Jdt-1

Consider the causal structures illustrated in Figure 1.7'%, which combines both long-run
and short-run dynamic. Incorporating the techniques from previous examples results
in a Data Generating Process that encompasses both short and long-run structures, as
the one illustrated in the figures. The resulting model adopts the form of a C-VAR(k)
with £ > 1. Assuming that short-run causality affects variables after one lag, we can
adopt the Vector Error Correction Model (VECM) representation of a C-VAR(2). The
matrix representing short-term dependencies includes non-zero entries corresponding to

the relationships between C' and D, A and C, and B and C.

Conversely, the cointegration matrix embodies three equilibrium relationships: B = %A,

18For the sake of conciseness, the graph related to the short term dependencies is depicted disregarding
the time index. Nevertheless, it is implied that the relation A — B must be considered as A; — Byy1.
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Long-Run Short-Run
D D
B C C
A A B

Figure [.7: Causal Graphs Representing the Short and Long-Term Causal Structures

C = xA, and D = xB + «C. The adjustment matrix consists in an empty first row and
a single element in each of the remaining three rows. Specifically, it must delineate the
influence that the first, second, and third equilibria exert on B, C, and D, respectively.

The final model is expressed as follows:

A 0 0 Ofr 1 1A 0 0 = 0 A
¥*x 1 0 0
B * 00 B 0 0 = 0 B
A = « 010 + A + &
C 0 « O C 0 0 0 = C
0 * % 1
D 0 0 =| - - |D 00 0O D
L 1y L d I I J I ]

Despite this last case can be of significant importance for specific economic scenario,
throughout this thesis we will focus exclusively on long-term dynamics, excluding the

possibility of data-generating processes given by cointegrated VAR of order higher than 1.

This thesis contributes to the econometric literature by developing new tools for inferring
long-run causality. Although it is inspired by previous work on the topic, particularly

by Hoover (2020) and generally by the works on graphical causal inference, the proposed
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techniques diverge from the standard approach. Instead of focusing directly on translating
statistical patterns into causal graphs, this work aims to define novel causal properties
that can be estimated using standard hypothesis testing procedures. Thus, the technique
presented here aligns with classical statistical methodologies departing from the iterative

algorithmic procedures proposed by earlier literature on this topic.

The statistical concept on which we built our approach and drew inspiration is weak
exogeneity, particularly within the cointegration framework. Weak exogeneity has often
been associated with concepts pertinent to the causal perspective. For example, it has been
linked to variables that remain unaffected by others within the system or to the notion
of driving trends, i.e., variables that govern the long-term dynamics. Simultaneously,
weak exogeneity manifests as model restrictions, enabling the construction of standard
inferential procedures for its identification. This dual nature of weak exogeneity allows
hypotheses related to causal assertions to be translated into hypotheses related to model
restrictions, which are subject to statistical identification. Consequently, by testing the

latter, one can analyse the former.

Nevertheless, weak exogeneity is a concept developed exclusively for statistical purposes,
and its causal interpretation has often been hazardous since prior to Hoover (2020) there
was little effort to rigorously analyse the relationship between structural causality and
weak exogeneity. Moreover, economists have already generally recognized that statistical
exogeneity has limited applicability to macroeconomic issues. Despite the central im-

portance of identifying exogenous variables in macroeconomics, this identification cannot
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generally be achieved by examining weak exogeneity. As stated in Sieron (2019) p.332:

Now, it should be clear that the debate is not about exogeneity in the statistical
sense, [...] (in this type of exogeneity), what really matters is the adequacy of
the model, not the nature of the variables per se. [...| The confusion stems

from the fact that what really matters is causality, not exogeneity.

Inspired by this observation, we recognized the necessity for a refined formulation of the
concept of exogeneity—one that provides a rigorous definition while maintaining com-
patibility with the causal discourse essential in macroeconomic analysis. Consequently,
we introduced a novel definition of exogeneity anchored to the latent causal structure

governing the data generating process of economic systems.

In recognition of the causal underpinning of this new definition of exogeneity, we have
termed it “causal exogeneity.” This novel conceptualization underscores the fundamental
roots of the terms endogeneity and exogeneity. Etymologically, “endogenous” signifies
“internally generated” while “exogenous” means “externally generated”. Our approach
defines internal and external generation based on the causal graph governing the system.
Specifically, given the set of modeled variables, which represent just a portion of the nodes
of the causal graph governing the whole system, if one of its elements has all its parents
among the observed variables, it is categorized as internally generated. Conversely, if some
of its parents are outside this subset, it is considered externally generated. Importantly,
this definition also carries a counterfactual implication, since it implies that causally ex-

ogenous variables wield full manipulative influence over the nominal values of causally

62



INTRODUCTION

endogenous variables.

Throughout this thesis, we explored whether causal exogeneity manifests as a model prop-
erty. As we will prove in the first two chapters, causal exogeneity corresponds to model’s
constraints, allowing us to translate these constraints into causal hypotheses. Importantly,
these model restrictions can be empirically tested using standard statistical techniques.
Consequently, we can develop statistical tests that indirectly assess causal properties. This
approach parallels that of weak exogeneity, as previously discussed, but with a crucial dis-
tinction: the new concept is inherently grounded in the causal structure of the system,

thereby avoiding ambiguity stemming from its causal interpretation.

This approach addresses the critique raised in Sieron (2019). However, the same paper
presents another concern regarding the use of statistical exogeneity in the analysis of

macroeconomic issues related to exogeneity:

In econometrics and Statistics, exogeneity means that a variable is independent
of other variables, while endogeneity implies a variable is jointly determined
with other variables in the system. Of course, in reality all variables are in-
terrelated. Hence, in a statistical sense, whether a variable is exogenous or
endogenous can only be determined in the context of a particular model (ex-

plicitly constructed) (Sieroni (2019) p.332).

At first glance, our approach only partially addresses this critique. The definition of
causal exogeneity hinges on the model, contingent upon the identification and inclusion
of specific variables in the analysis. Hence, varying the selection of variables can modify
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the properties of causal exogeneity. This implies that causal exogeneity is not an inherent
characteristic of a variable itself, but rather a property that can only be defined with

respect to other variables within the model.

However, we need to emphasize two key aspects. Firstly, the property of causal exogeneity
is not dependent on the model in the sense of the selected structure. This implies that it
does not alter based on arbitrary specifications, such as identification restrictions imposed
by the model user, but rather depends solely on the variables included in the analysis.
Secondly, the critique hinges on the insufficient focus on the complex interrelationships
among economic variables. However, our approach is grounded in the properties of the
underlying causal graph that defines the causal relations among all variables influencing a
system. This includes every causal connection, even those that are mediated by unknown
and un-modeled factors. Therefore, while it is accurate to say that the definition of causal
exogeneity is model-dependent, it does not imply a lack of consideration for the complexity

of real economic systems.

Our approach offers a valuable tool for analyzing macroeconomic issues through inferential
procedures that prioritize causality while acknowledging the intricate structures arising
from the multitude of social relations inherent in economic systems. Hence, we believe
that our new approach takes Sieron’s critiques seriously and effectively addresses them.
Naturally, we recognize that the method represents a reconciliation between statistical
methodologies and causal reasoning, necessitating compromises. However, while certain

nuances may remain unaddressed, we posit that these new tools can effectively address
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macroeconomic issues by rigorously incorporating causal reasoning.

The thesis is structured into three chapters. The first chapter defines the concept of causal
exogeneity, delineating both its weak and strong forms. It proves that these concepts are
manifest in the model properties, demonstrating how this duality facilitates the translation
of causal hypotheses into model constraints. Additionally, the chapter develops inferential
procedures based on standard techniques for indirectly testing causal assertions. Chapter
2 delves deeper into weak causal exogeneity, presenting an alternative technique for its
identification. It includes results from simulations and discusses the performance of the
proposed tests. Furthermore, the chapter illustrates the practical utility of causal exo-
geneity through an empirical analysis focusing on monetary exogeneity and endogeneity.
Finally, the third chapter analyses the causal insights derived from hypothesis testing on
standard weak exogeneity. It investigates the extent to which weak exogeneity captures
information pertaining to non-causality and driving trends. In conclusion, an empirical
illustration based on theories of business cycles illustrates the correct causal interpretation

of weak exogeneity.
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Chapter 1

Identification and Inference of Long-

Run Causal Exogeneity

1.1 Introduction

Attributing exogeneity to economic variables poses a complex challenge, and disagreements
concerning their endogeneity nature have generated extensive debates. A notable exam-
ple is found in monetary economics, where the characteristics of the money supply have
sparked controversy since the 19th century, with conflicting perspectives from the Currency
and Banking Schools (see e.g. Knapp (1924) and Menger (1871)). Disagreements have
persisted in modern literature, with neoclassical synthesists and post-Keynesian scholars
contributing to the discourse (e.g. Kaldor (1970), Moore (1989)). Although there currently
is a widely accepted consensus that central banks determine interest rates and permit the

quantity of reserves to fluctuate, the ongoing discourse remains both active and pivotal
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within the realm of monetary theory, with significant consequences for policy-making. (see

Sieron (2019)).

The dispute over exogeneity extends beyond monetary economics. For instance, economists
remain divided on the origins of business cycles, with some advocating for internal genera-
tion due to economic dynamics, while others support external origins attributed to shocks

and disturbances (see for instance Gordon (1991)).

In parallel, the field of econometrics has recognized the fundamental significance of exo-
geneity for statistical purposes. Building upon the foundational work of Koopmans (1950),
the celebrated paper by Engle et al. (1983) introduces distinct definitions of exogeneity,

each tailored to specific econometric analyses.

Weak exogeneity is essential for efficient estimation and hypothesis testing within con-
ditional models and it serves as a prerequisite for strong and super exogeneity. Strong
exogeneity primarily relates to forecasting, while super exogeneity ensures the validity of
policy simulations. Those concepts of exogeneity have been the subject of extensive study,
leading to the development of inferential procedures for their identification. Weak exo-
geneity evaluation is relatively straightforward within cointegrated systems, as exemplified
in studies such as Johansen (1992c). Strong exogeneity can be ascertained through a com-
bination of weak exogeneity and standard Granger-causality tests, while super exogeneity

is assessed by evaluating parameter invariance, as illustrated in Engle and Hendry (1993).!

IFor further discourse on this subject, one may refer to the collection of papers in Ericsson and Irons
(1994).
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It is important to emphasize that while weak, and strong exogeneity are indispensable
for empirical research, their identification serves statistical purposes and may not align
with the notions of exogeneity underpinning the ongoing macroeconomic debates. In fact,
numerous scholars have treated statistical exogeneity as distinct from the economic notion,
emphasizing that economic deliberations prioritize causal understanding over statistical

aspects.?

Super exogeneity is often linked to causality because it is a notion based on structural
invariance of parameters. However, as will be demonstrated throughout this thesis, it
does not provide information about the underlying causal structure. In fact, causality
may even operate in the opposite direction to what is suggested by super exogeneity (see,
for example, the discussion in Section 1.3 and other examples throughout the thesis).
The primary purpose of super exogeneity is to assess whether the predictions derived
from policy simulations based on the estimated model are valid. Ultimately, it is best

understood as a statistical concept.

Kaplan (2004) suggests the dichotomy between statistical and causal conceptions of ex-
ogeneity has resulted in the formulation of ambiguous and confusing definitions. For in-
stance, Cohen et al. (2013) define exogenous variables as those not influenced by any other
variables within the system, except for other exogenous variables. However, this assertion

lacks precision as it implies the possibility of one exogenous variable being dependent on

2This viewpoint has been articulated both prior to and subsequent to the publication of the seminal
paper by Engle, Hendry, and Richard. For a comprehensive discussion, refer to Chick (1973) and Moore
(1989).
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another exogenous variable, which logically entails endogeneity. An alternative perspec-
tive is offered by Bollen (1989), who defines exogeneity based on the specifications imposed
by the model user. Nonetheless, this definition suggests that a variable’s exogeneity de-
pends on the researcher’s specification. As a result, a variable could be endogenous within
a model but not truly endogenous in the underlying Data Generating Process (DGP),
indicating that the model may not accurately represent the real-world system. Another
common definition, proposed by Wonnacott and Wonnacott (1979), characterizes a vari-
able as exogenous if its value is determined external to the system. However, the exact

meaning of “determined outside the system” is not properly explained.

Starting from the heuristic notion that a variable is exogenous when it originates from
outside the system, we introduce two novel definitions of exogeneity which are grounded in
graphical representations of latent causal structures. The decision to anchor the definitions
in causal graphs, as opposed to definitions of statistical exogeneity, as in Engle et al.
(1983), means that, as well as complementing those of Engle et al. (1983), our definitions
are perhaps closer to the layman’s notion of “outside the system”, while being clear and
precise. The notions of Engle et al. (1983) have sustained empirical research over the last
40 years, but have not met with universal approval. We will systematically examine the
differences between the notion of weak exogeneity and our proposed concepts of causal

exogeneity, highlighting the instances where they diverge.

In this chapter we make a number of contributions. The first is the development of
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new exogeneity concepts which complement those of Engle et al. (1983) and in some
instances might better reflect macroeconomic notions of ‘exogeneity’. The second is to
show how these definitions of causal exogeneity translate to restrictions on the parameters
of the cointegrated vector autoregressive model. Finally, we propose testing techniques to

determine whether these restrictions hold in any given empirical setting.

The chapter is structured as follows. The next section sets out the underlying assump-
tions we make, and introduces the tools that will be employed throughout the thesis.
In the third section, we describe our novel definition of exogeneity, which is grounded
in the graphical representation of causal structures. This new definition, termed “causal
exogeneity”, has both weak and strong forms. Section 1.4 establishes a relation between
model characteristics and weak causal exogeneity to derive corresponding restrictions as-
sociated with this status. Exploiting this duality, we propose an inferential procedure for
its identification. Section 1.5 introduces the model counterpart of strong causal exogeneity
and suggests a testing technique. Section 1.6 proposes an illustrative example, and section

1.7 offers concluding remarks and summarises the findings.

1.2 Underlying Model and Assumptions

Initially introduced in Engle and Granger (1987), the concept of cointegration has revolu-
tionized econometric analysis involving time series. Their emphasis on the cointegrating
relationship as the equilibrium, underscored the importance attributed to the “long run”

in seminal contributions by Sargan (1964) and Davidson et al. (1978), closely aligning
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statistical models with dynamic adjustment to economic theory relationships.

Subsequent works, notably those by Johansen and Juselius (e.g. Johansen (1988b) and
Johansen and Juselius (1990)), model integrated-cointegrated variables in a Vector Au-
toregressive (VAR) framework. The cointegrated VAR (C-VAR) generalizes other VAR
structures, in the sense that simple VAR and related models become special cases of the

more comprehensive C-VAR.

The most common representation of a C-VAR is the Vector Error Correction Model
(VECM). As our interest lies in conducting a causal analysis in the structural sense,

we will work with the VECM in its structural version:

k
FoAY} = aﬁ’Y}_l + Z PzAY;_Z + & (11)

i=1
The variables in Y are I(1) cointegrated processes, consequently AY; is stationary.

The coefficients I';—.,, describe the short-term behaviour of the system, while the matrices
a and S contains the speed of equilibrium adjustment and the steady-state relationships
(for a comprehensive explanation, please refer to Johansen (1995) and Juselius (2006)).
The term e represents primitive exogenous forces that are not directly observed by the
econometrician but impact the system, leading to oscillations. Because these shocks are
primitive, i.e., they do not have common causes, it is natural to treat them as approx-
imately uncorrelated, as in the view of Bernanke (1986). Consequently, the covariance

matrix ) = Var(e) is, by construction, diagonal.
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The coefficients a and 3 are respectively known as the adjustment and cointegration
matrices. They are both |Y| x r full-rank matrices, where |Y'| represents the cardinality of
the set Y encompassing the variables within the system, and 0 < r < |Y|.> The value of
r is commonly referred to as the cointegration rank. The product af’ yields the |Y| x |Y|

matrix of reduced rank r, known as the impact matrix and denoted II.

Henceforth, we will employ the notation Y to represent the set encompassing all factors
influencing a system. Consequently, Equation (1.1) should be considered as a complete
model describing the entire system’s behaviour, with coefficients embodying relationships

akin to natural laws. We will hereafter denote this model as the “fully observed model.”

Obviously, the econometrician is not expected to observe and model the entire set Y (as
will become evident later). Nevertheless, in pursuit of a substantive causal analysis, it
becomes necessary to commence with the authentic natural relationships and discern how

they would manifest within a partially observed model.

Throughout the thesis, we will impose the assumption that the structural dynamic of the
system is entirely driven by long-term factors. In other words, the fluctuations in Y are
solely caused by disequilibrium conditions and violations of steady-state. It is essential to
clarify that this hypothesis applies to the fully observed model and does not necessarily
hold in the partially observed system estimated by the researcher. This implies that if one
empirically encounters short-term dependencies, this does not preclude the application

of the methodologies proposed here, as they can be generated by the incompleteness of

3If r = 0, then the variables in Y do not cointegrate; conversely, if r = Y|, AY; cannot be I(0)

72



CHAPTER 1. IDENTIFICATION AND INFERENCE OF CAUSAL EXOGENEITY

the model. The only implication of this assumption is that all dynamics are triggered
by adjustment mechanisms, meaning that the value of a variable at time ¢ is determined
solely by an unexpected and unpredictable innovation if at time ¢t — 1 its value was in
equilibrium (with respect to its parents). A further discussion on the implications of this

assumption and the necessary extensions for its relaxation can be found in the conclusion.

From a model perspective, the absence of short-term dynamic implies that the coefficients
[';—1.x become zero and the term I', is the identity matrix. Thus, the C-VAR describing

the behaviour of Y is of order 1, and Equation (1.1) reduces to

Ai/t = 066/3/75_1 + &¢ (12)

It should be further emphasized that these assumptions apply to the fully observed model
and do not extend to the partially observed model, as a partially observed C-VAR(1)
exhibits short-term dynamics and a non-diagonal covariance matrix. This implies that
encountering short-term dynamics in practical applications does not preclude the use of the
techniques proposed in the thesis, as it is well understood that the partially observed model
generated by the C-VAR(1) inherently includes both contemporaneous causal dynamics

and short-term dynamics.

The primary rationale behind this assumption is to conform with the hypotheses estab-

lished in Johansen (2019). Indeed, these findings will be extensively used in our analysis.
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However, it is also plausible to recognize economic rationales for this assumption, as the
prevailing body of economic theories is founded upon long-term dynamics and in many
cases, modelling these long-term dynamics is adequate to enable a comprehensive analysis

of the macroeconomic system. As noted in Hoover (2001) (pages 138-140):

“Economists provided reasonably persuasive accounts of steady states and
real-world economic configurations for which steady states are good approx-
imations. Economic theory rarely provides persuasive accounts of short-run
transitional phenomena. [...] Economic theory is largely about steady states.
The economic of transitional dynamics has little empirical support and carries

little conviction among the economists”

Another assumption addresses the origin of non-stationarity, which can occur in two ways:
either from common stochastic non-stationary trends or from specific parameter settings.
Throughout this thesis, we adopt the former view. The primary rationale behind this
hypothesis can be again attributed to the necessity of aligning with Johansen’s framework.
Nevertheless, there exists compelling logical reasoning that inclines us towards favouring
the notion that non-stationarity is introduced, as opposed to being internally generated by
specific parameter settings. In fact, if the latter were the case, even a slight alteration in the
coefficient values could lead to the loss of cointegration and the underlying trend behaviour
of the ordinary variables. In contrast, the assumption of the existence of fundamental
trends is of a generic nature, demonstrating robustness in the face of variations in the

values of the structural coefficients. For a more detailed discussion, please refer to section
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3 of Hoover (2020).

The subset of Y containing the fundamental trends will be denoted T'. Variables within
Y that are not part of T' are considered ordinary variables and are grouped within the
set X, such that Y = {7, X}. Additionally, T CY =Y \ X, and X C Y =Y \ T,
where the operator \ denotes set exclusion: for two sets A and B, the expression A\ B
represents the set of elements in A that are not in B. It is important to note that the
fundamental trends can constitute the set Y itself in cases where the system comprises
non-cointegrated I(1) variables. However, X cannot coincide with Y as T is its original

source of non-stationarity.

As highlighted in the introduction, the type of exogeneity we investigate is rooted in the
graphical representation depicting the causal connections. It is evident that the relevant
causal structure pertains to the one governing Y rather than any structure artificially gen-
erated by modelling only a subset of it. It is thus necessary to understand the connection
between causal graphs and the properties of the fully observed VECM. When working
with the model in Equation (1.2), the definition of causality revolves around equilibrium
adjustments. Specifically, we assert that a variable a is causally influenced in the long-
term by a set of variables B if it exists an equilibrium relationship between a and B that

exerts an influence on the dynamics of a.

For a deeper comprehension of this concept, we report an example illustrating how to

translate a causal network into a VECM. Consider the causal graph depicted in figure
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A-<:>0D
C

Figure 1.1: Causal Graph Representing the Causal Structure of Equation (1.3)

1.1. This graphical representation comprises three distinct causal relationships, each cor-
responding to an equilibrium condition: A - B = B =4, A - C = (C = (A,
and B - D < (' = D = (3B + B4C. These steady states are incorporated into the
cointegration matrix [ so that equilibrium deviations at a given time t—1 can be captured

by the multiplication 5'Y;_;:

_ —_ A — —_
-6 1 0 0 By — BiAi
) B
BYii=1-8, 0 1 0 - Ci1 — B2Asa
C
0 —fB3 —Bs 1 Dy — B3Bi—1 — BaCi
L 1 p L i
I P

where 3'Y;_; = 0 signifies equilibrium.

To induce causal behaviour, the model must be configured so that only the affected vari-
ables respond following manipulation of the causal factors, specifically reacting to con-
ditions of disequilibrium. Therefore, for the causal link A — B, the o matrix must be
designed such that only B responds to equilibrium violations. This ensures that arbitrary
alterations of A will elicit a response in B even if the other variables in the system (i.e.,

C' and D) are kept constant. Moreover, the adjustment matrix must be structured to pre-
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vent that manipulations of B affect the level of A. This captures the asymmetric nature
of causality depicted in the graph A — B. As a result, the initial steady state exclusively
influences B, leading to the first column of the adjustment matrix containing a non-zero

entry only in its second row (i.e. the row corresponding to B).

Similarly, the second and third steady states affect C' and D respectively, leading to the
second and third columns of the adjustment matrix containing non-zero entries solely in

the third and fourth rows.

The resultant VEC model is:

A 0 0 O]|r 1A
-6 1 0 O
B (03] 0 0 B
A = —By 0 1 0 + & (1.3)
C 0 (6] 0 C
0 -8B =B 1
D 0 0 (0% - - D
. L i I

For a more comprehensive examination of the process of translating a causal graph into a

VECM, please consult section 4 in Hoover (2020).

In the fully observed model, the rows of « corresponding to fundamental trends are null
vectors, indicating weak exogeneity for the long-term parameter 8. In fact, as proved for
instance in Johansen (1992a), a variable is weakly exogenous for § if its corresponding
row in the adjustment matrix contains only zero entries. Throughout this thesis, any
mention of weak exogeneity will exclusively pertain to weak exogeneity in relation to the

cointegration matrix. Thus, for brevity, the complete statement will not be reiterated, and
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references to weak exogeneity are implied to be in relation to the long-term parameter.

As previously discussed, it is probably neither practical nor feasible to assume the econo-
metrician observes the entire set of variables Y, given that this set may include a multitude
of factors that are challenging or even impossible to gather or measure. Consequently, the
set Y will be partitioned into two subsets: the set of observed variables, denoted as X,

and the set of latent factors, denoted as Y,,.

It is supposed that the fundamental trends are in the set of unobserved variables. This
assumption is motivated by two distinct considerations. The first rationale pertains to
the nature of stochastic trends. Indeed, the components within 7" consist of unpredictable
and independent shocks that can originate from various disparate sources, such as climate
disasters, political instabilities, or shifts in social behaviour. However, these factors are
typically not simultaneously collected, and their potentially non-economic nature poses

challenges in terms of their incorporation into economic models.

Secondly, when examining the issue of exogeneity in models containing 7" or a subset of
it, the analysis becomes straightforward. This is because the elements within 7" represent
the exogenous components par excellence, and their identification can be readily achieved

through conventional weak exogeneity tests.

Consequently, the set of latent variables Y, encompasses both the fundamental trends T’
and the unobserved ordinary variables denoted as X,. The interrelations among these sets
can be readily established: Y = {T, X,, X,,}, X = {X,, X,} and Y,, = {T, X,.}.
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The set X, encloses the variables that are explicitly modelled. Consequently, the estimated

model will be:

A)(o,t = Ofoﬁ(l)Xo,tfl + Z Fo,iAXo,tfi + Eot (14)

i=1
where the subscript o is added to make a distinction between the coefficients of the fully

and the partially observed model.

Clearly, the assumptions imposed on model (1.2) do not need to hold in the partially-

4

observed system, Equation (1.4). Consequently, short-term dynamics arise®, as well as the

possibility that the covariance matrix ¥, = Var(e,) is not diagonal.

The analysis will naturally focus on «a, and (3, given that these matrices represent the
only estimable components accessible to the model user. Indeed, even the existence of Y,

might be completely ignored by the researcher.

The values of «, and §, will be analysed employing the innovative methodologies in-
troduced by Johansen (2019). Commencing with the fully observed model arranged in a

state-space framework, Johansen demonstrated that the 8/ can be reformulated as follows:
— / —
8, = (N, — M,,M;'N,) (MO — M, M: 1Muo> (1.5)
where the coefficients are taken from the state-space representation below:

A‘Xvo,t = MoXo,t—l + MouXu,t—l + NoT;f—l + To,t

4As proved in Johansen and Juselius (2014), a partially observed C-VAR(k) is of order oo
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AXu,t - MuoXo,t—l + MuXu,t—l + Nuﬂ—l + Nt (]-6>

AT, = nri

Similarly, the adjustment matrix of the partially observed VECM is obtained as:
o = S (MouVar + N,V ) (1.7)
1

Here, ¥, = Var(e,) is calculated as:

M/

Yo = var(go) - |:Mou No:| 4 a + QO (18)
N,

The matrix €, is the square diagonal matrix constructed by selecting the entries of 2 =

Var(e) corresponding to X,.

The matrix V is defined as:

Xu,t Vu Vu,T

T; Vru Vr

where Var(A|B) indicates the covariance matrix of A conditioned on B.

The matrix V can be found by solving the algebraic Riccati equation below:
V=QVQ" +Q —QVCT(CVCH +Q,)tCr VR (1.9)

80



CHAPTER 1. IDENTIFICATION AND INFERENCE OF CAUSAL EXOGENEITY

where the coefficient Q* relates Y,,; to Y, ;—; and C* relates X, to Y, ;—;. The matrix Q2*

is constructed considering the rows and columns of €2 corresponding to Y,. Therefore
Q" = " = {Mw NO}

where I7 indicates an identity matrix of dimension |T'|.

The orthogonal complement A, of a matrix A with dimensions a x b and rank r is an
a X (a —r) matrix that fulfils the condition A’A; = 0. It is important to emphasize that
A does not possess a unique representation and can assume an infinite number of distinct

specifications.’

Equations (1.5), (1.7), and (1.8) will be extensively employed to explore potential cor-
respondences between the coefficients of the partially observed model and specific char-
acteristics of the causal graph G. In other words, we aim to establish links between the
parameter set {a,, 3,,2,} and the causal relationships depicted by the graph incorpo-
rating the causal connections implied by the data generating process (DGP) governing

Y.

5This attribute is closely linked to the notion of the cointegration space. Indeed, there is not a unique
matrix that generates stationary linear combinations of X,; instead, there exists a potentially infinite
number of matrices that can be found by selecting different specification of the orthogonal complement
(Ny — Moy M71N,) L
" u
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1.3 Causal Exogeneity

To define causal exogeneity, we will start from the heuristic idea that the nominal value
of an exogenous variable is generated outside the system, while the level of an endogenous

variable is determined within the system.

The partition of Y into T, X, and X, provides an initial framework for understanding
exogeneity in these terms. Specifically, if one of the factors contributing to the long-term
fluctuations of an observed variable x; € X, is found within the set encompassing latent
components, we can classify the variable z; as being generated external to the system,
thereby exogenous. Conversely, x; € X, is endogenous if all of the factors contributing to

its long-term fluctuations are included in X,.

In terms of the causal graph G, we can ascertain the endogeneity of z; by examining the set
of adjacent vertices that possess directed edges pointing towards the node corresponding
to x;. If this set comprises only variables included in X,, then x; can be considered

endogenous.

The definition can be reformulated using terminology commonly employed in the field of
causal inference. With reference to the causal graph G, a variable z; is deemed exogenous

if, within the parent set of z; (henceforth denoted as Py (x;)7), at least one element belongs

6Tn the context of causal inference, causal connections are described using structures that parallel
family relations. Parents refer to variables that directly influence a given variable of interest, denoted
as child. If we consider also indirect causal connections, we refer to ancestors and descendants. For a
comprehensive overview of causal inference terminology, refer to Pearl (2009) among others

"The subscript Y in Py (z;) is added to specify that the parent set encompasses all parents of x; within
the set YV
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A B C D
o-r06—0-0

Figure 1.2: Causal Influence Transmitted through Latent Variables
to Y, = {7, X,}. Mathematically, z; is considered exogenous if 3 u € Py (x;) such that

ueY,.

However, this definition fails to fully capture the complexities of exogeneity, and requires
further refinement, namely, a more nuanced notion of endogeneity. We assume the ultimate
objective of differentiating between exogenous and endogenous variables is to discern which
variables possess the capacity to exert full influence over others. We say that a set of
variables Z has full influence over z; if, for a given target value of z;, denoted as z; = z;,
there exists a combination of values Z = Z* such that setting Z to Z* causes x; to take
on the value z7. Hence, the differentiation between exogenous and endogenous variables
should fundamentally hinge upon the capability of exogenous variables to control the

nominal values of the endogenous.

The definition above fails to account for the possibility that the influence from exogenous

to endogenous variables passes through latent components.

A deeper understanding of this concept can be facilitated through the use of a simple
example. Consider the causal structure illustrated in Figure 1.2. The nodes highlighted in
red and the red dashed edges signify, respectively, the unobserved variables and the latent
causal connections. The set Y = {A, B, C, D}, can be partitioned into the following sets:

T ={A}, X, = {B,D}, and X, = {C}.
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In accordance with the initial definition, within the partially observed model, both vari-
ables B and D are classified as exogenous. This classification arises from the fact that

Py(B) =A€Y, and Py(D) = C € Y,. However, it should be noted that the variable D

is fully manipulable through interventions directed at B.

To better understand the necessity of formulating a definition based on the concept of
control, it is instructive to consider a policy-oriented perspective. Let us assume that the
variable B represents the interest rate ¢, while D denotes the inflation rate 7. According to
the causal graph, policymakers possess the capability to exert influence over the inflation
rate (7) through interventions targeted at the interest rate (i). Consequently, from a
causal perspective, it may seem intuitive to classify the inflation rate as endogenous and

the interest rate as exogenous.

However, this causal relationship is inter-mediated by an additional aspect. For instance,
it is plausible to posit that higher inflation rates result in reduced consumer spending, sub-
sequently leading to a decline in prices. Therefore, the presence of the node C' representing
expenditures (denoted as Ex), introduces a nuanced dimension whereby inflation rate is

generated outside the system, despite being entirely governable through manipulations of

The potential multitude of intermediary phenomena is a challenge to the definition of
exogeneity. To illustrate, even if we were to incorporate expenditures into the observed
components, there might still be additional variables interposed between i and Ex. Specif-

ically, 7 exerts its influence on expenditures by impacting borrowing levels. Furthermore,
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the interest rate affects borrowing through its influence over the retail rates established
by financial institutions which, in turn, are influenced by the inter-bank rates. This chain
of interrelated factors can persist ad infinitum, posing challenges in identifying a primary,

irreducible causal link, which may, in fact, prove elusive.

The example underscores the necessity for a definition of causal exogeneity based on the
ability to control rather than the source of generation. However, before proposing a broader
definition, it is essential to clarify the concept of forward paths. In graph theory and
especially in the context of directed graphs, a forward path refers to a sequence of vertices
connected by directed edges that follow the direction of the arrows. It typically describes a
path that moves from one vertex to another without backtracking or reversing the direction
of the edges. Consider a simple directed graph G = (V, E), where V' = {A, B,C, D} is the
set of vertices and E represents the set of directed edges between nodes. Define the edges
as follows: A — B, A — C, B— D, and C — D. In this graph, there is a forward path
from A to D via B: A — B — D. Similarly, there also is a forward path from A to D via
C: A— C — D. These paths are forward paths because they follow the direction of the

edges from the starting node A to the ending node D.

Moving on to the concept of blocked forward paths, a forward path between nodes x and
y is deemed blocked by an intermediate node z if z intervenes in the causal path between
x and y. For example, the forward causal path A — B — D is blocked by B, whereas the

forward causal path A — C' — D is blocked by C.

We can now establish the foundation for a novel definition of exogeneity. When analysed
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within the framework of graphical models, a set of variables denoted as Z € X, possesses
the capacity to exercise control over a variable x; € X, if 7) the forward paths originating
in 7" and ending in x; are blocked by Z and i) if the set of variables W transmitting

causality from Z to x; does not cause in turn 7.

Causally speaking, requirement ¢) is satisfied if the causal paths originating from the
primary unobserved source of long-run fluctuations (e.g., fundamental trends) and termi-
nating in x; pass through Z. This ensures that the dynamics of z; are fully influenced by
7. Specifically, under condition i), holding Z constant will keep x; constant, except for

unexpected shocks captured by the error term.

Requirement i) is necessary to ensure that control over x; is not nullified by uncontrollable
components. If the set W in turn causes Z, the desired effect on x; becomes unstable and
this instability cannot be managed, as W is not identified and, thus, not controllable by

the modeler.

To present a more rigorous definition, it is necessary to establish a novel partition of the

set X,:

Definition 1 (Set 3). A generic variable x; € X, is incorporated into the set 3 C X, if
i) every directed path starting from the fundamental trends and concluding at x; is blocked
by elements in Z C X, \ x; and ii) the ancestors of x; belonging to X, whose paths with

T are blocked by Z are not in turn ancestors of Z

Symmetrically, its complementary set N is defined as follows:
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Figure 1.3: Causal Graphs and Causal Sets. Red nodes depict latent variables

Definition 2 (Set X). The set X is the complementary set of 3 with respect of X,, i.e.

N=X,\3
The set of ordinary unobserved variables X, is instead partitioned as follows:

Definition 3 (Set 7). A generic variable x, € X, is included in the set 1 C X, if it is

an ancestor of at least one element in N

Definition 4 (Set %). A generic variable z, € X, is included in the set 5 C X,, if it is

an ancestor of at least one element in 3 and it does not belong to 7

It should be noted that the union of these sets does not necessarily result in the set Y as
there may be elements in Y, that belong neither to 7 nor to . However, this implies that
they do not exert any effect on the observed variables, either directly or indirectly, and

therefore, they can be excluded from the analysis.

To clarify the set decomposition, consider the graphs in Figure 1.3. In graph i), the original

source of long-term fluctuations is A, i.e. the set containing the fundamental trends is
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T = A. The observed and unobserved variables are X, = {E, F,G} and X, = {B,C, D},
respectively. Among X,, the only variable whose forward paths with T" are blocked by
other elements in X, is G. In fact, both F and F lie between A and G. Conversely,
between A and E as well as between A and F', only variables in X, stand in the path.
Since causality from {E, F'} and G is direct, G satisfies both requirements ¢) and i) of
Definition 1, making 3 = {G} and X = {E, F'}. Given that every element of X, is an

ancestor of N, we can conclude that 1= {B,C, D}.

In graph i), the original sources of long-term fluctuations are A and B. The observed and
latent variables are X, = {E, F,G} and X,, = {C, D}, respectively. The forward paths
between T" and G are blocked by F, and causality from F' to G does not pass through
unobserved components. Consequently, G € 3 as per Definition 1. Conversely, there exist
paths between 7" and {E, F'} not blocked by X,, thus X = {E, F}. Given that every

element of X, is an ancestor of R, we can conclude that 1= {C, D}.

In graphs i7i) and iv), the original source of long-term fluctuations is A, and in both cases,
D blocks the paths between A and {F,G}. E is directly and exclusively affected by D,
therefore it belongs to 3. The nature of G changes between graphs iii) and v). In both
cases, causality between D and G passes through F', but only in 7i7) does F' not, in turn,
affect E. Consequently, G € J in graph iii), while G € X in graph 4v). In graph v), F
is an ancestor of D, so it belongs to 1. Conversely, in graph iii), F' is a parent of G but
not of D, thus it is a component of 5. The causal sets are thus T' = {A}, 7= {B,C},

N = {D}, 5 = {F}, and 3 = {E,G} in iii); and T = {A}, 1= {B,C,F}, X = {D,G},
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5=10, and J={F} in iv).

By examining the definitions, we can draw conclusions regarding the causal relations
among the sets. From Definitions 3 and 4, it is evident that any causal relation of the type
5 — T is excluded. According to Definition 3, the components of 1 are ancestors of N. It
follows that if 9; causes ;, ©; must necessarily be in turn an ancestor of X. Consequently,
for definition 3 5; belongs to T, contradicting the initial assumption ; € 5, given that

Definition 4 excludes mutual belonging between % and .

Similarly, we can exclude the causal relations of the type 5 — N. If ; causes X;, it follows

that the former is an ancestor of the latter, thus a component of .

By examining Definitions 1 and 3, we can exclude the causal connection 7 — 3. Consider
T; as an ancestor of X whose forward paths with 7" are not blocked by X,. If 7; directly
causes J;, the forward paths between the latter and the original source of causality can only
be blocked by subsets of W if X blocks the forward paths between T" and 7;, contradicting
the initial hypothesis. If instead the forward paths between T and 7; are blocked by X,
it follows from requirement i7) of Definition 1 that if 71, — 3;, it cannot be that ; — Ry,
both in direct and indirect way. Nevertheless, this contradicts the Definition 3, since 7

contains the ancestors of N.

We can also exclude direct causality between 1 and 5. Consider 7; as an ancestor of N
whose paths with 7" are not blocked by X,. If 7; directly causes 5;, the forward paths
between the latter and J can be blocked if N stands between the causal path from 5

to 3. This proposition contradicts the previous findings since it implies » — N. If the
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T 7T X 5 3

rrTrrrt
T —| * * * 00
T o 0 * * 0 0
N 0****
5 5| 0 0 0 * *
j_> O****

Table 1.1: Causal Relations Among Sets. The right arrow — should be read as “it causes”
while the Up arrow 71 should be read as “it is caused by”

paths between T and 7; are blocked by X,, it follows from I, — 5 that T; is among the
ancestors of J whose paths with 7" are blocked by R. Nevertheless, this is in contrast with

requirement 1) of Definition 1.

Following requirement i) in Definition 1, we can immediately exclude any direct causal
relation between T and J. Moreover, if T — 5, the forward paths between 5 and 3 can

be blocked if N stands between their causal path, contradicting 5<X.
The causal relationships among the sets are summarised in Table 1.1

The partition of X, into X and 3 lays the foundations for a precise definition of causal
endogeneity:
Definition 5 (Causal Endogeneity). A variable is causally endogenous if it is in the

set 3.

Definition 5 suggests that variables in X should be labeled as causally exogenous. However,
ambiguities arise in situations characterized by cyclic behaviour, as this definition does

not account for potential feedback effects. This issue can perhaps best be explained with
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Figure 1.4: Causal Graph with Cyclic Behaviour Affecting Exogeneity

an example.

Consider the causal graph in Figure 1.4, where the red node represents the latent variable,
namely Y, = {A}. In this scenario, the only unobserved element is the fundamental trend
A, while all the ordinary variables are observed. Specifically, we have: Y = {A, B,C, D},

T ={A} and X, ={B,C, D}.

By following the principles outlined in Definitions 1 and 2, we can construct the sets R
and 3 as follows: ® = {B,C} and 3 = {D} since the directed paths between A and D
are blocked by {B,C} € X, while no observed variable blocks the directed paths between
A and the two components of R. Nevertheless, classifying the elements of R as exogenous
variables may create some perplexities. On one hand, B aligns with the heuristic notions
of exogeneity and does not pose any challenges to such categorization. On the other hand,

the exogenous nature of C' is questioned by the feedback that D has on C.
These considerations underscore the necessity for a twofold definition:

Definition 6 (Weak Causal Exogeneity). A variable is weakly causally exogenous if

1t 15 in the set N.

Definition 7 (Strong Causal Exogeneity). A variable z; € X, is strongly causally
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exogenous if it is part of the set X and none of its ancestors are included in 3.

Based on these definitions, both B and C' are weakly causally exogenous, while only B

satisfies strong causal exogeneity.

Both definitions are logically coherent, and a priori neither holds precedence over the

other. They serve distinct purposes, and address different inquiries.

For instance, within the realm of political economy, researchers may seek to identify vari-
ables that remain unaffected by other macroeconomic factors, in order to find proper
instruments whose nominal values can be freely manipulated. In this context, researchers

are primarily interested in identifying strongly exogenous variables.

Conversely, there are scenarios in which weak causal exogeneity may be more pertinent.
Consider situations where certain policy makers respond to specific policy functions. This
dynamic can give rise to cyclic causal interactions between policy instruments and target
variables. Nonetheless, the policy function can be intentionally altered, and the research
objective may be confined to defining as exogenous those variables that can be manipulated

within a counterfactual scenario.

For instance, consider the case where C' and D in graph 1.4 are substituted by the interest
rate ¢ and the inflation rate 7 respectively. Suppose that when 7 fluctuates, policy makers
respond by intervening on ¢. Such behaviour generates a cyclic causal pattern that is
artificially induced by the policy function of monetary authorities. However, if the analysis

centers on the behaviour that policy makers should adopt, this causal relationship loses its
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significance since the policy function itself becomes the focal point of examination, and the
analysis should focus on whether modifying the policy function is beneficial. Naturally,
by modifying the policy function, we do not mean altering a parameter in the reaction
function, but rather considering changes that affect the causal graph. Specifically, this
involves either stopping the policy rule or changing it by focusing on a different variable

that might be more effective for the policy purposes.

In terms of governability, the distinction between weak and strong exogeneity hinges on the
type of intervention necessary on X to control the nominal value of J. Consider the graphs
in Figures 1.1 and 1.4. In both cases, the variable D can be expressed as D = 1B + 3;C.
However, in the second instance, C' is, in turn, a function of D. This causal feedback is
not problematic as long as there is a strong margin of control over £ and F', meaning
that it is possible to intervene on these two variables to keep them fixed at specific values
Ey and Fy. Conversely, if the control over N is weaker, meaning that it is only possible
to induce a transitory shock on R, the effect on 3 is unstable and can be nullified by the

causal feedback from 3 to .

1.3.1 Causal Exogeneity and Weak Exogeneity

To underscore the distinction between the two causal ideas of exogeneity and the statistical
concept of standard weak exogeneity, we assess the latter within the context of the model

delineated by the causal graph in Figure 1.4. As explained in the previous section, the
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graph can be translated into the VECM:

A 00 0| 1A
d 1 0 0
B a 0 0 B
A = e 01 f + &
C 0 b O C
0 g h 1
D 0 0 c¢| - - |D
L Jd¢ L 4 L Jdt-1

The evaluation of weak exogeneity entails an examination of the constraints imposed on
the adjustment matrix a,. Since in our illustration the only unobserved component is the

fundamental trend, equation (1.7) can be reduced to®:

= QN,| (1.10)

Without loss of generality we set €2, = I, where I indicates the identity matrix, so that

a, = Noy.

The matrix N, establishes the relationship between X, and 7" within the state-space
representation of the fully observed model. Consequently, it is a 3 X 1 matrix with non-

zero entries in the rows corresponding to variables B and C| specifically:

ad

8See Johansen (2019) for proof
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The orthogonal complement N, , is a 3 X 2 matrix. An admissible N, matrix is:

ad —be 0

Qo = Noi = | pe =lad 0
0 0 1

L 11 B i

This shows that neither B nor C' satisfy weak exogeneity: the corresponding rows of «,

do not contain only zeros.

The example proves that the weakest statistical concept of exogeneity may impose stricter
requirements than the strongest causal definition of exogeneity. This serves to emphasize
the distinction between causal exogeneity and the other exogeneity concepts outlined in
Engle et al. (1983). Specifically, since weak exogeneity is necessary for both strong and
super exogeneity, in the example above, neither B nor C' can be considered strong or
super exogenous. This contrast highlights the fundamental difference between exogeneity

as applied in statistical contexts and its role in causal analysis.

In the particular instance involving the causal structure illustrated in Figure 1.4, the

resulting exogeneity patterns are summarised below:

Weakly Exogenous variables within the set X,: ()

Strongly causally exogenous variables within the set X,: {B}

Weakly causally exogenous variables within the set X,: {B,C}

Causally endogenous variable within the set X,: {D}
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1.4 Weak Causal Exogeneity

This section discusses a method for identifying weakly causally exogenous variables. The
first subsection explores the correspondence between properties of the partially observed
model and weak causal exogeneity. We establish the relationship that holds between the
Vector Error Correction Model estimable by the researcher, and the attributes of the
underlying latent causal graph. Subsequently, subsection 1.4.2 leverages the findings from
subsection 1.4.1 to develop an inferential approach for testing hypotheses related to weak
causal exogeneity. Finally, subsection 1.4.3 examines the connection between weak causal

exogeneity and its statistical counterpart, i.e. weak exogeneity.

1.4.1 Model Manifestations of Weak Causal Exogeneity

The analysis investigates the impact of weak causal exogeneity on the coefficients of a
partially observed VECM. Specifically, the analysis focuses on the properties of a trans-

formation of the adjustment matrix «,.

The investigation starts with an examination of the properties of the orthogonal comple-
ment (M,,V,r + N,Vr),. This analysis is conducted based on the definitions outlined in
section 1.3 and their implications for the causal relationships among the sets 8, 3, 7,
and T. We first prove some intermediate results, while the main result is presented in

Theorem 1.

The coefficient M,, in the state-space representation (Equation (1.6)) connects X, =
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{N,3} to X, = {1,5}. Given that elements in 3 cannot be influenced by components of
7, as well as the elements in X cannot be influenced by components of 5, the sub-matrix of
M,,, formed by the rows corresponding to 3 and the columns corresponding to T and the
sub-matrix of M,, formed by the rows corresponding to N and the columns corresponding
to B comprises only null entries. Similarly, the parameter N, links X, = {X, 3} to T.
Since, by definition, J cannot be directly affected by T', the sub-matrix of N, comprised of
rows corresponding to J will also consist solely of null entries. Thus, the representations

of M,, and N, are as follows:

(- T
N[| A 0 N[| D

ou — No =
2 o ¢ I3/l o

where the symbol |A| indicates the cardinality of the set A and 0 denotes a null matrix.

To comprehend the properties of the conditional covariance matrix V' we need to find the
solutions of the Riccati problem in Equation (1.9). The following Lemma provides an

analysis of V' which will be crucial for deriving subsequent conclusions:

Lemma 1 (Conditional Linear Independence Between T'UT and 5). The covari-
ance between the components of 5 and the variables in T'U 7 is zero when conditioned on

the elements in X,.

Proof of Lemma 1. To prove this lemma, we must show that the sub-matrix of V

relating 5 to 7' U 71 contains null entries. Specifically, we should demonstrate that the
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following structure of V' is an admissible solution:

TUT| |5

UT|| W 0
V =

5] 0 WV,
We begin by analyzing the covariance of T'U T conditioned on the elements of X,U%. This

involves treating 3 as observed and considering only 7'U 71 as latent. Under this scenario,

the coefficients of Equation (1.9) transform as follows:

TUT] TUT|
Q’;=|WUT|[A] Q;:\‘iuﬂ[s ]
TUT] R3]
N[| ¢ X| 6 0 o0
Ci= 13| o Q=131 0 H o0
511 0

51 0 o T

where the subscript 1 is used to distinguish these coefficients from those for V' = Cov(Y, | X,).

According to Equation (1.9), the covariance matrix Wy = Cov(T U 71| X, Ub) satisfies the

following Riccati equation:

Wi = QIWiQ] + Qf — QWA CT (CIWACT + Qo) ' CiWAQT (1.11)

98



CHAPTER 1. IDENTIFICATION AND INFERENCE OF CAUSAL EXOGENEITY

Given that (C;W1CF + Qy) 7t is

- - - —1 - -
C G 0 0 CWLC'+G)' 0 0
oWl[c’oo}Jr()%o 0 H' 0
0 0 0 T 0 o I

Equation (1.11) can be simplified as follows:
W, = AW, A + € — AW, C'(CW,C' +G) 'CW A

Similarly, we can retrieve the covariance matrix of 5 conditioned on X,UTU. This implies

treating X, UT U 7T as observed, with 5 as the only set containing latent components.’

Under this scenario, the coefficients of the Riccati equation become:

5] 5]
o] 1 wm b 5 |
5] N[ 3] [uT]
N[| 0 N 6 0 o0
Cs 2| D Qo2 2 o #H o0
TuT|| o

TuUT|| o 0 J

Note that the subscript 2 denotes the coefficients in this context, differentiating them from

the ones employed for V' = Cov(Y,|X,) and Wy = Cov(T U 71| X, U5).

9Tt should be noted that, despite conditioning on all other causal sets, the variables in 5 retain their
stochastic behaviour. This follows from the fact that every variable has its own stochastic error term.
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According to (1.9), the covariance matrix Wa = Cov(5|X, U T U 7) satisfies the Riccati

equation given by

Wa = QsWaQj + Q3 — QsWaCy (C3WaCy' + Q) ' C3WaQy (1.12)

Given that (C3W5C3 + Q) ' is

- - - - 71 - -

0 G 0 0 g 0 0
D| W {o D’ O}JF 0 H 0 =10 (DWLD' +H)' 0
0 00 J 0 0 I

Equation (1.12) can be simplified as follows:

Wy = BW,oB + F — BWo,D' (DWL,D' +H) 'DW,B

We now analyse the covariance matrix V' = Cov(Y,|X,), which represents the covariance
of the unobserved variables conditioned on the observed components. The coefficients to

be inserted into the Riccati equation (1.9) are:

TUT] P UT] )
C ol A o LNl o
sl o B 2 o D
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TUT] [3] X[ (3]
Tl e o NG o
bl o F 3| o H

The final representation for V is:
V=QVQ'+Q —-QVC'(CVCT +Q,) 'V Q" (1.13)

To prove the lemma, we demonstrate that selecting V' as follows

TuT] |5

TuT|| W 0
V pu—
5l 0 WV,

the equation finds an admissible solution. In this case, Equation 1.13 becomes:

Vi 0 AV, A 0 E 0 AVl 0
— + — X
0 Vs 0 BWV,B 0 F 0 BV,D’
-1
cviC’'+G 0 cvi A 0
X
0 DVL,D' +H 0 DV,B’

which can be clearly solved by setting V3 = W7 and Vo, = Ws,. The admissibility of the

solution
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follows from the positive semi-definiteness of covariance matrices W7 and W5. This means
that for any non-zero vectors € RI"YT and y € R to the power of b, it holds 2/ Wyz > 0

and y'Way > 0. Consequently,

Since x imposes no constraints on the entries of y, the vector w = {x y] represents any

non-zero vector in RIYul,

This proves the Lemma

The conclusions of Lemma 1 can be intuitively understood through the analysis of blocked
and unblocked covariance paths. The paths between 1 and T are either not blocked by
X, or unblocked by N. The latter scenario occurs because 1 includes the ancestors of N,
which are in turn directly or indirectly caused by T'. This situation is analogous to the
paths among the parents of a collider being unblocked when conditioning on the child. It
follows that the entries of V7 corresponding to the elements in 71 are non-zero vectors.
Conversely, X, blocks the forward paths between T and 5, and % does not exert direct or
indirect influence over X. Therefore, the entries of V, corresponding to elements in 5 are

ZEeros.
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The resulting structure of the matrix M,,V,r + N,Vr is:

IR T T 7
| X A o | [T & N[ D —
(Mo Vir + NoVr) 1 l L m{ - }
3l o ¢ | 5| o 3| o )
r— |3 12|
|| (AE+DF 0
- ( ). (1.14)

|3 0 1
In this expression, r denotes the rank of M,,V,r + N, Vr, and I represents the identity

matrix.

The following lemma derives conclusions concerning specific properties of the orthogonal

complement, laying the foundation for subsequent deductions:

Lemma 2 (Linear Dependence of the Rows of an Orthogonal Complement).
Consider a rectangular matriz A of dimensions m X n and rank v, where m > n, and let
B be an m x (m — r) matriz of full rank, such that A’B = 0. If every row of A contains

at least one non-zero entry, then all the rows of B are linearly dependent.

Proof of Lemma 2. Without loss of generality, we establish the linear dependency of
the first row of B. In other words, we aim to demonstrate that B(;) can be expressed as

a linear combination of the other rows:

By = A B) + AsBg) + -+ + A B (1.15)
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where A\ # 0 for at least one k& between 2 and m

By construction, A’B is equal to 0. Consequently, the product of every row of A’ with the

matrix B must result in a zero vector. Let Azj) represent the j* row of A’. We have:

By Bz -+ Bigm-r
) By By -+ Bagm—r)
(j)B: Ajn Ajp - Ajy ' _ ' =0
Bml Bm2 T Bm(m—r)

By assumption, every row of A contains at least one non-null entry. Therefore, there exists
a value of j such that A;; # 0. In fact, if A;; =0 for all j = 1: n, the j row of A is a

zero vector.

If Aj; # 0 it must hold that either Aj,. # 0, or By; = 0 for all 7. In fact, we know that
> AjiBiy =0 (1.16)
i=1

must hold V admissible k. If A;; # 0 only for i = 1, equation (1.16) reduces to

Aj1Bi, =0

Since Aj; # 0, it follows that By, = 0 for all k, indicating that the first row of B is the

zero vector, and thus linearly dependent.
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Conversely, if both A;; # 0 and A;, # 0 for some ¢ # 1 it must hold:

Bll B12 T Bl(m—n)
Bay By -+ Bapm—n)

|:1 )\2 )\m:| — 0
Bml Bm2 T Bm(m—n)

where the vector A is obtained after a proper normalization of A’( i) and contains at least

two non-zero entries.

This verifies equation (1.15) and establishes the validity of the lemma. U

The result of Lemma 2 can be extended to appraise the characteristics of the partially
observed model, setting the stage for the more comprehensive proposition articulated in

the following theorem:

Theorem 1 (Weak Causal Exogeneity and Linear Dependence of the Rows of
V). The rows of the matrix W, corresponding to elements within the set X, are linearly
dependent. Here, U = X', and 11, is the impact matriz of the partially observed model,

defined as 11, = a,f..

Proof of Theorem 1. From equation (1.7), we know that the adjustment matrix is
equal to iy = o (Mo, Vur+N,Vr) 1. Substituting, we have ¥ = Y- 1a, 8! = 318, (M, Var+

N,Vr) . 8., which in matrix form is
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AE + DF 0
U — ( * )J‘ B (1.17)

0 I

It follows from Lemma 2 that there exists a vector A containing only non-zero elements
such that )\(.Ag + ’D.’F) , = 0, indicating that the rows of ¥ ta, corresponding to the

variables in N are linearly dependent.

To conclude the proof of the theorem, it is observed that the rows of ¥ corresponding to

N (denoted as W(y)) are given by:

/

Yoy = [(AS +DF), 01 B,
It is evident that the vector X possesses the property:

Ay = A [(AS +DF), 0] B =0

This completes the proof of the theorem. O

From Theorem 1, we can readily deduce the following corollary:

Corollary 1 (First Corollary to Theorem 1). The rows of the matriz W corresponding

to the variables included in 3 are linearly independent.

Proof of Corollary 1. From equation (1.17), we can notice that the rows of ¥ corre-

sponding to 3 (denoted by ¥ (5)) are equal to ,3(’)(:), where ﬁg(:) represents the last J rows
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B D
Aol /
C FE

Figure 1.5: Example to Illustrate the Findings of Theorem 1 and its First Corollary
of ﬁ/'m

Considering that 5/ has a greater number of columns than rows, any linear dependence
among the rows of B:,(:) would imply rank deficiency in ). However, such a scenario
contradicts the fundamental characteristic of the cointegration matrix, which is inherently

constructed as a full-rank rectangular matrix. U

To clarify the concept of Theorem 1 and its Corollary, consider the graph in figure 1.5 and

the corresponding VECM shown below:

A 000 0fr 114
e 100 0

B a 00 0 B
f 0140

Alcl =10 b 00 cl “+e

0 h 01 i

D 00 ¢ 0 D
00 01

E 000 d|l - | E

L Jd¢ L . L d¢-1

Suppose the model user observes only B, D, and E, so that Y = {A,B,C,D, E}, X, =

{B,D,E}, T = {A}, and X, = {C}. As observed, the forward path between T" and

10Tt is important to mention that 3! 4y refers to the last J rows of 3] within the order utilized thus far,
and this order can be easily obtained through a trivial rearrangement of the variables
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B is direct and thus not blocked by any other variable within X,. On the other hand,
the forward path between T" and F is indirect as it passes through C'. Since C' € X,
no observed variable blocks the path between the fundamental trend and C. Therefore,
both B and E belong to N. Conversely, the forward paths between A and D are all
blocked by X,. Specifically, B blocks A — B — D while E blocks A - C — E — D.
Additionally, causality from X, to D is direct, thus satisfying condition i) of Definition
1. C is a parent of E € XN, thus it belongs to 71 according to Definition 3. In summary,
the causal sets are X = {B,F}, 3= {D}, 7={C}, and T = {A}. Tt is noteworthy that
D € Jindirectly causes FE € X through its effect on C. This renders F exclusively weakly

causally exogenous, whereas only B is also strongly causally exogenous.

The coefficients of the state-space representation in Equation 1.6 can be derived from the

fully observed VECM. Specifically, in this example, they are!!:

a 0 O 0 ae
Mo=10 d 0 Moy = | dj No= 10
ch ci c 0 0

M, = M My, = [0 0 bg} Ny = {bf}

HFor illustrative purposes, the order chosen for the observed variables is {B, E, D}.
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By substituting the above matrices into Equation 1.5, we can determine that the coin-
tegration matrix of the partially observed system modeling B, D, and F only is a 3 x 2

matrix with non-zero elements in all of its entries:

601 602
50 - 503 604
/805 506

To derive the matrix v = (My,Vur + N,Vr)1, we need to understand the character-
istics of the conditional covariance matrix V. Since A and C' are directly connected,

Cov(A,C|X,) # 0. Similarly, the same holds for the conditional variance of A. Conse-

quently, i _ i i ) i
0 aeVr v 0
V= diVur| T | 0 = |7 O
0 0 0 7

L i L 1/ 1 L i

P)/lﬁol 71503 ’leoS

V=8, = Y2801 Y2803 V2805 (1.18)

V3802 V3Bos V3806

As observed, the first two rows are linearly dependent. Specifically, ¥(;) can be expressed

as 0V (y), where 0

= 7—; Similarly, W) can be written as AW (), where A\ = % This
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observation aligns with Theorem 1, as in the chosen order, the variables corresponding to

the first two rows are B and F, which are elements of N.

Conversely, the third row of V¥ is linearly independent. This results from the fact that by
construction {302 Boa 506} is linearly independent with respect to {501 Bos 505} . To
suggest otherwise would imply that S, has rank 1, which contradicts the construction of
the orthogonal complement of C, — M, M ~uC,,. This result corroborates Corollary 1, as

W 3y corresponds to D € .

1.4.2 Testing Hypotheses on Causal Endogeneity

Theorem 1 and its corollary proved a duality between the properties of matrix ¥ and
weak causal exogeneity, and consequently, causal endogeneity. This result implies that
hypotheses concerning causal exogeneity can be reformulated as hypotheses on the model’s

parameters.
To illustrate, consider the following null and alternative hypotheses:

Ho. : The elements of = are causally endogenous

H,. : The set = contains at least one weakly causally exogenous variable

Where = C X, represents a collection of arbitrarily selected variables, subject to investi-

gation regarding their causal properties.

Based on the findings from the previous subsection, the causal hypotheses Ho. and Hj.

can be restated in terms of constraints on the model as follows:
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Ho,, : The rows in U corresponding to the variables in = are all linearly independent

Hi,, : Some of the rows in ¥ corresponding to the variables in = are linearly dependent

Up to this point, we have translated the causal hypotheses in such a way as to distinguish N
and 3 by examining the linear dependencies within the rows of the matrix ¥. The challenge
is to understand how to exploit this feature for inferential purposes. The first difficulty is

the estimation of ¥. Consider the model adjusted for the short-term dependencies'?:

!
Roy = aoB,R¢ + €0y

where Ry, and R;; are the residuals from regressing (respectively) AX,; and X,;1 on

{AX,y1-1,AX,; 9,...}. Upon pre-multiplying by 3!, we derive'®:

SRy = Q= 2;1%52317t + 3 e = VR + 1 (1.19)

where Var(n) = X;1¥,%-1 = Y71 Since multiplication by a full rank square matrix
preserves rank, it follows that rank(a,) = rank(X;'a,). Consequently, we have rank(W¥) =
rank(a,0.). Thus, the model in Equation (1.19) constitutes a reduced rank regression,

suitable for estimation using the technique introduced by Anderson (1951).

Notably, X, = Var(e,) is not directly observable, but it can be estimated as it represents
the covariance matrix of the residuals in the partially observed VECM. Therefore, in

practical applications, ); cannot be directly used. Instead, Qt = i;lRO,t is employed,

12Short-term dependencies can be wiped out by using the Frisch-Waugh theorem, see Johansen (1995)
and Juselius (2006)
13%, is a covariance matrix, thus it is square and has full rank. Consequently its inverse exists
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where f]o is the estimate of X,. This substitution can modify the distribution under the
null as well as the critical values. However, 3, converges to X,, such that Qt converges to
Q; as the sample size increases. It follows that the critical values converge to the standard

ones as n — 0Q.

Linear dependency can be detected by examining the influence that each row of U exerts
on the rank r of the regression in (1.19). In fact, the removal of a linearly independent
row causes a reduction in the rank of U. Conversely, the drop of a linearly dependent row

leaves the rank unchanged.

This mechanism can be easily adapted to our objectives: if, by excluding the i row of
the matrix ¥ (denoted by W(;) the cointegration rank diminishes, we can infer that W,
is linearly independent, and consequently, the *" variable in X, belongs to the set 2.
Conversely, if the elimination of the i row of ¥ does not affect the regression rank, we
can conclude that W ;) is linearly dependent, indicating that the it" variable in X, belongs

to the set N.

To illustrate, consider the matrix ¥ in Equation (1.18) from the example proposed in the
previous subsection. As previously analysed, the first two rows are linearly dependent,
while the third row is linearly independent. Given that the rank of W is 2, we expect to
obtain rectangular matrices of rank 2 when deleting either of the first two rows. This can
be observed by examining W(_p) and ¥ (_g), where ¥(_p) is ¥ with the first row removed,

and W(_p) is ¥ with the second row removed:
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72601 '72/603 '72605
Vip) =

/73502 73ﬂo4 73ﬁo6

T ﬁ' YBot Y1Bos V185
(-E) — YPo =

73602 '73504 73506

Since [501 Bos 505} is linearly independent with respect to |3, 3, B,| and 71 and

~3 are two scalars, it follows that the two matrices have rank 2, as anticipated. Conversely,

the matrix ¥(_p) obtained after removing from W its third row, is

v 5/ Y1Bor 1Bos V1Bos
= "}/ o =

Y2801 12803 Y2P05
Here, the resulting matrix is of reduced rank 1, given that the second row lies in the space

spanned by the first (and vice-versa).

U ;) can be removed by a manipulation of ¢);. The most intuitive approach involves directly
eliminating the variable Q;) ;. However, this method necessitates an extension of the rank
test to account for cases where the dimensions of the left-hand side do not align with
those of the right-hand side. To circumvent this step, an alternative strategy is proposed:

substituting @), with a series of independently and identically distributed randomly
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generated numbers. Specifically, we utilise a Gaussian white noise process denoted as:

Wi =w w~ N(0,02)

with 0 < 02 < oo.

Since W is generated independently of Q and R, its theoretical correlation with all
other model’s components is zero. Consequently, it is uncorrelated with the equilibria
in 3Ry ;. This transformation renders ;) weakly exogenous and reduces V¥ ; to a zero

vector.

Setting W(; = 0 has the same effect as dropping V¥ ;), as the zero vector does not span any

space, and thus, it cannot increase the rank of the whole matrix.

Consequently, the model transforms into:

Qt = \IloRl,t + 770,1& (120)

where Q, denotes the manipulated left-hand side, obtained by replacing the columns of

Ry corresponding to the variables of interest.

Whether the estimated model changes when the modification is applied has not been
proven and requires further analysis. However, what matters is not whether the estimates
themselves change but whether the rank of 3, changes in accordance with the conclusions

of Theorem 1 and its corollary. We do not have a proof, but we can make the following
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reasoning: the left-hand side of the VECM remains unmodified, ensuring that 8/X,; 4
remains stationary regardless of the substitution. Suppose that AX; is correlated with
the first column of X,3,. If X; € N, then there exists an X; € X, such that its first
difference is also correlated with the first column of X,f,. Consequently, by removing (or
substituting with white noise) X;, there will still be a variable in X, whose first difference
is correlated with the first column of X,[3,, implying that ) will not change. Conversely,
if X; € 3, it is the sole variable whose first difference is correlated with that column of
B.. Thus, removing AX; from the left-hand side would mean that the first column of 5,

could no longer be estimated, leading to a reduction in the rank of j!.

Based on the conclusions reached thus far, we propose an alternative formulation of hy-

potheses Hy,, and Hy,, based on regression rank rather than model constraints:

Ho, : The cointegration rank of the model in Equation (1.20) is less or equal to r — |Z|

H;, : The cointegration rank of the model in Equation (1.20) is greater than r — |=Z|

Here, r denotes the cointegration rank of the original model, specifically of the partially

observed model or the regression in Equation (1.19), and |Z| represents the cardinality of

—_
—
—

The isomorphism between Hg., Hi. and Hy,, Hy, is crucial, as the latter pair aligns
with the null and alternative hypotheses of the trace test or maximum eigenvalue test
illustrated for instance in Johansen (1995) and Juselius (2006). Consequently, the causal
hypotheses can be examined by applying Johansen’s tests to model (1.20) to determine if
the rank has decreased by |Z| units.
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Presented below are key points summarizing the steps for conducting the test on causal

endogeneity:

e Determine = and denote ¢ the set including the indexes representing the positions

of its elements in X,

e Estimate the cointegration rank r through standard procedures such as the Johansen

trace test
e Obtain Ry, and R;, by cleaning AX,; and X,,_; for the short term dynamics.
e Estimate X, from the residuals of the standard VEC model.
e Generate Q; by multiplying ;' and Ry,

e Generate ), by substituting the ¢ rows of QAM with randomly generated white

noises.

e Compute Sy = N™* Zi\; Ry Ry, Soo = N7 Zi\il Qt@fw Sio= N1 Ei\il Rl,t@:m

and 301 == ]\[71 Zi\il QtRll,t

e Solve the eigenvalue problem det ()\SH — 5105’&)15’01> = 0 and sort the eigenvalues

in descending order

e Compute the log-likelihood ratio statistic by using the formula LRT = —N In le):( ql (1—

Ai), where ¢ =7+ 1 — |Z]

e Compare the result with the non-standard distribution tabulated in Juselius (2006).
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1.4.3 Relationship with Standard Weak Exogeneity

The analysis of the connections between weak causal exogeneity and conventional weak

exogeneity reveals valuable insights, as detailed in the ensuing corollaries:

Corollary 2 (Second Corollary to Theorem 1). Weak exogeneity is a sufficient con-

dition for weak causal exogeneity.

Proof of Corollary 2. The corollary can be proven from the matrix representation of

Equation (1.7):

LY - r— |3 3]
Nl ¢  H | N| (AE+DF), 0 G(AE+DF), H
Qy = =
i A W= 0 I H(AE+DF), T

The |3| x |3| sub-matrix J cannot have null vectors as rows. It indeed possess in the main
diagonal the variances of the variables in ¢, corresponding to the elements in J. Since
we deal with stochastic variables, the variance cannot be null. This verifies that only the

rows of «, corresponding to N can be null vector.

This completes the proof of the corollary.

Corollary 3 (Third Corollary to Theorem 1). Weak exogeneity is not a necessary

condition for weak causal exogeneity.
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The necessity of providing a formal proof for Corollary 1.3 is obviated, as the specific
case presented in section 1.3 suffices to demonstrate that weak causal exogeneity does not

imply weak exogeneity.

In summary, weak exogeneity implies weak causal exogeneity. However, rejecting weak

exogeneity does not necessarily imply causal endogeneity.

1.5 Strong Causal Exogeneity

This section investigates strong causal exogeneity and the restrictions it implies on the
model coefficients. We explore the possibility of identifying causal information by modeling
weakly causally exogenous elements separately and comparing the resulting residuals with

the error term of the original model.

Subsection 1.5.1 explores the impact of strong causal exogeneity on estimable coefficients.
Subsection 1.5.2 leverages these insights to devise an inferential procedure. Finally, Sub-
section 1.5.3 delineates the differences between strong causal exogeneity and the statistical

notion of weak exogeneity.

1.5.1 Model Manifestations of Strong Causal Exogeneity

To detect strong causal exogeneity, we will focus on the covariance matrix ¥, retrieved
as per Equation (1.8). If the elements in N are strongly causally exogenous, it holds that

both N and 7 are not caused by 3. In light of these considerations, under strong causal
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exogeneity the matrices M,, and N, assume the structures depicted below:

] T
R[] A 0 R[| D

ou — No = (121)
3| o ¢ 3| o

In the conditional covariance matrix V, the sub-matrix relating 7 to % is null, as % cannot
cause 1 and N, and 7T cannot cause 3, therefore exclusing the possibility of collider type
structure with elements of T and 5 serving as parents. As detailed in the preceding section,
the sub-matrix of V' connecting 5 and T' consists of null entries. Thus, the overall structure

of V is as follows:

b T
| K 0 M
v bl 0 N o (1.22)

Tl M’ 0 o

The following Theorem identifies a duality between model features and the condition of
strong causal exogeneity. Specifically, it compares the covariance matrices of residuals
from two models: one fitted to X, and the other modeling N only. We denote ey as the
residuals corresponding to variables in N for the former model, and €* as the residuals of

the latter model.

Theorem 2 (Strong Causal Exogeneity and Equivalence between Models’ Co-
variance Matrices). If the variables in X are strongly causally exogenous, the covariance
matriz Yx = Cov(ey) equals the covariance matriz ¥ = Cov(e*)
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Proof of Theorem 2. To examine the covariance matrix of the residuals relative to
N, we need to consider the |RN|-dimensional full rank square sub-matrix constructed by

selecting the rows and columns of ¥, corresponding to N.

The residual covariance matrix of model (1.4) can be obtained by inserting Equations
(1.21) and (1.22) into Equation (1.8). Implementing the matrix calculations yields the

following representation for Yy:
Sy = <AIC + DM’)A’ + (AM + Do)p' Oy (1.23)

where €2y is the diagonal sub-matrix of €2, relative to the residuals of N.

If only the variables in X are modeled, 3 becomes unobserved, leading to modifications in
the matrices of the state-space model. We use the superscript * to denote the matrices

relative to the model including the variables in N only, thus the covariance matrix of the

model fitted to N will be denoted X*.

According to the definition of strong causal exogeneity, 3 cannot cause X. Consequently
the sub-matrix M}, connecting 3 to X will contain zero entries. The resulting state-space

coefficients are

I ey T
M= IR A 0 0 N;:|N|[D] (1.24)

The variables in N continues to block the forward paths between 7' and %, as well as
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the ones between {7, 1} and 3. Moreover, since 3 does not either directly or indirectly
cause N, the sets {T', 1} and 3 do not have conditional shared ancestors. Therefore, the
sub-matrices of V* = Cov [{Xut,Tt,:lt} | Nt:| relating T to {5,3} are null. The same
goes for the sub-matrices of V* relating 71 and {5, 3}. Consequently, the structure for the

conditional covariance matrix V* is as follows:

il 15| 13 T
- 0 0 M*
15| 0 N* R* 0
V* = (1.25)
] 0 R* S* 0
T/l m* 0 0 o

By inserting (1.24) and (1.25) into (1.8) we obtain the following representation for >*:
= (A" + DM ) A+ (AM® + DO*)D' + 0y (1.26)

where IC* = Var(7T| V), M* = Cov(T,T | ), and O* = Var(T | R).

Since the elements in J do not interfere in the connections between the components of the
set {T, 71}, i.e. it does not exist any indirect path between J and {7, 71} when conditioning
on N, the covariances IC*, M*, and O* equate IC, M, and O respectively. This can be
formally proven by tracking the steps of the proof of Lemma 1, as it requires demonstrating
that Cov(TUT|X,) = Cov(TUT|R) under the hypothesis of strong causal exogeneity.
To retrieve Cov(T1U TR), the variables in J are treated as unobserved, while only the
variables in N are included in the observed set.
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We begin by analyzing the covariance matrix V' = Cov(Y,, | X,). Under this scenario, the

coefficients of Equation (1.9) assume the following structures:

ISKANL] TuT| 5
. T Ao e o
5[l o B 2l o D
TUT] |3 X[ |3
TuUT]| € 0 R| ¢ o0

O = 0, =
bl o F 3] o H

It should be noted that these structures hold even in the absence of strong causal exo-
geneity, as causality from 7'U T to 5 and vice-versa is excluded by construction. The same

exclusion applies to causality from % to R and from 7°U 7 to 2.

By substituting the coefficients above into Equation (1.9), and recognizing that the con-
ditional covariance between TU T and 5 is zero as per Lemma 1, we obtain the following
representation for Wy = Cov(T U 7| X,), i.e., for the |T U 7| x |T U 7| square sub-matrix

constructed by considering the rows and columns of V' corresponding to 7°U I

W, = AW, A + € — AW, C'(CW,C' +G) 'CW, A (1.27)

We now consider the covariance matrix of U T conditioned on X only. In this case, J
is treated as latent, and N is the only observed variable. Without loss of generality, we
combine J and  together, so that the two sets forming the latent variables are T'U 7] and
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JUS. In the presence of strong causal exogeneity, causal feedback from 3 to T is excluded,

as well as feedback from 3 to N. Therefore, the coefficients of Equation (1.9) become:

TuT| |5u3 TuUT] sud|
_ ot A 0 ) TuT|| & 0
Copul 0z Yopugl o g

TUT|[5Ud TUT|
sz|N\{c 0] Qolzl“)uill{g}

The subscript “1” is added to distinguish the above coefficients with the parameters of the
equation related to V' = Cov(Y,|X,). It should be emphasized that these representations
are not valid in the absence of strong causal exogeneity. Specifically, in such cases, the

submatrices in positions {1,2} in both Q)7 and C} would not be zero.

By selecting V; = Cov(Y,, U JIR) as follows

TuT [pul
TUT]| W, 0
Vlz
15U 3 0 W3

Equation (1.9) splits into two independent parts:

Wy = AW, A + £ — AW,LC'(CWLC' + G)~ICWL A

W3 = IW,T + F
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Figure 1.6: Example of Causal Graph Generating Equivalence Among the Covariance
Matrices of ey and &*

Since W3 is positive semi-definite, and F is a square matrix with positive entries in
its main diagonal and zero otherwise, it follows that the above representation for Wy is
suitable, as it results in a positive semi-definite matrix. Moreover, from (1.27), we can
immediately understand that selecting Wy = Wj provides an admissible result, given that
W1 is positive semi-definite by construction. It follows that Cov(T'UT|X,) = Cov(TUT|R)
under strong causal exogeneity. Consequently, Equations (1.23) and (1.26) are equal, and
the covariance matrix of the residuals relative to N of the smaller model is the same as the

covariance matrix of the residuals relative to X in the larger model.

This is sufficient to conclude the proof.

To illustrate the concepts in Theorem 2 and its corollary, consider the causal graph in
Figure 1.6, where the observed variables are B, C, and D, while the only unobserved
variable is the fundamental trend A. In this context, X, is empty. The forward paths
between A and D are blocked by B and C, while the fundamental trend directly influences
B and C. Consequently, X = {B,C} and 3 = {D}. Naturally, T = {4}, 7T =0, and

5 = (. As we can see, D neither directly nor indirectly causes B and C, thus all the
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elements in N are strongly causally exogenous.

The conditional variance V' = Var(A|{ B, C, D}) is equal to

Var(A|{B, C'}) — Cov(A, D|{B, C})Var(D|{B, C'})"'Cov(D, A|{B,C})

This follows from the identity Cov(A|B) = Cov(A)—Cov(A, B)Cov(B) 'Cov(B, A). Since
N blocks all the paths from A to D and D does not have feedback on X in such a way to form
a collider-type structure where A and D serve as parents, it results that Cov(A, D|B,C) =

0, thus Var(A|B,C, D) = Var(A|B,C).

Since X, is empty, the matrix M,, does not exist. The matrix N,, relating X, to T, has
two non-zero elements in its first and second rows, corresponding to B and C', given that
A directly influences B and C'. Conversely, there is no direct edge between A and D, so

the third row of N, contains a null entry. Hence, the structure of N, is
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Substituting N, and V' into Equation (1.8), we obtain

a*Var(A|{B,C, D}) + Qp abVar(A|{B,C, D}) 0
Yo= | baVar(A|{B,C,D})  b*Var(A|{B,C,D}))+Qc 0 (1.28)

0 0 Qp

where Qg, ¢, and Qp are the elements in the diagonal of €2,.

By modeling N only, the variable D is treated as unobserved. In this case, the set of
ordinary latent variables is no longer empty, so that M}, exists. However, since D has no

causal feedback to N, M, contains only zero entries. Therefore, the matrix ¥* is

a*Var(A|{B,C}) + Qp abVar(A{ B, C})

*

baVar(A|{B,C}) v*Var(A|{B,C}) + Q¢

Since Var(A|B, C') = Var(A|B, C, D), the entries of ¥, corresponding to A and B are equal
to the matrix X*. This aligns with Theorem 2, as it implies that the covariance matrix
of the residuals corresponding to N in the VECM modeling X, is equal to the residual’s

covariance matrix of the VECM modeling X only.

Corollary 4 (First Corollary to Theorem 2). If R contains non strongly causally ez-

ogenous elements, the covariance matriz YXn = Cov(ey) differs from the covariance matriz

¥* = Cov(e®).

Proof of Corollary 4. For brevity, we consider the set Y, = {T, 7,5} instead of ana-
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lyzing the individual effects of 7', 7, and 5.

Let T denote the coefficient of the state space model relating N to Y,,, and U denote the
covariance of Y, conditioned on X,. The matrix ¥y is obtained by inserting 7 and U into
Equation (1.8), yielding

Yn=TUT + Oy (1.29)

where )y is the square diagonal matrix containing the variances of the errors corresponding

to N in the fully observed model.

Now, consider the model fitted to RN only, treating 3 as unobserved. Let V represent
the coefficient of the state space model relating N to J, U* denote the covariance of Y,
conditioned on R, W* denote the covariance between Y,, and 3 conditioned on R, and X’*
represents the covariance of J conditioned on R. The matrix X* obtained from Equation

(1.8) is given by

S =TUT + VXV + VWYT + TW*V' + Qy (1.30)

To prove the inequality between the two covariance matrices, we rewrite U in terms of U™*.
Utilizing the relation Cov(A|B) = Cov(A) — Cov(A, B)Cov(B) 'Cov(B, A), we express U
as

U=u-wax—w (1.31)

since Cov(Y,|{R,3}) = Cov(Y,|X)—Cov (Y, JIN)Cov(I|R)~*Cov(3, Y, |X). Inserting (1.31)
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into (1.29), we observe that the equality between (1.29) and (1.30) holds only if

VXV + VWHT + TW*V - TW*X*'W¥T' =0

By assumption, the variables in N are not strongly causally exogenous, indicating a causal
feedback between J and R. Direct feedback is captured in V), while indirect feedback
manifests in YWW*. Given that J aither directly or indirectly causes R, at least one between
Y and W* must be non-null. If ¥V # 0 and W* = 0 (indicating exclusively direct
feedback), the equality between (1.29) and (1.30) holds only if VAX*V' = 0, which is not
possible since X* is a non-null full rank matrix. Conversely, if ¥V = 0 and W* # 0
(indicating exclusively indirect feedback), the equality between (1.29) and (1.30) holds

only if TW*X*'W* T’ = 0, which is also not possible for the same reason.

If both YV and W* are non-null, the equality holds only under fine-tuned parameter values,

as the entries of X depend on €25, which is not dependent on the values of ¥V and W*.

This concludes the proof of the corollary.

To clarify the findings of Corollary 4, consider the graph in Figure 1.6 with the addition
of the causal connection D — (', resulting in the graph depicted in Figure 1.4. This
modification introduces a causal feedback from 3 to N, implying that N is no longer

strongly causally exogenous.
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In this modified graph, the fundamental trend and D form a collider-type structure
on C'. Consequently, their covariance is not zero when conditioning on C. Therefore,

Cov(A, D|B,C) # 0, making the second term of

Var(A|B, C) — Cov(A, D|B, C)Var(D|B,C) *Cov(D, A| B, C)

non-zero, leading to the inequality Var(A|B,C) # Var(A|B,C, D).

The structure of N, remains unchanged with respect to the previous example, so the

resulting ¥, matrix is equivalent to the one in Equation (1.28), as shown below:

a*Var(A|B,C, D) + Qg abVar(A|B,C, D) 0
Yo=| baVar(A|B,C,D)  b*Var(A|B,C,D)+ Q¢ 0

0 0 Qp

When modeling N only, the matrix M}, exists and contains a non-zero entry in the row

corresponding to C"

M, =

ou

This reflects the causal feedback that D has on C.
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Substituting into Equation (1.8), we obtain:

a?Vi+ Qp acVip + abVj
DI

acVip + abVy  AVE +2bcViy + Vi + Qe

where Vi = Var(A|{B, C}), V.; = Var(D|{B,C}), and V5, = Var(A, B|{B,C}).

In accordance with Corollary 4, the covariance matrix of the residuals corresponding to
N in the VECM modeling X, differs from the residual’s covariance matrix of the VECM
modeling N only. For example, this can be observed by comparing their first elements,

given that Var(A|B,C) # Var(A|B,C, D).

1.5.2 Testing Hypotheses on Strong Causal Exogeneity

The findings presented in section 1.5.1 can serve as a basis for translating causal assertions
into hypotheses concerning the equality of covariance matrices. This lays the foundation
for the construction of an inferential methodology aimed at identifying strongly causally

exogenous variables. In fact, the null and alternative hypotheses
Ho. : The set T = X contains only strongly causally exogenous variables
H;,. : Not every element of T = N is strongly causally exogenous
find an isomorphism in the hypotheses

Ho,,, : The covariance matriz of the residuals relative to Y in the VECM fitted to X, is

equal to the covariance matriz of the residuals relative to Y in the VECM modeling T
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only

H;i,, : The covariance matriz of the residuals relative to Y in the VECM fitted to X, is
NOT equal to the covariance matrix of the residuals relative to Y in the VECM modeling

T only

The equivalence between {Ho¢, Hi.} and {Hom, Him } results immediately from the find-

ings of Theorem 2 and its first Corollary.

To implement a testing technique, it is necessary to estimate two models: one including
X, and the other including R only. The identification of the set X can be undertaken by

employing the procedure elaborated in section 1.4.

Several methods can be employed to test hypotheses related to equality of variances, such
as an F-test or a Bartlett’s Test. In case the comparison is among covariance matrices it
can be used the multivariate version of the Bartlett’s Test, i.e. the Box’s M Test. It must
be emphasized that the implementation of these tests necessitates the independence of the
series. However, this condition is likely violated for the residuals of the two models. To
address this issue, it is suggested to partition the sample into two parts and use different
sub-samples for the two series of residuals. It is important to note that this approach
needs further investigation, and an assessment of its effectiveness is reserved for future

research.

Below, we outline the key steps for the practical implementation of the strong causal

exogeneity test employed in this paper:
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e Set T as the estimated set of weakly causally exogenous elements, i.e. T = N

e Determine the set T for which the hypothesis of strong causal exogeneity should be
tested and denote ¢ as the set including the indexes representing the positions of its

elements in X,

e Estimate the VECM fitted to X, and store ey, where ey represents the residuals in

positions ¢.

e Estimate the VECM fitted to the variables in T and store €%, where €} represents

the residuals in positions ¢+*.

e Take the first N/2 observations of ey as well as the last N/2 observations of €% and
denote them respectively ey 1.n/2 and €% 241N Here N denotes the sample size of

ey and er.

e Estimate the covariance matrices Xy 1.n/2 = Cov(ey 1.n/2) and 3%, N/2LN = = Cov(e% N2 N)s
as well as the pooled covariance matrix 3, = ﬁ[(l\fﬂ — )Xy vy + (N/2 —
E% N/2+1: N]

e Compute M = (N—2)Indet(X,)—(N/2—1) Indet(Xy 1.n/2)—(N/2—1) Indet(E% /5, 1.5)

2k2+3k—1 2 1 : : : :
and C' = O ( N7a—T N_1> , where k is equal to the dimension for the covariance

matrices.
e Compute the test statistic as follows: M (1 — C)

k:+1

e Compare the test statistics with a y? distribution with degrees of freedom
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@ -->@0+—0

Figure 1.7: Causal Graph where Weak Exogeneity Does not Correspond to Strong Causal
Exogeneity

1.5.3 Relationship with Standard Weak Exogeneity

The examination of the relationship between strong causal exogeneity and traditional weak
exogeneity underscores significant disparities between these concepts, as demonstrated in

the following corollaries:

Corollary 5 (Second Corollary to Theorem 2). Weak exogeneity is not a sufficient
condition for strong causal exogeneity.

Proof of Corollary 5. The corollary can be proven by providing a specific example

where weak exogeneity does not imply strong causal exogeneity.

Consider the VECM below whose causal structure is described by the causal graph de-

picted in figure 1.7.

A 0 0 A
c 1 d
AlBl =la 0 B| té&
0 e 1
C 0 b C
I L . L Jdit—-1

Assume that the model user identifies B and C only, i.e., X, = {B, C}. Since all the paths
between the fundamental trend A and C' are blocked by B, C belongs to J. Conversely,

there exists a path between A and B that is not blocked by X,, thus B € N. Despite
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being weakly causally exogenous, B is not strongly causally exogenous due to the causal

connection C' — B.

To assess standard weak exogeneity, we can use Equation (1.10). The state-space co-
efficient N, contains a non-null entry only in the position relative to B. Consequently,
its orthogonal complement will have a non-zero entry (exemplified by unity) only in the

position relative to C'. Without loss of generality, we set €1, equal to the identity matrix.

0
The resulting adjustment matrix is «, = , thus B is weakly exogenous despite not

being strongly causally exogenous.

This completes the proof of the corollary.

Corollary 6 (Third Corollary to Theorem 2). Weak exogeneity is not a necessary

condition for strong causal exogeneity.

The necessity of providing a formal proof for this corollary is obviated, as the specific case
presented in section 1.3 suffices to demonstrate that strong causal exogeneity and non

weak exogeneity can co-exist.

In conclusion, the identification of weak exogeneity in a variable does not provide any

information about the strong causal exogeneity property.

It must be emphasized that we have examined the concept of weak exogeneity with respect

to the long-run parameter S,. In case we change the parameters of interest, the relations
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between standard weak exogeneity and strong causal exogeneity may vary. A thorough

examination of this aspect is left to future research.

1.6 Example

The causal exogeneity analysis is illustrated in this section with the example of the theory
of money, one of the most studied and contentious of economic concepts. We show in
principle what our approach to causation can unearth about the role of money, assuming
that the economic system adheres to the classical perspective of the quantity theory of
money, as advocated by Hume. To construct a causal graph, we draw upon the conclusions
outlined in section 1.1 of Hoover (2001), where the author synthesizes the predominant

causal mechanisms inherent in Humean theory.

Hoover identifies five causal effects within Hume’s major essays. Firstly, the quantity theory
of money posits that the money supply (M) relative to available goods (Y') determines

the price level (P), illustrated as M — P < Y.

The second causal mechanism, termed the specie-flow mechanism suggests that changes

in relative prices influence the quantity of precious metal inversely, i.e. P — M.

The third mechanism, known as the loanable funds doctrine, asserts that the level of
interest rates (i) is determined by the supply and demand for loans (L),!* implying the

graphical representation L — 1.

14T is a variable denoting the interaction and relationship between the supply and demand for loans.
For instance, it can represent their difference or their ratio. If it represents their ratio (i.e., Loan Demand
/ Loan Supply), then when L > 1, the interest rate ¢ increases, while when L < 1, ¢ decreases.
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Production of Goods

Price

Customs of People Stock of Money

Interest Rate

Profits

Figure 1.8: Graphical Structure of the Causal Links in the Humean Doctrine

The fourth mechanism extracted from Hume’s work is the mutual causation between in-
terest rates and profits. This phenomenon, known as the arbitrage doctrine, is represented

by the cyclical graph 7 <> 1.

Lastly, Hume emphasizes the pivotal role of societal customs in determining profit rates,
as well as the demand and supply for goods and loans. Hume’s sociological doctrine is

graphically summarised as CP — {Y, M, 7}, where C'P denotes the customs of people.

These relationships are combined together, and produce the cyclical directed graph de-

picted in Figure 1.8.

The fundamental origin of causality in the Humean model is traced back to societal norms
and customs (C'P). In long-run systems, the original source of causality is the source
of non-stationarity, such that the variable C'P constitutes the fundamental trend that

induces non-stationarity in the ordinary variables X = {Y, M, L, 7, P, i}.

The treatment of C'P as a fundamental trend is arguably plausible, as it supposes the

sociological factors are the accumulation of unpredictable shocks. Under this perspective,
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CP aggregates all the non-economic influences on preferences, culture, and the traditions

of individuals.

Following the methodology outlined in section 1.2 and in Hoover (2020), the graph can be

translated into the following VECM representation of a C-VAR(1):

cP 00000 0] 1 lop
g1 0 0000

Y a 00000 Y
00 1 00hDO

M 0b0O0O0 0 M
i 000 1000

ALl =100c¢c000 L + & (1.32)

i 00 010 k

T 00 0doO0OO T
0l mO0O0T10

P 0000 e 0 P
00 0 npO1

i 00000 f|- |

L Jd+ L 4 L d¢1

The above VECM effectively captures the causal connections delineated in the graph.
Notably, C'P is weakly exogenous and remains unaffected by any equilibrium violation,
consistent with the absence of edges pointing towards “Customs of People”. Variable Y
reacts to deviations from the equilibrium Y = —gCP, reflecting the causal relationship
between Y and C'P. Similarly, deviations from the equilibrium M = —hP influence
M, while deviations from L = —iC'P impact L. Profits (m) are influenced by multiple
variables, and the economic forces influence their fluctuations when the equilibrium 7 =

—jC'P — ki does not hold. This rationale extends to P and 1.

The cointegration rank of the model is 6, equating to the difference between the total
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number of variables and the number of fundamental trends.

The graph in Figure 1.8 embodies Hume’s conceptualization of the economic system. We
suppose Hume’s conceptualization is accurate, in the sense that the graph depicts the
true causal relations among macroeconomic variables, with Equation 1.32 serving as the
data generating process. In essence, the graph illustrates natural orders, where causal
connections are akin to natural laws. Other conceptualizations are of course possible, and
might be more plausible a priori. The key point is of course that they too can be tested

just as we outline how “Hume’s model” can be tested.

Having described the functioning of the economic system, we now consider the econometri-
cian’s job. Numerous studies employ cointegrated systems to model monetary phenomena,
as evidenced in works such as Johansen (1992c¢) and Johansen and Juselius (1990), among
others. These studies commonly select money stock, GDP, price index, and interest rates'®
as relevant for the analysis. The analysis predominantly centers on the interplay between
the money supply, represented by the money stock (M), and the determinants of money
demand, namely Y, ¢, and P. The primary objective is to determine the nature and role
of money in the system: whether and to what extent the demand of money influences the
money supply, in other words, to what extent the money supply is exogenous. Following

much of the literature, we solely consider M, Y, i, and P as modeled variables.

Thus, the sets are delineated as follows: the set encompassing the components of the

fully observed model, is {C'P,Y, M, L, w, P,i}; the set X, comprising modeled variables is

15Both long and short-term interest rates have been utilized in the literature cited. For simplicity, we
consider only one interest rate in this example.
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Figure 1.9: Observed and Latent Factors of Graph 1.8

X, = {Y, M, P,i}; and the set Y, containing latent elements is Y, = {CP, L, w}. Given
that the set T" enclosing fundamental trends is the singleton set 7' = {C' P}, the set X,
containing the unobserved ordinary variables is X, = {L,n}. Figure 1.9 illustrates the
relationship between observed and unobserved components, with red nodes and dotted

edges representing latent variables and unobserved causal connections, respectively.

The graph shows the causal exogeneity properties of the observed variables. There exists
a direct forward path between the fundamental trend C'P and Y, while the forward paths
between C'P and i are mediated by L and 7. Since those last two variables are unobserved,
the paths between T"and Y and T" and i are not blocked by the components of X,, implying

Y eNandi e

Practically, the exogenous nature of Y implies that, even with arbitrary manipulations
of M, P, and 7, control over the nominal level of Y remains unattainable. Its long-term
fluctuations are directly influenced by levels of C'P, which in turn remain unaffected by

X,. A similar reasoning applies to i: despite the forward paths between the fundamental
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trend and ¢ being indirect, arbitrary manipulations of Y, P, and M cannot regulate the

nominal level of 1.

Conversely, all the forward paths between T" and { M, P} are blocked by Y and the causal
paths between Y and {M, P} is direct, signifying that by modifying Y at will, one can
control the long-run levels of both P and M. Consequently, both P and M are regarded as
endogenously determined with respect to X, = {Y, M, P,i}. X, = {L, 7} are all parents

of i € N. Thus, they belong to the set T, while 5 remains empty. Finally, the causal sets

are as follows: T'={CP}, T={L,w}, R={Y,i}, 3={P,M} and 5 = ().

To illustrate the duality between causal sets and model restrictions, we need to obtain the
coefficients of the partially observed models that can be estimated by the model user. We
begin by demonstrating Theorem 1, i.e., the duality between linear dependence of rows of

WU and elements of set N.

For this purpose, we require the matrices ¥ 'a, = (M, Vur + N,Vr) 1, B, and their
product. As expounded in section 1.4, the rank of this model equals the cointegration
rank of the partially observed system. Since N, possesses full rank, it equals the number
of modeled variables, i.e., 4, minus the number of elements in T, i.e., 1. Thus, the final
rank is 3. The order for observed variables is Y, M, P, i, so that the first row-column
of the coefficients related to the observed variables corresponds to Y, the second to M,
the third to P and the last to 2. The order of the unobserved ordinary variables is L, 7
such that the first row-column of the coefficients relative to X, corresponds to L while the

second corresponds to .
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The coefficients of the partially observed model are obtained from the parameters of the
state-space representation in Equation (1.6). The specific entries are derived from the

VECM representation of the fully observed system in equation (1.32):

a 0 0 O 0 0 ag
0 b bh O 0 0 0
M, = M,, = N, =
el em e 0 0 0 0
o 0 o0 f fn fp 0
c 0 000 O ct
Mu = Muo = Nu =
0 d 0 0 0 dk dj

By inserting the matrices into equation (1.5), we obtain the following representation for

the cointegration matrix f,:

- 4 7 -
ag a 0 O 0
g 0 0 b DL 0
} 0 el em e 0
—fitnsp)| ) [0 0 0 f(1-ph)]

while the matrix ¥ 'a, is
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agVep

0
(MouVuT + NOVT)J_ = (133)

0

f(nVicp + pVecp) |

where V), p represents the sub-matrix of V' constructed by considering the rows corre-
sponding to A and columns corresponding to B, while V, is the square sub-matrix of V'
constructed from the rows and columns corresponding to A. An orthogonal complement

does not have a unique representation. For consistency, we adopt the following form:

_a_ _—b 0 O_
0 0 10
0 B 0 01
b a 00
L J L i

Consequently, the final representation of the model in Equation (1.19) is

f(nViep+pVecp) 0 Of T 7
afjfln+p) 0 0 afg(l—pk)
0 10
Q= 0 b bh 0 Ry +m
0 0 1
el em e 0
—agVep 0 0 - -

The first and last row of ¥ are linearly dependent. This arises from both being derived
by multiplying the first row of 3., denoted as 5:;(1)7 by the scalars A = f(TLVchp —l—pVﬂ,cp)
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and 6 = —agVep. Consequently, W) = %\11(4), confirming a linear dependency between

the rows corresponding to X = {Y, M}, in line with Theorem 1.

The second and third rows of ¥ correspond to the second and third rows of 5). Since
the columns of the cointegration matrix are linearly independent by construction, W s
and W3y remain linearly independent. This result aligns with Corollary 1, given that the

second and third modeled variables are respectively M € J and P € 1.

Thus far, we have used the duality set out in Theorem 1, and its first Corollary. Next, we

outline practical steps for identifying X = {Y, i}, as outlined in section 1.4.2.

To estimate model (1.19), it is necessary to obtain ¥, '. This can be achieved by computing
the residuals of the standard VECM fitted to X, and estimating their covariance matrix.
Subsequently, the series Qt = f];lRoyt is computed and regressed on R?; ; using the reduced
rank technique. The regression rank matches the original VECM’s rank, which in our

example is 3.

As specified in model (1.20), the substitution of the i* row of Qt with an independently
generated white noise series renders the it variable weakly exogenous. Consequently, the
i row of ¥ becomes a zero vector. Denoting U, as the regression coefficient resulting

after modifying the row of Q; corresponding to A, the estimated outcomes for the various

manipulations are as follows:
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0 0 0 0
_ 0 b bh 0
Uy =

el em e 0

—a*gfj(n+p)Vor 0 0 —(ag)*f(1—pk)Ver|

fPaj(n+p)(nVicp +pVecp) 0 0 flag(l —pk)(nVicp + pVicp)
B 0 0 0 0
V=
el em e 0
—a’gfj(n+p)Vep 0 0 —(ag)*f(1 — pk)Vep
fPajn+p)(nVicp+pVecr) 0 0 flag(l —pk)(nVicp+ pVrcp)
~ 0 b bh 0
Bp =
0 0 0 0
—a’gfj(n+p)Ver 0 0 —(ag)*f(1 — pk)Vep
fPajn+p)(nVicp+pVecr) 0 0 flag(l—pk)(nVicp + pVrcr)
_ 0 b bh 0
W, =
el em e 0
0 0 0 0

We see that rank(¥y) = rank(¥;) = rank(¥) = 3. This indicates that the manipula-
tion of the rows corresponding to X = {Y,¢} did not alter the overall rank. In contrast,

rank(¥ ;) = rank(¥p) = 2 < rank(¥), implying that the modification of the rows corre-
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sponding to the elements of 3 = {M, P} reduces the rank of the model.

The hypothesis rank(\if 4) < 2 can be tested employing the trace test or the maximum
eigenvalue test. We expect to fail to reject the test for Wy, and ¥p, but to reject for Uy

and \I/,

Thus far, we have examined weak causal exogeneity. Now, we focus on the analysis of

strong causal exogeneity.

As per section 1.3, a variable x; € N is deemed strongly causally exogenous if there
exists no causal feedback from the elements in 3 to z;. No directed arrows originate
from 3 = {P, M} and point directly or indirectly towards 8 = {Y)i} in the graphical

representation. Hence, both Y and ¢ are strongly causally exogenous.

According to Theorem 2, the covariance matrix of the residuals associated with Y and i
of the model fitted to X, = {Y, M, P,i} equals the covariance matrix of the residuals of

the model fitted exclusively to Y and .

To compute the covariance matrix ,, we incorporate the coefficients of the state-space
model into equation (1.8). The conditional variance matrix V' contains non-zero entries
as the covariance paths among the elements of Y, are not blocked by X,. The resulting

covariance matrix for the model fitted to X, = {Y, M, P,i} is as follows:
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(ag)*Vep + oy 0 0 agf(nVicp + pVrcpr)
0 02, 0 0
Yo = (1.34)
0 0 o 0
agf(nVicp+pVece) 0 0 f2(n?Vy + p*Vy + 2pnVi,) + o?

When modeling ® = {Y,i} only, variables M and P are treated as unobserved. Conse-
quently, the conditional covariance matrix V is adjusted to correspond to

Cov({L,m,CP,P,M} | {Y,i}). As we can see from the graph in figure 1.9, the covari-
ance paths between {CP, L, 7} and {P, M} are blocked by the node corresponding to
Y. Moreover, it follows from strong causal exogeneity that {7,771} and 3 do not share
the same conditional descendants, resulting in zero entries in the sub-matrices relating
those two sets. Moreover, since P and M do not interfere with L, 7 and C'P, the con-
ditional covariance matrix Cov({L,w, CP} | {Y,i}) equates Cov({L,7,CP} | X,). The

final representation for the residual covariance matrix is:

(ag)*Vep + oy agf(nVycp + pVrcop)

agf(nVi.cp + pVacop) [2(n*Ve + p*Vi + 2pnVi,) + o?
¥’ equals the sub-matrix of ¥, constructed by considering the rows and columns corre-

So far, we illustrated the duality discovered in section 1.5. To practically identify the

strongly causally exogenous elements one can follow the procedure in section 1.5.2: Ini-
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tially, the VECM is estimated for X, = {Y, M, P, i}, and the residuals for variables Y and
1 are retrieved. Subsequently, N is modeled by fitting a VECM exclusively to Y and .
The rank of this model is 1, given that N, is a 2 x 1 matrix of rank 1. The covariance
among the two pairs of residuals is then compared using the Box’s M test, as detailed
in section 1.5.2. The anticipated outcome is the failure to reject the null hypothesis of

equality between the two covariance matrices.

To illustrate the distinction between standard weak exogeneity and causal exogeneity, we
compute the adjustment matrix a,. This is obtained by inserting (1.33) and (1.34) into

Equation (1.7). The resulting matrix is given by:

ay 0 0

0 apr 0
a, =

0 0 ap

a; 0 0

where ay # 0, apy # 0, ap # 0, and «o; # 0.

This matrix demonstrates that «, does not contain null rows, indicating that the hy-
pothesis of weak exogeneity is anticipated to be rejected for all four modeled variables.
Consequently, in this scenario, standard weak exogeneity is not informative from a causal
perspective, and neither therefore are the notions of strong and super exogeneity (of Engle

et al. (1983)), as these both require weak exogeneity. By way of contrast, in the example
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model of this section, with the assumed set of observed variables, both Y, i are weakly and
strongly causally exogenous. Our example shows that the conclusions we draw based on
the definitions of weak and strong causal exogeneity may not match the statisitcal notion

of weak exogeneity.

1.7 Conclusions

This chapter contributes to the literature on causality in economics by showing that some
key aspects of latent causal graphs can be framed as restrictions on the coefficients of
partially-observed vector error correction models, even in the absence of knowledge of
all the relevant variables. The absence of this requirement - the requirement of complete
specification - makes our approach practicable and reliable. Generally in statistical analysis
the failure to adequately account for “confounding” factors or explanatory variables can

severely limit what can be learnt from the analysis.

The duality we have discovered between causal graphs and restrictions on model param-
eters allows for the development of inferential procedures to determine which variables
exhibit weak and strong causal exogeneity. Weak causal exogeneity refers to the capacity
to influence the nominal value of endogenous variables, while strong causal exogeneity

adds to this the absence of causal feedback on to the exogenous variable.

Our analytical framework facilitates a generic assessment of causality, circumventing the

conventional assumptions typically imposed in causal inference literature, which include
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the requirement for acyclicity. This framework is particularly advantageous in the con-
text of long-run systems, where mutual influences in equilibrium adjustments are widely
acknowledged in the economics literature. Our approach is based on the CVAR, and is
ostensibly related to well known tests of weak exogeneity, and which variables can be
regarded as “driving forces”. However, we have shown that whether or not a variable is
weakly exogenous is unrelated to whether or not it is strongly causal exogenous and is only
a sufficient condition for weak causal exogeneity. The notions of weak and strong causal
exogeneity we introduce in this paper are distinct from the Engle et al. (1983) notion of
weak exogeneity, and the implementation of this notion in CVARs. This is illustrated
by our Money Example in section 1.6 for an assumed “economic structure”. The utility
of our approach extends beyond monetary economics. For example we note that Franchi
and Juselius (2007) find the surprising result that the weak exogeneity of private capital
formation can be rejected, while the weak exogeneity of per capita consumption can not
be rejected. This is surprising from the point of view of the Real Business Cycle school,
as it suggests shocks to capital formation are not a driving stochastic trend, but shocks to
per capita consumption are, at odds with what is expected to be the case. Nevertheless, it
might be the case that private capital formation is weakly or strongly causally exogenous
despite not being weakly exogeneous (matching Y, in section 1.6), and the use of these

concepts might be more relevant.

The following chapters further explore the concept of causal exogeneity. Specifically,

Chapter 2 extends the analysis of weak causal exogeneity by identifying a further du-
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ality between model characteristics and weak causal exogeneity, as well as by assessing
test performance using simulated data. Additionally, it proposes an empirical illustration

to demonstrate the practical utility of causal exogeneity.

Chapter 3 delves deeper into the causal information embedded in standard weak exogene-
ity. This chapter goes beyond weak and strong causal exogeneity, focusing on the concepts
of non-causality and driving forces. It aims to provide a comprehensive understanding of
how standard statistical notions contribute to the broader framework of long-run causal

analysis in cointegrated systems.
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Chapter 2

A New Log-Likelihood Ratio Test for
the Identification of Long-Run Causal
Endogeneity

2.1 Introduction

The meaning of exogenous and endogenous can be ambiguous, and may depend on contex-
tual considerations. For instance, in monetary economics, Palley (2002) has noted various
facets of money’s endogeneity/exogeneity. If the focus is on the origin or the evolution
of money, the analysis could be said to concern Evolutionary Ezrogeneity or the Originary
Endogeneity. If, instead, what matters is not the nature of the variable of interest, but
its properties within a particular institutional setting, the analysis could be termed the

Quantitative endogeneity/exogeneity or Control endogeneity/exogeneity.

From an econometric or statistical perspective, the emphasis is on Statistical endogene-
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ity/exogeneity. The seminal paper by Engle et al. (1983) proposed three different defi-
nitions of exogeneity, each serving a specific statistical purpose: weak exogeneity, strong
exogeneity and super exogeneity. Broadly, statistical exogeneity implies a variable’s inde-
pendence from others, while endogeneity suggests its joint determination with other system
variables. However, as argued by numerous scholars (see for instance Sieron (2019)), vari-
ables are inherently interconnected, rendering a variable’s exogeneity context-dependent

within a specific model framework.

Clearly, the economic debate is not about statistical exogeneity, since what matters in
this context is the appropriateness of the model rather than the nature of the economic
magnitude. On the other hand, for macro-economists, what really matters is causality

rather than the joint probability properties of the quantities under analysis.

The findings of the first chapter reconcile statistical and economic perspectives on exo-
geneity by proposing a definition that is related to the statistical notion, but nevertheless
reflects the notion of control exogeneity. The proposed definition of exogeneity is context-
dependent and relies on the variables included in the model. Specifically, this concept of
exogeneity is not an inherent property of a variable but rather a relational property be-
tween a variable and a specific set of other variables. Consequently, whether a variable is
classified as exogenous or endogenous depends on the particular variables included within
the model. At the same time, the definition is grounded in the system’s latent causal
structure, which also encompasses unobserved (unidentified) components. Since the defi-

nition is anchored to the causal structure, the terminology causal exogeneity/endogeneity
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will be used.

Causal endogeneity is related to the concept of governability. A variable within a set X is
deemed causally endogenous if its expected nominal value can be fully controlled by other
components in X. In other words, it is possible to obtain any level of the causally endoge-
nous variables by arbitrarily manipulating the causally exogenous components. Naturally,
this must be considered in a hypothetical scenario since the possibility of manipulating

the causally exogenous variables at will is not ensured.

In terms of causal graphs, a set of variables Xy, can control the expected nominal value
of a generic X; element if every directed forward path between X; and the original source
of causality is blocked by the elements in Xy, and the transmission of causality between
Xw and X; is either direct or passes through unobserved components which do not in
turn affect Xy, In cointegrated systems, the original source of causality corresponds to
the primary source of non-stationarity, assumed to be generated by fundamental trends.!
Coherently with the previous chapter, we will use the notation 7' to indicate the set
containing the fundamental trends and X, to indicate the set of modeled variables. X,
can be further split into two subsets: N and J. The former encloses causally exogenous

variables while the latter embodies causally endogenous variables.

The ability (in principle) to manipulate a variable fails to capture certain nuances of ex-

ogeneity, especially in the presence of cyclical graphs. An example of this is that causal

!Non-stationarity can be generated either by the presence of fundamental trends or by a fine tuning
of the parameters. However, this second scenario is less likely since even a small change in the parameter
would lead to a loss of cointegration and would make the variables stationary. For further details, see the
discussion in Hoover (2020)
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exogeneity does not exclude causal feedbacks from 3 to N. This creates the need for a
twofold definition: on one hand, we have the variables in N-the ones that with a hypothet-
ical experiment can control J-on the other, we can delineate the subset of N containing
the variables affected neither directly nor indirectly by the causally endogenous variables.

Hence causal exogeneity can occur in weak and strong forms.

B B
3 . D
i) A«Z\:>D i) Ae” ;I
‘e C
% E

Figure 2.1: Causal Graphs Exemplifying Causal Exogeneity in its Weak and Strong Forms

The graphs in Figure 2.1 illustrate the difference between strong and weak causal exo-
geneity. The red nodes and edges represent the unobserved variables and latent causal

path, respectively, thus, the exogenous characteristics should be determined based on the

set X, ={B,C,D}.

In both graphs, the primary source of causality is the unobserved A. In graph i), A is
directly connected with B and C, so no variable interferes with the causal paths between
them and the fundamental trends. Consequently, X = {B,C}. Conversely, in graph
i1), only B is directly connected with A, since the variable E stands between A and C.
Nevertheless, E' is unobserved, therefore no variable in X, blocks the direct forward path
between A and C'. Similarly to the previous graph, XN = {B,C'}. In both cases, the set J
is a singleton set containing D, as the forward paths between the fundamental trend and

D are all blocked by B and C.
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However, the degree of exogeneity of B differs from that of C' because of the causal feedback
between 3 and C'. In graph i), the causal connection between D and C'is direct, while it
passes through E in graph iz). In both cases, an intervention on C' aimed at modifying
the expected value of D will have a repercussion on C' itself. This could nullify, mitigate,
or amplify the planned influence on D. Consequently, only B is also strongly causally

exogenous, while C' is exclusively weakly causally exogenous.

This chapter focuses on weak causal exogeneity, and the problem of identifying it in the
context of long-term causality. In the next section, we will review the results illustrated in
the previous chapter and show how the coefficients of the partially observed Vector Error
Correction Model (VECM) for X, incorporate information about the weakly causally ex-
ogenous variables. Section 2.3 identifies a new duality between model characteristics and
causal endogeneity and illustrates how to exploit it to construct inferential procedures
for causal identification. Section 2.4 compares the performance of the two procedures for
testing hypotheses on causal endogeneity. This comparison is conducted using simulated
datasets generated from different types of causal structures. Section 2.5 presents an em-
pirical illustration of monetary theory aimed at illustrating the practical value of the tools
here introduced. Finally, section 2.6 provides concluding remarks and summarises the

findings.
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2.2 Properties and Inference of Causally Exogenous

Variables

The analysis focuses on long-term models, where causality is defined in terms of equilibrium
adjustments and violations of steady state. This section summarises the properties of the
underlying model and the analyses of the partially observed models. The assumptions and
notations align with those presented in Section 1.2, so this section serves as a reminder of

the earlier content.

As outlined in the introduction, causal exogeneity is determined relative to observed vari-
ables. Let X, denote the set of observed variables and X, the set containing the unobserved
ordinary variables. The set Y is defined as the union of X,, X, and T, namely, it is the

set comprising all the variables in a system.

As shown in Hoover (2020), the causal structure of Y can be readily translated into a
Vector Error Correction Model (VECM) by incorporating equilibrium relationships into
the cointegration matrix and constructing the adjustment matrix a to ensure that affected

variables react appropriately (see also chapter 1).

For illustration, consider Y = {A, B,C} and the causal structure represented by the
collider A — C < B. Since only C' is causally affected, it is the sole variable reacting
to steady state violations. Consequently, the adjustment matrix has a non-null entry

exclusively in the row corresponding to C, and the cointegration matrix embodies the
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equilibrium relationship among the three variables. The resulting VECM is illustrated

below: o - L
A 0 A
AlBl =10 {b c d} B| te
C a C
L Jd¢ L L Jd¢-—1

Consider another example where the causal structure for Y is represented by the chain
A — B — (C. In this case, there are two causally affected variables, implying two
equilibria: one affecting B and the other influencing C'. The adjustment matrix must
be configured to relate AB; to violations of the equilibrium between A and B, and AC}

to violations of the equilibrium between B and C, as illustrated in the following VECM:

A 0 0 A
c d 0
AlB|l =la 0 B| te&
0 e f
C 0 b C
L d¢ L 4 L Jdt—1

To align with assumptions from previous literature on partially observed VECM, we as-
sume that fluctuations of AY are solely generated by long-term dynamics. Thus, the

model:

A}/;j = aﬁlm_l + Et (21)
is structural, with the term &, containing primitive shocks. Consequently, 2 = Var(e) is
diagonal by construction.

Consider the set X, C Y encompassing the variables identified and modeled by the user,
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and denote Y, as Y\ X,. The elements in Y, are treated as unobserved. Consequently,
the model user cannot estimate the fully observed VECM in (2.1), and the analysis has

to focus on the partially observed model below:

A)(o,t = &oﬁ(l)xo,tfl + Z Fo,iAXo,tfi + Eot (22)

i=1

where the subscript “o0” stands for observed and distinguishes parameters and variables

related to the estimated model from those of the fully observed VECM modeling Y.

It should be emphasized that the characteristics of model (2.1) do not generally extend to
model (2.2). Consequently, 3, = Var(e,) does not need to be diagonal and I', ;—;.oc is not

necessarily zero.

For estimation purposes, model (2.2) is expressed in a reduced form, eliminating short-

term dependencies using the Frisch-Waugh theorem:

/
Ry = B, Rt + cop

In section 4 of Chapter 1, it has been proven the existence of a duality between weak

causal exogeneity and the properties of the following “synthetic” model:

Yo Roy =X, B Ry + 2, eos
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which can be rewritten as:

Qi =By R1s1+m = VR, +m (2.3)

1is not directly observable,

The matrix 3, is the covariance matrix of the residuals ¢,. 3
but it can be estimated from the residuals of the VECM fitted to X,. Thus, in practical

application 37! is substituted with 3! as well as Q,, is substituted with Q;.

Since Cov(e,, anfB,R14) = 0, it follows that the covariance between 1, and VR, is zero,

ensuring that standard estimators of ¥ produce unbiased estimates.

The basis for the inference of the elements in 3 is the following statement summarizing
the conclusions of Theorem 1 and Corollary 1: The i** row in W is linearly dependent if
the i'" element of X, belongs to X. Conversely, it is linearly independent if the i*" element

of X, belongs to 3.

The statement on the rows of ¥ can be readily extended to the rows of :  The i row
in v is linearly dependent if the i'® element of X, belongs to Y. Conversely, it is linearly
independent if the i element of X, belongs to 3. The proof is trivial since ¥ = /3.
In fact, if there exists a column vector A with non zero entries in the i*" and some other
positions such that X'y = 0, it follows that A'v3, = 0. Conversely, if A’y # 0 for any

non-trivial vector, then it necessarily holds that A'yf! # 0.

The duality between causal endogeneity and linear dependence can be leveraged to identify

3. The mechanism of the inferential procedure proposed in Chapter 1 exploits the effect
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that the substitution of a row of ¥ with a null vector has on the matrix rank. In fact, by
substituting a linearly independent row with a null vector, the rank of the modified matrix
decreases by a unit. If a linearly dependent row is substituted, the rank of the modified

matrix equals the rank of the original matrix.

In general, by substituting n linearly independent rows with null vectors, the rank of the
modified matrix reduces by n units. Conversely, if not all the substituted rows were linearly

independent, the rank of the modified matrix decreases by k units, where 0 < k < n.
Given an arbitrarily selected set =, the causal hypothesis
Hy. : The elements in 2 C X, belong to 3
can be translated into a sentence relative to model characteristics:
Hop, : Rank(¥(_z)) = Rank(¥V) — |Z]|

where W(_z) is the matrix obtained by substituting the rows of ¥ corresponding to = with

null vectors.
Similarly, the alternative causal hypothesis
H;. : Not every element in = is causally endogenous
translates to:
Him : Rank(¥(_z)) > Rank(¥V) — |Z|

The duality between causal and model hypotheses is important since the pair {Hom, Him }

corresponds to the null and alternative of the maximum eigenvalue and trace test known
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as Johansen’s tests.? This implies that standard techniques for inferring the regression

rank can be employed to indirectly test causal hypotheses.

To substitute the rows of ¥ with zero vectors, one could manipulate the left-hand side
of regression (2.3) by replacing the variables relative to = with independent processes.
These substituted variables will be uncorrelated with £)X,; 1, resulting in null entries in
the corresponding rows of the theoretical representation of . A null row in v necessarily
produces a null row in ¥, thus ¥ (_z) can be estimated by regressing )_z), on R, where
@(—=) substitutes the columns of () relative to = with independent processes (e.g. randomly

generated white noises). Thus, the regression for the causal endogeneity test is

This model is a reduced rank regression, and its coefficients need to be estimated using the
procedures described in Anderson (1951). Since ¥(_g) is equivalent to the impact matrix
of a standard VECM, its rank can be inferred using procedures described in Johansen

(1995) and Juselius (2006).

This chapter analyses the performance of this test through simulations and compares the
results with an alternative procedure proposed in the next section. In section 2.5, both

tests on causal endogeneity are applied to an empirical study on money endogeneity.

>The null hypothesis of the Johansen’s tests should be Rank(¥_z)) < Rank(V¥) — |Z|. However, the
hypothesis Rank(¥(_z)) < Rank(¥) — |Z| is not admissible since the reduction of the rank generated by
the substitution of n rows can be by a maximum of n units.
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2.3 Alternative Test on Causal Endogeneity

This section introduces an alternative procedure for identifying causally endogenous vari-

ables based on the restrictions of the orthogonal complement of the parameter ~.

The analysis relies on the formulae proposed by Johansen (2019) in his analysis of partially
observed vector error correction models. His formulae provide a representation for «,, [,

and Y, starting from the state-space arrangement of a cointegrated system:

A‘X'o,t = MoXo,t—l + MouXu,t—l + NOT;S—l + Vot

A)(u,t = MuoXo,t—l + MuXu,t—l + Nuirt—l + Vut

AT, = Vr

Here, the coefficients M,, M,, and N, relate X, to itself, X,, and T respectively. Likewise,

the coefficients M, M,, and N, relate X, to itself, X, and T respectively.

To clarify, consider the VECM below, and set X, = {B, D}

A 0 0 Ofr 1A €A
d 1 00

B a 0 0 B ER

A = 0 e 10 +

C 0 b 0 C ec
0 f g1

D 0 0 c¢| ~ - |\D €p

L ¢ B i L d¢1 L
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Clearly, the fundamental trend is A, while X, is a singleton set composed of C. In this

specific example, the state-space model is

B a 0| |B 0 ad €B
A = + Ci1+ A+
D cf c| |D cg 0 €D
t t—1 L t
B
ACt = th,1 -+ |:b€ 0:| + 0 x At,1 -+ ECt
D
L 1
AAt =EA¢t

It is evident that the state-space representation is a trivial adjustment of the fully observed

model delineated in vector error correction form.

Starting from the coefficients of the state-space representation, Johansen’s analysis dis-
covered that the covariance matrix of the residuals of the partially observed model finds

the following representation:

M/
5, = Var(e,) = {Mou No} v "o (2.4)
N/
where V is
Xu,t Vu Vu,T
V = Var Xo,t =
T, View Vi
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The adjustment and cointegration matrices are retrieved as follows:

@0 = Xo(MouVar + NoVi) | (2.5)
_1 / 1
By = (No = Mo N, (Mo = Mo M, My ) (2.6)

Starting from representation (2.5), the next subsection discusses some mathematical prop-
erties of v, and demonstrates a duality between its restrictions and causal endogeneity.
Subsequently, section 2.3.2 elucidates how to exploit this duality to develop a statistical

test.

2.3.1 Model Manifestations of Weak Causal Exogeneity

Following the representation in (2.5) and the construction of model (2.3), v can be ex-

pressed as:

Y= (MouVuT + NOVT>
1

Therefore ~, is simply:

7= [(MouvuT FNVE) | (2.7)

1

which reduces to

VYL = MouVuT + NOVT

if M,,Vur + N,V has full rank.
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M,, is the coefficient of the state-space model relating the observed variables to the ordi-
nary unobserved variables, while N, relates X, to the fundamental trends. It is convenient
to decompose the set of unobserved ordinary variables into two subsets: X, = {71,%}.
Here, 7 includes the ancestors of X, while 5 includes the ancestors of 3 not contained in

T as per definitions 3 and 4.

By definition, elements in 3 cannot be caused by the fundamental trends or by the compo-
nents of 1. Moreover, by construction, the variables in X cannot be caused by components

of 5. Consequently, the coefficients of the state-space model assume the following form:

I 1T
N[| A 0 N|| D

ou — No = (28)
2] o ¢ 3 o

As illustrated in Chapter 1, V,r contains null entries in the rows corresponding to 5. To
understand the reason, it is instructive to undertake a covariance analysis grounded in
the concept of blocked and unblocked paths. The conditional covariance between {7, 7}
and 5 is zero since N blocks the paths among them and only the former points towards
N. Consequently, collider-type structures of the form 5 — X, < T'U 7 are excluded.
On the other hand, X, cannot block the paths between 1 and T'; thus the sub-matrix
corresponding to 1 has not particular constraints. The same goes for the covariance paths

among components of T'. Consequently, the forms of V,7 and V are as follows:
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|T| .
Al e |T|
T = sl o Ve=|T|| F (2.9)

Before drawing further conclusions, it is necessary to study the properties of the non-zero
sub-matrix AE+DF. This matrix can be interpreted as the product of coefficients linking
the elements of N to their parents and the covariance between them and the fundamental
trends. Given that X, does not interfere with the fundamental trends and either does
not block the paths between T and T or unblock them, each row of £ and F will contain
at least one non-zero entry. Furthermore, every component of N is linked to at least one
variable in either T or T. Hence, the matrix [ A ’D} contains at least one non-null entry
in every row. Consequently, AE + DJF contains at least one non-null entry for each
row. This is naturally true since every element in X must be either directly or indirectly

connected to 7.

Similarly, every element of T must be connected with at least one element of N. To suggest
otherwise would imply that X and some components of T" belong to disjoint graphs, hence
to different systems. Consequently, the columns of AE + DF must also contain at least
one non-null entry. The specific entries of the coefficients are independent of each other,
thus linear dependence between the rows or columns of AE +DF is attained only through
fine-tuning of the parameters. Here, we find it reasonable to exclude this scenario, thus

considering AE + DF as a full-rank matrix with rank min(|X|, |7).

The discussion above leads to the following fundamental conclusion:
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Theorem 3 (Weak Causal Exogeneity and Restrictions of v,). The rows of the

matriz vy, corresponding to elements within the set 3 are zero vectors.

Proof of Theorem 3. The theorem can be readily proved by substituting (2.8) and

(2.9) into (2.7). The resulting expression for M,,V,r + N, Vr is

7|
IR|| AE+DF
MouVuT + NOVT -
13 0

if M,,Vur + N,V has full rank, it equates v, , thus immediately proving the theorem.

If My, Vur + N,Vr is of reduced rank, it follows that Rank(M,,V,r + N,Vr) = |R| and
IT| > |X|.> Therefore, if M,,V,r + N,Vr is of reduced rank, its orthogonal complement,

Le. 7, is a | X, x (| X,| — |R|) = |3] matrix of the form

il
Rl 0

v =
3 g

where G is of full rank, and the null vectors in the rows corresponding to N\ result from

the fact that (A€ +DF)  is a [N| x 0 matrix when its rank equals |R].

Since G is a full-rank square matrix, its nullity is zero, meaning the only vector that yields
zero when multiplied by it is the trivial vector. Therefore, the representation of v, must

be

3AE+DF hasrank |T|if |T| < N|. Given that M,,V,r+N,Vr is a | X, | x|T| matrix where |T| < |X,|,
it would have full rank if |7 < |R].
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1N
R[] #H
YL = (2.10)
3l o
where H is any full rank square matrix of dimension |N|
This is sufficient to prove the theorem.
O

Corollary 7 (Corollary to Theorem 3). Every row of vy, corresponding to the elements

in N contains at least one non-null entry.

Proof of Corollary 7. It M,,V,r + N,Vr is of reduced rank, v, assumes the form in
equation (2.10). Since 7y, has full rank by definition, the matrix H is a full-rank square

matrix. It follows that all of its rows contain at least a non-null entry.

To prove the corollary for the case where M,,V,r + N,V is not rank deficient, we must

demonstrate that AE + DF does not contain null rows.

By definition, every element in 8 must be directly causally connected with at least one
variable in TUT. Consequently, either A; or D; (or both) must contain one non-null

entry, where A(;) denotes the it" row of A.

Without loss of generality, we set that either \A;; # 0 or D;; # 0. Consequently, v, = 0
if €9 = 0 or FY) = 0, where A® denotes the i" column of A. Nevertheless, since X,

either does not block or unblock every path between T1; and 7', the conditional covariance
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between T1; and at least one component of 7' must be different from zero, therefore € )

cannot be the null vector.

Moreover, X, does not interfere with the relationships among the components of 7', thus

the main diagonal of F contains the variances of T, i.e. non-zero entries.

We can conclude that A& + D) F = 0 can occur only for a fine-tuning of the pa-
rameters, since the values of the state-space coefficients can freely vary independently of
the values of V. One might argue that specific policies, reaction functions, or particular
economic choices could lead to fine-tuned parameters. However, even a minor deviation
from these coefficients would render the matrix full rank. This implies that a fine-tuned
parameter resulting from a policy function can cause rank reduction only if the policy-
maker has perfect control over the variable used as the policy instrument. If even the
slightest deviation occurs, the parameter would no longer be fine-tuned, and the rank
would be restored to full. Therefore, assuming that the coefficients can be finely tuned is
an inherently weak assumption. Consequently, there are no compelling reasons to think

that this scenario would occur with a probability measure different from zero.

This proves the Corollary

To clarify the concept of Theorem 3 and its Corollary, consider the graph in figure 2.2 and
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B D
Ae Z e r
C FE

Figure 2.2: Example to Illustrate the Findings of Theorem 3 and its Corollary

the corresponding VECM shown below:

A 0000 0fr 114
f10000

B a 000 0 B
g 01000

C 0b 00 0 C

A = 0 h i 100 + &t

D 00 c 00 D
004 010

E 000doO E
000Fk [ 1

F 0000 el |\ F

L Jd¢ L 4 I

Suppose the model user observes only B, C, D, and F, so that Y = {A,B,C, D, E, F},
X, ={B,C,D,F}, T ={A}, and X, = {E}. As observed, the forward path between T’
and both B and C' are direct and thus not blocked by any other variable within X,. It
follows that both B and C' belong to . On the other hand, the forward paths between
T and D as well as the ones between T and F' are indirect and blocked by B and C.
Additionally, causality from X, to D is direct, thus satisfying condition i7) of Definition
1. Conversely, causality between C' and F' is mediated by E. Nevertheless, this does not
create any problem since the causal transmission does not reverse, given that E does not,

in turn, affect C. It follows that 3 = {D,C}. Since E is a parent of F' € J but is not an
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ancestor of the components of R, it will be included in  in accordance to definition 4. In

summary, the causal sets are X = {B,C}, 3={D,F},>={FE}, 1=0,and T = {A}.

The coefficients M,, and N, of the state-space representation can be derived from the

fully observed VECM. Specifically, in this example, they are:

0 af

0 by
Mou = No =

0 0

el 0

The matrix V is instead a diagonal matrix, given that the covariance paths between A
and £ are blocked by C'. Moreover, the absence of feedback from E to N ensures that no
covariance path between A and E is unblocked by X,. Therefore, the coefficients V,,r and

Vr assumes the following structures:

o= —-—

By substituting the above matrices into Equation 2.7, we obtain the following representa-
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Ae. O D
)o—»o
Be’

Figure 2.3: Example to Illustrate the Findings of Theorem 3 when M, V,7+ N,V is Rank
Deficient

tion:

2
afaT|Xo

bga%‘ X,
YL =

L 11/ 1
Since My, Vur + N,V is a 4 x 1 matrix of full rank, the two L operators simplify. Thus

it results:

2
afaT‘Xo

bga%xo
YL =
0

0

As observed, the third and fourth row of 7, are null vectors. This is coherent with Theorem
3, as the third and fourth variables are D € J and F' € 1. Conversely, the first two rows
are non-zero. This aligns with Corollary 7, as the variables corresponding to the first two

rows are B and C', which are the elements of N.

It should be noted that the simplification [(MouVuT + N, Vr) L] = M,,Vur + N,Vr is not

always feasible. Specifically, if M,,V,r + N,Vr has reduced rank, it holds the inequality
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[(MouVuT + NOVT)L} %+ My Vur + N,Vp. To illustrate, consider the graph in Figure 2.3

together with its corresponding VECM reported below:

A 0 0 A
B 0 0l [¢ d 1 0| |B
A = + &
C a 0l |10 0 e 1| |C
D 0 b D
L Jd¢ L . L Jt—1

Here, the only unobserved are the fundamental trends A and B, while X, = {C,D}. D
respects both requirements ) and i7) of definition 1, thus D € 3. Conversely, C is directly

linked to T', so that C' € N.

Since X, = 0, the matrices V7 and M,, do not exist, therefore the parameters of interest

are:

2
ac ad Oalx, OABIX,
NO — VT g

2
0 0 O AB|X, UB\XO

By substituting the above matrices into Equation 2.7, we obtain the following representa-

tion:

2 2
acoy x, + adoap|x, @coap|x, + adaB|Xo
"}/J_ fr—

0 0
/1
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Since N, Vr is a 2 X 2 matrix of reduced rank 1, it cannot be equal to v, . This follows from
the fact that the orthogonal complement is inherently constructed as a full-rank matrix.

Therefore, it is necessary to solve the equation step by step.

The internal orthogonal complement is a 2x 1 matrix such that (M, Vir+NoVr)'| (Mo, Var+
N,Vr) = 0. The only admissible solution is a matrix with a zero element in the first row
and a generic non-zero entry in its second position. It can be immediately observed
that by constructing in this way the orthogonal complement, the equality (M,,V.r +

N,Vr)' (MouV,r + N,Vr) = 0 holds:

2 2
|: CLCO’AlXO + adaAB|XO ACO AB|X, + CLdO'B|X0 0
0 =z =

0 0
where z € (00,0) U (0, 00).
To obtain ~,, it is necessary to reiterate the procedure by computing the orthogonal

0
complement of . Naturally, the only solution for this problem is a 2 x 1 matrix

T

containing a null entry in the second row and a generic non-null entry in its first row:

VL=

where y € (00,0) U (0, 00).

As anticipated, the non-zero row corresponds to B € X, while the null row corresponds to
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D € 3, confirming the duality between causal properties and model constraints identified

by Theorem 3 and Corollary 7.

The next subsection demonstrates how to exploit Theorem 3 and its corollary to implement

an inferential procedure for identifying the causal endogeneity.

2.3.2 Testing Hypotheses on Causal Endogeneity

Theorem 3 highlights a duality between model characteristics and the concept of causal
endogeneity, suggesting that hypotheses regarding the latter can be reformulated as hy-
potheses concerning model constraints. Specifically, given an arbitrarily selected set =,

the causal null hypothesis:
Hy. : The elements in 2 C X, belong to 3
can be translated as
Hoy,.. : The rows of v, corresponding to the variables in = C X, are zero vectors

The estimation of the coefficients of model (2.3) can be undertaken using reduced rank

regression technique on model

Q= ’YﬁéRl,t + v

The estimate of (3, is found as the eigenvectors corresponding to the largest r eigenvalues
of the following problem:

det(AS1 — 155" Sq1) =0
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where the product matrices S are calculated as follows:

So=N")_QuQ, S1=N"> RyuR,,

So1 =N QR Sig=N"> RyQ,

To test the restrictions of v, we use the tecniques developed in Gonzalo and Granger
(1995).In the standard VEC model, there is a strict relation between the estimate of the
cointegration matrix and the estimate of the orthogonal complement of the adjustment
matrix (see, e.g., Chapter 8 of Johansen (1995)). While one can interpret the cointegration
matrix as determining the variables that cointegrates, the orthogonal complement of the

adjustment matrix determines the coefficients of the common trends.

Similarly, the coefficient 7, is related to , and can be estimated by modifying the eigen-
vector problem employed to retrieve Bo. Thus, extending the work of Gonzalo and Granger
(1995) to our scenario, the estimate of v, is found as the eigenvectors corresponding to

the smallest | X,| — r eigenvalues of the problem:

det(ASq — Sg157"S19) =0 (2.11)
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Testing restrictions on the rows of 7, can be conducted in a manner similar to hypothesis
testing on restrictions on 5 (see for instance Morin (2010)). The typology of restric-
tion allows a straightforward formalization since it concerns every row of v, in the same
manner. The most intuitive way of articulating the restriction is through the indirect
representation:

R/’YJ_ZO

Ris a |X,| x (|X,| — |Z]) matrix with zero elements in the rows corresponding to = and

an identity matrix formed by considering the rows corresponding to T = X, \ =.

For practical purposes, it is convenient to express the constrained relationship in terms
of H = R,, where H is a |X,| x |T| matrix. This alternative depiction allows the direct

expression of the restricted matrix as depicted below:

v =Hop

where ¢ is a |T| x |T'| matrix containing the estimated parameters.

The test statistic compares the smallest | X,| — r eigenvalues of the unrestricted estimate
found from the problem in Equation (2.11), with the smallest |X,| — r eigenvalues of

problem relative to the restricted estimate:

det(\H'SoH — H'S157 'SigH) =0
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The LR statistic is computed as
NI (1= Ag) = I (1= ) -+ I (1= A ) = Do (1= A )

Under the null, the statistic is distributed as a x?(v), where v = |T'| x |Z| are the degrees

of freedom.

2.4 Simulation

This section analyses the performance of the two tests for causal endogeneity using sim-
ulated data. Simulations are conducted on eight distinct causal structures, where the
compositions of the causal sets and the presence of strong causal exogeneity differ, in

order to understand what the factors negatively influencing the tests’ performance are.

The next subsection describes the causal structures and the data-generating process used in
the simulations, outlining the main properties of the resulting partially observed models.
Subsection 2.4.2 details the simulation process and presents the pseudo-codes used to
compute the test statistics. Finally, subsection 2.4.3 presents and discusses the simulation

outcomes.

2.4.1 Data Generating Processes

Figure 2.4 illustrates the causal structures employed in the data generating process of the

simulated time-series. Red nodes and red dotted edges denote unobserved variables and
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Figure 2.4: Causal Structures for Simulations
latent causal path, respectively, while observed variables are depicted in black.

Structures i) and i7) are causal chains with four nodes. The fundamental trend is the
variable A and it is directly connected to B. Here, B blocks the forward paths between
A and all other variables, and it is directly connected to C'. Consequently, arbitrary
manipulations of B can control the nominal values of both C' and D. The set N is thus

singleton and contains B only, while 3 = {C, D}.

Graph i) differs from ¢) for the presence of cyclicality. Since B and C' influence each

other, and C' € J, B € N, B is not strongly causally exogenous in graph 7).
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Graphs 7) and i) can be represented using vector error correction models as follows:

A 00 0| 1A
d 1 0 0
B a 0 0 B
A = 0 e 10 + & (2.12)
C 0 b 0 C
00 f 1
D 0 0 c| - - |D
L Jd¢ L . L Jd¢-1
A 0 0 Ofr 1A
d 1 e 0
B a 0 0 B
A = 0 f 10 + e (2.13)
C 0 b O C
0 0 g1
D 0 0 cf| - - |D
I L J L Jdt-—1

The difference in their representation lies in the first row of 3, where the term e in model

(2.13) captures the influence of C' on B.

Since A is treated as unobserved, the focus is on models that can be estimated by observing
only X, = {B,C,D}. We consider the synthetic model in Equation (2.3), derived using

Johansen’s formulae in equations (2.4), (2.5), and (2.6) as previously discussed.

The resulting partially observed model has the following structure for both graphs i) and
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i1):

QB 0 0 Rip
pr B2 0

Qc|l = |m O Ric + &
0 B3 [Ba

Qp 0 7 Rip

L7y L i I

The matrix « is a rectangular matrix of rank 2 with two linearly independent rows, i.e.
the rows corresponding to C' and D. Conversely, the row corresponding to B contains

only null entries, making it linearly dependent.

The causal endogeneity test based on rank reduction examines whether the rank of ~y_;
is less than or equal to 1, indicating a reduction in rank by one unit. 7_; is equivalent to

~ but with the row corresponding to 7 replaced by a null vector:

0 0 0 0 0 0
Y-B) = |1 0 Y-c)= (0 0 Y-p)= |91 0
0 7 0 7 0 0

It is immediately evident that the rank of v(_¢y and 7(_p) is one, while the rank of v_p) is
two. This aligns with expectations, as we anticipate rejecting the hypothesis » < 1 when
the row corresponding to B € X is modified, but not rejecting the null when the rows

corresponding to C' € J and D € J are altered.

The second test for causal endogeneity examines the restrictions on ~,. Given that v is a
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3 x 2 matrix with rank 2, v, will be a 3 x 1 matrix with rank 1. Due to the structure of
v, its orthogonal complement can only have null entries in the last two rows. Thus, the

only feasible representation is the following:

YL =10

where x is any nonzero real number.

Consistent with expectations, the rows of v, corresponding to J contain only zero entries.
Therefore, we anticipate rejecting the hypothesis that the first row is zero, while we expect

not to reject the restrictions for the rows corresponding to C' and D.

Structure i) is the union of a collider and a fork, while graph iv) maintains the same

connections as 4i7) while introducing cyclical behaviours.

The fundamental trends are A and B, both of which cause a single variable, i.e. C. This
means that T forms a collider with C'. The connection between C' and T is direct, thus
C' € N. Conversely, the forward paths between the two fundamental trends and {D, E'}
are blocked by C' and the latter exerts direct causality to {D, E}. This enables C' to
control the nominal values of D and FE, thus considering them as causally endogenous,

ie,N={C}and 3= {D, E}.

Graphs #ii) and iv) are translated into models as follows:
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_A_ _ooo_ _A_
B 000||de100|]|B
Alcl =la 00| |00 f10|]|C| +e (2.14)
D 0b0[|00g 0 1|]|D
E 0 0 c E
L Jd¢ L . L Jd¢—1
-A- -ooo_ -A-
B OOO_delfO_B
Alcl =la 00|]00 g 1 n|l|C| +e (2.15)
D 0bo0l|loo0odi o0 1|]|D
FE 0 0 c E
L Jd¢ L . L Jdt-1

The cyclical connections in graph iv) are captured by the coefficients f and h of equation
(2.15), which introduce in the equilibrium connections affecting C' and D, respectively,

the variables D and E.

The synthetic model, which can be estimated by an econometrician observing X, =

{C, D, E} only, is derived using Johansen’s formulae. For graph iii), it takes the fol-
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lowing architecture:

Qc 0 0 Ric
fr B2 O

Qp| = |m O Rip +é&
Bs 0 py4

QF 0 7 Rig

L7y L i I

while for graph iv), it is

Qc 0 0 Ric
1 P2 B3

Qp| = |m O Rip + &
Bs 0 Bs

Qp 0 7 Rig

L7y L i L

The cyclical behaviour in graph iv) results in a slight modification of the coefficient [,.

Specifically, the influence of £ on D introduces a nonzero entry in position {3, 1}.

The matrix v is a rectangular matrix of rank 2. Therefore, we anticipate that substituting
the rows corresponding to D and E with null vectors, the rank reduces to one, while
substituting the row corresponding to C, the rank remains stable at 2. This can be

readily observed after computing v(—¢), V(-p), and y_g):

0 O 0 0 0 0
Y—o)= |y 0 Y-p)= 10 0 Y-B)= |m 0O
0 7 0 7 0 0
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It is expected a rejection of the hypothesis r < 1 for the model associated with v_¢),

while a failure to reject is anticipated for the models associated with v_p) and v_g).

Under this scenario, the matrix v, does not coincide with

MouVuT + NOVT =10 0O

In this case, M,,V,r + N,Vr has a reduced rank, which is incompatible with v, , since

by construction the orthogonal complement needs to have full rank. Therefore, matrix

0 0
v, must be obtained from v = v 0| 71 is a3 x 1 matrix of rank 1. Consequently,
0 7

to ensure vy, = 0, its last two entries must be zero, while the first can be any nonzero

number.

The resulting structure is

YL =10

which aligns with our expectations. Specifically, we expect to reject the null hypothesis

Y1(cy) = 0, while we anticipate a failure to reject the hypotheses v, (py = 0 and vy, (g) = 0.

Graphs v)-viii) exhibit a collider structure among the observed components, while the
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variables introducing non-stationarity into the systems form a fork with the fundamental

trends.

In all four graphs, the fundamental trend is A, and the forward paths between T and
{D, E'} are not blocked by the other components in X,. It follows that {D, F} € N in all
four graphs. Conversely, D and E block the forward paths between A and F' in graphs
v)-vii), as well as the forward paths between A and G in graph viii). While D and E in
v) — vii) directly cause the other components of X,, the transmission of causality between
{D, E} and G in viii) passes through the unobserved F. However, this does not affect
the endogeneiety property of G since it does not in turn affects D and E. Consequently,

N ={D, E} in all the four graphs, while 3 = {F'} in v) — vii) and 3 = {G} in viii)

The distinction among the four graphs lies in the presence of cyclicality and the way it is
transmitted. In graph v), there is no causal feedback between X and 3, while in graphs
vi) and vii), only D is strongly causally exogenous. Specifically, E is directly caused by
3 = {F} in graph vi) and indirectly through its effect on C' in graph wvii). This implies

that in the latter scenario, causality from 3 to N passes through .

Similarly to the previous graphs, in viii) only D is strongly causally exogenous because
of the feedback that G has on E. The distinction between this and the other cases stands
on the indirect transmission of causality between X and J. Consequently, the set 5 is not

empty and intermediate the connection between X and 3.
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The VECM corresponding to v) is

A 0 00 O0O0|T 1 |A
f 100 00
B a 0 0 0 O B
g 01000
C 0 b 00O C
A = 0O h O10 0 + & (2.16)
D 0 0 c 00 D
0O 02z 010
E 0 00 do E
000 j k1
F 0 00 0 e| - | F
L ¢ L . L Jdt-1

To add causality from F' to E, it is necessary to include a coefficient in the column
corresponding to F' in the equilibrium relation affecting the dynamic of E. Thus, the

VECM for vi) is:

A 000 O0O0|T 1 1A
f 1.0 0 00
B a 00 0 O B
g 01000
C 0 b 00O C
A = O h O10 0 + & (2.17)
D 0 0 c 0O D
0 0 2 0 1 j
FE 0 00 doO E
0 00 k I 1
F 0 00 0 e| - | F
I L . I

Similarly, in graph vii), cyclicality is added by including F' in the equilibrium affecting C":
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A 0000 O0|Tr 1A
£ 10000

B a 0000 B
g 0100 h

C 0b 00 0 C

A = 070100 + & (2.18)

D 00 ¢ 00 D
003010

E 000 dO0 E
000Fk I 1

ja 0000 el- | F

L Jd¢ L m . |

A 00000 0] r 114
g 1000 00

B a 00000 B
h0oO100 00

C 0b 0000 C
0 i 010 00

Alpl =100 c 00 0 D| te& (2.19)

003401 0k

E 000doO0O0 E
00017 m 10

F 0000ce O F
00000 n 1

G 00000 f|"- v

L Jd¢ L . L Ji

The synthetic model that can be estimated using X, is:

Qb m 0 Rip
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for v) — vi), while it is

@b
Qe
Qr

for graphs vii) — viii).

N
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0

b
0

Ba
V3

B
Bs

Bs
Be

+ &

In contrast to the previous scenarios, the linearly dependent rows of v do not coincide

with the null rows. In this case, the linear dependence between the first and second rows

arises from the non-zero entries in the same column. Upon substituting the rows of v with

zeros, we obtain:

T(-E) =

where y(_py becomes v(_¢) in graph viii)

T=F) = |72 0

Consistent with expectations, the first two matrices have a rank of 2, while the latter is

rank-deficient. Therefore, we anticipate rejecting the null » < 1 only when the substitution

concerns the variables in N.

To ensure that 7/, v = 0, the orthogonal complement cannot have a non-null entry in its
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last row. Therefore, its representation is:

z(—72)

TL=1 z(n)

where x is any non-null real number.

As expected, we anticipate rejecting the restriction only for the rows corresponding to N,

while we expect a failure to reject the constraint for the row corresponding to 3.

2.4.2 Time-Series Simulation and Testing Procedures

The time-series are simulated according to the VECM specified in Equations (2.12)-(2.19).
The individual coefficients, denoted by small letters, are randomly drawn from a normal
distribution. The drawing process continues until the stability condition is satisfied, i.e.,
the eigenvalues of the rows and columns of IT = a3’ corresponding to the ordinary variables

are less than one in absolute value.

The decision not to select specific parameter values is based on the premise that discussing
local alternatives is meaningless when addressing causal hypotheses. In fact, the focus is
not on the specific values of the coefficients, but on the causal properties themselves.
Causality exists independently of the absolute value of the causal coefficient relating two
variables. Thus, there is no distinction in causality produced by causal relations of different

coefficient magnitudes.
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Moreover, in Test 2, it is not feasible to set a proper local alternative starting from the
values of the coefficients in the partially observed model. Test 2 addresses the orthogonal
complement of the model coefficients, which has an infinite number of possible represen-
tations. For instance, if the coefficient v derived from the coefficients of a vector error

correction model is

0.5
’y —=
0
its orthogonal complement is i
0
L=
x

where z can assume any non-zero value. This means that selecting either x = 10 or
x = 10710 still leads to a correct specification, making the search for a local alternative
elusive. A specific estimator will naturally pick one of the infinitely possible specifications
of v,. However, to the best of our knowledge, it is not possible to know a priori which
exact specification will be chosen by the standard maximum-likelihood estimator. There-
fore, even if one wants to assign a strength to causal relations, this inherent uncertainty

complicates the process of setting a local alternative for Test 2.

The observations are generated starting from a vector of zeros as initial values for all the
variables. The coefficients are randomly drawn until they meet the stability condition.
Each simulated series consists of 1,000 observations and each scenario is simulated 1,000

times. Algorithm 1 shows an example of the code used to generate the observations for
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graph i), corresponding to the VECM in Equation (2.12):

Algorithm 1 Algorithm for Data Simulation

> Generate random « and [

a <+ zeros(4, 3)
f < zeros(4, 3)
a(2,1) < randn, «(3,2
B(1,1) < randn, (2,2
B£(2,1) 1, B(3,2) «

) + randn, «(4,3) « randn
) <= randn, f(3,3) < randn
1 B(4,3) « 1

> Generate impact matrix

I+ ap

> Continue generating adjustment and cointegration matrices as long
as the stability condition is not met i.e. until all the eigenvalues of the matrix resulting
from summing the identity matrix and the sub-matrix of I constructed by considering
rows and columns relative to the ordinary variables (II(2 : end, 2 : end) in this specific
example) lie inside the unit circle

while sum(abs(eig(I +II(2 : end,2 : end))) > 1) # 0 do
a(2,1) < randn, «(3,2) < randn, «(4,3) < randn
B(1,1) < randn, f(2,2) < randn, [(3,3) < randn
I+ ap
end while
> Create series of shocks
€ < randn(V, 4)
> Generate the observations

Y < zeros(N,4)
fori<~1:(N—-1)do
AY — ap'Y (i,:) +e(i,:)
Y(i+1,:)«Y(i,:)+ AY’
end for
> Delete the first variable to create X,

X, Y(:,]2,3,4])

The testing procedure follows the steps described in Chapter 1 for the test based on rank

reduction and the steps outlined in section 2.3 for the test based on the restriction of v, .
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Algorithms 2 and 3 provide the pseudo-code for the computation of the test statistics. The
commands are written in a generic form but specific functions such as the computation of

eigenvalues track MATLAB syntax.

Algorithm 2 Rank Reduction Test for Causal Endogeneity

> Wipe out the short-term dependencies

Zy < AX,(k+1:end)
Zy < Xo(k:end — 1)
Zy + [AX,(k:end —1),..., X, (1 :end — k — 1)]
Moo (ZO,Z2)/N
Moy (22/22)/]\7
My < (Z1'Z2)/N
Ry < Zy — Zy(Myy My,')'
Ry + 7y — Zy(Mya My,
> Estimate X, @ and Q_g)

¥, < estimate(vecm, X, ).Covariance
Q + RyX;?
Q(:,E) < randn
> Compute the product matrices

Soo ¢ (Q'Q)/N
S(]l < (Q/Rl)/N
Sio ¢ (RQ)/N
511 — (RllRl)/N

> Solve eigenvalue problem and sort the eigenvalues in descending order

A < eig(S10550 So1, S11)
A < sort(\)
> Compute the statistic
Statistic < 0
for i« (r+1—12|) : |X,| do
Statistic «— Statistic + In(1 — A(4))
end for

Statistic «+ —N x Statistic
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Algorithm 3 Test on the Restrictions of v, for Causal Endogeneity Hypotheses

> Wipe out the short-term dependencies

Zy < AX,(k+1:end)
Z1 « Xo(k :end — 1)
Zy + [AX,(k:end —1),..., X,(1:end — k — 1)]
Moo  (Z0'Z2)/N
My « (Z2'Z2)/N
M12 — (ZYZQ)/N
Ro + Zy — Zo( Moy My,
Ry + Zy — Zo(Mya My,
> Estimate X, and @)

¥, < estimate(vecm, X, ).Covariance
Q — R()E;l

> Compute matrix H

T+ X,\E
H « zeros(|X,|,|Y])
H(Y,:)«1

> Compute the product matrices

Soo < (Q'Q)/N
So1 <+ (Q'R1)/N
Sio « (R1Q)/N
Sn < (R/lRl)/N

> Solve restricted and unrestricted eigenvalue problems and sort the eigenvalues in
ascending order

A« eig(So1517 S0, Soo)
)\7» — eig(H/S(nSl_llSloH, H/SO[)H)
A < sort(A)
A = sort(A)
> Compute the statistic

Statistic < 0
fori« 1:(|X,|—r)do

Statistic <— Statistic + In(1 — A\.(2)) — In(1 — \(2))
end for

Statistic + —N X Statistic
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Graph Test 1 Test 2
B C D B C D
i) 99.8% 3%  32%|999% 6.9% 7.8%
i7) 99.2% 6.1% 6.2% | 99.5% 7.6% 6.7%
C D E C D E
i11) 99.7% 1.6% 21% | 100% 57% ™%
iv) 9%  5.7% 4.2% |99.7% 6.9% 9.1%
D E F D E F
v) 86.8% 85.3% 2.1% | 91.1% 89.8% 7.8%
i) 87.1% 821% 2.3% | 91.1% 86.9% 7.5%
vit) 90.9% 66% 2.4% | 93.3% 73.3% 6.8%
D E G D E G
V1) 91.3% 823% 2.3% |93.9% 872% &%

Table 2.1: Rejection Rate for Rank Test (Test 1) and for Test on Restrictions of v, (Test
2). Significance Level 5%

2.4.3 Simulation outcome

This subsection presents the outcomes of the simulations. The importance of evaluating
performance hinges on two key aspects: the first one is related to the study of the test
behaviour under the alternative hypothesis. The second aspect is relevant in the specific
case of the hypothesis testing on causal endogeneity. In fact, in both tests, the left-hand
side of the model is not directly observable but is estimated by multiplying the inverse of
3, with Ry ;. This affects the distribution of the test statistic in unknown ways, potentially

leading to results that do not perfectly align with expected rejection rates.

Table 2.1 records the simulation outcomes, where percentages indicate rejection rates over
1,000 simulated scenarios at a 5% significance level. Test 1 refers to the causal endogeneity
test based on rank reduction, while Test 2 pertains to the causal endogeneity test based

on restrictions of v, .
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The table indicates satisfactory results, with rejection rates significantly different between
tests applied to elements of X and 3. As anticipated, the size does not align perfectly
with the theoretical 5% value, likely due to discrepancies between the distribution under
the null of the standard test and the actual distribution generated by the substitution of
@ with Q Nevertheless, the results are reasonable, with an average rejection rate under
the null of 3.77% for Test 1 and 7.73% for Test 2. The power of both tests also appears

reasonable, with an average value of 87.75% for Test 1 and 91.17% for Test 2.

Neither test consistently outperforms the other overall; however, Test 1 yields better results
under the null, while Test 2 exhibits higher power. This is evidenced by consistently higher
rejection rates for Test 2 respect to Test 1. This indicates that the former performs better

when the null is false and worse when the null is true.

Graph structure significantly impacts test performance. Results are highly satisfactory for
graphs i) —iv), with the worst empirical power values being 99% and 99.5% for tests 1 and
2, respectively. However, the accuracy heavily decreases for graphs v) — viii), particularly
in terms of power, reaching a minimum in graph vii) for the test on E, with values of
66% and 73.3% for tests 1 and 2, respectively. The difference between the two groups of
graphs stands on the presence of 1. In fact, in graphs i) — iv), X, is directly connected
to the fundamental trends, while in graphs v) — viii), the connection between 7' and W

passes through 7= {B,C}.

Another factor that is observed to affect the test accuracy is the presence of cyclical-

ity. Comparing the outcomes of graphs ), iii), and v) with those of graphs i), iv), and

196



CHAPTER 2. LRT FOR THE IDENTIFICATION OF CAUSAL ENDOGENEITY

vi) — wviid), it is evident that cyclicality negatively impacts causal endogeneity tests. For
example, in graphs vi) — vii), where cyclicality involves only variable E, there is a sig-
nificant difference in rejection rates between D and E. It is also evident that an indirect
feedback between J and X more heavily affects the test results compared to a direct feed-
back. In fact, the gap in test power between D and E is around 5% in graph v), increasing

to approximately 20% in graph vi).

To understand the impact of sample size, we performed simulations for two smaller sample
sizes, specifically N = 100 and N = 500. Table 2.2 reports the outcomes of the first
test under the null hypothesis. The simulations do not exhibit any consistent patterns in
rejection rates across different sample sizes. The rejection rates appear to fluctuate around
5%, with no significant difference between N = 100 and N = 1,000. Notably, there seems
to be a tendency for the rejection rate to be lower than the significance level, even for the
smallest sample size. The reason behind this phenomenon remains unclear and requires

further investigation.

Table 2.3 reports the outcomes under the null hypothesis for the second test on causal
endogeneity. Unlike the first test, the table shows a significant improvement in performance
when the sample size is increased from 100 to 500, with the rejection rate approaching the
5% significance level. Notably, this improvement is evident when increasing the sample size
from 100 to 500 observations. However, there is no significant impact when the number

of observations is doubled from 500 to 1,000.

Table 2.4 reports the rejection rates when the null hypothesis is false for the first test on
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Graph  Variable N=100 N=500

N=1,000 |
i) C 3.17%  4.4%
i) D 29%  1.6%
i) C 2.54%  6.9%
i) D 2.86%  6.9%
iid) D 1.9% 1%
7 ) E 4.8% 1%
iv) D 1.3%  4.1%
iv) E 0.9%  2.9%
v) F 1.9%  2.9%
vi) F 48%  2.9%
vii) F 3.5% 4.1%
) G 2.9%  1.3%

Table 2.2: Rejection Rate for Rank Test (Test 1) Under the Null Hypothesis for Different
Sample Sizes. Significance Level 5%

Graph Variable | N=100 N=500

i) C 15.9%  7.6%
i) D 11.8%  7.6%
i) C 13.3%  8.6%
i) D 10.5%  8.5%
iii) D 12.4%  5.7%
iii) E 9.2%  9.2%
i) D 11.8%  7.6%
i) E 8.9%  7.3%
v) F 87%  6.8%
vi) F 11.4%  7.9%
vii) F 14.9%  7.3%
vii) F 92%  9.2%

Table 2.3: Rejection Rate for Orthogonal Complement’s Restrictions Test (Test 2) Under
the Null Hypothesis for Different Sample Sizes. Significance Level 5%
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Graph Variable || N=100 N=500

i) B 4%  99.1%
i) B 45.7%  98.4%
iii) C 51,1%  100%
i) C 44.4%  98.4%
v) D 24.8%  79.1%
v) E 238%  80%
vi) D 36.8%  84.1%
vi) E 31.1%  81%
Vi) D 44.1%  86%
Vi) E 21%  60%
Vi) D 39.4%  86%
E

32.1%  77.5%

viii)

Table 2.4: Rejection Rate for Rank Test (Test 1) Under the Alternative Hypothesis for
Different Sample Sizes. Significance Level 5%

causal endogeneity. As anticipated, the rejection rate increases significantly as the sample
size grows. The table indicates that the test based on the cointegration rank performs
poorly in terms of power when the sample size is 100. Notably, the empirical power exceeds

50% only once, with a minimum value of 21%.

Table 2.5 records the test outcomes when the alternative hypothesis is true. As anticipated,
the power increases as the number of observations grows. However, unlike the first test, the
reported outcomes show decent power rates even for the smallest sample size. Specifically,

for N = 100 the empirical power fluctuates around 70%, reaching a maximum of 93%.

To summarise, the simulations demonstrated that the tests generally perform satisfactorily.
Test 1 is more effective when the null hypothesis is true, while Test 2 exhibits higher
power. The accuracy of the tests is influenced by the graph structure and the presence of

cyclicality. Specifically, outcomes deviate slightly from expectations when 7 is non-empty
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Graph Variable || N=100 N=500

i) B 92.4%  99.4%
i) B 88.9%  99.4%
iii) C 93%  100%
i) C 90.5%  99.1%
v) D 65.7%  89.2%
v) E 66.4%  85.4%
vi) D 68.9%  88.3%
vi) E 69.2%  87.3%
Vi) D T7.5%  89.8%
Vi) E 51.4%  70.5%
Vi) D 75.9%  89.8%
E

63.8%  83.8%

viii)

Table 2.5: Rejection Rate for Orthogonal Complement’s Restrictions Test (Test 2) Under
the Alternative Hypothesis for Different Sample Sizes. Significance Level 5%

or when J causes N, in particular when this causal feedback is indirect. Furthermore,
Test 2 demonstrates satisfactory performance for small sample sizes, whereas the rejection
rates under the alternative hypothesis for Test 1 are particularly low when the number of
observations is limited. This suggests that Test 2 should be preferred when the analysis

involves small samples.

2.5 Empirical Illustration

This section offers an empirical illustration of the methodologies previously discussed by
testing the causal endogeneity properties of supply and demand of money. It is impor-
tant to interpret the results with caution due to limited emphasis on specification issues.
Additionally, given the preliminary nature of this research, certain considerations, such

as the presence of deterministic trends within the cointegration relation, were not fully
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addressed in the theoretical framework. Consequently, we will not use the raw data; in-
stead, the observations will be detrended and normalized. This preprocessing of variables
may result in a loss of information crucial for analyzing the endogeneity of money. Hence,
these findings should be viewed as illustrative, with the primary aim of demonstrating the

practical implementation of the developed tests.

This section is structured as follows: next subsection discusses the theories advocating for
money exogeneity and endogeneity. Subsection 2.5.2 describes the data, while Subsection

2.5.3 reports the results of the empirical illustration.

2.5.1 Causal Endogeneity and Money Theories

Understanding whether money is endogenous or exogenous entails comprehending the
causal relationships between money supply and money demand. Exogeneity implies that
the supply of money is causally independent of demand, while endogeneity implies the
opposite. Monetarists have traditionally supported the exogeneity view, whereas horizon-
talists and post-Keynesian economists see money supply as inherently endogenous. The
structuralist school acknowledges a degree of endogeneity while recognizing some control

over narrow money aggregates.

Since money demand is challenging to measure directly, studying the nature of money
supply requires examining its relation with the driving forces behind money demand. It
is widely accepted that money demand is influenced by monetary variables like interest

rates and inflation, as well as real factors such as economic output and in general economic
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activity. If the money supply is exogenous, it remains unaffected by the determinants of

money demand, and vice versa if the money supply is endogenous.

The monetarist view is the most extreme version of money exogeneity. Monetarists con-
sider the LM curve in the IS/LM model as vertical, with the money supply fixed and
unresponsive to money demand. According to this view, monetary authorities have full
control over monetary aggregates, modifying the monetary base at will. Obviously, the
central bank does not directly control the total money supply, but monetarists believe that
the central banks fully control the monetary base and that there exists a strong, stable

link between it and broader monetary aggregates.

On the other extreme, horizontalists deny the central banks’ ability to control the mon-
etary base. They assert that banks grant loans based on demand, and central banks
accommodate the demand for reserves to preserve financial system stability. In other
words, the horizontalists claim that money is endogenous, because central banks willingly
and deliberately supply the reserves on demand. The money supply curve is thus hori-
zontal, as the suppliers of money always fully accommodate the demand for money at a

given interest rate.

The monetarist school posits that money generation stems primarily from the decisions of
monetary authorities, while the horizontalist school considers the level of even narrower

money aggregates as a result of demand forces.

To adapt these theories to the framework of causal endogeneity, it is necessary to speak
in terms of causality. Lavoie (1984) summarised the monetarist and post-Keynesian (hor-
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izontalist) perspectives with a stylized system of structural equations, where causality is
read from right to left. Denote M as the money supply and B as the monetary base. the
monetarist viewpoint, which, for causality purposes, is similar to the view endorsed by the
great majority of economists, is represented by the structural equation M = ¢B, where
v is a causal coefficient. On the other hand, the post-Keynesian view can be summarised
by the equation B = 6M. Naturally, despite the quantity of money in the second view
is considered as the independent variable, the value of M cannot be considered the pri-
mary source of causality. In fact, money supply accommodates money demand, which is
in turn influenced by economic factors such as interest rates, income and prices. Thus,
the complete mathematical description of the post-Keynesian view should be summarised

with the following system of equations:

B=60M

M = f(Y,i, P)

where Y, 4, P represent income, interest rate and prices respectively.

A third perspective, the structuralist view, lies midway between these extremes. Struc-
turalists, like monetarists, acknowledge the influence of monetary authorities on the mon-
etary base but question the close link between the base and broader money aggregates.
They argue that commercial banks can choose to hold excess reserves and that the private
non-bank sector can alter its preference for cash, making the monetary multiplier unstable.

The structuralists thus accept an upward-sloping money supply curve, presenting a view
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between the horizontal and vertical LM curves.

Structuralists are generally considered proponents of an endogenous view of money. The
distinction with the horizontalists lies in the structure and type of exogeneity. Horizon-
talists claim that money is endogenous, because central banks willingly and deliberately
supply the reserves on demand. The money supply curve is thus horizontal, as the sup-
pliers of money always fully accommodate the demand for money at a given interest rate.
Meanwhile, the structuralists argue that money is endogenous, because—thanks to in-
novative techniques of management of assets and liabilities—commercial banks can lend

largely free of any central bank constraint (Howells (2006)).4

In causal terms, structuralists recognize the structural equation M = f(Y, 4, P), while also
acknowledging the control that monetary authorities exert over the monetary base, which
in turn affects M. Hence, structuralists include B and indirectly the choices of monetary

authorities among the determinants of the money supply.

Understanding the primary source of causality implied by these theories is complex. From
an economic perspective, monetarists treat the monetary base B as the variable introduc-
ing non-stationarity in the economic dynamics. However, the monetary base cannot be
considered as the real fundamental trend. According to this view, B is modified at will
by policymakers, making the true original source of causality the decisions of monetary
authorities. Likewise, horizontalists consider the driving force to be money demand and

its determinants. Nevertheless, they cannot be considered the fundamental trends since

4For a thorough discussion over the debate between the horizontalists and structuralists, refer to Pollin
(1991), Fontana and Venturino (2003), and Fontana (2004)
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, A B M . ~ . M A B
i) *—>0—>0> i) Oth.e — —0—0—0

N

iii) - Oth. 0/ T o M

A B

Figure 2.5: Causal Graphs summarizing ¢) the monetarist view, ii) the Post-Keynesian
(Horizontalist) view, and #ii) the Structuralist theory. Oth. stands for Other Variables, A
stands for Decision of the Authorities, B is the monetary base, M is broad money, Y is
income, P denotes prices, and ¢ represents interest rates

it is widely acknowledged that they are in turn influenced by consumer preferences and
the decisions of both fiscal and monetary authorities. For this reason, in the fully ob-
served graphs constructed according to these theories, we will add a generic term called
Oth. which groups all the other factors causing the treated variables. According to these
considerations, Figure 2.5 graphically represents the causal structures underlying the the-
ories. The cyclical behaviour between the determinants of money demand and money

supply results from the components of the money multiplier.

It should be emphasized that the debate among these schools of thought is intricate, and
the distinctions presented are simplified for the purposes of this paper.® For a comprehen-

sive review of the theories on money exogeneity and endogeneity, see Sierori (2019).

5For example, some economists also distinguish supporters of liquidity preference who agree with the
core tenets of money endogeneity (Palley (1991)). Rochon and Rossi (2013) further differentiates revolu-
tionary post-Keynesians, for whom money is endogenous irrespective of specific institutional arrangements.
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Consistent with previous illustrative examples in the cointegration literature (e.g. Jo-
hansen and Juselius (1990)), we will include in the analysis proxies of the income, prices,
interest rates and a monetary aggregate. Consequently, the set X, will be composed by

Y, P, ¢ and M, while A, B as well as the other factors are treated as unobserved.

Examining the relationships in Figure 2.5, we can determine under which theory the money
supply can be labeled as causally endogenous. In the monetarist graph (network 7)), the
primary source of causality is A. No variable in X, blocks the forward paths between A
and M, making the money supply weakly causally exogenous.® The opposite situation
occurs in the horizontalist case (network ii)). Here, the original source of causality is
represented by unknown components. However, all forward paths between Oth. and M

are blocked by Y, 7, and P, thus M is treated as causally endogenous.

The structuralist view acknowledges the power of the monetary authority to govern the
monetary base, which in turn influences M. Since A is considered among the fundamental
trends, and its path to M is not blocked by Y, 7, and P, the causal conceptualization of

the structuralist view implies weak causal exogeneity for the monetary aggregate.

In the next subsections, we will empirically test the composition of X and 3 to gather

evidence supporting or contrasting the causal connections implied by these theories.

5Due to the feedback that Y, i, and P have on M, M is not strongly causally exogenous.
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2.5.2 Data

The empirical analysis utilizes quarterly U.S. data spanning from Q2-1964 to Q3-2023,
sourced from the FRED database. The determinants of money demand include the long-
term rate (Bond Yields 10-year maturity), the short-term interest rate (3-month interbank
rates), the Consumer Price Index (CPI), and the Economic Output (GNP), which has
been seasonally adjusted to align with the assumptions underlying the causal exogeneity
analysis. The proxy for money supply is the broader monetary aggregate (M3). Appendix
A provides the links to the data sources and details the characteristics of the data. The
variables indicating Money supply, Prices and Gross Domestic Product are transformed

into logarithmic form to account for multiplicative effects.”

The data are visualized in Figures 2.6 -2.10. Since the current framework for long-term
causal analysis and partially observed models does not address the role of constant terms
and deterministic trends in studying causal endogeneity, it has been removed a determin-
istic linear trend to the series of money supply, GNP, and CPI. To verify whether the
de-trending of these three variables results in I(1) processes, a Dickey-Fuller test was ap-
plied to the modified time-series. The results are reported in Table 2.6 for the variables in
levels and in Table 2.7 for the variables in first differences. Hereafter, the notations M, P,
and Y denote the de-trended series of the logarithm of money supply, prices, and Gross

Domestic Product, respectively.

"The multiplicative effects are derived from the identity MV = PY, where M denotes the quantity of
money, V represents money velocity, P indicates prices, and Y corresponds to real GDP. This identity is
prominently featured in the quantity theory of money
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Figure 2.6: Broad Money Aggreagate M3. Retrieved from FRED, Federal Reserve Bank
of St. Louis.
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Figure 2.7: Gross National Product. Retrieved from FRED, Federal Reserve Bank of St.
Louis.
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Figure 2.8: Consumer Price Index All Items. Retrieved from FRED, Federal Reserve Bank
of St. Louis.
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Figure 2.9: 3-month interbank rates. Retrieved from FRED, Federal Reserve Bank of St.
Louis.
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Long-Term Interest Rate

Percentage
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Figure 2.10: Bond Yields 10-year maturity. Retrieved from FRED, Federal Reserve Bank
of St. Louis.

|P-Value Statistic C-Value

M| 0.1083 -1.5776  -1.9427
Y | 0.4108  -0.6559  -1.9427
P | 0.1839 -1.2834 -1.9427

Table 2.6: Results of the Dickey-Fuller Test after Logarithmic Transformation and De-
trending of the Raw Time-Series.

| P-Value Statistic  C-Value

AM | 1.0000e-03 -8.0800 -1.9427
AY | 1.0000e-03 -7.0545 -1.9427
AP | 1.0000e-03 -13.1339 -1.9427

Table 2.7: Results of the Dickey-Fuller Test Applied to the First Difference of the Series
after Logarithm Transformation and De-trending. Bold Figures Indicate Rejections
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|P-Value Statistic C-Value

0.2762  -1.0236  -1.9427
0.4479  -0.5546  -1.9427

r
1

Table 2.8: Results of the Dickey-Fuller Test For Raw Series of Interest Rates.

| P-Value Statistic  C-Value

1.0000e-03 -11.8761 -1.9427
1.0000e-03 -12.3397 -1.9427

Ar
Ai

Table 2.9: Results of the Dickey-Fuller Test For Raw Series of Interest Rates. Bold Figures
Indicate Rejections

The hypothesis of a unit root cannot be rejected for the series of the de-trended logarithms
of money supply, GDP, and CPI. Conversely, there is strong evidence against the presence
of unit roots in their first differences. These results suggest that the modified variables

follow an I(1) process, hence suitable for the analysis.

The behaviour of the two interest rate series does not indicate any deterministic trends.
Therefore, these variables have not been modified. To verify whether the raw data are
appropriate for the VECM representation examined in this study, the presence of a unit
root was tested using the Dickey-Fuller test. The results are reported in Table 2.8 for
the variables in levels and in Table 2.9 for the variables in first differences. Hereafter, the
notations r and ¢ denote the raw series of the short-term and long-term interest rates,

respectively.

The Dickey-Fuller test fails to reject the null hypothesis for the variables in levels, whereas
it strongly rejects the presence of a unit root for the first differences. These outcomes
suggest that the variables are I(1) and thus compatible with the cointegration analysis

proposed so far.
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Standardized Series

—long-term rate
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Figure 2.11: Final Series employed for the empirical analysis

Figure 2.11 presents the final dataset used for the empirical analysis. The series are

normalized to facilitate graphical interpretation.

2.5.3 Empirical Results

The optimal order of the Vector Autoregressive model is determined using the Akaike
Information Criterion (AIC). The results for various VAR(k) models are presented in
Table 2.10. The optimal VAR order is 4, as the AIC value is minimized for the VAR(4)
model. This high order is consistent with the findings of Johansen and Juselius (2014),
who demonstrated that a partially observed C-VAR(1) model behaves as a VECM with

exponentially decreasing short-term coefficients.

An accurate determination of the cointegration rank r is crucial as it influences subsequent

procedures, especially the first test for the hypothesis of causal endogeneity. The trace test
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AIC

1.7560e+03
-2.4293e+03
-2.6534e+03
-2.6676e+03
-2.6837e4-03
-2.6472e+03
-2.6392e+03
-2.6243e+03

\ICﬁO‘lHkOJl\DI—‘Og
o

Table 2.10: AIC Values for the VAR(k) Fitted to the Levels of the Variables. The Minimal
Value is Reported in Bold

results are reported in Table 2.11. The estimated rank is found to be 3, as the hypothesis

r < 3 cannot be rejected, while evidence suggests rejecting the hypothesis r < 2.

H, || Statistic |C—Values

r=0 | 101.9871 | 60.0623
r<1| 61.4263 | 40.1751
r<2| 33.3536 | 24.2747
r<3 11.9598 12.3206
r<4 2.2671 4.1302

Table 2.11: Statistics of the Trace Test for the Identification of Cointegration Rank and
Critical Values for a 5% Significance Level. Bold Numbers Represent Rejections of the

Null

Table 2.12 reports the outcomes of the first test on causal endogeneity. The test result is
not unique due to the procedure involving the replacement of the row corresponding to the
tested variable with randomly generated numbers. Consequently, the statistic varies every
time the series is generated. To address this variability, the test is conducted 100 times,
and the table displays the average, maximum, and minimum statistics, along with the

percentage of instances where the hypothesis of causal endogeneity could not be rejected.
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Hy: 7<2 || M P Y r 1 || C-Value
Avg. Stat. || 26.5071 19.6224 32.2107 20.9124 29.5339 || 24.2747
Min. Stat. | 23.9734 17.2613 29.4157 18.4149 27.1660 | 24.2747
Max. Stat. | 34.9996 28.8617 38.3539 29.1308 36.0220 | 24.2747
Stat<Crit. 4% 98% 0% 92% 0%

Table 2.12: Average, Minimum and Maximum Statistics for the Causal Endogeneity Test.
7 is the Rank of the Manipulated Model. Critical Values and Number of Non-Rejections
are Generated for a Significance Level of 5%

The null is rejected for ¢ and Y in 100% of cases. Similarly, causal endogeneity for M is
rejected in the vast majority of implementations, with the statistic lower than the critical
value in only 4 out of 100 tests. Conversely, the results for P and r suggest that the
price index and the short-term interest rate are causally endogenous, as the hypothesis is

rejected in only 2% and 8% of cases, respectively.

Statistic || C-Value
11.9857 5.9915
5.2473 5.9915
17.4234 5.9915
6.3660 5.9915
15.0839 5.9915

<z

Table 2.13: Statistics and Critical Values for Weak Exogeneity Test. Bold Numbers
Represent Rejection of the Null for a Significance Level of 5%

Table 2.13 reports the outcomes of the second test on causal endogeneity. Given that
v, is a b X 2 matrix, the approximated distribution under the null hypothesis concerning
singleton sets is a x*(2). Consistent with the first test, the analysis of restrictions on 7,
rejects the hypothesis of causal endogeneity for M, Y, and i, while it cannot reject the
null for P. The two tests yield different results regarding r since the second test rejects

the hypothesis of causal endogeneity for the short-term interest rate. However, it should
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be noted that the statistic is close to the critical value, with a p-value of 0.0415, indicating

that the hypothesis would not have been rejected at a 1% significance level.

To further verify the results, a standard weak exogeneity test was conducted. As proved
in the previous Chapter, standard weak exogeneity is a sufficient condition for weak causal
exogeneity. The test results are detailed in Table 2.14. Coherently with the previous find-
ings, the hypothesis of weak exogeneity cannot be rejected for M. It should be emphasized
that the rejection of the null for Y and ¢ is not inconsistent with the results of the causal

endogeneity test, as weak exogeneity is not a necessary condition for causal exogeneity.

Statistic || C-Value
7.2963 7.8147
11.4840 7.8147
9.5080 7.8147
15.0575 7.8147
18.2708 7.8147

<z

Table 2.14: Statistics and critical Values for Weak Exogeneity Test. Bold Numbers Rep-
resent Rejection of the Null for a Significance Level of 5%

The tests on causal endogeneity, as well as the standard weak exogeneity test, provide
evidence supporting weak causal exogeneity for the log of the detrended and normalized
series of money supply, suggesting that changes in the nominal value of M cannot be readily
influenced by manipulating i, r, Y, and P. Conversely, there is insufficient evidence against
the hypothesis of causal endogeneity for the logarithm of the price index, indicating that

interventions on {M, Y, r,i}, or subsets thereof, can control the nominal value of P.

To summarise, these findings challenge the horizontalist perspective, which posits that
fluctuations in the monetary base are driven by factors related to money demand, and in-
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stead support the structuralist and monetarist views. Furthermore, they provide evidence

in favor of policies targeting price levels through adjustments in Y, M, and interest rates.

2.6 Conclusions

This chapter identifies a novel duality between causal endogeneity and the mathematical
properties of a manipulated version of the vector error correction model. Leveraging this
duality, we constructed a log-likelihood ratio test to assess causal hypotheses. In section
2.4, we evaluated the performance of the two tests on causal endogeneity, demonstrat-
ing how these alternative procedures can provide complementary insights—one performs
better under the null hypothesis, while the other exhibits higher power. Additionally, we
observed that the structure of the graph and the presence of cyclicality negatively affect
test performance. Finally, an empirical illustration demonstrated the practical relevance

of the discussed causal tests.

The findings face some challenges. Firstly, the distribution employed under the null for
both tests on causal endogeneity is an approximation, which could affect test size and lead
to rejection rates under the null hypothesis that do not align with the significance level.
Consequently, it is essential to extend the findings and identify the exact distribution

under the null hypothesis.

The empirical illustration also highlighted practical implementation challenges. One issue

is the presence of deterministic components, such as linear trends. In macroeconomic
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analysis, these deterministic components are common, and their removal, as done in our
illustration, might lead to information loss. Moreover, the determination of the cointegra-
tion rank is often unclear, as seen in the trace test results where the statistic can be very

close to the critical value.

To summarise, the chapter shows that causal endogeneity tests generally perform well;
however, there is a need to account for more complex processes and refine the testing

procedures.
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Chapter 3

Weak Exogeneity, Driving Variables
and Non-Causality

3.1 Introduction

Whether a variable can be considered exogenous depends on whether it can be treated
as given without losing information relevant to the model’s purpose. Exogeneity is a
multifaceted concept, with its definition varying depending on the parameter of interest
and the model’s objectives. The most common forms of statistical exogeneity are weak,
strong, and super exogeneity. These concepts, grounded in the work of Koopmans (1950),
have been refined by Engle et al. (1983) in conjunction with Richard (1980), Florens and

Mouchart (1985a), and Florens and Mouchart (1985b).

The primary concept is weak exogeneity, a necessary condition for the more stringent

forms. Strong exogeneity is the conjunction of weak exogeneity with Granger non-causality,
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while super exogeneity combines weak exogeneity with invariance. Weak exogeneity en-
sures valid conditional forecasting, and strong exogeneity ensures effective policy simu-
lations. This chapter focuses only on weak exogeneity, as it is closely related to model

restrictions in long-term systems.

Weak exogeneity ensures that inference and hypothesis testing about some parameters of
interest can be conducted by looking to a conditional rather than a joint density. Consider

a set of variables Y split into X and Z:

Studying exogeneity properties helps determine whether modeling Z is necessary to un-
derstand X. This is particularly useful in complex systems, such as economic models with

many variables.

The starting point for defining weak exogeneity is the decomposition of the joint probability
function. Denoting F,() as the density function of a variable u, we factorize Fy (Y;;6,Y;_1.0)
into a conditional and a marginal density function, where @ is the vector of parameters of

the process Y and Y;_ 1.,y represents past observations, the decomposition is as follows:

Fy(Y30,Y1:0) = Fxpy (Xe| Yo A, Yie1:0) Fz(Zi; A2, Yio10)

where A\; and \; are the parameters of the conditional and marginal models, respectively.
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In general, assessing only the conditional probability function Fyy (X¢|Yy; A1, Yio1:0) leads
to a loss of information about the conditional model itself. The weak exogeneity condi-
tion ensures that all relevant information about the conditional model is contained within
Fxy (X¢|Y:; A1, Yi—1:0), obviating the need to evaluate Fz(Z;; Aa, Yi—1.0). This occurs when
the parameters of interest, denoted by v, are functions exclusively of A\; and the factor-

ization allows a sequential cut (see Florens et al. (2019), Chapter 6).

The definition of parameters of interest is crucial since models can be structured in various
ways, and researchers may not be concerned with all parameters influencing the data den-
sity. The factorization performs a sequential cut if A\; and Ay are variation-free. Sequential
cuts address the dependencies between the parameter spaces of A; and Ay. In essence, \;
and Ay are variation-free if the value of one does not restrict the possible values of the
other. Define A; and A, as the parameter spaces of \; and \,, respectively. Mathemat-
ically, the parameters are variation-free if the space of (Aj, A\y) equals A; x Ay, where x

denotes the Cartesian product. To summarise, the two conditions for weak exogeneity are:
e The parameters of interest ¢ are a function of A; only: ¥ = f(\)
e The range of the parameter (Ay, \y) is A X Ay

To clarify, we report an example taken from Ericsson and Irons (1994): consider z; and z

jointly normally distributed with mean vector p and covariance matrix €2,

Ty

Y= ~ N(p, Q)
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with

Mz Wea Wy

The joint distribution can be factorized as

x|ze ~ N(a + bz, 0325)

2~ N(pp,0?)

2
We, z 2 Wy 2

where b = o 0= o — bu, 02 = w? — R In model form, Y, z, and z would become

Yi=p+eys ey ~ (0,9)

2
Ty =a+ bz + e,y ert ~ (0,07)

2t = Wz + Ext Ext ™ (O,WE)

Set the parameter of interest be the ones of the conditional model, i.e. ¢ = \; = {a, b, 02}.

The mean p and covariance matrix €2 of the joint model as a function of A\; and A, are

a+ by, 02 + b*w?  bw?
M = Q —=
s bw? W

The parameter space of p is the whole R?, therefore a particular value of u, does not
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constrain the possible values of @ and b. On the other hand, the requirement “(2 is
positive definite” is automatically satisfied for every admissible value of ¥ regardless of
the realization Ay (see Dréze and Richard (1983)). Consequently, z is weakly exogenous

for the parameters v and the conditional model can be estimated taking z as given.

There is an analytical relationship between cointegration and weak exogeneity, in the
sense that in cointegrated systems, weak exogeneity manifests through restrictions on the

cointegrated models. Consider the VECM:

AY, =af'Y, 1+

where the short-term dynamic as well as constant and deterministic terms are excluded

without loss of generality. By splitting Y into X and Z, one can decompose the model as

follows:
AXy = a, 'Y + EXt
AZy = .Y, 1 +egy
where
Y, = a= €=
A Q, Ex

The conditional model for AX; given the past and AZ, is:

AXy = EAZ + (g — Eaz) 'Y +exy — Eezy
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where € = Q1,05 and Var(e) = Q is divided as follows

Consider the parameter of interest the long-run coefficient, i.e. ¥ = {}. Johansen (1995)
proves that if a, = 0, then Z; is weakly exogenous for the parameter 5 and the maximum
likelihood estimator of a, and B can be calculated from the conditional model. This can
be easily verified by noticing that when a, = 0, the conditional and marginal models
become

AXy =EAZ + 0, BY +exy — Eegy

AZt =&zt

a, = 0 ensures that 1 enters the partial model only, in fact, the sets of parameters in the

marginal and conditional models are

0, = (Q22)

0, = (ag, 5,8 Q12 =My — 91292_21921)

The parameter space of

0= (Oél,B7Q)

is decomposed into a product space of the parameters in the marginal and conditional
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models. This follows from the properties of the Gaussian distribution, which ensure that
the parameters in the two models are variation-free (see, for instance, Johansen (1992c)).
This can be verified by selecting arbitrary values for 6, and 6, and then constructing 6. If
(99 and €247 9 are positive definite matrices, then 2 will also be positive definite. In fact, for
multivariate Gaussian distributions, €255 is variation independent of the parameters £ and
Q112 (see Barndorff-Nielsen (2014)). This proves that weak exogeneity can be expressed

as a restriction on the rows of the adjustment matrix a.

Inference of statistical exogeneity permits simpler modeling strategies, reduces computa-
tional expenses, and helps isolate invariant mechanisms. However, in cointegrated systems,
the close connection between weak exogeneity and model restrictions has led to associat-
ing this statistical concept with conclusions regarding the structure of economic systems.
Specifically, this pertains to the identification of driving forces, the introduction of non-

stationarity, and absence of causal influence.

For example, in Franchi and Juselius (2007), the rejection of the hypothesis of weak
exogeneity for shocks to capital stock led the authors to conclude that this variable cannot
be considered part of the driving stochastic trends. Conversely, the non-rejection of weak
exogeneity for per capita consumption suggested that this variable is one of the driving

forces, contradicting a key assumption of the real business cycle model.

In Juselius et al. (2014), the authors used weak exogeneity tests to identify the absence of
influence. They assessed the restrictions of the adjustment matrix to determine whether

foreign aid remains unaffected in the long run by key macroeconomic variables. Addition-
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ally, they used weak exogeneity tests alongside other restrictions to test explicit causal

statements.

While causal conclusions based on the presence of weak exogeneity are reasonable when all
significant factors affecting a phenomenon are modeled, these connections may not extend
to cases where not all variables involved in a causal structure are identified. Common
causal sources and potential cyclical behaviour might disrupt the one-to-one mapping

between weak exogeneity, driving forces, and non-causality.

This chapter incorporates recent developments in the literature on partially observed coin-
tegrated systems in the study of the causal meaning of weak exogeneity. Investigating
weak exogeneity properties in partially observed models helps to understand when weak
exogeneity embodies causal understanding, even if not all factors affecting a system are
identified. To define driving trends and absence of influence in causal terms, we follow
approaches similar to those employed in the previous chapters and the ones utilized by
Hoover (2020). The chapter also presents simulation results, highlighting a practical issue
with testing restrictions on the adjustment matrix in partially observed systems. This
issue involves a misalignment between the theoretical form of the adjustment matrix and
the average outcome of the weak exogeneity test. Specifically, a low power of the weak
exogeneity test is observed when the rows of the adjustment matrix correspond to weakly
causally exogenous variables. We will describe potential difficulties arising from this issue

and discuss the consequences concerning the interpretation of the results.

The chapter is structured as follows: The next section discusses long-term causality and
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provides examples showing how the concepts of non-causality and driving forces do not
necessarily align with weak exogeneity when dealing with latent components. Section 3.3
provides formal definitions of leading trend and non-causality. Section 3.4 explores the
interrelations between weak exogeneity and the causal idea of driving trends, illustrating
instances where testing restrictions on the adjustment matrix aids in causal understanding.
Section 3.5 illustrates the relation between restrictions on the adjustment matrix and non-
causality in its weak and strong form as explained in section 3.3. Using simulated data,
section 6 highlights that under certain circumstances, the weak exogeneity test performs
poorly in partially observed systems. Section 3.7 presents an empirical application to
illustrate the correct causal interpretation of weak exogeneity. Finally, section 3.8 provides

concluding remarks.

3.2 Causality and Model Restrictions

Cointegration pertains to long-term relationships, and the structural analysis in cointe-
grated systems is inherently concerned with long-run aspects. Thus, the counterfactual
assessment emphasizes the limiting values of the variables rather than specific points in
the future. In the context of statistical causality, such as Granger causality, the distinction
between long-term and short-term causality is well-established. Granger and Lin (1995)
highlighted this distinction through spectral densities, which was further elaborated by Du-
four and Renault (1998) and Dufour and Taamouti (2010) within the temporal domain.

Intuitively, causality from X; to Y;,j, can be labeled as “long-run” when the temporal lag
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h; is “large enough”.

We propose a straightforward extension of this distinction, based on incremental pre-
dictability, to structural causality by emphasizing the indices h = hq, hs,.... Short-term
causality refers to scenarios where manipulation of variable X affects the dynamic be-
haviour of variable Y up to a specific future point. Long-term causality occurs when the
effect triggered by the intervention persists over time and influences the limiting value of

Y. Naturally, these considerations assume the “ceteris paribus clause”:

Definition 8 (Short-Term Structural Causality). A variable X is deemed to exert
short-term causality on variable Y when an arbitrary manipulation of X; induces alter-
ations in the values of AY,,p, where h represents a set of integer indices whose generic
entry satisfies 0 < h; < oo. The influence on AY;,p, is contingent upon the condition that

all other factors remain constant.

Definition 9 (Long-Term Structural Causality). A variable X is deemed to exert
long-term causality on variable Y when an arbitrary manipulation of X; induces alterations
in the values of AY;,p, where h represents a set with generic entries satisfying 0 < h; and
h — oco. The influence on AY;,p is contingent upon the condition that all other factors

remain constant.

Short-term causality implies that the increments of Y are a function of current and past
h increments of X, i.e. AY; = f(AXy, AX;_1,...,AX; ;) with b < co. An intervention
in X at time ¢ (i.e. AX; # 0), impacts Y up to t + h, after which AY; reverts to zero.
Figure 3.1 depicts the short-term effects on Y following a unitary intervention in X at
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= 5. As we can observe, the generated response in the subsequent values of AY; has a
short-term nature since it concludes after 5 time periods; indeed, the level of Y ceases to

increase after ¢ = 10 (i.e., AY; = 0 for ¢ > 10).

Figure 3.1: Simulation of Short-Term Effects on Y (Red Line) After a Unitary Intervention
on X att =25

Conversely, long-term causality entails continuous increments perpetually influencing Y,
as AY; = f(AX;,AX;4,...,AX; ). Figure 3.2 illustrates the enduring effects on Y
following a unitary intervention in X at ¢ = 5. The intervention induces a response in the
subsequent values of AY; which persists over time, and despite its diminishing effect, it

never disappears.

From an economic perspective, the distinction between long-term and short-term causality
is particularly interesting when examining how long-term causality manifests within a
model. Specifically, when market forces instigate permanent changes to reestablish stable
relationships, long-term causality can be effectively described using an error correction
model.
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Figure 3.2: Simulation of Long-Term Effects on Y (Red Line) After a Unitary Intervention
on X att =05

In examining this facet, the differentiation between long-term and short-term causality
extends beyond mere temporal considerations to encompass the stability of relationships
among variables. Consider two variables, X and Y, where X causes Y in the long-term.
An intervention in X at time ¢ triggers a permanent response in Y. Economically, we
are interested in scenarios where these variables have stable relationships, meaning the
reaction following the intervention aims to achieve a steady-state position. Assume the
equilibrium is given by the simple relation X = Y. This implies that when X —Y = 0,
there is no tendency for the system to deviate from this position, and the expected value

for both positive and negative increments of the variables is zero.

Consider an external shock to X at time ¢, creating the inequality X; — Y, # 0. Since

X causes Y in the long term, this inequality generates a perpetual effect on AY. If the

oo

imt11 AY; cannot diverge. Specifically, it should

long-term connection is stable, the sum »

equal the disequilibrium caused by the external shock, i.e., lim;_, Z;’it 1 AY;, = X; - Y.

229



CHAPTER 3. WEAK EXOGENEITY, TRENDS AND NON-CAUSALITY

A straightforward way to mathematically describe this behaviour is to assume that each
period AY reacts in order to adjust a stable portion ¢ of the disequilibrium generated in
the previous period. For instance, if ¢ equals 0.5, then at time ¢ + 1, AY adjusts to half
the disequilibrium generated at time ¢, i.e., X; — Y;. Similarly, at time ¢ + 2, AY adjusts

to half the remaining disequilibrium at time ¢ + 1, and this process continues perpetually.

The model describing the value of AY; is thus a linear function of X; ; — Y, :

AY, = (X1 — Yiq)

To generalize, consider the equilibrium relation Y = SX. In this generic case, the mathe-

matical representation of the long-term causal relation X — Y becomes

AY, = CVY(Yt—l - 5Xt—1)

where o captures the speed to which Y adjusts to equilibrium.

Causality need not be symmetric. For instance, given the causal graph X — Y, an
arbitrary manipulation of Y does not affect the limiting value of X (assuming all other
factors remain constant). This non-causality implies that positive and negative increments
of X are not influenced by the disequilibrium between X and Y, i.e., no reaction is triggered

in AX when Y — X # 0. The error correction model representation for X is thus:

AX; = OéX(Y;f—l - BXt—l)
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where ax = 0.

The equations for X and Y can be combined into a Vector Error Correction Model

(VECM):

X 0 X
SNENERNES
Y ay Y

t t—1

where the term ¢; includes unpredictable shocks, adding stochastic behaviour to the sys-

tem.

The asymmetry in the causal relationship is captured in the adjustment matrix, where
non-causality produces a zero vector in the row corresponding to the non-caused variable.
Moreover, the null row corresponds to the variable introducing Non-stationarity into the
system. For instance, in the example X — Y, the adjustment matrix contains a zero in the
row corresponding to X. This restriction indicates that the dynamic of X is independent

of the equilibrium between X and Y, meaning X is not caused by Y.

At first glance, these findings may suggest that the concept of weak exogeneity aligns
with non-causality. However, this holds only partially true. On one hand, in a fully
observed model, weak exogeneity necessarily corresponds to the variables whose nodes in
the causal graph have no incoming edges, since a zero row implies that the corresponding
variable remains unaffected by steady state violations. On the other hand, the one-to-one
mapping between weak exogeneity and causal properties is lost when we fail to identify

every variable involved in the unobserved data generating process.

To illustrate, we decompose a set of variables Y, representing the set containing every
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factor affecting a system, into observed variables X,, unobserved variables X, and a set
T containing fundamental trends. As illustrated in the previous chapters, starting from

the state space representation

A)(o,t = MoXo,tfl + MouXu,tfl + Nojjtfl + Vot

AXu,t = MuoXo,tfl + MuXu,tfl + Nujvtfl + Vut

AT, = Uty

one can derive the adjustment, cointegration, and covariance matrix of the residuals in

the model:
A*Xvo,t - aoBZ)Xo,t—l + Z Fo,iAXo,t—i —+ ot
i=1
Specifically
M/
Y, = Var(e,) = |:Mou No:| V + Q, (3.1)
N/
o = S (MouVar + N,V ) (3.2)
1
and
— -1 ! 1
By = (No = MMy N)' (M — Moy My My, ) (3.3)
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Figure 3.3: Causal Graph Generating Misalignment Between Weak Exogeneity and Non-
Causality Example 1

where V is

If only fundamental trends are unobserved, equation 3.2 reduces to

Qy, = NOJ_QO (34)

To demonstrate the loss of duality between non-causality and weak exogeneity, consider
the causal graph in Figure 3.3. The error correction model for variables A, B, C, and
D includes three causal connections: A — B, A — C, and B — D < (. These
connections correspond to equilibrium relations: B = A, C = ScA, and D = SppB +
BpcC. The first equilibrium connection affects the increments of B. Consequently, the
corresponding column in the adjustment matrix contains a non-null entry in the row
relative to B. Similarly, the second and the third equilibra influence the dynamics of C

and D respectively. Therefore, the second and third columns will contain a non-null entry
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in the rows corresponding to C' and D respectively. The final VECM is thus

A 0O 0 of|r 1A €A
—BB 1 0 0
B ap 0 0 B €B
A = —Be 0 1 0 +
C 0 (676 0 C EC
0 —Bps Bpc 1
D 0 0 apl| - - |D ED
L d¢ L . L Jdt—1 L Jdt

As anticipated, in the fully observed model weak exogeneity aligns with non-causality. In
fact, a zero row in the adjustment matrix is associated with A, which is not caused by
any other variable within the system. Nevertheless, if we compute the adjustment matrix
of the partially observed model, this mapping fails. To prove it, we need to retrieve a,.
Since the only unobserved variable is the fundamental trend A, the adjustment matrix of

the partially observed model can be computed with (3.4).

The coefficient N, relating X, to T is

—apPp

—acfe

whose orthogonal complement is a 3 x 2 matrix of full rank. Therefore, by construction,
it cannot contain two zero rows. Furthermore, if the row corresponding to B is non-zero,
the row corresponding to C' is necessarily non-null in order to ensure the equality NN, .

Given that €, is diagonal, the resulting «, matrix maintains the same characteristic of
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@ -->@0+—0

Figure 3.4: Causal Graph Generating Misalignment Between Weak Exogeneity and Non-
Causality Example 2

N,,, i.e., it does not contain zero rows. An admissible realization of «, is

Qo1 0
Qo = Qo2 0
0 3

which suggests that weak exogeneity in the partially observed model might not necessarily

imply non-causality.

If we consider cyclical graphs, it might even occurs that a variable influenced by others ex-
hibits weak exogeneity. To illustrate, consider the cyclical graph depicted in Figure 3.4. In
this scenario, the error correction representation involving variables A, B, and C' displays
two causal connections: A — B < (', and B — (. Each connection corresponds to an
equilibrium relation: B = g4 A + BpcC, and C = S B. The first equilibrium influences
changes in B, resulting in a non-null entry in the adjustment matrix’s corresponding col-
umn only in the row relative to B. Likewise, the second equilibrium influences C, leading

to a non-null entry in the second column of the adjustment matrix only in the row relative
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to C. Hence, the final Vector Error Correction Model is:

A 0 0 A A
—Bpa 1 —PBsc
A Bl = lag 0 B + EB
0 —Bc 1
C 0 (670! C EC
L Jd¢ L . L Jdi¢—1 L Jdt¢

Similar to the previous scenario, in the fully observed model, weak exogeneity aligns
with non-causality and the introduction of non-stationarity. In fact, the zero row in the
adjustment matrix corresponds to the variable A, which is unaffected by any other variable
within the system. To analyse the partially observed model involving { B, C}, we utilize
equation (3.2) in its reduced form (Equation (3.4)) since the only unobserved variable is
the fundamental trend A. The coefficient N, relating X, to T takes the form:

_CYB/BBA
N, =

0

Its orthogonal complement, a 2 x 1 matrix of full rank, must be constructed in such a way
to ensure the equality N/N,, = 0. This necessarily implies a zero entry in the first row of
N,, . Given that 2, is diagonal, the resulting «, matrix maintains the same characteristic

of N,,, containing a null vector in the row corresponding to B:

Qy =
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o -->0—0

Figure 3.5: Causal Graph Generating Alignment Between Weak Exogeneity and Non-
Causality

indicating that B exhibits weak exogeneity.

This example underscores that weak exogeneity not only does not always match non-
causality, but it can even characterize a variable influenced by others. In fact, despite

being caused by C, B is weakly exogenous.

However, this discrepancy does not imply that non-causality in partially observed mod-
els always deviates from the restrictions of the adjustment matrix. Consider the graph
depicted in Figure 3.5. Here, the error correction representation involving A, B, and C
contains two causal connections: A — B, and B — C. Each connection corresponds to
an equilibrium relation: B = fgA, and C' = S¢B. The first equilibrium affects changes
in B, resulting in a non-null entry in position {2,1} of the adjustment matrix. Likewise,
the second equilibrium influences C, leading to a non-null entry in position {3,2} of a.

Hence, the final VECM is:

A 0 0 A A
-6 1 0
A B = |ag 0 B + B
0 —fBc 1
C 0 (676 C EC
L Jdt L . L Jdi¢—1 L Jd1

Again, in the fully observed model, weak exogeneity aligns with non-causality. If we

compute the adjustment matrix of the partially observed model, we find that the mapping
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between weak exogeneity and non-causality extends to the error correction representation

involving B and C only. To illustrate, we first retrieve N,:

—apPp
N, =

0
whose orthogonal complement is a 2 x 1 matrix of full rank. To ensure the equality N/ N, ,
the first row of N,; cannot contain non-zero entry. Since the only unobserved variable is
the fundamental trend A, the adjustment matrix of the partially observed model can be
computed with (3.4). Given that €, is diagonal, the resulting a, matrix maintains the

same characteristic of NV, , containing a null vector in the row corresponding to B:

Qy =

This demonstrates that weak exogeneity can correspond to non-causality in partially ob-

served models.

In summary, the extension of weak exogeneity test outcome to causal conclusions is not
automatic unless all variables affecting a system are adequately modeled. Consequently,
conclusions regarding the causal structure and driving forces derived from testing restric-
tions of the adjustment matrix should be approached with caution. This chapter aims
to analyse the circumstances under which weak exogeneity in partially observed models

aligns with non-causality and when it is appropriate to draw causal conclusions from the
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analysis of VECM coefficients.

3.3 Driving Trends and Non-Causality

As illustrated in the introduction, weak exogeneity is often associated with driving trends

and non-causality. In this section, we clarify what is meant by these concepts.

We will first list the classical definitions and then propose alternative concepts based on
the graphs representing the causal connections of the fully observed system. Subsequently,
sections 3.4 and 3.5 will analyse whether weak exogeneity can be associated with leading

or unaffected variables.

Subsection 3.3.1 presents the standard definition of driving trends and proposes an al-
ternative definition based on the properties of latent causal structures. Subsection 3.3.2
articulates the idea of absence of influence, proposing a weak and a strong form of non-

causality.

3.3.1 Driving Trends

As illustrated in the introduction, weak exogeneity is often associated with driving trends.

This subsection aims to clarify the idea of driving variables.

The notion of driving forces is not unambiguous, and various authors have provided dif-
ferent definitions. Nonetheless, all definitions proposed thus far are grounded in the rep-

resentation of X; as a function of the error term e. This representation allows for the
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decomposition of X; into stationary and non-stationary components. The driving trends

are then identified from a transformation of the non-stationary component of X;.

The standard Vector Error Correction Model (VECM)

AXO,t = O‘OB:)XO,t—l + Z FoiAXo,t—i + €
finds the following solution for X; as a function of the error term e:

t
Xoy=CX,0+CY =+Y, (3.5)

i=1

where Y, is a stationary process, X, is the initial value of X,, and C = 3, (o}, B,1) 'l .

Here, ' =>"T',; — I.

Clearly, non-stationarity arises from the term C 25:1 €0i- Consequently, authors have

defined driving forces starting from the representation
t
5OL(QZ)L/BOL)_1Q/0L Z Eoi
i=1

The matrix C' is a reduced rank matrix that can be decomposed similarly to II, = «,3.:

t
Boa;L Z €
i=1
where 3, = 3,1 (!, Bo1)~t. This representation prompts the definition of driving trends
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A B C
*——0o—o

Figure 3.6: Causal Graph to Illustrate the Idea of Driving Forces

as

t

/ .

Qa, | &;
i=1

Similar to IT, C' does not have a unique decomposition. For any given full rank matrix A, it
holds that C = 3, (), Bo1) A7 Al | . Consequently, the fundamental trends can also
be defined as Aa/, S°_ ;. This variability has led the literature to introduce different

definitions of driving trends.

In this thesis, we depart from definitions based on representation (3.5), and instead anchor
the definition to the latent causal graphs describing the causal connections of the system

at hand.

Intuitively, driving trends are variables that introduce non-stationarity into the system.
The driving forces par excellence are the fundamental trends, and the common long-term
dynamic among all the variables in the system is generated by the non-stationary behaviour

of T. If T is kept fixed, the ordinary variables X would not cointegrate.

To clarify consider the graph in Figure 3.6 and its VECM representation:

A 0 0 A
c 1 0
AlBl =la 0 B| té
0d 1
C 0 b C
. 4+ L U L Jdit—-1
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The original source of non-stationarity is variable A. By fixing A = Ay, the dynamics of

B reduces to:

AB; = a(cAyg+ Bi—1) +€p4

Expanding AB;, we obtain the following AR representation for B:

Bt =u+ (CL + ]-)Bt—l + Bt

where 1 = acAy. It follows from the stability conditions of the C-VAR model that a + 1

is less than 1 in absolute value. Hence, by fixing A, B becomes a stationary process.

By fixing A, C also loses its non-stationary behaviour, resulting in a representation for
ACY similar to the one illustrated for AB;. The only difference is that the mean term p

is no longer constant, but it is a stochastic process with stationary behaviour.

This example provides an intuitive understanding of what driving trends should capture.
Heuristically, driving trends are variables that, when fixed, cause the system to lose its
non-stationary behaviour. In a fully observed model, identifying driving trends is straight-
forward, as it aligns with 7', which are by construction weakly exogenous. However, ex-

tending these concepts to partially observed systems is less intuitive.

When only a subset X, of the entire set of variables affecting a system is observed, the
focus shifts from the variables generating non-stationarity to the variables that bring the
non-stationary behaviour inside X,. These variables are the ones directly or indirectly

connected with 7" that cannot be made stationary by keeping other variables within X,
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constant.

Understanding the properties of variables that can be labeled as driving forces requires
analyzing how non-stationarity is transmitted from the fundamental trends to the observed
variables. Notably, fixing X, does not render T stationary. This follows from the fact that
the fundamental trends are inherently non-stationary, and their long-term dynamics do not
depend on connections with other variables. All variables directly affected by 7' are non-
stationary unless arbitrarily fixed. Their indirect descendants are non-stationary unless
arbitrarily fixed or the indirect connection between T and the descendant is blocked by
fixing the variables transmitting causality from 7T to the variable under analysis. Thus,
the introduction of non-stationarity is related to the concept of blocked and unblocked
forward paths between T and the observed variables. Specifically, a variable z; € X,
introduces non-stationarity into the system if some of the paths between T" and z; remain

unblocked by the observed variable X,.

It should be noted that this definition does not align with the notion of weak causal
exogeneity introduced in Chapter 1. It is indeed more stringent since not all the variables in
N introduce non-stationarity into X,. A variable belongs to 3 if it meets two requirements:
i) all paths with 7" must be blocked by X,, and ii) there must be no feedback in the
transmission of causality from N to 3 through latent factors. The second requirement is
not applicable when defining driving forces. Therefore, a variable must only meet the first
requirement to be excluded from the set of driving trends. Consequently, the variables

introducing non-stationarity within X, are a subset of N.
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Figure 3.7: Causal Structures for Simulations

To clarify, consider the graphs in Figure 3.7. In graph i), the forward paths between
T = A and {B,C} are direct, thus unblocked by X,. Conversely, causality between A
and E is mediated by B and C. By keeping C' and F constant, the non-stationarity of B
is unaffected. Specifically, AB reacts to follow the non-stationary fundamental trend A,
which is unaffected by X,. The same applies to C' despite the causal feedback from E:
even if F is kept constant, C' remains non-stationary due to A’s influence. Conversely, by
fixing B and C, E becomes a stationary process, despite its influence from the unobserved
D. This occurs because B and C block the forward paths from 7 and D, making D

stationary. Consequently, £ tracks a stationary process (D) and the constants By and C.

A similar reasoning applies to graph ii). By fixing C' and D, E remains constant despite
causing B. This is because E adjusts to track a linear combination of B and (', which
are constant in this hypothetical scenario. Conversely, both C' and D maintain their
non-stationarity even if F is held constant. Specifically, B remains non-stationary as it

continues to track A, thereby transmitting non-stationarity to C' and D.
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In graphs iii) and iv), the variables whose forward paths with 7" are unblocked by X, are
D and FE. Similar to the previous cases, despite the direct and indirect feedback of G on
E, the latter is not made stationary by fixing the former. Moreover, G loses its long-term
dynamic if both E and D are kept constant. This occurs because the variable driving
its long-term behaviour (F') would become stationary by fixing £ and D. These graphs
are particularly interesting because they show instances where the variables introducing
non-stationarity do not align with the set X. The unobserved F' transmits causality from
{E,D} to G and, in turn, affects E. This makes G fail the second requirement to be
included in 3, thus G € V. As mentioned earlier, this is an instance where the driving

forces are a subset of N, since FF and D introduce the fundamental trends into X, while

N ={D,E,G).

To provide a more detailed definition of the concept of driving variables, we need the

following partition of N:

Definition 10 (Set Nr). A variable x; € X, belongs to the set Nr if at least one of the

forward paths from T to x; is not blocked by X,
Definition 11 (Set Ng). The set Np is defined as R\ Ny

We can now define what is meant by driving variables. The term “causal driving trend”
will be used to distinguish the concept of leading variables based on the unobserved causal

structure from the definition of driving trends based on the moving average representation

of the VECM:
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B

.

Figure 3.8: Causal Graph Generating a Misalignment Between Weak Exogeneity and
Causal Driving Forces Example 1

Definition 12 (Causal Driving Variables). A variable x; € X, is a causal driving

variable with respect to X, if it belongs to the set Nrp.

To understand the distinction between the standard and the causal concept of driving

variables, we provide three different examples.

Consider the graph in Figure 3.8, translated into a VECM as follows:

A 000 0 1 1A
e 100 0

B a 00 0 B
f 0100

Alcl =10 b 0 0 c| te

g 0010

D 00 ¢ 0 D
0 h o j 1

E 00 0 d|l - - |E

L d¢ L a L Jt-1

Here, A is the only unobserved variable, as well as the sole fundamental trend. Its paths
with B, C, and D are evidently not blocked by X,, while the connection between A and
E is fully mediated by B, C, and D. Consequently, the causal driving trends are B, C,

and D.

Conversely, according to the definition based on the orthogonal complement of o, the
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driving trend is one and is retrieved as a linear combination of the residuals relative to

Nr. This can be observed by computing a;; using (3.4):

ae

bf

Qo =
cg

Thus, the driving trend o € is:

€B

~

Tt:[ae bf cg} £c

€D

By observing the difference between the causal and the standard definitions, we notice a
different interpretation of what is meant by driving trend. In the standard interpretation,
the trend does not have to be among the observed variables; it could be a linear combina-
tion of the residuals of some components in X,. Conversely, in the causal interpretation,

the set containing the driving forces is always a subset of X,,.

The standard approach estimates the unobserved T', while the causal approach focuses
on identifying which variables in X, are necessary to ensure the long-term dynamics. In
fact, a| e results in only one variable, aligning with the cardinality of 7', while the causal

interpretation identifies three variables as fundamental trends. The focus of the causal
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Ae._ ¢ D E
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Be’

Figure 3.9: Causal Graph Generating a Misalignment Between the Number of Estimated
Fundamental Trends and the Actual Cardinality of T’

interpretation is on the variables in X, leading the long-term dynamic, therefore the word

driving variables would be more appropriate with respect to the term driving trends.

Despite the standard interpretation attempting to estimate the fundamental trend in T,
it must be noted that the multiplication a, e does not always produce a set T with a
cardinality aligning with that of 7. Consider, for instance, the graph in Figure 3.9 paired

with the model below:

-A- _ooo_ -A-

B OOO_deIOO_B
Alcl =la 0 0l ]00 F 1 0]|C| +et

D 0bo0|/]|000g1|]|D

E 0 0 ¢ FE

L Jd¢ L . L Jt—1

Without loss of generality, we set w, = I, so that the matrix « is equal to N, . It follows
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A B C D
- -0<——0 -0

Figure 3.10: Causal Graph Generating a Misalignment Between Elements of Ny and Vari-
ables Included in The Standard Estimation of the Fundamental Trends

that one possible realization of o is:

o =

and the driving trend is €, . Therefore, the standard definition of driving trends identifies
just one driving force, despite the causal graph in Figure 3.9 indicates that the cardinality

of T is 2.

It should also be noted that the term 7' is not always composed of linear combinations of
the residuals corresponding to Np. To demonstrate this, consider the graph in Figure 3.10

together with its VECM representation below:

1T : A
A 00 0| "
d 1 e 0| |B
B a 00
A = 0 f 10| |C| *e
C 0b 0
00g 1||D
D 00 c| - )
. Jd¢ L | E
L Jdt-1
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By setting X, = {B, D}, an admissible realization for «,, is:

aeVoa + adVy
Oy =

cgVea
where V4 and V) are both different from 0 and correspond, respectively, to the covariance

between C' and A and the variance of A conditioned to X,.

We observe that here the trend resulting from the standard definition is a linear combi-
nation of the residuals corresponding to both B and D. Nevertheless, only B is a driving
force according to the causal definition, since D ¢ Rp. In fact, by keeping D fixed, B will
continue to be non-stationary due to the influence of the fundamental trend A. Conversely,
it is sufficient to hold B constant to eliminate the long-term dynamics of C' and, in turn,

the one of D.

3.3.2 Non-Causality

The concept of non-causality is fundamental in causal inference. To provide a formal
definition, we begin with a straightforward analysis involving two variables, A and B,
connected by the directed edge A — B. Here, B is designated as the caused variable,
while A is considered the non-caused variable. Hence, in this context, non-causality is a

property of the variable A.

The heuristic understanding of non-causality revolves around the absence of arrows point-

ing towards certain nodes in a graph. Therefore, a natural definition of non-causality
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hinges on the lack of incoming edges. However, in the context of partially observed sys-
tems, non-causality must be defined relative to a subset of the nodes of the entire causal

graph.

Let Y denote the set of variables corresponding to all nodes in the graph, and X, represent
the subset of variables under consideration. A variable xz; € X, is deemed not-caused if
there are no incoming edges from any other node within X, to the node corresponding
to x;. Importantly, causal connections need not be direct; thus, non-causality has to
be evaluated considering also the causal pathways mediated by latent components in Y

(outside X,).

Thus far, we have defined non-causality relative to a set X, as a condition where there is
a complete absence of influence from the other modeled components. However, variables
within X, may exhibit varying degrees of causal hierarchy based on their exogeneity. Thus,
non-causality can also be defined with respect to a subset of X,, for instance with respect
to the subset of X, not including the driving variables. This approach has also been used
for other causal definitions. For example, in the causal heuristic definition of exogeneity
proposed by Cohen et al. (2013), exogeneity implies that a variable is not caused by any
other variable within the system that is not itself exogenous. This intuitive notion of
exogeneity can be extended to the concept of non-causality, suggesting that a variable is
not-caused if it is neither directly nor indirectly influenced by other components within

X,, except for those considered driving forces.

Building upon these principles, we can delineate a strong and a weak form of non-causality:
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Figure 3.11: Causal Structures to Illustrate Non-Causality

Definition 13 (Strong Non-Causality). A variable x; € X, is said to be strongly not-
caused with respect to X, if there are no direct or indirect incoming edges starting from

the nodes relative to X, and arriving to x;

Definition 14 (Weak Non-Causality). A variable x; € Ry is said to be weakly not-
caused with respect to X, if there are not direct or indirect incoming edges starting from

the nodes relative to X, \ Xy and arriving to x;

To clarify the definitions, we examine the causal graphs depicted in Figure 3.11, where

the set of interest is defined as X, = {C, D, E'} in all the four graphs.

In graph i), both C' and D lack incoming arrows from other components of X,, thereby
qualifying them as strongly not-caused with respect to X,. Conversely, E does not meet
the criteria for being strongly or weakly not-caused, as £ ¢ R and both B and C directly

affect F.

Graph i) introduces a causal link from C to D, resulting in D now having an incoming

edge originating from an element in X,. Consequently, D no longer qualifies as strongly

252



CHAPTER 3. WEAK EXOGENEITY, TRENDS AND NON-CAUSALITY

not-caused. However, both C' and D are directly influenced by fundamental trends, placing

them within Rp. Thus, according to Definition 14, D is categorized as weakly not-caused.

In graph dii), D is caused by E. Given that E ¢ Xy, D can no longer be classified as

weakly not-caused.

Finally, in graph iv), a causal link from D to C' is introduced. Since E ¢ Ny causes D,
which subsequently affects C, there exists indirect causality from E to C'. Consequently,

none of the variables in X, can be deemed not-caused, either strongly or weakly.

3.4 Driving Trends and Weak Exogeneity

This section examines the relationship between weak exogeneity and trend introduction
by studying whether and how testing restrictions of the adjustment matrix can identify

variables that introduce non-stationarity among observed variables.

As discussed in the previous section, we consider the variables in N as the components
of X, introducing non-stationarity coming from the latent fundamental trends, thereby
forming the driving trends under analysis. The goal is to determine whether a zero row

in the adjustment matrix can be associated only with variables belonging to Np.
Before presenting the main results, we introduce intermediate findings:

Lemma 3 (Weak Exogeneity and Causal Endogeneity). The rows in «, corre-

sponding to 2 cannot be null vectors
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Proof of Lemma 3. This lemma follows directly from Corollary 2 in Chapter 1. Weak
exogeneity is a sufficient condition for weak causal exogeneity; thus, variables correspond-

ing to a null row in «, cannot belong to 3. O

From Lemma 3, it follows that weak exogeneity cannot be a property of the components of
3. Consequently, weakly exogenous variables must be in R. However, not all variables in
N are components of the driving trends. Thus, we need to further explore the connection

between restrictions of «, and the sets N and Np.

As described in previous chapters, the elements in N are influenced by components of T,
T, 3, and N itself. In contrast, J is unaffected by Tand T'. Additionally, the sub-matrix of
V.r corresponding to the rows of 5 comprises solely null entries (see Lemma 1). Therefore,
the structure of M,,Vyr + N, Vr is:

I T T

X[l A o | [T £ R[| D AE + DF
+ T F
QAo ¢ | ] o 3l o 0

The non-zero sub-matrix AE +DF represents the product between the coefficients linking
the elements in N to their parents and the covariance between them and the fundamental
trends. Given that X, does not interfere with fundamental trends or block paths between
T and T, each row of € and F will contain at least one non-zero entry. Hence, every N
component is linked to at least one variable in 71 or 7', ensuring that [ A ’D} contains

at least one non-zero entry per row, as well as AE + DF. This is naturally true since
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every element in X must be either directly or indirectly connected to 7'. Similarly, every
element in 7" must be connected to at least one element in V. If otherwise, X and some T’
components would belong to disjoint graphs, implying different systems. Therefore, the

columns of AE 4+ DF must also have at least one non-zero entry.

The values of A are independent of D, so linear dependence between rows or columns of
AE +DF occurs only through parameter fine-tuning, which we exclude. Thus, AE + DF

is a full-rank matrix with rank p = min(|R|, |T).
These conclusions lead to the following lemma:
Lemma 4 (Lower Bound for Cointegration Rank). The cointegration rank r cannot

be less than the cardinality of 3.

Proof of Lemma 4. As proved in the first Chapter, the cointegration rank r equates the
rank of the matrix . Given that v = (MouVuT+NoVT)L, and p = Rank(M,,V,r+ N, Vr),

by definition v is an | X,| x (|X,| — p) full rank matrix.

If [R| > |T|, then p = |T'| and ~v is an |X,| x (|X,| — |T|) of rank |X,| — |T|. Since

| Xo| = IR+ |3, r exceeds |3].

Alternatively, if |[N| < |T, then p = |N| and 7 is an | X,| x (|X,| — [R]) of rank |X,| — |N].

Since | X,| = |X| + |3, the rank r is equal to |3].

This proves the Lemma O

It is now possible to delineate a necessary condition for weak exogeneity:
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Lemma 5 (Necessary Condition for Weak Exogeneity). A necessary condition for
the variables in X to be weakly exogenous is that the cardinality of 3 does not exceed the

cointegration rank r.

Proof of Lemma 5. According to equation (3.2), the adjustment matrix «, is given by

Yo(My,Vur + N,Vr) 1, represented in block form as:

NP3 ]
R|| T J R £ IL+ITM
ay, = =
Al v ok |2 M T4 KM

The matrix Z is the variance of the residuals corresponding to N. Consequently it is a full
rank square matrix, thus a necessary condition for weak exogeneity of N is that £ = 0.
This follows from the fact that for ZL # 0, the equality ZL = —J M hold only for a

fine tuning of the parameters, which we find reasonable to exclude.
To prove the lemma, it must be shown that if |3| < r, then £ # 0.

The matrix (M,,Vur + N,Vr), finds the following representation:

T
IN|| AE+DF
(MouVuT + NoVT)L -
pul 0

We will prove the lemma by contradiction, considering (M,,V,r + N,Vr), as:
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r
R} 0

(MouVuT + NoVT)J_ = (37)
3l H

Under the scenario considered by the Lemma, the cointegration rank r exceeds |J|, the
maximum rank of H is |3|. It follows that the maximum rank of the block representation

(3.7) is |3|, implying (Mo, Viur + NoVr) 1 has reduced rank given that (|N|+|3]) > r > |3].

This leads to a contradiction since the orthogonal complement is, by construction, a full-

rank matrix.

To draw conclusions on Ny and Np, it is instructive to analyse the connection between the

presence of Np and the condition r < J:

Lemma 6 (Relation Between Cointegration Rank and |3J| when Np Diverges

from X). If Xg is not empty, it follows that r > |3].

Proof of Lemma 6. This lemma can be proved by analyzing the relation between Npg
and the cointegration rank through Equation (3.3). The idea is to study the dimension of
the cointegration matrix since the number of columns of 3,, thus of (N, — M, ,M;'N,),,

equals the cointegration rank.

Define Tp as the subset of 71 whose forward paths with 7" are blocked by N, and 77 =

T\ Tp. By construction, the fundamental trends cannot directly cause g and g, as well
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as 5 and 3. Therefore,

T T
N7 | N Tl | O
N, = |Ng] 0 N, = |Tg| 0 (3.8)
3] o 5 o

The unobserved 5, can exclusively cause 3, while Tz can cause, X7, Ng and T7. Conversely,

T can have influence solely on Np. Consequently, the matrices M, and M, are

Tl [Tsl 5] Tl s[5
Rl P Q@ 0 Tl T U o

Muw= Rg|| 0 R 0 M,= [Tl 0 VY 0 (3.9)
3l o o S 5 0 0o W

It can be noted that the matrices 7T, V, and W are full rank matrices since they related

the causal sets with themselves. Therefore 7!, V™!, and W™! exist and the matrix M;?

is as follows:

T 5] .
Tl 77 T luy ! 0

M'= T o y-! 0 (3.10)
bl 0 0 w

Substituting (3.8)-(3.10) into Equation (3.3), we obtain:
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T

T | X

Ny — Mo M;'N, = [T5|| 0
51| 0

From the representation above, it is evident that the maximum rank of X is the minimum
between the cardinality of Np and the cardinality of 7. It follows that the number of
columns of (N, — M,,M~'N,),, i.e. cointegration rank, is equal to [Ng|+ [Rg| + |3| —

min(|7, [Rr|).

Suppose |Ng| > |T|, thus r = [Rp| 4+ [Rg| +|3| — |T|. Given that |[Rp| > |T], it must hold

that [X| > |T'|. Therefore |X| + |3 — [T > |3|.

If |[Ny| < |T, the cointegration rank is r = |Rgp| + |Ng| + |3| — [Ry|. Thus, the only

possibility for |3| to be equal to r is that |[Np| = 0.

This proves the Lemma.

The role of weak exogeneity in the identification of Ry can now be analysed:

Theorem 4 (Weak Exogeneity as Identifier of Driving Variables). Weak exo-
geneity 1s a sufficient condition for a wvariable to be among the components introducing

non-stationarity.

Proof of Theorem 4. To prove this theorem, it is sufficient to show that the variables
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in 3 and Np cannot be weakly exogenous.

From Lemma 3, we can exclude weak exogeneity for the variables in J. From Lemma 5,
we can exclude weak exogeneity for systems where r > |J|, while Lemma 6 demonstrates
that the cointegration rank cannot be lower or equal to |3| if Xp is not empty. It follows

that only the variables in Ny can be weakly exogenous.

This concludes the proof.

Corollary 8 (Corollary to Theorem 4). Weak exogeneity is not a necessary condition

for a variable to be among the components introducing non-stationarity.

The proof of this corollary is omitted, as the example in section 3.3.2 is sufficient to
demonstrate that absence of weak exogeneity can coexist with the condition of belonging

to the set Np.

Theorem 4 is fundamental as it clarifies that weak exogeneity can be utilized for the
identification of driving forces. However, as stated in the corollary, not all the variables in
N7 correspond to a zero row in «,. Consequently, identifying the driving trends by means
of tests on a, requires caution. Failure to reject the null hypothesis of weak exogeneity
aligns with failure to reject the hypothesis that the corresponding variable is a driving
force. Conversely, rejection of weak exogeneity does not necessarily imply that a variable

does not introduce non-stationarity within the system.

The following theorem clarifies the conditions ensuring that weak exogeneity corresponds
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to the variables in N:

Theorem 5 (Conditions for the Alignment Between Weak Exogeneity and

Driving Trends). The variables in X are jointly weakly exogenous if and only if r = |3|.

Proof of Theorem 5. According to lemma 4, the minimum value for r is |3, therefore

we can focus only on r > |JJ.

As per Equation (3.2), the adjustment matrix is equal to X,( M, Vyr + NoVr) 1. The proof
starts with the analysis of the matrix X, retrieved as per Equation (3.1). By definition, 5
does not affect N, while 7" and 7T do not cause 3. Moreover, the covariance paths between

TJUT and 5 are all blocked by X,. In light of these considerations, the matrix 3, becomes

I I

T

RI[ A4 0 D
o — |3| 0 L 0 |:| 0 C’ +Qo
I3 o C 0
T & o F ||T| D 0

which equals a matrix with a diagonal block structure:

Rl (3
R| Z o
Q3 o K
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It follows that o, is:

Rl |3 i
IN|| T 0 N[ £ e
o, = —
I3l o IC 3| M KM

Given that Z cannot be zero, to prove the “if” part, it is necessary to show that when

r = |3, it follows that £ = 0.

The (|X] 4 |3]) x r full-rank matrix of interest is obtained by computing the orthogonal

complement of the (|N\ + DD X |T'| matrix My, Vyr + NoVr.

By construction, r is equal to |X| + |3| — Rank(M,,Vur + N,Vr). Lemma 4 establishes
that the minimum value for r is |3|, thereby focusing the Theorem on instances where
Rank(M,, V,r + N,Vr) = |R|. Consequently, the non-null matrix AE + DF in Equation
(3.6) is a |X| x |T'| matrix with rank |R|, where |T'| is necessarily greater than or equal to

IR[.

According to the Rank-Nullity Theorem, under this scenario, the nullity of (A€ + DF )/

is 0, while both the number of columns and the rank of the matrix are |N|.

As the nullity is 0, the null space of (AS +DF )/ is zero-dimensional, implying that the
only vector & ensuring that (.AE +DF )I(S = 0 is the trivial vector. Thus, the orthogonal

complement has dimension 0, and the only solution for (MOUVUT + NOVT) L s
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r=13

R[]0
(MauVuT + NOVT)L = ‘:‘ (311)
H

where H is any full-rank matrix.

454

This concludes the proof of the “if” part.
To prove the “only if” part, it is necessary to include the findings of Lemma 5.

This concludes the proof of the Theorem.

From Theorem 5, we can deduce that the components of Ny can be identified when the
cointegration rank matches the cardinality of J. It follows that the weak exogeneity test
can be used to identify N if the estimated rank is equal to the cardinality of X,\ T, where

T is the arbitrarily selected set for which belonging to Rz is under testing.

3.5 Weak Exogeneity and Non Causality

This section explores the relationship between constraints on the adjustment matrix and
non-causality. As defined in section 3.3, non-causality manifests in both weak and strong
forms. Strong non-causality refers to variables without direct or indirect connections from
other components in X,. Conversely, weak non-causality pertains to the absence of direct

and indirect influences from J U Ng to Rp.
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C

A*\"i
\\\ E
Be--

D

Figure 3.12: Causal Graph Illustrating How Variables That Are Not Strongly Not-Caused
Can Be Weakly Exogenous

We commence by examining strong non-causality to ascertain any relationship with weak
exogeneity. Consider the data generating process given by the VECM below, depicted in

the causal graph in Figure 3.12:

—A_ _000_ _A_

B 000||dO01c¢eoll|B
Alc| =1la 00| |f g 01 0] |C| Fe

D 0bO0||0 0 i 1||D

E 00 ¢ E

L d4¢ L . L Jt—1

Setting X, = {C, D, E}, we observe T =Y, = {A, B}, X =Xy = {C, D}, and J = {E}.
Notably, all forward paths from 7" to E are blocked by {C, D}, and causality from this

group to E is direct.

Within X, the only node without incoming edges is the one relative to D. Despite C' € Xp,

there exists a direct edge from D to C.

To explore the relationship between weak exogeneity and strong non-causality, we compute
the adjustment matrix «, defined in Equation (3.2). Given that only the fundamental
trends are unobserved, Equation (3.2) can be simplified as per Equation (3.4). Without
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Figure 3.13: Causal Graph Illustrating How Variables That Are Strongly Not-Caused Are
Not Necessarily Weakly Exogenous

loss of generality, we set €, to the identity, so a, = N, :

ad 0 0

Qo = |bf bg| = |0
0 0 T

L d 1 L

where x is any non-null real number.

It follows from the representation of «, that both C' and D are weakly exogenous, though

only D is strongly non-caused. This observation motivates the following lemma:

Lemma 7 (Weak Exogneity and Strong Non-Causality (1)). Weak exogeneity is

not a sufficient condition for strong non-causality

The lemma asserts that the association between weak exogeneity and strong non-causality

is flawed, as absence of strong non-causality can coexist with weak exogeneity.

To ascertain whether weak exogeneity is a necessary condition for strong non-causality,
consider the example illustrated in section 3.2, depicted in Figure 3.13 together with its

VECM representation below:
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A 0 0 0| r 1A
d 1 00
B a 0 0 B
A = e 010 + &
C 0 b 0 C
0 f g1
D 0 0 c¢| - - | D
I L J L Jdit-—1

By setting X, = {B,C, D}, we identify 8 = Xy = {B,C} and 3 = {D}. Both B and
D are strongly not-caused by the components of X,. In fact, none of the elements in X,

directly or indirectly influence B and C.

As for the previous example, we set (), = [ so that o, = N, ;. The resulting adjustment

matrix 1s o _ _
ad —zbe 0
Qo = | be = | zad 0
0 0 Y

L Jd 1 L .

where both x and y are any non-null real number.

In this scenario, none of the components in X, exhibit weak exogeneity, although both B

and C are strongly not-caused. This observation leads to the following lemma:

Lemma 8 (Weak Exogneity and Strong Non-Causality (2)). Weak exogeneity is

not a necessary condition for strong non-causality

This lemma highlights that the absence of weak exogeneity does not imply the absence of
strong non-causality, as instances of strong non-causality may still coexist with non-zero

rows in a,.
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C

Ae--
Be--
D

Figure 3.14: Causal Graph Illustrating How Variables That Are Not Weakly Not-Caused
Can Be Weakly Exogenous

So far, we demonstrated that testing restrictions on «, is completely uninformative with
respect to strong non-causality. We now study whether weak exogeneity can be associated

with weak non-causality.
From Lemma 8, we deduce:

Lemma 9 (Weak Exogneity and Weak Non-Causality (1)). Weak exogeneity is

not a necessary condition for weak non-causality

Weak non-causality represents a particular instance of strong non-causality, thereby im-
plying that the coexistence of strong non-causality with the absence of weak exogeneity

generates a parallel coexistence with weak non-causality.

To investigate if weak exogeneity suffices as a condition for weak non-causality, consider

the causal graph in Figure 3.14 and its corresponding VECM representation:

—A_ _000_ _A_

B 000[|dO0O1e0||B
Alc| =1la 00| |f g 01 R||C| Fe

D 0bo0|]00 i j 1||D

E 0 0 ¢ E

L d4¢ L . L Jt—1
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Figure 3.15: Causal Graph Illustrating How Variables That Are Not Weakly Not-Caused
Can Be Weakly Exogenous Even in Absence of Cyclicality

In this system, the causal structure resembles that of Figure 3.12, with 7' = {A, B},
N =Np = {C,D}, and 3 = {E}. The difference stand on the introduction of a causal
feedback between E and D. Since F € 3 — D which in turn causes C, no variables in X,

exhibit non-causality in both weak and strong form.

With €, = I, the resulting adjustment matrix is:

ad 0 0

Qo = | bf bg| — |0
0 0 T

L Jd 1 L

Thus, both C' and D are classified as weakly exogenous, despite none of the components

of X, being weakly not-caused. This observation leads to the following lemma:

Lemma 10 ( Weak Exogneity and Weak Non-Causality (2)). Weak exogeneity is

not a sufficient condition for weak non-causality

This lemma emphasizes that the relationship between weak exogeneity and weak non-
causality is flawed, as the rows in «, corresponding to weakly not-caused variables are not

necessarily null vectors.
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Lemma 10 holds even under the assumption of acyclical behaviour. Consider the acyclical

graph depicted in Figure 3.15, with its corresponding VECM representation:

_A- _ooo_ -A-

B 000[|dO0 10 e|ll|B
Alcl =la 0o0|]|0 F01o0||C| +e&

D 0bo0l|00o0g 1|]|D

E 00 c E

L. Jd¢ L . L Jd¢t-1

By setting X, = {C, D, E}, it results T =Y, = {A, B}, R =Ry = {C, D}, and J = {E}.
Notably, the causal graph does not depict any cyclical behaviour, so it is a directed acyclic
graph (DAG). Under this setting, C' € Ry is influenced by E € 3, consequently C' it is not

weakly not caused.

Upon computing the adjustment matrix, we obtain:

ad 0 0

Qo = |bf bg| ~ |0
0 0 T

L d 1 L

Here, both C' and D are weakly exogenous, despite C' not being weakly not-caused.

In conclusion, this subsection illustrates that weak exogeneity fails to provide informative

insights into non-causality. Consequently, employing weak exogeneity tests to infer the
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absence of influences can lead to misleading conclusions, even under the assumption of
acyclical behaviour, which is a hypothesis commonly employed in the context of causal

inference.

3.6 Simulations

This section analyses the practical application of the results discussed in sections 3.4
and 3.5. Specifically, it investigates the test performance under various causal structures,
following the implications of the Lemmas and Theorems. The aim is to determine whether
specific forms of non-causality or structures of the set Ny impact the test performance both

in terms of power and size for a given sample size.

Subsection 3.6.1 lists the causal graphs used for the simulations and describes their causal

properties. Subsection 3.6.2 then reports and comments on the simulation outcomes.

3.6.1 Data Generating Processes

Figure 3.16 illustrates the causal structures employed in the data-generating process of
the simulated time-series. Red nodes and red dotted edges denote unobserved variables

and latent causal paths, respectively, while observed variables are depicted in black.

Structures i) and i) represent graphs with behaviours similar to causal chains. The
primary distinction between i) and i) is the introduction of a direct causal relationship

between A and D. In both graphs, the original source of non-stationarity is the variable
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iii)

vii)

A. In i), A is directly connected to B, while all other nodes are only indirectly influenced
by A through B. Thus, if B is kept fixed, both C' and D become stationary, whereas the

converse is not true. Therefore, B € Ny is the sole driving causal trend with respect to

Ae
oD )
B C
B
) D
A.:\ iv)
C
B
O 8D
A‘:‘-A g
E
C
B
. D
A«:\>¢-->¢ E  vii)
C

A"\ .......
. " -3e D
B C
B
e s
Fe-- ‘¢ e[
C
B
Ae--o->8 D
Fo»‘vZIE
C
B
Ae-- D
Fe--
C

Figure 3.16: Causal Structures for Simulations

X, = {B,C,D}.

In graph i), the direct edge between A and D alters the set of driving trends. In this con-
figuration, even if B is held constant, D maintains its long-term dynamics as it continues
to follow A, which exhibits non-stationary behaviour. Consequently, the driving trends

are B and D.

Regarding non-causality, B lacks both direct and indirect incoming arrows from the ele-

ments of X,, hence it is considered strongly not-caused in both graphs. Conversely, D is
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influenced by C', which in both cases is an element of 3. Thus, neither C' nor D is strongly

or weakly not-caused with respect to X,.

Graphs i) and éi) can be represented using vector error correction models as follows:

A 0 0 0| r 1 1A
d 1 00
B a 0 0 B
A = 0 e 10 + & (3.12)
C 0 b 0 C
0 f g1
D 0 0 c¢| - - |D
I L . L Jdt—1
A 0 0 0] 1 1A
d 1 00
B a 0 0 B
A = 0 e 1 0 + & (3.13)
C 0 b 0 C
f g h 1
D 0 0 ¢| - - |D
L J¢ L i L d¢—1

The difference in their representation lies in the last row of 3, where the term f in model

(3.13) captures the influence of A on D.

Since A is treated as unobserved, the focus is on the adjustment matrix extracted from the
model estimated by considering X, = {B,C, D} only. Given that the only latent variable
is in 7', the adjustment matrix can be computed using the reduced form in equation (3.4).

Without loss of generality, we set €2, equal to the identity, so that «, is simply N,,. For
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graph 7), the resulting a is:

ad 0 0
aG=10| =|aps O

0 0 Ay 2

L 1.1 L i

In graph i7), the matrix a, assumes a different structure since N, contains a non-null entry
in the row corresponding to D. This results in a linear combination of the non-zero entries

of N, that sums to zero:

ad —xcf 0
Qo = 10 = 0 o
cf xad 0
L Jd 1 L .

where x is any non-zero real number.

As illustrated in section 3.5, weak exogeneity is not informative for what concerns non-
causality. In both cases, B is strongly not-caused, but the corresponding row in «, is null
only in graph 7). Weak exogeneity is a property of the driving variable B only in graph
i). This is consistent with the findings of section 3.4, given that in i) the set Jis {C, D},
while in 4i), 3 is the singleton set containing C. Thus, the cardinality of 3 is 2 in the first
case and 1 in the second. Since the cointegration rank is 2 in both cases, only in 7) does
r not exceed ||, meeting the condition for the correspondence between weak exogeneity

and driving trends, as per Theorem 5.
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Graphs iii) and iv) have similar structures, differing only by the inclusion of a second
fundamental trend in iv). Specifically, the set T" for éii) is {A}, while for iv) it is {A, F'}.
In both cases, causality from T to D is mediated by the set { B, E'}. Additionally, causality
from {B, E} to D is direct, thus X = {B, F'} and 3 = {D}. No forward paths from T
to N are blocked by elements of X,. Consequently, X = N;, and B and E introduce

non-stationarity within X,.

In both cases, the only variable not caused by any other element of X, is B. Although F
has no direct arrow from X,, it is indirectly caused by D through C. Since D € 3, both

D and E are neither strongly nor weakly not caused, whereas B is strongly not caused.

Graphs iii) and iv) are translated into models as follows:

A 0 0 0 0| 1A
e 1 0 0 0

B a 0 0 0 B
F 01490

Alcl =1o b 0 0 C + & (3.14)

0 h 01 2

D 0 0 ¢ O D
00 45 01

FE 0 0 0 d| - | E

I B . I
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A 0000 A
B a 000/|le10000||B
C 0b00O0l|f01g0 Hn||C
A _ e (3.15)
D 00 coOl|0io013j 0|]|D
E 0004dl|00FKkoOTLO||E
F 0000 ja

The adjustment matrix estimated by observing X, = {C, D, E'} is derived using (3.2). For

graph i), it is:

_201 0 202- _Z_ —0401 0 |
o =Yo(MouVur + NoVr) = | 0 T3 0| [0] =] 0

Yoo 0 Xos| |y Qo3 0
A U700 L i

while for graph iv), it is

-201 0 202- -Z y- - 0 -

o =So(MouVur + NoVr)= | 0 %5 0| |0 0] = |ay

Yoo 0 Yol |z w 0
L 1L T

As with graphs ¢) and i7), weak exogeneity is not associated with non-causality. Although
B is strongly not-caused in both graphs, it is weakly exogenous in iv) but not in 7).

Weak exogeneity is related to the driving trends in 7v) but not in ¢iz). This follows from
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the findings of Theorem 5, given that in both cases 3 = {D}, but in éii) the cointegration
rank is 2, while in ¢v) it is 1. Thus, only in v) is the condition r < |3J| met, making the

variables in Ny weakly exogenous.

Graphs v) and vi) are similar to graphs #i7) and v), with key differences in the causality
from D to E and the group of variables treated as observed. The fundamental trends are
Ainw) and {A, F'} in vi). Unlike the previous graphs, D is now among the causal driving
trends since B, which blocks its forward path from A, is no longer among the modeled
variables. Conversely, F is now outside N since C, which transmits causality from T to
E, is inside X, in v) and vi). Consequently, the driving trends in both graphs are D and

C.

The analysis of graphs v) and vi) differs from that of i) and iv) due to the presence
of weak non-causality. Specifically, C' is caused by D, with no influence from E ¢ Np.
Conversely, D has no influence from any variable in X,. Therefore, both C' and D are

weakly not caused, but only D is strongly not caused.

The VECM representation for v) and vi) is as follows:

A 0 0 00| 1 1A
e 1 0 0 O

B a 0 0 0 B
F01g0

Alcl =1o b 0 0 C + & (3.16)

0O A 010

D 0 0 ¢ O D
00 d j 1

FE 0 0 0 d| - | E

I B . I
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A 0000 A
B a 000[|le10000||B
C 0b00O0l|f01g 0 h||C
A = te (3.17)
D 00 coOl|0oio010o0||D
E 000dl|oo0j k1o0||E
F 0000 F

The adjustment matrix estimated by observing X, = {B, C, D} is derived using (3.2). For

graph v), it is:

_201 Y2 0 | _Z_ _0401 0 |

Qo = No(MouVur + NoVr) = |5, S5 0 | [0] = |a,n 0
0 0 Xul| |0 0 g
i L1 L i

while for graph vi), it is

-201 Y2 O - -Z y- - 0 -

o = Xo(MoVaur + NoVr) = |2, S 0| |z w| =10

0 0 20| |0 O Qo1
L 1L I

These matrices are equivalent to those of graphs #ii) and iv).

As with strong non-causality, weak non-causality is not linked to the restrictions on a,.

Specifically, C', which is weakly not caused in both graphs, is weakly exogenous in v) but
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not in vi). Regarding the driving forces, the components in Ny are weakly exogenous in
v) but not in vi). This aligns with Theorem 5, which states that Nr are related to zero
rows in «, if 7 < |3|. Since the cardinality of 3 is 1 and the rank of the partially observed
model is 2 in v) and 1 in vi), only in the latter scenario is weak exogeneity connected with

the causal driving trends.

The analysis of graphs vii) and viii) is particularly interesting because the set of driving
forces does not correspond to N. Despite B and C' blocking the forward paths between
the fundamental trends and E, the causal transmission between { B, C'} and E is indirect,
passing through the unobserved D, which in turn causes B and C. Consequently, the
set J is empty while N equals X,. Fixing B and C causes D and subsequently F to lose
their non-stationary behaviour. Therefore, the driving trends are the variables B and
C. Both B and C are weakly not caused since the component of J does not influence
them. Nevertheless, they are both influenced by D which in turn is caused by B and C
themselves. It follows that B € X indirectly causes C' € Ny and vice-versa. Consequently,

neither B nor C are strongly not-caused.
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Graphs vii) and viii) are represented by the following models:
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The adjustment matrix a, for the VECM modeling X, = {C, D, E'} is derived using (3.2).

For graph vii), it is:

Eol E02 E03 z Qo1 Q2
Gy = Z]o(]\4ou‘/uT + NOVT) = Y02 2o o5 Yy — |3 Qg
Z03 Z05 Z06 x Qo5 Olpg
L . I L .
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while for graph iv), it is

Z01 Z302 E03 zZ Yy Qo1
Qo = Zo(]\4ou‘/uT + NoVT) = Y02 2od o5 x w = | Qo3

E03 E05 E06 vou Qo5

L . L d 1 L .

Similar to previous cases, non-causality does not correspond to restrictions on the adjust-
ment matrix. According to Theorem 4, when Np is not empty, the variables in N are not
weakly exogenous. In fact, as demonstrated in section 3.4, when Np # (), the condition
r < |3| cannot be met. In graphs vii) and viii), Ng = { E'} and the cardinality of 3 is zero.
The cointegration rank is 2 in the model relative to viii) and 1 in the model corresponding
to vii). Therefore, in both cases, the rank exceeds |J|, as expected from the findings of

section 3.4.

In the next subsection, we simulate time series generated from the causal structures illus-
trated thus far and test for weak exogeneity. We will evaluate the test performance under

the different scenarios discussed in this section.

3.6.2 Results of Simulations

The observations are simulated following the methodology outlined in section 5 of Chapter
2. The pseudo-code detailing the generation of the time series is provided in Algorithm 1.
To test the restrictions on the adjustment matrix, standard statistical software packages

offer built-in functions. In this study, the Matlab function jcontest was utilized for con-
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Graph Variable | N=100 N=500 N=1000 N=10000

) B 92%  81%  6.6% 6.6%

w) B 131% 72%  6.1% %
E 215% 124%  9.6% 7.3%

i) C 125% 81%  6.9% 5.5%
D 123% 71%  5.1% 6%

Table 3.1: Rejection Rates for Tests Implemented Under the Null Hypothesis. Significance
Level 5%. N indicates the Sample Size.

ducting these simulations. Given that the order of the partially observed C-VAR model
is infinite, it was approximated by a VECM of order [In(/N)], where N denotes the sam-
ple size. This approximation was chosen due to the exponentially decreasing coefficients

associated with short-term dynamics, ensuring minimal information loss.

We begin by examining the outcomes of the test under the null hypothesis, i.e. the test
applied to the variables B in graphs i) and iv), E in graph iv), and C' and D in graph vi).
The test is conducted across four different sample sizes: N = 100, N = 500, N = 1,000,

and N = 10,000. Table 3.2 presents a summary of the simulation results.

The rejection rates approach the designated significance level as the sample size increases,
aligning with expectations based on the theory of the log-likelihood ratio test. This be-
haviour stems from the fact that the statistic asymptotically follows a chi-squared dis-
tribution as the sample size tends to infinity. Across all cases considered, the rejection
rates generally decrease as the sample size, denoted as N, increases. An exception to this
trend is observed in the rejection rates for variables D and B in graphs vi) and iv), which
increase from 5.1% and 6.7% at N = 1,000 to 6% and 7.3% at N = 10,000. The reason

for this increase is not entirely clear and may be attributed to the order approximation or
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Graph Variab1e|N:100 N=500 N=1000 N=10000

i) C 97.3%  99.7%  99.9% 100%
D 98.6% 99.7%  99.8% 100%
i1) B 33.9% 52% 52.1% 70.2%
C 97.9%  99.9% 100% 100%
D 36.6% 46.1%  57.2% 72.6%
i11) B 17.7%  23.3%  25.5% 32%
D 96.8%  99.7%  99.8% 100%
B 90.4%  93.9%  95.5% 98.2%
iv) D 82.2% 95.8%  97.9% 99.4%
v) C 28.3% 30.6%  31.3% 39.9%
D 81.7%  93.7% 94% 98.1%
B 98.8%  100% 99.9% 100%
i) B 92.4% 99% 99.9% 100%
vii) B 56.6%  80.8% 84% 94.2%
C 58.6% 781%  82.8% 95.3%
B 95.4%  99.7%  99.9% 100%
Vi) B 42% 62.6%  69.5% 85.2%
C 35.3% 53.8%  63.4% 80%
E 85.3%  94.6%  97.2% 99.4%

Table 3.2: Rejection Rates for Tests Implemented Under the Alternative Hypothesis.
Significance Level 5%. N Indicates the Sample Size.

random variability, given that these percentages are not significantly divergent from 5%.

An important observation pertains to the heterogeneity among rejection rates, particularly
evident at smaller sample sizes. It is notable that the test’s performance varies considerably
across different scenarios. For instance, the variable £ in graph iv) exhibits the poorest
performance across all sample sizes. This variability can be attributed to the interplay
between weak exogeneity and non-causality. Specifically, F in graph iv) is unique among
the simulated variables as it is weakly exogenous while neither strongly nor weakly not-
caused. This suggests that while weak exogeneity is distinct from non-causality, its absence

can impact the accuracy of tests, especially evident with smaller sample sizes.
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We now analyse the test performance under the alternative hypothesis. The test outcomes
are reported in Table 3.2. As expected, the rejection rates increase as the sample size
increases. This is coherent with the expectation, as the power approaches 100% as the
sample size tends to infinity. In all the cases, the rejection rate grows as N increases
without any significant exception. Nevertheless, the difference in the test’s performance
across the several scenarios is immediately evident. There are in fact cases where the
empirical power exceeds 97% with only 100 observations while other cases where the

power is below 35% even with 10,000 observations.

The test exhibits robust performance when applied to variables within 3 or Np, evidenced
by the results for C' and D in i), C in i), D in i) and v), and F in v)-viii). Slightly
inferior performance is noted for D in iv) and v), as well as F in vi) and viii), where the
cardinality of Ny matches the number of fundamental trends. However, the differences in

accuracy are relatively minor and diminish as the sample size increases.

In general, the test accuracy is lower when the tested variable belongs to Xr. The poorest
performances are observed in scenarios where some of the variables in Ny are directly con-
nected to T, while causality from 7" to the other variables in Ny is mediated by unobserved
components. In such scenarios, the test power is consistently low for the variables directly
connected to T', while it reaches reasonable levels for the variables indirectly connected
via latent components. For example, consider the variables B and C' in graphs iii) and v),
respectively. In these cases, B and C are directly influenced by fundamental trends, while

causality from T to other components of 8¢ (E in #i) and D in v)) is mediated through
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latent variables. The test power for the directly connected group is below 40%, even with

a sample size of 10,000, while it approaches 100% for the indirectly connected group.

In the other cases where the tested variable is not weakly exogenous but is among the
driving forces, test performance is poor for small sample sizes, with rejection rates ranging

around 30% and 50%, improving markedly to between 80% and 90% in larger samples.

In summary, this section has demonstrated that the causal characteristics of tested vari-
ables significantly influence test performance on restrictions of the partially observed ad-
justment matrix. Notably, while some driving trends are not weakly exogenous, their
rejection rates in small samples remain low. Conversely, tests on components of R and
3 frequently reject the hypothesis of weak exogeneity. It has also been observed that the
weakest performance occurs when one driving variable is directly influenced by T, while
others in Np are indirectly linked to fundamental trends. In these cases, rejection rates
for the former remain consistently low, while those for the latter reach levels akin to tests

on elements of U Np.

Although non-causality is distinct from weak exogeneity, this property impacts the test
performance in terms of size for finite sample sizes. Specifically, if a weakly exogenous
variable is caused by elements outside Np, rejection rates approach the significance level

more gradually compared to non-caused variables.
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3.7 Empirical Illustration

In this section, we demonstrate the practical application of the results presented in this

chapter through an empirical illustration related to business cycles.

The results should be interpreted as illustrative due to the preliminary nature of the
analysis. Critical aspects, such as the presence of deterministic components, are not
addressed because the theoretical framework on which this chapter is grounded does not
cover general vector error correction models with constant or deterministic trends. To
mitigate this issue, we will detrend the data to remove deterministic trends. However,
this may result in a loss of informative content. Additionally, diagnostic checks for model
specifications and tests for other specification issues, such as coefficient constancy, are not

conducted.

This section is structured as follows: the next subsection briefly outlines the main business
cycle theories and the expected empirical results associated with each. Subsection 3.7.2
describes the dataset, including the data sources and plots of the raw and the modified
time-series employed for the empirical analysis. Finally, subsection 3.7.3 presents and

discusses the empirical results.

3.7.1 Business Cycle Theories

Business cycles, also known as economic cycles, refer to the fluctuations in economic

activity that an economy experiences over time. These cycles consist of periods of economic
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expansion, peak, contraction, and trough. Understanding the causes and dynamics of these
cycles is essential for policymakers, in order to mitigate the crisis periods produced by the

cyclical behaviour.

The study of business cycles recognizes significant long-standing regularities. Although
the observed fluctuations vary greatly in amplitude, scope, and duration, they also share
common features. Business cycles are persistent, typically lasting several years, allowing
for cumulative movements in both downward and upward directions. Despite their dif-
ferences, business expansions and contractions exhibit recurrent, serially correlated, and

cross-correlated movements in many economic and other activities (see Zarnowitz (1992)).

The systematic study of business cycles began in the early 19th century, when economists
started exploring the causes of economic downturns and expansions and the driving forces
behind this wave-like behaviour in economic output. Early theories identified diverse
driving forces, ranging from financial reasons to natural cycles, and even astronomical
phenomena such as planetary movements and solar spots. More recent developments
focus on economic variables, emphasizing the role of macroeconomic factors in the cyclical
behaviour of the general economy. Consensus on the origin of cycles has not yet been
achieved, and contrasting schools of thought propose various reasons for the stylized facts

concerning economic trends.

The analysis of business cycles is closely related to identifying driving forces in non-
stationary systems. Identifying variables that introduce non-stationarity into the system

is equivalent to pinpointing which variables drive the cyclical behaviour of economic vari-
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ables. In essence, the driving forces in economic systems are those variables that, if kept
fixed, would cause the other analysed variables to lose their non-stationary, and thus their

cyclical behaviour.

There is no consensus on which variables drive cyclical paths. This section compares three

different theories: Keynesian, Monetarist, and Real Business Cycle (RBC) Theory.

Central to the Keynesian theory of business cycles is the concept of aggregate demand.
Keynes argued that changes in aggregate demand are the primary drivers of economic
expansions and contractions. In Keynesian economics, economic output is driven by the
level of aggregate demand. When aggregate demand is high, businesses produce more
goods and services, leading to economic expansion and higher employment. Conversely,
when aggregate demand falls, businesses cut back on production, leading to economic
contraction and higher unemployment. Keynes also emphasized the “sticky” nature of
prices and wages, which do not adjust immediately to changes in economic conditions,

leading to prolonged periods of disequilibrium where supply does not match demand.

In the Keynesian theory, interest rates are seen as the key variable causing the repetition
of the cyclical fluctuations. If the interest rates rise, investment is eventually reduced. If
this depressing effect is strong enough, a recession is induced by the corresponding fall in
aggregate demand; unemployment and excess capacity increase, the transaction demand
for money decreases, and the interest rate falls. If the latter influence is sharp enough

investment may overcome the depressing influence of excess capacity and low profits.
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Recovery sets in and the stage is set for a repetition of the story.!

It should be emphasized that, despite the Keynesian view positing the interest rate as
the variable generating cyclical behaviour, this behaviour is transmitted and introduced
into the system, and thus to the economic output, by aggregate demand. Therefore, the
analysis of the driving variables should focus on aggregate demand rather than on the

Interest rate.

The monetarist view attributes economic fluctuations primarily to changes in the money
supply. According to monetarists, the main driver of business cycles is the amount of
money circulating in the economy, which directly influences levels of economic activity.
Monetarists argue that stable growth in the money supply is crucial for maintaining eco-
nomic stability. When the money supply grows at a consistent, moderate rate, it fosters
steady economic growth and low inflation. Conversely, if the money supply contracts or
grows too slowly, it can lead to economic stagnation or recession, as there is insufficient

money to support economic activities.

The real business cycle (RBC) theory offers a distinctive approach by focusing on real,
rather than monetary, factors as the primary drivers of economic fluctuations. Developed
in the 1980s following the seminal work by Kydland and Prescott (1982), RBC theory
posits that changes in productivity and external shocks to the economy are the main
causes of economic expansions and contractions. Business cycles result from variations in

the rate of technological innovation and changes in factors that affect productivity, such as

'For further discussion on keynesian business cycle, refer to Day and Lin (1991), and Onwumere et al.
(2011)
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advancements in technology, availability of natural resources, and changes in government

regulations. These real shocks influence the production capacity of the economy.

RBC theory assumes rational expectations and market efficiency, suggesting that individu-
als and firms make decisions based on all available information and adjust their behaviour
optimally in response to economic changes. Fluctuations in output and employment are
seen as efficient responses to real changes rather than deviations from a potential output
level. Economic agents adjust their labor supply, and consumption patterns in response
to productivity changes, leading to economic expansion during high productivity and con-

traction during low productivity periods.

Understanding which business cycle theory is correct is crucial as each leads to different

policy solutions for mitigating periods of downturn.

Keynesians advocate for government intervention to stabilize the economy. During low
aggregate demand periods, the government should increase spending and reduce taxes to
boost demand, encouraging businesses to produce more and hire more workers. During
excessive demand periods, reducing government spending or increasing taxes is recom-

mended to cool the economy.

Monetarists criticize active fiscal policy and government intervention, arguing that such
measures often cause more harm than good due to delays and inaccuracies in implemen-
tation. Instead, they advocate for a rules-based monetary policy, such as targeting steady
money supply growth to reduce uncertainty and enable better economic decision-making
by businesses and consumers.
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RBC theory downplays the role of monetary policy and government intervention, viewing
fluctuations as optimal responses to real changes. Stabilization attempts through mone-
tary or fiscal policy are often seen as unnecessary or harmful. RBC proponents argue that
policy should support efficient market operations by ensuring property rights and reducing

market distortions.

In this empirical application, we aim to determine which of the three theories finds more
support in the data. If the Keynesian view is correct, aggregate demand components are
the driving forces, and we expect to find weak exogeneity patterns among those variables.
In the monetarist view, output is driven by the money supply, so weak exogeneity should
characterize the money supply. Finally, if RBC theory is correct, weak exogeneity is a
characteristic of factors efficiency measures, such as labor productivity. In the following
sections, we analyse the data by testing restrictions on the adjustment matrix and assessing

which theory aligns with the results.

3.7.2 Data

In this subsection, we describe the dataset employed for the empirical analysis. To study
which of the three business cycle theories described in subsection 3.6.1 finds evidence in
the data, we used data related to aggregate demand, labor productivity, money aggregate,
and economic output. Aggregate demand components include consumption, investment,
public spending, and net exports, computed as the difference between total exports and

total imports.
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To capture the long-term aspects of business cycle analysis, we decided to use a long
dataset spanning nearly a century and a half, from 1870 to 2016. The choice of 2016 as
the endpoint is due to data availability for labor productivity. The country chosen for

analysis is the United Kingdom.

The data are sourced from two primary databases. Labor productivity data are obtained
from the website “Our World in Data,” based on the work of Bergeaud et al. (2016). Labor
productivity is measured as the ratio of GDP to total hours worked, adjusted for inflation
using 2010 prices. Other data are sourced from the “Jorda-Schularick-Taylor Macrohis-
tory” Database (JST Database), which compiles several works to create a comprehensive
economic dataset for the period 1870-2020 (see Jorda et al. (2017)). Appendix B provides

the data sources along with the corresponding web links.

Economic output is measured using real GDP. While the JST Database does not provide
real GDP directly, it includes an index of real GDP per capita (base year 2005). This
index, sourced from Barro and Ursda (2010) and World Bank (2021), is multiplied by
the annual population divided by the population in 2005 to obtain the real GDP index,
denoted as Y. Population data are taken from Angus Maddison Database (2008) and
International Monetary Fund (2019). Similarly, real consumption data are provided as an
index of real consumption per capita with 2006 as the base year. To derive the total real
consumption index (denoted C'), each observation is multiplied by the ratio of the annual
population to the population in 2006. Investment data (I) are given as the ratio between

investment and nominal GDP, sourced from Hills et al. (2015). To obtain total investment
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time series, these observations are multiplied by nominal GDP, sourced from Hills et al.
(2015) and Office for National Statistics (2021). Data for other components of aggregate
demand, such as government spending (G), imports (X), and exports (E), are provided
in billions of GBP. Government spending data are sourced from Mitchell (1988), and the
database of the Office for National Statistics, while import and export data are sourced

from Hills et al. (2015) and the IMF International Monetary Fund (2021).

Money supply (M) is measured using a broad aggregate collected in billions of pounds
from Dimsdale and Thomas (2016). A broad aggregate is used because the total amount of
money in the economy is more relevant for economic dynamics than the quantity directly

supplied by central banks.

The raw data are depicted in Figures 3.17-3.24. Since some variables are indicated as
indices and others in monetary terms, all magnitudes are expressed as indices, with 2006

as the base year (2006=100). Figure 3.25 shows the variables in index form.

To account for exponential growth, we transformed the data using logarithms and then
de-trended it to eliminate deterministic components. To verify the correctness of the de-
trending, a Dickey-Fuller test was conducted to determine if the variables remain (1)
after de-trending. Table 3.3 presents the test results. The hypothesis of a unit root can
be rejected only for G. Therefore, the variable for public spending is not de-trended but
used solely in its log-value. The result of the unit root test on the log of G is reported in

Table 3.4.

The unit root test was then applied to the first differences of the selected variables to
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Figure 3.17: Real Consumption Index, Retrieved from the “JST Database”
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Figure 3.18: Investments, Retrieved from the “JST Database”
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Figure 3.20: Import, Retrieved from the “JST Database”
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Figure 3.21: Export, Retrieved from the “JST Database”

Money Suppl
2000 — NSY SRR

1800 [~
1600 [~

S © &
S S 5
S 3 3
T 1

800 —

Billions of Pounds

600 [—
400 —
200

| | | | | |

1870 1890 1910 1930 1950 1970 1990 2010

Figure 3.22: Money Supply, Retrieved from the “JST Database”
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Figure 3.23: Labour Productivity, Retrieved from the Database “Our World in Data”

Real GDP
100

o 80
=
Il
w
o
S 60—
o
L
o
=
= 40

20

| | | | | |
1870 1890 1910 1930 1950 1970 1990 2010

Figure 3.24: Real GDP Index, Retrieved from the “JST Database”
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Joint Visualization of The Time Series

= Consumption
140 H—GDbP
Investment
—Money Supply
——Government Spending|
120, Labour Producrl’iL\'ity i
——Import
§ 100 _—'Exnon
\IIIJ
S 80
(]
%)
3 60
g
40 -
20 )
| | | ] ; | |
1870 1890 1910 1930 1950 1970 1990 2010

Figure 3.25: Combined visualization of all individual time series.

|P—Va1ue Statistic C-Value

0.3308  -0.8728  -1.9427
0.0724  -1.7732  -1.9427
0.0695  -1.7926  -1.9427
0.0635  -1.8348  -1.9427
0.0201 -2.3197 -1.9427
0.1352  -1.4582  -1.9427
0.1639  -1.3497  -1.9427
0.1089  -1.5740 -1.9427

HXEQE— <A

Table 3.3: Results for the Dickey-Fuller Test. Rejections are depicted in bold.

|P—Value Statistic C-Value
G| 0.6480 -0.0061 -1.9427

Table 3.4: Results for the Dickey-Fuller Test for the logarithm of G
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| P-Value Statistic  C-Value

1.0000e-03 -8.7098  -1.9427
1.0000e-03 -8.2740  -1.9427
1.0000e-03 -7.2396  -1.9427
1.0000e-03 -4.4183  -1.9427

0.0032 -3.0433  -1.9427
1.0000e-03 -9.3929  -1.9427
1.0000e-03 -10.0103 -1.9427
1.0000e-03  -8.7424  -1.9427

EXEQE~ <A

Table 3.5: Results for the Dickey-Fuller Test for the first difference of the variables

exclude the presence of I(2) time-series. The results are reported in Table 3.5. As observed,
the hypothesis of a unit root presence can be rejected for all the first differences of the
variables. Consequently, we can conclude that their first differences are stationary, and

the variables are I(1).

To summarise, the dataset comprises time series from 1870 to 2016 for the United King-
dom, including aggregate demand components (consumption, investments, government
spending, imports, and exports), real GDP, money supply, and labor productivity. To
ensure uniformity, all data are expressed in index terms with 2006 as the base year. Given
the exponential growth observed in the series, the data are logarithmically transformed.
To eliminate deterministic components, the data are de-trended, except for public spend-
ing, given that de-trending G resulted in a process in which the unit root hypothesis could

be rejected. The final dataset is illustrated in Figure 3.26.
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Standardized Final Dataset
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Figure 3.26: Final Dataset.

3.7.3 Results

The empirical analysis begins with determining the optimal order of the model. The Akaike
Information Criterion (AIC) values for different model orders k£ of a simple VAR fitted
to the data in levels are presented in Table 3.6. The AIC is minimized for £ = 10. This
high order aligns with Johansen and Juselius (2014), who found that a partially observed
C-VAR(1) model behaves like a VECM of infinite order with exponentially decreasing
short-term coefficients. To approximate the infinite order, we use the nearest integer to
the logarithm of the sample size. With 147 observations, log(147) ~ 4.99. Thus, the

VECM(00) is approximated by a VECM of order 5.

To determine the cointegration rank r, we employ the Johansen trace test. The test

outcomes are recorded in Table 3.7. The estimated rank is found to be 6, as the hypothesis
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AIC
-3.4242e+03
-3.6841e+03
-3.7115e+03
-3.6805e+03
-3.7063e+03
-3.7315e+03
-3.7327e+03
-3.7335e+-03
-3.7843e+03
0]-3.8626e4-03

= O 00 O UL W N R

Table 3.6: Akaike Information Criterion, Results for Different Lag k& for the Simple VAR
Fitted to the Levels. Bold Number Indicates the Minimal Value

Statistic ~ C-Value P-Value
r= 219.2210 143.6711 0.0010
r<1]| 162.2812 111.7810 0.0010
r<2| 112.7575 83.9402 0.0010
r<3| 72.8989 60.0623 0.0035
r<41| 46.3440 40.1751 0.0108
r<bi| 24.4711 24.2747  0.0473
r<6 9.8101 12.3206  0.1273
r<T7 0.4137 4.1302 0.6931

Table 3.7: Statistics of the Trace Test for the Identification of Cointegration Rank and
Critical Values for a 5% Significance Level. Bold Numbers Represent Rejection of the Null

r < 6 cannot be rejected, while there is evidence against the hypothesis r < 5.

The weak exogeneity test was implemented for each row of the adjustment matrix. The
test results are presented in Table 3.8. The hypothesis of weak exogeneity cannot be
rejected for aggregate consumption and government spending at the 5% significance level.
However, the result for government spending is less robust, with a p-value of 0.0532,
indicating the hypothesis would be rejected at the 10% significance level. Conversely, the

p-value for aggregate consumption is below 1%, meaning the hypothesis would be rejected
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P-Value Statistic C-Value
0.5029 5.3244  12.5916
0.0040 19.0703 12.5916
0.0083 17.2758 12.5916
0.0027 20.0291 12.5916
0.0532 12.4194  12.5916
9.1366e-04 22.6732 12.5916
2.7688e-04 25.4910 12.5916
8.0979e-04 22.9606 12.5916

HxEQZ = <A

Table 3.8: P-Value, Statistics and Critical Values for Weak Exogeneity Test. Bold Num-
bers Represent Rejection of the Null for a Significance Level of 5%

even at a 99% confidence level. On the other hand, the p-value for the test applied to the
other variables is consistently below 1%, indicating that the hypothesis of weak exogeneity

would be rejected at both the 95% and 99% confidence levels.

The test results indicate no evidence against the hypothesis that G and C' are driving
trends. This suggests that the demand components drive economic dynamics and, conse-
quently, the business cycle. These findings align with the Keynesian view, which posits
that fluctuations in economic activity are generated by changes in aggregate demand.
However, it should be noted that the rejection of the weak exogeneity hypothesis for other
components does not necessarily imply that monetary and real factors are not driving
trends, given that weak exogeneity is a sufficient but not necessary condition for a vari-
able to be a driving trend. This also applies to other components of aggregate demand,

such as the net difference between imports and exports, and investments.

It is important to emphasize that even if demand factors are the sole driving forces, this

does not preclude causality from money supply and real factors to the demand compo-
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nents. This follows from the findings in section 3.5, which demonstrated that non-causality
is not related to weak exogeneity. Consequently, the data suggests that demand drives
the fluctuations of the economic system, with other components following demand. How-
ever, it remains possible that money supply and labor productivity exert causality on

consumption, investment, and net exports.

3.8 Conclusions

In the literature, weak exogeneity has often been linked to structural characteristics such
as non-causality and driving forces. Building on recent studies on partially observed
cointegrated models, we investigated to what extent constraints on the adjustment matrix

convey information regarding these causal features.

We confirmed the existence of a one-to-one mapping between weak exogeneity and driving
trends, as well as between weak exogeneity and non-causality, when modeling the complete
set of variables influencing a system. However, through specific examples, we illustrated

how this correspondence breaks down when only a subset of variables is modeled.

Our analysis studied under what circumstances weak exogeneity is informative for identi-
fying driving forces even within partially observed systems. We demonstrated that weak
exogeneity serves as a sufficient but not necessary condition for a variable to act as a
driving causal trend, i.e. those variables inducing non-stationarity in the system, such

that holding them constant would render the other observed variables stationary.
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In contrast, we showed that weak exogeneity does not provide information about non-
causality. Indeed, our examples illustrated that weak exogeneity can apply to variables
influenced directly or indirectly by other modeled variables, as well as to those unaffected

by the other components of X,.

In conclusion, this chapter contributes to econometric literature by highlighting that causal
interpretations based on constraints of the adjustment matrix can be misleading, and

clarifies the types of causal insights that can be gleaned from testing these restrictions.
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In this final chapter, we present our conclusions, emphasizing the novelty of the techniques
employed throughout the thesis, which form the basis of the econometric methods used in
this research. We summarise the logical structure and reasoning to facilitate replication in
future research. Additionally, we briefly outline our findings, highlighting their practical
utility in addressing economic problems and providing empirical evaluations of contrasting
macroeconomic theories. We also identify potential areas for further development and

propose initial ideas for future research. Finally, we offer some concluding remarks.

The three chapters of the thesis addressed the complex problem of interpreting causality
analysing restrictions of cointegrated systems focusing on their vector error correction rep-
resentation. Specifically, we examined the interpretation of restrictions on the adjustment
matrix. We demonstrated that the duality between null rows in the adjustment matrix
and non-causality breaks down when not all relevant factors are modeled, proving that

causal interpretations necessitate a departure from standard statistical analysis.

To address these challenges, we introduced novel definitions and developed a new analytical

procedure. Building on the causal analysis framework of Hoover (2020) and utilizing
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the tools from Johansen (2019), which propose methods to recover the adjustment and
cointegration matrices of misspecified models, we explored how causality manifests in

partially observed systems.

The primary objective of the proposed approach is to establish a general framework for
causal analysis that does not depend on the unobserved causal relations among the anal-
ysed variables. Instead, our procedure aims to recover causal features regardless of the
true shape of the latent graph depicting the causal connections within the entire system’s
data-generating process. In other words, our goal was to develop inferential procedures
that do not rely on assumptions about the structure of the causal graph or the relationships

between observed and unobserved components, such as acyclicity and causal sufficiency.

For example, our approach does not require absence of cyclicality. This is significant since
mutual causality cannot be definitively ruled out, particularly in contexts involving long-
term dynamics. Firstly, market adjustments often involve reciprocal interactions among
economic forces. For example, in demand-supply models, quantities and prices influence
each other to achieve equilibrium. Secondly, in the realm of long-term causality, the
causal impact on the dependent variable is not directly initiated by its parents. Instead,
movements are triggered by conditions of disequilibrium. For instance, in a causal graph
represented as x — y, the long-term dynamic of y is actually driven by the disequilibrium
status, which can in turn be induced by movements of x. Therefore, the causal structure
can be better depicted as x — Equilibrium Violation <+ y. This concept similarly applies

to the relationship between quantities and prices in demand-supply models. Indeed, the
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causal link p <> ¢ represents a simplified illustration of p <+ Equilibrium Violation < ¢,
where p and ¢ denote price and quantity, respectively. This observation is crucial as it
challenges the a priori exclusion of cyclical causal behaviour. While it is true that if A
generates B, then A cannot have reciprocally been generated by B, in this scenario, a third
factor—specifically, a state of disequilibrium—drives the long-term dynamics. It follows
that the actual source of generation of B is not A, therefore A <+ B cannot be ruled out

beforehand.

Another important assumption not required by our analysis is causal sufficiency, which
stipulates that any variable excluded from the model directly causes at most one variable
within the set of modeled variables. This assumption proves overly restrictive in complex
systems such as the economic one, where variables are intricately interconnected and the
causal relationships are multifaceted. Consider, for instance, how external factors like
climate change impact more than one critical economic variable. Climate change directly
affects supply through disasters and damages to companies. It also indirectly influences
demand by altering consumer awareness and preferences towards sustainable consumption
and investment choices. This example illustrates the inadequacy of the causal sufficiency

assumption in capturing the intricate interdependencies inherent in economic systems.

Our approach emphasizes and commences with the data generating process of a set of
variables Y encompassing all variables influencing a system, and the causal graph G that

delineates the causal connections among its components. From Y, we extract a subset X,
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comprising the variables observed and explicitly modeled by the user. The fundamental
challenge lies in deciphering properties of G solely from X, C Y. The set Y, = Y \
X, should be disregarded because the model user may not have any knowledge over its
components. To construct an approach that is entirely independent of Y,, it is crucial to
avoid making assumptions about the causal relationships between Y, and X,. This ensures
that the methodology remains robust and applicable regardless of the unobserved, and so

unmanageable variables.

The initial step involves establishing and defining causal properties among the variables
within X,. These causal properties naturally needs to be associated with the nodes corre-
sponding to X, within the framework of the graph G. The properties chosen in the thesis
are new definitions of exogeneity that depart from their traditional statistical interpreta-

tion, and are instead grounded in the structure defined by G.

The second step of our approach consists in understanding whether and how these prop-
erties manifest within the Vector Error Correction Model when modeling X, only. Specif-

ically, we examined their influence on the coefficients o, and 3, of model

AXO,t = O‘oﬁ(/;Xo,t—l + Z FiAXo,t—i + €0

To ensure the general nature of the analysis, it was necessary to establish that the relation-
ship between the defined causal properties and the model coefficients remains consistent

irrespective of the particular selection of X,. In essence, the approach aims to demon-
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strate a mapping between certain characteristics of G relative to the nodes in X, and the

coefficients a, and f3, (or some transformation of them) for every arbitrary choice of X,.

The approach outlined was introduced in the first chapter and further developed in the
second and third chapters. The first chapter introduced the key concepts and initial
findings that serve as the foundation for the entire thesis. The second chapter expanded
on these ideas by proposing alternative inferential procedures and evaluating the test
performance using simulated data. Chapter three focused on the causal interpretation
of standard statistical tests, illustrating how drawing causal conclusions based on weak
exogeneity tests could be misleading and providing tools for correctly interpreting the

results of tests on the adjustment matrix restrictions.

More specifically, chapter one defined causal exogeneity, which manifests in both strong
and weak forms. These definitions focus on the etymological roots of the terms exogeneity
and endogeneity. The word exogenous derives from the Greek words “Exo-” meaning
“outside” and “-genous” meaning “produced by” or “originating from,” whereas the prefix
“Endo-" in endogenous means “inside” or “within.” These definitions exploit this primitive
idea by concentrating on the source of generation of the variables in X,. If all the parents
of x; € X, are within X, then x; can be considered internally generated, thus endogenous.
Conversely, if some of the parents are outside the set of modeled variables, x; is considered

externally generated, thus exogenous.

There are cases where the parents of x; are outside X, but the variables in X, can perfectly

control the nominal values of z;. This occurs when causality is transmitted from some
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components of X, to z; through unobserved components that can be fully governed by
X,.2 Under this scenario, despite being caused by latent factors, it seems reasonable to
treat x; as endogenous, given that the generation of their long-term dynamic is totally

dependent on the observed variables.

Since the novel definition of exogeneity is related to the causal structure, we call it causal
exogeneity /endogeneity. The variables labeled as causally exogenous possess the ability
to control the nominal limiting value of the causally endogenous components of X,. In
other words, if X, = {A, B,C}, and C'is causally endogenous, while A and B are causally
exogenous, given an arbitrary value C, for C', there always exists a combination of values
for A and B resulting in C, as the limiting value for C'. This scenario is hypothetical since

it implies that A and B can be modified at will, which can obviously not be the case.

Causal exogeneity, as described so far, is in its weak form. Strong causal exogeneity adds
the further requirement that the causally exogenous variables are not in turn caused by
the causally endogenous ones. Therefore, if N is the set containing the weakly causally
exogenous variables and 3 is the set containing the causally endogenous variables, the set

N is also strongly causally exogenous if J does not either directly or indirectly cause R.

Naturally, the exogeneity/endogeneity status varies according to the composition of X,,.
For instance, x; may be causally exogenous in X,; but causally endogenous in X5 # X,;.
This variation arises because X, could include variables outside X,; that can govern the

nominal value of x;.

2See the discussion in section 1.3
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Causal exogeneity, in both its weak and strong forms, is a property based on the causal
patterns in the graph ¢. In fact, to determine whether the parents are within or outside
X,, as well as to ascertain whether the causal paths among components of X, are direct
or not, one must examine the causal graph depicting the causal relations of the whole set
Y. What matters, is that those properties of the graph related to Y can be discovered by

extracting information from the VECM fitted ignoring the latent variables.

Chapter 1 and Chapter 2 demonstrated that certain estimable transformations of the
coefficients a, and (3, possess properties that can be used to identify causal exogeneity
and endogeneity, in both weak and strong forms. Specifically, Chapter 1 proved that the
rows of ¥ 'a, corresponding to N are linearly dependent, while the rows corresponding
to 3 are linearly independent. This duality was then exploited to construct an inferential
procedure based on analyzing the effect of a row removal on the cointegration rank of the
model: by dropping a linearly independent row, the rank of the resulting matrix decreases,

whereas it remains unchanged when removing a linearly dependent row.

Chapter 2 extended the discourse over weak causal exogeneity by identifying a further
duality between estimable parameters and the properties of the latent graph G. It demon-
strated that the rows of (3;'a,), are null vectors if they correspond to the variables in
3. This duality was then used to construct an inferential procedure based on testing the
restrictions of the orthogonal complements of 37 'a,. Chapter 2 also provides simulation
results demonstrating the performance of the test. Additionally, it illustrates the practical

application of these concepts by using the causal tools proposed in the first two chapters
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to test for money endogeneity/exogeneity.

For what concerns strong causal exogeneity, Chapter 1 found that it can be tested by com-
paring the covariance matrix of the VEC model fitted exclusively to X with the covariance
matrix of the VEC model fitted to the entire set X,. It has been shown that if the two

covariances match, the variables in N are also strongly causally exogenous.

Despite its connection to Chapters 1 and 2 through the analytical approach, Chapter 3
presents an independent study focused on the causal information content of the standard
test of weak exogeneity. We reviewed examples from the literature to illustrate how this
concept has been associated with driving trends and non-causality. By defining these con-
cepts with an emphasis on their causal meanings, we examined the relationship between
weak exogeneity and these notions. Our findings revealed that the informative content
of weak exogeneity is limited in relation to driving trends and non-causality. Specifically,
weak exogeneity serves only as a sufficient condition for a variable to be a driving force,
while being uninformative for non-causality. Consequently, we clarified the correct ap-
proach that should follow from a causal interpretation of the outcome of weak exogeneity

tests.

Identifying properties related to the causal interpretation of exogeneity and endogeneity is
crucial for empirically evaluating many debates within the macroeconomic context. The
macroeconomic debate concerning the causal relationships among economic variables and
the distinctions between endogenous and exogenous factors is extensive and multifaceted,

involving various schools of thought and theoretical perspectives. This debate has signif-
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icant implications for economic modeling, and our understanding of economic dynamics.
Economists often disagree on the direction of causality between key economic variables.
For instance, there is ongoing debate about whether investment drives economic growth or
if economic growth spurs investment. Similarly, there is contention over whether inflation
results from an increased money supply or if other factors play a more significant role.
Addressing these questions requires a robust empirical framework capable of discerning

the causal relationships underlying the modeled economic phenomena.

Moreover, disagreements about the endogenous or exogenous nature of key variables, as
well as their causal connections, significantly influence perspectives on the effectiveness of
fiscal and monetary policies. For instance, Keynesians advocate for active policy inter-
ventions, whereas some modern approaches emphasize market self-regulation and caution
against policy-induced distortions. Consequently, the study of causality in macroecono-
metrics is not just a tool to evaluate the validity of contrasting theories, but it also has a

strong impact for practical pollicy aspects.

Despite the three chapters provide a comprehensive account of the causal analysis of
cointegrated systems, the analysis is far from being exhaustive, and there is considerable

scope for further development.

We identify three major areas where future studies should focus. The first area pertains
to relaxing model assumptions. Further developments in this direction necessitate extend-
ing the work on partially observed models as discussed in Johansen (2019). Notably, the

existing literature primarily addresses simple cases, such as C-VAR of order 1 without
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deterministic components. This simple model does not allow to capture in full the com-
plexity of the economic system. The second area of development involves the refinement of
inferential procedures. There remains much to explore regarding how causal structures in-
fluence test performance and whether alternative procedures can be devised. Additionally,
the asymptotic behaviour of tests for causal endogeneity requires investigation, especially
given that they deviate from standard log-likelihood tests due to the estimation of unob-
served left-hand sides of the regressions. The third area of development entails exploring
the potential of these techniques to recover either the complete or a portion of the causal
graph G. This exploration aims to construct algorithms for discovering the architecture

of the long-run causal structure.

We now turn our attention to the first area of development, focusing on relaxing model
assumptions. The analysis is predicated on the assumption that the data generating

process of the fully observed model (i.e., the process for V') follows a simple C-VAR(1):

AY; =af'Yi 1 +e

The rationale behind selecting this simplified version of the data generating process lies in
its alignment with the framework established by Johansen for analyzing partially observed
models. Specifically, Johansen’s methodology assumes that the fully observed model lacks
short-term dynamics and does not incorporate any deterministic components, whether

internal or external to the cointegration relationships.
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One can find economic justification for selecting the simplest model, as the majority of
macroeconomic theory emphasizes equilibrium adjustments, with less emphasis on short-
term dynamics in economic literature. Thus, the straightforward C-VAR(1) model suffices
to encapsulate the primary behaviours of economic systems, rendering an extension to a
generic C-VAR (k) model merely a mathematical exercise. However, this viewpoint is only
partially accurate, as dynamics based on equilibrium adjustments presuppose rational
behaviour. This implies that when there is disequilibrium, agents react by adjusting
prices, wages, and other economic factors rationally to maximize their utility, eventually
reaching a new equilibrium level. Nevertheless, it is widely recognized that this adjustment

mechanism encounters challenges when applied to real-world scenarios.

Firstly, prices and wages are often sticky and do not adjust immediately to restore equi-
librium. However, this limitation primarily affects the speed of equilibrium adjustment
rather than the overall structure of economic dynamics. Secondly, economic literature
has highlighted the prevalence of irrational behaviour among agents. Cognitive biases,
emotional and psychological factors, and social influences can all distort rational decision-
making by agents. Moreover, the concept of bounded rationality is widely acknowledged,
where individuals face constraints such as limited information, cognitive limitations, and
time pressures, leading them to use heuristics or rules of thumb. These cognitive shortcuts,

will generally result in irrational outcomes.?

3For an in-depth exploration of irrational behaviour and its implications in economics, seminal works
such as Kahneman and Tversky (1979) introduce concepts like prospect theory and delve into decision-
making under risk and uncertainty, departing from expected utility theory. Further studies on specific
irrational behaviours can be found in Tversky et al. (1982).
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The literature has also extensively documented numerous instances of market failures that
necessitate government intervention, potentially affecting the equilibrium adjustment dy-
namics typical of the simple model employed in this analysis. A prominent example of
market failure is the provision of public goods. Public goods are characterized by non-
excludability, making it challenging to prevent their use, and non-rivalry, meaning one
person’s consumption does not diminish availability to others. National defense, clean
air, and public parks exemplify public goods that markets often fail to provide efficiently.
Another form of market failure arises from costs or benefits of economic activities that
affect third parties not directly involved in transactions, known as externalities. Infor-
mation asymmetry, monopoly power, incomplete markets, and factor immobility are ad-
ditional phenomena contributing to market inefficiency, necessitating policy interventions
that modify the adjustment behaviours assumed in the dynamic of the simple C-VAR(1)

model.*

Short-term dynamics also manifest by considering certain mechanisms related to the for-
mation of the expectations concerning future economic conditions, such as prices, incomes,
interest rates, or overall economic growth. These expectations are often mathematically
modeled with a dynamic proper of the short term model, due to the presence of anchor-
ing on previous observations and beliefs. For example, extrapolative expectation theory

posits that economic agents update their expectations by simply extrapolating from past

4For a comprehensive examination of market failures, their causes, and implications, consult Mass-
Colell et al. (1995). For seminal works on specific market failures, see Akerlof (1978) for asymmetric
information, Ostrom (1990) for public goods, and Coase (2013) for insights into externalities and the role
of property rights in reducing social costs and enhancing economic efficiency.
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trends or observations. This approach assumes that people expect future values of eco-
nomic variables to follow the same pattern observed in the recent past. Mathematically,

extrapolative expectations can be expressed as:

E,=FE, 1+ a(E — Ei_9)

or in autoregressive form as

AEt = aAEt_l

Here, E; denotes the expectation at time ¢, and a is a parameter reflecting the influence

of AEt,1 on AEt

The concept of extrapolative expectations has been used to explain various economic phe-
nomena, such as speculative bubbles, herd behaviour in financial markets, and short-term
fluctuations in economic activity. It underscores the role of psychology and behavioural
biases in shaping economic decisions and outcomes, highlighting the limitations of purely
rational expectations models in capturing real-world economic dynamics. If this framework
holds true, it suggests that the assumption of the fully observed model being a C-VAR(1)

might be overly restrictive.

However, other expectation theories do not necessarily undermine the exclusive focus on
long-term dynamics implied by the C-VAR(1) model. For instance, adaptive expectation
are grounded on the concept of adjustment (Cagan (1956)). Moreover, as introduced

in Muth (1961), expectations are often considered to be rationally formed, challenging
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the simplicity of extrapolative models by proposing that economic agents incorporate all
available information into their predictions. This perspective suggests that extrapolative
expectations may be inadequate for explaining economic behaviour across all scenarios.
Lucas (1976) further elaborated on this critique, arguing in his eponymous critique that
policies based on models using adaptive expectations could fail, as agents adjust their be-
haviour in response to policy changes. Rational expectations theory asserts that economic
agents optimize their forecasts given the available information, aiming to maximize their
utility or profits. According to this theory, these optimizing behaviours align with the
dynamic processes of a C-VAR(1) model, thereby not challenging the assumption of the

data generating process (DGP) implied by the analysis in this thesis.

The ongoing debate among economists regarding rational, extrapolative, and adaptive
expectations remains unresolved and continues to evolve with advancements in modeling
techniques and insights from behavioural economics and empirical research. Each approach
has distinct strengths and weaknesses, and the selection of expectation formation depends
heavily on the particular context and behaviour under investigation. Consequently, as-
suming the absence of short-term dynamics may limit the generalizability of the analysis.
If economic agents adjust their expectations according to extrapolative theory, and their
behaviour deviates from strict rationality, this assumption could potentially yield mis-
leading results. Thus, considering the complexities introduced by different expectation

formations is crucial for accurate economic analysis and policy formulation.

Another limitation of the use of the simple C-VAR(1) model for Y is the absence of deter-
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ministic components. A constant term or a deterministic trends in the dynamic of AX,
are typically added to vector error correction representations, both within and outside
cointegration relations. Economic growth theories, such as the Solow growth model, often
incorporate components of exponential growth to describe how capital accumulation and
technological progress contribute to long-term economic growth rates.’ Similarly, in fi-
nancial economics, models also commonly utilize deterministic trends. For instance, asset
pricing models often assume exponential growth in asset prices under idealized conditions.
Furthermore, many economic variables are influenced by extra-economic factors that are
also modeled with deterministic growth rates. For instance, in demography and population
economics, models like the exponential growth model are commonly employed to describe
how populations increase over time. For instance, a common mathematical representation
is

P, = PRy’

where P, is the population at time ¢, Fy is the population at time 0, and r is the growth

rate.

These considerations challenge the assumption of the absence of deterministic components
and the simplicity of the data generating process as a C-VAR(1), as previously illustrated.
Thus, there is the need to include a constant term p or a deterministic trend p+ 0t within

the representation of AY.

5Tt should be emphasized that these models typically also include factors that limit or modify ex-
ponential growth over time. For further information on Solow model, refer to the seminal paper Solow
(1956).

318



CONCLUSIONS

Throughout the empirical applications of the thesis, the empirical approach we chose to
face the problem related to the deterministic components by detrending variables to ob-
tain series devoid of growth. However, while this approach appears to pose no immediate
issues, it is crucial to investigate how it may impact Johansen’s results on partially ob-
served models. Furthermore, this methodological choice may lead to a loss of information

concerning common deterministic components and those affecting cointegration relations.

To address the problems highlighted so far, an extension of Johansen’s findings is necessary.

Specifically, the analysis should start with the general model below

k
FoAY; = 1+ 0t + afYeoy + ) TildYoi + <

i=1

and its state space representation
FO,OAXO,t = _<F0,0TAE + 1—\O,ouA)(u,t) + ,uo + 5ot + MoXo,tfl + MouXu,tfl + Noﬂfl—i_

k k k
+ Z Fi,oAXO,tfl + Z Fi,uAXu,tfl + Z Fi,oTAthl + Eot

i=1 =1 i=1

FO,uAXu,t = _(FO,uTAT;E + FO,quXo,t) + Mo + 5ut + MuoXo,t—l + MuXu,t—l + NuT;t—l'i_

k k k
+ Z Fi,uA)(u,t—l + Z Fi,qu)(o,t—l + Z Fi,uTAT‘t—l + Eut

i=1 =1 =1

k
Log AT, = —(ToruAXus + ToroAXoy) + pir + 67t + Y Tigu AXy1+

i=1
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k k
+ Z FiroAX, 11 + Z Lir AT,y 4 epy

i=1 i=1

where I'; ,, I'; ., and I'; 7, indicates the submatrices of I'; constructed by considering the
rows and columns relative to X,, X, and T respectively, I'; o, I'; o7, are the sumbatrices
of I'; constructed by considering the rows of X, and the columns of X, and T respectively,
I wo, I'iur, are the sumbatrices of I'; constructed by considering the rows of X, and the
columns of X, and T respectively, and I'; ry, I'; 70, are the sumbatrices of I'; constructed
by considering the rows of T" and the columns of X, and X, respectively. ur, tio, t, are
the rows of p corresponding to 7', X,, and X,. Similarly, d7, J,, J, are the rows of ¢

corresponding to T', X,, and X,,.

Starting from the state-space representation provided, one should follow a procedure anal-

ogous to Johansen’s methodology to derive the representation of «, and [, in model
GOAXO,t = C’0 + Dot + O‘oﬁoXo,t—l + Z GiAXo,t + go,t

as a function of the coefficients from the fully observed VECM. This task immediately
presents increased complexity compared to the standard procedure since the inclusion of

additional coefficients can also make necessary adjustments to the methodology.

Once the formulae for a, and [, are derived, extending the findings of chapters 1 and 2
with these new representations becomes possible to verify whether the conclusions still
hold under general conditions. However, several other challenges arise in this context.

For instance, there is the critical issue of identifying the matrix Gy, which captures the
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contemporaneous short-term effects of AX,. This identification is essential to distinguish
the structural coefficients «, from G, 'a,. A way to address this problem could be the
use of the techniques from graphical causal inference, already employed in econometric

literature for uncovering contemporaneous causality in structural VAR models.

The introduction of short-term dynamics also raises questions about whether it is feasible
to tackle a dual causal inference problem, specifically whether it is possible to infer certain
properties of the causal graph G, where G, denotes the network that illustrates short-run
causal connections, encapsulated in {I'g,T'1,...,Tx}. Addressing this would be particu-
larly pertinent for identifying which policy interventions could induce long-term impacts,
permanently altering equilibrium positions, versus those that may only yield temporary
benefits dissipating over time or potentially leading to adverse effects in the long run. To
achieve this goal, it is necessary to extend the partially observed analysis beyond just the
coefficients «, and f3,; it also requires developing a representation for GG; as a function of
the parameters in the fully observed model. These aspects are inherently complex and will
necessitate substantial further research. Refinement of definitions and the construction of
theoretical frameworks will likely be essential for establishing a comprehensive basis for

the general analysis.

Thus far, we have outlined future developments aimed at relaxing the assumptions of the
model. Now, we shift our focus to enumerate and analyse further advancements concern-
ing the inferential procedures and test construction for identifying the causal aspects of

variables within X,.
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The first extension on this matter concerns the test for strong causal exogeneity. Currently,
there is a lack of studies evaluating the performance of tests using simulated data to
understand how the structure of the causal graph influences test efficiency and power.
Furthermore, the methodology proposed in this thesis does not allow testing subsets of N;
rather, it restricts analysis to the entire set X only. Consequently, it is possible to ascertain
whether the set of weakly causally exogenous variables is also strongly causally exogenous,
but it is not feasible to test whether strong causal exogeneity holds for only a subset of
these variables. As illustrated in the examples from chapter 1, X can be subdivided
into two subsets: N, and N,. The former comprises variables within X that lack strong
exogeneity, while N, encompasses components of N that exhibit both weak and strong
causal exogeneity. Identifying N, when X, is not empty necessitates the development of
an alternative inferential procedure. This development is crucial as it would enable the

differentiation of various degrees of exogeneity among variables within N.

Regarding the existing tests relative to weak causal exogeneity, a crucial area requiring
further investigation pertains to the precise asymptotic behaviour of the test statistic used
for assessing causal endogeneity. The distributions employed in the thesis, such as the x?
and Dickey-Fuller distributions, are just approximations of the true ones. In fact, they hold
if the variable Q = X' Ry is observed. However, in practice, ¥, must be estimated, leading
to the substitution of (); with Qt. This substitution introduces an error on the left-hand
side of the equations, potentially influencing the distribution of the test statistic. While

it is theoretically expected that the bias decreases as the sample size N increases, due to
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~

Y, converging to Y,, rigorous examination of this aspect is necessary. This is particularly
critical for small sample sizes, where such biases can markedly impact the reliability of
the test results. Therefore, further empirical and theoretical studies are warranted to

accurately characterize these effects and refine the inferential procedures accordingly.

The impact of using estimates rather than exact values is evident from the simulations
conducted in chapter 2. These simulations revealed a rejection rate slightly deviating from
the chosen significance levels when the null hypothesis is true. Specifically, in the first test,
which hinges on the linear independence of the rows of v the rejection rate consistently fell
below the specified significance level. Conversely, in the second test, which relies on the
restrictions imposed on v, the rejection rate consistently exceeded the significance level.
To address this issue, a comprehensive examination of the asymptotic properties of the test
statistic is warranted. Moreover, it is essential to explore potential small sample effects,
especially given that macroeconomic datasets often comprise limited annual observations.
Such an investigation is crucial for refining the inferential procedures and ensuring their

robustness under various empirical conditions.

Other tests extensions should aim to address practical challenges arising from borderline
results in cointegration rank tests. It is not uncommon to encounter test statistics very
close to critical values for certain values of the cointegration rank r, where slight variations
in the significance level could lead to different outcomes. This issue holds particular
significance for the test on causal endogeneity proposed in chapter 1, since an accurate

identification of the cointegration rank is crucial for determining whether the rank of the
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modified model has decreased. Incorrectly setting the rank r, such as underestimating
it, may fail to identify a reduction in rank. Conversely, overestimating the rank could

erroneously identify a rank reduction that did not occur.

To address this issue, an alternative approach could be pursued by focusing on a standard-
ization of the difference between the test statistics of the original model (¢1) and the one
of modified model (¢2). The objective would be to investigate whether this standardized
difference follows a specific distribution under the null hypothesis t1 = t2. Such an ap-
proach offers potential advantages, particularly in scenarios where the exact cointegration
rank 7 is challenging to identify accurately. Instead of directly testing hypotheses about
r, this method focuses on comparing the magnitudes of test statistics, which may provide
robustness against mis-specification of r. Exploring the distributional properties of this
standardized difference could enhance the reliability of causal inference procedures, espe-
cially when dealing with borderline cases where traditional rank determination methods

may be ambiguous.

In the context of the third chapter, there exists potential for further advancements in
devising a test to identify the driving forces within the set Np. As demonstrated, both
weak exogeneity and weak causal exogeneity do not invariably correspond to the set of
variables causally driving the dynamics of interest. Weak exogeneity serves merely as a
sufficient condition for a variable to be included in Ny, whereas weak causal exogeneity is
just a necessary condition, given that Ny C N. Hence, there is a critical need to develop

alternative techniques capable of distinguishing which components within N truly drive
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the long-term dynamics of the variables under examination.

The third area of development concerns the construction of algorithmic procedures aimed
at recovering causal structures. This entails developing iterative methods that leverage
insights from the three preceding chapters to enable researchers to uncover segments of the
causal graph G. The overarching strategy involves integrating various tests to identify the
skeleton of G and subsequently determining the directionality of its edges. This approach
aligns with the principles of graphical causal inference, a burgeoning field that in the long-
run framework finds application in Hoover (2020). Hoover’s work lays a foundation for
a long-run causal discovery algorithm by examining weak exogeneity and cointegration
patterns through multiple inferential procedures applied to diverse subsets of observed
variables. Exploring the potential adaptation of these ideas alongside the tests introduced
in this chapter and integrating them with Hoover’s findings could yield a robust causal

discovery algorithm.

To have some preliminary ideas of how a causal discovery algorithm based on the findings
of this thesis might function, consider a set of observed variables X, = {A, B,C} and
assume that after testing for causal exogeneity, it is observed that X = A and 3 = {B, C'}.
Furthermore, after testing for strong causal exogeneity, it is determined that A is strongly
causally exogenous. From this, it follows that causality from B and C to A is excluded,
consistent with the definition of strong causal exogeneity. Moreover, given N’s definition,
A must directly or indirectly cause both B and C'. Thus, from this initial round of tests,

we infer A — {B,C}, but the relationships between B and C' remain unclear. To gain
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Figure C.1: Graph Estimated by Iterative Implementation of Causal Exogeneity Tests

further insights, we repeat the two tests for the subset {B,C}, excluding A from the
analysis. Suppose we find that B belongs to X while C' belongs to J. This suggests that
B influences C, either directly or indirectly, and B blocks causal paths between A and
C, thus mediating causality from A to C'. Consequently, we exclude a direct edge from
A to C. Suppose now that the hypothesis of strong causal exogeneity for B is rejected,
implying a causal feedback from C' to B. This scenario indicates that the estimated causal
graph will have a chain-type structure: A on top of the causal order, B in the middle and

C at the bottom, with causal feedback from C' to B, as illustrated in Figure C.1

It should be noted that the estimated causal graph is just a “summary” of the true
structure of G. This summary is limited not only because it considers a subset of variables
in Y, but also because it cannot reveal the precise transmission of causality among X,.
For example, it cannot ascertain whether causality from A to B is mediated by 2, 4, 9
variables, or whether it is direct. The same ambiguity applies to other causal connections
within the graph. Figure C.2 illustrates three of the infinite possible true graphs G that
can generate the patterns of weak and strong causal exogeneity among X, = {A, B,C'}
as previously assumed. While the graph in Figure C.1 may not perfectly match those in
Figure C.2, it effectively summarises the counterfactual aspects of all the graphs in the
latter figure. Consider for instance graph ¢): despite C' not being directly connected to

B, by modifying C' there will be an effect on D which in turn influences D. Therefore,
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Figure C.2: Examples of Possible Causal Structures of the Fully Observed Model Given
the Causal Exogeneity Patterns Generating Graph C.1

without controlling D causality can flow from C' to B, and the path C — D — B can
be simplified to C — B. A similar reasoning applies to the indirect connection between
B and C in graphs ii): if D is uncontrolled, causality can flow from B to C' through D,
and the graph B — D — C can be reduced to B — C. The connections in graph ii7)
appear more complex, but the underlying logic remains the same. An intervention on A
affects B through the mediation of the unobserved variables F', G, and H. Hence, A — B.
Similarly, an arbitrary modification of B has an effect on C' via the influence on I, leading
to the representation B — C. Unobserved variables J and K transmit causality from C
to B, resulting in C' — B. Notably, there is no direct path from C' and A, indicating
that modifications of C' cannot influence A, thus C~<A. Furthermore, if the observed B
is kept fixed, causality from A to C'is blocked, in the sense that by keeping B constant,
an intervention on A has no effect on C, thus A~(C'". Combining these results yields the

causal graph depicted in Figure C.1.
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The example provided here was deliberately simplified for illustrative purposes. It is im-
portant to note that causal exogeneity patterns do not necessarily correspond to unique
causal structures. In cases where multiple causal structures can produce the same exo-
geneity patterns, alternative techniques are required to distinguish between causal con-
nections. One potential approach could involve integrating this analysis with previous
methodologies, such as those proposed by Hoover (2020). Future research should explore
the existence of observational equivalence in causal structures and develop strategies to
address such scenarios effectively. Furthermore, there is a need for clearer guidelines to
inform the development of causal discovery algorithms. These guidelines should delineate
the key principles and methodologies that such algorithms should incorporate to accurately

uncover causal relationships.

Throughout this final chapter, we have proposed three areas for further development.
However, the avenues for research in long-run causal inference extend beyond the specific
recommendations put forth here, encompassing topics that may not directly align with
the methodologies advanced in this thesis. For instance, it would be valuable to explore
connections between the concept of causal exogeneity and other econometric definitions,
such as weak exogeneity with parameters of interest different from the cointegration matrix
or the notion of super exogeneity, which has been traditionally related to causality in the

econometric literature.

The causal inference literature plays a crucial role in facilitating robust empirical analy-
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ses of economic theories and in formulating effective policy strategies. Its significance is
underscored by two primary reasons. First, much of the macroeconomic discourse hinges
on disagreements over causal relationships and the identification of key variables driving
general economic dynamics. Second, causal inference allows data to speak freely, without
requiring models that rely on identifying restrictions often shaped by the subjective beliefs
of the modeler. By reducing reliance on these assumptions, econometric tools not only test
economic theories but also uncover underlying economic mechanisms. This shift enables
econometric tools to transition from passive tools to active contributors within the field

of economics.

The findings presented in this thesis aim to contribute to the literature on causal inference
by expanding the analytical toolkit available for understanding economic mechanisms. We
strongly believe that greater emphasis on long-run causal inference, complementing tradi-
tional short-run analyses, is essential since long-run dynamics align more closely with the
equilibrium dynamics widely accepted in macroeconomics. Our hope is that the method-
ology developed here can serve as a foundation for constructing new and more effective

econometric tools capable of operating in settings with minimal assumptions.

As econometricians, we need to acknowledge that nearly every economic inquiry is rooted
in causal reasoning, and that the problems that the economic literature is called to solve
require counterfactual understanding. This observation is true despite some authors at-
tempted to avoid explicit causal language; an exercise that often results in a clumsy

strategy merely leading to the employment of synonyms for the sentence “is caused by”,
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thereby hiding or making just implicit the causal logic, rather than eliminating it, much
like sweeping dust under the carpet. In developing tools for causal inference, we need
to consider that economics involves the study of complex systems where interconnected
factors interact in intricate ways. The social world is perhaps more intricate than the
natural world, comprising a multitude of interdependent elements that mutually influence
each other, thereby forming a dynamic and perpetually evolving network of relationships.
Adding to this complexity are human beings, complex entities whose interactions further
contribute to the intricacies of these systems. To compound matters, econometricians
must navigate contexts where variables are uncontrollable, rendering phenomena unrepro-
ducible in experimental settings. This inherent challenge underscores the complexity of
the econometrician’s work, which simultaneously presents stimulating intellectual oppor-
tunities as it compels us to grapple with the daunting task of discerning causation from

mere passive observation of associations.
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Data Sources Chapter 2

Long-term interest rate:

Organization for Economic Co-operation and Development, Interest Rates: Long-Term

Government Bond Yields: 10-Year: Main (Including Benchmark) for United States

[IRLTLT01USQ156N], retrieved from FRED, Federal Reserve Bank of St. Louis. Percent,

Quarterly, Not Seasonally Adjusted
Link: https://fred.stlouisfed.org/series/IRLTLT01USQ156N
Short-term interest rate:

Organization for Economic Co-operation and Development, Interest Rates: 3-Month or
90-Day Rates and Yields: Interbank Rates: Total for United States [IR3TIBO1USQ156N],
retrieved from FRED, Federal Reserve Bank of St. Louis

Link: https://fred.stlouisfed.org/series/IR3TIBO1USQ156N
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Consumer Price Index:

Organization for Economic Co-operation and Development, Consumer Price Index: All
Items: Wage Earners: Total for United States [CPALWEO1USQG661N], retrieved from
FRED, Federal Reserve Bank of St. Louis. Index 2015=100, Quarterly, Not Seasonally
Adjusted

Link: https://fred.stlouisfed.org/series/CPALWEO1USQ661N
Economic Output:

U.S. Bureau of Economic Analysis, Gross National Product [GNP], retrieved from FRED,
Federal Reserve Bank of St. Louis. Quarterly, Billions of Dollars, Seasonally Adjusted
Annual Rate.

Link: https://fred.stlouisfed.org/series/GNP
Money Supply:

Organization for Economic Co-operation and Development, Monetary Aggregates and

Their Components: Broad Money and Components: M3 for United States

IMABMM301USQ189S], retrieved from FRED, Federal Reserve Bank of St. Louis. Quar-
terly, US Dollar, Seasonally Adjusted.

Link: https://fred.stlouisfed.org/series/MABMM301USQ189S
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Data Sources Chapter 3

Labour productivity:

Data Source: Hill, Thomas, Dimsdale (2016), A Millennium of UK Data (2016), Bank of

England

Labor productivity per hour is measured as gross domestic product (GDP) per hour of
work. The time series is measured relative to productivity perhour of work in 2013 (i.e.
2013 = 100).

Link: https://ourworldindata.org/grapher/labor-productivity-per-hour?

time=earliest..2016
Other Data:

All the other data are souced from Oscar Jorda, Moritz Schularick, and Alan M. Taylor.
2017. “Macrofinancial History and the New Business Cycle Facts.” in NBER Macroeco-

nomics Annual 2016, volume 31, edited by Martin Eichenbaum and Jonathan A. Parker.
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Chicago: University of Chicago Press.

Link: https://www.macrohistory.net/database/
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